

REST API Design Rulebook

Mark Massé

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

REST API Design Rulebook
by Mark Massé

Copyright © 2012 Mark Massé. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Simon St. Laurent
Production Editor: Kristen Borg
Proofreader: O’Reilly Production Services

Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Robert Romano

Revision History for the First Edition:
2011-10-17 First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449310509 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. REST API Design Rulebook, the image of a crested shriketit, and related trade dress
are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

ISBN: 978-1-449-31050-9

[LSI]

1318535779

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449310509

For my amazing dad, Robert P. Massé, who is the
author of books on subjects ranging from the
“Nature of Physical Fields and Forces” to a

mysterious “Ghost Nose” that rides a big wheel.

Dad, thanks for giving me my very first O’Reilly
book and for teaching me to never stop learning.

Table of Contents

Preface . ix

1. Introduction . 1
Hello World Wide Web 1
Web Architecture 2

Client–Server 3
Uniform Interface 3
Layered System 4
Cache 4
Stateless 4
Code-On-Demand 4

Web Standards 5
REST 5
REST APIs 5
REST API Design 6

Rules 6
WRML 7

Recap 7

2. Identifier Design with URIs . 11
URIs 11
URI Format 11

Rule: Forward slash separator (/) must be used to indicate a hierarchical
relationship 12
Rule: A trailing forward slash (/) should not be included in URIs 12
Rule: Hyphens (-) should be used to improve the readability of URIs 12
Rule: Underscores (_) should not be used in URIs 12
Rule: Lowercase letters should be preferred in URI paths 13
Rule: File extensions should not be included in URIs 13

URI Authority Design 14
Rule: Consistent subdomain names should be used for your APIs 14

iii

Rule: Consistent subdomain names should be used for your client de-
veloper portal 14

Resource Modeling 14
Resource Archetypes 15

Document 15
Collection 15
Store 16
Controller 16

URI Path Design 16
Rule: A singular noun should be used for document names 17
Rule: A plural noun should be used for collection names 17
Rule: A plural noun should be used for store names 17
Rule: A verb or verb phrase should be used for controller names 17
Rule: Variable path segments may be substituted with identity-based
values 18
Rule: CRUD function names should not be used in URIs 18

URI Query Design 19
Rule: The query component of a URI may be used to filter collections
or stores 19
Rule: The query component of a URI should be used to paginate col-
lection or store results 20

Recap 20

3. Interaction Design with HTTP . 23
HTTP/1.1 23
Request Methods 23

Rule: GET and POST must not be used to tunnel other request methods 24
Rule: GET must be used to retrieve a representation of a resource 24
Rule: HEAD should be used to retrieve response headers 25
Rule: PUT must be used to both insert and update a stored resource 25
Rule: PUT must be used to update mutable resources 26
Rule: POST must be used to create a new resource in a collection 26
Rule: POST must be used to execute controllers 26
Rule: DELETE must be used to remove a resource from its parent 27
Rule: OPTIONS should be used to retrieve metadata that describes a
resource’s available interactions 27

Response Status Codes 28
Rule: 200 (“OK”) should be used to indicate nonspecific success 28
Rule: 200 (“OK”) must not be used to communicate errors in the re-
sponse body 28
Rule: 201 (“Created”) must be used to indicate successful resource cre-
ation 28

iv | Table of Contents

Rule: 202 (“Accepted”) must be used to indicate successful start of an
asynchronous action 29
Rule: 204 (“No Content”) should be used when the response body is
intentionally empty 29
Rule: 301 (“Moved Permanently”) should be used to relocate resources 29
Rule: 302 (“Found”) should not be used 29
Rule: 303 (“See Other”) should be used to refer the client to a different
URI 30
Rule: 304 (“Not Modified”) should be used to preserve bandwidth 30
Rule: 307 (“Temporary Redirect”) should be used to tell clients to re-
submit the request to another URI 30
Rule: 400 (“Bad Request”) may be used to indicate nonspecific failure 30
Rule: 401 (“Unauthorized”) must be used when there is a problem with
the client’s credentials 31
Rule: 403 (“Forbidden”) should be used to forbid access regardless of
authorization state 31
Rule: 404 (“Not Found”) must be used when a client’s URI cannot be
mapped to a resource 31
Rule: 405 (“Method Not Allowed”) must be used when the HTTP
method is not supported 31
Rule: 406 (“Not Acceptable”) must be used when the requested media
type cannot be served 32
Rule: 409 (“Conflict”) should be used to indicate a violation of resource
state 32
Rule: 412 (“Precondition Failed”) should be used to support conditional
operations 32
Rule: 415 (“Unsupported Media Type”) must be used when the media
type of a request’s payload cannot be processed 32
Rule: 500 (“Internal Server Error”) should be used to indicate API mal-
function 32

Recap 33

4. Metadata Design . 35
HTTP Headers 35

Rule: Content-Type must be used 35
Rule: Content-Length should be used 35
Rule: Last-Modified should be used in responses 35
Rule: ETag should be used in responses 36
Rule: Stores must support conditional PUT requests 36
Rule: Location must be used to specify the URI of a newly created re-
source 37
Rule: Cache-Control, Expires, and Date response headers should be
used to encourage caching 37

Table of Contents | v

Rule: Cache-Control, Expires, and Pragma response headers may be
used to discourage caching 38
Rule: Caching should be encouraged 38
Rule: Expiration caching headers should be used with 200 (“OK”) re-
sponses 38
Rule: Expiration caching headers may optionally be used with 3xx and
4xx responses 38
Rule: Custom HTTP headers must not be used to change the behavior
of HTTP methods 38

Media Types 39
Media Type Syntax 39
Registered Media Types 39
Vendor-Specific Media Types 40

Media Type Design 41
Rule: Application-specific media types should be used 41
Rule: Media type negotiation should be supported when multiple rep-
resentations are available 43
Rule: Media type selection using a query parameter may be supported 44

Recap 44

5. Representation Design . 47
Message Body Format 47

Rule: JSON should be supported for resource representation 47
Rule: JSON must be well-formed 48
Rule: XML and other formats may optionally be used for resource rep-
resentation 48
Rule: Additional envelopes must not be created 49

Hypermedia Representation 49
Rule: A consistent form should be used to represent links 49
Rule: A consistent form should be used to represent link relations 52
Rule: A consistent form should be used to advertise links 53
Rule: A self link should be included in response message body repre-
sentations 54
Rule: Minimize the number of advertised “entry point” API URIs 54
Rule: Links should be used to advertise a resource’s available actions in
a state-sensitive manner 55

Media Type Representation 56
Rule: A consistent form should be used to represent media type formats 56
Rule: A consistent form should be used to represent media type schemas 59

Error Representation 68
Rule: A consistent form should be used to represent errors 68
Rule: A consistent form should be used to represent error responses 69

vi | Table of Contents

Rule: Consistent error types should be used for common error condi-
tions 70

Recap 70

6. Client Concerns . 71
Introduction 71
Versioning 71

Rule: New URIs should be used to introduce new concepts 71
Rule: Schemas should be used to manage representational form versions 72
Rule: Entity tags should be used to manage representational state ver-
sions 72

Security 72
Rule: OAuth may be used to protect resources 72
Rule: API management solutions may be used to protect resources 73

Response Representation Composition 73
Rule: The query component of a URI should be used to support partial
responses 74
Rule: The query component of a URI should be used to embed linked
resources 76

Processing Hypermedia 78
JavaScript Clients 79

Rule: JSONP should be supported to provide multi-origin read access
from JavaScript 80
Rule: CORS should be supported to provide multi-origin read/write ac-
cess from JavaScript 82

Recap 83

7. Final Thoughts . 85
State of the Art 85
Uniform Implementation 86

Principle: REST API designs differ more than necessary 86
Principle: A REST API should be designed, not coded 87
Principle: Programmers and their organizations benefit from consis-
tency 88
Principle: A REST API should be created using a GUI tool 89

Recap 91

Appendix: My First REST API . 93

Table of Contents | vii

Preface

Greetings Program!
Representational State Transfer (REST) is a technical description of how the World
Wide Web* works. Specifically, REST tells us how the Web achieves its great scale. If
the Web can be said to have an “operating system,” its architectural style is REST.

A REST Application Programming Interface (REST API) is a type of web server that
enables a client, either user-operated or automated, to access resources that model a
system’s data and functions.

This book is a REST API designer’s style guide and reference. It proposes a set of
rules that you can leverage to design and develop REST APIs.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

* The “World Wide Web” is more commonly known as “the Web,” which is how this book refers to it.

ix

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “REST API Design Rulebook by Mark Massé
(O’Reilly). Copyright 2012 Mark Massé, 978-1-449-31050-9.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that lets you easily
search over 7,500 technology and creative reference books and videos to
find the answers you need quickly.

With a subscription, you can read any page and watch any video from our library online.
Read books on your cell phone and mobile devices. Access new titles before they are
available for print, and get exclusive access to manuscripts in development and post
feedback for the authors. Copy and paste code samples, organize your favorites, down-
load chapters, bookmark key sections, create notes, print out pages, and benefit from
tons of other time-saving features.

O’Reilly Media has uploaded this book to the Safari Books Online service. To have full
digital access to this book and others on similar topics from O’Reilly and other pub-
lishers, sign up for free at http://my.safaribooksonline.com.

x | Preface

mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://oreilly.com/catalog/0636920021575

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
I could not have written this book without the help of the folks mentioned here.

Tim Berners-Lee
As a member of the World Wide Web generation, I have spent my entire career as a
software engineer working in, and adding to, the Web. I am eternally grateful to Tim
Berners-Lee for his “WorldWideWeb” project. A triumph; huge success.

Roy Fielding
Roy Fielding’s pioneering Ph.D. dissertation was the primary inspiration for this book.
If you want to learn all about REST from its original author, I highly recommend that
you read Fielding’s dissertation.†

† Fielding, Roy Thomas. Architectural Styles and the Design of Network-based Software Architectures, Doctoral
dissertation, University of California, Irvine, 2000 (http://www.ics.uci.edu/~fielding/pubs/dissertation/top
.htm).

Preface | xi

http://oreilly.com/catalog/0636920021575
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

Leonard Richardson
In an effort to distinguish between RESTful and other Web API designs, Leonard Ri-
chardson proposed‡ what has come to be known as the “Richardson Maturity Model.”
In his model, Richardson outlined three distinct levels of REST API maturity:

1. URI

2. HTTP

3. Hypermedia

Each level corresponds with an aspect of the Web’s uniform interface that an API must
embrace in order to be considered RESTful. The maturity model’s level-based classi-
fication system has helped me evaluate and concisely communicate the RESTfulness
of many Web API designs.§

O’Reilly Media, Inc.
I have been a fan of O’Reilly’s books for as long as I’ve been programming. Working
on this project with O’Reilly’s Simon St. Laurent has been an incredible experience and
an honest to goodness dream come true for me. I am greatly honored to have been given
this opportunity and I thank Simon and everyone at O’Reilly Media for their support
and encouragement.

Additionally, this book would not exist without these foundational books, also pub-
lished by O’Reilly:

• Richardson, Leonard, and Sam Ruby. RESTful Web Services. Sebastopol: O’Reilly
Media, Inc., 2007.

• Allamaraju, Subbu. RESTful Web Services Cookbook. Sebastopol: O’Reilly Media,
Inc., 2010.

• Webber, Jim, Savas Parastatidis, and Ian Robinson. REST in Practice: Hypermedia
and Systems Architecture. Sebastopol: O’Reilly Media, Inc., 2010.

Technical Reviewers
I am indebted to this book’s technical reviewers. Each one took the time to read through
rough drafts of this book and provided insightful feedback that improved the end result.
Many thanks to: Mike Amundsen, Ryan Christianson, Jason Guenther, Brian Jackson,
Greg Katz, Will Merydith, Leonard Richardson, Daniel Roop, Nigel Simpson, and Ca-
meron Stevens.

‡ http://www.crummy.com/writing/speaking/2008-QCon/act3.html

§ Leonard Richardson also co-authored the milestone book, RESTful Web Services (O’Reilly) which really
helped move REST forward.

xii | Preface

http://oreilly.com/catalog/9780596529260
http://oreilly.com/catalog/9780596801694
http://oreilly.com/catalog/9780596805838
http://oreilly.com/catalog/9780596805838
http://www.crummy.com/writing/speaking/2008-QCon/act3.html
http://oreilly.com/catalog/9780596529260

Colleagues
Will Wiess, Scott Thompson, Kelley Faraone, Eric Freeman, and Nick Choat supported
my learning and teaching efforts over the past few years. Thank you all.

The REST Community
From a career perspective, this is an exciting time to be both working with and using
the Web! This book was influenced by anyone who has ever posted a scrap of infor-
mation about REST on the Web; or at least to those that search engines could find.
Over the years, I have pored over too many “REST API” articles and examples to count.
I know that each one helped shape my mental model of the best practices of REST API
design.

Stuart Rackham
Thanks also to Stuart Rackham for AsciiDoc.‖ It is an awesome tool that made format-
ting this book a breeze.

Personal
My brother Mike Massé is a Web-based rock star. His music provided the soundtrack
for all my writing sessions. Mike’s talents and passions have been a lifelong inspiration
to me.

Thanks to my family (daughter, mom, dad, and sisters) for their patience and support
while I was off the grid working on this book.

Finally, I thank Shawna Stine, for being the book’s first reviewer and biggest fan.

‖ http://www.methods.co.nz/asciidoc

Preface | xiii

http://www.mikemasse.com
http://www.methods.co.nz/asciidoc

CHAPTER 1

Introduction

Hello World Wide Web
The Web started in the “data acquisition and control” group at the European Organ-
ization for Nuclear Research (CERN), in Geneva, Switzerland. It began with a computer
programmer who had a clever idea for a new software project.

In December of 1990, to facilitate the sharing of knowledge, Tim Berners-Lee started
a non-profit software project that he called “WorldWideWeb.”* After working dili-
gently on his project for about a year, Berners-Lee had invented and implemented:

• The Uniform Resource Identifier (URI), a syntax that assigns each web document
a unique address

• The HyperText Transfer Protocol† (HTTP), a message-based language that com-
puters could use to communicate over the Internet.

• The HyperText Mark-up Language (HTML), to represent informative documents
that contain links to related documents.

• The first web server.‡

• The first web browser, which Berners-Lee also named “WorldWideWeb” and later
renamed “Nexus” to avoid confusion with the Web itself.

• The first WYSIWYG§ HTML editor, which was built right into the browser.

* The WorldWideWeb project was later renamed the “World Wide Web,” with added spaces.

† Berners-Lee, Tim. The Original HTTP as defined in 1991, W3C, 1991 (http://www.w3.org/Protocols/HTTP/
AsImplemented.html).

‡ The first web server is still up and running at http://info.cern.ch.

§ WYSIWYG is an acronym for What You See Is What You Get.

1

http://www.w3.org/Protocols/HTTP/AsImplemented.html
http://www.w3.org/Protocols/HTTP/AsImplemented.html
http://info.cern.ch

On August 6, 1991, on the Web’s first page, Berners-Lee wrote,

The WorldWideWeb (W3) is a wide-area hypermedia information retrieval initiative
aiming to give universal access to a large universe of documents.‖

From that moment, the Web began to grow, at times exponentially. Within five years,
the number of web users skyrocketed to 40 million. At one point, the number was
doubling every two months. The “universe of documents” that Berners-Lee had de-
scribed was indeed expanding.

In fact, the Web was growing too large, too fast, and it was heading toward collapse.

The Web’s traffic was outgrowing the capacity of the Internet infrastructure. Addi-
tionally, the Web’s core protocols were not uniformly implemented and they lacked
support for caches and other stabilizing intermediaries. With such rapid expansion, it
was unclear if the Web would scale to meet the increasing demand.

Web Architecture
In late 1993, Roy Fielding, co-founder of the Apache HTTP Server Project,# became
concerned by the Web’s scalability problem.

Upon analysis, Fielding recognized that the Web’s scalability was governed by a set of
key constraints. He and others set out to improve the Web’s implementation with a
pragmatic approach: uniformly satisfy all of the constraints so that the Web could
continue to expand.

The constraints, which Fielding grouped into six categories and collectively referred to
as the Web’s architectural style, are:

1. Client-server

2. Uniform interface

3. Layered system

4. Cache

5. Stateless

6. Code-on-demand

Each constraint category is summarized in the following subsections.

‖ Berners-Lee, Tim. World Wide Web, W3C, 1991 (http://www.w3.org/History/19921103-hypertext/
hypertext/WWW/TheProject.html).

#http://httpd.apache.org.

2 | Chapter 1: Introduction

http://www.w3.org/History/19921103-hypertext/hypertext/WWW/TheProject.html
http://www.w3.org/History/19921103-hypertext/hypertext/WWW/TheProject.html
http://httpd.apache.org

Client–Server
The separation of concerns is the core theme of the Web’s client-server constraints.
The Web is a client-server based system, in which clients and servers have distinct parts
to play. They may be implemented and deployed independently, using any language
or technology, so long as they conform to the Web’s uniform interface.

Uniform Interface
The interactions between the Web’s components—meaning its clients, servers, and
network-based intermediaries—depend on the uniformity of their interfaces. If any of
the components stray from the established standards, then the Web’s communication
system breaks down.

Web components interoperate consistently within the uniform interface’s four con-
straints, which Fielding identified as:

1. Identification of resources

2. Manipulation of resources through representations

3. Self-descriptive messages

4. Hypermedia as the engine of application state (HATEOAS)

The four interface constraints are summarized in the following subsections.

Identification of resources

Each distinct Web-based concept is known as a resource and may be addressed by a
unique identifier, such as a URI. For example, a particular home page URI, like http://
www.oreilly.com, uniquely identifies the concept of a specific website’s root resource.

Manipulation of resources through representations

Clients manipulate representations of resources. The same exact resource can be rep-
resented to different clients in different ways. For example, a document might be
represented as HTML to a web browser, and as JSON to an automated program. The
key idea here is that the representation is a way to interact with the resource but it is
not the resource itself. This conceptual distinction allows the resource to be represented
in different ways and formats without ever changing its identifier.

Self-descriptive messages

A resource’s desired state can be represented within a client’s request message. A re-
source’s current state may be represented within the response message that comes back
from a server. As an example, a wiki page editor client may use a request message to
transfer a representation that suggests a page update (new state) for a server-managed
web page (resource). It is up to the server to accept or deny the client’s request.

Web Architecture | 3

The self-descriptive messages may include metadata to convey additional details re-
garding the resource state, the representation format and size, and the message itself.
An HTTP message provides headers to organize the various types of metadata into
uniform fields.

Hypermedia as the engine of application state (HATEOAS)

A resource’s state representation includes links to related resources. Links are the
threads that weave the Web together by allowing users to traverse information and
applications in a meaningful and directed manner. The presence, or absence, of a link
on a page is an important part of the resource’s current state.

Layered System
The layered system constraints enable network-based intermediaries such as proxies
and gateways to be transparently deployed between a client and server using the Web’s
uniform interface. Generally speaking, a network-based intermediary will intercept
client-server communication for a specific purpose. Network-based intermediaries are
commonly used for enforcement of security, response caching, and load balancing.

Cache
Caching is one of web architecture’s most important constraints. The cache constraints
instruct a web server to declare the cacheability of each response’s data. Caching re-
sponse data can help to reduce client-perceived latency, increase the overall availability
and reliability of an application, and control a web server’s load. In a word, caching
reduces the overall cost of the Web.

A cache may exist anywhere along the network path between the client and server.
They can be in an organization’s web server network, within specialized content de-
livery networks (CDNs), or inside a client itself.

Stateless
The stateless constraint dictates that a web server is not required to memorize the state
of its client applications. As a result, each client must include all of the contextual
information that it considers relevant in each interaction with the web server. Web
servers ask clients to manage the complexity of communicating their application state
so that the web server can service a much larger number of clients. This trade-off is a
key contributor to the scalability of the Web’s architectural style.

Code-On-Demand
The Web makes heavy use of code-on-demand, a constraint which enables web servers
to temporarily transfer executable programs, such as scripts or plug-ins, to clients.

4 | Chapter 1: Introduction

Code-on-demand tends to establish a technology coupling between web servers and
their clients, since the client must be able to understand and execute the code that it
downloads on-demand from the server. For this reason, code-on-demand is the only
constraint of the Web’s architectural style that is considered optional. Web browser-
hosted technologies like Java applets, JavaScript, and Flash exemplify the code-on-
demand constraint.

Web Standards
Fielding worked alongside Tim Berners-Lee and others to increase the Web’s scalabil-
ity. To standardize their designs, they wrote a specification for the new version of the
Hypertext Transfer Protocol, HTTP/1.1.* They also formalized the syntax of Uniform
Resource Identifiers (URI) in RFC 3986.†

Adoption of these standards quickly spread across the Web and paved the way for its
continued growth.

