

 فقط کتاب

 مرجع معتبر دانلود کتاب هاي تخصصی

Faghatketab.ir

Learning	Node.js	Development

	

	

	

	

	

	

	

	

	

	

	

Learn	 the	 fundamentals	 of	 Node.js,	 and	 deploy	 and	 test	 Node.js
applications	on	the	web

	

	

	

	

	

	

	

	

	

	

	

Andrew	Mead

	

	

	

	

	

	

	

	

	

	

	

	

BIRMINGHAM	-	MUMBAI

Learning	Node.js	Development
Copyright	©	2018	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,	or	transmitted	in
any	form	or	by	any	means,	without	the	prior	written	permission	of	the	publisher,	except	in	the	case	of	brief
quotations	embedded	in	critical	articles	or	reviews.

Every	 effort	 has	 been	 made	 in	 the	 preparation	 of	 this	 book	 to	 ensure	 the	 accuracy	 of	 the	 information
presented.	 However,	 the	 information	 contained	 in	 this	 book	 is	 sold	 without	 warranty,	 either	 express	 or
implied.	Neither	the	author,	nor	Packt	Publishing	or	its	dealers	and	distributors,	will	be	held	liable	for	any
damages	caused	or	alleged	to	have	been	caused	directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the	companies	and	products
mentioned	in	this	book	by	the	appropriate	use	of	capitals.	However,	Packt	Publishing	cannot	guarantee	the
accuracy	of	this	information.

Acquisition	Editor:	Ben	Renow-Clarke
Content	Development	Editor:	Monika	Sangwan
Technical	Editors:	Anupam	Tiwari,	Gaurav	Gavas
Copy	Editors:	Safis	Editing,	Tom	Jacob
Project	Editor:	Suzanne	Coutinho
Proofreader:	Safis	Editing
Indexer:	Pratik	Shirodkar
Production	Coordinator:	Nilesh	Mohite

First	published:	January	2018

Production	reference:	1300118

Published	by	Packt	Publishing	Ltd.
Livery	Place
35	Livery	Street
Birmingham
B3	2PB,	UK.

ISBN	978-1-78839-554-0

www.packtpub.com

http://www.packtpub.com

mapt.io

Mapt	is	an	online	digital	 library	that	gives	you	full	access	 to	over	5,000	books
and	 videos,	 as	 well	 as	 industry	 leading	 tools	 to	 help	 you	 plan	 your	 personal
development	 and	 advance	 your	 career.	 For	 more	 information,	 please	 visit	 our
website.

https://mapt.io/

Why	subscribe?
Spend	less	 time	learning	and	more	time	coding	with	practical	eBooks	and
Videos	from	over	4,000	industry	professionals

Improve	your	learning	with	Skill	Plans	built	especially	for	you

Get	a	free	eBook	or	video	every	month

Mapt	is	fully	searchable

Copy	and	paste,	print,	and	bookmark	content

PacktPub.com
Did	you	know	 that	Packt	offers	eBook	versions	of	every	book	published,	with
PDF	and	ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktP
ub.com	and	as	a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook
copy.	Get	in	touch	with	us	at	service@packtpub.com	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	 technical	articles,	sign
up	for	a	range	of	free	newsletters,	and	receive	exclusive	discounts	and	offers	on
Packt	books	and	eBooks.

http://www.PacktPub.com
http://www.packtpub.com

Contributor

About	the	author
Andrew	Mead	 is	 a	 full-stack	 developer	 living	 in	 beautiful	 Philadelphia!	 He
launched	his	 first	Udemy	course	 in	2014	and	had	a	blast	 teaching	and	helping
others.	Since	then,	he	has	launched	3	courses	with	over	21,000	students	and	over
1,900	5-star	reviews.

Andrew	currently	teaches	Node,	Gulp,	and	React.	Before	he	started	teaching,	he
created	a	web	app	development	company.	He	has	helped	companies	of	all	sizes
launch	production	web	applications	to	their	customers.	He	has	had	the	honor	of
working	with	awesome	companies	such	as	Siemens,	Mixergy,	and	Parkloco.	He
has	 a	 Computer	 Science	 degree	 from	 Temple	 University,	 and	 he	 has	 been
programming	for	just	over	a	decade.	He	loves	creating,	programming,	launching,
learning,	teaching,	and	biking.

Packt	 is	 searching	 for	 authors
like	you
If	you're	interested	in	becoming	an	author	for	Packt,	please	visit	authors.packtpub.c
om	 and	 apply	 today.	 We	 have	 worked	 with	 thousands	 of	 developers	 and	 tech
professionals,	just	like	you,	to	help	them	share	their	insight	with	the	global	tech
community.	You	can	make	a	general	application,	apply	 for	a	specific	hot	 topic
that	we	are	recruiting	an	author	for,	or	submit	your	own	idea.

http://authors.packtpub.com

Table	of	Contents
Preface

Who	this	book	is	for

What	this	book	covers

To	get	the	most	out	of	this	book

Download	the	example	code	files

Conventions	used

Get	in	touch

Reviews

1.	 Getting	Set	Up
Node.js	installation

Node.js	version	confirmation

Installing	Node

Verifying	installation

What	is	Node?

Differences	between	JavaScript	coding	using	Node	and	in	the	browser

Why	use	Node

Blocking	and	non-blocking	software	development

The	working	of	blocking	I/O

The	working	non-blocking	I/O

Blocking	and	non-blocking	examples	using	Terminal

Node	community	–	problem	solving	open	source	libraries

Different	text	editors	for	node	applications

Hello	World	–	creating	and	running	the	first	Node	app

Creating	the	Node	application

Running	the	Node	application

Summary

2.	 Node	Fundamentals	–	Part	1
Module	basics

Using	case	for	require()

Initialization	of	an	application

The	built-in	module	to	use	require()

Creating	and	appending	files	in	the	File	System	module

The	OS	module	in	require()

Concatenating	user.username

Using	template	strings

Require	own	files

Making	a	new	file	to	load	other	files

Exporting	files	from	note.js	to	use	in	app.js

A	simple	example	of	the	working	of	the	exports	object

Exporting	the	functions

Exercise	–	adding	a	new	function	to	the	export	object

Solution	to	the	exercise

Third-party	modules

Creating	projects	using	npm	modules

Installing	the	lodash	module	in	our	app

Installation	of	lodash

Using	the	utilities	of	lodash

Using	the	_.isString	utility

Using	_.uniq

The	node_modules	folder

Global	modules

Installing	the	nodemon	module

Executing	nodemon

Getting	input

Getting	input	from	the	user	inside	the	command	line

Accessing	the	command-line	argument	for	the	notes	application

Adding	if/else	statements

Exercise	–	adding	two	else	if	clauses	to	an	if	block

Solution	to	the	exercise

Getting	the	specific	note	information

Summary

3.	 Node	Fundamentals	–	Part	2
yargs

Installing	yargs

Running	yargs

Working	with	the	add	command

Working	with	the	list	command

The	read	command

Dealing	with	the	errors	in	parsing	commands

The	remove	command

Fetching	command

JSON

Converting	objects	into	strings

Defining	a	string	and	using	in	app	as	an	object

Converting	a	string	back	to	an	object

Storing	the	string	in	a	file

Writing	the	file	in	the	playground	folder

Reading	out	the	content	in	the	file

Adding	and	saving	notes

Adding	notes

Adding	notes	to	the	notes	array

Fetching	new	notes

Trying	and	catching	code	block

Making	the	title	unique

Refactoring

Moving	functionality	into	individual	functions

Working	with	fetchNotes

Working	with	saveNotes

Testing	the	functionality

Summary

4.	 Node	Fundamentals	–	Part	3
Removing	a	note

Using	the	removeNote	function

Printing	a	message	of	removing	notes

Reading	note

Using	the	getNote	function

Running	the	getNote	function

The	DRY	principle

Using	the	logNote	function

Debugging

Executing	a	program	in	debug	mode

Working	with	debugging

Using	debugger	inside	the	notes	application

Listing	notes

Using	the	getAll	function

Advanced	yargs

Using	chaining	syntax	on	yargs

Calling	the	.help	command

Adding	the	options	object

Adding	the	title

Adding	the	body

Adding	support	to	the	read	and	remove	commands

Adding	the	titleOption	and	bodyOption	variables

Testing	the	remove	command

Arrow	functions

Using	the	arrow	function

Exploring	the	difference	between	regular	and	arrow	functions

Exploring	the	arguments	array

Summary

5.	 Basics	of	Asynchronous	Programming	in	Node.js
The	basic	concept	of	asynchronous	program

Illustrating	the	async	programming	model

Call	stack	and	event	loop

A	synchronous	program	example

The	call	stack

Running	the	synchronous	program

A	complex	synchronous	program	example

An	async	program	example

The	Node	API	in	async	programming

The	callback	queue	in	async	programming

The	event	loop

Running	the	async	code

Callback	functions	and	APIs

The	callback	function

Creating	the	callback	function

Running	the	callback	function

Simulating	delay	using	setTimeout

Making	request	to	Geolocation	API

Using	Google	Maps	API	data	in	our	code

Installing	the	request	package

Using	request	as	a	function

Running	the	request

Pretty	printing	objects

Using	the	body	argument

Making	up	of	the	HTTPS	requests

The	response	object

The	error	argument

Printing	data	from	the	body	object

Printing	the	formatted	address

Printing	latitude	and	longitude

Summary

6.	 Callbacks	in	Asynchronous	Programming
Encoding	user	input

Installing	yargs

Configuring	yargs

Printing	the	address	to	screen

Encoding	and	decoding	the	strings

Encoding	URI	component

Decoding	URI	component

Pulling	the	address	out	of	argv

Callback	errors

Checking	error	in	Google	API	request

Adding	the	if	statement	for	callback	errors

Adding	if	else	statement	to	check	body	status	property

Testing	the	body	status	property

Abstracting	callbacks

Refactoring	app.js	and	code	into	geocode.js	file

Working	on	request	statement

Creating	geocode	file

Adding	callback	function	to	geocodeAddress

Setting	up	the	function	in	geocodeAddress	function	in	app.js

Implementing	the	callback	function	in	geocode.js	file

Testing	the	callback	function	in	geocode.js	file

Wiring	up	weather	search

Exploring	working	of	API	in	the	browser

Exploring	the	actual	URL	for	code

Making	a	request	for	the	weather	app	using	the	static	URL

Error	handling	in	the	the	callback	function

Another	way	of	error	handling

Testing	the	error	handling	in	callback

Chaining	callbacks	together

Refactoring	our	request	call	in	weather.js	file

Defining	the	new	function	getWeather	in	weather	file

Providing	weather	directory	in	app.js

Passing	the	arguments	in	the	getWeather	function

Printing	errorMessage	in	the	getWeather	function

Implementing	getWeather	callback	inside	weather.js	file

Adding	dynamic	latitude	and	longitude

Changing	console.log	calls	into	callback	calls

Chaining	the	geocodeAddress	and	getWeather	callbacks	together

Moving	getWeather	call	into	geocodeAddress	function

Replacing	static	coordinates	with	dynamic	coordinates

Testing	the	chaining	of	callbacks

Summary

7.	 Promises	in	Asynchronous	Programming
Introduction	to	ES6	promises

Creating	an	example	promise

Calling	the	promise	method	then

Running	the	promise	example	in	Terminal

Error	handling	in	promises

Merits	of	promises

Advanced	promises

Providing	input	to	promises

Returning	the	promises

Promise	chaining

Error	handling	in	promises	chaining

The	catch	method

The	request	library	in	promises

Testing	the	request	library

Weather	app	with	promises

Fetching	weather	app	code	from	the	app.js	file

Axios	documentations

Installing	axios

Making	calls	in	the	app-promise	file

Making	axios	request

Error	handling	in	axios	request

Error	handling	with	ZERO_RESULT	body	status

Generating	the	weather	URL

Chaining	the	promise	calls

Summary

8.	 Web	Servers	in	Node
Introducing	Express

Configuring	Express

Express	docs	website

Installing	Express

Creating	an	app

Exploring	the	developer	tools	in	the	browser	for	the	app	request

Passing	HTML	to	res.send

Sending	JSON	data	back

Error	handling	in	the	JSON	request

The	static	server

Making	an	HTML	page

The	head	tag

The	body	tag

Serving	the	HTML	page	in	the	Express	app

The	call	to	app.listen

Rendering	templates

Installing	the	hbs	module

Configuring	handlebars

Our	first	template

Getting	the	static	page	for	rendering

Injecting	data	inside	of	templates

Rendering	the	template	for	the	root	of	the	website

Advanced	templates

Adding	partials

Working	of	partial

The	Header	partial

The	Handlebars	helper

Arguments	in	Helper

Express	Middleware

Exploring	middleware

Creating	a	logger

Printing	message	to	file

The	maintenance	middleware	without	the	next	object

Testing	the	maintenance	middleware

Summary

9.	 Deploying	Applications	to	Web
Adding	version	control

Installing	Git

Git	on	macOS

Git	on	Windows

Testing	the	installation

Turning	the	node-web-server	directory	into	a	Git	repository

Using	Git

Adding	untracked	files	to	commit

Making	a	commit

Setting	up	GitHub	and	SSH	keys

Setting	up	SSH	keys

SSH	keys	documentations

Working	on	commands

Generating	a	key

Starting	up	the	SSH	agent

Configuring	GitHub

Testing	the	configuration

Creating	a	new	repository

Setting	up	the	repository

Deploying	the	node	app	to	the	Web

Installing	Heroku	command-line	tools

Log	in	to	Heroku	account	locally

Getting	SSH	key	to	Heroku

Setting	up	in	the	application	code	for	Heroku

Changes	in	the	server.js	file

Changes	in	the	package.json	file

Making	a	commit	in	Heroku

Running	the	Heroku	create	command

Summary

10.	 Testing	the	Node	Applications	–	Part	1
Basic	testing

Installing	the	testing	module

Testing	a	Node	project

Mocha	–	the	testing	framework

Creating	a	test	file	for	the	add	function

Creating	the	if	condition	for	the	test

Testing	the	squaring	a	number	function

Autorestarting	the	tests

Using	assertion	libraries	in	testing	Node	modules

Exploring	assertion	libraries

Chaining	multiple	assertions

Multiple	assertions	for	the	square	function

Exploring	usage	of	expect	with	bogus	test

Using	toBe	and	toNotBe	to	compare	array/objects

Using	the	toEqual	and	toNotEqual	assertions

Using	toInclude	and	toExclude

Testing	the	setName	method

The	asynchronous	testing

Creating	the	asyncAdd	function	using	the	setTimeout	object

Writing	the	test	for	the	asyncAdd	function

Making	assertion	for	the	asyncAdd	function

Adding	the	done	argument

The	asynchronous	testing	for	the	square	function

Creating	the	async	square	function

Writing	test	for	asyncSquare

Making	assertions	for	the	asyncSquare	function

Summary

11.	 Testing	the	Node	Applications	–	Part	2
Testing	the	Express	application

Setting	up	testing	for	the	Express	app

Testing	the	Express	app	using	SuperTest

The	SuperTest	documentation

Creating	a	test	for	the	Express	app

Writing	the	test	for	the	Express	app

Testing	our	first	API	request

Setting	up	custom	status

Adding	flexibility	to	SuperTest

Creating	an	express	route

Writing	the	test	for	the	express	route

Organizing	test	with	describe()

Adding	describe()	for	individual	methods

Adding	the	route	describe	block	for	the	server.test.js	file

Test	spies

Creating	a	test	file	for	spies

Creating	a	spy

Setting	up	spies	assertions

More	details	out	of	spy	assertion

Swapping	of	the	function	with	spy

Installing	and	setting	up	the	rewire	function

Replacing	db	with	the	spy

Writing	a	test	to	verify	swapping	of	the	function

Summary

Conclusion

Another	Book	You	May	Enjoy

Leave	a	review	-	let	other	readers	know	what	you	think

Preface
Welcome	to	Learning	Node.js	Development.	This	book	 is	packed	with	a	 ton	of
content,	projects,	challenges	and	real-world	examples,	all	designed	to	teach	you
Node	 by	 doing.	 This	means	 you'll	 be	 getting	 your	 hands	 dirty	 early	 on	 in	 the
upcoming	 chapters	 writing	 some	 code,	 and	 you'll	 be	 writing	 code	 for	 every
project.	 You	 will	 be	 writing	 every	 line	 of	 code	 that	 powers	 our	 applications.
Now,	we	would	require	a	text	editor	for	 this	book.	We	have	various	text	editor
options	that	you	can	use.	I	always	recommend	using	Atom,	which	you	can	find
at	 atom.io.	 It's	 free,	 open-source,	 and	 it's	 available	 for	 all	 operating	 systems,
namely	Linux,	macOS,	and	Windows.	It's	created	by	the	folks	behind	GitHub.

All	the	projects	in	the	book	are	fun	to	build	and	they	were	designed	to	teach	you
everything	 required	 to	 launch	 your	 own	 Node	 app,	 from	 planning	 to
development	and	testing	to	deploying.	Now,	as	you	launch	these	different	Node
applications	and	move	through	the	book,	you	will	run	into	errors,	which	is	bound
to	happen.	Maybe	something	doesn't	get	installed	as	expected,	or	maybe	you	try
to	run	an	app	and	 instead	of	getting	 the	expected	output,	you	get	a	 really	 long
obscure	error	message.	Don't	worry,	 I	 am	 there	 to	help.	 I'll	 show	you	 tips	 and
tricks	to	get	pass	through	those	errors	in	the	chapters.	Let's	go	ahead	and	get	to
it.

http://atom.io

Who	this	book	is	for
This	book	targets	anyone	looking	to	launch	their	own	Node	applications,	switch
careers,	or	freelance	as	a	Node	developer.	You	should	have	a	basic	understanding
of	JavaScript	in	order	to	follow	this	book.

What	this	book	covers
Chapter	1,	Getting	Set	Up,	talks	about	what	Node	is	and	why	you	want	to	use	it.	In
this	chapter,	you'll	learn	Node	installation	and	by	the	end	of	the	chapter,	you'll	be
able	to	run	your	first	Node	application.

Chapter	2,	Node	Fundamentals	 -	Part	1,	 talks	about	building	Node	applications.
The	Node	Fundamentals	topic	has	been	divided	into	3	parts.	Part	1	of	this	topic
includes	module	basics,	requiring	own	files,	and	third-party	NPM	modules.	

Chapter	3,	Node	Fundamentals	-	Part	2,	continues	our	discussion	on	some	more
Node	 fundamentals.	This	 chapter	 explores	yargs,	 JSON,	 the	 addNote	 function,
and	 refactor,	 moving	 functionality	 into	 individual	 	 functions	 and	 testing	 the
functionality.	

Chapter	4,	Node	Fundamentals	 -	Part	 3,	 includes	 things	 such	 as	 read	 and	write
from	 the	 file	 system.	We'll	 look	 into	 advanced	 yargs	 configuration,	 debugging
broken	apps,	and	some	new	ES6	functions.

Chapter	 5,	 Basics	 of	 Asynchronous	 Programming	 in	 Node.js,	 covers	 basic
concepts,	 terms,	and	 technologies	 related	 to	 the	async	programming,	making	 it
super-practical	and	using	it	in	our	weather	application.	

Chapter	6,	Callbacks	in	Asynchronous	Programming,	 is	 the	second	part	of	async
programming	 in	 Node.	 We'll	 look	 into	 callbacks,	 HTTPS	 requests,	 and	 error
handling	inside	of	our	callback	functions.	We'll	also	 look	into	 the	forecast	API
and	fetching	real-time	weather	data	for	our	address.

Chapter	7,	Promises	 in	Asynchronous	Programming,	 is	 the	 third	 and	 last	 part	 of
async	programming	 in	Node.	This	chapter	 focuses	on	Promises,	how	it	works,
why	they	are	useful,	and	so	on.	At	the	end	of	this	chapter,	we'll	use	Promises	in
our	weather	app.

Chapter	 8,	Web	 Servers	 in	 Node,	 talks	 about	 Node	 web	 servers	 and	 integrating
version	control	into	Node	applications.	We'll	also	introduce	a	framework	called
Express,	one	of	the	most	important	NPM	libraries.	

Chapter	9,	Deploying	Applications	to	Web,	talks	about	deploying	the	applications
to	the	Web.	We'll	be	using	Git,	GitHub,	and	deploy	our	live	app	to	the	Web	using
these	two	services.	

Chapter	10,	Testing	the	Node	Applications-	Part	1,	talks	about	how	we	can	test	our
code	to	make	sure	it	is	working	as	expected.	We'll	work	on	setting	up	for	testing
and	then	writing	our	test	cases.	We'll	look	into	the	basic	testing	framework	and
asynchronous	testing.	

Chapter	11,	Testing	the	Node	Application	-	Part	2,	continues	our	journey	of	testing
Node	applications.	In	this	chapter,	we'll	work	on	testing	the	Express	applications
and	look	into	some	advanced	methods	of	testing.

To	get	the	most	out	of	this	book
A	 web	 browser,	 we'll	 be	 using	 Chrome	 throughout	 the	 course	 book	 but	 any
browser	will	do,	and	Terminal,	sometimes	known	as	the	command	line	on	Linux
or	the	Command	Prompt	on	Windows.	Atom	as	the	text	editor.	The	following	list
of	modules	will	be	used	throughout	the	course	of	this	book:

lodash
nodemon
yargs
request
axios
express
hbs
heroku
rewire

Download	the	example	code	files
You	can	download	the	example	code	files	for	this	book	from	your	account	at	www.
packtpub.com.	If	you	purchased	this	book	elsewhere,	you	can	visit	www.packtpub.com/su
pport	and	register	to	have	the	files	emailed	directly	to	you.

You	can	download	the	code	files	by	following	these	steps:

1.	 Log	in	or	register	at	www.packtpub.com.
2.	 Select	the	SUPPORT	tab.
3.	 Click	on	Code	Downloads	&	Errata.
4.	 Enter	 the	 name	 of	 the	 book	 in	 the	 Search	 box	 and	 follow	 the	 onscreen

instructions.

Once	 the	 file	 is	 downloaded,	 please	 make	 sure	 that	 you	 unzip	 or	 extract	 the
folder	using	the	latest	version	of:

WinRAR/7-Zip	for	Windows
Zipeg/iZip/UnRarX	for	Mac
7-Zip/PeaZip	for	Linux

The	code	bundle	for	the	book	is	also	hosted	on	GitHub	at	https://github.com/PacktPu
blishing/Learning-Node.js-Development.	We	also	have	other	code	bundles	from	our	rich
catalog	of	books	and	videos	available	at	https://github.com/PacktPublishing/.	Check
them	out!

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/PacktPublishing/Learning-Node.js-Development
https://github.com/PacktPublishing/

Conventions	used
There	are	a	number	of	text	conventions	used	throughout	this	book.

CodeInText:	 Indicates	 code	 words	 in	 text,	 database	 table	 names,	 folder	 names,
filenames,	 file	 extensions,	 pathnames,	 dummy	 URLs,	 user	 input,	 and	 Twitter
handles.	Here	is	an	example:	"Mount	the	downloaded	WebStorm-10*.dmg	disk	image
file	as	another	disk	in	your	system."

A	block	of	code	is	set	as	follows:

console.log('Starting	app.js');

const	fs	=	require('fs');

const	_	=	require('lodash');

const	yargs	=	require('yargs');

When	we	wish	 to	draw	your	attention	 to	a	particular	part	of	 a	code	block,	 the
relevant	lines	or	items	are	set	in	bold:

const	argv	=	yargs.argv;

var	command	=	process.argv[2];

console.log('Command:',	command);

console.log('Process',	process.argv);

console.log('Yargs',	argv);

Any	command-line	input	or	output	is	written	as	follows:

cd	hello-world

node	app.js

Bold:	Indicates	a	new	term,	an	important	word,	or	words	that	you	see	onscreen.
For	example,	words	in	menus	or	dialog	boxes	appear	in	the	text	like	this.	Here	is
an	example:	"Select	System	info	from	the	Administration	panel."

Warnings	or	important	notes	appear	like	this.

Tips	and	tricks	appear	like	this.

Get	in	touch
Feedback	from	our	readers	is	always	welcome.

General	 feedback:	Email	feedback@packtpub.com	and	mention	 the	book	 title	 in	 the
subject	of	your	message.	 If	 you	have	questions	 about	 any	aspect	of	 this	book,
please	email	us	at	questions@packtpub.com.

Errata:	 Although	 we	 have	 taken	 every	 care	 to	 ensure	 the	 accuracy	 of	 our
content,	mistakes	do	happen.	If	you	have	found	a	mistake	in	this	book,	we	would
be	grateful	if	you	would	report	this	to	us.	Please	visit	www.packtpub.com/submit-errata,
selecting	your	book,	clicking	on	the	Errata	Submission	Form	link,	and	entering
the	details.

Piracy:	 If	you	come	across	any	illegal	copies	of	our	works	in	any	form	on	the
Internet,	we	would	be	grateful	if	you	would	provide	us	with	the	location	address
or	 website	 name.	 Please	 contact	 us	 at	 copyright@packtpub.com	 with	 a	 link	 to	 the
material.

If	you	are	interested	in	becoming	an	author:	If	there	is	a	topic	that	you	have
expertise	 in	 and	you	 are	 interested	 in	 either	writing	 or	 contributing	 to	 a	 book,
please	visit	authors.packtpub.com.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com/

Reviews
Please	leave	a	review.	Once	you	have	read	and	used	this	book,	why	not	leave	a
review	on	the	site	that	you	purchased	it	from?	Potential	readers	can	then	see	and
use	 your	 unbiased	 opinion	 to	 make	 purchase	 decisions,	 we	 at	 Packt	 can
understand	 what	 you	 think	 about	 our	 products,	 and	 our	 authors	 can	 see	 your
feedback	on	their	book.	Thank	you!

For	more	information	about	Packt,	please	visit	packtpub.com.

https://www.packtpub.com/

Getting	Set	Up
In	this	chapter,	you'll	get	your	local	environment	set	up	for	the	rest	of	the	book.
Whether	you're	on	macOS,	Linux,	or	Windows,	we'll	 install	Node	and	 look	at
exactly	how	we	can	run	Node	applications.

We'll	talk	about	what	Node	is,	why	you	would	ever	want	to	use	it,	and	why	you
would	want	to	use	Node	as	opposed	to	something	like	Rails,	C++,	Java,	or	any
other	language	that	can	accomplish	similar	tasks.	By	the	end	of	this	chapter,	you
will	be	running	your	very	first	Node	application.	It's	going	to	be	simple,	but	it	is
going	to	get	us	to	the	path	to	creating	real-world	production	Node	apps,	which	is
the	goal	of	this	book.

More	specifically,	we'll	cover	the	following	topics:

Node.js	installation
What	Node	is
Why	use	Node
Atom
Hello	World

Node.js	installation
Before	we	start	talking	about	what	Node	is	and	why	it's	useful,	you	need	to	first
install	Node	on	your	machine,	because	in	the	next	couple	of	sections,	we'll	want
to	run	a	little	bit	of	Node	code.

Now,	to	get	started,	we	just	need	two	programs—a	browser,	I'll	be	using	Chrome
throughout	the	book,	but	any	browser	will	do,	and	Terminal.	I'll	use	Spotlight	to
open	up	Terminal,	which	is	what	it's	known	as	on	my	operating	system.

If	you're	on	Windows,	look	for	the	Command	Prompt,	you	can	search	using	the
Windows	key	and	then	by	typing	command	prompt,	and	on	Linux,	you're	looking	for
the	 command	 line,	 although	 depending	 on	 your	 distribution	 it	might	 be	 called
Terminal	or	Command	Prompt.

Now,	 once	 you	 have	 that	 program	 open,	 you'll	 see	 a	 screen,	 as	 shown	 in	 the
following	screenshot:

Essentially,	 it's	 waiting	 for	 you	 to	 run	 a	 command.	 We'll	 run	 quite	 a	 few
commands	 from	Terminal	 throughout	 the	book.	 I'll	discuss	 it	 in	 a	 few	sections
later,	so	if	you've	never	used	this	before,	you	can	start	navigating	comfortably.

Node.js	version	confirmation
In	the	browser,	we	can	head	over	to	nodejs.org	to	grab	the	installer	for	the	latest
version	of	Node(as	shown	here).	In	this	book,	we'll	use	the	most	recent	version,
version	9.3.0:

It	 is	 important	 that	you	 install	a	V8	version	of	Node.js.	 It	doesn't
have	 to	be	4.0,	 it	 could	be	1.0,	 but	 it	 is	 important	 it's	 on	 that	V8
branch,	because	there	is	a	ton	of	new	features	that	come	along	with
V8,	including	all	of	the	features	you	might	have	come	to	love	in	the
browser	using	ES6.

ES6	 is	 the	 next	 version	 of	 JavaScript	 and	 it	 comes	 with	 a	 lot	 of	 great
enhancements	we'll	be	using	 throughout	 the	book.	 If	you	 look	at	 the	following
image,	 Node.js	 Long	 Term	 Support	 Release	 Schedule
(https://github.com/nodejs/LTS),	you	can	see	that	the	current	Node	version	is	V8,	out
in	April	2017:

http://nodejs.org
https://github.com/nodejs/LTS

Before	going	further,	I	would	like	to	talk	about	the	Node	release	cycle.	What	I
have	in	the	preceding	image	is	the	official	release	cycle,	this	is	released	by	Node.
You'll	notice	 that	 only	 next	 to	 the	 even	Node	 numbers	 do	 you	 find	 the	 active
LTS,	 the	 blue	 bar,	 and	 the	 maintenance	 bar.	 Now,	 LTS	 stands	 for	 long-term
support,	 and	 this	 is	 the	 version	 that's	 recommended	 for	 most	 users.	 I'd
recommend	that	you	stick	with	 the	currently	offered	LTS	option	(Node	v	8.9.4
LTS),	 though	 anything	 on	 the	 left-hand	 side	will	 do,	 this	 is	 shown	 as	 the	 two
green	buttons	on	nodejs.org.

Now,	 as	 you	 can	 see,	 the	 major	 version	 numbers,	 bump	 every	 six	 months.
Regardless	of	any	sort	of	big	overarching	change,	 this	happens	 like	clockwork
even	 if	nothing	drastic	has	 changed.	 It's	not	 like	Angular	where	 jumping	 from
1.0	to	2.0	was	almost	like	using	a	completely	different	library.	This	is	just	not	the
case	 with	 Node,	 what	 you're	 getting	 from	 this	 book	 is	 the	 latest	 and	 greatest
Node	has	to	offer.

http://nodejs.org

Installing	Node
Once	 the	 version	 is	 confirmed	 and	 selected,	 all	 we	 have	 to	 do	 is	 to	 click	 the
required	 version	 button	 on	 the	 Node	 website	 (nodejs.org)	 and	 download	 the
installer.	 The	 installer	 is	 one	 of	 those	 basic	 click	Next	 a	 few	 times	 and	 you're
done	type	of	installers,	there's	no	need	to	run	any	fancy	commands.	I'll	start	the
installer.	As	shown	in	the	following	screenshot,	it'll	just	ask	a	few	questions,	then
let's	click	on	Next	or	Continue	through	all	of	them:

You	might	want	to	specify	a	custom	destination,	but	if	you	don't	know	what	that
means,	and	you	don't	usually	do	it	when	installing	programs,	skip	that	step	too.
Here,	 in	 the	 next	 screenshot,	 you	 can	 see	 that	 I'm	 using	 just	 58.6	 MB,	 no
problem.

I'll	run	the	installer	by	entering	my	password.	And	once	I	enter	my	password,	it
should	really	only	take	a	couple	of	seconds	to	get	Node	installed:

http://nodejs.org

As	 shown	 in	 the	 following	 screenshot,	 we	 have	 a	 message	 that	 says	 The
installation	was	completed	successfully,	which	means	we	are	good	to	go:

Verifying	installation
Now	that	Node	has	been	installed	successfully,	we	can	go	ahead	and	verify	that
by	running	Node	from	Terminal.	 Inside	Terminal,	 I'll	 shut	 it	down	by	going	 to
Quit	Terminal	and	open	it	up	again:

The	 reason	 I'm	 opening	 it	 up	 is	 because	 we've	 installed	 a	 new
command,	and	some	Terminals	require	a	restart	before	they	will	be
able	to	run	that	new	command.

In	 our	 case,	we	 restarted	 things	 and	we	 can	 run	 our	 brand	 new	 command	 so,
we'll	type	it:

node	-v

What	we're	 doing	 in	 this	 command	 is	 we're	 running	 the	Node	 command,	 and
we're	passing	in	what's	called	a	flag,	a	hyphen	sign	followed	by	a	letter.	It	could
be	a,	 it	could	be	j,	or	in	our	case	it's	v.	This	command	will	print	 the	version	of

Node	currently	installed.

We	might	get	an	error	like	this:

If	 you	 try	 to	 run	 a	 command	 that	 doesn't	 exist,	 such	 as	 nodeasdf,	 you'll	 see
command	not	 found.	 If	you	 see	 this,	 it	usually	means	 the	Node	 installer	didn't
work	correctly,	or	you	haven't	run	it	in	the	first	place.

In	our	case	 though,	running	Node	with	 the	v	 flag	should	result	 in	a	number.	 In
our	case,	it's	version	9.3.0.	If	you	do	have	Node	installed,	and	you	see	something
like	the	following	screenshot,	 then	you	are	done.	In	the	next	section,	we'll	start
exploring	exactly	what	Node	is.

What	is	Node?
Node	came	about	when	the	original	developers	took	JavaScript,	something	you
could	usually	only	run	inside	the	browser,	and	they	let	it	run	on	your	machine	as
a	 standalone	 process.	 This	 means	 that	 we	 could	 create	 applications	 using
JavaScript	outside	the	context	of	the	browser.

Now,	 JavaScript	 previously	 had	 a	 limited	 feature	 set.	 When	 I	 used	 it	 in	 the
browser,	I	could	do	things	such	as	update	the	URL	and	remove	the	Node	logo,
adding	click	events	or	anything	else,	but	I	couldn't	really	do	much	more.