REST
In the year 2000, after the Web’s scalability crisis was averted, Fielding named and
described the Web’s architectural style in his Ph.D. dissertation.‡ “Representational
State Transfer” (REST) is the name that Fielding gave to his description§ of the Web’s
architectural style, which is composed of the constraints outlined above.

REST APIs
Web services are purpose-built web servers that support the needs of a site or any other
application. Client programs use application programming interfaces (APIs) to com-
municate with web services. Generally speaking, an API exposes a set of data and func-
tions to facilitate interactions between computer programs and allow them to exchange
information. As depicted in Figure 1-1, a Web API is the face of a web service, directly
listening and responding to client requests.

The REST architectural style is commonly applied to the design of APIs for modern
web services. A Web API conforming to the REST architectural style is a REST API.

* Fielding, Roy T., Tim Berners-Lee, et al. HTTP/1.1, RFC 2616, RFC Editor, 1999 (http://www.rfc-editor.org/
rfc/rfc2616.txt).

† Berners-Lee, Tim, Roy T. Fielding, et al. Uniform Resource Identifier (URI): Generic Syntax, RFC 3986, RFC
Editor, 2005 (http://www.rfc-editor.org/rfc/rfc3986.txt).

‡ Fielding, Roy Thomas. Architectural Styles and the Design of Network-based Software Architectures, Doctoral
dissertation, University of California, Irvine, 2000 (http://www.ics.uci.edu/~fielding/pubs/dissertation/top
.htm).

§ “REST” is the name of the description, or derivation, of the Web’s architectural style.

REST APIs | 5

http://www.rfc-editor.org/rfc/rfc2616.txt
http://www.rfc-editor.org/rfc/rfc2616.txt
http://www.rfc-editor.org/rfc/rfc3986.txt
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

Having a REST API makes a web service “RESTful.” A REST API consists of an assembly
of interlinked resources. This set of resources is known as the REST API’s resource
model.

Well-designed REST APIs can attract client developers to use web services. In today’s
open market where rival web services are competing for attention, an aesthetically
pleasing REST API design is a must-have feature.

REST API Design
For many of us, designing a REST API can sometimes feel more like an art than a science.
Some best practices for REST API design are implicit in the HTTP standard, while other
pseudo-standard approaches have emerged over the past few years. Yet today, we must
continue to seek out answers to a slew of questions, such as:

• When should URI path segments be named with plural nouns?

• Which request method should be used to update resource state?

• How do I map non-CRUD operations to my URIs?

• What is the appropriate HTTP response status code for a given scenario?

• How can I manage the versions of a resource’s state representations?

• How should I structure a hyperlink in JSON?

Rules
This book presents a set of REST API design rules that aim to provide clear and concise
answers to the nagging questions listed above. The rules are here to help you design
REST APIs with consistency that can be leveraged by the clients that use them. These
rules can be followed as a complete set or a la carte. You may contest the rules, but I
believe that each one warrants careful consideration.

Many of this book’s design rules are drawn from the best practices that have become
de facto standards. If you have some experience with the design of REST APIs, then
you are likely to be familiar with the rules related to URI design in Chapter 2 and the
use of HTTP in Chapter 3. In contrast, most of the rules presented in Chapter 4 and
Chapter 5 (particularly those that deal with media types and representational forms)
are my solutions in the absence of consensus.

Figure 1-1. Web API

6 | Chapter 1: Introduction

When used in the context of rules, the key words: “must,” “must not,”
“required,” “shall,” “shall not,” “should,” “should not,” “recommen-
ded,” “may,” and “optional” are to be interpreted as described in RFC
2119.‖

WRML
I’ve invented a conceptual framework called the Web Resource Modeling Language
(WRML) to assist with the design and implementation of REST APIs. WRML, pro-
nounced like “wormle,” originated as a resource model diagramming technique that
uses a set of basic shapes to represent each of the resource archetypes discussed in
“Resource Archetypes” on page 15. The scope of WRML increased with the creation
of the application/wrml media type,# which has pluggable format and schema compo-
nents, as described in “Media Type Design” on page 41. In many of the book’s later
rules, I’ll use ideas from WRML to fill in the gaps in current best practices with rational
advice for common situations.

In Chapters 5 and 6 you’ll notice that many of the rules include examples that use the
JavaScript Object Notation (JSON) to format representations.* JSON is an important
format that has many advantages, such as native JavaScript support, near-ubiquitous
adoption, and familiar syntax. However, by itself the JSON format does not provide
uniform structures for some of the most important REST API concepts, specifically
links, link relations, and schemas. The rules in “Hypermedia Representa-
tion” on page 49 and “Schema Representation” on page 59, use WRML to dem-
onstrate JSON-formatted representational forms for each of these core constructs.

Finally, Chapter 7 asserts that uniformity of API design is not merely an academic pur-
suit. On the contrary it holds the promise of improving the lives of programmers by
empowering us with a rich set of development tools and frameworks that we can lev-
erage to design and develop REST APIs.

Recap
This chapter presented a synopsis of the Web’s invention and stabilization. It motivated
the book’s rule-oriented presentation and introduced WRML, a conceptual framework
whose ideas promote a uniform REST API design methodology. Subsequent chapters
will build on this foundation to help us leverage REST in API designs. Table 1-1 sum-
marizes the vocabulary terms that were introduced in this chapter.

‖ Bradner, Scott. Key words for use in RFCs to Indicate Requirement Levels, RFC 2119, RFC Editor,
1997 (http://www.rfc-editor.org/rfc/rfc2119.txt).

#The application/wrml media type’s IANA registration is pending—see http://www.wrml.org for the most up-
to-date information.

* http://www.json.org

Recap | 7

http://www.rfc-editor.org/rfc/rfc2119.txt
http://www.wrml.org
http://www.json.org

Table 1-1. Vocabulary review

Term Description

Application Programming
Interface (API)

Exposes a set of data and functions to facilitate interactions between computer programs.

Architectural constraint Limits the behavior of a system’s components to enforce uniformity and achieve some desired
property.

Architectural style In his Ph.D. dissertation, Roy Fielding used this term to describe a set of constraints that restrict
the behavior of a system’s interconnected components.

Cache REST constraints that enable network-based intermediaries to hold on to resource state repre-
sentations, which helps web servers meet the demands of their clients.

Client–server REST constraints that separate the concerns of its two primary components, which allows their
implementations to evolve independently.

Code-on-demand A REST constraint that optionally allows a web server to transfer executable programs to its clients
on an as-needed basis.

Entity body Section of an HTTP message that is designated to hold the (optional) content, which may be a
resource representation.

Entity headers Section of an HTTP message that can communicate meta information regarding a resource and its
representation.

HATEOAS Acronym that stands for REST’s “Hypermedia as the Engine of Application State” uniform interface
constraint, which refers to the practice of providing a state-aware list of links to convey a resource’s
available “actions.”

Hypermedia An extension of hypertext that enables multiple formats to be combined and tethered together
with links to design a multi-media information network.

Hypertext Text-based documents containing embedded links to related documents, which creates a navigable
mesh of information.

HyperText Mark-up
Language (HTML)

Created by Tim Berners-Lee to represent the state of a web resource’s information and relationships.

HyperText Transfer Proto-
col (HTTP)

Originally developed by Tim Berners-Lee, this is a message-based language that computers could
use to communicate over the Internet.

Hypertext Transfer Proto-
col version 1.1 (HTTP/1.1)

Roy Fielding, Tim Berners-Lee, and others contributed to the standardization of this most recent
version of the communication protocol.

JavaScript A powerful scripting language that is commonly used by web developers.

JavaScript Object Notation
(JSON)

A standardized text format that was derived from JavaScript and is used for structured data
exchange.

Layered system REST constraints that enable network-based intermediaries to sit between a client and server
without compromising the uniform interface constraints.

Media type A syntax that describes the form of content.

Message Self-descriptive envelope that is often used to carry a representation of a resource’s state.

Representation The formatted state of a resource, which may be transferred via messages that are passed between
components.

8 | Chapter 1: Introduction

Term Description

Representational State
Transfer (REST)

Roy Fielding’s derivation of the Web’s architectural style.

Request message Sent from clients to interact with a URI-indicated web resource. May contain a representation that
suggests a resource state.

Resource Any Web-based concept that can be referenced by a unique identifier and manipulated via the
uniform interface.

Resource identifier A universally unique ID of a specific Web-based concept.

Resource model An assembly of interlinked Web-based concepts.

Resource state
representation

The rendered state of a web server-owned resource; transferred between an application’s client
and server.

Response message Returned from servers to indicate the results of a client’s request. May contain a representation to
convey a resource state.

REST API A web service interface that conforms to the Web’s architectural style.

Scalability The ability to gracefully handle an increasing workload.

Stateless A REST constraint that restricts a web server from holding on to any client-specific state information,
which helps it support more clients.

Uniform interface A set of four REST constraints that standardize the communication between Web-based
components.

Uniform Resource
Identifier (URI)

A syntax invented by Tim Berners-Lee to assign each web resource a unique ID.

Web API Used by clients to interact with a web service.

Web browser (browser) Common type of web client. Tim Berners-Lee developed the first one, which was able to view and
edit HTML documents.

Web client (client) A computer program that follows REST’s uniform interface in order to accept and transfer resource
state representations to servers.

Web component
(component)

A client, network-based intermediary, or server that complies with REST’s uniform interface.

Web Resource Modeling
Language (WRML)

A conceptual framework whose ideas can be leveraged to design and implement uniform REST APIs.

Web server (server) A computer program that follows REST’s uniform interface constraints in order to accept and transfer
resource state representations to clients.

Web service A web server programmed with specific, often reusable, logic.

Recap | 9

CHAPTER 2

Identifier Design with URIs

URIs
REST APIs use Uniform Resource Identifiers (URIs) to address resources. On today’s
Web, URI designs range from masterpieces that clearly communicate the API’s resource
model like:

http://api.example.restapi.org/france/paris/louvre/leonardo-da-vinci/mona-lisa

to those that are much harder for people to understand, such as:

http://api.example.restapi.org/68dd0-a9d3-11e0-9f1c-0800200c9a66

Tim Berners-Lee included a note about the opacity of URIs in his “Axioms of Web
Architecture” list:

The only thing you can use an identifier for is to refer to an object. When you are
not dereferencing, you should not look at the contents of the URI string to gain other
information.

—Tim Berners-Lee http://www.w3.org/DesignIssues/Axioms.html

As discussed in Chapter 5, clients must follow the linking paradigm of the Web and
treat URIs as opaque identifiers. That said, REST API designers should create URIs that
convey a REST API’s resource model to its potential client developers.

This chapter introduces a set of design rules for REST API URIs.

URI Format
The rules presented in this section pertain to the format of a URI. RFC 3986* defines
the generic URI syntax as shown below:

URI = scheme "://" authority "/" path ["?" query] ["#" fragment]

* Berners-Lee, Tim, Roy T. Fielding, et al. Uniform Resource Identifier (URI): Generic Syntax, RFC 3986, RFC
Editor, 1998 (http://www.rfc-editor.org/rfc/rfc3986.txt).

11

http://www.w3.org/DesignIssues/Axioms.html
http://www.rfc-editor.org/rfc/rfc3986.txt

Rule: Forward slash separator (/) must be used to indicate a hierarchical
relationship
The forward slash (/) character is used in the path portion of the URI to indicate a
hierarchical relationship between resources. For example:

http://api.canvas.restapi.org/shapes/polygons/quadrilaterals/squares

Rule: A trailing forward slash (/) should not be included in URIs
As the last character within a URI’s path, a forward slash (/) adds no semantic value
and may cause confusion. REST APIs should not expect a trailing slash and should not
include them in the links that they provide to clients.

Many web components and frameworks will treat the following two URIs equally:

http://api.canvas.restapi.org/shapes/
http://api.canvas.restapi.org/shapes

However, every character within a URI counts toward a resource’s unique identity. Two
different URIs map to two different resources. If the URIs differ, then so do the re-
sources, and vice versa. Therefore, a REST API must generate and communicate clean
URIs and should be intolerant of any client’s attempts to identify a resource imprecisely.
More forgiving APIs may redirect clients to URIs without a trailing forward slash (as
described in “Rule: 301 (“Moved Permanently”) should be used to relocate resour-
ces” on page 29).

Rule: Hyphens (-) should be used to improve the readability of URIs
To make your URIs easy for people to scan and interpret, use the hyphen (-) character
to improve the readability of names in long path segments. Anywhere you would use
a space or hyphen in English, you should use a hyphen in a URI. For example:

http://api.example.restapi.org/blogs/mark-masse/entries/this-is-my-first-post

Rule: Underscores (_) should not be used in URIs
Text viewer applications (browsers, editors, etc.) often underline URIs to provide a
visual cue that they are clickable. Depending on the application’s font, the underscore
(_) character can either get partially obscured or completely hidden by this underlining.
To avoid this confusion, use hyphens (-) instead of underscores (as described in “Rule:
Hyphens (-) should be used to improve the readability of URIs” on page 12).

12 | Chapter 2: Identifier Design with URIs

Rule: Lowercase letters should be preferred in URI paths
When convenient, lowercase letters are preferred in URI paths since capital letters can
sometimes cause problems. RFC 3986 defines URIs as case-sensitive except for the
scheme and host components. For example:

http://api.example.restapi.org/my-folder/my-doc
HTTP://API.EXAMPLE.RESTAPI.ORG/my-folder/my-doc
http://api.example.restapi.org/My-Folder/my-doc

This URI is fine.

The URI format specification (RFC 3986) considers this URI to be identical to URI
#1.

This URI is not the same as URIs 1 and 2, which may cause unnecessary confusion.

Rule: File extensions should not be included in URIs
On the Web, the period (.) character is commonly used to separate the file name and
extension portions of a URI. A REST API should not include artificial file extensions
in URIs to indicate the format of a message’s entity body. Instead, they should rely on
the media type, as communicated through the Content-Type header, to determine how
to process the body’s content. For more about media types, see the section “Media
Types” on page 39.

http://api.college.restapi.org/students/3248234/transcripts/2005/fall.json
http://api.college.restapi.org/students/3248234/transcripts/2005/fall

File extensions should not be used to indicate format preference.

REST API clients should be encouraged to utilize HTTP’s provided format selection
mechanism, the Accept request header, as discussed in the section “Rule: Media type
negotiation should be supported when multiple representations are availa-
ble” on page 43.

To enable simple links and easy debugging, a REST API may support
media type selection via a query parameter as discussed in the section
“Rule: Media type selection using a query parameter may be suppor-
ted” on page 44.

URI Format | 13

URI Authority Design
This section covers the naming conventions that should be used for the authority por-
tion of a REST API.

Rule: Consistent subdomain names should be used for your APIs
The top-level domain and first subdomain names (e.g., soccer.restapi.org) of an API
should identify its service owner. The full domain name of an API should add a sub-
domain named api. For example:

http://api.soccer.restapi.org

Rule: Consistent subdomain names should be used for your client developer
portal
Many REST APIs have an associated website, known as a developer portal, to help on-
board new clients with documentation, forums, and self-service provisioning of secure
API access keys. If an API provides a developer portal, by convention it should have a
subdomain labeled developer. For example:

http://developer.soccer.restapi.org

Resource Modeling
The URI path conveys a REST API’s resource model, with each forward slash separated
path segment corresponding to a unique resource within the model’s hierarchy. For
example, this URI design:

http://api.soccer.restapi.org/leagues/seattle/teams/trebuchet

indicates that each of these URIs should also identify an addressable resource:

http://api.soccer.restapi.org/leagues/seattle/teams
http://api.soccer.restapi.org/leagues/seattle
http://api.soccer.restapi.org/leagues
http://api.soccer.restapi.org

Resource modeling is an exercise that establishes your API’s key concepts. This process
is similar to the data modeling for a relational database schema or the classical modeling
of an object-oriented system.

Before diving directly into the design of URI paths, it may be helpful to first think about
the REST API’s resource model.

14 | Chapter 2: Identifier Design with URIs

Resource Archetypes
When modeling an API’s resources, we can start with the some basic resource arche-
types. Like design patterns, the resource archetypes help us consistently communicate
the structures and behaviors that are commonly found in REST API designs. A REST
API is composed of four distinct resource archetypes: document, collection, store, and
controller.

In order to communicate a clear and clean resource model to its clients,
a REST API should align each resource with only one of these arche-
types. For uniformity’s sake, resist the temptation to design resources
that are hybrids of more than one archetype. Instead, consider designing
separate resources that are related hierarchically and/or through links,
as discussed in Chapter 5.

Each of these resource archetypes is described in the subsections that follow.

Document
A document resource is a singular concept that is akin to an object instance or database
record. A document’s state representation typically includes both fields with values and
links to other related resources. With its fundamental field and link-based structure,
the document type is the conceptual base archetype of the other resource archetypes.
In other words, the three other resource archetypes can be viewed as specializations of
the document archetype.

Each URI below identifies a document resource:

http://api.soccer.restapi.org/leagues/seattle
http://api.soccer.restapi.org/leagues/seattle/teams/trebuchet
http://api.soccer.restapi.org/leagues/seattle/teams/trebuchet/players/mike

A document may have child resources that represent its specific subordinate concepts.
With its ability to bring many different resource types together under a single parent,
a document is a logical candidate for a REST API’s root resource, which is also known
as the docroot. The example URI below identifies the docroot, which is the Soccer
REST API’s advertised entry point:

http://api.soccer.restapi.org

Collection
A collection resource is a server-managed directory of resources. Clients may propose
new resources to be added to a collection. However, it is up to the collection to choose
to create a new resource, or not. A collection resource chooses what it wants to contain
and also decides the URIs of each contained resource.

Resource Archetypes | 15

Each URI below identifies a collection resource:

http://api.soccer.restapi.org/leagues
http://api.soccer.restapi.org/leagues/seattle/teams
http://api.soccer.restapi.org/leagues/seattle/teams/trebuchet/players

Store
A store is a client-managed resource repository. A store resource lets an API client put
resources in, get them back out, and decide when to delete them. On their own, stores
do not create new resources; therefore a store never generates new URIs. Instead, each
stored resource has a URI that was chosen by a client when it was initially put into the
store.

The example interaction below shows a user (with ID 1234) of a client program using
a fictional Soccer REST API to insert a document resource named alonso in his or her
store of favorites:

PUT /users/1234/favorites/alonso

Controller
A controller resource models a procedural concept. Controller resources are like exe-
cutable functions, with parameters and return values; inputs and outputs.

Like a traditional web application’s use of HTML forms, a REST API relies on controller
resources to perform application-specific actions that cannot be logically mapped to
one of the standard methods (create, retrieve, update, and delete, also known as
CRUD).

Controller names typically appear as the last segment in a URI path, with no child
resources to follow them in the hierarchy. The example below shows a controller re-
source that allows a client to resend an alert to a user:

POST /alerts/245743/resend

URI Path Design
Each URI path segment, separated by forward slashes (/), represents a design oppor-
tunity. Assigning meaningful values to each path segment helps to clearly communicate
the hierarchical structure of a REST API’s resource model design.

Figure 2-1 uses WRML notation† to exemplify the correlation of a URI path’s design
with the resource model that it conveys.

† Web Resource Modeling Language (WRML) was introduced in “WRML” on page 7

16 | Chapter 2: Identifier Design with URIs

Figure 2-1. WRML diagram of a URI’s associated resource model

This section provides rules relating to the design of meaningful URI paths.

Rule: A singular noun should be used for document names
A URI representing a document resource should be named with a singular noun or
noun phrase path segment.

For example, the URI for a single player document would have the singular form:

http://api.soccer.restapi.org/leagues/seattle/teams/trebuchet/players/claudio

Rule: A plural noun should be used for collection names
A URI identifying a collection should be named with a plural noun, or noun phrase,
path segment. A collection’s name should be chosen to reflect what it uniformly con-
tains.

For example, the URI for a collection of player documents uses the plural noun form
of its contained resources:

http://api.soccer.restapi.org/leagues/seattle/teams/trebuchet/players

Rule: A plural noun should be used for store names
A URI identifying a store of resources should be named with a plural noun, or noun
phrase, as its path segment. The URI for a store of music playlists may use the plural
noun form as follows:

http://api.music.restapi.org/artists/mikemassedotcom/playlists

Rule: A verb or verb phrase should be used for controller names
Like a computer program’s function, a URI identifying a controller resource should be
named to indicate its action. For example:

http://api.college.restapi.org/students/morgan/register
http://api.example.restapi.org/lists/4324/dedupe

URI Path Design | 17

http://api.ognom.restapi.org/dbs/reindex
http://api.build.restapi.org/qa/nightly/runTestSuite

Rule: Variable path segments may be substituted with identity-based
values
Some URI path segments are static; meaning they have fixed names that may be chosen
by the REST API’s designer. Other URI path segments are variable, which means that
they are automatically filled in with some identifier that may help provide the URI with
its uniqueness. The URI Template syntax‡ allows designers to clearly name both the
static and variable segments. A URI template includes variables that must be substituted
before resolution. The URI template example below has three variables (leagueId,
teamId, and playerId):

http://api.soccer.restapi.org/leagues/{leagueId}/teams/{teamId}/players/{playerId}

The substitution of a URI template’s variables may be done by a REST API or its clients.
Each substitution may use a numeric or alphanumeric identifier, as shown in the ex-
amples below:

http://api.soccer.restapi.org/leagues/seattle/teams/trebuchet/players/21
http://api.soccer.restapi.org/games/3fd65a60-cb8b-11e0-9572-0800200c9a66

Conceptually, the value 21 occupies a variable path segment slot named playerId.

The UUID value fills in the gameId variable.

A REST API’s clients must consider URIs to be the only meaningful
resource identifiers. Although other backend system identifiers (such as
database IDs) may appear in a URI’s path, they are meaningless to client
code. By establishing URIs as the only IDs, a REST API’s backend im-
plementation may evolve over time without impacting its existing
clients.

Rule: CRUD function names should not be used in URIs
URIs should not be used to indicate that a CRUD§ function is performed. URIs should
be used to uniquely identify resources, and they should be named as described in the
rules above. As discussed in “Request Methods” on page 23, HTTP request methods
should be used to indicate which CRUD function is performed.

For example, this API interaction design is preferred:

DELETE /users/1234

‡ http://tools.ietf.org/html/draft-gregorio-uritemplate.

§ CRUD is an acronym that stands for create, read, update, delete—the four standard, storage-oriented
functions.

18 | Chapter 2: Identifier Design with URIs

http://tools.ietf.org/html/draft-gregorio-uritemplate

The following anti-patterns exemplify what not to do:

GET /deleteUser?id=1234
GET /deleteUser/1234
DELETE /deleteUser/1234
POST /users/1234/delete

URI Query Design
This section provides rules relating to the design of URI queries. Recall from RFC 3986
that a URI’s optional query comes after the path and before the optional fragment:

URI = scheme "://" authority "/" path ["?" query] ["#" fragment]

As a component of a URI, the query contributes to the unique identification of a re-
source. Consider the following example:

http://api.college.restapi.org/students/morgan/send-sms
http://api.college.restapi.org/students/morgan/send-sms?text=hello

The URI of a controller resource that sends an sms message.

The URI of a controller resource that sends an sms message with a text value of hello.

The query component of a URI contains a set of parameters to be interpreted as a
variation or derivative of the resource that is hierarchically identified by the path com-
ponent. So, while these two resources are not the same, they are very closely related.

The query component can provide clients with additional interaction capabilities such
as ad hoc searching and filtering. Therefore, unlike the other elements of a URI, the
query part may be transparent to a REST API’s client.

The entirety of a resource’s URI should be treated opaquely by basic network-based
intermediaries such as HTTP caches. Caches must not vary their behavior based on the
presence or absence of a query in a given URI. Specifically, response messages must
not be excluded from caches based solely upon the presence of a query in the requested
URI. As discussed later in Chapter 4, HTTP headers, not queries, must be used to direct
a cache intermediary’s behavior.

Rule: The query component of a URI may be used to filter collections or stores
A URI’s query component is a natural fit for supplying search criteria to a collection or
store. Let’s take a look at an example:

GET /users
GET /users?role=admin

The response message’s state representation contains a listing of all the users in the
collection.

The response message’s state representation contains a filtered list of all the users in
the collection with a “role” value of admin.

URI Query Design | 19

Rule: The query component of a URI should be used to paginate collection
or store results
A REST API client should use the query component to paginate collection and store
results with the pageSize and pageStartIndex parameters. The pageSize parameter
specifies the maximum number of contained elements to return in the response. The
pageStartIndex parameter specifies the zero-based index of the first element to return
in the response. For example:

GET /users?pageSize=25&pageStartIndex=50

When the complexity of a client’s pagination (or filtering) requirements exceeds the
simple formatting capabilities of the query part, consider designing a special controller
resource that partners with a collection or store. For example, the following controller
may accept more complex inputs via a request’s entity body instead of the URI’s query
part:

POST /users/search

This design allows for custom range types and special sort orders to be easily specified
in the client request message body. However, as detailed in Chapter 4, care must be
taken to ensure that the controller’s cacheable results are marked accordingly.

Recap
This chapter offered a set of design rules for REST API URIs. Table 2-1 summarizes the
terms that were used in this chapter.

Table 2-1. Vocabulary review

Term Description

Authority A URI component that identifies the party with jurisdiction over the namespace defined by
the remainder of the URI.

Collection A resource archetype used to model a server-managed directory of resources.

Controller A resource archetype used to model a procedural concept.

CRUD An acronym that stands for the four classic storage-oriented functions: create, retrieve,
update, and delete.

Developer portal A Web-based graphical user interface that helps a REST API acquire new clients.

Docroot A resource that is the hierarchical ancestor of all other resources within a REST API’s model.
This resource’s URI should be the REST API’s advertised entry point.

Document A resource archetype used to model a singular concept.

Forward slash separator (/) Used within the URI path component to separate hierarchically related resources.

Opacity of URIs An axiom, originally described by Tim Berners-Lee, that governs the visibility of a resource
identifier’s composition.

20 | Chapter 2: Identifier Design with URIs

Term Description

Parent resource The document, collection, or store that governs a given subordinate concept by preceding
it within a URI’s hierarchical path.

Query A URI component that comes after the path and before the optional fragment.

Resource archetypes A set of four intrinsic concepts (document, collection, store, and controller) that may be
used to help describe a REST API’s model.

Store A resource archetype used to model a client-managed resource repository.

URI path segment Part of a resource identifier that represents a single node within a larger, hierarchical
resource model.

URI template A resource identifier syntax that includes variables that must be substituted before
resolution.

Recap | 21

CHAPTER 3

Interaction Design with HTTP

HTTP/1.1
REST APIs embrace all aspects of the HyperText Transfer Protocol, version 1.1* (HTTP/
1.1) including its request methods, response codes, and message headers.

This book divides its coverage of HTTP between two chapters, with this chapter dis-
cussing request methods and response status codes. Incorporating metadata in a REST
API design, with HTTP’s request and response headers, is the subject of Chapter 4.

A few of this chapter’s examples use curl, the command-line, open-
source web client that is available for most modern development plat-
forms. For some common REST API-related development tasks, curl
has some advantages over the browser. Specifically, curl allows easy
access to HTTP’s full feature set and it is scriptable, meaning that pro-
grammers can write simple shell scripts or batch files containing curl
commands to test or use a REST API.

Request Methods
Clients specify the desired interaction method in the Request-Line part of an HTTP
request message. RFC 2616 defines the Request-Line syntax as shown below:

Request-Line = Method SP Request-URI SP HTTP-Version CRLF

Each HTTP method has specific, well-defined semantics within the context of a REST
API’s resource model. The purpose of GET is to retrieve a representation of a resource’s
state. HEAD is used to retrieve the metadata associated with the resource’s state. PUT
should be used to add a new resource to a store or update a resource. DELETE removes

* Fielding, Roy T., Tim Berners-Lee, et al. HTTP/1.1, RFC 2616, RFC Editor, 1999 (http://www.rfc-editor.org/
rfc/rfc2616.txt).

23

http://curl.haxx.se
http://www.rfc-editor.org/rfc/rfc2616.txt
http://www.rfc-editor.org/rfc/rfc2616.txt

a resource from its parent. POST should be used to create a new resource within a col-
lection and execute controllers.

Rule: GET and POST must not be used to tunnel other request methods
Tunneling refers to any abuse of HTTP that masks or misrepresents a message’s intent
and undermines the protocol’s transparency. A REST API must not compromise its
design by misusing HTTP’s request methods in an effort to accommodate clients with
limited HTTP vocabulary. Always make proper use of the HTTP methods as specified
by the rules in this section.

Rule: GET must be used to retrieve a representation of a resource
A REST API client uses the GET method in a request message to retrieve the state of a
resource, in some representational form. A client’s GET request message may contain
headers but no body.

The architecture of the Web relies heavily on the nature of the GET method. Clients
count on being able to repeat GET requests without causing side effects. Caches depend
on the ability to serve cached representations without contacting the origin server.

In the example below, we can see how a client developer might use curl from a command
shell to GET a representation of a “greeting” resource’s current state:

$ curl -v http://api.example.restapi.org/greeting

> GET /greeting HTTP/1.1
> User-Agent: curl/7.20.1
> Host: api.example.restapi.org
> Accept: */*

< HTTP/1.1 200 OK
< Date: Sat, 20 Aug 2011 16:02:40 GMT
< Server: Apache
< Expires: Sat, 20 Aug 2011 16:03:40 GMT
< Cache-Control: max-age=60, must-revalidate
< ETag: text/html:hello world
< Content-Length: 130
< Last-Modified: Sat, 20 Aug 2011 16:02:17 GMT
< Vary: Accept-Encoding
< Content-Type: text/html

<!doctype html><head><meta charset="utf-8"><title>Greeting</title></head>
<body><div id="greeting">Hello World!</div></body></html>

A command prompt showing the curl command. GET is curl’s default method, so it
doesn’t need to be specified explicitly. The -v option makes the curl command’s
output more verbose.

The request message’s Request-Line indicates that the GET method was used on the
greeting resource.

24 | Chapter 3: Interaction Design with HTTP

The request message’s list of headers starts here. HTTP’s request and response
headers are discussed in Chapter 4.

The response message starts here, with the Status-Line discussed in “Response Sta-
tus Codes” on page 28. The 200 OK status code tells curl that its request was
successful.

The response message’s list of headers starts here.

The response message’s body starts here. In this example the body contains an
HTML-formatted representation of a greeting message.

Rule: HEAD should be used to retrieve response headers
Clients use HEAD to retrieve the headers without a body. In other words, HEAD returns
the same response as GET, except that the API returns an empty body. Clients can use
this method to check whether a resource exists or to read its metadata.

The example below shows the curl command for retrieving headers with the HEAD
method:

$ curl --head http://api.example.restapi.org/greeting

HTTP/1.1 200 OK
Date: Sat, 20 Aug 2011 16:02:40 GMT
Server: Apache
Expires: Sat, 20 Aug 2011 16:03:40 GMT
Cache-Control: max-age=60, must-revalidate
ETag: text/html:hello world
Content-Length: 130
Last-Modified: Sat, 20 Aug 2011 16:02:17 GMT
Vary: Accept-Encoding
Content-Type: text/html

The response message starts here, with the Status-Line discussed in “Response Sta-
tus Codes” on page 28. The 200 OK status code tells curl that its request was
successful.

The response message’s list of headers starts here.

Like GET, a HEAD request message may contain headers but no body.

Rule: PUT must be used to both insert and update a stored resource
PUT must be used to add a new resource to a store, with a URI specified by the client.
PUT must also be used to update or replace an already stored resource.

The example below demonstrates how a service-oriented REST API can provide a store
resource that allows its client application’s to persist their data as objects:

PUT /accounts/4ef2d5d0-cb7e-11e0-9572-0800200c9a66/buckets/objects/4321

Request Methods | 25

The PUT request message must include a representation of a resource that the client
wants to store. However, the body of the request may or may not be exactly the same
as a client would receive from a subsequent GET request. For example, a REST API’s
store resource may allow clients to include only the mutable portions of the resource
state in the request message’s representation.

The section “Rule: Stores must support conditional PUT requests” on page 36 de-
scribes how a REST API should use HTTP headers to handle overloading the PUT method
to both insert and update resources.

Rule: PUT must be used to update mutable resources
Clients must use the PUT request method to make changes to resources. The PUT request
message may include a body that reflects the desired changes.

Rule: POST must be used to create a new resource in a collection
Clients use POST when attempting to create a new resource within a collection. The
POST request’s body contains the suggested state representation of the new resource to
be added to the server-owned collection.

The example below demonstrates how a client uses POST to request a new addition to
a collection:

POST /leagues/seattle/teams/trebuchet/players

Note the request message may contain a representation that suggests the initial state
of the player to be created.

This is the first of two uses of the POST method within the context of REST API design.
Metaphorically, this use of POST is analogous to “posting” a new message on a bulletin
board.

Rule: POST must be used to execute controllers
Clients use the POST method to invoke the function-oriented controller resources. A
POST request message may include both headers and a body as inputs to a controller
resource’s function.

HTTP designates POST as semantically open-ended. It allows the method to take any
action, regardless of its repeatability or side effects. This makes POST the clear choice
to be paired with the equally unrestricted controller resources.

Our REST API designs use POST, along with a targeted controller resource, to trigger all
operations that cannot be intuitively mapped to one of the other core HTTP methods.
In other words, the POST method should not be used to get, store, or delete resources
—HTTP already provides specific methods for each of those functions.

26 | Chapter 3: Interaction Design with HTTP

HTTP calls the POST request method unsafe and non-idempotent, which means that its
outcome is unpredictable and not guaranteed to be repeatable without potentially un-
desirable side effects. For example, a resubmitted web form that uses POST might run
the risk of double billing a user’s credit card. Controller resources trade a degree of
transparency and robustness for the sake of flexibility.

The example below demonstrates how a controller can be executed using the POST
request method:

POST /alerts/245743/resend

This is the second use of POST in the design of REST APIs. This use case resembles the
fairly common concept of a runtime system’s “PostMessage” mechanism, which allows
functions to be invoked across some sort of boundary.

Rule: DELETE must be used to remove a resource from its parent
A client uses DELETE to request that a resource be completely removed from its parent,
which is often a collection or store. Once a DELETE request has been processed for a
given resource, the resource can no longer be found by clients. Therefore, any future
attempt to retrieve the resource’s state representation, using either GET or HEAD, must
result in a 404 (“Not Found”) status returned by the API.

The example below shows how a client might remove a document from a store:

DELETE /accounts/4ef2d5d0-cb7e-11e0-9572-0800200c9a66/buckets/objects/4321

The DELETE method has very specific semantics in HTTP, which must not be overloaded
or stretched by a REST API’s design. Specifically, an API should not distort the intended
meaning of DELETE by mapping it to a lesser action that leaves the resource, and its URI,
available to clients. For example, if an API wishes to provide a “soft” delete or some
other state-changing interaction, it should employ a special controller resource and
direct its clients to use POST instead of DELETE to interact.

Rule: OPTIONS should be used to retrieve metadata that describes a
resource’s available interactions
Clients may use the OPTIONS request method to retrieve resource metadata that includes
an Allow header value. For example:

Allow: GET, PUT, DELETE

In response to an OPTIONS request, a REST API may include a body that includes further
details about each interaction option. For example, the response body could contain a
list of link relation forms, which are discussed in the section “Rule: A consistent form
should be used to represent link relations” on page 52.

Request Methods | 27

Response Status Codes
REST APIs use the Status-Line part of an HTTP response message to inform clients of
their request’s overarching result. RFC 2616 defines the Status-Line syntax as shown
below:

Status-Line = HTTP-Version SP Status-Code SP Reason-Phrase CRLF

HTTP defines forty standard status codes that can be used to convey the results of a
client’s request. The status codes are divided into the five categories presented in
Table 3-1.

Table 3-1. Response status code categories

Category Description

1xx: Informational Communicates transfer protocol-level information.

2xx: Success Indicates that the client’s request was accepted successfully.

3xx: Redirection Indicates that the client must take some additional action in order to complete their request.

4xx: Client Error This category of error status codes points the finger at clients.

5xx: Server Error The server takes responsibility for these error status codes.

This section concisely describes how and when to use the subset of codes that apply to
the design of a REST API.

Rule: 200 (“OK”) should be used to indicate nonspecific success
In most cases, 200 is the code the client hopes to see. It indicates that the REST API
successfully carried out whatever action the client requested, and that no more specific
code in the 2xx series is appropriate. Unlike the 204 status code, a 200 response should
include a response body.

Rule: 200 (“OK”) must not be used to communicate errors in the response
body
Always make proper use of the HTTP response status codes as specified by the rules
in this section. In particular, a REST API must not be compromised in an effort to
accommodate less sophisticated HTTP clients.

Rule: 201 (“Created”) must be used to indicate successful resource creation
A REST API responds with the 201 status code whenever a collection creates, or a store
adds, a new resource at the client’s request. There may also be times when a new
resource is created as a result of some controller action, in which case 201 would also
be an appropriate response.

28 | Chapter 3: Interaction Design with HTTP

Rule: 202 (“Accepted”) must be used to indicate successful start of an
asynchronous action
A 202 response indicates that the client’s request will be handled asynchronously. This
response status code tells the client that the request appears valid, but it still may have
problems once it’s finally processed. A 202 response is typically used for actions that
take a long while to process.

Controller resources may send 202 responses, but other resource types should not.

Rule: 204 (“No Content”) should be used when the response body is
intentionally empty
The 204 status code is usually sent out in response to a PUT, POST, or DELETE request,
when the REST API declines to send back any status message or representation in the
response message’s body. An API may also send 204 in conjunction with a GET request
to indicate that the requested resource exists, but has no state representation to include
in the body.

Rule: 301 (“Moved Permanently”) should be used to relocate resources
The 301 status code indicates that the REST API’s resource model has been significantly
redesigned and a new permanent URI has been assigned to the client’s requested re-
source. The REST API should specify the new URI in the response’s Location header.

Rule: 302 (“Found”) should not be used
The intended semantics of the 302 response code have been misunderstood by pro-
grammers and incorrectly implemented in programs since version 1.0 of the HTTP
protocol.† The confusion centers on whether it is appropriate for a client to always
automatically issue a follow-up GET request to the URI in response’s Location header,
regardless of the original request’s method. For the record, the intent of 302 is that this
automatic redirect behavior only applies if the client’s original request used either the
GET or HEAD method.

To clear things up, HTTP 1.1 introduced status codes 303 (“See Other”) and 307
(“Temporary Redirect”), either of which should be used instead of 302.

† In HTTP/1.0, the 302 status code’s reason phrase was “Moved Temporarily.”

Response Status Codes | 29

Rule: 303 (“See Other”) should be used to refer the client to a different URI
A 303 response indicates that a controller resource has finished its work, but instead of
sending a potentially unwanted response body, it sends the client the URI of a response
resource. This can be the URI of a temporary status message, or the URI to some already
existing, more permanent, resource.

Generally speaking, the 303 status code allows a REST API to send a reference to a
resource without forcing the client to download its state. Instead, the client may send
a GET request to the value of the Location header.

Rule: 304 (“Not Modified”) should be used to preserve bandwidth
This status code is similar to 204 (“No Content”) in that the response body must be
empty. The key distinction is that 204 is used when there is nothing to send in the body,
whereas 304 is used when there is state information associated with a resource but the
client already has the most recent version of the representation.

This status code is used in conjunction with conditional HTTP requests, discussed in
Chapter 4.

Rule: 307 (“Temporary Redirect”) should be used to tell clients to resubmit
the request to another URI
HTTP/1.1 introduced the 307 status code to reiterate the originally intended semantics
of the 302 (“Found”) status code. A 307 response indicates that the REST API is not
going to process the client’s request. Instead, the client should resubmit the request to
the URI specified by the response message’s Location header.

A REST API can use this status code to assign a temporary URI to the client’s requested
resource. For example, a 307 response can be used to shift a client request over to
another host.

Rule: 400 (“Bad Request”) may be used to indicate nonspecific failure
400 is the generic client-side error status, used when no other 4xx error code is
appropriate.

For errors in the 4xx category, the response body may contain a docu-
ment describing the client’s error (unless the request method was
HEAD). See “Error Representation” on page 68 for error response body
design.

30 | Chapter 3: Interaction Design with HTTP

Rule: 401 (“Unauthorized”) must be used when there is a problem with the
client’s credentials
A 401 error response indicates that the client tried to operate on a protected resource
without providing the proper authorization. It may have provided the wrong credentials
or none at all.

Rule: 403 (“Forbidden”) should be used to forbid access regardless of
authorization state
A 403 error response indicates that the client’s request is formed correctly, but the REST
API refuses to honor it. A 403 response is not a case of insufficient client credentials;
that would be 401 (“Unauthorized”).

REST APIs use 403 to enforce application-level permissions. For example, a client may
be authorized to interact with some, but not all of a REST API’s resources. If the client
attempts a resource interaction that is outside of its permitted scope, the REST API
should respond with 403.

Rule: 404 (“Not Found”) must be used when a client’s URI cannot be mapped
to a resource
The 404 error status code indicates that the REST API can’t map the client’s URI to a
resource.

Rule: 405 (“Method Not Allowed”) must be used when the HTTP method is
not supported
The API responds with a 405 error to indicate that the client tried to use an HTTP
method that the resource does not allow. For instance, a read-only resource could
support only GET and HEAD, while a controller resource might allow GET and POST, but
not PUT or DELETE.