With	Node,	we	 now	 have	 a	 feature	 set	 that	 looks	much	more	 similar	 to	 other
languages,	such	as	Java,	Python,	or	PHP.	Some	of	these	are	as	follows:

We	can	write	Node	applications	using	the	JavaScript	syntax
You	can	manipulate	your	filesystem,	creating	and	removing	folders
You	can	create	query	databases	directly
You	can	even	create	web	servers	using	Node

These	were	 things	 that	were	 not	 possible	 in	 the	 past,	 and	 they	 are	 because	 of
Node.

Now,	both	Node	 and	 the	 JavaScript	 that	 gets	 executed	 inside	of	your	browser,
they're	 both	 running	 on	 the	 exact	 same	 engine.	 It's	 called	 the	 V8	 JavaScript
runtime	 engine.	 It's	 an	 open	 source	 engine	 that	 takes	 JavaScript	 code	 and
compiles	it	into	much	faster	machine	code.	And	that's	a	big	part	of	what	makes
Node.js	so	fast.

Machine	 code	 is	 low-level	 code	 that	 your	 computer	 can	 run	 directly	 without
needing	 to	 interpret	 it.	Your	machine	 only	 knows	 how	 to	 run	 certain	 types	 of
code,	for	example,	your	machine	can't	run	JavaScript	code	or	PHP	code	directly
without	first	converting	it	into	low-level	code.

Using	 this	 V8	 engine,	 we	 can	 take	 our	 JavaScript	 code,	 compile	 it	 to	 much
quicker	machine	 code,	 and	 execute	 that.	 This	 is	 where	 all	 those	 new	 features
come	in.	The	V8	engine	is	written	in	a	language	called	C++.	So	if	you	want	to

extend	the	Node	language,	you	don't	write	Node	code,	you	write	C++	code	that
builds	off	of	what	V8	already	has	in	place.

Now,	we'll	not	be	writing	any	C++	code	in	this	book.	This	book	is
not	 about	 adding	 onto	Node,	 it	 is	 about	 using	Node.	 So,	 we	will
only	be	writing	JavaScript	code.

Speaking	 of	 JavaScript	 code,	 let's	 start	 writing	 some	 inside	 Terminal.	 Now,
throughout	the	book,	we'll	be	creating	files	and	executing	those	files,	but	we	can
actually	create	a	brand	new	Node	process	by	running	the	node	command.

Referring	to	the	following	screenshot,	I	have	a	little	right	caret,	which	is	waiting
for	JavaScript	Node	code,	not	a	new	command-prompt	command:

This	 means	 that	 I	 can	 run	 something	 like	 console.log,	 which,	 as	 you	 probably
already	 know,	 logs	 a	message	 to	 the	 screen.	 log	 is	 a	 function,	 so	 I'll	 call	 it	 as
such,	 opening	 and	 closing	my	 parentheses,	 and	 passing	 in	 a	 string	 inside	 two
single	quotes,	a	message	Hello	world!,	as	shown	in	the	following	command	line:

console.log('Hello	world!');

This	will	print	Hello	world	to	the	screen.	If	I	hit	enter,	Hello	world!	prints	 just
like	you'd	expect,	as	shown	in	the	following	code	output:

Now,	what	actually	happened	behind	the	scenes?	Well,	this	is	what	Node	does.	It
takes	your	JavaScript	code,	it	compiles	it	into	machine	code,	and	executes	it.	In
the	preceding	code,	you	can	see	it	executed	our	code,	printing	out	Hello	world!.
Now,	 the	 V8	 engine	 is	 running	 behind	 the	 scenes	 when	 we	 execute	 this
command,	and	it's	also	running	inside	the	Chrome	browser.

If	I	open	up	the	developer	tools	in	Chrome	by	going	to	Settings	|	More	Tools	 |
Developer	Tools:

I	can	ignore	most	of	the	things.	I'm	just	looking	for	the	Console	tab,	as	shown	in
the	following	screenshot:

The	preceding	screenshot	showing	the	console	is	a	place	where	we	can	run	some
JavaScript	code.	I	can	type	the	exact	same	command,	console.log('Hello	world!');
and	run	it:

As	you	can	 see	 in	 the	preceding	 screenshot,	Hello	world!	 prints	 to	 the	 screen,
which	is	the	exact	same	result	we	got	when	we	ran	it	up	earlier	using	Terminal.
In	 both	 cases,	 we're	 running	 it	 through	 the	 V8	 engine,	 and	 in	 both	 cases	 the
output	is	the	same.

Now,	 we	 already	 know	 that	 the	 two	 are	 different.	 Node	 has	 features	 such	 as
filesystem	 manipulation,	 and	 the	 browser	 has	 features	 such	 as	 manipulating
what's	 shown	 inside	 the	 window.	 Let's	 take	 a	 quick	 moment	 to	 explore	 their
differences.

Differences	 between	 JavaScript
coding	 using	 Node	 and	 in	 the
browser
Inside	 the	 browser,	 you've	 probably	 used	 window	 if	 you've	 done	 any	 JavaScript
development:

Window	is	the	global	object,	it	stores	basically	everything	you	have	access	to.	In
the	following	screenshot,	you	can	see	things	such	as	array,	we	have	all	sorts	of
CSS	manipulation	 and	 Google	 Analytics	 keywords;	 essentially	 every	 variable
you	create	lives	inside	Window:

We	have	something	similar	inside	Node	called	global,	as	shown	here:

It's	not	called	window	because	there	is	no	browser	window	in	Node,	thus	it	is	called
global.	The	global	object	stores	a	lot	of	the	same	things	as	window.	In	the	following
screenshot,	 you	 can	 see	methods	 that	might	 be	 familiar,	 such	 as	 setTimeout	 and
setInterval:

If	we	look	at	 this	code	screenshot,	we	have	most	of	 the	 things	 that	are	defined
inside	the	window,	with	some	exceptions,	as	shown	in	the	following	screenshot:

Now,	inside	the	Chrome	browser,	I	also	have	access	to	document:

The	document	object	stores	a	reference	to	the	Document	Object	Model	(DOM)	in
the	 Node	 website.	 The	 document	 object	 shows	 exactly	 what	 I	 have	 inside	 the
browser's	viewport,	as	shown	in	the	following	screenshot:

I	 can	 make	 changes	 to	 the	 document	 to	 update	 what	 gets	 shown	 up	 on	 the
browser's	 viewport.	 Now,	 obviously	 we	 don't	 have	 this	 HTML	 document	 inside
Node,	but	we	do	have	something	similar,	which	is	called	process.	You	can	view	it
by	running	process	from	Node,	and	in	the	following	screenshot,	we	have	a	lot	of
information	about	the	specific	Node	process	that's	being	executed:

There's	 also	 methods	 available	 here	 to	 shut	 down	 the	 current	 Node	 process.
What	 I'd	 like	 you	 to	 do	 is	 run	 the	 process.exit	 command,	 passing	 in	 as	 an
argument	the	number	zero,	to	say	that	things	exited	without	error:

process.exit(0);

When	I	run	this	command,	you	can	see	I'm	now	back	at	the	command	prompt,	as
shown	in	the	following	screenshot:

I've	left	Node,	and	I'm	at	a	place	where	I	can	run	any	regular	command	prompt
command,	such	as	checking	my	Node	version.	I	can	always	get	back	into	Node
by	 running	 node,	 and	 I	 can	 leave	 it	 without	 using	 the	 process.exit	 command	 by
using	control	+	C	twice.

Now,	 I'm	 back	 at	 my	 regular	 command	 prompt.	 So,	 these	 are	 the	 notable
differences,	obviously	 inside	 the	browser	you	have	 the	viewable	 area,	window
gets	 changed	 to	 global,	 and	 a	 document	 basically	 becomes	 process.	 Now,
obviously	that's	a	generalization,	but	those	are	some	of	the	big	picture	changes.
We'll	be	exploring	all	the	minutiae	throughout	the	book.

Now,	when	someone	asks	you	what	is	Node?	You	can	say	Node's	a	JavaScript
runtime	that	uses	the	V8	engine.	When	they	ask	you	what	the	V8	engine	is,	you
can	say	the	V8	engine	is	an	open	source	JavaScript	engine	written	in	C++	that
takes	JavaScript	code	and	compiles	it	to	machine	code.	It's	used	inside	Node.js
and	it's	used	in	the	Chrome	browser.

Why	use	Node
In	this	section,	we'll	cover	the	why	behind	Node.js.	Why	is	it	so	good	at	creating
backend	 apps?	 And	 why	 is	 it	 becoming	 so	 popular	 with	 companies	 such	 as
Netflix,	Uber	and	Walmart,	who	are	all	using	Node.js	in	production?

As	you	might	have	noticed	since	you're	taking	this	course,	when	people	want	to
learn	a	 new	 backend	 language,	more	 and	more	 they're	 turning	 to	Node	 as	 the
language	 they	 want	 to	 learn.	 The	 Node	 skillset	 is	 in	 hot	 demand,	 for	 both
frontend	 developers	 who	 need	 to	 use	 Node	 day	 to	 day	 to	 do	 things	 such	 as
compile	 their	 applications,	 to	 engineers	 who	 are	 creating	 applications	 and
utilities	 using	 Node.js.	 All	 of	 this	 has	 made	 Node	 the	 backend	 language	 of
choice.

Now,	if	we	look	at	the	homepage	of	Node,	we	have	three	sentences,	as	shown	in
the	following	screenshot:

In	the	previous	section,	we	addressed	the	first	sentence.	We	took	a	look	at	what
Node.js	is.	There's	only	three	sentences	in	the	image,	so	in	this	section,	we'll	take
a	 look	 at	 the	 second	 two	 sentences.	We'll	 read	 them	 now,	 then	 we'll	 break	 it
down,	learning	exactly	why	Node	is	so	great.

The	 first	 sentence,	Node.js	 uses	 an	 event-driven,	 non-blocking	 I/O	model	 that

makes	 it	 lightweight	 and	 efficient;	 we'll	 explore	 all	 of	 this	 now.	 The	 second
sentence	we'll	explore	at	 the	end	of	 the	section—Node.js'	packaged	ecosystem,
npm,	is	the	largest	ecosystem	of	open	source	libraries	in	the	world.	Now,	 these
two	sentences	have	a	ton	of	information	packed	into	them.

We'll	go	over	a	few	code	examples,	we'll	dive	into	some	charts	and	graphs,	and
we'll	explore	what	makes	Node	different	and	what	makes	it	so	great.

Node	 is	 an	 event-driven,	 non-blocking	 language.	 Now,	 what	 is	 I/O?	 I/O	 is
something	 that	 your	 application	 does	 all	 of	 the	 time.	When	 you're	 reading	 or
writing	to	a	database,	that	is	I/O,	which	is	short	form	for	input/output.

This	is	the	communication	from	your	Node	application	to	other	things	inside	of
the	Internet	of	Things.	This	could	be	a	database	read	and	write	request,	you	may
be	 changing	 some	 files	 on	 your	 filesystem,	 or	 you	may	 be	making	 an	 HTTP
request	to	a	separate	web	server,	such	as	a	Google	API	for	fetching	a	map	for	the
user's	current	location.	All	of	these	use	I/O,	and	I/O	takes	time.

Now,	 the	non-blocking	I/O	 is	great.	That	means	while	one	user	 is	 requesting	a
URL	from	Google,	other	users	can	be	requesting	a	database	file	read	and	write
access,	they	can	be	requesting	all	sorts	of	things	without	preventing	anyone	else
from	getting	some	work	done.

Blocking	 and	 non-blocking
software	development
Let's	 go	 ahead	 and	 take	 a	 look	 at	 the	 differences	 between	 blocking	 and	 non
blocking	software	development:

In	the	preceding	screenshot,	I	have	two	files	that	we'll	be	executing.	But	before
going	to	that,	first	let's	explore	how	each	of	these	files	operates,	the	steps	that	are
required	in	order	to	finish	the	program.

This	will	help	us	understand	the	big	differences	between	blocking,	which	I	have
on	the	left	side	of	the	image,	which	is	not	what	Node	uses,	and	non-blocking	is
on	the	right	side,	which	is	exactly	how	all	of	our	Node	applications	in	the	book

are	going	to	operate.

You	don't	have	 to	understand	 the	 individual	details,	 such	as	what	 require	 is,	 in
order	 to	 understand	 what's	 going	 on	 in	 this	 code	 example.	 We'll	 be	 breaking
things	down	in	a	very	general	sense.	The	first	 line	on	each	code	 is	 responsible
for	fetching	a	function	that	gets	called.	This	function	will	be	our	simulated	I/O
function	that	is	going	to	a	database,	fetching	some	user	data	and	printing	it	to	the
screen.

Refer	to	the	preceding	code	image.	After	we	load	in	the	function,	both	files	try	to
fetch	a	user	with	an	ID	of	123.	When	it	gets	that	user,	it	prints	it	to	the	screen	with
the	user1	string	first,	and	then	it	goes	on	and	it	fetches	the	user	with	321	as	the	ID.
And	it	prints	 that	 to	 the	screen.	And	finally	both	files	add	up	1	+	2,	 storing	 the
result,	which	is	3,	in	the	sum	variable	and	print	it	to	the	screen.

Now,	while	 they	all	do	 the	same	 thing,	 they	do	 it	 in	very	different	ways.	Let's
break	down	the	individual	steps.	In	the	following	code	image,	we'll	go	over	what
Node	executes	and	how	long	it	takes:

You	can	consider	the	seconds	shown	in	the	preceding	screenshot;	it	doesn't	really
matter,	it's	just	to	show	the	relative	operating	speed	between	the	two	files.

The	working	of	blocking	I/O
The	blocking	example	can	be	illustrated	as	follows:

The	 first	 thing	 that	 happens	 inside	 our	 blocking	 example,	 as	 shown	 in	 the
preceding	screenshot,	is	that	we	fetch	the	user	on	line	3	in	the	code:

var	user1	=	getUserSync('123');

Now,	 this	 request	 requires	us	 to	go	 to	a	database,	which	 is	an	 I/O	operation	 to

fetch	that	user	by	ID.	This	takes	a	little	bit	of	time.	In	our	case,	we'll	say	it	takes
three	seconds.

Next,	on	line	4	in	the	code,	we	print	the	user	to	the	screen,	which	is	not	an	I/O
operation	 and	 it	 runs	 right	 away,	 printing	 user1	 to	 the	 screen,	 as	 shown	 in	 the
following	code:

console.log('user1',	user1);	

As	you	can	see	in	the	following	screenshot,	it	takes	almost	no	time	at	all:

Next	up,	we	wait	on	the	fetching	of	user2:

var	user2	=	getUserSync('321');

When	user2	comes	back,	as	you	might	expect,	we	print	it	to	the	screen,	which	is
exactly	what	happens	on	line	7:

console.log('user2',	user2);

Finally,	we	add	up	our	numbers	and	we	print	it	to	the	screen:

var	sum	=	1	+	2;	

console.log('The	sum	is	'	+	sum);	

None	of	this	is	I/O,	so	right	here	we	have	our	sum	printing	to	the	screen	in	barely
any	time.

This	 is	 how	blocking	works.	 It's	 called	 blocking	 because	while	we're	 fetching
from	the	database,	which	is	an	I/O	operation,	our	application	cannot	do	anything
else.	 This	 means	 our	 machine	 sits	 around	 idle	 waiting	 for	 the	 database	 to
respond,	 and	 can't	 even	 do	 something	 simple	 like	 adding	 two	 numbers	 and
printing	them	to	the	screen.	It's	just	not	possible	in	a	blocking	system.

The	working	non-blocking	I/O
In	 our	 non-blocking	 example,	 this	 is	 how	 we'll	 be	 building	 our	 Node
applications.

Let's	break	this	code	example	down	line	by	line.	First	up,	things	start	much	the
same	 way	 as	 we	 discussed	 in	 the	 blocking	 example.	 We'll	 start	 the	 getUser
function	for	user1,	which	is	exactly	what	we	did	earlier:

But	we're	not	waiting,	we're	simply	kicking	off	that	event.	This	is	all	part	of	the
event	loop	inside	Node.js,	which	is	something	we'll	be	exploring	in	detail.

Notice	 it	 takes	 a	 little	 bit	 of	 time;	 we're	 just	 starting	 the	 request,	 we're	 not
waiting	 for	 that	 data.	 The	 next	 thing	 we	 do	 might	 surprise	 you.	 We're	 not
printing	user1	 to	 the	 screen	because	we're	 still	waiting	 for	 that	 request	 to	come
back,	instead	we	start	the	process	of	fetching	our	user2	with	the	ID	of	321:

In	this	part	of	the	code,	we're	kicking	off	another	event,	which	takes	just	a	little
bit	of	time	to	do-it	is	not	an	I/O	operation.	Now,	behind	the	scenes,	the	fetching
of	 the	 database	 is	 I/O,	 but	 starting	 the	 event,	 calling	 this	 function	 is	 not,	 so	 it
happens	really	quickly.

Next	 up,	we	 print	 the	 sum.	The	 sum	doesn't	 care	 about	 either	 of	 the	 two	user
objects.	They're	basically	unrelated,	 so	 there's	 no	need	 to	wait	 for	 the	users	 to
come	back	before	I	print	that	sum	variable,	as	shown	in	the	following	screenshot:

What	happens	after	we	print	the	sum?	Well,	we	have	the	dotted	box,	as	shown	in
the	following	screenshot:

This	box	signifies	the	simulated	time	it	takes	for	our	event	to	get	responded	to.
Now,	this	box	is	the	exact	same	width	as	the	box	in	the	first	part	of	the	blocking
example	(waiting	on	user1),	as	shown	here:

Using	non-blocking	doesn't	make	our	I/O	operations	any	faster,	but	what	it	does
do	is	it	lets	us	run	more	than	one	operation	at	the	same	time.

In	the	non-blocking	example,	we	start	two	I/O	operations	before	the	half	second
mark,	and	in	between	three	and	a	half	seconds,	both	come	back,	as	shown	in	the
following	screenshot:

Now,	the	result	here	is	 that	 the	entire	application	finishes	much	quicker.	If	you
compare	 the	 time	 taken	 in	 executing	 both	 the	 files,	 the	 non-blocking	 version
finishes	in	just	over	three	seconds,	while	the	blocking	version	takes	just	over	six
seconds.	A	difference	of	50%.	This	50%	comes	 from	the	 fact	 that	 in	blocking,
we	have	two	requests	each	taking	three	seconds,	and	in	non-blocking,	we	have
two	requests	each	taking	three	seconds,	but	they	run	at	the	same	time.

Using	the	non-blocking	model,	we	can	still	do	stuff	like	printing	the	sum	without
having	 to	 wait	 for	 our	 database	 to	 respond.	 Now,	 this	 is	 the	 big	 difference
between	the	two;	blocking,	everything	happens	in	order,	and	in	non-blocking	we
start	 events,	 attaching	 callbacks,	 and	 these	 callbacks	 get	 fired	 later.	We're	 still
printing	 out	 user1	 and	 user2,	 we're	 just	 doing	 it	 when	 the	 data	 comes	 back,

because	the	data	doesn't	come	back	right	away.

Inside	Node.js,	 the	event	 loop	attaches	a	 listener	for	 the	event	 to	finish,	 in	 this
case	 for	 that	database	 to	 respond	back.	When	 it	does,	 it	 calls	 the	callback	you
pass	in	the	non-blocking	case,	and	then	we	print	it	to	the	screen.

Now,	 imagine	 this	 was	 a	 web	 server	 instead	 of	 the	 preceding
example.	 That	 would	 mean	 if	 a	 web	 server	 comes	 in	 looking	 to
query	the	database,	we	can't	process	other	users'	requests	without
spinning	 up	 a	 separate	 thread.	 Now,	 Node.js	 is	 single	 threaded,
which	means	your	application	runs	on	one	single	thread,	but	since
we	have	non-blocking	I/O,	that's	not	a	problem.

In	a	blocking	context,	we	could	handle	two	requests	on	two	separate	threads,	but
that	doesn't	 really	 scale	well,	because	 for	 each	 request	we	have	 to	beef	up	 the
amount	of	CPU	and	RAM	resources	that	we're	using	for	the	application,	and	this
sucks	because	 those	 threads,	 are	 still	 sitting	 idle.	 Just	 because	we	 can	 spin	 up
other	 threads	 doesn't	mean	we	 should,	 we're	 wasting	 resources	 that	 are	 doing
nothing.

In	 the	 non-blocking	 case,	 instead	 of	 wasting	 resources	 by	 creating	 multiple
threads,	we're	doing	everything	on	one	thread.	When	a	request	comes	in,	the	I/O
is	non-blocking	so	we're	not	taking	up	any	more	resources	than	we	would	be	if	it
never	happened	at	all.

Blocking	 and	 non-blocking
examples	using	Terminal
Let's	run	these	examples	in	real	time	and	see	what	we	get.	And	we	have	the	two
files	(blocking	and	non-blocking	files)	that	we	saw	in	the	previous	section.

We'll	run	both	of	these	files,	and	I'm	using	the	Atom	editor	to	edit	my	text	files.
These	 are	 things	 we'll	 be	 setting	 up	 later	 in	 the	 section,	 this	 is	 just	 for	 your
viewing	purpose,	you	don't	need	to	run	these	files.

Now,	 the	 blocking	 and	 non-blocking	 files,	will	 both	 get	 run	 and	 they'll	 do	 similar
things	to	those	we	did	in	the	previous	section,	just	in	a	different	way.	Both	use
I/O	operations,	getUserSync	and	getUser,	that	take	five	seconds	apiece.	The	time	is
no	 different,	 it's	 just	 the	 order	 they	 execute	 in	 that	 makes	 the	 non-blocking
version	much	quicker.

Now,	to	simulate	and	show	how	things	work,	I'll	add	a	few	console.log	statements
as	 shown	 in	 the	 following	 code	 example,	 console.log('starting	 user1'),
console.log('starting	user2').

This	 will	 let	 us	 visualize	 how	 things	 work	 inside	 Terminal.	 By	 running	 node
blocking.js,	this	is	how	we	run	files.	We	type	node	and	we	specify	the	filename,	as
shown	in	the	following	code:

	node	blocking.js	

When	I	run	the	file,	we	get	some	output.	starting	user1	prints	 to	 the	screen	and
then	it	sits	there:

Now,	we	have	the	user1	object	printing	to	the	screen	with	the	name	Andrew,	and
starting	user2	prints	to	the	screen,	as	shown	in	the	following	code	output:

After	that,	the	user2	object	comes	back	around	five	seconds	later	with	the	name
of	Jen.

As	shown	in	the	preceding	screenshot,	our	two	users	have	printed	to	the	screen,
and	at	the	very	end	our	sum,	which	is	3,	prints	to	the	screen;	everything	works
great.

Notice	 that	starting	user1	was	 immediately	 followed	by	 the	 finishing	of	user1,
and	starting	user2	was	 immediately	followed	by	 the	finishing	of	user2	because
this	is	a	blocking	application.

Now,	we'll	run	the	non-blocking	file,	which	I've	called	non-blocking.js.	When	I	run
this	file,	starting	user1	prints,	starting	user2	prints,	then	the	sum	prints	all	back	to
back:

Around	5	seconds	later,	at	basically	the	same	time,	user1	and	user2	both	print	to
the	screen.

This	 is	 how	 non-blocking	 works.	 Just	 because	 we	 started	 an	 I/O	 operation
doesn't	mean	we	can't	do	other	things,	such	as	starting	another	one	and	printing
some	data	to	the	screen,	in	this	case	just	a	number.	This	is	the	big	difference,	and

this	is	what	makes	non-blocking	apps	so	fantastic.	They	can	do	so	many	things
at	 the	 exact	 same	 time	without	 having	 to	worry	 about	 the	 confusion	 of	multi-
threading	applications.

Let's	move	back	into	the	browser	and	take	a	look	at	those	sentences	again	in	the
Node	website:

Node.js	uses	an	event-driven,	non-blocking	I/O	model	that	makes	it	lightweight
and	efficient,	and	we	saw	that	in	action.

Because	 Node	 is	 non-blocking,	 we	 were	 able	 to	 cut	 down	 the	 time	 our
application	took	by	half.	This	non-blocking	I/O	makes	our	apps	super	quick,	this
is	where	the	lightweight	and	efficient	comes	into	play.

Node	 community	 –	 problem
solving	open	source	libraries
Now,	let's	go	to	the	last	sentence	on	the	Node	website,	as	shown	in	the	following
screenshot:

Node.js'	 package	 ecosystem,	 npm,	 is	 the	 largest	 ecosystem	 of	 open-source
libraries	 in	 the	 world.	 This	 is	 what	 really	 makes	 Node	 fantastic.	 This	 is	 the
cherry	on	top-the	community,	the	people	every	day	developing	new	libraries	that
solve	common	problems	in	your	Node.js	applications.

Things	such	as	validating	objects,	creating	servers,	and	serving	up	content	 live
using	sockets.	There's	libraries	already	built	for	all	of	those	so	you	don't	have	to
worry	about	this.	This	means	that	you	can	focus	on	the	specific	things	related	to
your	application	without	having	 to	 create	 all	 this	 infrastructure	before	you	can
even	write	real	code,	code	that	does	something	specific	to	your	apps	use	case.

Now,	npm,	which	is	available	on	npmjs.org,	is	the	site	we'll	be	turning	to	for	a	lot
of	third-party	modules:

If	you're	trying	to	solve	a	problem	in	Node	that	sounds	generic,	chances	are	that
someone's	already	solved	it.	For	example,	if	I	want	to	validate	some	objects,	let's
say	I	want	 to	validate	 that	a	name	property	exists	and	that	 there's	an	ID	with	a
length	of	three.	I	could	go	into	Google	or	go	into	npm;	I	usually	choose	Google,
and	I	could	Google	search	npm	validate	object.

When	I	google	that,	I'll	just	look	for	results	from	npmjs.com,	and	you	can	find	the

http://npmjs.org
http://npmjs.com

first	three	or	so	are	from	that:

I	can	click	the	first	one,	and	this	will	let	me	explore	the	documentation	and	see	if
it's	right	for	me:

This	one	looks	great,	so	I	can	add	it	to	my	app	without	any	effort.

Now,	we'll	go	through	this	process.	Don't	worry,	I'm	not	going	to	leave	you	high
and	dry	on	how	to	add	third-party	modules.	We'll	be	using	a	ton	of	them	in	the
book	because	this	is	what	real	Node	developers	do.	They	take	advantage	of	the
fantastic	community	of	developers,	and	that's	the	last	thing	that	makes	Node	so
great.

This	 is	 why	Node	 has	 come	 to	 the	 position	 of	 power	 that	 it	 currently	 sits	 at,
because	 it's	 non-blocking,	meaning	 it's	 great	 for	 I/O	 applications,	 and	 it	 has	 a
fantastic	community	of	developers.	So,	 if	you	ever	want	 to	get	 anything	done,
there's	a	chance	someone	already	wrote	the	code	to	do	it.

This	 is	not	 to	 say	you	should	never	use	Rails	or	Python	or	any	other	blocking
language	again,	 that	 is	not	what	 I'm	getting	at.	What	 I'm	 really	 trying	 to	show
you	 is	 the	 power	 of	 Node.js	 and	 how	 you	 can	 make	 your	 applications	 even
better.	 Languages	 like	 Python	 have	 things	 such	 as	 the	 library	 Twisted,	 which
aims	 to	add	non-blocking	features	 to	Python.	Though	 the	big	problem	is	all	of
the	third-party	libraries,	as	they	are	still	written	in	a	blocking	fashion,	so	you're
really	limited	as	to	which	libraries	you	can	use.

Since	Node	was	built	non-blocking	from	the	ground	up,	every	single	library	on	n
pmjs.com	is	non-blocking.	So	you	don't	have	to	worry	about	finding	one	that's	non
blocking	versus	blocking;	you	can	install	a	module	knowing	it	was	built	from	the
ground	up	using	a	non	blocking	ideology.

In	the	next	couple	of	sections,	you'll	be	writing	your	very	first	app	and	running	it
from	Terminal.

http://npmjs.com

Different	 text	 editors	 for	 node
applications
In	this	section,	I	want	to	give	you	a	tour	of	the	various	text	editors	you	can	use
for	 this	book.	 If	you	already	have	one	you	 love	using,	you	can	keep	using	 the
one	 you	 have.	 There's	 no	 need	 to	 switch	 editors	 to	 get	 anything	 done	 in	 this
book.

Now,	 if	 you	 don't	 have	 one	 and	 you're	 looking	 for	 a	 few	 options,	 I	 always
recommend	using	Atom,	which	you	can	find	at	atom.io.	It's	free,	open	source,	and
it's	available	on	all	operating	systems,	Linux,	macOS,	and	Windows.	It's	created
by	 the	 folks	 behind	GitHub	 and	 it's	 the	 editor	 that	 I'll	 be	 using	 inside	 of	 this
book.	There's	an	awesome	community	of	 theme	and	plug-in	developers	so	you
really	can	customize	it	to	your	liking.

Now,	aside	from	Atom	there	are	a	few	other	options.	I've	heard	a	lot	of	people
talking	about	Visual	Studio	Code.	It	is	also	open	source,	free,	and	available	on
all	operating	systems.	If	you	don't	like	Atom,	I	highly	recommend	you	check	this
out,	because	I've	heard	so	many	good	things	by	word	of	mouth.

Next	 up,	we	 always	 have	Sublime	Text,	which	 you	 can	 find	 at	 sublimetext.com.
Now,	Sublime	Text	is	not	free	and	it's	not	open	source,	but	it's	a	text	editor	that	a
lot	of	 folks	do	enjoy	using.	 I	prefer	Atom	because	 it's	very	similar	 to	Sublime
Text,	though	I	find	it	snappier	and	easier	to	use,	plus	it's	free	and	open	source.

Now,	 if	 you	 are	 looking	 for	 a	more	 premium	 editor	 with	 all	 of	 the	 bells	 and
whistles	 in	 IDE	 as	 opposed	 to	 a	 text	 editor,	 I	 always	 recommend	 JetBrains.
None	of	their	products	are	free,	though	they	do	come	with	a	30-day	free	trial,	but
they	 really	 are	 the	 best	 tools	 of	 the	 trade.	 If	 you	 find	 yourself	 in	 a	 corporate
setting	or	 you're	 at	 a	 job	where	 the	 company	 is	willing	 to	 pay	 for	 an	 editor,	 I
always	recommend	that	you	go	with	JetBrains.	All	of	their	editors	come	with	all
of	 the	 tools	you'd	expect,	 such	as	version	control	 integration,	debugging	 tools,
and	deploying	tools	built	in.

So,	take	a	moment,	download	the	one	you	want	to	use,	play	around	with	it,	make

http://atom.io
http://sublimetext.com

sure	it	fits	your	needs,	and	if	not,	try	another	one.

Hello	 World	 –	 creating	 and
running	the	first	Node	app
In	this	section,	you	will	be	creating	and	running	your	very	first	Node	app.	Well,
it	will	be	a	simple	one.	It'll	demonstrate	the	entire	process,	from	creating	files	to
running	them	from	Terminal.

Creating	the	Node	application
The	 first	 step	 will	 be	 to	 create	 a	 folder.	 Every	 project	 we	 create	 will	 go	 live
inside	of	its	own	folder.	I'll	open	up	the	Finder	on	macOS	and	navigate	 to	my
desktop.	What	 I'd	 like	you	 to	 do	 is	 open	up	 the	desktop	on	your	OS,	whether
you're	 on	 Linux,	 Windows,	 or	 macOS,	 and	 create	 a	 brand	 new	 folder	 called
hello-world.

I	 don't	 recommend	 using	 spaces	 in	 your	 project	 file	 or	 folder
names,	 as	 it	 only	 makes	 it	 more	 confusing	 to	 navigate	 inside	 of
Terminal.	Now,	we	have	 this	 hello-world	 folder	and	we	can	open	 it
up	inside	of	our	editor.

Now	I'll	 use	 command	+	O	 (Ctrl	 +	O	 for	Windows	users)	 to	 open	up,	 and	 I'll
navigate	to	the	desktop	and	double-click	my	hello-world	folder,	as	shown	here:

On	the	left	I	have	my	files,	which	are	none.	So,	let's	create	a	new	one.	I'll	make	a
new	file	in	the	root	of	the	project,	and	we'll	call	this	one	app.js,	as	shown	here:

This	will	be	the	only	file	we	have	inside	our	Node	application,	and	in	this	file	we
can	write	some	code	that	will	get	executed	when	we	start	the	app.

In	 the	 future,	we'll	 be	 doing	 crazy	 stuff	 like	 initializing	 databases	 and	 starting
web	 servers,	 but	 for	 now	 we'll	 simply	 use	 console.log,	 which	 means	 we're
accessing	the	log	property	on	the	console	object.	It's	a	function,	so	we	can	call	it
with	parentheses,	and	we'll	pass	in	one	argument	as	string,	Hello	world!.	I'll	toss	a
semicolon	on	the	end	and	save	the	file,	as	shown	in	the	following	code:

console.log('Hello	world!');

This	will	be	the	first	app	we	run.

Now,	 remember,	 there	 is	 a	 basic	 JavaScript	 requirement	 for	 this
course,	 so	 nothing	 here	 should	 look	 too	 foreign	 to	 you.	 I'll	 be

covering	 everything	 new	 and	 fresh	 inside	 of	 this	 course,	 but	 the
basics,	 creating	 variables,	 calling	 functions,	 those	 should	 be
something	you're	already	familiar	with.

Running	the	Node	application
Now	that	we	have	our	app.js	file,	the	only	thing	left	to	do	is	to	run	it,	and	we'll	do
that	over	 in	Terminal.	Now,	 to	 run	 this	program,	we	have	 to	navigate	 into	our
project	folder.	If	you're	not	familiar	with	Terminal,	I'll	give	you	a	quick	refresher.