A 405 response must include the Allow header, which lists the HTTP methods that the
resource supports. For example:

Allow: GET, POST

Response Status Codes | 31

Rule: 406 (“Not Acceptable”) must be used when the requested media type
cannot be served
The 406 error response indicates that the API is not able to generate any of the client’s
preferred media types, as indicated by the Accept request header. For example, a client
request for data formatted as application/xml will receive a 406 response if the API is
only willing to format data as application/json.

Rule: 409 (“Conflict”) should be used to indicate a violation of resource state
The 409 error response tells the client that they tried to put the REST API’s resources
into an impossible or inconsistent state. For example, a REST API may return this
response code when a client tries to delete a non-empty store resource.

Rule: 412 (“Precondition Failed”) should be used to support conditional
operations
The 412 error response indicates that the client specified one or more preconditions in
its request headers, effectively telling the REST API to carry out its request only if certain
conditions were met. A 412 response indicates that those conditions were not met, so
instead of carrying out the request, the API sends this status code.

See “Rule: Stores must support conditional PUT requests” on page 36 for an example
use of the 412 status code.

Rule: 415 (“Unsupported Media Type”) must be used when the media type
of a request’s payload cannot be processed
The 415 error response indicates that the API is not able to process the client’s supplied
media type, as indicated by the Content-Type request header. For example, a client
request including data formatted as application/xml will receive a 415 response if the
API is only willing to process data formatted as application/json.

Rule: 500 (“Internal Server Error”) should be used to indicate API
malfunction
500 is the generic REST API error response. Most web frameworks automatically re-
spond with this response status code whenever they execute some request handler code
that raises an exception.

A 500 error is never the client’s fault and therefore it is reasonable for the client to retry
the exact same request that triggered this response, and hope to get a different response.

32 | Chapter 3: Interaction Design with HTTP

Recap
This chapter presented the design principles for HTTP’s request methods and response
status codes. Table 3-2 summarizes the vocabulary terms that were introduced.

Table 3-2. Vocabulary review

Term Description

DELETE HTTP request method used to remove its parent.

GET HTTP request method used to retrieve a representation of a resource’s state.

HEAD HTTP request method used to retrieve the metadata associated with the resource’s state.

OPTIONS HTTP request method used to retrieve metadata that describes a resource’s available interactions.

POST HTTP request method used to create a new resource within a collection or execute a controller.

PUT HTTP request method used to insert a new resource into a store or update a mutable resource.

Request-Line RFC 2616 defines its syntax as Method SP Request-URI SP HTTP-Version CRLF

Request method Indicates the desired action to be performed on the request message’s identified resource.

Response status code A three-digit numeric value that is communicated by a server to indicate the result of a client’s
request.

Status-Line RFC 2616 defines its syntax as: HTTP-Version SP Status-Code SP Reason-Phrase
CRLF

Tunneling An abuse of HTTP that masks or misrepresents a message’s intent and undermines the protocol’s
transparency.

Table 3-3 recaps the standard usage HTTP’s POST method for each of the four resource
archetypes.

Table 3-3. POST request method summary

 Document Collection Store Controller

POST error Create a new, con-
tained resource

error Execute the function

Table 3-4 summarizes the standard usage HTTP’s other request methods for all re-
source types.

Table 3-4. HTTP request method summary

Method Semantics

GET Retrieve the complete state of a resource, in some representational form

HEAD Retrieve the metadata state of a resource

PUT Insert a new resource into a store or update an existing, mutable resource

DELETE Remove the resource from its parent

OPTIONS Retrieve metadata that describes a resource’s available interactions

Recap | 33

Tables 3-5 and 3-6 summarize the success and error status codes, respectively.

Table 3-5. HTTP response success code summary

Code Name Meaning

200 OK Indicates a nonspecific success

201 Created Sent primarily by collections and stores but sometimes also by controllers, to
indicate that a new resource has been created

202 Accepted Sent by controllers to indicate the start of an asynchronous action

204 No Content Indicates that the body has been intentionally left blank

301 Moved Permanently Indicates that a new permanent URI has been assigned to the client’s requested
resource

303 See Other Sent by controllers to return results that it considers optional

304 Not Modified Sent to preserve bandwidth (with conditional GET)

307 Temporary Redirect Indicates that a temporary URI has been assigned to the client’s requested
resource

Table 3-6. HTTP response error code summary

Code Name Meaning

400 Bad Request Indicates a nonspecific client error

401 Unauthorized Sent when the client either provided invalid credentials or forgot to send them

402 Forbidden Sent to deny access to a protected resource

404 Not Found Sent when the client tried to interact with a URI that the REST API could not
map to a resource

405 Method Not Allowed Sent when the client tried to interact using an unsupported HTTP method

406 Not Acceptable Sent when the client tried to request data in an unsupported media type format

409 Conflict Indicates that the client attempted to violate resource state

412 Precondition Failed Tells the client that one of its preconditions was not met

415 Unsupported Media Type Sent when the client submitted data in an unsupported media type format

500 Internal Server Error Tells the client that the API is having problems of its own

34 | Chapter 3: Interaction Design with HTTP

CHAPTER 4

Metadata Design

HTTP Headers
Various forms of metadata may be conveyed through the entity headers contained
within HTTP’s request and response messages. HTTP defines a set of standard headers,
some of which provide information about a requested resource. Other headers indicate
something about the representation carried by the message. Finally, a few headers serve
as directives to control intermediary caches.

This brief chapter suggests a set of rules to help REST API designers work with HTTP’s
standard headers.

Rule: Content-Type must be used
The Content-Type header names the type of data found within a request or response
message’s body. The value of this header is a specially formatted text string known as
a media type, which is the subject of “Media Types” on page 39. Clients and servers
rely on this header’s value to tell them how to process the sequence of bytes in a mes-
sage’s body.

Rule: Content-Length should be used
The Content-Length header gives the size of the entity-body in bytes. In responses, this
header is important for two reasons. First, a client can know whether it has read the
correct number of bytes from the connection. Second, a client can make a HEAD request
to find out how large the entity-body is, without downloading it.

Rule: Last-Modified should be used in responses
The Last-Modified header applies to response messages only. The value of this response
header is a timestamp that indicates the last time that something happened to alter the
representational state of the resource. Clients and cache intermediaries may rely on this

35

header to determine the freshness of their local copies of a resource’s state representa-
tion. This header should always be supplied in response to GET requests.

Rule: ETag should be used in responses
The value of ETag is an opaque string that identifies a specific “version” of the repre-
sentational state contained in the response’s entity. The entity is the HTTP message’s
payload, which is composed of a message’s headers and body. The entity tag may be
any string value, so long as it changes along with the resource’s representation. This
header should always be sent in response to GET requests.

Clients may choose to save an ETag header’s value for use in future GET requests, as the
value of the conditional If-None-Match request header. If the REST API concludes that
the entity tag hasn’t changed, then it can save time and bandwidth by not sending the
representation again.

Generating an ETag from a machine-specific value is a bad idea. Specif-
ically don’t generate ETag values from an inconsistent source, like a host-
specific notion of a file’s last modified time. It may result in different
ETag values being attributed to the same representation, which is likely
to confuse the API’s clients and intermediaries.

Rule: Stores must support conditional PUT requests
A store resource uses the PUT method for both insert and update, which means it is
difficult for a REST API to know the true intent of a client’s PUT request. Through
headers, HTTP provides the necessary support to help an API resolve any potential
ambiguity. A REST API must rely on the client to include the If-Unmodified-Since and/
or If-Match request headers to express their intent. The If-Unmodified-Since request
header asks the API to proceed with the operation if, and only if, the resource’s state
representation hasn’t changed since the time indicated by the header’s supplied time-
stamp value. The If-Match header’s value is an entity tag, which the client remembers
from an earlier response’s ETag header value. The If-Match header makes the request
conditional, based upon an exact match of the header’s supplied entity tag value and
the representational state’s current entity tag value, as stored or computed by the REST
API.

The following example illustrates how a REST API can support conditional PUT requests
using these two headers.

Two client programs, client#1 and client#2, use a REST API’s /objects store resource
to share some information between them. Client#1 sends a PUT request in order to store
some new data that it identifies with a URI path of /objects/2113. This is a new URI
that the REST API has never seen before, meaning that it does not map to any previously
stored resource. Therefore, the REST API interprets the request as an insert and creates

36 | Chapter 4: Metadata Design

a new resource based on the client’s provided state representation and then it returns
a 201 (“Created”) response.

Some time later, client#2 decides to share some data and it requests the exact same
storage URI (/objects/2113). Now the REST API is able to map this URI to an existing
resource, which makes it unclear about the client request’s intent. The REST API has
not been given enough information to decide whether or not it should overwrite
client#1’s stored resource state with the new data from client#2. In this scenario, the
API is forced to return a 409 (“Conflict”) response to client#2’s request. The API should
also provide some additional information about the error in the response’s body.

If client#2 decides to update the stored data, it may retry its request to include the If-
Match header. However, if the supplied header value does not match the current entity
tag value, the REST API must return error code 412 (“Precondition Failed”). If the
supplied condition does match, the REST API must update the stored resource’s state,
and return a 200 (“OK”) or 204 (“No Content”) response. If the response does include
an updated representation of the resource’s state, the API must include values for the
Last-Modified and ETag headers that reflect the update.

HTTP supports conditional requests with the GET, POST, and DELETE
methods in the same fashion that is illustrated by the example above.
This pattern is the key that allows writable REST APIs to support col-
laboration between their clients.

Rule: Location must be used to specify the URI of a newly created resource
The Location response header’s value is a URI that identifies a resource that may be of
interest to the client. In response to the successful creation of a resource within a col-
lection or store, a REST API must include the Location header to designate the URI of
the newly created resource.

In a 202 (“Accepted”) response, this header may be used to direct clients to the opera-
tional status of an asynchronous controller resource.

Rule: Cache-Control, Expires, and Date response headers should be used to
encourage caching
Caching is one of the most useful features built on top of HTTP. You can take advantage
of caching to reduce client-perceived latency, to increase reliability, and to reduce the
load on an API’s servers. Caches can be anywhere. They can be in the API’s server
network, content delivery networks (CDNs), or the client’s network.

When serving a representation, include a Cache-Control header with a max-age value
(in seconds) equal to the freshness lifetime. For example:

Cache-Control: max-age=60, must-revalidate

HTTP Headers | 37

To support legacy HTTP 1.0 caches, a REST API should include an Expires header
with the expiration date-time. The value is a time at which the API generated the rep-
resentation plus the freshness lifetime. REST APIs should also include a Date header
with a date-time of the time at which the API returned the response. Including this
header helps clients compute the freshness lifetime as the difference between the values
of the Expires and Date headers. For example:

Date: Tue, 15 Nov 1994 08:12:31 GMT
Expires: Thu, 01 Dec 1994 16:00:00 GMT

Rule: Cache-Control, Expires, and Pragma response headers may be used
to discourage caching
If a REST API’s response must not cached, add Cache-Control headers with the value
no-cache and no-store. In this case, also add the Pragma: no-cache and Expires: 0
header values to interoperate with legacy HTTP 1.0 caches.

Rule: Caching should be encouraged
The no-cache directive will prevent any cache from serving cached responses. REST
APIs should not do this unless absolutely necessary. Using a small value of max-age as
opposed to adding no-cache directive helps clients fetch cached copies for at least a
short while without significantly impacting freshness.

Rule: Expiration caching headers should be used with 200 (“OK”) responses
Set expiration caching headers in responses to successful GET and HEAD requests. Al-
though POST is cacheable, most caches treat this method as non-cacheable. You need
not set expiration headers on other methods.

Rule: Expiration caching headers may optionally be used with 3xx and 4xx
responses
In addition to successful responses with the 200 (“OK”) response code, consider adding
caching headers to 3xx and 4xx responses. Known as negative caching, this helps reduce
the amount of redirecting and error-triggering load on a REST API.

Rule: Custom HTTP headers must not be used to change the behavior of
HTTP methods
You can optionally use custom headers for informational purposes only. Implement
clients and servers such that they do not fail when they do not find expected custom
headers.

38 | Chapter 4: Metadata Design

If the information you are conveying through a custom HTTP header is important for
the correct interpretation of the request or response, include that information in the
body of the request or response or the URI used for the request. Avoid custom headers
for such usages.

Media Types
To identify the form of the data contained within a request or response message body,
the Content-Type header’s value references a media type.*

Media Type Syntax
Media types have the following syntax:

type "/" subtype *(";" parameter)

The type value may be one of: application, audio, image, message, model, multipart,
text, or video. A typical REST API will most often work with media types that fall under
the application type. In a hierarchical fashion, the media type’s subtype value is sub-
ordinate to its type.

Note that parameters may follow the type/subtype in the form of attribute=value pairs
that are separated by a leading semi-colon (;) character. A media type’s specification
may designate parameters as either required or optional. Parameter names are case-
insensitive. Parameter values are normally case-sensitive and may be enclosed in double
quote (“ ”) characters. When more than one parameter is specified, their ordering is
insignificant.

The two examples below demonstrate a Content-Type header value that references a
media type with a single charset parameter:

Content-type: text/html; charset=ISO-8859-4
Content-type: text/plain; charset="us-ascii"

Registered Media Types
The Internet Assigned Numbers Authority† (IANA) governs the set of registered media
types and provides links to each type’s published specification (RFC). The IANA allows
anyone to propose a new media type by filling out the “Application for Media Type”
form found at http://www.iana.org/cgi-bin/mediatypes.pl.

* Media types were originally known as “MIME types,” which stood for Multipurpose Internet Mail
Extensions.

† http://www.iana.org/assignments/media-types

Media Types | 39

http://www.iana.org/cgi-bin/mediatypes.pl
http://www.iana.org/assignments/media-types

Some commonly used registered media types are listed below:

text/plain
A plain text format with no specific content structure or markup.‡

text/html
Content that is formatted using the HyperText Markup Language (HTML).§

image/jpeg
An image compression method that was standardized by the Joint Photographic
Experts Group (JPEG).‖

application/xml
Content that is structured using the Extensible Markup Language (XML).#

application/atom+xml
Content that uses the Atom Syndication Format (Atom), which is an XML-based
format that structures data into lists known as feeds.*

application/javascript
Source code written in the JavaScript programming language.†

application/json
The JavaScript Object Notation (JSON) text-based format that is often used by
programs to exchange structured data.‡

Vendor-Specific Media Types
Media types use the subtype prefix “vnd” to indicate that they are owned or controlled
by a “vendor.” Vendor-specific media types convey a clear description of a message’s
content to the programs that understand their meaning. Unlike their more common
counterparts, vendor-specific media types impart application-specific metadata that
makes a message more meaningful to the web component that receives it.

Vendor-specific media types may also be registered with the IANA. For example, the
following vendor-specific types are among the many listed in the IANA’s registry (http:
//www.iana.org/assignments/media-types):

application/vnd.ms-excel
application/vnd.lotus-notes
text/vnd.sun.j2me.app-descriptor

‡ text/plain

§ text/html

‖ image/jpeg

#application/xml

* application/atom+xml

† application/javascript

‡ application/json

40 | Chapter 4: Metadata Design

http://www.iana.org/assignments/media-types
http://www.iana.org/assignments/media-types
http://www.rfc-editor.org/rfc/rfc2046.txt
http://www.rfc-editor.org/rfc/rfc2854.txt
http://www.rfc-editor.org/rfc/rfc2046.txt
http://www.rfc-editor.org/rfc/rfc3023.txt
http://www.rfc-editor.org/rfc/rfc4287.txt
http://www.rfc-editor.org/rfc/rfc4329.txt
http://www.rfc-editor.org/rfc/rfc4627.txt

Media Type Design
Client developers are encouraged to rely on the self-descriptive features of a REST API.
In other words, client programs should hardcode as few API-specific details as possible.
This goal influences many aspects of a REST API’s design, including opaque URIs,
hypermedia-based actions with resource state awareness, and descriptive media types.

Rule: Application-specific media types should be used
REST APIs treat the body of an HTTP request or response as part of an application-
specific interaction. While the body may be formatted using languages such as JSON
or XML, it usually has semantics that require special processing beyond simply parsing
the language’s syntax.

As an example, consider a REST API URI such as http://api.soccer.restapi.org/players/
2113 that responds to GET requests with a representation of a player resource that is
formatted using JSON. If the Content-Type header field value declares that the re-
sponse’s media type is application/json, it has accurately conveyed the body content’s
syntax but has disregarded the semantics and structure of the player representation.
The response’s Content-Type header simply tells a client that it should expect some
JSON-formatted text.

Alternatively, the response’s Content-Type header field should communicate that the
body contains a representation of a player document that is formatted with JSON. To
help achieve this goal, the WRML framework, which was introduced in the section
“WRML” on page 7, uses a descriptive media type: application/wrml. The example
below shows WRML’s media type used to describe a player form that is formatted using
JSON:

NOTE: the line breaks below are for the sake of visual clarity.

application/wrml;
 format="http://api.formats.wrml.org/application/json";
 schema="http://api.schemas.wrml.org/soccer/Player"

The WRML media type.§

The required format parameter’s value identifies a document resource that describes
the JSON format itself.

The required schema parameter’s value identifies a separate document that details
the Player resource type’s form, which is independent of the media type’s format
parameter’s value.

§ The application/wrml media type’s IANA registration is pending, see http://www.wrml.org for the most up-
to-date information.

Media Type Design | 41

http://www.wrml.org

This media type may appear excessive when compared to simpler ones like application/
json. However, this is a worthwhile trade-off since this media type communicates—
directly to clients—distinct and complementary bits of information regarding the con-
tent of a message. The application/wrml media type’s self-descriptive and pluggable
design reduces the need for information to be communicated out-of-band and then
hardcoded by client developers.

See “Media Type Representation” on page 56, which describes how
this media type’s format and schema documents should be represented.

Media Type Format Design

Most media types identify a format using a simple string, like application/json. Instead,
by using a format parameter with a URI value, the WRML media type directs client
programs to a cacheable document that provides links to other documents related to
the format. In the example above, the representation of the document referenced by
the format parameter (http://api.formats.wrml.org/application/json) contains links to
related web resources, such as http://www.json.org and http://www.rfc-editor.org/rfc/
rfc4627.txt.

More importantly, by leveraging REST’s code-on-demand constraint, the format docu-
ment’s representation can provide links to formatting and parsing code, which clients
can download and execute to serialize and deserialize an HTTP message body’s content.
By providing this code, available for various programming languages and runtime en-
vironments, an API can programmatically teach its clients how to interoperate with its
representation formats. The future-proof nature of this design may prove especially
useful when a REST API wishes to adopt a new format that is not yet widely supported
by its clients.

The section “Rule: A consistent form should be used to represent media type for-
mats” on page 56, outlines the structure of a format document’s representation.

Media Type Schema Design

As discussed next in Chapter 5, a resource’s state representation consists of fields and
links. For a given “class” of resource, the set of expected fields and context-sensitive
links can be described by a schema document. The WRML media type’s schema pa-
rameter references a cacheable schema document, which describes a resource type’s
fields and links; independent of any specific representational format. This separation
of concerns allows multiple representation formats to be negotiated by clients and
supported by REST APIs with relative ease. With a set of standard primitive types,
outlined in “Field Representation” on page 60, a schema document can describe a
resource representation’s fields in a format-independent manner.

42 | Chapter 4: Metadata Design

The section “Rule: A consistent form should be used to represent media type sche-
mas” on page 59, details the structure of a schema document’s representation.

Media Type Schema Versioning

The different versions of a given schema should be organized as different schema docu-
ments, with distinct URIs. This design is borrowed from the approach traditionally
used by the W3C‖ and IETF# for versioning the URIs of Internet Drafts on their way to
becoming approved standards. The example below shows the URI of a schema docu-
ment that details the fields and links of a soccer Player resource type:

http://api.schemas.wrml.org/soccer/Player-2

The -2 suffix designates the version number of the Player resource type’s schema. As
a rule, the current version of the resource type’s schema should always be made avail-
able through a separate resource identifier, without a numeric suffix. The example
below demonstrates the design of the Player resource type’s current schema URI:

http://api.schemas.wrml.org/soccer/Player

The URI of a resource type’s current schema version always identifies the concept of
the most recent version. A schema document URI that ends with a number permanently
identifies a specific version of the schema. Therefore the latest version of a schema is
always modeled by two separate resources which conceptually overlap while the num-
bered version is also the current one. This overlap results in the two distinct resources,
with two separate URIs, consistently having the same state representation.

Rule: Media type negotiation should be supported when multiple
representations are available
Allow clients to negotiate for a given format and schema by submitting an Accept header
with the desired media type. For example:

NOTE: the line breaks below are for the sake of visual clarity.