You	can	always	figure	out	where	you	are	using	pwd	on	Linux	or	macOS,	or	the	dir
command	 on	Windows.	When	 you	 run	 it,	 you'll	 see	 something	 similar	 to	 the
following	screenshot:

I'm	in	the	Users	folder,	and	then	I'm	in	my	user	folder,	and	my	user	name	happens
to	be	Gary.

When	you	open	Terminal	or	Command	Prompt,	you'll	start	in	your
user	directory.

We	can	use	cd	to	navigate	into	the	desktop,	and	here	we	are:

Now	 we're	 sitting	 in	 the	 desktop.	 The	 other	 command	 you	 can	 run	 from
anywhere	 on	 your	 computer	 is	 cd	 /users/Gary/desktop.	 And	 this	 will	 navigate	 to
your	desktop,	no	matter	what	folder	you're	located	in.	The	command	cd	desktop,
requires	you	to	be	in	the	user	directory	to	work	correctly.

Now	we	 can	 start	 by	 cd-ing	 into	 our	 project	 directory,	which	we	 called	 hello-
world,	as	shown	in	the	following	command:

cd	hello-world

With	the	following	screenshot:

Once	we're	 in	 this	 directory,	we	 can	 run	 at	 the	 ls	 command	 on	Linux	 or	Mac
(which	is	the	dir	command	on	Windows)	to	see	all	of	our	files,	and	in	this	case
we	just	have	one,	we	have	app.js:

This	is	the	file	we'll	run.

Now,	before	you	do	anything	else,	make	sure	you	are	in	the	hello-world	folder	and
you	 should	 have	 the	 app.js	 file	 inside.	 If	 you	 do,	 all	 we'll	 do	 is	 run	 the	 node
command	followed	by	a	space	so	we	can	pass	in	an	argument,	and	that	argument
will	be	the	filename,	app.js	as	shown	here:

node	app.js

Once	you	have	this	in	place,	hit	enter	and	there	we	go,	Hello	world!	prints	to	the
screen,	as	shown	here:

And	that	is	all	it	takes	to	create	and	run	a	very	basic	Node	application.	While	our
app	doesn't	do	anything	cool,	we'll	be	using	this	process	of	creating	folders/files
and	running	them	from	Terminal	throughout	the	book,	so	it's	a	great	start	on	our
way	to	making	real-world	Node	apps.

Summary
In	this	chapter,	we	touched	base	with	the	concept	of	Node.js.	We	took	a	look	at
what	Node	is	and	we	learned	that	 it's	built	on	top	of	 the	V8	JavaScript	engine.
Then	 we	 explored	 why	 Node	 has	 become	 so	 popular,	 its	 advantages	 and	 its
disadvantages.	We	took	a	 look	at	 the	different	 text	editors	we	can	choose	from
and,	at	the	end,	you	created	your	very	first	Node	application.

In	the	next	chapter,	we'll	dive	in	and	create	our	first	app.	I	am	really	excited	to
start	writing	real-world	applications.

Node	Fundamentals	–	Part	1
In	 this	 chapter,	 you'll	 learn	 a	 ton	 about	 building	Node	 applications,	 and	 you'll
actually	build	your	first	Node	application.	This	is	where	all	the	really	fun	stuff	is
going	to	start.

We'll	kick	things	off	by	learning	about	all	of	 the	modules	 that	come	built	 in	 to
Node.	 These	 are	 objects	 and	 functions	 that	 let	 you	 do	 stuff	 with	 JavaScript
you've	 never	 been	 able	 to	 do	 before.	 We'll	 learn	 how	 to	 do	 things,	 such	 as
reading	 and	 writing	 from	 the	 filesystem,	 which	 we'll	 use	 in	 the	 Node's
application	to	persist	our	data.

We'll	also	be	looking	at	third-party	npm	modules;	this	is	a	big	part	of	the	reason
that	Node	became	so	popular.	The	npm	modules	give	you	a	great	collection	of
third-party	libraries	you	can	use,	and	they	also	have	really	common	problems.	So
you	 don't	 have	 to	 rewrite	 that	 boilerplate	 code	 over	 and	 over	 again.	We'll	 be
using	a	 third-party	module	 in	 this	chapter	 to	help	with	 fetching	 input	 from	 the
user.

The	chapter	will	specifically	cover	the	following	topics:

Module	basics
Require	own	files
Third-party	modules
Global	modules
Getting	input

Module	basics
In	 this	section,	you	will	 finally	 learn	some	Node.js	code,	and	we'll	kick	 things
off	by	talking	about	modules	inside	Node.	Modules	are	units	of	functionality,	so
imagine	 I	 create	 a	 few	 functions	 that	 do	 something	 similar,	 such	 as	 a	 few
functions	that	help	with	math	problems,	for	example,	add,	subtract,	and	divide.	I
could	bundle	those	up	as	a	module,	call	it	Andrew-math,	and	other	people	could
take	advantage	of	it.

Now,	we'll	not	be	looking	at	how	to	make	our	own	module;	in	fact,	we	will	be
looking	at	how	we	can	use	modules,	and	 that	will	be	done	using	a	 function	 in
Node,	called	require().	The	require()	function	will	let	us	do	three	things:

First,	 it'll	 let	 us	 load	 in	modules	 that	 come	 bundled	 with	 Node.js.	 These
include	 the	 HTTP	 module,	 which	 lets	 us	 make	 a	 web	 server,	 and	 the	 fs
module,	which	lets	us	access	the	filesystem	for	our	machine.

We	will	 also	 be	 using	 require()	 in	 later	 sections	 to	 load	 in	 third-
party	 libraries,	 such	 as	 Express	 and	 Sequelize,	 which	 will	 let	 us
write	less	code.

We'll	be	able	to	use	prewritten	libraries	to	handle	complex	problems,	and	all
we	need	to	do	is	implement	require()	by	calling	a	few	methods.
We	will	use	require()	to	require	our	very	own	files.	It	will	let	us	break	up	our
application	into	multiple,	smaller	files,	which	is	essential	for	building	real-
world	apps.

If	you	have	all	of	your	code	in	one	file,	 it	will	be	really	hard	to	 test,	maintain,
and	update.	Now,	require()	isn't	that	bad.	In	this	section,	we'll	explore	the	first	use
case	for	require().

Using	case	for	require()
We'll	 take	a	 look	at	 two	built-in	modules;	we'll	 figure	out	how	to	require	 them
and	how	to	use	them,	and	then	we'll	move	on	to	starting	the	process	of	building
that	Node	application.

Initialization	of	an	application
The	first	step	we'll	 take	inside	of	the	Terminal	is	 that	we'll	make	a	directory	to
store	 all	 of	 these	 files.	We'll	 navigate	 from	our	 home	 directory	 to	 the	 desktop
using	the	cd	Desktop	command:

cd	Desktop

Then,	we'll	make	a	folder	to	store	all	of	the	lesson	files	for	this	project.

Now,	these	lesson	files	will	be	available	in	the	resources	section	for
every	section,	so	if	you	get	stuck	or	your	code	just	isn't	working	for
some	 reason,	 you	 can	 download	 the	 lesson	 files,	 compare	 your
files,	and	figure	out	where	things	went	wrong.

Now,	we'll	make	that	folder	using	the	mkdir	command,	which	is	the	short	form	for
make	directory.	Let's	call	the	folder	notes-node,	as	shown	in	the	following	code:

mkdir	notes-node

We'll	make	a	note	app	in	Node	so	that	notes-node	seems	appropriate.	Then	we'll	cd
into	notes-node,	and	we	can	get	started	playing	around	with	some	of	 the	built-in
modules:

cd	notes-node

These	modules	are	built	in,	so	there's	no	need	to	install	anything	in	Terminal.	We
can	simply	require	them	right	inside	of	our	Node	files.

The	 next	 step	 in	 the	 process	 is	 to	 open	 up	 that	 directory	 inside	 the	Atom	 text
editor.	So	 open	 up	 the	 directory	we	 just	 created	 on	 the	Desktop,	 and	 you	will
find	it	there,	as	shown	in	the	following	screenshot:

Now,	we	will	need	to	make	a	file,	and	we'll	put	that	file	in	the	root	of	the	project:

We'll	call	this	file	app.js,	and	this	is	where	our	application	will	start:

We	will	 be	writing	other	 files	 that	 get	used	 throughout	 the	 app,	but	 this	 is	 the
only	file	we'll	 ever	be	 running	 from	Terminal.	This	 is	 the	 initialization	 file	 for
our	application.

The	 built-in	 module	 to	 use
require()
Now,	 to	 kick	 things	 off,	 the	 first	 thing	 I	 will	 do	 is	 to	 use	 console.log	 to	 print
Starting	app,	as	shown	in	the	following	code:

console.log('Starting	app');

The	only	reason	we'll	do	this	 is	 to	keep	track	of	how	our	 files	are
executing,	and	we'll	do	this	only	for	the	first	project.	Down	the	line,
once	 you're	 comfortable	 with	 how	 files	 get	 loaded	 and	 how	 they
run,	 we'll	 be	 able	 to	 remove	 these	 console.log	 statements,	 as	 they
won't	be	necessary.

After	we	 call	 the	 console.log	 starting	 app,	we'll	 load	 in	 a	 built-in	module	 using
require().

We	 can	 get	 a	 complete	 list	 of	 all	 of	 the	 built-in	 modules	 in	 the
Node.js	API	docs.

To	view	Node.js	API	docs,	go	to	nodejs.org/api.	When	you	go	to	this	URL,	you'll
be	greeted	with	a	 long	 list	of	built-in	modules.	Using	 the	File	System	module
we'll	 create	 a	 new	 file	 and	 the	OS	 module.	 The	 OS	module	 will	 let	 us	 fetch
things	such	as	the	username	for	the	currently	logged-in	user.

http://nodejs.org/api

Creating	 and	 appending	 files	 in
the	File	System	module
To	kick	 things	off	 though,	we	will	start	with	 the	File	System	module.	We'll	go
through	the	process	of	creating	a	file	and	appending	to	it:

When	you	view	a	docs	page	for	a	built-in	module,	whether	it's	File	System	or	a
different	 module,	 you'll	 see	 a	 long	 list	 of	 all	 the	 different	 functions	 and
properties	 that	 you	 have	 available	 to	 you.	 The	 one	we'll	 use	 in	 this	 section	 is
fs.appendFile.

If	you	click	on	it,	it	will	take	you	to	the	specific	documentation,	and	this	is	where

we	can	figure	out	how	to	use	appendFile,	as	shown	in	the	following	screenshot:

Now,	appendFile	is	pretty	simple.	We'll	pass	to	it	two	string	arguments	(shown	in
the	preceding	screenshot):

One	will	be	the	file	name
The	other	will	be	the	data	we	want	to	append	to	the	file

This	 is	all	we	need	 to	provide	 in	order	 to	call	 fs.appendFile.	Before	we	can	call
fs.appendFile,	we	need	to	require	it.	The	whole	point	of	requiring	is	to	let	us	load
in	other	modules.	In	this	case,	we'll	load	in	the	fs	module	from	app.js.

Let's	create	a	variable	that	will	be	a	constant,	using	const.

Since	we'll	 not	 be	manipulating	 the	 code	 the	module	 sends	 back,
there's	 no	 need	 to	 use	 the	 var	 keyword;	 we	 will	 use	 the	 const
keyword.

Then	 we'll	 give	 it	 a	 name,	 fs	 and	 set	 it	 equal	 to	 require(),	 as	 shown	 in	 the
following	code:

const	fs	=	require()

Here,	require()	 is	 a	 function	 that's	 available	 to	 you	 inside	 any	 of	 your	Node.js
files.	You	don't	have	to	do	anything	special	to	call	it,	you	simply	call	it	as	shown
in	the	preceding	code.	Inside	the	argument	list,	we'll	just	pass	one	string.

Now,	every	time	you	call	require(),	whether	you're	loading	a	built-in
module,	a	third-party	module,	or	your	own	file,	you	just	pass	in	one
string.

In	our	case,	we'll	pass	in	the	module	name,	which	is	fs	and	toss	in	a	semicolon	at
the	end,	as	shown	in	the	following	code:

const	fs	=	require('fs');

This	will	tell	Node	that	you	want	to	fetch	all	of	the	contents	of	the	fs	module	and
store	them	in	the	fs	variable.	At	this	point,	we	have	access	to	all	of	the	functions
available	 on	 the	 fs	 module,	 which	 we	 explored	 over	 in	 the	 docs,	 including
fs.appendFile.

Back	 in	Atom,	we	can	call	 the	appendFile	by	calling	fs.appendFile,	 passing	 in	 the
two	 arguments	 that	 we'll	 use;	 the	 first	 one	 will	 be	 the	 filename,	 so	 we	 add
greetings.txt,	and	the	second	one	will	be	the	text	you	want	to	append	to	the	file.
In	our	case,	we'll	append	Hello	world!,	as	shown	in	the	following	code:

fs.appendFile('greetings.txt',	'Hello	world!');

Let's	save	the	file,	as	shown	in	the	preceding	command,	and	run	it	from	Terminal
to	see	what	happens.

Warning	when	running	the	program	on	Node	v7
If	 you're	 running	 Node	 v7	 or	 greater,	 you'll	 get	 a	 little	 warning
when	 you	 run	 the	 program	 inside	 Terminal.	Now,	 on	 v7,	 it'll	 still
work,	 it's	 just	 a	 warning,	 but	 you	 can	 get	 rid	 of	 it	 using	 the
following	code:

//	Orignal	line	

fs.appendFile('greetings.txt',	'Hello	world!');

//	Option	one

fs.appendFile('greetings.txt',	'Hello	world!',	function	(err){

		if	(err)	{	

				console.log('Unable	to	write	to	file');

		}

});

//	Option	two

fs.appendFileSync('greetings.txt',	'Hello	world!');

In	the	preceding	code,	we	have	the	original	line	that	we	have	inside	our	program.

In	Option	one	here	 is	 to	add	a	callback	as	 the	 third	argument	 to	 the	append	 file.
This	 callback	 will	 get	 executed	 when	 either	 an	 error	 occurs	 or	 the	 file
successfully	gets	written	too.	Inside	option	one,	we	have	an	if	statement;	if	there
is	an	error,	we	simply	print	a	message	to	the	screen,	Unable	to	write	to	file.

Now,	our	second	option	in	the	preceding	code,	Option	two,	is	to	call	appendFileSync,
which	 is	a	synchronous	method	(we'll	 talk	more	about	 that	 later);	 this	 function
does	not	take	the	third	argument.	You	can	type	it	as	shown	in	the	preceding	code
and	you	won't	get	the	warning.

So,	pick	one	of	these	two	options	if	you	see	the	warning;	both	will	work	much
the	same.

If	you	are	on	v6,	you	can	stick	with	the	the	original	line,	shown	at	the	top	of	the
preceding	code,	 although	you	might	 as	well	 use	one	of	 the	 two	options	below
that	line	to	make	your	code	a	little	more	future	proof.

Fear	not,	we'll	be	talking	about	asynchronous	and	synchronous	functions,	as	well
as	 callback	 functions,	 extensively	 throughout	 the	 book.	 What	 I'm	 giving	 you

here	 in	 the	code	 is	 just	a	 template,	something	you	can	write	 in	your	 file	 to	get
that	 error	 removed.	 In	 a	 few	 chapters,	 you	will	 understand	 exactly	what	 these
two	methods	are	and	how	they	work.

If	we	do	the	appending	over	in	Terminal,	node	app.js,	we'll	see	something	pretty
cool:

As	 shown	 in	 the	 preceding	 code,	we	 get	 our	 one	 console.log	 statement,	 Starting
app..	 So	we	 know	 the	 app	 started	 correctly.	Also,	 if	we	 head	 over	 into	Atom,
we'll	 actually	 see	 that	 there's	 a	 brand	 new	 greetings.txt	 file,	 as	 shown	 in	 the
following	code.	This	is	the	text	file	that	was	created	by	fs.appendFile:

console.log('Starting	app.');

const	fs	=	require('fs');

fs.appendFile('greetings.txt',	'Hello	world!');

Here,	fs.appendFile	tries	to	append	greetings.txt	to	a	file;	if	the	file	doesn't	exist,	it
simply	creates	it:

You	 can	 see	 that	 we	 have	 our	 message,	 Hello	 world!	 in	 the	 greetings.txt	 file,
printing	to	the	screen.	In	just	a	few	minutes,	we	were	able	to	 load	in	a	built-in
Node	module	and	call	a	function	that	lets	us	create	a	brand	new	file.

If	we	 call	 it	 again	by	 rerunning	 the	 command	using	 the	up	 arrow	key	 and	 the
enter	key,	and	we	head	back	 into	 the	contents	of	greetings.txt,	 you	can	 see	 this
time	around	that	we	have	Hello	world!	twice,	as	shown	here:

It	appended	Hello	world!	one	time	for	each	time	we	ran	the	program.	We	have	an
application	that	creates	a	brand	new	file	on	our	filesystem,	and	if	the	file	already
exists,	it	simply	adds	to	it.

The	OS	module	in	require()
Once	we	 have	 created	 and	 appended	 the	 greetings.txt	 file,	we'll	 customize	 this
greeting.txt	 file.	 To	 do	 this,	 we'll	 explore	 one	 more	 built-in	 module.	 We'll	 be
using	more	 than	 just	appendFile	 in	 the	 future.	We'll	 be	 exploring	other	methods.
For	this	section,	the	real	goal	is	to	understand	require().	The	require()	function	lets
us	load	in	the	module's	functionality	so	that	we	can	call	it.

The	 second	 module	 that	 we'll	 be	 using	 is	 OS,	 and	 we	 can	 view	 it	 in	 the
documentation.	 In	 the	 OS	 module,	 we'll	 use	 the	 method	 defined	 at	 the	 very
bottom,	os.userInfo([options]):

The	 os.userInfo([options])	 method	 gets	 called	 and	 returns	 various	 information
about	the	currently	logged-in	user,	such	as	the	username,	and	this	 is	what	we'll
pull	off:

Using	the	username	that	comes	from	the	OS,	we	can	customize	 the	greeting.txt
file	so	that	instead	of	Hello	world!	it	can	say	Hello	Gary!.

To	 get	 started,	 we	 have	 to	 require	 OS.	 This	 means	 that	 we'll	 go	 back	 inside
Atom.	Now,	just	below	where	I	created	my	fs	constant,	I'll	create	a	new	constant
called	os,	setting	it	equal	to	require();	this	gets	called	as	a	function	and	passes	one

argument,	the	module	name,	os,	as	shown	here:

console.log('Starting	app.');

const	fs	=	require('fs');

const	os	=	require('os');

fs.appendFile('greetings.txt',	'Hello	world!');

From	here,	we	 can	 start	 calling	methods	 available	 on	 the	OS	module,	 such	 as
os.userInfo([optional]).

Let's	make	a	new	variable	called	user	 to	store	 the	result.	The	variable	user	will
get	set	equal	to	os.userInfo,	and	we	can	call	userInfo	without	any	arguments:

console.log('Starting	app.');

const	fs	=	require('fs');

const	os	=	require('os');

var	user	=	os.userInfo();

fs.appendFile('greetings.txt',	'Hello	world!');

Now,	before	we	do	anything	with	 the	fs.appendFile	 line,	 I'll	 comment	 it	out	and
print	the	contents	of	the	user	variable	using	console.log:

console.log('Starting	app.');

const	fs	=	require('fs');

const	os	=	require('os');

var	user	=	os.userInfo();

console.log(user);

//	fs.appendFile('greetings.txt',	'Hello	world!');

This	 will	 let	 us	 explore	 exactly	 what	 we	 get	 back.	 Over	 in	 Terminal,	 we	 can
rerun	our	program	using	 the	up	arrow	key	and	enter	key,	and	 right	here	 in	 the
following	code,	you	see	that	we	have	an	object	with	a	few	properties:

We	have	 uid,	gid,	username,	homedir,	 and	 shell.	 Depending	 on	 your	OS,	 you'll	 not
have	all	of	 these,	but	you	should	always	have	 the	username	 property.	This	 is	 the
one	we	care	about.

This	means	 that	back	 inside	Atom,	we	can	use	user.username	 inside	of	appendFile.
I'll	remove	the	console.log	statement	and	uncomment	our	call	to	fs.appendFile:

console.log('Starting	app.');

const	fs	=	require('fs');

const	os	=	require('os');

var	user	=	os.userInfo();

fs.appendFile('greetings.txt',	'Hello	world!');

Now,	 where	 we	 have	 world	 in	 the	 fs.appendFile,	 we'll	 swap	 it	 with	 user.username.
There	are	two	ways	we	can	do	this.

Concatenating	user.username
The	 first	 way	 is	 to	 remove	 world!	 and	 concatenate	 user.username.	 Then	 we	 can
concatenate	another	string	using	the	+	(plus)	operator,	as	shown	in	the	following
code:

console.log('Starting	app.');

const	fs	=	require('fs');

const	os	=	require('os');

var	user	=	os.userInfo();

fs.appendFile('greetings.txt',	'Hello'	+	user.username	+	'!');

Now	if	we	run	this,	everything	is	going	to	work	as	expected.	Over	in	Terminal,
we	can	rerun	our	app.	It	prints	Starting	app:

Over	in	the	greetings.txt	file,	you	should	see	something	like	Hello	Gary!	printing	to
the	screen,	as	shown	here:

Using	 the	 fs	 module	 and	 the	 os	 module,	 we	 were	 able	 to	 grab	 the	 user's
username,	create	a	new	file,	and	store	it.

Using	template	strings
The	second	way	 to	swap	world	with	user.username	 in	 the	fs.appendFile	 is,	 using	 an
ES6	feature	known	as	template	strings.	Template	strings	start	and	end	with	the	`
(tick)	operator,	which	is	available	to	the	left	of	the	1	key	on	your	keyboard.	Then
you	type	things	as	you	normally	would.

This	 means	 that	 we'll	 first	 type	 hello,	 then	 we'll	 add	 a	 space	 with	 the	 !

(exclamation)	mark,	and	just	before	!,	we	will	put	the	name:

console.log('Starting	app.');

const	fs	=	require('fs');

const	os	=	require('os');

var	user	=	os.userInfo();

fs.appendFile('greetings.txt',	`Hello	!`);

To	insert	a	JavaScript	variable	inside	your	template	string,	you	use	the	$	(dollar)
sign	followed	by	opening	and	closing	curly	braces.	Then	we	will	just	reference	a
variable	such	as	user.username:

console.log('Starting	app.');

const	fs	=	require('fs');

const	os	=	require('os');

var	user	=	os.userInfo();

fs.appendFile('greetings.txt',	`Hello	${user.username}!`);

Notice	that	the	Atom	editor	actually	picks	up	on	the	syntax	of	curly
braces.

This	is	all	it	 takes	to	use	template	strings;	it's	an	ES6	feature	available	because
you're	using	Node	v6.	This	syntax	is	much	easier	to	understand	and	update	than
the	string/concatenation	version	we	saw	earlier.

If	you	run	the	code,	it	will	produce	the	exact	same	output.	We	can	run	it,	view
the	text	file,	and	this	 time	around,	we	have	Hello	Gary!	 twice,	which	 is	what	we
want	here:

With	this	in	place,	we	are	now	done	with	our	very	basic	example	and	we're	ready
to	start	creating	our	own	files	for	our	notes	application	and	requiring	them	inside
app.js	in	the	next	section.

First	up,	you	learned	that	we	can	use	require	to	load	in	modules.	This	lets	us	take
existing	functionality	written	by	either	the	Node	developers,	a	third-party	library,
or	ourselves,	and	load	it	into	a	file	so	that	it	can	be	reusable.	Creating	reusable
code	 is	essential	 for	building	 large	apps.	 If	you	have	 to	build	 everything	 in	 an
app	 every	 time,	 no	one	would	 ever	get	 anything	done	because	 they	would	get
stuck	at	building	the	basics,	things	such	as	HTTP	servers	and	web	servers.	There
are	 already	modules	 for	 such	 stuff,	 and	we'll	 be	 taking	 advantage	 of	 the	great
npm	community.	In	this	case,	we	used	two	built-in	modules,	fs	and	os.	We	loaded
them	 in	 using	 require	 and	 we	 stored	 the	 module	 results	 inside	 two	 variables.
These	variables	store	everything	available	to	us	from	the	module;	in	the	case	of
fs,	 we	 use	 the	 appendFile	 method,	 and	 in	 the	 case	 of	 OS,	 we	 use	 the	 userInfo
method.	 Together,	 we	were	 able	 to	 grab	 the	 username	 and	 save	 it	 into	 a	 file,
which	is	fantastic.

Require	own	files
In	this	section,	you	will	learn	how	to	use	require()	to	load	in	other	files	that	you
created	inside	your	project.	This	will	 let	you	move	functions	outside	app.js	 into
more	 specific	 files;	 this	 will	 make	 your	 application	 easier	 to	 scale,	 test,	 and
update.	To	get	started,	the	first	thing	we'll	do	is	to	make	a	new	file.

Making	 a	 new	 file	 to	 load	 other
files
In	 the	 context	 of	 our	 notes	 app,	 the	 new	 file	 will	 store	 various	 functions	 for
writing	 and	 reading	 notes.	 As	 of	 now,	 you	 don't	 need	 to	 worry	 about	 that
functionality,	as	we'll	get	into	the	detail	later	in	the	section,	but	we	will	create	the
file	where	it	will	eventually	live.	This	file	will	be	notes.js,	and	we'll	save	it	inside
the	root	of	our	application,	right	alongside	app.js	and	greetings.txt,	as	shown	here:

For	the	moment,	all	we'll	do	inside	notes	is	to	use	console.log	 to	print	a	 little	 log
showing	the	file	has	been	executed	using	the	following	code:

console.log('Starting	notes.js');

Now,	we	 have	 console.log	 on	 the	 top	 of	 notes	 and	 one	 on	 the	 top	 of	 app.js.	 I'll
change	console.log	 in	 the	 app.js	 from	 Starting	app.	 to	 Starting	app.js.	With	 this	 in
place,	we	can	now	require	the	notes	file.	It	doesn't	export	any	functionality,	but
that's	fine.

By	 the	way,	when	 I	 say	export,	 I	mean	 the	notes	 file	doesn't	have
any	functions	or	properties	that	another	file	can	take	advantage	of.

We'll	look	at	how	to	export	stuff	later	in	the	section.	For	now	though,	we'll	load
our	module	in	much	the	same	way	we	loaded	in	the	built-in	Node	modules.

Let's	make	const;	I'll	call	this	one	notes	and	set	it	equal	to	the	return	result	from
require():

console.log('Starting	app.js');

const	fs	=	require('fs');

const	os	=	require('os');

const	notes	=	require('');

var	user	=	os.userInfo();

fs.appendFile('greetings.txt',	`Hello	${user.username}!`);

Inside	the	parentheses,	we	will	pass	in	one	argument	that	will	be	a	string,	but	it
will	be	a	little	different.	In	the	previous	section,	we	typed	in	the	module	name,
but	what	we	have	in	this	case	is	not	a	module,	but	a	file,	notes.js.	What	we	need
to	do	is	to	tell	Node	where	that	file	lives	using	a	relative	path.

Now,	relative	paths	start	with	./	(a	dot	forward	slash),	which	points	to	the	current
directory	 that	 the	 file	 is	 in.	 In	 this	 case,	 this	 points	 us	 to	 the	 app.js	 directory,
which	 is	 the	root	of	our	project	notes-node.	From	here,	we	don't	have	 to	go	 into
any	other	folders	to	access	notes.js,	it's	in	the	root	of	our	project,	so	we	can	type
its	name,	as	shown	in	the	following	code:

console.log('Starting	app.js');

const	fs	=	require('fs');

const	os	=	require('os');

const	notes	=	require('./notes.js');

var	user	=	os.userInfo();

fs.appendFile('greetings.txt',	`Hello	${user.username}!`);

With	this	in	place,	we	can	now	save	app.js	and	see	what	happens	when	we	run
our	application.	I'll	run	the	app	using	the	node	app.js	command:

As	 shown	 in	 the	 preceding	 code	 output,	 we	 get	 our	 two	 logs.	 First,	 we	 get
Starting	app.js	and	then	we	get	Starting	notes.js.	Now,	Starting	notes.js	comes	from
the	note.js	file,	and	it	only	runs	because	we	required	the	file	inside	of	app.js.

Comment	out	this	command	line	from	the	app.js	file,	as	shown	here:

console.log('Starting	app.js');

const	fs	=	require('fs');

const	os	=	require('os');

//	const	notes	=	require('./notes.js');

var	user	=	os.userInfo();

fs.appendFile('greetings.txt',	`Hello	${user.username}!`);

Save	 the	 file,	 and	 rerun	 it	 from	 Terminal;	 you	 can	 see	 the	 notes.js	 file	 never
executes	because	we	never	explicitly	touch	it.

We	 never	 call	 it	 inside	 Terminal	 as	 we	 do	 in	 the	 preceding	 example,	 and	 we
never	require.

For	now	though,	we	will	be	requiring	it,	so	I'll	uncomment	that	line.

By	the	way,	I'm	using	command	/	(forward	slash)	to	comment	and
uncomment	 lines	quickly.	This	 is	a	keyboard	shortcut	available	 in
most	 text	 editors;	 if	 you're	 on	Windows	 or	Linux,	 it	might	 not	 be
command,	it	might	be	Ctrl	or	something	else.

Exporting	files	from	note.js	to	use
in	app.js
For	now	though,	 the	focus	will	be	 to	export	something	from	notes.js	which	we
can	use	in	app.js.	Inside	notes.js	(actually,	inside	all	of	our	Node	files),	we	have
access	to	a	variable	called	module.	I'll	use	console.log	to	print	module	to	the	screen	so
that	we	can	explore	it	over	in	Terminal,	as	shown	here:

console.log('Starting	notes.js');

console.log(module);

Let's	rerun	the	file	to	explore	it.	As	shown	in	the	following	screenshot,	we	get	a
pretty	big	object,	that	is,	different	properties	related	to	the	notes.js	file:

Now,	to	tell	the	truth,	we'll	not	be	using	most	of	these	properties.	We	have	things
such	as	id,	exports,	parent,	and	filename.	The	only	one	property	we'll	ever	use	in	this
book	is	exports.

The	 exports	 object	 on	 the	 module	 property	 and	 everything	 on	 this	 object	 gets
exported.	This	object	gets	set	as	the	const	variable,	notes.	This	means	that	we	can
set	properties	on	it,	they	will	get	set	on	notes,	and	we	can	use	them	inside	app.js.

A	simple	 example	of	 the	working
of	the	exports	object
Let's	 take	 a	 quick	 look	 at	 how	 that	 works.	What	 we'll	 do	 is	 to	 define	 an	 age
property	using	module.exports,	the	object	we	just	explored	over	in	Terminal.	Also,
we	 know	 that	 it's	 an	 object	 because	we	 can	 see	 it	 in	 the	 preceding	 screenshot
(exports:	{});	this	means	that	I	can	add	a	property,	age,	and	set	it	equal	to	my	age,
which	is	25,	as	shown	here:

console.log('Starting	notes.js');

module.exports.age	=	25;

Then	I	can	save	this	file	and	move	into	app.js	to	take	advantage	of	this	new	age
property.	The	const	variable	notes	will	be	storing	all	of	my	exports,	in	the	present
case,	just	age.

In	 fs.appendFile,	 after	 the	 greeting.txt	 file,	 I'll	 add	 You	 are	 followed	 by	 the	 age.
Inside	template	strings,	we	will	use	$	with	curly	braces,	notes.age,	and	a	period	at
the	end,	as	shown	here:

console.log('Starting	app.js');

const	fs	=	require('fs');

const	os	=	require('os');

const	notes	=	require('./notes.js');

var	user	=	os.userInfo();

fs.appendFile('greetings.txt',	`Hello	${user.username}!	You	are	${notes.age}.`);

Now	our	greeting	should	say	Hello	Gary!	You	are	25.	It's	getting	the	25	value	from
our	separate	file	(that	is,	note.js),	which	is	fantastic.

Let's	 take	a	quick	moment	 to	 rerun	 the	program	over	 in	Terminal	using	 the	up
arrow	key	and	enter	keys:

Back	 inside	 the	 app,	we	 can	 open	 greetings.txt,	 and	 as	 shown	 in	 the	 following
screenshot,	we	have	Hello	Gary!	You	are	25:

Using	require(),	we	were	able	to	require	a	file	that	we	created,	and	this	file	stored
some	properties	that	were	advantageous	to	the	rest	of	the	project.

Exporting	the	functions
Now,	 obviously,	 the	 preceding	 example	 is	 pretty	 contrived.	 We'll	 not	 be
exporting	static	numbers;	the	real	goal	of	exports	is	to	be	able	to	export	functions
that	get	used	inside	app.js.	Let's	take	a	quick	moment	to	export	two	functions.	In
the	 notes.js	 file,	 I'll	 set	 module.exports.addnote	 equal	 to	 a	 function;	 the	 function
keyword	followed	by	opening	and	closing	parentheses,	which	is	followed	by	the
curly	braces:

console.log('Starting	notes.js');

module.exports.addNote	=	function	()	{

}	

Now,	throughout	the	course,	I'll	be	using	arrow	functions	where	I	can,	as	shown
in	the	preceding	code.	To	convert	a	regular	ES5	function	into	an	arrow	function,
all	you	 do	 is	 remove	 the	 function	 keyword	 and	 replace	 it	with	 an	 =>	 sign	 right
between	the	parentheses	and	the	opening	curly	braces,	as	shown	here:

console.log('Starting	notes.js');

module.exports.addNote	=	()	=>	{

}	

Now,	 there	are	 some	more	 subtleties	 to	arrow	 functions	 that	we'll
be	 talking	 about	 throughout	 the	 book,	 but	 if	 you	 have	 an
anonymous	 function,	 you	 can	 swap	 it	 with	 an	 arrow	 function
without	any	problems.	The	big	difference	is	that	the	arrow	function
is	not	going	 to	bind	 the	 ()	=>	{}	 keyword	or	 the	arguments	array,
which	we'll	be	exploring	throughout	the	book.	So	if	you	do	get	some
errors,	it's	good	to	know	that	the	arrow	function	could	be	the	cause.

For	now	though,	we'll	keep	things	really	simple,	using	console.log	to	print	addNote.
This	will	 let	us	know	that	 the	addNote	 function	was	called.	We'll	 return	a	string,
'New	note',	as	shown	here:

console.log('Starting	notes.js');

module.exports.addNote	=	()	=>	{

		console.log('addNote');

		return	'New	note';

};

Now,	the	addNote	function	is	being	defined	in	notes.js,	but	we	can	take	advantage
of	it	over	in	app.js.

Let's	 take	 a	 quick	 second	 to	 comment	 out	 both	 the	 appendFile	 and	 user	 line	 in
app.js:

console.log('Starting	app.js');

const	fs	=	require('fs');

const	os	=	require('os');

const	notes	=	require('./notes.js');

//	var	user	=	os.userInfo();

//

//	fs.appendFile('greetings.txt',	`Hello	${user.username}!	You	are	${notes.age}.`);

I'll	 add	 a	 variable,	 call	 the	 result,	 (res	 for	 short),	 and	 set	 it	 equal	 to	 the	 return
result	from	notes.addNote:

console.log('Starting	app.js');

const	fs	=	require('fs');

const	os	=	require('os');

const	notes	=	require('./notes.js');

var	res	=	notes.addNote();

//	var	user	=	os.userInfo();

//

//	fs.appendFile('greetings.txt',	`Hello	${user.username}!	You	are	${notes.age}.`);

Now,	 the	addNote	 function	 is	 a	 dummy	 function	 for	 the	moment.	 It	 doesn't	 take
any	arguments	and	it	doesn't	actually	do	anything,	so	we	can	call	it	without	any
arguments.

Then	 we'll	 print	 the	 result	 variable,	 as	 shown	 in	 the	 following	 code,	 and	 we
would	expect	the	result	variable	to	be	equal	to	the	New	note	string:

console.log('Starting	app.js');

const	fs	=	require('fs');

const	os	=	require('os');

const	notes	=	require('./notes.js');

var	res	=	notes.addNote();

console.log(res);

//	var	user	=	os.userInfo();

//

//	fs.appendFile('greetings.txt',	`Hello	${user.username}!	You	are	${notes.age}.`);

If	 I	 save	both	of	my	 files	 (app.js	 and	 notes.js)	 and	 rerun	 things	 from	Terminal,
you	can	see	that	New	note	prints	to	the	screen	at	the	very	end	and	just	before	addNote
prints:

This	means	that	we	successfully	required	the	notes	file	we	called	addNote,	and	its
return	result	was	successfully	returned	to	app.js.

Using	 this	 exact	 pattern,	 we'll	 be	 able	 to	 define	 our	 functions	 for	 adding	 and
removing	notes	over	in	our	notes.js	file,	but	we'll	be	able	to	call	them	anywhere
inside	of	our	app,	including	in	app.js.

Exercise	–	adding	a	new	function
to	the	export	object
Now	 it's	 time	 for	 a	 quick	 challenge.	What	 I'd	 like	 you	 to	 do	 is	 make	 a	 new
function	in	notes.js	called	add.	This	add	function	will	get	set	on	the	exports	object.

Remember,	exports	is	an	object,	so	you	can	set	multiple	properties.

This	add	 function	will	 take	 two	 arguments,	 a	 and	 b;	 it'll	 add	 them	 together	 and
return	the	result.	Then	over	in	app.js,	I'd	like	you	to	call	that	add	function,	passing
in	two	numbers,	whatever	you	like,	such	as	9	and	-2,	then	print	the	result	to	the
screen	and	make	sure	it	works	correctly.

You	can	get	started	by	removing	the	call	to	addNote	since	this	will	not
be	needed	for	the	challenge.

So,	take	a	moment,	create	that	add	function	inside	notes.js,	call	it	inside	app.js,	and
make	 sure	 the	 proper	 result	 prints	 to	 the	 screen.	How'd	 it	 go?	Hopefully,	 you
were	able	to	make	that	function	and	call	it	from	app.js.

Solution	to	the	exercise
The	first	step	in	the	process	will	be	to	define	the	new	function.	In	notes.js,	I'll	set
module.exports.add	equal	to	that	function,	as	shown	here:

console.log('Starting	notes.js');

module.exports.addNote	=	()	=>	{

		console.log('addNote');

		return	'New	note';

};	

module.exports.add	=

Let's	 set	 it	 equal	 to	 an	 arrow	 function.	 If	 you	 used	 a	 regular	 function,	 that	 is
perfectly	 fine,	 I	 just	 prefer	 using	 the	 arrow	 function	when	 I	 can.	 Also,	 inside
parentheses,	we	will	be	getting	two	arguments,	we'll	be	getting	a	and	b,	as	shown
here:

console.log('Starting	notes.js');

module.exports.addNote	=	()	=>	{

		console.log('addNote');

		return	'New	note';

};	

module.exports.add	=	(a,	b)	=>	{

};

All	we	need	to	do	is	return	the	result,	which	is	really	simple.	So	we'll	enter	return
a	+	b:

console.log('Starting	notes.js');

module.exports.addNote	=	()	=>	{

		console.log('addNote');

		return	'New	note';

};	

module.exports.add	=	(a,	b)	=>	{

		return	a	+	b;

};

Now,	 this	 was	 the	 first	 part	 of	 your	 challenge,	 defining	 a	 utility	 function	 in
notes.js;	the	second	part	was	to	actually	use	it	over	in	app.js.

In	app.js,	we	can	use	our	function	by	printing	the	console.log	result	with	a	colon	:

(this	is	just	for	formatting).	As	the	second	argument,	we'll	print	the	actual	results,
notes.add.	Then,	we'll	add	up	 two	numbers;	we'll	add	9	and	-2,	 as	 shown	 in	 this
code:

console.log('Starting	app.js');

const	fs	=	require('fs');

const	os	=	require('os');

const	notes	=	require('./notes.js');

console.log('Result:',	notes.add(9,	-2));

//	var	user	=	os.userInfo();

//

//	fs.appendFile('greetings.txt',	`Hello	${user.username}!	You	are	${notes.age}.`);

The	result	in	this	case	should	be	7.	If	we	run	the	program	you	can	see	that	we	get
just	that,	7	prints	to	the	screen:

If	you	were	able	to	get	this,	congratulations,	you	successfully	completed	one	of
your	 first	 challenges.	 These	 challenges	 will	 be	 sprinkled	 throughout	 the	 book
and	 they'll	 get	 progressively	 more	 complex.	 But	 don't	 worry,	 we'll	 keep	 the
challenges	 pretty	 explicit;	 I'll	 tell	 you	 exactly	 what	 I	 want	 and	 exactly	 how	 I
want	it	done.	Now,	you	can	play	around	with	different	ways	to	do	it,	the	real	goal
is	 to	 just	 get	 you	writing	 code	 independent	 of	 following	 someone	 else's	 lead.
That	is	where	the	real	learning	happens.

In	the	next	section,	we	will	explore	how	to	use	third-party	modules.	From	there,
we'll	start	building	the	notes	application.

Third-party	modules
You	now	know	 two	out	 of	 the	 three	ways	 to	 use	 require(),	 and	 in	 this	 section,
we'll	 explore	 the	 last	way,	which	 is	 to	 require	a	package	you've	 installed	 from
npm.	As	I	mentioned	in	the	first	chapter,	npm	is	a	big	part	of	what	makes	Node
so	 fantastic.	 There	 is	 a	 huge	 community	 of	 developers	 that	 have	 created
thousands	of	packages	that	already	solve	some	of	the	most	common	problems	in
Node	 applications.	 We	 will	 be	 taking	 advantage	 of	 quite	 a	 few	 packages
throughout	the	book.

Creating	 projects	 using	 npm
modules
Now,	in	 the	npm	packages,	 there's	nothing	magical,	 it's	 regular	Node	code	that
aims	to	solve	a	specific	problem.	The	reason	you'd	want	to	use	it	is	so	you	don't
have	to	spend	all	your	time	writing	these	utility	functions	that	already	exist;	not
only	do	they	exist,	they've	been	tested,	they've	been	proven	to	work,	and	others
have	used	them	and	documented	them.

Now,	with	all	that	said,	how	do	we	get	started?	Well,	to	get	started,	we	actually
have	to	run	a	command	from	the	Terminal	to	tell	our	application	we	want	to	use
npm	modules.	This	command	will	be	run	over	in	the	Terminal.	Make	sure	you've
navigated	 inside	 your	 project	 folder	 and	 inside	 the	 notes-node	 directory.	 Now,
when	you	installed	Node,	you	also	installed	something	called	npm.

At	one	point,	npm	stood	for	Node	package	manager,	but	that's	now
a	running	joke	because	there	are	plenty	of	things	on	npm	that	are
not	specific	to	Node.	A	lot	of	frontend	frameworks,	such	as	jQuery
and	react,	now	live	on	npm	as	well,	so	they've	pretty	much	ditched
the	Node	package	manager	explanation	and	now	on	their	site,	they
cycle	through	a	bunch	of	hilarious	things	that	happen	to	match	up
with	npm.

We	 will	 be	 running	 some	 npm	 commands	 and	 you	 can	 test	 that	 you	 have	 it
installed	by	running	npm,	a	space,	and	-v	(we're	running	npm	with	the	v	flag).	This
should	print	the	version,	as	shown	in	the	following	code:

It's	 okay	 if	 your	 version	 is	 slightly	 different,	 that's	 not	 important;	 what	 is
important	is	that	you	have	npm	installed.

Now,	 we'll	 run	 a	 command	 called	 npm	 init	 in	 Terminal.	 This	 command	 will
prompt	 us	 to	 fill	 out	 a	 few	 questions	 about	 our	 npm	 project.	We	 can	 run	 the
command	 and	we	 can	 cycle	 through	 the	 questions,	 as	 shown	 in	 the	 following
screenshot:

In	the	preceding	screenshot,	at	the	top	is	a	quick	description	of	what's	happening,
and	down	below	it'll	start	asking	you	a	few	questions,	as	shown	in	the	following
screenshot:

The	questions	include	the	following:

name:	Your	 name	 can't	 have	 uppercase	 characters	 or	 spaces;	 you	 can	 use
notes-node,	for	example.	You	can	hit	enter	to	use	the	default	value,	which	is
in	parentheses.
version:	1.0.0	works	 fine	 too;	we	will	 leave	most	of	 these	at	 their	default
value.
description:	We	can	leave	this	empty	at	the	moment.
entry	point:	This	will	be	app.js,	make	sure	that	shows	up	properly.
test	command:	We'll	 explore	 testing	 later	 in	 the	book,	 so	 for	now,	we	can
leave	this	empty.
git	repository:	We'll	leave	that	empty	for	now	as	well.
keywords:	 These	 are	 used	 for	 searching	 for	 modules.	 We'll	 not	 be
publishing	this	module	so	we	can	leave	those	empty.
author:	You	might	as	well	type	your	name.

license:	For	the	license,	we'll	stick	with	ISC	at	the	moment;	since	we're	not
publishing	it,	it	doesn't	really	matter.

After	answering	these	questions,	 if	we	hit	enter,	we'll	get	 the	following	on	our
screen	and	a	final	question:

Now,	I	want	to	dispel	the	myth	that	this	command	is	doing	anything	magical.	All
this	command	is	doing	is	creating	a	single	file	inside	your	project.	It'll	be	in	the
root	of	 the	project	and	it's	called	package.json,	and	 the	file	will	 look	exactly	 like
the	preceding	screenshot.

To	the	final	question,	as	shown	down	below	in	the	preceding	image,	you	can	hit
enter	or	type	yes	to	confirm	that	this	is	what	you	want	to	do:

Now	that	we	have	created	the	file,	we	can	actually	view	it	inside	our	project.	As
shown	in	the	following	code,	we	have	the	package.json	file:

{

		"name":	"notes-node",

		"version":	"1.0.0",

		"description":	"",

		"main":	"app.js",

		"scripts":	{

				"test":	"echo	\"Error:	no	test	specified\"	&&	exit	1"

		},

		"author":	"",

		"license":	"ISC"

}

And	 this	 is	 all	 it	 is,	 it's	 a	 simple	 description	 of	 your	 application.	 Now,	 as	 I
mentioned,	we'll	not	be	publishing	our	app	to	npm,	so	a	lot	of	 this	 information
really	 isn't	 important	 to	 us.	 What	 is	 important,	 though,	 is	 that	 package.json	 is
where	we	define	the	third-party	modules	we	want	to	install	in	our	application.

Installing	 the	 lodash	 module	 in
our	app
To	install	a	module	in	the	app,	we	will	run	a	command	over	in	the	Terminal.	In
this	chapter,	we'll	be	installing	a	module	called	lodash.	The	lodash	module	comes
with	a	ton	of	utility	methods	and	functions	that	make	developing	inside	Node	or
JavaScript	 a	 heck	 of	 a	 lot	 easier.	To	 take	 a	 look	 at	what	 exactly	we're	 getting
into,	let's	move	into	the	browser.

We'll	to	go	to	https://www.npmjs.com.	Then	we'll	search	for	the	package,	lodash,	and
you	can	see	it	comes	up,	as	shown	in	the	following	screenshot:

When	you	click	on	it,	you	should	be	taken	to	the	package	page,	and	the	package
page	will	show	you	a	lot	of	statistics	about	the	module	and	the	documentation,	as
shown	here:

https://www.npmjs.com

Now,	I	use	the	lodash	package	page	when	I'm	looking	for	new	modules;	I	like	to
see	how	many	downloads	it	has	and	when	it	was	 last	updated.	On	the	package
page,	you	can	see	it	was	updated	recently,	which	is	great	it	means	the	package	is
most	 likely	 compatible	with	 the	 latest	 versions	of	Node,	 and	 if	 you	go	 further
down	 the	 page,	 you	 can	 see	 this	 is	 actually	 one	 of	 the	 most	 popular	 npm
packages,	with	over	a	million	downloads	a	day.	We	will	be	using	this	module	to

explore	how	to	install	npm	modules	and	how	to	actually	use	them	in	a	project.

Installation	of	lodash
To	install	lodash,	the	first	thing	you	need	to	grab	is	just	a	module	name,	which	is
lodash.	Once	you	have	that	information,	you're	ready	to	install	it.

Coming	 to	 Terminal,	we'll	 run	 the	 npm	install	 command.	After	 installing,	we'll
specify	 the	module,	 lodash.	 Now,	 this	 command	 alone	would	work;	what	we'll
also	do,	though,	is	provide	the	save	flag.

The	npm	install	lodash	command	will	install	the	module,	and	the	save	flag,	--	(two)
hyphens	 followed	by	 the	word	 save,	will	 update	 the	 contents	 of	 the	 package.json
file.	Let's	run	this	command:

npm	install	loadsh	--save

The	preceding	command	will	go	off	 to	the	npm	servers	and	fetch	the	code	and
install	it	inside	your	project,	and	any	time	you	install	an	npm	module,	it'll	live	in
your	project	in	a	node_modules	folder.

Now,	if	you	open	that	node_modules	folder,	you'll	see	the	lodash	folder	as	shown	in
the	following	code.	This	is	the	module	that	we	just	installed:

{

		"name":	"notes-node",

		"version":	"1.0.0",

		"description":	"",

		"main":	"app.js",

		"scripts":	{

				"test":	"echo	\"Error:	no	test	specified\"	&&	exit	1"

		},

		"author":	"",

		"license":	"ISC",

		"dependencies":	{

				"lodash":	"^4.17.4"

		}

}

As	you	can	see	over	in	package.json	in	the	preceding	figure,	we've	also	had	some
updates	automatically	take	place.	There's	a	new	dependencies	attribute	that	has	an
object	with	key	value	pairs,	where	the	key	is	the	module	we	want	to	use	in	our
project	and	the	value	is	the	version	number,	in	this	case,	the	most	recent	version,
version	 4.17.4.	With	 this	 in	 place,	 we	 can	 now	 require	 our	 module	 inside	 the

project.

Over	inside	app.js,	we	can	take	advantage	of	everything	that	comes	in	lodash	by
going	 through	 the	 same	process	of	 requiring	 it.	We'll	make	a	 const,	we'll	 name
that	const	_,	(which	is	a	common	name	for	the	lodash	utility	library),	and	we'll	set
it	equal	to	require().	Inside	the	require	parentheses,	we'll	pass	in	the	module	name
exactly	as	 it	appears	 in	 the	package.json	 file.	This	 is	 the	same	module	name	you
used	when	you	ran	npm	install.	Then,	we'll	type	lodash,	as	shown	here:

console.log('Starting	app.js');

const	fs	=	require('fs');

const	os	=	require('os');

const	_	=	require('lodash');

const	notes	=	require('./notes.js');

console.log('Result:',	notes.add(9,	-2));

//	var	user	=	os.userInfo();

//

//	fs.appendFile('greetings.txt',	`Hello	${user.username}!	You	are	${notes.age}.`);

Now,	the	order	of	operations	is	pretty	important	here.	Node	will	first	look	for	a
core	 module	 with	 the	 name	 lodash.	 It'll	 not	 find	 one	 because	 there	 is	 no	 core
module,	so	the	next	place	it	will	look	is	the	node_modules	folder.	As	shown	in	the
following	 code,	 it	 will	 find	 lodash	 and	 load	 that	 module,	 returning	 any	 of	 the
exports	it	provides:

console.log('Starting	app.js');

const	fs	=	require('fs');

const	os	=	require('os');

const	_	=	require('lodash');

const	notes	=	require('./notes.js');

console.log('Result:',	notes.add(9,	-2));

//	var	user	=	os.userInfo();

//

//	fs.appendFile('greetings.txt',	`Hello	${user.username}!	You	are	${notes.age}.`);

Using	the	utilities	of	lodash
With	the	exports	in	place,	we	can	now	take	advantage	of	some	of	the	utilities	that
come	 with	 Lodash.	 We'll	 quickly	 explore	 two	 in	 this	 section,	 and	 we'll	 be
exploring	more	throughout	the	book	since	Lodash	is	basically	just	a	set	of	really
handy	utilities.	Before	we	do,	we	should	take	a	look	at	the	documentation	so	we
know	exactly	what	we're	getting	into.

This	 is	 a	 really	 common	 step	when	 you're	 using	 an	 npm	module:
first,	 you	 install	 it;	 second,	 you've	 got	 to	 look	 at	 those	 docs	 and
make	sure	that	you	can	get	done	what	you	want	to	get	done.

On	the	npm	page,	click	the	lodash	link	given	there,	or	go	to	lodash.com	and	click
the	API	Documentation	page,	as	shown	here:

https://lodash.com

You	can	view	all	of	the	various	methods	you	have	available	to	you,	as	shown	in
the	following	screenshot:

In	our	case,	we'll	be	using	command	+	F	(Ctrl	+	F	for	Windows	users)	to	search
for	_.isString.	 Then	 in	 the	 docs,	we	 can	 click	 on	 it,	 opening	 it	 up	 in	 the	main
page,	as	shown	in	the	following	screenshot:

The	_.isString	is	a	utility	that	comes	with	lodash,	and	it	returns	true	if	the	variable
you	pass	in	is	a	string,	and	it	returns	false	if	the	value	you	pass	in	is	not	a	string.
And	we	can	prove	that	by	using	it	over	in	Atom.	Let's	use	this.

Using	the	_.isString	utility
To	use	the	_.isString	utility,	we'll	add	console.log	in	app.js	to	show	the	result	to	the
screen	and	we'll	use	_.isString,	 passing	 in	a	 couple	of	values.	Let's	pass	 in	 true
first,	 then	we	 can	duplicate	 this	 line	 and	we'll	 pass	 in	 a	 string	 such	 as	 Gary,	 as
shown	here:

console.log('Starting	app.js');

const	fs	=	require('fs');

const	os	=	require('os');

const	_	=	require('lodash');

const	notes	=	require('./notes.js');

console.log(_.isString(true));

console.log(_.isString('Gary'));

//	console.log('Result:',	notes.add(9,	-2));

//	var	user	=	os.userInfo();

//

//	fs.appendFile('greetings.txt',	`Hello	${user.username}!	You	are	${notes.age}.`);

We	 can	 run	 our	 project	 over	 in	 the	 Terminal	 using	 the	 same	 command	we've
used	previously,	node	app.js,	to	run	our	file:

When	we	run	the	file,	we	get	our	two	prompts	that	we've	started	both	files,	and
we	get	false	and	then	true.	false	comes	because	 the	Boolean	is	not	a	string,	and
true	comes	up	because	Gary	 is	 indeed	a	string,	 so	 it	passes	 the	 test	of	_.isString.
This	is	one	of	the	many	utility	functions	that	comes	bundled	with	lodash.

Now,	lodash	can	do	a	lot	more	than	simple	type	checking.	It	comes	with	a	bunch
of	other	utility	methods	we	can	take	advantage	of.	Let's	explore	one	more	utility.

Using	_.uniq
Back	 inside	 the	browser,	we	 can	use	 command	+	F	 again	 to	 search	 for	 a	 new
utility,	which	is	_.uniq:

This	 unique	 method,	 simply	 takes	 an	 array	 and	 it	 returns	 that	 array	 with	 all
duplicates	 removed.	That	means	 if	 I	have	 the	same	number	a	 few	 times	or	 the
same	string,	it'll	remove	any	duplicates.	Let's	run	this.

Back	inside	Atom,	we	can	add	this	utility	into	our	project,	we'll	comment	out	our
_.isString	calls	and	we	will	make	a	variable	called	filteredArray.	This	will	be	the
array	without	the	duplicates,	and	what	we'll	do	is	call,	after	the	equal	sign,	_.uniq.

Now,	as	we	know,	this	takes	an	array.	And	since	we're	trying	to	use	the	unique
function,	we'll	pass	in	an	array	with	some	duplicates.	Use	your	name	twice	as	a
string;	I'll	use	my	name	once,	followed	by	the	number	1,	followed	by	my	name
again.	Then	I	can	use	1,	2,	3,	and	4	as	shown	here:

console.log('Starting	app.js');

const	fs	=	require('fs');

const	os	=	require('os');

const	_	=	require('lodash');

const	notes	=	require('./notes.js');

//	console.log(_.isString(true));

//	console.log(_.isString('Gary'));

var	filteredArray	=	_.uniq(['Gary',	1,	'Gary',	1,	2,	3,	4]);

console.log();

//	console.log('Result:',	notes.add(9,	-2));

//	var	user	=	os.userInfo();

//

//	fs.appendFile('greetings.txt',	`Hello	${user.username}!	You	are	${notes.age}.`);

Now,	 if	 things	 go	 as	 planned,	 we	 should	 get	 an	 array	 with	 all	 the	 duplicates
removed,	which	means	we'll	 have	 one	 instance	 of	 Gary,	 one	 instance	 of	 1,	 and
then	2,	3,	and	4,	which	don't	have	duplicates.

The	last	thing	to	do	is	to	print	that	using	console.log	so	we	can	view	it	inside	the
Terminal.	 I'll	 pass	 in	 this	 filteredArray	 variable	 to	 our	 console.log	 statement	 as
shown	in	the	following	code:

console.log('Starting	app.js');

const	fs	=	require('fs');

const	os	=	require('os');

const	_	=	require('lodash');

const	notes	=	require('./notes.js');

//	console.log(_.isString(true));

//	console.log(_.isString('Gary'));

var	filteredArray	=	_.uniq(['Gary',	1,	'Gary',	1,	2,	3,	4]);

console.log(filteredArray);

//	console.log('Result:',	notes.add(9,	-2));

//	var	user	=	os.userInfo();

//

//	fs.appendFile('greetings.txt',	`Hello	${user.username}!	You	are	${notes.age}.`);

From	here,	we	can	run	our	project	inside	Node.	I'll	use	the	last	command,	then	I
can	press	 the	 enter	 key,	 and	 you	 can	 see	we	 get	 our	 array	with	 all	 duplicates
removed,	as	shown	in	the	following	code	output:

We	have	one	instance	of	the	string	Gary,	one	instance	of	the	number	1,	and	then
we	have	2,	3,	4,	exactly	what	we	expected.

The	lodash	 utility	 really	 is	 endless.	 There	 are	 so	many	 functions	 that	 it	 can	 be
kind	 of	 overwhelming	 to	 explore	 at	 first,	 but	 as	 you	 start	 creating	 more
JavaScript	 and	 Node	 projects,	 you'll	 find	 yourself	 solving	 a	 lot	 of	 the	 same

problems	 over	 and	 over	 again	 when	 it	 comes	 to	 sorting,	 filtering,	 or	 type
checking,	and	in	that	case,	it's	best	to	use	a	utility	such	as	lodash	to	get	that	lifting
done.	The	lodash	utility	is	great	for	the	following	reasons:

You	don't	have	to	keep	rewriting	your	methods
It	is	well	tested	and	it	has	been	tried	in	production

If	there	were	any	issues,	they've	been	sorted	out	by	now.

The	node_modules	folder
Now	that	you	know	how	to	use	a	third-party	module,	there	is	one	more	thing	I
want	 to	discuss.	That	 is	 the	 node_modules	 folder	 in	 general.	When	you	 take	 your
Node	project	and	you	put	it	on	GitHub,	or	you're	copying	it	around	or	sending	it
to	a	friend,	the	node_modules	folder	really	shouldn't	be	taken	with	you.

The	node_modules	 folder	contains	generated	code.	This	 is	not	code	you've	written
and	 you	 should	 never	 make	 any	 updates	 to	 the	 files	 inside	 Node	 modules
because	there's	a	pretty	good	chance	they'll	get	overwritten	next	time	you	install
some	modules.

In	 our	 case,	 we've	 already	 defined	 the	 modules	 and	 the	 versions	 inside
package.json	as	shown	in	the	following	code	because	we	used	that	handy	save	flag:

{

		"name":	"notes-node",

		"version":	"1.0.0",

		"description":	"",

		"main":	"app.js",

		"scripts":	{

				"test":	"echo	\"Error:	no	test	specified\"	&&	exit	1"

		},

		"author":	"",

		"license":	"ISC",

		"dependencies":	{

				"lodash":	"^4.17.4"

		}

}

This	 actually	means	we	 can	delete	 the	 node_modules	 folder	 completely.	Now,	we
can	copy	the	folder	and	give	it	to	a	friend,	we	can	put	it	on	GitHub,	or	whatever
we	want	to	do.	When	we	want	to	get	that	node_modules	folder	back,	all	we	have	to
do	inside	the	Terminal	is	run	the	npm	install	command	without	any	module	names
or	any	flags.

This	command,	when	run	without	any	names	or	 flags,	 is	going	 to	 load	 in	your
package.json	file,	grab	all	of	the	dependencies	and	install	them.	After	running	this
command,	the	node_modules	folder	is	going	to	look	exactly	as	it	looked	before	we
deleted	 it.	 Now,	 when	 you	 are	 using	 Git	 and	 GitHub,	 instead	 of	 deleting	 the
node_modules	folder,	you'll	just	ignore	it	from	your	repository.

Now,	what	we	 have	 explored	 so	 far	 is	 a	 process	we'll	 be	 going	 through	 a	 lot
more	throughout	the	book.	So	if	npm	still	seems	foreign	or	you're	not	quite	sure
why	 it's	 even	 useful,	 it	will	 become	 clear	 as	we	 do	more	with	 our	 third-party
modules,	rather	than	just	type	checking	or	looking	for	unique	items	in	an	array.
There's	a	ton	of	power	behind	the	npm	community	and	we'll	be	harnessing	that
to	our	fullest	as	we	make	real-world	apps.

Global	modules
One	of	the	major	complaints	I	get	is	the	fact	that	students	have	to	restart	the	app
from	the	Terminal	every	time	they	want	to	see	the	changes	they	just	made	inside
their	text	editor.	So,	in	this	section,	we'll	take	a	look	at	how	we	can	automatically
restart	our	app	as	we	make	changes	to	the	file.	That	means	if	I	change	from	Gary
to	Mike	and	save	it,	it	will	automatically	restart	over	in	the	Terminal.

Installing	the	nodemon	module
Now,	to	automatically	restart	our	app	as	we	make	changes	to	a	file,	we	have	to
install	a	command-line	utility,	and	we'll	do	this	using	npm.	To	get	started,	we'll
go	to	Google	Chrome	(or	the	browser	you	are	using)	and	head	over	to	https://www.
npmjs.com,	 as	we	 did	 previously	 in	 the	 Installing	 the	 lodash	module	 in	 our	 app
section,	and	the	module	we're	looking	for	is	called	nodemon.

The	 nodemon	 will	 be	 responsible	 for	 watching	 our	 app	 for	 changes	 and
restarting	 the	 app	 when	 those	 changes	 occur.	 Right	 here,	 as	 we	 see	 in	 the
following	screenshot,	we	can	view	the	docs	for	nodemon	as	well	as	various	other
things	such	as	current	version	numbers	and	so	on:

https://www.npmjs.com

You	 will	 also	 notice	 that	 it's	 a	 really	 popular	 module,	 with	 over	 30,000
downloads	a	day.	Now,	this	module	is	a	little	different	from	the	one	we	used	in
the	last	section,	that	is,	lodash.	The	lodash	got	installed	and	added	into	our	project's
package.json	file	as	shown	in	the	following	code	block:

{

	"name":	"notes-node",

	"version":	"1.0.0",

	"description":	"",

	"main":	"app.js",

	"scripts":	{

	"test":	"echo	\"Error:	no	test	specified\"	&&	exit	1"

	},

	"author":	"",

	"license":	"ISC",

	"dependencies":	{

	"lodash":	"^4.17.4"

	}

}

That	means	it	went	into	our	node_modules	folder	and	we	were	able	to	require	it	in
our	app.js	file	(refer	to	the	previous	section	for	more	detail).	Nodemon,	however,
works	a	little	differently.	It's	a	command-line	utility	that	gets	executed	from	the
Terminal.	 It	 will	 be	 a	 completely	 new	way	 of	 starting	 our	 application,	 and	 to
install	modules	to	be	run	from	the	command	line,	we	have	 to	 tweak	the	install
command	that	we	used	in	the	last	section.

For	now,	we	can	start	off	much	the	same	way,	though.	We'll	use	npm	install	and
type	 the	 name	 just	 like	we	did	 in	 the	 Installing	 the	 lodash	module	 in	 our	 app
section,	but	instead	of	using	the	save	flag,	we'll	use	the	g	flag,	which	is	short	for
global,	as	shown	here:

npm	install	nodemon	-g

This	command	installs	nodemon	as	a	global	utility	on	your	machine,	which	means
it'll	 not	 get	 added	 to	 your	 specific	 project	 and	 you'll	 never	 require	 nodemon.
Instead,	you'll	be	running	the	nodemon	command	from	Terminal,	as	shown	here:

When	we	 install	 nodemon	 using	 the	 preceding	 command,	 it'll	 go	 off	 to	 npm	 and
fetch	all	of	the	code	that	comes	with	nodemon.

And	it'll	add	it	into	the	installation	where	Node	and	npm	live	on	your	machine,
outside	the	project	you're	working	on.

The	npm	 install	 nodemon	 -g	 command	 could	 be	 executed	 from	 anywhere	 in	 your
machine;	it	does	not	need	to	be	executed	from	the	project	folder	since	it	doesn't
actually	 update	 the	 project	 at	 all.	With	 this	 in	 place,	 though,	 we	 now	 have	 a
brand	new	command	on	our	machine,	nodemon.

Executing	nodemon
Nodemon	will	get	executed	as	Node	did,	where	we	type	the	command	and	then
we	 type	 the	 file	we	want	 to	 start.	 In	our	 case,	 app.js	 is	 the	 root	of	our	project.
When	you	run	it,	you'll	see	a	few	things,	as	shown	here:

We'll	 see	 a	 combination	 of	 our	 app's	 output,	 along	with	 nodemon	 logs	 that	 show
you	what's	happening.	As	shown	in	the	preceding	code,	you	can	see	the	version
nodemon	is	using,	the	files	it's	watching,	and	the	command	it	actually	ran.	Now,	at
this	point,	it's	waiting	for	more	changes;	it	already	ran	through	the	entire	app	and
it'll	keep	running	until	another	change	happens	or	until	you	shut	it	down.

Inside	Atom,	we'll	make	a	few	changes	to	our	app.	Let's	get	started	by	changing
Gary	 to	 Mike	 in	 app.js,	 and	 then	 we'll	 change	 the	 filteredArray	 variable	 to	 var
filteredArray	=	_.uniq(['Mike']),	as	shown	in	the	following	code:

console.log('Starting	app.js');

const	fs	=	require('fs');

const	os	=	require('os');

const	_	=	require('lodash');

const	notes	=	require('./notes.js');

//	console.log(_.isString(true));

//	console.log(_.isString('Gary'));

var	filteredArray	=	_.uniq(['Mike']);

console.log(filteredArray);

Now,	 I'll	 be	 saving	 the	 file.	 In	 the	 Terminal	 window,	 you	 can	 see	 the	 app
automatically	 restarted,	 and	within	 a	 split	 second,	 the	new	output	 is	 shown	on
the	screen:

As	shown	in	the	preceding	screenshot,	we	now	have	our	array	with	one	item	of
string,	Mike.	And	this	is	the	real	power	of	nodemon.

You	can	create	your	applications	and	they	will	automatically	restart	over	in	the
Terminal,	 which	 is	 super	 useful.	 It'll	 save	 you	 a	 ton	 of	 time	 and	 a	 ton	 of
headaches.	You	won't	have	to	switch	back	and	forth	every	time	you	make	a	small
tweak.	This	also	prevents	a	 ton	of	 errors	where	you	are	 running	a	web	 server,

you	make	a	change,	 and	you	 forget	 to	 restart	 the	web	 server.	You	might	 think
your	change	didn't	work	as	expected	because	the	app	is	not	working	as	expected,
but	in	reality,	you	just	never	restarted	the	app.