Accept: application/wrml;
 format="http://api.formats.wrml.org/text/html";
 schema="http://api.schemas.wrml.org/soccer/Team"

Using media type negotiation clients can select a format.

Using media type negotiation clients can select the schema version that will work
best for them.

‖ World Wide Web Consortium (W3C), http://www.w3.org.

#The Internet Engineering Task Force (IETF), http://www.ietf.org.

Media Type Design | 43

http://www.w3.org
http://www.ietf.org

Additionally, to facilitate browser-based viewing and debugging of a REST API’s re-
sponses, consider supporting raw media types as shown in the example below:

Accept: application/json

This will allow web browser add-ons such as JSONView to render a REST API’s re-
sponses as JSON.

Rule: Media type selection using a query parameter may be supported
To enable simple links and easy debugging, REST APIs may support media type selec-
tion via a query parameter named accept with a value format that mirrors that of the
Accept HTTP request header. For example:

GET /bookmarks/mikemassedotcom?accept=application/xml

This is a more precise and generic approach to media type identification that should
be preferred over the common alternative of appending a virtual file extension
like .xml to the URI’s path. The virtual file extension approach binds the resource and
its representation together, implying that they are one and the same.

Media type selection (or negotiation) via a query parameter is a form of
tunneling that conveys metadata in the URI rather than in HTTP’s in-
tended slot: the Accept header. Therefore it should be used with careful
consideration.

Recap
This chapter covered the design rules for a REST API’s metadata conveyed through
HTTP headers and media types. Table 4-1 summarizes the vocabulary terms that were
used in this chapter.

Table 4-1. Vocabulary review

Term Description

Atom Syndication Format
(Atom)

An XML-based format that structures data into lists known as “feeds.”

Conditional request A client-initiated interaction with a precondition that the server is expected to honor.

Entity An HTTP request or response payload, which is metadata in header fields and content in a body.

Entity tag An opaque string value that designates the “version” of a given HTTP response message’s headers
and body.

Extensible Markup
Language (XML)

A standardized application profile of SGML that is used by many applications to exchange data.

Internet Assigned Num-
bers Authority (IANA)

The entity with many governance-related duties, which include overseeing global IP address
allocation and media type registration.

Media type negotiation A client-initiated process that selects the form of a response message’s representation.

44 | Chapter 4: Metadata Design

http://jsonview.com

Term Description

Media type schema A Web-oriented description of a form that is composed of fields and links.

Negative caching Directing intermediaries to serve copies of responses that did not result in a 2xx status code.

Vendor-specific media
type

A form descriptor that is owned and controlled by a specific organization.

Table 4-2 recaps a REST API’s use of the HTTP headers.

Table 4-2. HTTP response header summary

Code Purpose

Content-Type Identifies the entity body’s media type

Content-Length The size (in bytes) of the entity body

Last-Modified The date-time of last resource representation’s change

ETag Indicates the version of the response message’s entity

Cache-Control A TTL-based caching value (in seconds)

Location Provides the URI of a resource

Recap | 45

CHAPTER 5

Representation Design

Message Body Format
A REST API commonly uses a response message’s entity body to help convey the state
of a request message’s identified resource. REST APIs often employ a text-based format
to represent a resource state as a set of meaningful fields. Today, the most commonly
used text formats are XML and JSON.

XML, like HTML, organizes a document’s information by nesting angle-bracketed* tag
pairs. Well-formed XML must have tag pairs that match perfectly. This “buddy system”
of tag pairs is XML’s way of holding a document’s structure together.

JSON uses curly brackets† to hierarchically structure a document’s information. Most
programmers are accustomed to this style of scope expression, which makes the JSON
format feel natural to folks that are oriented to think in terms of object-based structures.

This chapter’s examples favor the JSON format. However, JSON does
not support invisible comments or wrapping long string values, which
made it difficult to keep some of the examples well-formed. The mal-
formed examples are noted as such inline.

Rule: JSON should be supported for resource representation
As a format for data exchange, JSON supports lightweight and simple interoperation:
it does its job. Today, JSON is a popular format that is commonly used in REST API
design, much like bell-bottomed jeans were fashionable in the 1970s. JSON borrows
some of JavaScript’s good parts and benefits from seamless integration with the
browser’s native runtime environment. If there is not already a standard format for a
given resource type (e.g., image/jpeg for JPEG-compressed image resources), a REST
API should use the JSON format to structure its information.

* Angle brackets: < and >

† Curly brackets: { and }

47

This rule is in regard to the JSON data format only and does not necessarily imply that
the application/json media type should be used as the value of an HTTP message’s
Content-Type header (see the section “Rule: Application-specific media types should
be used” on page 41).

Rule: JSON must be well-formed
A JSON object is an unordered set of name-value pairs. The JSON object syntax defines
names as strings which are always surrounded by double quotes. Note that this is a less
lenient formatting rule than that of object literals in JavaScript, and this difference often
leads to malformed JSON.

The following example shows well-formed JSON with all names enclosed in double
quotes.

{
 "firstName" : "Osvaldo",
 "lastName" : "Alonso",
 "firstNamePronunciation" : "ahs-VAHL-doe",
 "number" : 6,
 "birthDate" : "1985-11-11"
}

JSON supports number values directly, so they do not need to be treated as strings.

JSON does not support date-time values, so they are typically formatted as strings.

Some browsers may display a JSON pair’s name without the quotes,
even though the REST API’s response correctly included them.

JSON names should use mixed lower case and should avoid special characters when-
ever possible. In JavaScript, JSON names like fooBar are preferred since they allow the
use of the cleaner dot notation for property access. For example:

var.fooBar

Names like foo-bar require the use of JavaScript’s less elegant bracket notation to access
the property, such as:

var["foo-bar"]

Rule: XML and other formats may optionally be used for resource
representation
The section “Rule: JSON should be supported for resource representa-
tion” on page 47, established that JSON should be a supported representation format
for clients. REST APIs may optionally support XML, HTML, and other languages as
alternative formats for resource representation. Clients should express their desired

48 | Chapter 5: Representation Design

representation using media type negotiation as described in “Rule: Media type nego-
tiation should be supported when multiple representations are available” on page 43.

The format-neutral nature of WRML’s schemas, introduced in “Media Type Schema
Design” on page 42, enable the same consistently structured form to be presented using
a variety of markup and formatting languages. For example, a document might be
formatted using JSON or XML so that it can be easily inspected by a client or server
program. The same document could be rendered using HTML and CSS when viewed
in a browser, so that schemas may also take on the job of documenting a REST API’s
structures for client developers. Furthermore, using JavaScript, a browser-rendered
document can offer an HTML form that allows interactive editing of the document’s
form fields.

Rule: Additional envelopes must not be created
A REST API must leverage the message “envelope” provided by HTTP. In other words,
the body should contain a representation of the resource state, without any additional,
transport-oriented wrappers.

Hypermedia Representation
Much like the Web’s HTML-based hyperlinks (links) and forms, REST APIs employ
hypermedia within representations. A REST API response message’s body includes
links to indicate the associations and actions that are available for a given resource, in
a given state. Included along with other fields of a resource’s state representation, links
convey the relationships between resources and offer clients a menu of resource-related
actions, which are context-sensitive.

On the Web, users click on links to navigate a universe of interconnected resources.
Despite the Web’s ever-increasing number of diverse resources, a few simple and uni-
formly structured HTML elements convey everything the browser needs to know in
order to facilitate navigation. Similarly, REST API clients can programmatically navi-
gate using a uniform link structure.

The following rules present WRML’s solution for representing the link and link relation
structures.

Rule: A consistent form should be used to represent links
The structure detailed in this rule represents a single link. Links should be included,
along with fields, within resource state representations. A single link does not typically
stand alone as a request or response message body’s content. However for completeness
sake, the media type for the link structure is defined below:

Hypermedia Representation | 49

NOTE: the line breaks below are for the sake of visual clarity.

application/wrml;
 format="http://api.formats.wrml.org/application/json";
 schema="http://api.schemas.wrml.org/common/Link"

The WRML media type.

Identifies the current version of the Link schema.

When formatted with JSON, a Link representation has the following consistent form:

{
 "href" : Text <constrained by URI or URI Template syntax>,
 "rel" : Text <constrained by URI syntax>,
 "requestTypes" : Array <constrained to contain media type text elements>,
 "responseTypes" : Array <constrained to contain media type text elements>,
 "title" : Text
}

The required href value identifies the link’s target resource. The value may be either
a URI or a URI template. A URI template with path-based variables should only be
used with links that use PUT to insert a resource into a store. URI templates with
query-based variables may be used more generally.

The required rel value identifies a document that describes the link’s relation (see
“Rule: A consistent form should be used to represent link relations” on page 52).

The optional requestTypes value is an array that lists the linked resource’s allowed
request body media types. This field tells clients what types of inputs are allowed by
the link. Clients are encouraged to consult this list before issuing PUT or POST requests
to the linked resource. If present, this value takes precedence over the field with the
same name that is defined by the link’s relation document.

The optional responseTypes value is an array that lists the linked resource’s available
response body media types. This field tells clients what types of outputs may be
returned by the link. Clients are encouraged to consult this list to help prioritize
media types in the Accept header of requests to the linked resource. If present, this
value takes precedence over the field with the same name that is defined by the link’s
relation document.

The optional title value provides a plain text title for the specific link.

Below is an example of a link with the minimum required set of fields:

{
 "href" : "http://api.soccer.restapi.org/players/2113",
 "rel" : "http://api.relations.wrml.org/common/self"
}

The link’s href value identifies the target resource.

50 | Chapter 5: Representation Design

The link’s rel value identifies a document that describes the commonly used self link
relation. The self relation signifies that the href identifies a resource equivalent to
the containing resource.

The example below shows the same link with some optional fields included. This ex-
ample also illustrates a use of the media types discussed in “Media Type De-
sign” on page 41:

NOTE: the line breaks in the responseTypes array's string values are
not allowed, but they are necessary for the book's formatting. JSON does
not provide support for line continuation.

{
 "href" : "http://api.soccer.restapi.org/players/2113",
 "rel" : "http://api.relations.wrml.org/common/self",
 "responseTypes" : [
 "application/wrml;
 format=\"http://api.formats.wrml.org/application/json\";
 schema=\"http://api.schemas.wrml.org/soccer/Player\"",

 "application/wrml;
 format=\"http://api.formats.wrml.org/application/xml\";
 schema=\"http://api.schemas.wrml.org/soccer/Player\"",

 "application/wrml;
 format=\"http://api.formats.wrml.org/text/html\";
 schema=\"http://api.schemas.wrml.org/soccer/Player\"",

 "application/json",
 "application/xml",
 "text/html"
],
 "title" : "Osvaldo Alonso"
}

The link’s responseTypes value lists the linked resource’s available response body
media types. Note that although the WRML media type includes URIs in its for
mat and schema parameters, they are not intended to be used as hypermedia links in
this context.

The media type’s format parameter identifies a document that describes the JSON
format. See “Media Type Format Design” on page 42 for more information.

The media type’s schema parameter identifies the current version of the Player
schema.

The common media types are supported for viewers that don’t care about the data’s
semantics.

Hypermedia Representation | 51

Rule: A consistent form should be used to represent link relations
Every link has a rel value to identify a document that describes the link’s relation. A
link’s rel value describes the relationship from the current resource to the resource
specified by the link’s href attribute. Link relations tell clients how to interact with links.
The IANA provides a registry (http://www.iana.org/assignments/link-relations/link-rela
tions.xml) for common link relations.

When formatted with JSON, a LinkRelation has the following media type:

NOTE: the line breaks below are for the sake of visual clarity.

application/wrml;
 format="http://api.formats.wrml.org/application/json";
 schema="http://api.schemas.wrml.org/common/LinkRelation"

The WRML media type.

Identifies the current version of the LinkRelation resource type’s schema.

When represented using JSON, a LinkRelation has the following consistent structure:

{
 "name" : Text,
 "method" : Text <constrained to be choice of HTTP method>,
 "requestTypes" : Array <constrained to contain media type text elements>,
 "responseTypes" : Array <constrained to contain media type text elements>,
 "description" : Text,
 "title" : Text
}

The required name value conveys the link relation’s name. Link relations should be
name using mixed lower case.

The optional method value designates the HTTP method that is associated with the
link relation. If this field is omitted, the GET HTTP method must be assumed.

The optional requestTypes value is an array that lists the link relation’s allowed
request body media types. Clients are encouraged to consult this list before issuing
PUT or POST requests to a linked resource. This value should be specified whenever
the list of allowed media types are known to always be associated with a link relation.

The optional responseTypes value is an array that lists the link relation’s available
response body media types. Clients are encouraged to consult this list to help pri-
oritize media types in the Accept header of requests to a linked resource. This value
should be specified whenever the list of available media types are known to always
be associated with a link relation.

The required description value provides a plain text description of the link relation.
Link relation document representations may also contain links to other resources,
such as human-readable documentation (see “Rule: A consistent form should be
used to advertise links” on page 53).

52 | Chapter 5: Representation Design

http://www.iana.org/assignments/link-relations/link-relations.xml
http://www.iana.org/assignments/link-relations/link-relations.xml

The optional title value provides a plain text title for the link relation.

Below is an example of an HTTP request and response for a link relation document:

Request
GET /common/self HTTP/1.1
Host: api.relations.wrml.org

Response
HTTP/1.1 200 OK
Content-Type: application/wrml;
 format="http://api.formats.wrml.org/application/json";
 schema="http://api.schemas.wrml.org/common/LinkRelation"

NOTE: The description's line breaks must be omitted in well-formed JSON.
{
 "name" : "self",
 "method" : "GET",
 "description" : "Signifies that the URI in the value of the href
 property identifies a resource equivalent to the
 containing resource."
}

The self link relation tells clients how to retrieve a resource.

This text is wrapped due to the book’s format only. JSON does not allow line con-
tinuation, which means this string is malformed.

Link relation document representations are designed to be cacheable,
thus the response headers should encourage clients to do so (see “Rule:
Cache-Control, Expires, and Date response headers should be used to
encourage caching” on page 37).

Rule: A consistent form should be used to advertise links
On its own, the uniform link structure is insufficient to enable clients to programmat-
ically find and process a representation’s hypermedia. A REST API must also offer
clients a consistent way to easily discover the available links within a representation.
To enable this, representations should include a structure, named links, to contain all
of the links that are available in the resource’s current state. The links structure is a
predictable place for clients to easily look up known links, by their simple relation
names, as well as discover new links.

The following example shows how the consistent links structure appears when for-
matted using JSON:

{
 "firstName" : "Osvaldo",
 "lastName" : "Alonso",
 "links" : {
 "self" : {
 "href" : "http://api.soccer.restapi.org/players/2113",

Hypermedia Representation | 53

 "rel" : "http://api.relations.wrml.org/common/self"
 },
 "parent" : {
 "href" : "http://api.soccer.restapi.org/players",
 "rel" : "http://api.relations.wrml.org/common/parent"
 },
 "team" : {
 "href" : "http://api.soccer.restapi.org/teams/seattle",
 "rel" : "http://api.relations.wrml.org/soccer/team"
 },
 "addToFavorites" : {
 "href" : "http://api.soccer.restapi.org/users/42/favorites/{name}",
 "rel" : "http://api.relations.wrml.org/common/addToFavorites"
 }
 }
}

The links field is a top-level name-value pair in each JSON object. Each of the
links object’s fields must conform to the uniform link structure.

Link relation names like team can be efficiently looked up by clients using JSON
libraries that deserialize objects into map or associative array data structures. These
link relations are an important part of a REST API’s “vocabulary.” Client developers
may treat the names of a REST API’s link relations as application-specific key-
words that may be hardcoded in clients. In contrast, client developers should not
hardcode the URIs of the link relation documents.

To support a client’s ability to add a resource to a store, a REST API may use a URI
template that contains path-based variables as the value of a link’s href. In this simple
example, the client must supply a name for the “favorite” to add, possibly by
prompting a user for it.

Rule: A self link should be included in response message body
representations
A response message body that contains a representation of an identifiable resource
should include a link named self. The self link relation signifies that the href value
identifies a resource equivalent to the containing resource. See “Rule: A consistent form
should be used to advertise links” on page 53 for an example.

Rule: Minimize the number of advertised “entry point” API URIs
When looking at the Web for REST API design direction, we should consider the ubiq-
uity of the home page concept and its associated site navigation. The REST API equiv-
alent is to provide human-readable documentation that advertises the URI of the API’s
docroot. The docroot’s representation should provide links to make every other re-
source programmatically available.

54 | Chapter 5: Representation Design

API documentation that advertises the service’s individual resource URIs, or URI tem-
plates, can lead client developers to code tightly coupled clients that do not treat the
API’s URIs as opaque identifiers. Instead, client developers should be instructed to
make use of the API’s hypermedia.

Rule: Links should be used to advertise a resource’s available actions in a
state-sensitive manner
Web APIs commonly rely on accompanying human-readable documentation to ad-
vertise the actions that can be performed on its various resources. Typically, this
documentation simply lists each URI template and describes the expected outcome
associated with each client interaction. This approach to conveying the application-
specific protocol falls down in three key ways:

1. It is insensitive to the state of resources, leaving it up to the client developers to
determine which resource interactions are appropriate for a given application state.

2. It is out-of-band information that is available to the client developer rather than
the client program itself.

3. It leads to hardcoded and tightly coupled clients, which may limit the API’s ability
to evolve over time without breaking its existing clients.

REST’s HATEOAS‡ constraint specifies that an API must answer all client requests
with resource representations that contain state-sensitive links. The following example
shows hypermedia used to model the state of an application’s “Edit” menu’s actions:

{
 # Fields...

 "links" : {
 "self" : {
 "href" : "http://api.editor.restapi.org/docs/48679",
 "rel" : "http://api.relations.wrml.org/common/self"
 },
 "cut" : {
 "href" : "http://api.editor.restapi.org/docs/48679/edit/cut",
 "rel" : "http://api.relations.wrml.org/editor/edit/cut"
 },
 "copy" : {
 "href" : "http://api.editor.restapi.org/docs/48679/edit/copy",
 "rel" : "http://api.relations.wrml.org/editor/edit/copy"
 }
 }
}

‡ HATEOAS is an acronym for “Hypermedia as the Engine of Application State.”

Hypermedia Representation | 55

Continuing with this example, imagine that the application has a server-side “Clip-
board” resource that enables clients to share data. If, at some point, the Clipboard’s
state allows the client to retrieve its data, the REST API will make a paste link available.
The example below shows that the client’s “Paste” menu item and toolbar button
widgets should now be enabled; however, the server-managed “selection” state of the
edited resource is now empty so there is currently nothing to cut or copy.

{
 # Fields...

 "links" : {
 "self" : {
 "href" : "http://api.editor.restapi.org/docs/48679",
 "rel" : "http://api.relations.wrml.org/common/self"
 },
 "paste" : {
 "href" : "http://api.editor.restapi.org/docs/48679/edit/paste",
 "rel" : "http://api.relations.wrml.org/editor/edit/paste"
 }
 }
}

Media Type Representation
The application/wrml media type, introduced in “Media Type Design” on page 41, has
two parameters: format and schema. These parameters have URI values that reference
separate documents, each of which can enhance the semantics of the metadata attached
to the Content-Type and Accept HTTP headers. This section’s rules describe the repre-
sentations of these two document types.

Rule: A consistent form should be used to represent media type formats
Unlike traditional media types like application/json and application/xml, the applica-
tion/wrml media type stipulates a format parameter with a URI value to address a
document that describes the format of some content.

When formatted with JSON, a Format has the following media type:

NOTE: the line breaks below are for the sake of visual clarity.

application/wrml;
 format="http://api.formats.wrml.org/application/json";
 schema="http://api.schemas.wrml.org/common/Format"

The WRML media type.

Identifies the format of the format document, which in this JSON-based example
would be equivalent to the format’s self link’s value (see “Rule: A self link should be
included in response message body representations” on page 54).

Identifies the current version of the Format resource type’s schema.

56 | Chapter 5: Representation Design

When represented using JSON, a Format has the following consistent structure:

{
 "mediaType" : Text <constrained by media type syntax>,
 "links" : {
 "home" : Link <form constrained by the Link schema>,
 "rfc" : Link <form constrained by the Link schema>
 },
 "serialize" : {
 "links" : {
 <Set of Link schema-constrained forms>
 }
 },
 "deserialize" : {
 "links" : {
 <Set of Link schema-constrained forms>
 }
 }
}

The required mediaType value uniquely identifies the format.

The optional home link’s href identifies the format’s home page resource.

The optional rfc link’s href identifies the format’s RFC resource.

The optional serialize section categorizes links into platform-specific code that
clients may download and execute to marshall a runtime’s structures into the format.

The optional deserialize structure groups links into platform-specific code that
clients may download and execute to unmarshall formatted content into runtime
structures.

Below is an example of an HTTP request and response for the JSON format document’s
representation:

Request
GET /application/json HTTP/1.1
Host: api.formats.wrml.org

Response
HTTP/1.1 200 OK
Content-Type: application/wrml;
 format="http://api.formats.wrml.org/application/json";
 schema="http://api.schemas.wrml.org/common/Format"

{
 "mediaType" : "application/json",
 "links" : {
 "self" : {
 "href" : "http://api.formats.wrml.org/application/json",
 "rel" : "http://api.relations.wrml.org/common/self"
 },
 "home" : {
 "href" : "http://www.json.org",
 "rel" : "http://api.relations.wrml.org/common/home"

Media Type Representation | 57

 },
 "rfc" : {
 "href" : "http://www.rfc-editor.org/rfc/rfc4627.txt",
 "rel" : "http://api.relations.wrml.org/format/rfc"
 }
 },
 "serialize" : {
 "links" : {
 "java" : {
 "href" : "http://api.formats.wrml.org/application/json/serializers/java",
 "rel" : "http://api.relations.wrml.org/format/serialize/java"
 },
 "php" : {
 "href" : "http://api.formats.wrml.org/application/json/serializers/php",
 "rel" : "http://api.relations.wrml.org/format/serialize/php"
 }
 }
 },
 "deserialize" : {
 "links" : {
 "java" : {
 "href" : "http://api.formats.wrml.org/application/json/deserializers/java",
 "rel" : "http://api.relations.wrml.org/format/deserialize/java"
 },
 "perl" : {
 "href" : "http://api.formats.wrml.org/application/json/deserializers/perl",
 "rel" : "http://api.relations.wrml.org/format/deserialize/perl"
 }
 }
 }
}

The mediaType value identifies the JSON format.

The java link references a Java Archive (JAR) containing compiled code that con-
forms to a standard serializer interface.

The php link references executable PHP code that conforms to a standard serializer
interface.

The java link references a JAR containing compiled code that conforms to a standard
deserializer interface.

The perl link references executable Perl code that conforms to a standard deserializer
interface.

Format document representations are designed to be cacheable, thus the
response headers should encourage clients to do so (see “Rule: Cache-
Control, Expires, and Date response headers should be used to encour-
age caching” on page 37).

58 | Chapter 5: Representation Design

Rule: A consistent form should be used to represent media type schemas
Programmers working with the Web are familiar with modeling informational in mul-
tiple domains and formats. For example, it is common to model a data structure’s
fields as: database columns, class properties, and web page template variables. A REST
API uses resource-oriented schemas to describe the structure of its representations in-
dependent of their format. By exposing to clients a separate, format-agnostic schema
resource for each of its distinct resource types, a REST API can present a dynamic and
discoverable interface. Schemas provide contractual resource type definitions, which
are a crucial component of the interface that binds a REST API and its clients together.

In object-oriented terms, a structured representational form, which is carried by an
individual HTTP request or response message body, is analogous to an instance of a
schema class. A representational form, or just form for short, consists of the fields and
links as detailed by the “blueprints” of its associated schema document.

This rule presents the representation of schemas, and their related components, which
a REST API may use to describe its various forms.

Schema Representation

When formatted with JSON, a Schema has the following media type:

NOTE: the line breaks below are for the sake of visual clarity.

application/wrml;
 format="http://api.formats.wrml.org/application/json";
 schema="http://api.schemas.wrml.org/common/Schema"

The WRML media type.

Identifies the current version of the Schema resource type’s schema.

When represented using JSON, a Schema has the following consistent form:

{
 "name" : Text <constrained to be mixed uppercase>,
 "version" : Integer,
 "extends" : Array <constrained to contain (schema) URI text elements>,
 "fields" : {
 <Set of Field schema-constrained forms>
 },
 "stateFacts" : Array <constrained to contain mixed uppercase text elements>,
 "linkFormulas" : {
 <Set of LinkFormula schema-constrained forms>
 },
 "description" : Text
}

The required name value declares the schema’s mixed uppercase name, which in-
cludes no whitespace and capitalizes the first character of each word.

Media Type Representation | 59

The required version value is a one-based integer that indicates the schema’s revision
number.

The optional extends value lists the URIs that identify the schema’s base schemas.
Schema extension allows a schema’s forms to inherit the fields and links of its base
schemas. Schema extension is analogous to the interface inheritance model offered
by classical object-oriented programming languages like Java and C#.

The optional fields structure contains the schema’s field definitions (see “Field
Representation” on page 60).

The optional stateFacts value lists each discrete condition that contributes to a
form’s potential state. Each state fact is a text-based identifier, which by convention
is named using mixed uppercase. A schema’s state fact values are used as Boolean
variable-based operands within its link formulas.

The optional linkFormulas structure contains the schema’s link formulas (see “Link
Formula Representation” on page 63).

An optional plain text description of the schema.

Field Representation

A schema field is a named slot with some associated information that is stored in its
value. Each field’s value may be one of the following types:

Boolean
A Boolean field’s value is either true or false. Formats lacking support for Boolean
values must use the text-based literal values: “true” and “false.”

Choice
A Choice is a special text-based value that is selected from a static menu of possible
text literals. This type is similar to an enumeration (enum) in languages like Java
and C#. The Choice field’s available selections is determined by the required
Menu constraint, as described in “Constraint Representation” on page 62.

DateTime
Used for date and time-related data. Formats lacking support for DateTime values
must use the text-based ISO 8601 format enclosed in double quotes.

Double
A 64-bit IEEE 754 floating point number. Formats lacking support for Double values
should enclose the value in double quotes (e.g., “3.14159265”).

Integer
A 32-bit signed two’s complement integer, like Java’s int, except that the octal and
hexadecimal formats are not used. Formats lacking support for Integer values
should enclose the integer value in double quotes (e.g., “42”).

60 | Chapter 5: Representation Design

List
An linearly ordered group of homogeneous elements with zero-based indices. The
homogeneity of a List field is determined by an ElementType constraint, as descri-
bed in “Constraint Representation” on page 62.

Schema
A special text-based value that contains a schema’s URI (e.g., “http://api.sche-
mas.wrml.org/soccer/Player”). Schema-typed fields are used to indicate that the
representational form’s field will contain a structure that complies with the speci-
fied schema. For example, in JSON, the field’s named value should be an object
that conforms to the structure of the field’s referenced schema.

Text
A sequence of zero or more Unicode characters, enclosed in double quotes, using
backslash escapes.

null
The literal null is not a field type but rather it acts as a blank value for any field
type. Formats lacking support for null (or NULL) values must use the text-based
literal value “null” instead.

An individual field is not typically transferred within a request or response message
body. However, when formatted with JSON, a Field has the following media type:

NOTE: the line breaks below are for the sake of visual clarity.

application/wrml;
 format="http://api.formats.wrml.org/application/json";
 schema="http://api.schemas.wrml.org/common/Field"

The WRML media type.

Identifies the current version of the Field resource type’s schema.

When represented using JSON, a Field has the following consistent form:

{
 "type" : Text <constrained to be one of the primitive field types>,
 "defaultValue" : <a type-specific value>,
 "readOnly" : Boolean,
 "required" : Boolean,
 "hidden" : Boolean,
 "constraints" : Array <constrained to contain (constraint) URI text elements>,
 "description" : Text
}

The required type value is constrained to be one of these options: “Boolean,”
“Choice,” “DateTime,” “Double,” “Integer,” “List,” “Schema,” or “Text.”

The optional defaultValue is a type-specific value that varies according to the field’s
type. If no default value is specified, each form’s corresponding field value will de-
fault to null.

Media Type Representation | 61

The optional readOnly Boolean flag value indicates whether clients are allowed to
specify a value for the field within a representation carried by a request message’s
body.

The optional required Boolean flag value indicates whether a value for this field is
required when a client submits its containing form to a REST API.

The optional hidden Boolean flag value indicates whether a REST API should include
the field within forms carried by its response messages.

The optional constraints value lists the field’s constraint references (see “Constraint
Representation” on page 62).

An optional plain text description of the field.

Schema extension may be used to alter the metadata associated with an inherited field.
For example, a subschema can override a base schema’s field by defining one with its
exact same name. The subschema may then set the field’s hidden flag value to true,
which effectively defines a form type without the field. Using extension to introduce
such slight schema variations may be worthwhile in cases where a certain class of clients
(e.g., mobile applications) consistently desire a “trimmed” representation of a re-
source’s state.

Constraint Representation

A schema field’s constraints value lists the URIs of the constraints that are applied to a
form’s associated field value. A constraint restricts a field’s possible values. Common
constraints include:

• A range constraint that restricts the value of a field to fall between some specific
minimum and maximum values.

• A Choice field’s Menu constraint, which limits the value’s options to a predefined
set of text literals.

• A List field’s ElementType constraint, which enforces the homogeneous nature of
its elements.

• A Text field constraint used to ensure that its value adheres to a specific syntax
(e.g., URI, URI template, regex pattern, etc.)

When formatted with JSON, a Constraint has the following media type:

NOTE: the line breaks below are for the sake of visual clarity.

application/wrml;
 format="http://api.formats.wrml.org/application/json";
 schema="http://api.schemas.wrml.org/common/Constraint"

The WRML media type.

Identifies the current version of the Constraint resource type’s schema.

62 | Chapter 5: Representation Design

When represented using JSON, a Constraint has the following consistent structure:

{
 "name" : Text,
 "validate" : {
 "links" : {
 <Set of Link schema-constrained forms>
 }
 }
}

The required name value declares the constraint’s mixed uppercase name, which
includes no whitespace and capitalizes the first character of each word.

A constraint may be enforced by both a REST API and its clients by downloading
and executing the referenced code that conforms to a per-platform validation inter-
face.

Link Formula Representation

A schema link formula equates the availability of a state-sensitive link in a response
message body’s form with a Boolean expression that uses the schema’s state facts as
operands. For example, a soccer Game form might include a link to its associated
Recap resource only after the game is over and its final score is known. This state could
be indicated with a state fact named Final, which would only be true once the game is
over. Link formulas enable REST APIs to utilize a simple HATEOAS-oriented calcula-
tor that executes the formula’s Boolean expression to determine if a form should include
a particular link.

The following link formulas exemplify how state facts can act as reusable operands:

self = Identifiable
parent = Identifiable and not Docroot
update = Identifiable and not ReadOnly
recap = Final
scoreboard = InProgress or Final

The self link should be included in any form that is associated with an identifiable
resource.

The parent link should be included in every identifiable resource representation;
except the REST API’s docroot, which by definition has no parent resource.

The update link should be included in all representations of identifiable and mutable
resources.

The recap link should be included in a Game form once the game is final.

The scoreboard link should be included in a Game form if the game is currently in
progress or has already ended.

Media Type Representation | 63

Link formulas are contained by schema structures. Therefore, they are not typically
singled out within a request or response message’s body. However, for uniformity’s
sake, when formatted with JSON, a LinkFormula has the following media type:

NOTE: the line breaks below are for the sake of visual clarity.

application/wrml;
 format="http://api.formats.wrml.org/application/json";
 schema="http://api.schemas.wrml.org/common/LinkFormula"

The WRML media type.

Identifies the current version of the LinkFormula resource type’s schema.

When represented using JSON, a LinkFormula has the following consistent form:

{
 "rel" : Text <constrained by URI syntax>,
 "condition" : Text <constrained to be a state fact-based Boolean expression>
}

The required rel value identifies a document that describes a link relation (see
“Rule: A consistent form should be used to represent link relations” on page 52).

The required condition value is a Boolean expression that uses the schema’s state
facts as operands.

Automating a REST API implementation’s HATEOAS using link formulas is discussed
further in Chapter 7.

Document Schema Representation

As mentioned earlier in “Document” on page 15, Document is the base form for all
resource types. Below is an example of an HTTP request and response for the Docu
ment schema resource’s representation:

Request
GET /common/Document HTTP/1.1
Host: api.schemas.wrml.org

Response
HTTP/1.1 200 OK
Content-Type: application/wrml;
 format="http://api.formats.wrml.org/application/json";
 schema="http://api.schemas.wrml.org/common/Document"

{
 "name" : "Document",
 "version" : 1,
 "stateFacts" : ["Docroot", "Identifiable", "ReadOnly"],
 "linkFormulas" : {
 "self" : {
 "rel" : "http://api.relations.wrml.org/common/self",
 "condition" : "Identifiable"
 },

64 | Chapter 5: Representation Design

 "metadata" : {
 "rel" : "http://api.relations.wrml.org/common/metadata",
 "condition" : "Identifiable"
 },
 "parent" : {
 "rel" : "http://api.relations.wrml.org/common/parent",
 "condition" : "Identifiable and not Docroot"
 },
 "update" : {
 "rel" : "http://api.relations.wrml.org/common/update",
 "condition" : "Identifiable and not ReadOnly"
 },
 "delete" : {
 "rel" : "http://api.relations.wrml.org/common/delete",
 "condition" : "Identifiable and not Docroot"
 }
 },
 "description" : "A resource archetype used to model a singular concept.",
 "links" : {
 "self" : {
 "href" : "http://api.schemas.wrml.org/common/Document",
 "rel" : "http://api.relations.wrml.org/common/self"
 }

 # Other common schema links...
 }
}

Defines the stateFacts that apply “universally” to all REST API resource types.

Defines the linkFormulas that determine the availability of the common links.

The self link is available for all identifiable forms, which includes all resource rep-
resentations. Temporary forms such as errors and some controller execution results
may not necessarily be identifiable: they have no associated URI.

The metadata link relation describes the use of the HEAD request method to retrieve
a resource representation’s header values.

Note that, like all other forms, schema representations may contain links that allow
them to be manipulated by clients.

Container Schema Representation

As mentioned in “Resource Archetypes” on page 15, a Collection models a server-
managed directory of resources and a Store is a client-managed resource repository.
Below is an example of an HTTP request and response for their common base Con
tainer schema resource’s representation:

Request
GET /common/Container HTTP/1.1
Host: api.schemas.wrml.org

Media Type Representation | 65

Response
HTTP/1.1 200 OK
Content-Type: application/wrml;
 format="http://api.formats.wrml.org/application/json";
 schema="http://api.schemas.wrml.org/common/Container"

{
 "name" : "Container",
 "version" : 1,
 "extends" : ["http://api.schemas.wrml.org/common/Document"],
 "fields" : {
 "elements" : {
 "type" : "List",
 "description" : "The paginated list of contained elements."
 },
 "size" : {
 "type" : "Integer",
 "description" : "The total number of elements currently contained."
 },
 "pageSize" : {
 "type" : "Integer",
 "description" : "The maximum number of elements returned per page."
 },
 "pageStartIndex" : {
 "type" : "Integer",
 "description" : "The zero-based index of the page's first element."
 },
 },
 "stateFacts" : [
 "Empty",
 "FirstPage",
 "LastPage",
 "Paginated"
],
 "linkFormulas" : {
 "delete" : {
 "rel" : "http://api.relations.wrml.org/common/delete",
 "condition" : "Identifiable and not Docroot and Empty"
 },
 "next" : {
 "rel" : "http://api.relations.wrml.org/common/next",
 "condition" : "(Identifiable and not Empty) and (Paginated and not LastPage)"
 },
 "previous" : {
 "rel" : "http://api.relations.wrml.org/common/previous",
 "condition" : "(Identifiable and not Empty) and (Paginated and not FirstPage)"
 }
 },
 "description" : "A base container of elements."
}

The Container schema extends the base Document schema. Note that if no extends
value is specified, inheriting from Document is automatically implied, but it may be
explicitly declared as shown here.

66 | Chapter 5: Representation Design

The elements field is common to both collection and store representational forms.

The Container schema introduces the Empty state fact, which is used to indicate the
state of containing zero elements. Note that this schema inherits the Document
schema’s common state facts.

Resources with schemas derived from Container may be deleted only when empty.

Link formula to advance to the next page.

Link formula to revert to the previous page.

Collection Schema Representation

Below is an example of an HTTP request and response for the Collection schema re-
source’s representation:

Request
GET /common/Collection HTTP/1.1
Host: api.schemas.wrml.org

Response
HTTP/1.1 200 OK
Content-Type: application/wrml;
 format="http://api.formats.wrml.org/application/json";
 schema="http://api.schemas.wrml.org/common/Collection"

NOTE: The description's line break must be omitted in well-formed JSON.

{
 "name" : "Collection",
 "version" : 1,
 "extends" : ["http://api.schemas.wrml.org/common/Container"],
 "linkFormulas" : {
 "create" : {
 "rel" : "http://api.relations.wrml.org/common/create",
 "condition" : "Identifiable and not ReadOnly"
 }
 },
 "description" : "A resource archetype used to model a server-managed
 directory of resources."
}

A collection’s create link enables new elements to be created and contained, as dis-
cussed earlier in “Rule: POST must be used to create a new resource in a collec-
tion” on page 26.

Store Schema Representation

Below is an example of an HTTP request and response for the Store schema resource’s
representation:

Media Type Representation | 67

Request
GET /common/Store HTTP/1.1
Host: api.schemas.wrml.org

Response
HTTP/1.1 200 OK
Content-Type: application/wrml;
 format="http://api.formats.wrml.org/application/json";
 schema="http://api.schemas.wrml.org/common/Store"

NOTE: The description's line break must be omitted in well-formed JSON.

{
 "name" : "Store",
 "version" : 1,
 "extends" : ["http://api.schemas.wrml.org/common/Container"],
 "linkFormulas" : {
 "insert" : {
 "rel" : "http://api.relations.wrml.org/common/insert",
 "condition" : "Identifiable and not ReadOnly"
 }
 },
 "description" : "A resource archetype used to model a client-managed
 resource repository."
}

A store’s insert link may be used to add a new resource, with a URI specified by the
client. To assist clients, a store’s representational form should provide a URI template
in the link’s href value. The URI template fully identifies the store itself, while leaving
the newly stored resource’s name as a variable path segment. For example:

"insert" : {
 "href" : "http://api.soccer.restapi.org/users/42/favorites/{name}",
 "rel" : "http://api.relations.wrml.org/common/insert",
}

For further explanation, refer back to the section “Rule: PUT must be used to both
insert and update a stored resource” on page 25.

Error Representation
As mentioned in Chapter 3, HTTP’s 4xx and 5xx error status codes should be augmented
with client-readable information in the response message’s entity body. This section’s
rules present consistent forms pertaining to errors and error responses.

Rule: A consistent form should be used to represent errors
This rule describes the form of a single error that may be included within a REST API’s
error response message. For completeness sake, the media type is defined below but
would not be used in the response’s Content-Type header (see “Rule: A consistent form
should be used to represent error responses” on page 69 instead):

68 | Chapter 5: Representation Design

NOTE: the line breaks below are for the sake of visual clarity.

application/wrml;
 format="http://api.formats.wrml.org/application/json";
 schema="http://api.schemas.wrml.org/common/Error"

When formatted with JSON, an Error has the following consistent form:

{
 "id" : Text,
 "description" : Text
}

The unique ID/code of the error type. Clients should use this ID to understand what
sort of error has occurred and act/message accordingly.

A optional plain text description of the error.

Rule: A consistent form should be used to represent error responses
A REST API returns the error response representation in the message body when a
request results in one or more errors. When using this structure, the response should
also have the status code set to something in the 4xx or 5xx range.

When formatted with JSON, an error response has the following media type:

NOTE: the line breaks below are for the sake of visual clarity.

application/wrml;
 format="http://api.formats.wrml.org/application/json";
 schema="http://api.schemas.wrml.org/common/ErrorContainer"

The WRML media type.

Identifies the current version of the ErrorContainer schema.

When represented using JSON, an ErrorContainer has the following consistent form:

{
 "elements" : [
 {
 "id" : "Update Failed",
 "description" : "Failed to update /users/1234"
 }
]
}

Extends the Container schema, which means its forms have a List field (array in
JSON) named elements.

The ErrorContainer adds an ElementType constraint that ensures the elements list
homogeneously contains only Error forms.

Error Representation | 69

Rule: Consistent error types should be used for common error conditions
Generic error types may be leveraged by a variety of APIs. These error types should be
defined once and then shared across all APIs via a service hosting the error schema
documents. By leveraging schema extension, as discussed in “Media Type Schema De-
sign” on page 42, APIs may define new error types that extend base types with addi-
tional fields.

Recap
This chapter offered design rules for resource representations. Table 5-1 summarizes
the vocabulary terms that were used in this chapter.

Table 5-1. Vocabulary review

Term Description

Field A named slot with some associated information that is stored in its value.

Form A structured representation that consists of the fields and links, which are defined by an associated
schema.

Format Describes a form’s presentation apart from its schematic.

Link An actionable reference to a resource.

Link formula A boolean expression that may serve as HATEOAS calculator’s input in order to determine the
availability of state-sensitive hypermedia within a form.

Link relation Describes a connection between two resources.

Schema Describes a representational form’s structure independent of its format.