For	 the	most	part,	we	will	be	using	nodemon	 throughout	 the	book	since	it's	super
useful.	 It's	 only	 used	 for	 development	 purposes,	 which	 is	 exactly	 what	 we're
doing	on	our	 local	machine.	Now,	we'll	move	forward	and	start	exploring	how
we	can	get	input	from	the	user	to	create	our	notes	application.	That	will	the	topic
of	the	next	few	sections.

Before	we	get	started,	we	should	clean	up	a	lot	of	the	code	we've	already	written
in	 this	 section.	 I'll	 remove	 all	 of	 the	 commented-out	 code	 in	 app.js.	 Then,	 I'll
simply	 remove	 os,	where	we	 have	 fs,	os	 and	 lodash,	 since	we'll	 not	 be	 using	 it
throughout	 the	 project.	 I'll	 also	 be	 adding	 a	 space	 between	 the	 third-party	 and
Node	modules	and	the	files	I've	written,	which	are	as	follows:

console.log('Starting	app.js');

const	fs	=	require('fs');

const	_	=	require('lodash');

const	notes	=	require('./notes.js');

I	find	this	to	be	a	good	syntax	that	makes	it	a	lot	easier	to	quickly	scan	for	either
third-party	or	Node	modules,	or	the	modules	that	I've	created	and	required.

Next	up,	over	in	notes.js,	we'll	remove	the	add	function;	this	was	only	added	for
demonstration	 purposes,	 as	 shown	 in	 the	 following	 figure.	 Then	 we	 can	 save
both	the	notes.js	and	app.js	files,	and	nodemon	will	automatically	restart:

console.log('Starting	notes.js');

module.exports.addNote	=	()	=>	{

		console.log('addNote');

		return	'New	note';

};

module.exports.add	=	(a,	b)	=>	{

		return	a	+	b;

};

Now	we	can	remove	the	greetings.txt	file.	That	was	used	to	demonstrate	how	the
fs	module	works,	 and	 since	we	 already	know	how	 it	works,	we	 can	wipe	 that
file.	And	last	but	not	least,	we	can	always	shut	down	nodemon	using	Ctrl	+	C.	Now

we're	back	at	the	regular	Terminal.

And	with	 this	 in	place,	now	we	should	move	on,	 figuring	out	how	we	can	get
input	from	the	user,	because	that's	how	users	can	create	notes,	remove	notes,	and
fetch	their	notes.

Getting	input
If	a	user	wants	to	add	a	note,	we	need	to	know	the	note's	title	as	well	as	the	body
of	 the	note.	 If	 they	want	 to	 fetch	a	note,	we	need	 to	know	the	 title	of	 the	note
they	want	to	fetch,	and	all	this	information	needs	to	come	into	our	app.	And	note
apps,	don't	really	do	anything	cool	until	they	get	this	dynamic	user	input.	This	is
what	makes	your	scripts	useful	and	awesome.

Now,	 throughout	 the	 book,	we'll	 be	 creating	 note	 apps	 that	 get	 input	 from	 the
user	 in	 a	 lot	 of	 different	ways.	We'll	 be	 using	 socket	 I/O	 to	 get	 real-time	 info
from	a	web	app,	we'll	be	creating	our	own	API	so	other	websites	and	servers	can
make	Ajax	requests	 to	our	app,	but	 in	 this	section,	we'll	 start	 things	off	with	a
very	basic	example	of	how	to	get	user	input.

We'll	be	getting	input	from	the	user	inside	the	command	line.	That	means	when
you	run	the	app	in	the	command	line,	you'll	be	able	to	pass	in	some	arguments.
These	arguments	will	be	available	inside	Node,	and	then	we	can	do	other	things
with	them,	such	as	create	a	note,	delete	a	note,	or	return	a	note.

Getting	input	from	the	user	inside
the	command	line
To	 start	 things	 off,	 let's	 run	 our	 app	 from	 the	 Terminal.	 We'll	 run	 it	 pretty
similarly	 to	 how	we	 ran	 it	 in	 the	 earlier	 sections:	we'll	 start	with	 node	 (I'm	not
using	nodemon	since	we'll	be	changing	the	input),	then	we'll	use	app.js,	which	is	the
file	we	want	to	run,	but	then	we	can	still	type	other	variables.

We	 can	 pass	 all	 sorts	 of	 command-line	 arguments	 in.	 We	 could
have	a	command,	and	this	would	tell	 the	app	what	to	do,	whether
you	want	to	add	a	note,	remove	a	note,	or	list	a	note.

If	we	want	to	add	a	note,	that	might	look	as	a	command	shown	in	the	following
code:

node	app.js	add

This	command	will	add	a	note;	we	can	remove	a	note	using	the	remove	command,
as	shown	here:

node	app.js	remove

And	we	could	list	all	of	our	notes	using	the	list	command:

node	app.js	list

Now,	when	we	run	this	command,	the	app	is	still	going	to	work	as	expected.	Just
because	we	passed	in	a	new	argument	doesn't	mean	our	app	is	going	to	crash:

And	we	actually	have	access	to	the	list	argument	already,	we're	just	not	using	it
inside	the	application.

To	 access	 the	 command-line	 arguments	 your	 app	 was	 initialized	 with,	 you'll
want	to	use	that	process	object	that	we	explored	in	the	first	chapter.

We	can	log	out	all	of	the	arguments	using	console.log	to	print	them	to	the	screen;
it's	on	the	process	object,	and	the	property	we're	looking	for	is	argv.

The	 argv	 object	 is	 short	 for	 arguments	 vector,	 or	 in	 the	 case	 of
JavaScript,	it's	more	like	an	arguments	array.	This	will	be	an	array
of	all	the	command-line	arguments	passed	in,	and	we	can	use	them
to	start	creating	our	application.

Now	save	app.js	and	it'll	look	like	the	following:

console.log('Starting	app.js');

const	fs	=	require('fs');

const	_	=	require('lodash');

const	notes	=	require('./notes.js');

console.log(process.argv);

Then	we'll	rerun	this	file:

Now,	as	shown	in	the	preceding	command	output,	we	have	three	items	which	are
as	follows:

The	first	one	points	to	the	executable	for	Node	that	was	used.
The	second	one	points	 to	 the	app	file	 that	was	started;	 in	 this	case,	 it	was
app.js.
The	third	one	is	where	our	command-line	arguments	start	to	come	into	play.

In	it,	we	have	our	list	showing	up	as	a	string.

That	 means	 we	 can	 access	 that	 third	 item	 in	 the	 array,	 and	 that	 will	 be	 the
command	for	our	notes	application.

Accessing	 the	 command-line
argument	 for	 the	 notes
application
Let's	access	the	command-line	argument	in	the	array	now.	We'll	make	a	variable
called	command,	and	set	it	equal	to	process.argv,	and	we'll	grab	the	item	in	the	third
position	(which	is	list,	as	shown	in	the	preceding	command	output),	which	is	the
index	of	two	as	shown	here:

var	command	=	process.argv[2];

Then	we	can	log	that	out	to	the	screen	by	logging	out	command	the	string.	Then,	as
the	second	argument,	I'll	pass	in	the	actual	command	that	was	used:

console.log('Command:	'	,	command);

And	 this	 is	 just	a	 simple	 log	 to	keep	 track	of	how	 the	app	 is	getting	executed.
The	 cool	 stuff	 is	 going	 to	 come	 when	 we	 add	 if	 statements	 that	 do	 different
things	depending	on	that	command.

Adding	if/else	statements
Let's	create	an	if/else	block	below	the	console.log('Command:	',	command);.	We'll	add
if	(command	===	'add'),	as	shown	here:

console.log('Starting	app.js');

const	fs	=	require('fs');

const	_	=	require('lodash');

const	notes	=	require('./notes.js');

var	command	=	process.argv[2];

console.log('Command:	',	command);

if	(command	===	'add')	

In	 this	 case,	we'll	 go	 through	 the	process	of	 adding	 a	 new	note.	Now,	we're	 not
specifying	the	other	arguments	here,	such	as	the	title	or	the	body	(we'll	discuss
that	in	later	sections).	For	now,	if	the	command	does	equal	add,	we'll	use	console.log
to	print	Adding	new	note,	as	shown	in	the	following	code:

console.log('Starting	app.js');

const	fs	=	require('fs');

const	_	=	require('lodash');

const	notes	=	require('./notes.js');

var	command	=	process.argv[2];

console.log('Command:	',	command);

if	(command	===	'add')	{

		console.log('Adding	new	note');

}

And	we	can	do	the	exact	same	thing	with	a	command	such	as	list.	We'll	add	else
if	(command	===	'list'),	as	shown	here:

console.log('Starting	app.js');

const	fs	=	require('fs');

const	_	=	require('lodash');

const	notes	=	require('./notes.js');

var	command	=	process.argv[2];

console.log('Command:	',	command);

if	(command	===	'add')	{

		console.log('Adding	new	note');

}	else	if	(command	===	'list')

If	the	command	does	equal	the	string	list,	we'll	run	the	following	block	of	code
using	console.log	to	print	Listing	all	notes.	We	can	also	add	an	else	clause	if	there
is	no	command,	which	is	console.log	('Command	not	recognized'),	as	shown	here:

console.log('Starting	app.js');

const	fs	=	require('fs');

const	_	=	require('lodash');

const	notes	=	require('./notes.js');

var	command	=	process.argv[2];

console.log('Command:	',	command);

if	(command	===	'add')	{

		console.log('Adding	new	note');

}	else	if	(command	===	'list')	{

		console.log('Listing	all	notes');

}	else	{

		console.log('Command	not	recognized');

}

With	 this	 in	 place,	 we	 can	 now	 rerun	 our	 app	 for	 a	 third	 time,	 and	 this	 time
around,	you'll	see	we	have	the	command	equal	to	list,	and	listing	all	notes	shows
up,	as	shown	in	the	following	code:

if	(command	===	'add')	{

		console.log('Adding	new	note');

}	else	if	(command	===	'list')	{

		console.log('Listing	all	notes');

}	else	{

		console.log('Command	not	recognized');

}

This	means	we	were	able	to	use	our	argument	to	run	different	code.	Notice	that
we	didn't	 run	 Adding	 new	 note	 and	we	didn't	 run	 Command	 not	 recognized.	We	 could,
however,	switch	the	node	app.js	command	from	list	to	add,	and	in	that	case,	we'll
get	Adding	new	note	printing,	as	shown	in	the	following	screenshot:

And	if	we	run	a	command	that	doesn't	exist,	for	example	read,	you	can	see	Command
not	recognized	prints	as	shown	in	the	following	screenshot:

Exercise	 –	 adding	 two	 else	 if
clauses	to	an	if	block
Now,	what	 I'd	 like	 you	 to	 do	 is	 add	 two	more	 else	if	 clauses	 to	 our	 if	 block,
which	will	be	as	follows:

One	will	be	for	the	read	command,	which	will	be	responsible	for	getting	an
individual	note	back
Another	one	called	remove	will	be	responsible	for	removing	the	note

All	you	have	to	do	is	add	the	else	if	statement	for	both	of	them,	and	then	just	put
a	quick	console.log	printing	something	like	Fetching	note	or	Removing	note.

Take	a	moment	 to	knock	 that	out	as	your	challenge	 for	 this	 section.	Once	you
add	those	two	else	if	clauses,	run	both	of	them	from	the	Terminal	and	make	sure
your	log	shows	up.	If	it	does	show	up,	you	are	done,	you	can	move	ahead	with
this	section.

Solution	to	the	exercise
For	the	solution,	the	first	thing	I'll	do	is	to	add	an	else	if	 for	read.	 I'll	open	and
close	 my	 curly	 braces	 and	 hit	 enter	 right	 in	 the	 middle	 so	 everything	 gets
formatted	correctly.

In	the	else	if	 statement,	 I'll	check	whether	 the	command	variable	equals	 the	string
read,	as	shown	here:

console.log('Starting	app.js');

const	fs	=	require('fs');

const	_	=	require('lodash');

const	notes	=	require('./notes.js');

var	command	=	process.argv[2];

console.log('Command:	',	command);

if	(command	===	'add')	{

		console.log('Adding	new	note');

}	else	if	(command	===	'list')	{

		console.log('Listing	all	notes');

}	else	if	()	{

}	else	{

		console.log('Command	not	recognized');

}

In	 the	 future,	 we'll	 be	 calling	 methods	 that	 update	 our	 local
database	with	the	notes.

For	now,	we'll	use	console.log	to	print	Reading	note:

console.log('Starting	app.js');

const	fs	=	require('fs');

const	_	=	require('lodash');

const	notes	=	require('./notes.js');

var	command	=	process.argv[2];

console.log('Command:	',	command);

if	(command	===	'add')	{

		console.log('Adding	new	note');

}	else	if	(command	===	'list')	{

		console.log('Listing	all	notes');

}	else	if	(command	===	'read')	{

}	else	{

		console.log('Command	not	recognized');

}

The	next	 thing	you	need	to	do	 is	add	an	else	if	clause	 that	checks	whether	 the
command	equals	remove.	In	the	else	if,	I'll	open	and	close	my	condition	and	hit	enter
just	as	I	did	in	the	previous	else	if	clause;	this	time,	I'll	add	if	the	command	equals
remove,	 we	 want	 to	 remove	 the	 note.	 And	 in	 that	 case,	 all	 we'll	 do	 is	 to	 use
console.log	to	print	Reading	note,	as	shown	in	the	following	code:

console.log('Starting	app.js');

const	fs	=	require('fs');

const	_	=	require('lodash');

const	notes	=	require('./notes.js');

var	command	=	process.argv[2];

console.log('Command:	',	command);

if	(command	===	'add')	{

		console.log('Adding	new	note');

}	else	if	(command	===	'list')	{

		console.log('Listing	all	notes');

}	else	if	(command	===	'read')	{

		console.log('Reading	note');

}	else	{

		console.log('Command	not	recognized');

}

And	with	this	in	place,	we	are	done.	If	we	refer	to	the	code	block,	we've	added
two	new	commands	we	can	run	over	in	the	Terminal,	and	we	can	test	those:

if	(command	===	'add')	{

		console.log('Adding	new	note');

}	else	if	(command	===	'list')	{

		console.log('Listing	all	notes');

}	else	if	(command	===	'read')	{

		console.log('Reading	note');

}	else	{

		console.log('Command	not	recognized');

}

First	up,	I'll	run	node	app.js	with	the	read	command,	and	Reading	note	shows	up:

console.log('Starting	app.js');

const	fs	=	require('fs');

const	_	=	require('lodash');

const	notes	=	require('./notes.js');

var	command	=	process.argv[2];

console.log('Command:	',	command);

if	(command	===	'add')	{

		console.log('Adding	new	note');

}	else	if	(command	===	'list')	{

		console.log('Listing	all	notes');

}	else	if	(command	===	'read')	{

		console.log('Reading	note');

}	else	if	(command	==	'remove')	{

		console.log('Removing	note');

}	else	{

		console.log('Command	not	recognized');

}

Then	I'll	rerun	the	command;	this	time,	I'll	be	using	remove.	And	when	I	do	that,
Removing	note	prints	to	the	screen,	as	shown	in	this	screenshot:

I'll	wrap	up	my	testing	using	a	command	that	doesn't	exist,	and	when	I	run	that,
you	can	see	Command	not	recognized	shows	up.

Getting	 the	 specific	 note
information
Now,	what	we	did	in	the	previous	subsection	is	step	1.	We	now	have	support	for
various	commands.	The	next	thing	we	need	to	figure	out	is	how	we'll	get	more
specific	 information.	For	example,	which	note	do	you	want	 to	 remove?	Which
note	do	you	want	to	read?	And	what	do	you	want	the	note	text	to	be	in	the	case
of	adding	a	note?	This	is	all	information	we	need	to	get	from	the	Terminal.

Now,	getting	it	is	going	to	be	pretty	similar	to	what	we	did	earlier,	and	to	show
you	what	 it	 looks	 like,	 we'll	 print	 the	 entire	 argv	 object	 once	 again,	 using	 the
following	command:

console.log(process.argv);

Over	in	the	Terminal,	we	can	now	run	a	more	complex	command.	Let's	say	we
want	to	remove	a	note	using	the	node	app.js	remove	command,	and	we'll	do	that	by
its	title.	We	might	use	the	title	argument,	which	looks	like	the	following	code:

node	app.js	remove	--title

In	 this	 title	 argument,	 we	 have	 --	 (two)	 hyphens	 followed	 by	 the	 argument
name,	which	is	title,	followed	by	the	=	(equals)	sign.	Then	we	can	type	our	note
title.	Maybe	 the	 note	 title	 is	 secrets.	 This	will	 pass	 the	 title	 argument	 into	 our
application.

Now,	there	are	a	couple	of	different	ways	you	could	format	the	title	argument,
which	are	as	follows:

You	could	have	the	title	secrets	like	the	one	in	the	preceding	command
You	 could	 have	 title	 equals	 secrets	 inside	 quotes,	 which	 will	 let	 us	 use
spaces	in	the	title:

						node	app.js	remove	--title=secrets

You	can	remove	the	=	(equals)	sign	altogether	and	simply	put	a	space:

						node	app.js	remove	--title="secrets	2"

No	matter	how	you	choose	to	format	your	argument,	these	are	all	valid	ways	to
pass	in	the	title.

As	you	see	 in	 the	preceding	screenshot,	 I	am	using	double	quotes
when	wrapping	my	 string.	Now,	 if	 you	 switch	 to	 single	 quotes,	 it
will	not	break	on	Linux	or	OS	X,	but	it	will	break	on	Windows.	That
means	when	you're	passing	in	command-line	arguments	such	as	the
title	or	 the	note	body,	you'll	want	 to	wrap	your	strings,	when	you
have	 spaces,	 in	 double	 quotes,	 not	 single.	 So,	 if	 you	 are	 using
Windows	and	you're	getting	some	sort	of	unexpected	behavior	with
your	 arguments,	make	 sure	 you're	 using	 double	 quotes	 instead	of
single;	that	should	fix	the	issue.

For	 the	 moment,	 I'll	 keep	 the	 =	 (equals)	 sign	 and	 the	 quotes	 and	 rerun	 the
command:

node	app.js	remove	--title="secrets	2"

When	I	run	the	command,	you	can	see	in	the	following	code	output	that	we	have
our	two	arguments:

These	are	the	arguments	that	we	don't	need,	then	we	have	our	remove	command,
which	 is	 the	 third	 one,	 and	we	 now	 have	 a	 new	 fourth	 string,	 the	 title	 that	 is
equal	 to	 secrets	 2.	 And	 our	 argument	 was	 successfully	 passed	 into	 the
application.	The	problem	is	that	it's	not	very	easy	to	use.	In	the	fourth	string,	we
have	to	parse	out	the	key,	which	is	title,	and	the	value,	which	is	secrets	2.

When	 we	 used	 the	 command,	 which	 was	 the	 third	 argument	 in	 the	 previous
section,	it	was	a	lot	easier	to	use	inside	our	app.	We	simply	pulled	it	out	of	the
arguments	 array	 and	 we	 referenced	 it	 by	 using	 the	 command	 variable	 and
checking	whether	it	equaled	add,	list,	read,	or	remove.

Things	 get	 a	 lot	 more	 complex	 as	 we	 use	 different	 styles	 for	 passing	 in	 the
arguments.	 If	we	rerun	 the	 last	command	with	a	space	 instead	of	an	=	 (equals)
sign,	 as	 shown	 in	 the	 following	 code,	which	 is	 perfectly	 valid,	 our	 arguments
array	now	looks	completely	different:

In	 the	 preceding	 code	 output,	 you	 can	 see	 that	we	 have	 the	 title	 as	 the	 fourth
item,	and	we	 have	 the	 value,	which	 is	 secrets	2,	 as	 the	 fifth,	which	means	we
have	 to	 add	 other	 conditions	 for	 parsing.	 And	 this	 turns	 into	 a	 pain	 really
quickly,	which	is	why	we	will	not	do	it.

We'll	use	a	third-party	module	called	yargs	in	the	next	chapter	to	make	parsing
the	command-line	 arguments	 effortless.	 Instead	 of	 having	 strings,	 as	 shown	 in
this	 one	 or	 the	 one	 we	 discussed	 earlier,	 we'll	 get	 an	 object	 where	 the	 title
property	equals	the	secrets	2	string.	That	will	make	it	super	easy	to	implement	the
rest	of	the	notes	application.

Now,	parsing	certain	types	of	command-line	arguments,	such	as	key	value	pairs,
becomes	a	 lot	more	complex,	which	 is	why,	 in	 the	next	chapter,	we'll	be	using
yargs	to	do	just	that.

Summary
In	this	chapter,	we	learned	how	to	use	require	to	load	in	modules	that	come	with
Node.js.	We	created	our	files	for	our	notes	application	and	required	them	inside
app.js.	We	 explored	 how	 to	 use	 built-in	modules	 and	we	 explored	 how	 to	 use
modules	we	defined.	We	 found	out	 how	 to	 require	 other	 files	 that	we	 created,
and	how	to	export	things	such	as	properties	and	functions	from	those	files.

We	explored	npm	a	little	bit,	how	we	can	use	npm	init	 to	generate	a	package.json
file,	and	how	we	can	install	and	use	third-party	modules.	Next,	we	explored	the
nodemon	module,	using	it	to	automatically	restart	our	app	as	we	make	changes	to	a
file.	Last,	we	learned	how	to	get	input	from	the	user,	which	is	needed	to	create
the	notes	 application.	We	 learned	 that	we	 can	use	 command-line	 arguments	 to
pass	data	into	our	app.

In	 the	 next	 chapter,	 we'll	 explore	 some	 more	 interesting	 Node	 fundamental
concepts,	including	yargs,	JSON,	and	Refactor.

Node	Fundamentals	–	Part	2
In	this	chapter,	we'll	continue	our	discussion	on	some	more	node	fundamentals.
We'll	explore	yargs,	and	we'll	see	how	to	parse	command-line	arguments	using
process.argv	and	yargs.	After	that,	we'll	explore	JSON.	JSON	is	nothing	more	than
a	string	that	looks	kind	of	like	a	JavaScript	object,	with	the	notable	differences
being	that	it	uses	double	quotes	instead	of	single	quotes	and	all	of	your	property
names—like	name	and	age,	 in	 this	 case—require	quotes	 around	 them.	We'll	 look
into	how	 to	 convert	 an	object	 into	 a	 string,	 then	 define	 that	 string,	 use	 it,	 and
convert	it	back	to	an	object.

After	we've	done	that,	we'll	 fill	out	 the	addNote	 function.	Finally,	we'll	 look	 into
refactor,	 moving	 the	 functionality	 into	 individual	 functions	 and	 testing	 the
functionality.

More	specifically,	we'll	go	through	following	topics:

yargs
JSON
Adding	note
Refactor

yargs
In	this	section,	we	will	use	yargs,	a	third-party	npm	module,	to	make	the	process
of	 parsing	 much	 easier.	 It	 will	 let	 us	 access	 things	 such	 as	 title	 and	 body
information	without	needing	to	write	a	manual	parser.	This	is	a	great	example	of
when	you	should	look	for	an	npm	module.	If	we	don't	use	a	module,	it	would	be
more	productive	 for	our	Node	application	 to	use	a	 third-party	module	 that	has
been	tested	and	thoroughly	vetted.

To	get	started,	we'll	install	the	module,	then	we'll	add	it	into	the	project,	parsing
for	things	such	as	a	title	of	the	body,	and	we'll	call	all	the	functions	that	will	get
defined	over	in	notes.js.	If	the	command	is	add,	we'll	call	add	note,	so	on.

Installing	yargs
Now,	let's	view	the	documents	page	for	yargs.	It's	always	a	good	idea	to	know
what	you're	getting	yourself	into.	If	you	search	for	yargs	on	Google,	you	should
find	 the	 GitHub	 page	 as	 your	 first	 search	 result.	 As	 shown	 in	 the	 following
screenshot,	we	have	the	GitHub	page	for	the	yargs	library:

Now,	yargs	 is	a	very	complex	 library.	 It	has	a	 ton	of	features	for	validating	all
sorts	of	input,	and	it	has	different	ways	in	which	you	can	format	that	input.	We
will	 start	 with	 a	 very	 basic	 example,	 although	 we	 will	 be	 introducing	 more
complex	examples	throughout	this	chapter.

If	you	want	to	look	at	any	other	features	that	we	don't	discuss	in	the

chapter,	or	you	just	want	to	see	how	something	works	that	we	have
talked	about,	you	can	always	find	it	in	the	yarg	documents.

We'll	now	move	into	Terminal	to	install	this	module	inside	of	our	application.	To
do	this,	we'll	use	npm	install	followed	by	the	module	name,	yargs,	and	in	this	case,
I'll	 use	 the	 @	 sign	 to	 specify	 the	 specific	 version	 of	 the	module	 I	want	 to	 use,
11.0.0,	which	is	the	most	recent	version	at	the	time	of	writing.	Next,	I'll	add	the
save	flag,	which,	as	we	know,	updates	the	package.json	file:

npm	install	yargs@11.0.0	--save

If	 I	 leave	 off	 the	 save	 flag,	 yargs	 will	 get	 installed	 into	 the
node_modules	 folder,	 but	 if	we	wipe	 that	 node_modules	 folder	 later	 and
run	npm	install,	yargs	won't	get	reinstalled	because	it's	not	listed	in
the	package.json	file.	This	is	why	we	use	the	save	flag.

http://yargs.js.org/docs/

Running	yargs
Now	 that	we've	 installed	yargs,	we	can	move	over	 into	Atom,	 inside	of	 app.js,
and	get	started	with	using	it.	The	basics	of	yargs,	the	very	core	of	its	feature	set,
is	really	simple	to	take	advantage	of.	The	first	thing	we'll	do	is	to	require	it	up,	as
we	did	with	fs	and	lodash	in	the	previous	chapter.	Let's	make	a	constant	and	call	it
yargs,	setting	it	equal	to	require('yargs'),	as	shown	here:

console.log('Starting	app.js');

const	fs	=	require('fs');

const	_	=	require('lodash');

const	yargs	=	require('yargs');

const	notes	=	require('./notes.js');

var	command	=	process.argv[2];

console.log('Command:',	command);

console.log(process.argv);

if	(command	===	'add')	{

		console.log('Adding	new	note');

}	else	if	(command	===	'list')	{

		console.log('Listing	all	notes');

}	else	if	(command	===	'read')	{

		console.log('Reading	note');

}	else	if	(command	===	'remove')	{

		console.log('Removing	note');

}	else	{

		console.log('Command	not	recognized');

}

From	 here,	 we	 can	 fetch	 the	 arguments	 as	 yargs	 parses	 them.	 It	 will	 take	 the
same	 process.argv	 array	 that	 we	 discussed	 in	 the	 previous	 chapter,	 but	 it	 goes
behind	 the	 scenes	 and	 parses	 it,	 giving	 us	 something	 that's	much	more	 useful
than	what	Node	gives	 us.	 Just	 above	 the	 command	 variable,	we	 can	make	 a	 const
variable	called	argv,	setting	it	equal	to	yargs.argv,	as	shown	here:

console.log('Starting	app.js');

const	fs	=	require('fs');

const	_	=	require('lodash');

const	yargs	=	require('yargs');

const	notes	=	require('./notes.js');

const	argv	=	yargs.argv;

var	command	=	process.argv[2];

console.log('Command:',	command);

console.log(process.argv);

if	(command	===	'add')	{

		console.log('Adding	new	note');

}	else	if	(command	===	'list')	{

		console.log('Listing	all	notes');

}	else	if	(command	===	'read')	{

		console.log('Reading	note');

}	else	if	(command	===	'remove')	{

		console.log('Removing	note');

}	else	{

		console.log('Command	not	recognized');

}

The	 yargs.argv	 module	 is	 where	 the	 yargs	 library	 stores	 its	 version	 of	 the
arguments	that	your	app	ran	with.	Now	we	can	print	it	using	console.log,	and	this
will	 let	 us	 take	 a	 look	 at	 the	 process.argv	 and	 yargs.argv	 variables;	 we	 can	 also
compare	 them	 and	 see	 how	 yargs	 differs.	 For	 the	 command	 where	 we	 use
console.log	to	print	process.argv,	I'll	make	the	first	argument	a	string	called	Process
so	 that	we	can	differentiate	 it	 in	Terminal.	We'll	call	console.log	again.	The	first
argument	 will	 be	 the	 Yargs	 string,	 and	 the	 second	 one	 will	 be	 the	 actual	 argv
variable,	which	comes	from	yargs:

console.log('Starting	app.js');

const	fs	=	require('fs');

const	_	=	require('lodash');

const	yargs	=	require('yargs');

const	notes	=	require('./notes.js');

const	argv	=	yargs.argv;

var	command	=	process.argv[2];

console.log('Command:',	command);

console.log('Process',	process.argv);

console.log('Yargs',	argv);

if	(command	===	'add')	{

		console.log('Adding	new	note');

}	else	if	(command	===	'list')	{

		console.log('Listing	all	notes');

}	else	if	(command	===	'read')	{

		console.log('Reading	note');

}	else	if	(command	===	'remove')	{

		console.log('Removing	note');

}	else	{

		console.log('Command	not	recognized');

}

Now	we	can	run	our	app	(refer	to	the	preceding	code	block)	a	few	different	ways
and	see	how	these	two	console.log	statements	differ.

First	up,	we'll	run	at	node	app.js	with	the	add	command,	and	we	can	run	this	very
basic	example:

node	app.js	add

We	already	know	what	the	process.argv	array	looks	like	from	the	previous	chapter.
The	useful	information	is	the	third	string	inside	of	the	array,	which	is	'add'.	In	the
fourth	string,	Yargs	gives	us	an	object	that	looks	very	different:

As	shown	 in	 the	preceding	code	output,	 first	we	have	 the	underscore	property,
then	commands	such	as	add	are	stored.

If	I	were	to	add	another	command,	say	add,	and	then	I	were	to	add	a	modifier,	say
encrypted,	you	would	see	that	add	would	be	the	first	argument	and	encrypted	 the
second,	as	shown	here:

node	app.js	add	encrypted

So	far,	yargs	really	isn't	shining.	This	isn't	much	more	useful	than	what	we	have
in	the	previous	example.	Where	it	really	shines	is	when	we	start	passing	in	key-
value	 pairs,	 such	 as	 the	 title	 example	we	 used	 in	 the	Getting	 input	 section	 of
Node	Fundamentals	-	Part	1	in	chapter	2.	I	can	set	my	title	flag	equal	to	secrets,
press	enter,	and	this	time	around,	we	get	something	much	more	useful:

node	app.js	add	--title=secrets

In	 the	 following	 code	 output,	we	 have	 the	 third	 string	 that	we	would	 need	 to
parse	in	order	to	fetch	the	value	and	the	key,	and	in	the	fourth	string,	we	actually
have	a	title	property	with	a	value	of	secrets:

Also,	yargs	has	built-in	parsing	for	all	the	different	ways	you	could	specify	this.

We	can	insert	a	space	after	title,	and	it	will	still	work	just	as	 it	did	before;	we
can	add	quotes	around	secrets,	or	add	other	words,	like	secrets	from	Andrew,	and	it
will	 still	 parses	 it	 correctly,	 setting	 the	 title	 property	 to	 the	 secrets	 from	 Andrew
string,	as	shown	here:

node	app.js	add	--title	"secrets	from	Andrew"

This	 is	 where	 yargs	 really	 shines!	 It	 makes	 the	 process	 of	 parsing	 your
arguments	a	lot	easier.	This	means	that	inside	our	app,	we	can	take	advantage	of
that	parsing	and	call	the	proper	functions.

Working	with	the	add	command
Let's	work	with	the	add	command,	for	example,	for	parsing	your	arguments	and
calling	 the	 functions.	 Once	 the	 add	 command	 gets	 called,	 we	 want	 to	 call	 a
function	defined	in	notes,	which	will	be	responsible	for	actually	adding	the	note.
The	notes.addNote	function	will	get	the	job	done.	Now,	what	do	we	want	to	pass	to
the	addNote	function?	We	want	to	pass	in	two	things:	the	title,	which	is	accessible
on	argv.title,	as	we	saw	in	the	preceding	example;	and	the	body,	argv.body:

console.log('Starting	app.js');

const	fs	=	require('fs');

const	_	=	require('lodash');

const	yargs	=	require('yargs');

const	notes	=	require('./notes.js');

const	argv	=	yargs.argv;

var	command	=	process.argv[2];

console.log('Command:',	command);

console.log('Process',	process.argv);

console.log('Yargs',	argv);

if	(command	===	'add')	{

		console.log('Adding	new	note');

		notes.addNote(argv.title,	argv.body);

}	else	if	(command	===	'list')	{

		console.log('Listing	all	notes');

}	else	if	(command	===	'read')	{

		console.log('Reading	note');

}	else	if	(command	===	'remove')	{

		console.log('Removing	note');

}	else	{

		console.log('Command	not	recognized');

}

Currently,	 these	 command-line	 arguments,	 title	 and	 body,	 aren't
required.	So	technically,	the	user	could	run	the	application	without
one	of	them,	which	would	cause	it	 to	crash,	but	in	future,	we'll	be
requiring	both	of	these.

Now	that	we	have	notes.addNote	in	place,	we	can	remove	our	console.log	statement,
which	 was	 just	 a	 placeholder,	 and	 we	 can	 move	 into	 the	 notes	 application
notes.js.

Inside	notes.js,	we'll	get	started	by	making	a	variable	with	the	same	name	as	the
method	we	used	over	app.js	and	addNote,	and	we	will	set	it	equal	to	an	anonymous

arrow	function,	as	shown	here:

var	addNote	=	()	=>	{

};

Now,	this	alone	isn't	too	useful,	because	we're	not	exporting	the	addNote	function.
Below	 the	 variable,	we	 can	 define	 module.exports	 in	 a	 slightly	 different	way.	 In
previous	 sections,	 we	 added	 properties	 onto	 exports	 to	 export	 them.	 We	 can
actually	define	an	entire	object	that	gets	set	to	exports,	and	in	this	case,	we	can	set
addNote	equal	to	the	addNote	function	defined	in	preceding	code	block:

module.exports	=	{

		addNote:	addNote

};

In	ES6,	there's	actually	a	shortcut	for	this.	When	you're	setting	an
object	 attribute	 and	 a	 value	 that's	 a	 variable	 and	 they're	 both
exactly	 the	 same,	 you	 can	 actually	 leave	 off	 the	 colon	 and	 the
value.	Either	way,	the	result	identical.

In	 the	 preceding	 code,	 we're	 setting	 an	 object	 equal	 to	 module.exports,	 and	 that
object	has	a	property,	addNote,	which	points	to	the	addNote	function	we	defined	as	a
variable	in	the	preceding	code	block.

Once	again,	addNote:	and	addNote	are	identical	inside	of	ES6.	We	will	be	using	the
ES6	syntax	for	everything	throughout	this	book.

Now	I	can	take	my	two	arguments,	title	and	body,	and	actually	do	something	with
them.	 In	 this	 case,	 we'll	 call	 console.log	 and	 Adding	 note,	 passing	 in	 the	 two
arguments	 as	 the	 second	 and	 third	 argument	 to	 console.log,	 title	 and	 body,	 as
shown	here:

var	addNote	=	(title,	body)	=>	{

		console.log('Adding	note',	title,	body);

};

Now	we're	in	a	pretty	good	position	to	run	the	add	command	with	title	and	body
and	 see	 if	we	 get	 exactly	what	we'd	 expect,	which	 is	 the	 console.log	 statement
shown	in	the	preceding	code	to	print.

Over	 in	 Terminal,	 we	 can	 start	 by	 running	 the	 app	 with	 node	 app.js,	 and	 then
specify	the	filename.	We'll	use	the	add	command;	which	will	run	the	appropriate

function.	Then,	we'll	pass	in	title,	setting	it	equal	to	secret,	and	then	we	can	pass
in	body,	which	will	be	our	second	command-line	argument,	setting	that	equal	 to
the	string,	This	is	my	secret:

node	app.js	add	--title=secret	--body="This	is	my	secret"

In	this	command,	we	specified	three	things:	the	add	command	the	title	argument,
which	 gets	 set	 to	 secret;	 and	 the	 body	 argument,	 which	 gets	 set	 to	 "This	 is	 my

secret".	If	all	goes	well,	we'll	get	the	appropriate	log.	Let's	run	the	command.

In	the	following	command	output,	you	can	see	Adding	note	secret,	which	is	the
title;	and	This	is	my	secret,	which	is	the	body:

With	this	in	place,	we	now	have	one	of	our	methods	set	up	and	ready	to	go.	The
next	thing	that	we'll	do	is	convert	 the	other	commands	we	have—the	list,	read,

and	remove	commands.	Let's	look	into	one	more	command,	and	then	you'll	do	the
other	two	by	yourself	as	exercises.

Working	with	the	list	command
Now,	 with	 the	 list	 command,	 I'll	 remove	 the	 console.log	 statement	 and	 call
notes.getAll,	as	shown	here:

console.log('Starting	app.js');

const	fs	=	require('fs');

const	_	=	require('lodash');

const	yargs	=	require('yargs');

const	notes	=	require('./notes.js');

const	argv	=	yargs.argv;

var	command	=	process.argv[2];

console.log('Command:',	command);

console.log('Process',	process.argv);

console.log('Yargs',	argv);

if	(command	===	'add')	{

		notes.addNote(argv.title,	argv.body);

}	else	if	(command	===	'list')	{

		notes.getAll();

}	else	if	(command	===	'read')	{

		console.log('Reading	note');

}	else	if	(command	===	'remove')	{

		console.log('Removing	note');

}	else	{

		console.log('Command	not	recognized');

}

At	some	point,	notes.getAll	will	 return	all	of	 the	notes.	Now,	 getAll	doesn't	 take
any	arguments	since	it	will	return	all	of	the	notes	regardless	of	the	title.	The	read
command	will	require	a	title,	and	remove	will	also	require	the	title	of	the	note	you
want	to	remove.

For	now,	we	can	create	the	getAll	function.	Inside	notes.js,	we'll	go	through	that
process	 again.	We'll	 start	 by	making	 a	 variable,	 calling	 it	 getAll,	 and	 setting	 it
equal	 to	 an	 arrow	 function,	 which	 we've	 used	 before.	 We	 start	 with	 our
arguments	list,	 then	we	 set	 up	 the	 arrow	 (=>),	which	 is	 the	 equal	 sign	 and	 the
greater	 than	 sign.	Next,	we	 specify	 the	 statements	we	want	 to	 run.	 Inside	 our
code	block,	we'll	run	console.log(Getting	all	notes),	as	shown	here:

var	getAll	=	()	=>	{

		console.log('Getting	all	notes');

};

The	last	step	to	the	process	after	adding	that	semicolon	will	be	to	add	getAll	 to
the	exports,	as	shown	in	the	following	code	block:

module.exports	=	{

		addNote,

		getAll

};

Remember	 that	 in	 ES6,	 if	 you	 have	 a	 property	 whose	 name	 is
identical	to	the	value,	which	is	a	variable,	you	can	simply	remove
the	value	variable	and	the	colon.

Now	that	we	have	getAll	in	notes.js	in	place,	and	we've	wired	it	up	in	app.js,	we
can	run	things	over	in	Terminal.	In	this	case,	we'll	run	the	list	command:

node	app.js	list

In	 the	preceding	 code	output,	 you	 can	 see	 at	 the	bottom	 that	Getting	 all	 notes

prints	 to	 the	 screen.	 Now	 that	 we	 have	 this	 in	 place,	 we	 can	 remove
console.log('Process',	process.argv)	from	the	command	variable	in	app.js.	The	resultant
code	will	look	like	the	following	code	block:

console.log('Starting	app.js');

const	fs	=	require('fs');

const	_	=	require('lodash');

const	yargs	=	require('yargs');

const	notes	=	require('./notes.js');

const	argv	=	yargs.argv;

var	command	=	process.argv[2];

console.log('Command:',	command);

console.log('Yargs',	argv);

if	(command	===	'add')	{

		notes.addNote(argv.title,	argv.body);

}	else	if	(command	===	'list')	{

		notes.getAll();

}	else	if	(command	===	'read')	{

		console.log('Reading	note');

}	else	if	(command	===	'remove')	{

		console.log('Removing	note');

}	else	{

		console.log('Command	not	recognized');

}

We	will	keep	the	yargs	 log	around	since	we'll	be	exploring	the	other	ways	and
methods	to	use	yargs	throughout	the	chapter.

Now	 that	 we	 have	 the	 list	 command	 in	 place,	 next,	 I'd	 like	 you	 to	 create	 a
method	for	the	read	and	remove	commands.

The	read	command
When	the	read	 command	 is	used,	we	want	 to	call	 notes.getNote,	passing	 in	title.
Now,	title	will	get	passed	in	and	parsed	using	yargs,	which	means	that	we	can
use	argv.title	to	fetch	it.	And	that's	all	we	have	to	do	when	it	comes	to	calling	the
function:

console.log('Starting	app.js');

const	fs	=	require('fs');

const	_	=	require('lodash');

const	yargs	=	require('yargs');

const	notes	=	require('./notes.js');

const	argv	=	yargs.argv;

var	command	=	process.argv[2];

console.log('Command:',	command);

console.log('Yargs',	argv);

if	(command	===	'add')	{

		notes.addNote(argv.title,	argv.body);

}	else	if	(command	===	'list')	{

		notes.getAll();

}	else	if	(command	===	'read')	{

		notes.getNote(argv.title);

}	else	if	(command	===	'remove')	{

		console.log('Removing	note');

}	else	{

		console.log('Command	not	recognized');

}

The	 next	 step	 is	 to	 define	 getNote,	 because	 currently	 it	 doesn't	 exist.	 Over	 in
notes.js,	 right	 below	 the	 getAll	 variable,	we	 can	make	 a	 variable	 called	 getNote,
which	 will	 be	 a	 function.	 We'll	 use	 the	 arrow	 function,	 and	 it	 will	 take	 an
argument;	 it	will	 take	 the	 note	 title.	 The	 getNote	 function	 takes	 the	 title,	 then	 it
returns	the	body	for	that	note:

var	getNote	=	(title)	=>	{

};

Inside	getNote,	we	can	use	console.log	to	print	something	like	Getting	note,	followed
by	 the	 title	 of	 the	 note	 you	will	 fetch,	 which	will	 be	 the	 second	 argument	 to
console.log:

var	getNote	=	(title)	=>	{

		console.log('Getting	note',	title);

};

This	is	the	first	command,	and	we	can	now	test	it	before	we	go	on	to	the	second
one,	which	is	remove.

Over	in	Terminal,	we	can	use	node	app.js	 to	run	the	file.	We'll	be	using	the	new
read	command,	passing	in	a	title	flag.	I'll	use	a	different	syntax,	where	title	gets
set	equal	to	the	value	outside	of	quotes.	I'll	use	something	like	accounts:

node	app.js	read	--title	accounts

This	accounts	value	will	read	the	accounts	note	in	the	future,	and	it	will	print	it	to
the	screen,	as	shown	here:

As	you	can	see	in	the	preceding	code	output,	we	get	an	error,	which	we'll	debug
now.

Dealing	with	the	errors	in	parsing
commands
Getting	an	error	is	not	the	end	of	the	world.	Getting	an	error	usually	means	that
you	have	a	small	typo	or	you	forgot	one	step	in	the	process.	So,	we'll	first	figure
out	how	to	parse	through	these	error	messages,	because	the	error	messages	you
get	in	the	code	output	can	be	pretty	daunting.	Let's	refer	to	the	code	output	error
here:

As	you	can	see,	the	first	line	shows	you	where	the	error	occurred.	It's	inside	of
our	app.js	file,	and	the	number	19	after	the	colon	is	the	line	number.	It	shows	you

exactly	where	things	went	bad.	The	TypeError:	notes.getNote	is	not	a	function	line	is
telling	you	pretty	clearly	that	 the	getNote	 function	you	 tried	 to	 run	doesn't	exist.
Now	we	can	take	this	information	and	debug	our	app.

In	app.js,	we	see	that	we	call	notes.getNote.	Everything	looks	great,	but	when	we
move	into	notes.js,	we	realize	that	we	never	actually	exported	getNote.	This	is	why
when	we	try	to	call	the	function,	we	get	getNote	is	not	a	function.	All	we	have	to
do	to	fix	that	error	message	is	export	getNote,	as	shown	here:

module.exports	=	{

		addNote,

		getAll,

		getNote

};

Now	when	we	save	the	file	and	rerun	the	app	from	Terminal,	we'll	get	what	we
expect—Getting	note	followed	by	the	title,	which	is	accounts,	as	shown	here:

This	 is	 how	we	 can	 debug	 our	 error	messages.	 Error	messages	 contain	 really
useful	 information.	 For	 the	 most	 part,	 the	 first	 couple	 of	 lines	 are	 code	 that
you've	written,	and	the	other	ones	are	internal	Node	code	or	third-party	modules.
In	 our	 case,	 the	 first	 line	 of	 the	 stack	 trace	 is	 important,	 as	 it	 shows	 exactly
where	the	error	occurred.

The	remove	command
Now,	since	the	read	command	is	working,	we	can	move	on	to	the	last	one,	which
is	the	remove	command.	Here,	I'll	call	notes.removeNote,	passing	in	the	title,	which	as
we	know	is	available	in	argv.title:

console.log('Starting	app.js');

const	fs	=	require('fs');

const	_	=	require('lodash');

const	yargs	=	require('yargs');

const	notes	=	require('./notes.js');

const	argv	=	yargs.argv;

var	command	=	process.argv[2];

console.log('Command:',	command);

console.log('Yargs',	argv);

if	(command	===	'add')	{

		notes.addNote(argv.title,	argv.body);

}	else	if	(command	===	'list')	{

		notes.getAll();

}	else	if	(command	===	'read')	{

		notes.getNote(argv.title);

}	else	if	(command	===	'remove')	{

		notes.removeNote(argv.title);

}	else	{

		console.log('Command	not	recognized');

}

Next	 up,	we'll	 define	 the	 removeNote	 function	 over	 inside	 of	 our	 notes	API	 file,
right	below	the	getNote	variable:

var	removeNote	=	(title)	=>	{	

	console.log('Removing	note',	title);

};

Now,	removeNote	will	work	much	the	same	way	as	getNote.	All	it	needs	is	the	title;	it
can	use	this	information	to	find	the	note	and	remove	it	from	the	database.	This
will	be	an	arrow	function	that	takes	the	title	argument.

In	this	case,	we'll	print	the	console.log	statement,	Removing	note;	then,	as	the	second
argument,	we'll	simply	print	title	back	to	the	screen	to	make	sure	that	it's	going
through	 the	 process	 successfully.	 This	 time	 around,	 we'll	 export	 our	 removeNote
function;	we'll	define	it	using	the	ES6	syntax:

module.exports	=	{

		addNote,

		getAll,

		getNote,

		removeNote

};

The	 last	 thing	 to	 do	 is	 test	 it	 and	make	 sure	 it	works.	We	 can	 reload	 the	 last
command	using	 the	 up	 arrow	key.	We	 change	 read	 to	 remove,	 and	 that	 is	 all	we
need	to	do.	We're	still	passing	in	the	title	argument,	which	is	great,	because	that
is	what	remove	needs:

node	app.js	remove	--title	accounts

When	 I	 run	 this	 command,	we	 get	 exactly	what	we	 expected.	Removing	 note
prints	to	the	screen,	as	shown	in	the	following	code	output,	and	then	we	get	the
title	of	the	note	that	we're	supposed	to	be	removing,	which	is	accounts:

This	looks	great!	That	is	all	it	takes	to	use	yargs	to	parse	your	arguments.

With	 this,	we	 now	 have	 a	 place	 to	 define	 all	 of	 that	 functionality,	 for	 saving,
reading,	listing,	and	removing	notes.

Fetching	command
The	last	thing	I	want	to	discuss	before	we	wrap	up	this	section	is—how	we	fetch
command.

As	we	know,	command	is	available	in	the	_	property	as	the	first	and	only	item.	This
means	 that	 in	 the	 app.js,	var	command	 statement,	we	 can	 set	 command	 equal	 to	 argv,
then	._,	and	then	we'll	use	[]	to	grab	the	first	item	in	the	array,	as	shown	in	the
following	code:

console.log('Starting	app.js');

const	fs	=	require('fs');

const	_	=	require('lodash');

const	yargs	=	require('yargs');

const	notes	=	require('./notes.js');

const	argv	=	yargs.argv;

var	command	=	argv._[0];

console.log('Command:',	command);

console.log('Yargs',	argv);

if	(command	===	'add')	{

		notes.addNote(argv.title,	argv.body);

}	else	if	(command	===	'list')	{

		notes.getAll();

}	else	if	(command	===	'read')	{

		notes.getNote(argv.title);

}	else	if	(command	===	'remove')	{

		notes.removeNote(argv.title);

}	else	{

		console.log('Command	not	recognized');

}

With	 this	 in	 place,	 we	 now	 have	 the	 same	 functionality,	 but	 we'll	 use	 yargs
everywhere.	If	I	rerun	the	last	command,	we	can	test	 that	 the	functionality	still
works.	And	it	does!	As	shown	in	the	following	command	output,	we	can	see	that
Command:	remove	shows	up:

Next,	we'll	look	into	filling	out	the	individual	functions.	We'll	take	a	look	first	at
how	we	can	use	JSON	to	store	our	notes	inside	our	file	system.

JSON
Now	that	you	know	how	to	parse	command-line	arguments	using	process.argv	and
yargs,	you've	solved	the	first	piece	to	the	puzzle	for	the	notes	application.	Now,
how	do	we	get	that	unique	input	from	the	user?	The	second	piece	to	the	puzzle	is
to	solve	how	we	store	this	information.

When	someone	adds	a	new	note,	we	want	 to	save	 it	somewhere,	preferably	on
the	filesystem.	So	the	next	time	they	try	to	fetch,	remove,	or	read	that	note,	they
actually	get	the	note	back.	To	do	this,	we'll	need	to	introduce	something	called
JSON.	 If	 you're	 already	 familiar	 with	 JSON,	 you	 probably	 know	 it	 is	 super
popular.	 It	 stands	 for	JavaScript	Object	Notation,	 and	 it's	 a	way	 to	 represent
JavaScript	arrays	and	objects	using	a	string.	Now,	why	would	you	ever	want	to
do	that?

Well,	 you	might	want	 to	 do	 that	 because	 strings	 are	 just	 text,	 and	 that's	 pretty
much	supported	anywhere.	I	can	save	JSON	to	a	text	file,	and	then	I	can	read	it
later,	parse	 it	back	 into	a	 JavaScript	array	or	object,	and	do	something	with	 it.
This	is	exactly	what	we'll	take	a	look	at	in	this	section.

To	explore	JSON	and	how	it	works,	let's	go	ahead	and	make	a	new	folder	inside
our	project	called	playground.

Throughout	 the	book,	 I'll	 create	 the	 playground	 folders	and	various
projects,	which	 store	 simple	 one-off	 files	 that	 aren't	 a	 part	 of	 the
bigger	application;	 they're	 just	a	way	 to	explore	a	new	feature	or
learn	a	new	concept.

In	 the	 playground	 folder,	 we'll	 make	 a	 file	 called	 json.js,	 this	 is	 where	 we	 can
explore	how	JSON	works.	To	get	started,	let's	make	a	very	simple	object.

Converting	objects	into	strings
Let's	first	make	a	variable	called	obj,	setting	it	equal	to	an	object.	On	this	object,
we'll	just	define	one	property,	name,	and	set	it	equal	to	your	first	name;	I'll	set	this
one	equal	to	Andrew,	as	shown	here:

var	obj	=	{

		name:	'Andrew'

};

Now,	let's	assume	that	we	want	to	take	this	object	and	work	on	it.	Let's	say	we
want	to,	for	example,	send	it	between	servers	as	a	string	and	save	it	to	a	text	file.
To	do	this,	we'll	need	to	call	one	JSON	method.

Let's	take	a	moment	to	define	a	variable	to	store	the	result,	stringObj,	and	we'll	set
it	equal	to	JSON.stringify,	as	shown	here:

var	stringObj	=	JSON.stringify(obj);

The	 JSON.stringify	 method	 takes	 your	 object,	 in	 this	 case,	 the	 obj	 variable,	 and
returns	the	JSON-stringified	version.	This	means	that	the	result	stored	in	stringObj
is	actually	a	string.	It's	no	longer	an	object,	and	we	can	take	a	look	at	that	using
console.log.	I'll	use	console.log	twice.	First	up,	we'll	use	the	typeof	operator	to	print
the	type	of	the	string	object	to	make	sure	that	it	actually	is	a	string.	Since	typeof	is
an	operator,	it	gets	typed	in	lowercase,	there	is	no	camel	casing.	Then,	you	pass
in	the	variable	whose	type	you	want	to	check.	Next	up,	we	can	use	console.log	to
print	the	contents	of	the	string	itself,	printing	out	the	stringObj	variable,	as	shown
here:

console.log(typeof	stringObj);

console.log(stringObj);

What	we've	done	here	is	we've	taken	an	object,	converted	it	into	a	JSON	string,
and	printed	it	onto	the	screen.	Over	 in	Terminal,	I'll	navigate	 into	the	playground
folder	using	the	following	command:

cd	playground

For	 now,	 it	 doesn't	 matter	 where	 you	 run	 the	 command,	 but	 in
future	it	will	matter	when	we	are	in	the	playground	 folder,	so	take	a

moment	to	navigate	into	it.

We	can	now	use	node	 to	 run	our	 json.js	 file.	When	we	 run	 the	 file,	we	see	 two
things:

As	 shown	 in	 the	preceding	code	output,	 first,	we	will	get	our	 type,	which	 is	 a
string,	and	this	is	great,	because	remember,	JSON	is	a	string.	Next,	we	will	get
our	object,	which	looks	pretty	similar	to	a	JavaScript	object,	but	there	are	a	few
differences.	These	differences	are	as	follows:

First	up,	your	JSON	will	have	its	attribute	names	automatically	wrapped	in
double	quotes.	This	is	a	requirement	of	the	JSON	syntax.
Next	 up,	 you'll	 notice	 your	 strings	 are	 also	wrapped	 in	 double	 quotes	 as
opposed	to	single	quotes.

Now,	JSON	doesn't	just	support	string	values,	you	can	use	an	array,	a	Boolean,	a
number,	or	 anything	 else.	All	 of	 those	 types	 are	 perfectly	 valid	 inside	 of	 your
JSON.	 In	 this	 case,	 we	 have	 a	 very	 simple	 example	 where	 we	 have	 a	 name
property	and	it's	set	to	"Andrew".

This	 is	 the	process	of	 taking	an	object	and	converting	it	 into	a	string.	Next	up,
we'll	define	a	string	and	convert	 that	 into	an	object	we	can	actually	use	 in	our

app.

Defining	a	string	and	using	in	app
as	an	object
Let's	get	started	by	making	a	variable	called	personString,	and	we'll	to	set	it	equal
to	a	string	using	single	quotes	since	JSON	uses	double	quotes	inside	of	itself,	as
shown	here:

var	personString	=	'';

Then	we'll	 define	 our	 JSON	 in	 the	 quotes.	We'll	 start	 by	 opening	 and	 closing
some	curly	 braces.	We'll	 use	 double	 quotes	 to	 create	 our	 first	 attribute,	which
we'll	call	name,	and	we'll	set	that	attribute	equal	to	Andrew.	This	means	that	after	the
closing	 quote,	we'll	 add	 :;	 then	we'll	 open	 and	 close	 double	 quotes	 again	 and
type	the	value	Andrew,	as	shown	here:

var	personString	=	'{"name":	"Andrew"}';

Next	up,	we	can	add	another	property.	After	the	value,	Andrew,	I'll	create	another
property	after	the	comma,	called	age,	which	will	be	set	equal	to	a	number.	I	can
use	my	colon	and	then	define	the	number	without	the	quotes,	in	this	case,	25:

var	personString	=	'{"name":	"Andrew","age":	25}';

You	can	go	ahead	and	use	your	name	and	your	age,	obviously,	but	make	sure	the
rest	looks	identical	to	what	you	see	here.

Now,	let's	say	we	get	the	earlier-defined	JSON	from	a	server	or	we	grab	it	from	a
text	file.	Currently,	it's	useless;	if	we	want	to	get	the	name	value,	there	is	no	good
way	 to	 do	 that	 because	 we're	 using	 a	 string,	 so	 personString.name	 doesn't	 exist.
What	we	need	to	do	is	take	the	string	and	convert	it	back	into	an	object.

Converting	 a	 string	 back	 to	 an
object
To	 convert	 the	 string	 back	 to	 object,	 we'll	 use	 the	 opposite	 of	 JSON.stringify,
which	 is	 JSON.parse.	 Let's	make	 a	 variable	 to	 store	 the	 result.	 I'll	 create	 a	 person
variable	 and	 it	 will	 be	 set	 equal	 to	 JSON.parse,	 passing	 in	 as	 the	 one	 and	 only
argument	 the	string	you	want	 to	parse,	 in	 this	case,	 the	person	 string,	which	we
defined	earlier:

var	person	=	JSON.parse(personString);

Now,	 this	variable	 takes	your	JSON	and	converts	 it	 from	a	string	back	 into	 its
original	 form,	which	could	be	an	array	or	 an	object.	 In	our	case,	 it	 converts	 it
back	into	an	object,	and	we	have	the	person	variable	as	an	object,	as	shown	in	the
preceding	code.	Also,	we	can	prove	that	it's	an	object	using	the	typeof	operator.
I'll	use	console.log	twice,	just	like	we	did	previously.

First	up,	we'll	print	 typeof	person,	 and	 then	we'll	 print	 the	 actual	 person	variable,
console.log(person):

console.log(typeof	person);

console.log(person);

With	this	in	place,	we	can	now	rerun	the	command	in	Terminal;	I'll	actually	start
nodemon	and	pass	in	json.js:

nodemon	json.js

As	shown	in	the	following	code	output,	you	can	now	see	that	we're	working	with
an	object,	which	is	great,	and	we	have	our	regular	object:

We	know	that	Andrew	 is	an	object	because	it's	not	wrapped	in	double	quotes;	the
values	don't	have	any	quotes,	and	we	use	single	quotes	for	Andrew,	which	is	valid
in	JavaScript,	but	it's	not	valid	in	JSON.

This	is	the	entire	process	of	taking	an	object,	converting	it	to	a	string,	and	then
taking	the	string	and	converting	it	back	into	the	object,	and	this	is	exactly	what
we'll	do	in	the	notes	app.	The	only	difference	is	that	we'll	be	taking	the	following
string	and	storing	it	in	a	file,	then	later	on,	we'll	be	reading	that	string	from	the
file	 using	 JSON.parse	 to	 convert	 it	 back	 to	 an	 object,	 as	 shown	 in	 the	 following
code	block:

//	var	obj	=	{

//		name:	'Andrew'

//	};

//	var	stringObj	=	JSON.stringify(obj);

//	console.log(typeof	stringObj);

//	console.log(stringObj);

var	personString	=	'{"name":	"Andrew","age":	25}';

var	person	=	JSON.parse{personString};

console.log(typeof	person);

console.log(person);

Storing	the	string	in	a	file
With	the	basics	in	place,	let's	take	it	just	one	step	further,	that	is,	by	storing	the
string	in	a	file.	Then,	we	want	to	read	the	contents	of	that	file	back	by	using	the
fs	module	 and	printing	 some	properties	 from	 it.	This	means	 that	we'll	 need	 to
convert	 the	 string	 that	 we	 get	 back	 from	 fs.readfilesync	 into	 an	 object	 using
JSON.parse.

Writing	 the	 file	 in	 the	playground
folder
Let's	 go	 ahead	 and	 comment	 out	 all	 the	 code	we	 have	 so	 far	 and	 start	with	 a
clean	slate.	First	up,	let's	go	ahead	and	load	in	the	fs	module.	The	const	variable
fs	will	be	set	equal	to	require,	and	we'll	pass	the	fs	module	that	we've	used	in	the
past,	as	shown	here:

//	var	obj	=	{

//		name:	'Andrew'

//	};

//	var	stringObj	=	JSON.stringify(obj);

//	console.log(typeof	stringObj);

//	console.log(stringObj);

//	var	personString	=	'{"name":	"Andrew","age":	25}';

//	var	person	=	JSON.parse(personString);

//	console.log(typeof	person);

//	console.log(person);

const	fs	=	require('fs');

The	next	thing	we'll	do	is	define	the	object.	This	object	will	be	stored	inside	of
our	 file,	 and	 then	will	 be	 read	back	 and	parsed.	This	 object	will	 be	 a	 variable
called	originalNote,	and	we'll	call	it	originalNote	because	later	on,	we'll	load	it	back
in	and	call	that	variable	Note.

Now,	originalNote	will	 be	 a	 regular	 JavaScript	 object	with	 two	properties.	We'll
have	the	title	property,	which	we'll	set	equal	to	Some	title,	and	the	body	property,
which	we	will	set	equal	to	Some	body,	as	shown	here:

var	originalNote	=	{

		title:	'Some	title',

		body:	'Some	body'

};

The	 next	 step	 that	 you	 will	 need	 to	 do	 is	 take	 the	 original	 note	 and	 create	 a
variable	called	originalNoteString,	and	set	that	variable	equal	to	the	JSON	value	of
the	object	we	defined	earlier.	This	means	that	you'll	need	to	use	one	of	the	two
JSON	methods	we	used	previously	in	this	section.

Now,	 once	 you	 have	 that	 originalNoteString	 variable,	 we	 can	write	 a	 file	 to	 the

filesystem.	 I'll	write	 that	 line	 for	you,	fs.writeFileSync.	The	 writeFileSync	method,
which	we	used	before,	takes	two	arguments.	One	will	be	the	filename,	and	since
we're	using	JSON,	it's	important	to	use	the	JSON	file	extension.	I'll	call	this	file
notes.json.	 The	 other	 arguments	will	 be	 text	 content,	 originalNoteString,	which	 is
not	yet	defined,	as	shown	in	this	code	block:

//	originalNoteString

fs.writeFileSync('notes.json',	originalNoteString);

This	 is	 the	 first	 step	 to	 the	 process;	 this	 is	 how	 we'll	 write	 that	 file	 into	 the
playground	 folder.	The	 next	 step	 to	 the	 process	will	 be	 to	 read	 out	 the	 contents,
parse	 it	 using	 the	 JSON	method	 earlier,	 and	 print	 one	 of	 the	 properties	 to	 the
screen	to	make	sure	that	it's	an	object.	In	this	case,	we'll	print	the	title.

Reading	out	the	content	in	the	file
The	first	step	to	print	the	title	is	to	use	a	method	we	haven't	used	yet.	We'll	use
the	read	method	 available	 on	 the	 filesystem	module	 to	 read	 the	 contents.	 Let's
make	 a	 variable	 called	 noteString.	 The	 noteString	 variable	 will	 be	 set	 equal	 to
fs.readFileSync.

Now,	 readFileSync	 is	 similar	 to	 writeFileSync	 except	 that	 it	 doesn't	 take	 the	 text
content,	 since	 it's	 getting	 the	 text	 content	 back	 for	 you.	 In	 this	 case,	we'll	 just
specify	the	first	argument,	which	is	the	filename,	notes.JSON:

var	noteString	=	fs.readFileSync('notes.json');

Now	that	we	have	the	string,	it	will	be	your	job	to	take	that	string,	use	one	of	the
preceding	methods,	and	convert	it	back	into	an	object.	You	can	call	that	variable
note.	Next	up,	 the	only	 thing	 left	 to	do	 is	 to	 test	whether	 things	are	working	as
expected,	by	printing	with	 the	help	of	console.log(typeof	note).	Then,	below	 this,
we'll	use	console.log	to	print	the	title,	note.title:

//	note

console.log(typeof	note);

console.log(note.title);

Now,	 over	 in	 Terminal,	 you	 can	 see	 (refer	 to	 the	 following	 screenshot)	 that	 I
have	saved	 the	 file	 in	 a	 broken	 state	 and	 it	 crashed,	 and	 that's	 expected	when
you're	using	nodemon:

To	 resolve	 this,	 the	 first	 thing	 I'll	 do	 is	 fill	 out	 the	 originalNoteString	 variable,
which	 we	 had	 commented	 out	 earlier.	 It	 will	 now	 be	 a	 variable	 called
originalNoteString,	and	we'll	set	it	equal	to	the	return	value	from	JSON.stringify.

Now,	we	know	JSON.stringify	 takes	our	 regular	object	and	 it	converts	 the	object
into	a	string.	In	 this	case,	we'll	 take	the	originalNote	object	and	convert	 it	 into	a
string.	 The	 next	 line,	 which	 we	 already	 have	 filled	 out,	 will	 save	 that	 JSON
value	into	the	notes.JSON	file.	Then	we	will	read	that	value	out:

var	originalNoteString	=	JSON.stringify(originalNote);

The	 next	 step	will	 be	 to	 create	 the	 note	 variable.	 The	 note	 variable	will	 be	 set
equal	to	JSON.parse.

The	JSON.parse	method	takes	the	string	JSON	and	converts	it	back	into	a	regular
JavaScript	object	or	array,	depending	on	whatever	you	save.	Here	we	will	pass	in
noteString,	which	we'll	get	from	the	file:

var	note	=	JSON.parse(noteString);

With	 this	 in	 place,	 we	 are	 now	 done.	 When	 I	 save	 this	 file,	 nodemon	 will
automatically	restart	and	we	would	expect	to	not	see	an	error.	Instead,	we	expect
that	we'll	see	the	object	type	as	well	as	the	note	title.	Right	inside	Terminal,	we
have	object	and	Some	title	printing	to	the	screen:

With	 this	 in	place,	we've	 successfully	completed	 the	challenge.	This	 is	exactly
how	we	will	save	our	notes.

When	someone	adds	a	new	note,	we'll	use	the	following	code	to	save	it:

var	originalNote	=	{

		title:	'Some	title',

		body:	'Some	body'

};

var	originalNoteString	=	JSON.stringify(originalNote);

fs.writeFileSync('notes.json',	originalNoteString);

When	someone	wants	to	read	their	note,	we'll	use	the	following	code	to	read	it:

var	noteString	=	fs.readFileSync('notes.json');

var	note	=	JSON.parse(noteString);

console.log(typeof	note);

console.log(note.title);

Now,	what	if	someone	wants	to	add	a	note?	This	will	require	us	to	first	read	all
of	 the	 notes,	 then	modify	 the	 notes	 array,	 and	 then	 use	 the	 code	 (refer	 to	 the
previous	code	block)	to	save	the	new	array	back	into	the	filesystem.

If	you	open	up	that	notes.JSON	file,	you	can	see	right	here	that	we	have	our	JSON
code	inside	the	file:

.json	is	actually	a	file	format	that's	supported	by	most	text	editors,	so	I	actually
already	have	 some	 nice	 syntax	 highlighting	 built	 in.	Now,	 in	 the	 next	 section,
we'll	 be	 filling	out	 the	addNote	 function	 using	 the	 exact	 same	 logic	 that	we	 just
used	inside	of	this	section.

Adding	and	saving	notes
In	the	previous	section,	you	learned	how	to	work	with	JSON	inside	Node.js,	and
this	is	the	exact	format	we'll	be	using	for	the	notes.js	application.	When	you	first
run	a	command,	we'll	 load	 in	all	 the	notes	 that	might	already	exist.	Then	we'll
run	 the	 command,	 whether	 it's	 adding,	 removing,	 or	 reading	 notes.	 Finally,	 if
we've	updated	the	array,	like	we	will	when	we	add	and	remove	notes,	we'll	save
those	new	notes	back	into	the	JSON	file.