State fact A Boolean variable that communicates a condition that is relevant to some state-sensitive
hypermedia.

70 | Chapter 5: Representation Design

CHAPTER 6

Client Concerns

Introduction
Any computer program can be a REST API’s client, but some examples include scripts
loaded in web pages, handheld games, and business-critical applications running on
server farms. REST APIs are designed to suit the needs of their client programs, what-
ever those needs may be.

This chapter provides a set of REST API design principles to address common client
concerns. It concludes with a few rules to address the special needs of browser-based
JavaScript clients.

Versioning
A REST API is composed of an assembly of interlinked resources: its resource model.
The version of each resource is conveyed through its representational form and state.

Rule: New URIs should be used to introduce new concepts
A resource is a semantic model, like a thought about a thing. A resource’s representa-
tional form and state may change over time but the identifier must consistently address
the same thought, which no other URI can identify. Furthermore, every character in a
resource’s URI contributes to its identity. Therefore the version of a REST API, or any
of its resources, typically should not be signified in a URI. For example, including a
version indicator, like v2, in a URI conveys that the concept itself has multiple versions,
which is usually not the intent.

A URI identifies a resource, independent of the version of its representational form and
state. REST APIs should maintain a consistent mapping of its URIs to its conceptually
constant resources. A REST API should introduce a new URI only if it intends to expose
a new concept.

71

Rule: Schemas should be used to manage representational form versions
As discussed earlier in “Media Type Schema Versioning” on page 43, the version of the
form of a REST API’s resource representations is managed through versioned schema
documents. Clients use media type negotiation to bind to the representational forms
that best suit their needs.

Adding fields and links to new schema versions is a great way to introduce new features
to a REST API without impacting backward compatibility.

Rule: Entity tags should be used to manage representational state versions
The section “Rule: ETag should be used in responses” on page 36 covered the use of
ETag HTTP header to convey the version of a resource’s representational state. The
entity tag values associated with each individual resource are a REST API’s most fine-
grained versioning system.

Security
Many REST APIs expose resources that are associated with a specific client and/or user.
For example, a REST API’s documents may contain private information and its con-
trollers may expose operations intended to be executed by a restricted audience.

The rules in this section address the protection of a REST API’s sensitive resources.

Rule: OAuth may be used to protect resources
OAuth (Open Authorization) is an open standard that provides secure authorization
using a consistent approach for all clients. It is best known for its role in allowing users
to share their private resources, such as photos or contact lists, stored on one web site
with another site without having to disclose their confidential username or password.

OAuth is described as an “open standard” because the protocol specification is not
owned or controlled by any corporation, but rather, is managed by the OAuth Working
Group within the IETF. The WG is comprised of individuals from Google, Microsoft,
Facebook, Twitter, Yahoo, and other leading Internet companies.

OAuth is an HTTP-based authorization protocol that enables the protection of resour-
ces. The OAuth protocol’s flow is summarized in the steps below:

1. A client obtains the artifacts needed to interact with a REST API’s protected re-
sources. Note that with respect to the character of these artifacts and how they are
obtained, there are some significant differences between versions of the OAuth
protocol specification.

2. Using the artifacts that it obtained in Step 1, the client requests an interaction with
a REST API’s protected resource.

72 | Chapter 6: Client Concerns

3. The REST API, or an intermediary acting on its behalf, validates the client request’s
OAuth-based authorization information. Note that there are some significant
differences in the validation process as detailed by the OAuth 1.0* and 2.0†

specifications.

4. If the validation check succeeds, the REST API allows the client’s interaction with
the protected resource to proceed.

Architecturally, the OAuth protocol helps a REST API address security concerns in a
manner that is complementary to the resource-centric and stateless nature of its inter-
actions with clients.

Rule: API management solutions may be used to protect resources
An API reverse proxy is a relatively new type of network-based intermediary that may
be used to secure a REST API’s resources. API management solution vendors, such as
Apigee‡ and Mashery,§ offer reverse proxy-based services to address many of the cross-
cutting concerns related to producing, and consuming, high-quality REST APIs. These
vendor solutions offer support for OAuth and other security protocols right out of the
box.

Response Representation Composition
The needs of a REST API’s clients can evolve over time. As new features are added, a
client may require new resources from its supporting REST API. At times, the client’s
changes may be less drastic, requiring an API’s existing resources be modeled in a
slightly different way. Many REST APIs support multiple client types, with varying
needs that must be accommodated.

A REST API can show respect for its clients by offering them a measure of control over
the composition of its response representations. Following the rules presented in this
section will enable clients to tune responses to meet their needs, while allowing the
REST API to maintain a consistent resource model design.

* The OAuth 1.0 Protocol, http://tools.ietf.org/html/rfc5849

† The OAuth 2.0 Authorization Protocol, http://tools.ietf.org/html/draft-ietf-oauth-v2

‡ http//www.apigee.com

§ http//www.mashery.com

Response Representation Composition | 73

http://tools.ietf.org/html/rfc5849
http://tools.ietf.org/html/draft-ietf-oauth-v2

Rule: The query component of a URI should be used to support partial
responses
A resource’s current state is represented by a set of fields and links, as detailed in
Chapter 5. There may be times when a REST API offers a resource state model that
includes a bit more data than the client wishes to receive. In order to save on bandwidth,
and possibly accelerate the overall interaction, a REST API’s client can use the query
component to trim response data with the fields parameter.

The fields query parameter allows clients to request only the resource state informa-
tion that it deems relevant for its particular use case. The REST API must parse the
request’s query parameter’s inclusion list and return a partial response. The following
example request uses the fields query parameter to request that a specific subset of
data be returned for the identified student document:

Request
GET /students/morgan?fields=(firstName, birthDate) HTTP/1.1
Host: api.college.restapi.org

Response
HTTP/1.1 200 OK
Content-Type: application/wrml;
 format="http://api.formats.wrml.org/application/json";
 schema="http://api.schemas.wrml.org/college/Student";
 fields="(birthDate, firstName)"

{
 "firstName" : "Morgan",
 "birthDate" : "1992-07-31"
}

The request includes the fields parameter, which specifies the list of fields that
should be included in the response’s representation.

When the fields query parameter is used to define an inclusion list, the media type
must specify a parameter, also named fields, which canonicalizes the response’s
field list in case-insensitive, alphabetical order.

The partial response contains only the firstName and birthDate fields.

In the example above, the fields query parameter syntax indicated that the client
wished to obtain the current state of two specific fields. However, sometimes it may be
more convenient for the client to designate the resource state fields that it does not want
to receive. For example, a client may ask an API to exclude an indicated set of fields
whose values are known to be sizable and unused.

The example request below demonstrates how the fields query parameter can be used
to specify a set of fields that are unwanted:

Request
GET /students/morgan?fields=!(address,schedule!(wednesday, friday)) HTTP/1.1
Host: api.college.restapi.org

74 | Chapter 6: Client Concerns

Response
HTTP/1.1 200 OK
Content-Type: application/wrml;
 format="http://api.formats.wrml.org/application/json";
 schema="http://api.schemas.wrml.org/college/Student";
 fields="!(address, schedule!(friday, wednesday))"

{
 "firstName" : "Morgan",
 "birthDate" : "1992-07-31",
 "schedule" : {
 "monday" : {
 "links" : {
 "firstClass" : {
 "href" : "http://api.college.restapi.org/classes/math-202",
 "rel" : "http://api.relations.wrml.org/college/firstClass"
 },

 # Daily schedule's other links...
 }
 },

 # Schedule's other fields (except friday and wednesday)...
 },

 # Student's other fields (except address)...

 "links" : {
 # Student's links...
 }
}

The exclamation point character (!), which precedes the parenthetically enclosed
and comma-separated names, declares a field exclusion list.

When the fields query parameter is used to define an exclusion list, it alters the
structure of the form away from its schema’s definition; thus it needs to equivalently
alter the Content-Type header’s value. The media type must specify a fields param-
eter that lists the response’s excluded fields in case-insensitive, alphabetical order.

The REST API’s partial response should then include all of the state representation’s
fields, except those indicated in the exclusion list.

In this example, the schedule field’s value is an object with its own set of fields. The
schedule field, which is named within the outer exclusion list, includes a nested exclu-
sion list that omits the wednesday and friday fields.

Clients should be encouraged to programmatically consult the re-
source’s media type’s schema to validate their field selections. See
“Media Type Schema Design” on page 42 for more detail.

Response Representation Composition | 75

Rule: The query component of a URI should be used to embed linked
resources
In his “Commentary on Web Architecture,” Tim Berners-Lee pointed out that there
are two types of links:

Basic HTML has three ways of linking to other material on the web: the hypertext link
from an anchor (HTML “A” element), the general link with no specific source anchor
within the document (HTML “LINK” element), and embedded objects and images (IMG
and OBJECT). Let’s call A and LINK “normal” links, as they are visible to the user as a
traversal between two documents. We’ll call the thing between a document and an em-
bedded image or object or subdocument “embedding” links.

—Tim Berners-Lee http://www.w3.org/DesignIssues/LinkLaw

REST API’s should allow individual client requests to control which linked resources
should remain “normal” and which ones should become “embedded.” This request-
time composition approach allows a REST API to present a consistent, fine-grained
resource model while empowering its clients to create facades that better match their
individual use cases.

Consider the representation below:

{
 "firstName" : "Morgan",
 "birthDate" : "1992-07-31",

 # Other fields...

 "links" : {
 "self" : {
 "href" : "http://api.college.restapi.org/students/morgan",
 "rel" : "http://api.relations.wrml.org/common/self"
 },
 "favoriteClass" : {
 "href" : "http://api.college.restapi.org/classes/japn-301",
 "rel" : "http://api.relations.wrml.org/college/favoriteClass"
 },

 # Other links...
 }
}

Clients use the embed query parameter to identify the link relations that they wish to
have included, as fields, directly in the response’s representation. The following ex-
ample request uses the embed query parameter to include the favoriteClass link as a
field:

Request
GET /students/morgan?embed=(favoriteClass) HTTP/1.1
Host: api.college.restapi.org

Response
HTTP/1.1 200 OK

76 | Chapter 6: Client Concerns

http://www.w3.org/DesignIssues/LinkLaw

Content-Type: application/wrml;
 format="http://api.formats.wrml.org/application/json";
 schema="http://api.schemas.wrml.org/college/Student";
 embed="(favoriteClass)"

{
 "firstName" : "Morgan",
 "birthDate" : "1992-07-31",
 "favoriteClass" : {
 "id" : "japn-301",
 "name" : "Third-Year Japanese",
 "links" : {
 "self" : {
 "href" : "http://api.college.restapi.org/classes/japn-301",
 "rel" : "http://api.relations.wrml.org/common/self"
 }
 }
 }

 # Other fields...

 "links" : {
 "self" : {
 "href" : "http://api.college.restapi.org/students/morgan",
 "rel" : "http://api.relations.wrml.org/common/self"
 },

 # Other links...
 }
}

In this example the embed query parameter specifies a single link, favoriteClass, but
it can be used to specify a list of links (like the fields parameter discussed in “Rule:
The query component of a URI should be used to support partial respon-
ses” on page 74).

When the embed query parameter is used, it alters the structure of the form away
from its schema’s definition, thus it needs to equivalently alter the Content-Type
header’s value. The media type must specify an embed parameter that lists the em-
bedded links in case-insensitive, alphabetical order.

The REST API has retrieved a representation of the linked favoriteClass resource
and has embedded it as a field.

The favoriteClass link is now gone, replaced by the embedded field.

Note that embedding only works for link relations that use the GET
method and support the exact same media type format as the referencing
representation.

Response Representation Composition | 77

Processing Hypermedia
Chapter 5 introduced two hypermedia structures, link and link relation. These struc-
tures are designed to be easy for clients to process using a consistent algorithm. The
flowchart in Figure 6-1 illustrates how a client should interact with a particular REST
API response representation’s link.

Figure 6-1. Hypermedia processing flowchart

As shown in the flowchart, the client’s hypermedia processing routine starts by simply
looking up the link using its relation’s name. Then, in order to interact with the link
using the appropriate HTTP request method, the client’s code inspects the method field
of the link’s relation document resource. If the link’s interaction allows or requires
content to be submitted in the request message’s body, then the link relation document
would indicate the possible media type options via its requestTypes field.

78 | Chapter 6: Client Concerns

JavaScript Clients
The modern web browser, with its ubiquity and ever-increasing power, is a natural
platform for client applications. The JavaScript programming language facilitates the
development of applications that are instantly available everywhere. JavaScript pro-
grams provide the interactive parts of web experiences. They make: applications dy-
namic, games playable, and advertisements noticeable.

The rules presented in this section apply to REST APIs that wish to support the growing
number of JavaScript-based clients which are “sandboxed” by the web browser’s same
origin policy.‖ The same origin policy, which is also known as the same domain policy,
restricts a browser-based JavaScript client from accessing resources from any web serv-
ers other than its code’s own source. Web browsers enforce the same origin policy to
prevent leaking of confidential user data. A resource’s origin is defined# by its URI’s
scheme, host, and port components.

The following resources have the same origin:

http://restapi.org
http://restapi.org:80
http://restapi.org/js/my-mashup.js

This URI is the same as the first one because 80 is HTTP’s default port.

This is the same as the others because the URI’s path is not part of a resource’s origin.

In contrast, each the following resources has a different origin.

http://restapi.org
https://restapi.org
http://www.restapi.org
http://restapi.org:8080
https://restapi.org:80
http://restapi.com
http://wrml.org

The use of the https scheme makes this a different origin.

The www subdomain identifies a different host, which is part of the resource’s origin.

8080 and 80 are two different ports.

Many JavaScript web applications dynamically integrate a variety of content and serv-
ices from several APIs; each one with a different scheme, host, or port. With their
tendency to cleverly combine data from more than one origin, these clients are com-
monly known as mashups. Today, there are a few different ways that REST APIs can
provide multi-origin access, namely JSONP and CORS, which are described by the rules
of this section.

‖ http://www.w3.org/Security/wiki/Same_Origin_Policy

#The Web origin concept, http://tools.ietf.org/html/draft-ietf-websec-origin

JavaScript Clients | 79

http://www.w3.org/Security/wiki/Same_Origin_Policy
http://tools.ietf.org/html/draft-ietf-websec-origin

Rule: JSONP should be supported to provide multi-origin read access from
JavaScript
The JSONP (JSON with Padding) request technique is a very useful hack. With a little
bit of extra work done by both the client and the REST API, JSONP enables multi-
origin read-only access from JavaScript.

The browser’s built-in XMLHttpRequest component provides its JavaScript clients with
HTTP client functionality.* The browser quirk that opens the door for JSONP is that,
although XMLHttpRequest is blocked from making requests to third-party hosts, there is
not a similar restriction on HTML script elements. Leveraging this, the JSONP request
technique adds a <script src=“…”> element to the browser’s Document Object Model
(DOM), with a REST API’s URI as the src target. Therefore, for each new JSONP
request, the client must dynamically add a new script tag into the HTML DOM, with
the desired URI as the src attribute’s value.

JavaScript clients indicate to the REST API that they desire a JSONP “wrapped” re-
sponse by adding a callback query parameter to the src attribute’s URI value. Once the
script element is injected into the DOM, it is evaluated and the src URI is retrieved,
via HTTP GET, from the API.

Seeing the added callback query parameter, the REST API should return the JSON
response data wrapped in the requested callback function. The calling of the JavaScript
client’s callback function is the “padding” wrapped around the API’s normal JSON
formatted response representation. Finally, the browser’s JavaScript engine will execute
the response, which results in the specified callback function being invoked with the
response’s JSON data passed in as a parameter.

JSONP works on both modern and legacy browsers, but due to its script element
injection nature, it is limited to making GET requests.

Below is an example of the JSONP request technique. The example starts with the
JavaScript client code, which uses the popular jQuery† library to call a REST API that
supports JSONP:

var getPlayer = function(uri, successCallback) {
 $.ajax({
 url: uri,
 success: successCallback,
 dataType: 'jsonp'
 });
};

var showPlayerFullName = function(player) {
 alert(player.firstName + " " + player.lastName);
};

* http://www.w3.org/TR/XMLHttpRequest

† http://www.jquery.com

80 | Chapter 6: Client Concerns

http://www.w3.org/TR/XMLHttpRequest
http://www.jquery.com

getPlayer("http://api.soccer.restapi.org/players/1421", showPlayerFullName);

JavaScript declaration of a getPlayer function that expects two parameters: a URI
string and the name of a callback function.

Calls the jQuery library’s ajax function; passing the URI and callback function name,
along with a flag that tells the function to use the JSONP pattern.

JavaScript declaration of a showPlayerFullName function that expects a Player object
and pops up a simple message box with text that displays the player’s full name.
This is the example’s callback function.

Calls the getPlayer function; passing a URI that identifies a REST API’s player re-
source (which has been hardcoded to simplify this illustration). The function’s sec-
ond parameter names the showPlayerFullName callback function.

In this example, the getPlayer function uses the jQuery AJAX‡ library’s JSONP support
to handle the script element injection and the addition of the callback query parameter
to the end of the URI.

This example’s associated HTTP request and response details are shown below:

For brevity's sake, some headers, fields, and links have been
omitted from this example.

Request
GET /players/1421?callback=showPlayerFullName HTTP/1.1
Host: api.soccer.restapi.org

Response
HTTP/1.1 200 OK
Content-Type: application/javascript

showPlayerFullName(
 {
 "firstName" : "Kasey",
 "lastName" : "Keller",
 "number" : 18,
 "birthDate" : "1969-11-29",

 "links" : {
 "self" : {
 "href" : "http://api.soccer.restapi.org/players/1421",
 "rel" : "http://api.relations.wrml.org/common/self"
 }
 }
 }
);

Note that the jQuery library has added the callback query parameter to the specified
URI.

‡ AJAX is a popular acronym that stands for “Asynchronous JavaScript and XML.”

JavaScript Clients | 81

The REST API should set the Content-Type header of JSONP responses to applica
tion/javascript to indicate that the body format is now JavaScript rather than
application/json (or some other application-specific media type).

The REST API’s response message body has wrapped the standard player resource’s
JSON structure with a call to the client’s showPlayerFullName JavaScript function.

Finally, when the browser receives the response from the GET request it used to fetch
the injected script tag’s src URI, it executes the client’s showPlayerFullName JavaScript
function call. The end result of this example is that the browser shows an alert message
box with the text “Kasey Keller”.

In summary, REST APIs enable JSONP client requests by supporting an optional call
back query parameter. If the parameter is present in a request, the API should wrap its
normal JSON response body’s data in a JavaScript function call with the callback query
parameter’s value as the function’s name.

Rule: CORS should be supported to provide multi-origin read/write access
from JavaScript
Cross-Origin Resource Sharing§ (CORS) is the W3C’s proposed approach to stand-
ardize cross-origin requests from the browser. CORS is an alternative to JSONP (see
“Rule: JSONP should be supported to provide multi-origin read access from Java-
Script” on page 80) that supports all request methods. The CORS approach enhances
XMLHttpRequest, the browser’s built-in HTTP client, to natively support cross-origin
requests.

For request methods other than: GET, HEAD, and POST; CORS defines a preflight request
interaction. The preflight request occurs “behind-the-scenes” between a CORS-
compliant browser and server, in advance of the JavaScript client’s actual request to
access a cross-origin resource. REST APIs may use the CORS-proposed Access-Con
trol-Allow-Origin HTTP header to list the set of origins that are permitted cross-origin
access to its resources. Most modern browsers support CORS by sending special HTTP
request headers such as Origin and Access-Control-Request-Method. The Origin header
value identifies the requesting JavaScript client’s scheme/host/port source location.
The Access-Control-Request-Method header value is sent in the CORS preflight request
to indicate which HTTP method will be used in the client’s actual request.

The following JavaScript function presents the typical approach to dealing with the
various browsers’ nonstandard implementations of the proposed CORS standard:

function createCORSRequest(method, url) {
 var xhr = new XMLHttpRequest();
 if ("withCredentials" in xhr) {
 xhr.open(method, url, true);

§ http://www.w3.org/TR/cors

82 | Chapter 6: Client Concerns

http://www.w3.org/TR/cors

 }
 else if (typeof XDomainRequest != "undefined") {
 xhr = new XDomainRequest();
 xhr.open(method, url);
 }
 else {
 xhr = null;
 }
 return xhr;
}

Idiomatic code that tests the browser’s CORS support.

Microsoft’s Internet Explorer 8 browser requires JavaScript clients to use the special
XDomainRequest object for cross-domain requests.‖

Returns null if the browser does not support CORS.

Recap
This chapter presented REST API design tips that help address client concerns.
Table 6-1 summarizes the terms that were introduced.

Table 6-1. Vocabulary review

Term Description

API reverse proxy A network-based intermediary that addresses many of the cross-cutting concerns associated with
REST APIs.