Now,	this	will	all	happen	inside	of	the	addNote	function,	which	we	defined	in	the
notes.js	application,	and	we	already	wired	up	this	function.	In	earlier	sections,	we
ran	 the	 app	 add	 command,	 and	 this	 function	 executed	 with	 the	 title	 and	 body
arguments.

Adding	notes
To	get	started	with	adding	notes,	the	first	thing	we'll	do	is	create	a	variable	called
notes,	 and	 for	 the	moment,	 we'll	 set	 it	 equal	 to	 an	 empty	 array,	 just	 as	 in	 the
following,	using	our	square	brackets:

var	addNote	=	(title,	body)	=>	{

		var	notes	=	[];

};

Now	that	we	have	the	empty	array,	we	can	go	ahead	and	make	a	variable	called
note,	which	is	the	individual	note.	This	will	represent	the	new	note:

var	addNote	=	(title,	body)	=>	{

		var	notes	=	[];

		var	note	=	{

		

		}

};

On	that	note,	we'll	have	the	two	properties:	a	title	and	a	body.	Now,	title	can	be
set	 equal	 to	 the	 title	 variable,	 but,	 as	 we	 know,	 inside	 ES6,	 we	 can	 simply
remove	 it	when	both	values	are	 the	same;	so	we'll	add	title	and	body	 as	 shown
here:

var	addNote	=	(title,	body)	=>	{

		var	notes	=	[];

		var	note	=	{

				title,

				body

		};

};

Now	we	have	the	note	and	the	notes	array.

Adding	notes	to	the	notes	array
The	next	step	in	the	process	of	adding	notes	will	be	to	add	the	note	 to	the	notes
array.	The	notes.push	method	will	let	us	do	just	that.	The	push	method	on	an	array
lets	you	pass	 in	 an	 item,	which	gets	 added	 to	 the	 end	of	 the	 array,	 and	 in	 this
case,	we'll	pass	 in	 the	note	object.	So	we	have	an	empty	array,	and	we	add	our
one	item,	as	shown	in	the	following	code;	next,	we	push	it	in,	which	means	that
we	have	an	array	with	one	item:

var	addNote	=	(title,	body)	=>	{

		var	notes	=	[];

		var	note	=	{

				title,

				body

		};

		notes.push(note);

};

The	next	step	in	the	process	will	be	to	update	the	file.	Now,	we	don't	have	a	file
in	place,	but	we	can	load	an	fs	function	and	start	creating	the	file.

Up	 above	 the	 addNote	 function,	 let's	 load	 in	 the	 fs	 module.	 I'll	 create	 a	 const
variable	 called	 fs	 and	 set	 it	 equal	 to	 the	 return	 result	 from	 require,	 and	 we'll
require	the	fs	module,	which	is	a	core	node	module,	so	there's	no	need	to	install
it	using	NPM:

const	fs	=	require('fs');

With	this	in	place,	we	can	take	advantage	of	fs	inside	the	addNote	function.

Right	 after	 we	 push	 our	 item	 on	 to	 the	 notes	 array,	 we'll	 call	 fs.writeFileSync,
which	we've	used	before.	We	know	we	need	to	pass	in	two	things:	the	file	name
and	 the	 content	we	want	 to	 save.	For	 the	 file,	 I'll	 call,	 notes-data.JSON,	 and	 then
we'll	 pass	 in	 the	 content	 to	 save,	which	 in	 this	 case	will	 be	 the	 stringify	notes
array,	which	means	we	can	call	JSON.stringify	passing	in	notes:

notes.push(note);

fs.writeFileSync('notes-data.json',	JSON.stringify(notes));

We	could	have	broken	JSON.stringfy(notes)	out	 into	 its	own	variable

and	referenced	the	variable	in	the	above	statement,	but	since	we'll
only	be	using	it	in	one	place,	I	find	this	is	the	better	solution.

At	 this	 point,	 when	 we	 add	 a	 new	 note,	 it	 will	 update	 the	 notes-data.JSON	 file,
which	will	be	created	on	the	machine	since	it	does	not	exist,	and	the	note	will	sit
inside	 it.	Now,	 it's	 important	 to	 note	 that	 currently	 every	 time	 you	 add	 a	 new
note,	 it	will	wipe	all	existing	ones	because	we	never	 load	 in	 the	existing	ones,
but	we	can	get	started	testing	that	this	note	works	as	expected.

I'll	 save	 the	 file,	 and	 over	 inside	 of	 Terminal,	 we	 can	 run	 this	 file	 using	 node
app.js.	Since	we	want	to	add	a	note,	we	will	be	using	that	add	command	which	we
set	up,	then	we'll	specify	our	title	and	our	body.	The	title	flag	can	get	set	equal
to	secret,	and	for	the	body	flag,	I'll	set	it	equal	to	the	Some	body	here	string,	as	shown
here:

node	app.js	add	--title=secret	--body="Some	body	here"

Now,	when	we	run	this	command	from	Terminal,	we'll	see	what	we'd	expect:

As	shown	in	the	preceding	screenshot,	we	see	a	couple	of	the	file	commands	we
added:	 we	 see	 that	 the	 add	 command	 was	 executed,	 and	 we	 have	 our	 Yargs
arguments.	The	title	and	body	arguments	also	show	up.	Inside	Atom,	we	also	see
that	we	have	a	new	notes-data.json	file,	and	in	the	following	screenshot,	we	have
our	note,	with	the	secret	title	and	the	Some	body	here	body:

This	is	the	first	step	in	wiring	up	that	addNote	function.	We	have	an	existing	notes
file	and	we	do	want	to	take	advantage	of	these	notes.	If	notes	already	exist,	we
don't	 want	 to	 simply	 wipe	 them	 every	 time	 someone	 adds	 a	 new	 note.	 This
means	that	in	notes.js,	earlier	at	the	beginning	of	the	addNote	function,	we'll	fetch
those	notes.

Fetching	new	notes
I'll	add	code	for	fetching	new	notes	where	I	define	 the	notes	and	note	variables.
As	 shown	 in	 the	 following	 code,	we'll	 use	 fs.readFileSync,	which	we've	 already
explored.	This	will	 take	 the	filename,	 in	our	case,	notes-data.JSON.	Now,	we	will
want	 to	 store	 the	 return	 value	 from	 readFileSync	 on	 a	 variable;	 I'll	 call	 that
variable,	notesString:

var	notesString	=	fs.readFileSync('notes-data.json');

Since	 this	 is	 the	 string	 version,	 we	 haven't	 passed	 it	 through	 the	 JSON.parse
method.	So,	 I	 can	 set	 notes	 (the	variable	we	defined	 earlier	 in	 addNote	 function)
equal	to	the	return	value	from	the	JSON.parse	method.	Then	JSON.parse	will	take	the
string	from	the	file	we	read	and	 it	will	parse	 it	 into	an	array;	we	could	pass	 in
notesString	just	like	this:

notes	=	JSON.parse(notesString);

With	 this	 in	 place,	 adding	 a	 new	note	 is	 no	 longer	 going	 to	 remove	 all	 of	 the
notes	that	were	already	there.

Over	in	Terminal,	I'll	use	the	up	arrow	key	to	load	in	the	last	command,	and	I'll
navigate	over	to	the	title	flag	and	change	it	to	secret2	and	rerun	the	command:

node	app.js	add	--title=secret2	--body="Some	body	here"

In	Atom,	this	time	you	can	see	we	now	have	two	notes	inside	of	our	file:

We	have	an	array	with	 two	objects;	 the	 first	 one	has	 the	 title	of	 secret	and	 the
second	one	has	the	title	of	secret2,	which	is	brilliant!

Trying	and	catching	code	block
Now,	if	the	notes-data.json	file	does	not	exist,	which	it	won't	when	the	user	first
runs	 the	 command,	 the	 program	 will	 crash,	 as	 shown	 in	 the	 following	 code
output.	We	can	prove	this	by	simply	rerunning	the	last	command	after	deleting
the	note-data.JSON	file:

Right	here,	you	can	see	we're	actually	getting	a	JavaScript	error,	no	such	file	or
directory;	it's	trying	to	open	up	the	notes-data.JSON	file,	but	without	much	success.
To	 fix	 this,	 we'll	 use	 a	 try-catch	 statement	 from	 JavaScript,	 which	 hopefully
you've	seen	in	the	past.	To	brush	up	this,	let's	go	over	it	really	quick.

To	create	 a	 try-catch	 statement,	 all	 you	 do	 is	 you	 type	 try,	which	 is	 a	 reserved
keyword,	 and	 then	 you	 open	 and	 close	 a	 set	 of	 curly	 braces.	 Inside	 the	 curly
braces	is	the	code	that	will	run.	This	is	the	code	that	may	or	may	not	 throw	an
error.	 Next,	 you'll	 specify	 the	 catch	 block.	 Now,	 the	 catch	 block	 will	 take	 an
argument,	an	error	argument,	and	it	also	has	a	code	block	that	runs:

try{

}	catch	(e)	{

}

This	code	will	run	if	and	only	if	one	of	your	errors	in	try	actually	occurs.	So,	if
we	load	the	file	using	readFileSync	and	the	file	exists,	that's	fine,	catch	block	will
never	 run.	 If	 it	 fails,	 catch	 block	will	 run	 and	we	 can	 do	 something	 to	 recover
from	that	error.	With	this	in	place,	all	we'll	do	is	move	the	noteString	variable	and
the	JSON.parse	statements	into	try,	as	shown	here:

try{

		var	notesString	=	fs.readFileSync('notes-data.json');

		notes	=	JSON.parse(notesString);

}	catch	(e)	{

}

That's	 it;	nothing	else	needs	to	happen.	We	don't	need	to	put	any	code	in	catch,
although	you	do	need	 to	define	 the	 catch	 block.	Now,	 let's	 take	 a	 look	 at	what
happens	when	we	run	the	whole	code.

The	 first	 thing	 that	 happens	 is	 that	 we	 create	 our	 static	 variables—nothing
special	there—then	we	try	to	load	in	the	file.	If	the	notesString	function	fails,	that
is	fine	because	we	already	defined	notes	to	be	an	empty	array.	If	the	file	doesn't
exist	 and	 it	 fails,	 then	 we	 probably	 want	 an	 empty	 array	 for	 notes	 anyways,
because	clearly	there	are	no	notes,	and	there's	no	file.

Next	up,	we'll	parse	 that	data	 into	notes.	There	 is	a	chance	 that	 this	will	 fail	 if
there's	invalid	data	in	the	notes-data.JSON	file,	so	the	two	lines	can	have	problems.
By	putting	them	in	try-catch,	we're	basically	guaranteeing	that	 the	program	isn't
going	to	work	unexpectedly,	whether	the	file	does	or	doesn't	exist,	but	it	contains
corrupted	data.

With	 this	 in	 place,	 we	 can	 now	 save	 notes	 and	 rerun	 that	 previous	 command.
Note	that	I	do	not	have	the	notes-data	file	in	place.	When	I	run	the	command,	we

don't	see	any	errors,	everything	seems	to	run	as	expected:

When	you	now	visit	Atom,	you	can	see	that	the	notes-data	file	does	indeed	exist,
and	the	data	inside	it	looks	great:

This	is	all	we	need	to	do	to	fetch	the	notes,	update	the	notes	with	the	new	note,
and	finally	save	the	notes	to	the	screen.

Now,	 there	 is	 still	 a	 slight	 problem	 with	 addNote.	 Currently,	 addNote	 allows	 for
duplicate	 titles;	 I	 could	 already	 have	 a	 note	 in	 the	 JSON	 file	with	 the	 title	 of
secret.	I	can	come	along	and	try	to	add	a	new	note	with	the	title	of	secret	and	it
will	not	throw	an	error.	What	I'd	like	to	do	is	to	make	the	title	unique,	so	that	if
there's	already	a	note	with	that	title,	it	will	throw	an	error,	letting	you	know	that
you	need	to	create	a	note	with	a	different	title.

Making	the	title	unique
The	 first	 step	 to	make	 the	 title	 unique	will	 be	 to	 loop	 through	all	 of	 the	notes
after	we	 load	 them	 in	 and	check	whether	 there	 are	 any	duplicates.	 If	 there	 are
duplicates,	we'll	not	call	the	following	two	lines:

notes.push(note);

fs.writeFileSync('notes-data.json',	JSON.stringify(notes));

If	there	are	no	duplicates	then	it's	fine,	we	will	call	both	of	the	lines	shown	in	the
preceding	code	block,	updating	the	notes-data	file.

Now,	we'll	be	refactoring	this	function	down	the	line.	Things	are	getting	a	little
wonky	 and	 a	 little	 out	 of	 control,	 but	 for	 the	 moment,	 we	 can	 add	 this
functionality	 right	 into	 the	 function.	Let's	go	ahead	and	make	a	variable	called
duplicateNotes.

The	duplicateNotes	variable	will	eventually	store	an	array	with	all	of	the	notes	that
already	exist	inside	the	notes	array	that	have	the	title	of	the	note	you're	trying	to
create.	Now,	this	means	that	if	the	duplicateNotes	array	has	any	items,	 that's	bad.
This	means	 that	 the	 note	 already	 exists	 and	we	 should	 not	 add	 the	 note.	 The
duplicateNotes	variable	will	get	 set	equal	 to	a	call	 to	notes,	which	 is	our	array	of
notes.filter:

var	duplicateNotes	=	notes.filter();

The	filter	method	 is	an	array	method	 that	 takes	a	callback.	We'll	use	an	arrow
function,	and	that	callback	will	get	called	with	the	argument.	In	this	case,	it	will
be	 the	 singular	 version;	 if	 I	 have	 an	 array	 of	 notes,	 it	 will	 be	 called	 with	 an
individual	note:

var	duplicateNotes	=	notes.filter((note)	=>	{

});

This	 function	 gets	 called	 once	 for	 every	 item	 in	 the	 array,	 and	 you	 have	 the
opportunity	to	return	either	true	or	false.	If	you	return	true,	it	will	keep	that	item
in	 the	 array,	 which	 will	 eventually	 get	 saved	 into	 duplicateNotes.	 If	 you	 return
false,	 the	 new	 array	 it	 generates	 will	 not	 have	 that	 item	 inside	 duplicateNotes

variable.	All	we	want	to	do	is	to	return	true	if	the	titles	match,	which	means	that
we	can	return	note.title	===	title,	as	shown	here:

var	duplicateNotes	=	notes.filter((note)	=>	{

		return	note.title	===	title;

});

If	the	titles	are	equal,	then	the	preceding	return	statement	will	result	as	true	and
the	item	will	be	kept	in	the	array,	which	means	that	there	are	duplicate	notes.	If
the	titles	are	not	equal,	which	is	most	likely	the	case,	the	statement	will	result	as
false,	which	means	that	there	are	no	duplicate	notes.	Now,	we	can	simplify	this	a
little	more	using	arrow	functions.

Arrow	 functions	 actually	 allow	 you	 to	 remove	 the	 curly	 braces	 if
you	only	have	one	statement.

I'll	use	the	arrow	function,	as	shown	here:

var	duplicateNotes	=	notes.filter((note)	=>	note.title	===	title);

Here,	I	have	deleted	everything	except	note.title	===	title	and	added	this	in	front
of	the	arrow	function	syntax.

This	is	perfectly	valid	using	ES6	arrow	functions.	You	have	your	arguments	on
the	 left,	 the	 arrow,	 and	 on	 the	 right,	 you	 have	 one	 expression.	The	 expression
doesn't	 take	 a	 semicolon	 and	 it's	 automatically	 returned	 as	 the	 function	 result.
This	means	 that	 the	code	we	have	here	 is	 identical	 to	 the	code	we	had	earlier,
only	it's	much	simpler	and	it	only	takes	up	one	line.

Now	 that	we	have	 this	 in	place,	we	 can	go	 ahead	 and	 check	 the	 length	of	 the
duplicateNotes	variable.	If	the	length	of	duplicateNotes	 is	greater	than	0,	this	means
that	we	don't	want	to	save	the	note	because	a	note	already	exists	with	that	title.	If
it	is	0,	we'll	save	the	note.

if(duplicateNotes.length	===	0)	{

}

Here,	inside	the	if	condition,	we're	comparing	the	notes	length	with	the	number
zero.	If	they	are	equal,	then	we	do	want	to	push	the	note	onto	the	notes	array	and
save	the	file.	I'll	cut	the	following	two	lines:

notes.push(note);

fs.writeFileSync('notes-data.json',	JSON.stringify(notes));

Let's	paste	them	right	inside	of	the	if	statement,	as	shown	here:

if(duplicateNotes.length	===	0)	{

		notes.push(note);

		fs.writeFileSync('notes-data.json',	JSON.stringify(notes));

}

If	they're	not	equal,	that's	okay	too;	in	that	case	we'll	do	nothing.

With	this	in	place,	we	can	now	save	our	file	and	test	this	functionality	out.	We
have	our	notes-data.json	file,	and	this	file	already	has	a	note	with	a	title	of	secret2.
Let's	rerun	the	previous	command	to	try	to	add	a	new	note	with	that	same	title:

node	app.js	add	--title=secret2	--body="Some	body	here"

You're	in	Terminal,	so	we'll	head	back	into	our	JSON	file.	You	can	see	right	here
that	we	still	just	have	one	note:

Now	all	 the	titles	 inside	of	our	application	will	be	unique,	so	we	can	use	these
titles	to	fetch	and	delete	notes.

Let's	go	ahead	and	 test	 that	other	notes	can	still	be	added.	 I'll	 change	 the	title
flag	from	secret2	to	secret,	and	run	that	command:

node	app.js	add	--title=secret	--body="Some	body	here"

Inside	our	notes-data	file,	you	can	see	both	notes	show	up:

As	I	mentioned	earlier,	next	we	will	be	doing	some	refactoring,	since	 the	code
that	loads	the	file,	and	the	code	that	saves	the	file,	will	both	be	used	in	most	of
the	functions	we	have	defined	and/or	will	define	(that	 is,	 the	getAll,	getNote	and
removeNote	functions).

Refactoring
In	 the	 previous	 section,	 you	 created	 the	 addNote	 function,	which	works	well.	 It
starts	 by	 creating	 some	 static	 variables,	 then	 we	 fetch	 any	 existing	 notes,	 we
check	for	duplicates,	and	if	there	are	none,	we	push	it	onto	the	list,	and	then	we
save	the	data	back	into	the	filesystem.

The	only	problem	is	that	we'll	be	doing	a	lot	of	these	steps	over	and	over	again
for	every	method.	For	example,	with	getAll,	 the	idea	is	to	fetch	all	of	the	notes,
and	send	them	back	to	app.js	so	it	can	print	them	to	the	screen	for	the	user.	The
first	thing	we'll	to	do	inside	of	the	getAll	statement	is	have	the	same	code;	we'll
have	our	try-catch	block	to	fetch	the	existing	notes.

Now,	 this	 is	 a	 problem	 because	 we'll	 be	 repeating	 code	 throughout	 the
application.	 It	will	be	best	 to	break	out	 the	fetching	of	notes	and	 the	saving	of
notes	into	separate	functions	that	we	can	call	in	multiple	locations.

Moving	 functionality	 into
individual	functions
To	resolve	the	problem,	I'd	like	to	get	started	by	creating	two	new	functions:

fetchNotes

saveNotes

The	first	function,	fetchNotes,	will	be	an	arrow	function,	and	it	will	not	to	take	any
arguments	since	it	will	be	fetching	notes	from	the	filesystem,	as	shown	here:

var	fetchNotes	=	()	=>	{

};

The	second	function,	saveNotes,	will	need	to	take	an	argument.	It	will	need	to	take
the	notes	array	you	want	to	save	to	the	filesystem.	We'll	set	it	equal	to	an	arrow
function,	and	then	we'll	provide	our	argument,	which	I	will	name	notes,	as	shown
here:

var	saveNotes	=	(notes)	=>	{

};

Now	that	we	have	these	two	functions,	we	can	go	ahead	and	start	moving	some
of	the	functionality	from	addNote	up	into	the	individual	functions.

Working	with	fetchNotes
First	up,	let's	do	fetchNotes,	which	will	need	the	following	try-catch	block.

I'll	actually	cut	 it	out	of	addNote	and	paste	 it	 in	 the	fetchNotes	 function,	as	shown
here:

var	fetchNotes	=	()	=>	{

		try{

				var	notesString	=	fs.readFileSync('notes-data.json');

				notes	=	JSON.parse(notesString);

		}	catch	(e)	{

}

};

This	 alone	 is	 not	 enough,	because	 currently	we	don't	 return	 anything	 from	 the
function.	What	we	want	to	do	is	to	return	the	notes.	This	means	that	instead	of
saving	 the	 result	 from	 JSON.parse	 onto	 the	 notes	 variable,	 which	 we	 haven't
defined,	we'll	simply	return	it	to	the	calling	function,	as	shown	here:

var	fetchNotes	=	()	=>	{

		try{

				var	notesString	=	fs.readFileSync('notes-data.json');

				return	JSON.parse(notesString);

		}	catch	(e)	{

}

};

So,	if	I	call	fetchNotes	in	the	addNote	function,	shown	as	follows,	I	will	get	the	notes
array	because	of	the	return	statement	in	the	preceding	code.

Now,	if	there	are	no	notes,	maybe	there's	no	file	at	all;	or	there	is	a	file,	but	the
data	isn't	JSON,	we	can	return	an	empty	array.	We'll	add	a	return	statement	inside
of	catch,	as	shown	in	the	following	code	block,	because	remember,	catch	 runs	 if
anything	inside	try	fails:

var	fetchNotes	=	()	=>	{

		try{

				var	notesString	=	fs.readFileSync('notes-data.json');

				return	JSON.parse(notesString);

		}	catch	(e)	{

				return	[];

}

};

Now,	this	lets	us	simplify	addNote	even	further.	We	can	remove	the	empty	space
and	we	 can	 take	 the	 array	 that	we	 set	 on	 the	 notes	 variable	 and	 remove	 it	 and
instead	call	fetchNotes,	as	shown	here:

var	addNote	=	(title,	body)	=>	{

		var	notes	=	fetchNotes();

		var	note	=	{

						title,

						body

};

With	this	in	place,	we	now	have	the	exact	same	functionality	we	had	before,	but
we	have	a	reusable	function,	fetchNotes,	which	we	can	use	in	the	addNote	function
to	handle	the	other	commands	that	our	app	will	support.

Instead	 of	 copying	 code	 and	 having	 it	 in	 multiple	 places	 in	 your	 file,	 we've
broken	it	into	one	place.	If	we	ever	want	to	change	how	this	functionality	works,
whether	we	want	to	change	the	filename	or	some	of	the	logic	such	as	the	try-catch
block,	we	can	change	it	once	instead	of	having	to	change	it	in	every	function	we
have.

Working	with	saveNotes
Now,	 the	 same	 thing	 will	 go	 for	 saveNotes	 just	 as	 in	 the	 case	 of	 the	 fetchNotes
function.	The	 saveNotes	 function	will	 take	 the	 notes	 variable	 and	 it	will	 say	 this
using	 fs.writeFileSync.	 I	 will	 cut	 out	 the	 line	 in	 addNote	 that	 does	 this	 (that	 is,
fs.writeFileSync('notes-data.json',	JSON.stringfy(notes));)	and	paste	it	in	the	saveNotes
function,	as	shown	here:

var	saveNotes	=	(notes)	=>	{

		fs.writeFileSync('notes-data.json',	JSON.stringify(notes));

};

Now,	saveNotes	doesn't	need	to	return	anything.	In	this	case,	we'll	copy	the	line	in
saveNotes	 and	 then	 call	 saveNotes	 in	 the	 if	 statement	 of	 the	 addNote	 function,	 as
shown	in	the	following	code:

if	(duplicateNotes.length	===	0)	{

		notes.push(note);

		saveNotes();

}

This	might	 seem	 like	overkill,	we've	 essentially	 taken	one	 line	 and	 replaced	 it
with	a	different	line,	but	it	is	a	good	idea	to	start	getting	in	the	habit	of	creating
reusable	functions.

Now,	calling	saveNotes	with	no	data	is	not	going	to	work,	we	want	to	pass	in	the
notes	variable,	which	is	our	notes	array	defined	earlier	in	the	saveNotes	function:

if	(duplicateNotes.length	===	0)	{

		notes.push(note);

		saveNotes(notes);

}

With	this	in	place,	the	addNote	function	should	now	work	as	it	did	before	we	did
any	of	our	refactoring.

Testing	the	functionality
The	next	step	in	the	process	will	be	to	test	this	out	by	creating	a	new	note.	We
already	have	two	notes,	with	a	title	of	secret	and	a	title	of	secret2	in	notes-data.json,
let's	make	a	third	one	using	the	node	app.js	command	in	Terminal.	We'll	use	 the
add	command	and	pass	in	a	title	of	to	buy	and	a	body	of	food,	as	shown	here:

node	app.js	add	--title="to	buy"	--body="food"

This	should	create	a	new	note,	and	if	I	run	the	command,	you	can	see	we	don't
have	any	obvious	errors:

Inside	of	our	notes-data.json	 file,	 if	 I	scroll	 to	 the	right,	we	have	our	brand	new
note	as	a	title	of	to	buy	and	a	body	of	food:

So,	 everything	 is	working	 as	 expected	 even	 though	we've	 refactored	 the	 code.
Now,	the	next	thing	I	want	to	do	inside	addNote	is	take	a	moment	to	return	the	note
that's	being	added,	and	that	will	happen	right	after	saveNotes	comes	back.	So	we'll
return	note:

if	(duplicateNotes.length	===	0)	{

		notes.push(note);

		saveNotes(notes);

		return	note;

}

This	note	object	will	get	returned	to	whoever	called	the	function,	and	in	this	case,
it	will	 get	 returned	 to	 app.js,	where	we	 called	 it	 in	 the	 if	else	 block	 of	 the	 add
command	 in	 the	app.js	 file.	We	can	make	a	variable	 to	store	 this	 result	and	we
can	call	it	note:

if	(command	===	'add')

		var	note	=	notes.addNote(argv.title,	argv.body);

If	note	exists,	then	we	know	that	the	note	was	created.	This	means	that	we	can	go
ahead	and	print	a	message,	like	Note	created,	and	we	can	print	the	note	title	and	the
note	body.	Now,	if	note	does	not	exist,	if	it's	undefined,	this	means	that	there	was
a	duplicate	and	that	title	already	exists.	If	that's	the	case,	I	want	you	to	print	an
error	message	such	as	Note	title	already	in	use.

There's	a	ton	of	different	ways	you	could	do	this.	The	goal,	though,
is	 to	 print	 two	different	messages	depending	on	whether	or	not	a
note	was	returned.

Now,	inside	addNote,	if	the	duplicateNotes	if	statement	never	runs,	we	don't	have	an
explicit	 call	 to	 return.	But	 as	 you	 know,	 in	 JavaScript,	 if	 you	 don't	 call	 return,
then	undefined	automatically	is	returned.	This	means	that	if	duplicateNotes.length	 is
not	equal	to	zero,	undefined	will	be	returned	and	we	can	use	that	as	the	condition
for	our	statement.

The	 first	 thing	 I'll	 do	 here	 is	 to	 create	 an	 if	 statement,	 right	 next	 to	 the	 note
variable	we	defined	in	app.js:

if	(command	===	'add')	{

		var	note	=	notes.addNote(argv.title,	argv.body);

		if	(note)	{

		}

This	will	be	an	object	if	things	went	well,	and	it	will	be	undefined	if	things	went
poorly.	This	code	in	here	is	only	ever	going	to	run	if	it's	an	object.	The	Undefined
result	will	fail	the	condition	inside	of	JavaScript.

Now,	if	the	note	was	created	successfully,	what	we'll	do	is	to	print	a	little	message
to	the	screen,	using	the	following	console.log	statement:

if	(note)	{

		console.log('Note	created');

}

If	things	went	poorly,	inside	the	else	clause,	we	can	call	console.log,	and	we	can
print	something	like	Note	title	taken,	as	shown	here:

if	(note)	{

		console.log('Note	created');

}	else	{

		console.log('Note	title	taken');

}

Now,	 the	 other	 thing	 that	we	want	 to	 do	 if	 things	went	well	 is	 print	 the	 notes
content.	 I'll	 do	 this	by	 first	using	 console.log	 to	print	 a	 couple	of	hyphens.	This
will	create	a	little	space	above	my	note.	Then	I	can	use	console.log	twice:	the	first
time	we'll	print	the	title,	I'll	add	Title:	as	a	string	to	show	you	what	exactly	you're
seeing,	then	I	can	concatenate	the	title,	which	we	have	access	to	in	note.title,	as
shown	in	this	code:

if	(note)	{

		console.log('Note	created');

		console.log('--');

		console.log('Title:	'	+	note.title);

Now,	 the	 preceding	 syntax	 uses	 an	ES5	 syntax;	we	 can	 swap	 this	 out	with	 an
ES6	syntax	using	what	we've	 already	 talked	 about:	 template	 strings.	We'll	 add
Title,	a	colon,	and	then	we	can	use	our	dollar	sign	with	our	curly	braces	to	inject
the	note.title	variable,	as	shown	here:

console.log(`Title:	${note.title}`);

Similarly,	I'll	add	note.body	after	this	to	print	out	the	body	of	the	note.	With	this	in
place,	the	code	should	look	like:

if	(command	===	'add')	{

		var	note	=	note.addNote(argv.title,	argv.body);

		if	(note)	{

				console.log('Note	created');

				console.log('--');

				console.log(`Title:	${note.title}`);

				console.log(`Body:	${note.body}`);

		}	else	{

				console.log('Note	title	taken');

}

Now,	we	should	be	able	to	run	our	app	and	see	both	of	the	title	and	body	notes
printed.	 In	Terminal,	 I'll	 rerun	 the	previous	command.	This	will	 try	 to	create	a
note	with	to	buy,	which	already	exists,	so	we	should	get	an	error	message,	and
right	here	you	can	see	Note	title	taken:

Now,	we	can	rerun	the	command,	changing	the	title	to	something	else,	such	as	to
buy	from	store.	This	is	a	unique	note	title	so	the	note	should	get	created	without	any
problems:

node	app.js	add	--title="to	buy	from	store"	--body="food"

As	shown	in	the	preceding	output,	you	can	see	that	we	get	just	that:	we	have	our
Note	created	message,	our	little	spacer,	and	our	title	along	with	the	body.

The	addNote	command	 is	now	complete.	We	have	an	output	when	 the	command
actually	finishes,	and	we	have	all	the	code	that	runs	behind	the	scenes	to	add	the
note	to	the	data	that	gets	stored	in	our	file.

Summary
In	 this	 chapter,	 you	 learned	 that	 parsing	 in	 process.argv	 can	 be	 a	 real	 pain.	We
would	have	to	write	a	lot	of	manual	code	to	parse	out	those	hyphens,	the	equal
signs,	 and	 the	optional	quotes.	However,	 yargs	 can	do	 all	 of	 that	 for	 us	 and	 it
puts	 it	on	a	 really	simple	object	we	can	access.	You	also	 learned	how	 to	work
with	JSON	inside	Node.js.

Next,	 we	 filled	 out	 the	 addNote	 function.	 We're	 able	 to	 add	 notes	 using	 the
command	line,	and	we're	able	to	save	those	notes	into	a	JSON	file.	Finally,	we
pulled	 out	 a	 lot	 of	 the	 code	 from	 addNote	 into	 separate	 functions,	 fetchNotes	and
saveNotes,	which	are	now	separate,	 and	 they're	able	 to	be	 reused	 throughout	 the
code.	When	we	start	filling	out	the	other	methods,	we	can	simply	call	fetchNotes
and	saveNotes	instead	of	having	to	copy	the	contents	over	and	over	again	to	every
new	method.

In	 the	 next	 chapter,	 we'll	 continue	 our	 journey	 on	 node	 fundamentals.	 We'll
explore	some	more	concepts	related	to	node,	such	as	debugging;	we'll	work	on
the	read	and	remove	notes	commands.	Apart	 from	 this,	we'll	 also	 learn	about	 the
advanced	features	of	yargs	and	the	arrow	function.

Node	Fundamentals	–	Part	3
We	 start	 adding	 support	 for	 all	 the	 other	 commands	 inside	 of	 the	 notes
application.	We'll	take	a	look	at	how	we	can	create	our	read	command.	The	read
command	will	be	responsible	for	fetching	the	body	of	an	individual	note.	It	will
fetch	all	the	notes	and	print	them	to	the	screen.	Now,	aside	from	all	of	that,	we'll
be	looking	at	debugging	broken	apps,	and	we'll	look	at	some	new	ES6	features.
You'll	learn	how	to	use	the	built-in	Node	debugger.

Then,	you	will	learn	a	little	bit	more	about	how	we	can	configure	yargs	for	the
command-line	 interface	 applications.	We'll	 learn	how	 to	 set	 up	 the	 commands,
their	descriptions,	and	the	arguments.	We'll	be	able	to	set	various	properties	on
the	arguments,	for	example,	whether	or	not	they're	required,	and	others.

Removing	a	note
In	this	section,	you	will	write	the	code	for	removing	a	note	when	someone	uses
that	remove	command,	and	they	pass	in	the	title	of	the	note	they	want	to	remove.
In	 the	previous	chapter,	we	 already	 created	 some	utility	 functions	 that	 help	 us
with	fetching	and	saving	notes,	so	the	code	should	actually	be	pretty	simple.

Using	the	removeNote	function
The	first	step	in	the	process	is	to	fill	out	the	removeNote	function,	which	we	defined
in	the	previous	chapters,	and	this	will	be	your	challenge.	Let's	remove	console.log
from	the	removeNote	function	in	the	notes.js	file.	You	only	need	to	write	three	lines
of	code	to	get	this	done.