Cross-Origin Resource
Sharing (CORS)

The W3C’s proposed approach to standardize cross-origin requests from the browser.

Document Object Model
(DOM)

A browser-based, client-side API that allows JavaScript code to interact with the elemental structure
loaded in the browser’s memory.

Embedded link A related resource that is retrieved and integrated into a referencing resource as a field.

Exclusion list A set of fields to be omitted from a message body that contains a representation.

Inclusion list The complete set of fields that a client expects to find within a message body that contains a
representation.

JSONP Uses DOM scripting to support cross-origin GET requests from JavaScript.

Mashup A client that intertwines information and features that originate from a variety of unrelated
resources.

OAuth An open standard authorization protocol that may be used to protect a REST API’s resources.

Partial response The result of a client-controlled winnowing of a message body that contains a representation.

Same origin policy Restricts a browser-based JavaScript client from accessing resources from any web servers other
than its code’s own source.

‖ http://msdn.microsoft.com/en-us/library/cc288060(v=vs.85).aspx

Recap | 83

http://msdn.microsoft.com/en-us/library/cc288060(v=vs.85).aspx

CHAPTER 7

Final Thoughts

State of the Art
Today, implementing our REST API designs is harder than it ought to be. The tools
and frameworks that aim to support REST API developers have room for improvement.
Many of the programming language-centric REST API development frameworks were
originally created to help build web applications. These frameworks seem to suggest
that REST APIs are similar enough to web applications that they should be cast from
the same mold.

By repurposing the web application’s controller paradigm, many of today’s frameworks
provide support for using URI templates to route inbound client requests to handler-
style methods or functions. In recognition of the fact that developers don’t want to code
web page templates to format their REST API’s data, most of the frameworks offer
built-in XML and JSON-based serialization and deserialization of the server’s objects
to and from an HTTP message’s body.

Today, there is no unanimous winner among the various REST API development
framework candidates. The selection amounts to personal (or organizational) prefer-
ence of programming language and platform.

Unfortunately, most of the current REST API development frameworks lack direct
support for:

• Natural separation of the resource model from the server’s implementation model

• Uniform, cross-format hypermedia structures

• Automated HATEOAS; based on current state, determining which links should be
provided in a response

• Media type schema validation and versioning

• Both partial and dynamically composed response bodies

• Integration with client identification and entitlement authority

• Multi-origin resource sharing with JSONP and CORS

85

The lack of framework support for many core features has left REST API developers
with a difficult choice: either omit features or code them yourself. Unsatisfied with
these options, many developers have turned to API management solutions, as discussed
in “Rule: API management solutions may be used to protect resources” on page 73, to
provide some of these expected features. These solutions are helpful, but they can
quickly become too helpful. Reliance on API management solutions to provide impor-
tant (yet nonstandard) REST API features may lead an organization to become locked
into a specific vendor’s implementation. The Web’s network-based intermediaries
must be transparent to clients and servers, which also means they should be easily
swappable.

Migrating from one vendor’s API management solution to another’s, or switching de-
velopment frameworks, requires a degree of REST API design standardization that has
yet to be achieved.

Uniform Implementation
Coding a REST API has never felt right to me. I believe that REST APIs should be
designed and configured, but not coded. To that end, I’ve conceived of an alternative
approach to REST API implementation that is founded on the WRML conceptual
framework’s architectural principles. These principles, summarized below, align with
the REST API design methodology presented as this book’s rules.

Principle: REST API designs differ more than necessary
REST APIs, while becoming ubiquitous, are far from uniformly designed. The REST-
fulness of APIs continues to be debated by those that create and consume them. In the
absence of standards, REST API designers are free to innovate and explore new con-
cepts, which is a good thing. However, when REST API designs eventually converge
on a set of common patterns that address each one of the cross-cutting concerns, de-
velopers will benefit from the uniformity.

If history is any indication, this uniformity will most likely be driven by a pragmatic
and detailed standard for REST API design. This book’s rule-based expression of a
REST API’s expected behavior is a good indication that a more detailed specification
can eventually be written to standardize a common approach. Then, this standard can
be leveraged to develop reusable frameworks and libraries for clients, servers, and
network-based intermediaries.

For interoperability’s sake, a REST API design standard must be neutral with respect
to programming languages and representation formats. As highlighted in the design of
WRML’s media type, the schema can universally describe a program’s data structure
without binding it to any specific expression format. The abstract nature of schemas
allow them to be consumed by clients and servers written in different programming
languages. Furthermore, the WRML-based schemas and their associated link relations

86 | Chapter 7: Final Thoughts

are designed to be shared and leveraged by a variety of REST APIs, which, along with
decentralized Web-based hosting, can further their reusabilty across organizational
boundaries.

Of equal importance is the governance of such a standardized approach to REST API
design. In its lively 20 year history, the Web has withstood a few notable attempts to
own or control one of its important parts. The Web has weathered the years of ad-hoc
standardization by browser vendors. More recently, the Web rebelled against various
vendor attempts to own its image, animation, and video formats. Similarly, attempts
to standardize the design and implementation of REST APIs, either in part or as a whole,
will succeed or fail based on the open and nonproprietary governance of their ideas and
source code.

Principle: A REST API should be designed, not coded
Coding a REST API typically means programming an interface that exposes a backend
system’s resources to Web-aware clients. In practice, this task varies slightly, depending
on the chosen programming language and framework. However, the core job remains
the same: write code that handles HTTP-level details and translates a backend system’s
data model into a Web-oriented resource model. Some of this code most certainly needs
to be written on a per-API basis, specifically the portion that directly communicates
with the backend system or data store. However, a uniform REST API layer can be
developed to replace the boilerplate and bookkeeping code found in many current
implementations.

In WRML’s conceptual architecture, the uniform REST API layer is a configuration-
driven engine that resides within a web resource server. As shown in Figure 7-1, the web
resource server accepts client requests and delegates them to its core engine. The en-
gine’s design may ultimately be standardized so that it can be consistently implemented
for each web server-based programming framework that wishes to embrace its archi-
tectural style.

The engine takes a step-oriented approach to request handling, with each step and the
order of all steps specified through configuration. Common steps are used to handle
resource template routing, media type negotiation, client authorization, error handling,
multi-origin support, and other core REST API features. When each step is executed,
it is passed the context of the request, which is a thread-local associative array that
accumulates request processing information as each step is executed. Ultimately, the
engine’s algorithm reaches a point where it connects to the backend system to resolve
the requested resource.

Through a minimalistic interface, the engine asks the backend system to fill in a generic
form-oriented structure that is an instance of the client-negotiated media type’s schema.
In other words, the backend system is handed a form-like “data template” that it must
fill in with the current state information. In addition to filling in the schema-specific
form field’s current values, the backend system must also provide a list of zero or more

Uniform Implementation | 87

state facts that are currently true about the requested resource. From here, the engine’s
HATEOAS calculator evaluates the selected schema’s link formulas using the backend
system’s provided state facts as operands. Once the form is completely filled in, with
both fields and links, the engine adds it to the request’s context and executes the re-
maining response-oriented steps.

Principle: Programmers and their organizations benefit from consistency
Web developers have benefited from the uniformity, or at least near-uniformity, of the
browser’s implementation of HTML’s element-based structure, CSS’s presentation
rules, and the DOM-oriented JavaScript API. Historically, HTML pages, with their
fields and links, have been the Web’s primary type system. Servers generate web pages
and clients submit their forms. Without this consistency, there would be no singular
and open Web as we know it today.

On today’s server-side, in the realm of REST APIs, its a bit like the pioneering days of
America’s Wild West: not completely lawless, but nearly so. The inconsistency of REST
API designs hinders the transition of web applications to their next logical architecture,
where web servers provide structured data and leave the presentation responsibilities
to their enriched clients. In this architecture, web applications use JavaScript to render
screens in the browser and interact with REST APIs that provide consistently formed
representations. This approach reduces a server’s workload by shifting some of the
processing duty to its users’ client devices, which have fast and powerful CPUs. In short,
this architecture requires less server-side computational capacity, which reduces the
total cost of operation.

Figure 7-1. WRML application framework—delivery system architecture

88 | Chapter 7: Final Thoughts

The WRML architectural approach to REST API implementation moves the traditional
idea of web page templates toward the back of the system, as close as possible to its
data source. A benefit of this methodology is that it reuses the exact same schema
structures as templates for the backend to fill in and as contracts for clients to consume
and introspect. In a world of multi-device clients with different formatting needs, this
architecture frees up server developers to focus on advancing the web application’s
business logic in their backend systems, instead of worrying about all of the REST API
design rules presented in this book.

With a baseline level of server interface uniformity, new client-side frameworks can be
developed to abstract away the mundane code related to HTTP-based communication
and data marshalling. Of course, underneath the covers, these client-server interactions
are REST-based, so we can be sure that the Web will continue to function as intended.

Principle: A REST API should be created using a GUI tool
With widespread acceptance of a common set of rules, I believe that we can advance a
shared REST API design methodology and begin to fashion a uniformly programmable
Web. However, uniform REST API design is not the ultimate goal—it is only a means
to an end. The greatest benefit of a standardized design and implementation method-
ology is the availability of helpful frameworks and tools that increase developer pro-
ductivity. For example, the WRML conceptual architecture can be leveraged to develop
tools that allow users to graphically design REST APIs. See Figure 7-2 for a set of
mockups that depict a conceptual REST API design tool’s graphical user interface.

Behind the scenes, the tool can generate the structures that WRML’s web resource
server engine reads as configuration data whenever it loads a running REST API in-
stance. In fact, this REST API configuration data may be loaded and dynamically re-
loaded, without restarting the web resource server. This nimble approach to REST API
design and development is shown in Figure 7-3.

The web resource server engine’s configuration data consists of a small set of core
constructs, which are summarized below:

API template
A named REST API containing a list of resource templates, a list of schemas, and
a list of “global” API-level state facts.

Resource template
A resource template is a path segment within a REST API’s hierarchical resource
model. It has an associated URI template and set of possible schemas that client’s
may bind to, at request time, by using media type negotiation. The schemas that
are assigned to a resource template must extend one of the four base schemas
associated with the resource archetypes: Document, Collection, Store, and
Controller.

Uniform Implementation | 89

Schema
Schemas are like classes or tables: they are a web application’s structured types.
They allow forms (instances consisting of fields and links) to be molded in their
image and used to carry the state of a resource.

Format
Formats, like HTML, XML, and JSON, are often used on their own to declare the
type associated with the content of a message’s body. WRML elevates formats to
first-class structures that can provide links to downloadable code to help programs
exchange their encoded data.

Link relation
A link relation is a concept borrowed from HTML that adds semantics to links.
WRML expands on the idea by also documenting a link’s acceptable input media
types and possible output media types.

Figure 7-2. Mockup showing a REST API design tool

90 | Chapter 7: Final Thoughts

Recap
The modern tools and frameworks supporting REST API development are, in a word,
underwhelming. However, by adopting a common REST API design methodology, we
can advance the state of the art. Then, we will be able to spend less time coding pro-
grammatic interfaces and focus our efforts on writing web application code: the stuff
that really matters.

Figure 7-3. WRML REST API configuration architecture

Recap | 91

APPENDIX

My First REST API

I designed my first REST API shortly after joining Starwave in June of 1997.

While working as a programmer in the Sports Engineering group, I was tasked with
developing a new Java applet for a web page on the NASCAR Online website. The Race
Tracker applet was designed to display the status of the lead cars during a live race
event. Once loaded in the user’s web browser, the applet needed to continually fetch
the current race status data from a server hosted by Starwave. At that time, Java applets
could use either a raw socket or HTTP to access data on remote servers. However, if
the applet’s requests needed to cross over the Internet, or even just pass through fire-
walls, HTTP was the only real option.* In other words, the Java applet needed to talk
to a Web API.

By the time I joined the company, the foundations for delivering this type of data over
the Web had already been established by Starwave’s team of talented software engi-
neers. Leveraging a proprietary, Java 1.1-based, automated, real-time wire feed pro-
cessing and publishing system known as “Bulldog,” the server side of my task was to
create a new web page template that would access and format the race data to be dis-
played by the applet. For a given live race event, Bulldog pulled in the data from a wire
feed, created Java objects based on the data, then published the objects through my new
template to constantly update a plain text file hosted on a standard web server.

These text files, each one containing the current state of a given live race event, were
the Web API’s resources. And, as a result of the Bulldog Web publishing process, each
resource was uniquely identified with its own URI. The applet periodically requested
a representation of a resource, via HTTP GET, to download and display the current state
of a given race. I designed the race status resource representation by formatting each
data element as a row on its own line and used the pipe (|) character to delimit each
attribute (or column). For example:

1|1234|Ricky Bobby|26|http://hostname:port/images/drivers/1234.jpg|...

* This constraint placed on applet-to-server communication was the “original browser sandbox.”

93

Along with the other data, the representation also included hyperlinks, which occupied
consistent attribute cells (i.e., the slot between the fourth and fifth pipe character). The
links enabled the applet to download and display images of the race car’s sponsor logo
and the driver’s face.

The design of the Race Tracker applet’s Web API certainly did not abide by all of the
rules outlined in this book. However, it did make use of URIs, HTTP, and representa-
tions with hypermedia. And this is the point: REST describes the way the Web already
works. REST isn’t an invention; it is a prescription. By applying the hallmarks of the
Web to the design of APIs, it can be quite natural to employ the REST architectural style.

94 | Appendix: My First REST API

About the Author
Mark Massé resides in Seattle, where he is a Senior Director of Engineering at ESPN.
In his spare time, Mark enjoys spending time with family and friends, playing soccer
and cheering on the Seattle Sounders, and talking about the video games that he wishes
he had time to play. Most of all, Mark loves to hang out with Shawna.

	Table of Contents
	Preface
	Greetings Program!
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments
	Tim Berners-Lee
	Roy Fielding
	Leonard Richardson
	O’Reilly Media, Inc.
	Technical Reviewers
	Colleagues
	The REST Community
	Stuart Rackham
	Personal

	Chapter 1. Introduction
	Hello World Wide Web
	Web Architecture
	Client–Server
	Uniform Interface
	Identification of resources
	Manipulation of resources through representations
	Self-descriptive messages
	Hypermedia as the engine of application state (HATEOAS)

	Layered System
	Cache
	Stateless
	Code-On-Demand

	Web Standards
	REST
	REST APIs
	REST API Design
	Rules
	WRML

	Recap

	Chapter 2. Identifier Design with URIs
	URIs
	URI Format
	Rule: Forward slash separator (/) must be used to indicate a hierarchical relationship
	Rule: A trailing forward slash (/) should not be included in URIs
	Rule: Hyphens (-) should be used to improve the readability of URIs
	Rule: Underscores (_) should not be used in URIs
	Rule: Lowercase letters should be preferred in URI paths
	Rule: File extensions should not be included in URIs

	URI Authority Design
	Rule: Consistent subdomain names should be used for your APIs
	Rule: Consistent subdomain names should be used for your client developer portal

	Resource Modeling
	Resource Archetypes
	Document
	Collection
	Store
	Controller

	URI Path Design
	Rule: A singular noun should be used for document names
	Rule: A plural noun should be used for collection names
	Rule: A plural noun should be used for store names
	Rule: A verb or verb phrase should be used for controller names
	Rule: Variable path segments may be substituted with identity-based values
	Rule: CRUD function names should not be used in URIs

	URI Query Design
	Rule: The query component of a URI may be used to filter collections or stores
	Rule: The query component of a URI should be used to paginate collection or store results

	Recap

	Chapter 3. Interaction Design with HTTP
	HTTP/1.1
	Request Methods
	Rule: GET and POST must not be used to tunnel other request methods
	Rule: GET must be used to retrieve a representation of a resource
	Rule: HEAD should be used to retrieve response headers
	Rule: PUT must be used to both insert and update a stored resource
	Rule: PUT must be used to update mutable resources
	Rule: POST must be used to create a new resource in a collection
	Rule: POST must be used to execute controllers
	Rule: DELETE must be used to remove a resource from its parent
	Rule: OPTIONS should be used to retrieve metadata that describes a resource’s available interactions

	Response Status Codes
	Rule: 200 (“OK”) should be used to indicate nonspecific success
	Rule: 200 (“OK”) must not be used to communicate errors in the response body
	Rule: 201 (“Created”) must be used to indicate successful resource creation
	Rule: 202 (“Accepted”) must be used to indicate successful start of an asynchronous action
	Rule: 204 (“No Content”) should be used when the response body is intentionally empty
	Rule: 301 (“Moved Permanently”) should be used to relocate resources
	Rule: 302 (“Found”) should not be used
	Rule: 303 (“See Other”) should be used to refer the client to a different URI
	Rule: 304 (“Not Modified”) should be used to preserve bandwidth
	Rule: 307 (“Temporary Redirect”) should be used to tell clients to resubmit the request to another URI
	Rule: 400 (“Bad Request”) may be used to indicate nonspecific failure
	Rule: 401 (“Unauthorized”) must be used when there is a problem with the client’s credentials
	Rule: 403 (“Forbidden”) should be used to forbid access regardless of authorization state
	Rule: 404 (“Not Found”) must be used when a client’s URI cannot be mapped to a resource
	Rule: 405 (“Method Not Allowed”) must be used when the HTTP method is not supported
	Rule: 406 (“Not Acceptable”) must be used when the requested media type cannot be served
	Rule: 409 (“Conflict”) should be used to indicate a violation of resource state
	Rule: 412 (“Precondition Failed”) should be used to support conditional operations
	Rule: 415 (“Unsupported Media Type”) must be used when the media type of a request’s payload cannot be processed
	Rule: 500 (“Internal Server Error”) should be used to indicate API malfunction

	Recap

	Chapter 4. Metadata Design
	HTTP Headers
	Rule: Content-Type must be used
	Rule: Content-Length should be used
	Rule: Last-Modified should be used in responses
	Rule: ETag should be used in responses
	Rule: Stores must support conditional PUT requests
	Rule: Location must be used to specify the URI of a newly created resource
	Rule: Cache-Control, Expires, and Date response headers should be used to encourage caching
	Rule: Cache-Control, Expires, and Pragma response headers may be used to discourage caching
	Rule: Caching should be encouraged
	Rule: Expiration caching headers should be used with 200 (“OK”) responses
	Rule: Expiration caching headers may optionally be used with 3xx and 4xx responses
	Rule: Custom HTTP headers must not be used to change the behavior of HTTP methods

	Media Types
	Media Type Syntax
	Registered Media Types
	Vendor-Specific Media Types

	Media Type Design
	Rule: Application-specific media types should be used
	Media Type Format Design
	Media Type Schema Design
	Media Type Schema Versioning

	Rule: Media type negotiation should be supported when multiple representations are available
	Rule: Media type selection using a query parameter may be supported

	Recap

	Chapter 5. Representation Design
	Message Body Format
	Rule: JSON should be supported for resource representation
	Rule: JSON must be well-formed
	Rule: XML and other formats may optionally be used for resource representation
	Rule: Additional envelopes must not be created

	Hypermedia Representation
	Rule: A consistent form should be used to represent links
	Rule: A consistent form should be used to represent link relations
	Rule: A consistent form should be used to advertise links
	Rule: A self link should be included in response message body representations
	Rule: Minimize the number of advertised “entry point” API URIs
	Rule: Links should be used to advertise a resource’s available actions in a state-sensitive manner

	Media Type Representation
	Rule: A consistent form should be used to represent media type formats
	Rule: A consistent form should be used to represent media type schemas
	Schema Representation
	Field Representation
	Constraint Representation
	Link Formula Representation
	Document Schema Representation
	Container Schema Representation
	Collection Schema Representation
	Store Schema Representation

	Error Representation
	Rule: A consistent form should be used to represent errors
	Rule: A consistent form should be used to represent error responses
	Rule: Consistent error types should be used for common error conditions

	Recap

	Chapter 6. Client Concerns
	Introduction
	Versioning
	Rule: New URIs should be used to introduce new concepts
	Rule: Schemas should be used to manage representational form versions
	Rule: Entity tags should be used to manage representational state versions

	Security
	Rule: OAuth may be used to protect resources
	Rule: API management solutions may be used to protect resources

	Response Representation Composition
	Rule: The query component of a URI should be used to support partial responses
	Rule: The query component of a URI should be used to embed linked resources

	Processing Hypermedia
	JavaScript Clients
	Rule: JSONP should be supported to provide multi-origin read access from JavaScript
	Rule: CORS should be supported to provide multi-origin read/write access from JavaScript

	Recap

	Chapter 7. Final Thoughts
	State of the Art
	Uniform Implementation
	Principle: REST API designs differ more than necessary
	Principle: A REST API should be designed, not coded
	Principle: Programmers and their organizations benefit from consistency
	Principle: A REST API should be created using a GUI tool

	Recap

	Appendix. My First REST API