Now,	the	first	line	will	fetch	the	notes,	then	the	job	will	be	to	filter	out	the	notes,
removing	the	one	with	title	of	argument.	That	means	we	want	to	go	through	all
of	the	notes	in	the	notes	array,	and	if	any	of	 them	have	a	title	 that	matches	the
title	we	want	to	remove,	we	want	to	get	rid	of	them.	And	this	can	be	done	using
the	notes.filter	function	we	used	earlier.	All	we	have	to	do	is	switch	the	equality
statement	in	the	duplicateNotes	 function	from	equals	 to	not	equals,	and	 this	code
will	do	just	that.

It	will	go	through	the	notes	array.	Every	time	it	finds	a	note	that	doesn't	match
the	title	it	will	keep	it,	which	is	what	we	want,	and	if	it	does	find	the	title	it	will
return	false	 and	 remove	 it	 from	 the	array.	And	 then	we	will	 add	 the	 third	 line,
which	is	to	save	the	new	notes	array:

var	removeNote	=	(title)	=>	{

		//	fetch	notes

		//	filter	notes,	removing	the	one	with	title	of	argument

		//	save	new	notes	array

};

The	 preceding	 code	 lines	 are	 the	 only	 three	 lines	 you	 need	 to	 fill	 out.	 Don't
worry	about	 returning	anything	from	removeNote	or	 filling	out	anything	 inside	of
app.js.

The	first	thing	we	will	do	for	the	fetchNotes	line	is	to	create	a	variable	called	notes,
just	 like	we	did	 in	 addNote	 in	 the	 previous	 chapter,	 and	we'll	 set	 it	 equal	 to	 the
return	result	from	fetchNotes:

var	removeNote	=	(title)	=>	{

		var	notes	=	fetchNotes();

		//	filter	notes,	removing	the	one	with	title	of	argument

		//	save	new	notes	array

};

At	this	point	our	notes	variable	stores	an	array	of	all	of	the	notes.	The	next	thing
we	need	to	do	is	filter	our	notes.

If	there	is	a	note	that	has	this	title,	we	want	to	remove	it.	This	will	be	done	by
creating	 a	 new	 variable,	 and	 I'll	 call	 this	 one	 filteredNotes.	 Here	 we'll	 set
filteredNotes	equal	 to	 the	result	 that	will	come	back	from	notes.filter,	which	we
already	used	up	previously:

var	removeNote	=	(title)	=>	{

		var	notes	=	fetchNotes();

		//	filter	notes,	removing	the	one	with	title	of	argument

		var	filteredNotes	=	notes.filter();

		//	save	new	notes	array

};

We	know	that	notes.filter	takes	a	function	as	its	one	and	only	argument,	and	that
function	gets	called	with	the	individual	item	in	the	array.	In	this	case	it	would	be
a	note.	And	we	can	do	this	all	on	one	line	using	the	ES6	arrow	syntax.

If	 we	 have	 only	 one	 statement,	 we	 don't	 need	 to	 open	 and	 close
curly	braces.

That	means	right	here	we	can	return	true	if	note.title	does	not	equal	the	title	that's
passed	into	the	function:

var	removeNote	=	(title)	=>	{

		var	notes	=	fetchNotes();

		var	filteredNotes	=	notes.filter((note)	=>	note.title	!==	title);

		//	save	new	notes	array

};

This	will	populate	filteredNotes	with	all	of	the	notes	whose	titles	do	not	match	the
one	passed	in.	If	the	title	does	match	the	title	passed	in,	it	will	not	be	added	to
filteredNotes	because	of	our	filter	function.

The	last	thing	to	do	is	to	call	saveNotes.	Right	here,	we'll	call	saveNotes	passing	in
the	new	notes	array	which	we	have	under	the	filteredNotes	variable:

var	removeNote	=	(title)	=>	{

		var	notes	=	fetchNotes();

		var	filteredNotes	=	notes.filter((note)	=>	note.title	!==	title);

		saveNotes(filteredNotes);

		//	save	new	notes	array

};

If	 we	 were	 to	 pass	 in	 notes,	 it	 wouldn't	 work	 as	 expected;	 we're	 filtering	 the
notes	out	but	we're	not	 actually	 saving	 those	notes,	 so	 it	will	 not	get	 removed
from	the	JSON.	We	need	 to	pass	 filteredNotes	 as	 shown	 in	 the	preceding	 code.
And	we	can	test	these	by	saving	the	file	and	trying	to	remove	one	of	our	notes.

I'll	try	to	remove	secret2	from	the	notes-data.json	file.	That	means	all	we	need	to
do	 is	 run	 the	command,	which	we	called	remove,	 that	 is	 specified	over	 in	 app.js,
(refer	to	the	following	code	image,	and	then	it	will	call	our	function).

I'll	 run	 Node	 with	 app.js,	 and	 we'll	 pass	 in	 the	 remove	 command.	 The	 only
argument	we	need	to	provide	for	remove	is	the	title;	there's	no	need	to	provide
the	body.	I'll	set	this	equal	to	secret2:

node	app.js	remove	--title=secret2

As	shown	in	 the	screenshot,	 if	 I	hit	enter	you	can	see	we	don't	get	any	output.
Although	we	do	have	the	command	remove	printing,	there	is	no	message	saying
whether	or	not	a	note	was	removed,	but	we'll	add	that	later	in	the	section.

For	now,	we	can	check	the	data.	And	right	here	you	can	see	secret2	is	nowhere	in
sight:

This	means	our	 remove	method	 is	 indeed	working	as	expected.	 It	 removed	 the
note	whose	 title	matched	and	 it	kept	all	 the	notes	whose	 title	was	not	equal	 to
secret2,	exactly	what	we	wanted.

Printing	 a	 message	 of	 removing
notes
Now,	the	next	 thing	we'll	do	is	print	a	message	depending	on	whether	or	not	a
note	was	actually	removed.	That	means	app.js,	which	calls	the	removeNote	function,
will	need	 to	know	whether	or	not	a	note	was	removed.	And	how	do	we	figure
that	 out?	 How	 can	 we	 possibly	 return	 that	 given	 the	 information	 we	 have	 in
notes.js	removeNotes	function?

Well,	we	can,	because	we	have	two	really	 important	pieces	of	 information.	We
have	 the	 length	of	 the	original	 notes	 array	 and	we	have	 the	 length	of	 the	new
notes	array.	 If	 they're	 equal	 then	we	 can	 assume	 that	 no	note	was	 removed.	 If
they	 are	 not	 equal,	we'll	 assume	 that	 a	 note	was	 removed.	And	 that	 is	 exactly
what	we'll	do.

If	the	removeNote	function	returns	true,	that	means	a	note	was	removed;	if	it	returns
false,	that	means	a	note	was	not	removed.	In	the	removeNotes	function	we	can	add
return,	as	shown	in	the	following	code.	We'll	check	if	notes.length	does	not	equal
filteredNotes.length:

var	removeNote	=	(title)	=>	{

		var	notes	=	fetchNotes();

		var	filteredNotes	=	notes.filter((note)	=>	note.title	!==	title);

		saveNotes(filteredNotes);

		

		return	notes.length	!==	filteredNotes.length;

};

If	they're	not	equal	it	will	return	true,	which	is	what	we	want	because	a	note	was
removed.	If	they're	equal	it	will	return	false,	which	is	great.

Now,	 inside	of	 app.js	we	 can	 add	 a	 few	 lines	 in	 the	 removeNote,	else	 if	 block	 to
make	the	output	for	this	command	a	little	nicer.	The	first	thing	to	do	is	to	store
that	Boolean.	I'll	make	a	variable	called	noteRemoved	and	we'll	set	that	equal	to	the
return,	result	as	shown	in	the	following	code,	which	will	either	be	true	or	false:

}	else	if	(command	==	'remove')	{

		var	noteRemoved	=	notes.removeNote(argv.title);

}

On	the	next	line,	we	can	create	our	message,	and	I'll	do	this	all	on	one	line	using
the	 ternary	operator.	Now,	 the	 ternary	operator	 lets	you	specify	a	condition.	 In
our	 case,	 we'll	 use	 a	 var	 message	 and	 it	 will	 be	 set	 equal	 to	 the	 condition
noteRemoved,	which	will	be	true	if	a	note	was	removed	and	false	if	it	wasn't.

Now,	 the	 ternary	operator	can	be	a	 little	confusing,	but	 it's	really
useful	 inside	 JavaScript	 and	 Node.js.	 The	 format	 for	 the	 ternary
operator	 is	 first	 we	 add	 the	 condition,	 question	 mark,	 the	 truthy
expression	to	run,	colon,	and	then	the	falsy	expression	to	run.

After	 the	condition,	we'll	put	a	space	with	a	question	mark	and	a	space;	 this	 is
the	statement	that	will	run	if	it's	true.	If	the	noteRemoved	condition	passes,	what	we
want	to	do	is	set	message	equal	to	Note	was	removed:

	var	message	=	noteRemoved	?	'Note	was	removed'	:

Now,	if	noteRemoved	is	false,	we	can	specify	that	condition	right	after	the	colon	in
the	previous	statement.	Here,	if	 there	is	no	note	removed	we'll	use	the	text	Note
not	found:

var	message	=	noteRemoved	?	'Note	was	removed'	:	'Note	not	found';

Now	with	this	in	place,	we	can	test	out	our	message.	The	last	thing	to	do	is	print
the	message	to	the	screen	using	console.log	passing	in	message:

var	noteRemoved	=	notes.removeNote(argv.title);

var	message	=	noteRemoved	?	'Note	was	removed'	:	'Note	not	found';

console.log(message);

This	 lets	 us	 avoid	 if	 statements	 that	 make	 our	 else-if	 clause	 to	 remove
unnecessarily	complex.

Back	 inside	of	Atom	we	can	 rerun	 the	 last	command,	and	 in	 this	case	no	note
will	get	removed	because	we	already	deleted	it.	And	when	I	run	it,	you	can	see
that	Note	not	found	prints	to	the	screen:

Now	I'll	remove	a	note	that	does	exist;	in	notes-data.json	I	have	a	note	with	a	title
of	secret	as	shown	here:

Let's	rerun	the	command	removing	the	2	from	the	title	in	Terminal.	When	I	run
this	command,	you	can	see	Note	was	removed	prints	to	the	screen:

That	is	it	for	this	section;	we	now	have	our	remove	command	in	place.

Reading	note
In	 this	 section,	 you	 will	 be	 responsible	 for	 filling	 out	 the	 rest	 of	 the	 read
command.	Now,	 the	 read	 command	does	have	 an	 else-if	 block	 to	 find	 in	 app.js
where	we	call	getNote:

}	else	if	(command	===	'read')	{

		notes.getNote(argv.title);

getNote	 is	 defined	 over	 inside	 notes.js,	 even	 though	 currently	 it	 just	 prints	 out
some	dummy	text:

var	getNote	=	(title)	=>	{

		console.log('Getting	note',	title);

};

What	you'll	need	to	do	in	this	section	is	wire	up	both	of	these	functions.

First	up,	you	will	need	to	do	something	with	the	return	value	from	getNote.	Our
getNote	function	will	return	the	note	object	if	it	finds	it.	If	it	doesn't,	it	will	return
undefined	just	like	we	do	for	addNote	discussed	in	the	section	Adding	and	saving
note,	in	the	previous	chapter.

After	 you	 store	 that	 value,	 you'll	 do	 some	printing	 using	 console.log,	 similar	 to
what	we	have	here:

if	(command	===	'add')	{

		var	note	=	notes.addNote(argv.title,	argv.body);

		if	(note)	{

				console.log('Note	created');

				console.log('--');

				console.log(`Title:	${note.title}`);

				console.log(`Body:	${note.body}`);

		}	else	{

				console.log('Note	title	taken');

		}

Obviously,	Note	created	will	be	something	like	Note	read	and	Note	title	taken	will	be
something	 like	 Note	 not	 found,	 but	 the	 general	 flow	 is	 going	 to	 be	 exactly	 the
same.	Now,	once	you	have	 that	wired	up	 inside	of	 app.js,	 you	can	move	on	 to
notes.js,	filling	out	the	function.

Now,	the	function	inside	of	notes.js	isn't	going	to	be	that	complex.	All	you	need

to	do	is	fetch	the	notes,	like	we've	done	in	previous	methods,	then	you're	going
to	use	notes.filter,	which	we	explored	 to	only	 return	notes	whose	 title	matches
the	 title	passed	 in	as	 the	 argument.	Now,	 in	our	 case	 this	 is	 either	going	 to	be
zero	notes,	which	means	the	note	is	not	found,	or	it's	going	to	be	one	note,	which
means	we've	found	the	note	that	the	person	wants	to	return.

Next,	we	do	need	to	return	that	note.	It's	important	to	remember	the	return	value
from	notes.filter	 is	always	going	to	be	an	array,	even	if	 that	array	only	has	one
item.	What	you're	going	to	need	to	do	is	return	the	first	item	in	the	array.	If	that
item	doesn't	exist	that's	 fine,	 it'll	 return	undefined,	as	we	want.	 If	 it	does	exist,
great,	 that	means	we	 found	 the	 note.	 This	method	 only	 requires	 three	 lines	 of
code,	one	for	fetching,	one	for	filtering,	and	the	return	statement.	Now,	once	you
have	all	that	done	we'll	test	it	out.

Using	the	getNote	function
Let's	work	on	this	method.	Now,	the	first	thing	I'll	do	is	fill	out,	inside	of	app.js,	a
variable	called	note	which	is	going	to	store	the	return	value	from	getNote:

}	else	if	(command	===	'read')	{

		var	note	=	notes.getNote(argv.title);

Now,	this	could	be	an	individual	note	object	or	it	could	be	undefined.	In	the	next
line,	I	can	use	an	if	statement	to	print	 the	message	if	 it	exists,	or	 if	 it	does	not
exist.	I'll	use	if	note,	and	I	am	going	to	attach	an	else	clause:

}	else	if	(command	===	'read')	{

		var	note	=	notes.getNote(argv.title);

		if	(note)	{

						

		}	else	{

						

		}

This	else	clause	will	be	responsible	for	printing	an	error	if	the	note	is	not	found.
Let's	get	started	with	that	first	since	it's	pretty	simple,	console.log,	Note	not	found,	as
shown	here:

		if	(note)	{

						

		}	else	{

				console.log('Note	not	found');		

		}

Now	that	we	have	our	else	clause	filled	out	we	can	fill	out	the	if	statement.	For
this,	I'll	print	a	little	message,	console.log	('Note	found')	will	get	the	job	done.	Then
we	can	move	on	to	printing	the	actual	note	details,	and	we	already	have	that	code
in	place.	We	are	going	to	add	the	hyphenated	spacer,	then	we	have	our	note	title
and	our	note	body	as	shown	here:

if	(note)	{

				console.log('Note	found');

				console.log('--');

				console.log(`Title:	${note.title}`);

				console.log(`Body:	${note.body}`);				

		}	else	{

				console.log('Note	not	found');		

		}

Now	that	we're	done	with	the	inside	of	app.js,	we	can	move	into	the	notes.js	file
and	fill	out	the	getNote	method	because	currently	it	doesn't	do	anything	with	the
title	that	gets	passed	in.

Inside	notes,	what	you	needed	to	do	was	fill	out	those	three	lines.	The	first	one	is
going	to	be	responsible	for	fetching	the	notes.	We	already	have	did	that	before
with	the	fetchNotes	function	in	the	previous	section:

var	getNote	=	(title)	=>	{

		var	notes	=	fetchNotes();

};

Now	that	we	have	our	notes	in	place	we,	can	call	notes.filter,	returning	all	of	the
notes.	I'll	make	a	variable	called	filteredNotes,	setting	it	equal	to	notes.filter.	Now,
we	know	that	the	filter	method	takes	a	function,	I'll	define	an	arrow	function	(=>)
just	like	this:

var	filteredNotes	=	notes.filter(()	=>	{

});

Inside	the	arrow	function	(=>),	we'll	get	 the	individual	note	passed	in,	and	we'll
return	true	when	 the	note	 title,	 the	 title	of	 the	note	we	found	 in	our	JSON	file,
equals,	using	triple	equals,	title:

var	filteredNotes	=	notes.filter(()	=>	{

				return	note.title	===	title;

		});

};

This	 will	 return	 true	 when	 the	 note	 title	 matches	 and	 false	 if	 it	 doesn't.
Alternatively,	we	can	use	arrow	functions,	and	we	only	have	one	line,	as	shown
following,	where	we	return	something;	we	can	cut	out	our	condition,	remove	the
curly	braces,	and	simply	paste	that	condition	right	here:

var	filteredNotes	=	notes.filter((note)	=>	note.title	===	title);

This	has	the	exact	same	functionality,	only	it's	a	lot	shorter	and	easier	to	look	at.

Now	that	we	have	all	of	the	data,	all	we	need	to	do	is	return	something,	and	we'll
return	 the	 first	 item	 in	 the	 filteredNotes	 array.	 Next,	 we'll	 grab	 the	 first	 item,
which	 is	 the	 index	 of	 zero,	 and	 then	we	 just	 need	 to	 return	 it	 using	 the	 return
keyword:

var	getNote	=	(title)	=>	{

		var	notes	=	fetchNotes();

		var	filteredNotes	=	notes.filter((note)	=>	note.title	===	title);

		return	filteredNotes[0];

};

Now,	 there	 is	 a	 chance	 that	 filteredNotes,	 the	 first	 item,	doesn't	 exist,	 and	 that's
fine,	 it's	 going	 to	 return	 undefined,	 in	 which	 case	 our	 else	 clause	 will	 run,
printing	Note	not	found.	 If	 there	 is	a	note,	great,	 that's	 the	note	we	want	 to	print,
and	over	in	app.js	we	do	just	that.

Running	the	getNote	function
Now	 that	 we	 have	 this	 in	 place	 we	 can	 test	 out	 this	 brand	 new	 functionality
inside	 of	 Terminal	 by	 running	 our	 app	 using	 node	 app.js.	 I'll	 use	 the	 read

command,	and	I'll	pass	in	a	title	equal	to	some	string	that	I	know	does	not	exist
inside	of	a	title	in	the	notes-data.json	file:

node	app.js	read	--title="something	here"

When	I	run	the	command,	we	get	Note	not	found,	as	shown	here,	and	this	is	exactly
what	we	want:

Now,	if	I	do	try	to	fetch	a	note	where	the	title	does	exist,	I	would	expect	that	note
to	come	back.

In	the	data	file	I	have	a	note	with	a	title	of	to	buy;	 let's	 try	to	fetch	that	one.	I'll
use	 the	 up	 arrow	 key	 to	 populate	 the	 previous	 command	 and	 replace	 the	 title
with	to	space,	buy,	and	hit	enter:

As	shown	in	the	previous	code,	you	can	see	Note	found	prints	to	the	screen,	which
is	fantastic.	Following	Note	found	we	have	our	spacers	and	following	that	we	have
the	title,	which	is	to	buy,	and	the	body,	which	is	food,	exactly	as	it	appears	inside
of	the	data	file.	With	this	in	place,	we	are	done	with	the	read	command.

The	DRY	principle
Now,	 there	 is	one	more	 thing	 I	want	 to	 tackle	before	we	wrap	up	 this	 section.
Inside	app.js	we	now	have	 the	 same	code	 in	 two	places.	We	have	 the	 space	or
title	body	in	the	add	command	as	well	as	in	the	read	command:

if	(command	===	'add')	{

		var	note	=	notes.addNote(argv.title,	argv.body);

		if	(note)	{

				console.log('Note	created');

				console.log('--');

				console.log(`Title:	${note.title}`);

				console.log(`Body:	${note.body}`);

		}	else	{

				console.log('Note	title	taken');

		}

	}	else	if	(command	===	'list')	{

			notes.getAll();

	}	else	if	(command	===	'read')	{

			var	note	=	notes.getNote(argv.title);

			if	(note)	{

					console.log('Note	found');

					console.log('--');

					console.log(`Title:	${note.title}`);

					console.log(`Body:	${note.body}`);

			}	else	{

					console.log('Note	not	found');

	}

When	you	find	yourself	copying	and	pasting	code,	it's	probably	best	to	break	that
out	 into	 a	 function	 that	 both	 locations	 call.	 This	 is	 the	DRY	principle,	 which
stands	for	Don't	Repeat	Yourself.

Using	the	logNote	function
In	our	case,	we	are	repeating	ourselves.	It	would	be	best	to	break	this	out	into	a
function	that	we	can	call	from	both	places.	In	order	to	do	this,	all	we're	going	to
do	is	make	a	function	in	notes.js	called	logNote.

Now,	in	notes.js,	down	following	the	removeNote	function,	we	can	make	that	brand
new	function	a	variable	called	logNote.	This	 is	going	 to	be	a	 function	 that	 takes
one	argument.	This	argument	will	be	 the	note	object	because	we	want	 to	print
both	the	title	and	the	body.	As	shown	here,	we'll	expect	the	note	to	get	passed	in:

var	logNote	=	(note)	=>	{

};

Now,	filling	out	the	logNote	function	is	going	to	be	really	simple,	especially	when
you're	 solving	 a	 DRY	 issue,	 because	 you	 can	 simply	 take	 the	 code	 that's
repeated,	cut	it	out,	and	paste	it	right	inside	the	logNote	function.	In	this	case	the
variable	names	line	up	already,	so	there	is	no	need	to	change	anything:

var	logNote	=	(note)	=>	{

		console.log('--');

		console.log(`Title:	${note.title}`);

		console.log(`Body:	${note.body}`);

};

Now	 that	we	 have	 the	 logNote	 function	 in	 place,	we	 can	 change	 things	 over	 in
app.js.	 In	app.js,	where	we	have	 removed	 the	 console.log	 statements	we	 can	 call
notes.logNote,	passing	in	the	note	object	just	like	this:

else	if	(command	===	'read')	{

		var	note	=	notes.getNote(argv.title);

		if	(note)	{

				console.log('Note	found');

				notes.logNote(note);

		}	else	{

				console.log('Note	not	found');

	}

And	we	can	do	the	same	thing	in	case	of	the	add	command	if	block.	I	can	remove
these	three	console.log	statements	and	call	notes.logNote,	passing	in	note:

if	(command	===	'add')	{

		var	note	=	notes.addNote(argv.title,	argv.body);

		if	(note)	{

				console.log('Note	created');

				notes.logNote(note);

	}	else	{

			console.log('Note	title	taken');

	}

And	now	 that	we	have	 this	 in	 place,	we	 can	 rerun	our	 program	and	hopefully
what	we	see	is	the	exact	same	functionality.

The	last	thing	to	do	before	we	rerun	the	program	is	export	the	logNote	function	in
exports	module	in	notes.js	file.	LogNote	is	going	to	get	exported	and	we're	using	the
ES6	syntax	to	do	that:

module.exports	=	{

		addNote,

		getAll,

		getNote,

		removeNote,

		logNote

};

With	this	in	place,	I	can	now	rerun	the	previous	command	from	Terminal	using
up	and	hit	enter:

node	app.js	read	--title="to	buy"

As	shown,	we	get	Note	found	printing	to	the	screen,	with	the	title	and	the	body	just
like	we	had	before.	I'm	also	going	to	test	out	the	add	command	to	make	sure	that
one's	working,	node	app.js	add;	we	will	use	a	title	of	things	to	do	and	a	body	of	go
to	post	office:

node	app.js	add	--title="things	to	do"	--body="go	to	post	office"

Now,	when	I	hit	enter,	we	would	expect	the	same	log	to	print	as	it	did	before	for
the	add	command,	and	that's	exactly	what	we	get:

Note	created	prints,	we	get	our	spacer,	and	then	we	get	our	title	and	our	body.

In	the	next	section,	we're	going	to	cover	one	of	the	most	important	topics	in	the
book;	which	is	debugging.	Knowing	how	to	properly	debug	programs	is	going	to
save	you	literally	hundreds	of	hours	over	your	Node.js	career.	Debugging	can	be
really	painful	if	you	don't	have	the	right	tools,	but	once	you	know	how	it's	done,
it	really	isn't	that	bad	and	it	can	save	you	a	ton	of	time.

Debugging
In	 this	 section,	we're	 going	 to	 use	 the	 built-in	 debugger,	which	 can	 look	 a	 little
complex	because	it's	run	inside	of	the	command	line.	That	means	that	you	have
to	use	the	command-line	interface,	which	is	not	always	the	most	pleasant	thing
to	look	at.	In	the	next	section,	though,	we	are	going	to	be	installing	a	third-party
tool	 that	 uses	 Chrome	 DevTools	 in	 order	 to	 debug	 your	 Node	 app.	 That	 one
looks	great	because	the	Chrome	DevTools	are	fantastic.

Executing	 a	 program	 in	 debug
mode
Before	 going	 ahead,	 we	 will	 learn	 that	 we	 do	 need	 to	 create	 a	 place	 to	 play
around	with	debugging	and	that's	going	to	happen	in	a	playground	file,	since	the
code	we're	 going	 to	write	 is	 not	 going	 to	 be	 important	 to	 the	 notes	 app	 itself.
Inside	the	notes	app	I'll	make	a	new	file	called	debugging.js:

In	debugging.js	we're	going	to	start	off	with	a	basic	example.	We're	going	to	make
an	object	called	person,	and	on	that	object	for	the	moment,	we're	going	to	set	one
property	name.	Set	it	equal	to	your	name,	I'll	set	mine	equal	to	the	string	Andrew	as

shown:

var	person	=	{

		name:	'Andrew'

};

Next	up	we're	going	to	set	another	property,	but	in	the	next	line,	person.age.	I'll	set
mine	equal	to	my	age,	25:

var	person	=	{

		name:	'Andrew'

};

person.age	=	25;

Then	 we're	 going	 to	 add	 another	 statement	 that	 changes	 the	 name,	 person.name
equals	something	like	Mike:

var	person	=	{

		name:	'Andrew'

};

person.age	=	25;

person.name	=	'Mike';

Finally,	we're	going	to	console.log	the	person	object,	the	code	is	going	to	look	like
this:

var	person	=	{

		name:	'Andrew'

};

person.age	=	25;

person.name	=	'Mike';

console.log(person);

Now,	we	actually	already	have	a	form	of	debugging	in	this	example,	we	have	a
console.log	statement.

As	you're	going	through	the	Node	application	development	process,	you	may	or
may	 not	 have	 used	 console.log	 to	 debug	 your	 app.	 Maybe	 something's	 not
working	as	expected	and	you	want	 to	 figure	out	exactly	what	 that	variable	has
stored	 inside	 of	 it.	 For	 example,	 if	 you	 have	 a	 function	 that	 solves	 a	 math
problem,	maybe	 at	 one	 part	 in	 the	 function	 the	 equation	 is	 wrong	 and	 you're
getting	a	different	result.

Using	console.log	can	be	a	pretty	great	way	to	do	that,	but	it's	super	limited.	We
can	view	that	by	running	 it	 from	Terminal,	 I'll	 run	 the	 following	command	for
this:

node	playground/debugging.js

When	I	run	the	file,	I	do	get	my	object	printed	out	to	the	screen,	which	is	great,
but,	as	you	know,	if	you	want	to	debug	something	besides	the	person	object	you
have	to	add	another	console.log	statement	in	order	to	do	that.

Imagine	you	have	something	like	our	app.js	file,	you	want	to	see	what	command
equals,	then	you	want	to	see	what	argv	equals,	it	could	take	a	lot	of	time	to	add
and	remove	those	console.log	statements.	There	is	a	better	way	to	debug.	This	is
using	the	Node	debugger.	Now,	before	we	make	any	changes	to	the	project,	we'll
take	a	look	at	how	the	debugger	works	inside	of	Terminal,	and	as	I	warned	you	in
the	beginning	of	the	section,	the	built-in	Node	debugger,	while	it	is	effective,	is	a
little	ugly	and	hard	to	use.

For	now,	though,	we	are	going	to	run	the	app	much	the	same	way,	only	this	time
we're	going	to	type	node	inspect.	Node	debug	is	going	to	run	our	app	completely
differently	from	the	regular	Node	command.	We're	running	the	same	file	in	the
playground	folder,	it's	called	debugging.js:

node	inspect	playground/debugging.js

When	you	hit	enter,	you	should	see	something	like	this:

In	the	output,	we	can	ignore	the	first	 two	lines.	This	essentially	means	that	 the
debugger	 was	 set	 up	 correctly	 and	 it's	 able	 to	 listen	 to	 the	 app	 running	 in	 the
background.

Next,	we	have	our	very	first	line	break	in	playground	debugging	on	line	one,	and
right	following	to	it	you	can	see	line	one	with	a	little	caret	(>)	next	to	it.	When
you	 first	 run	 your	 app	 in	 debug	 mode,	 it	 pauses	 before	 it	 executes	 the	 first
statement.	When	we're	paused	on	a	line	like	line	one,	that	means	the	line	has	not
executed,	so	at	this	point	in	time	we	don't	even	have	the	person	variable	in	place.

Now,	as	you	can	see	in	the	preceding	code,	we	haven't	returned	to	the	command
line,	Node	is	still	waiting	for	input,	and	there	are	a	few	different	commands	we
can	run.	For	example,	we	can	run	n,	which	is	short	for	next.	You	can	type	n,	hit
enter,	and	this	moves	on	to	the	next	statement.

The	 next	 statement	 we	 have,	 the	 statement	 on	 line	 one,	 was	 executed,	 so	 the
person	 variable	 does	 exist.	 Then	 I	 can	 use	 n	 again	 to	 go	 to	 the	 next	 statement
where	we	declare	the	person.name	property,	updating	it	from	Andrew	to	Mike:

Notice,	at	this	point,	age	does	exist	because	that	line	has	already	been	executed.

Now,	the	n	command	goes	statement	by	statement	through	your	entire	program.
If	you	realize	that	you	don't	want	to	do	that	through	the	whole	program,	which
could	take	a	 lot	of	 time,	you	can	use	c.	The	c	command	 is	short	 for	Continue,
and	that	continues	to	the	very	end	of	the	program.	In	the	following	code,	you	can
see	our	console.log	statement	runs	the	name	Mike	and	the	age	25:

This	is	that's	a	quick	example	of	how	to	use	the	debug	keyword.

Now,	 we	 actually	 didn't	 do	 any	 debugging,	 we	 just	 ran	 through	 the	 program
since	it	is	a	little	foreign	in	terms	of	writing	these	commands,	such	as	next	and
continue,	I	decided	to	do	a	dry	run	once	with	no	debugging.	You	can	use	control
+	C	to	quit	the	debugger	and	get	returned	back	to	Terminal.

I'll	use	clear	to	clear	all	the	output.	Now	that	we	have	a	basic	idea	about	how	we
can	execute	the	program	in	debug	mode,	let's	take	a	look	at	how	we	can	actually
do	some	debugging.

Working	with	debugging
I'll	 rerun	 the	program	using	 the	up	arrow	key	 twice	 to	 return	 to	 the	Node	debug
command.	Then,	I'll	run	the	program,	and	I'll	hit	next	twice,	n	and	n:

At	this	point	in	time,	we	are	on	line	seven,	that	is	where	the	line	break	currently
is.	From	here	we	can	do	 some	debugging	using	a	command	called	 repl,	which
stands	for	Read	Evaluate	Print	Loop.	The	repl	 command,	 in	our	 case,	 brings
you	to	an	entirely	separate	area	of	the	debugger.	When	you	hit	it	you're	essentially
in	a	Node	console:

You	 can	 run	 any	 Node	 commands,	 for	 example,	 I	 can	 use	 console.log	 to	 print
something	like	test,	and	test	prints	up	right	there.

I	can	make	a	variable	a	that	is	equal	to	1	plus	3,	then	I	can	reference	a	and	I	can
see	it's	equal	to	4	as	shown:

More	importantly,	we	have	access	to	the	current	program	as	it	sits,	meaning	as	it
was	before	 line	seven	was	executed.	We	can	use	this	 to	print	out	person,	and	as
shown	in	the	following	code,	you	can	see	the	person's	name	is	Andrew	because	line
seven	hasn't	executed	and	the	age	is	25,	exactly	as	it	appears	in	the	program:

This	 is	where	debugging	gets	 really	useful.	Being	 able	 to	 look	 at	 the	program
paused	at	a	certain	point	in	time	is	going	to	make	it	really	easy	to	spot	errors.	I
could	do	 anything	 I	want,	 I	 could	 print	 out	 the	 person	 name	 property,	 and	 that
prints	Andrew	to	the	screen,	as	shown	here:

Now,	 once	 again,	 we	 still	 have	 this	 problem.	 I	 have	 to	 hit	 next	 through	 the
program.	When	you	have	a	really	long	program,	there	could	literally	be	hundreds
or	thousands	of	statements	that	need	to	run	before	you	get	to	the	point	you	care
about.	Obviously	that	is	not	ideal,	so	we're	going	to	look	at	a	better	way.

Let's	quit	repl	using	control	+	C;	now	we're	back	at	the	debugger.

From	here	we	are	going	to	make	a	quick	change	to	our	application	in	debugging.js.

Let's	 say	we	want	 to	pause	 line	seven	between	 the	person	age	property	update
and	the	person	name	property	update.	In	order	to	pause,	what	we're	going	to	do
is	run	the	statement	debugger:

var	person	=	{

		name:	'Andrew'

};

person.age	=	25;

debugger;

person.name	=	'Mike';

console.log(person);

When	 you	 have	 a	 debugger	 statement	 exactly	 like	 previous,	 it	 tells	 the	 Node
debugger	 to	stop	here,	which	means	 instead	of	using	n	 (next)	 to	go	statement	by
statement,	you	can	use	c	 (continue),	which	 is	going	 to	continue	until	either	 the
program	exits	or	it	sees	one	of	the	debugger	keywords.

Now,	 over	 in	 Terminal,	 we're	 going	 to	 rerun	 the	 program	 exactly	 like	we	 did
before.	 This	 time	 around,	 instead	 of	 hitting	 n	 twice,	 we're	 going	 to	 use	 c	 to
continue:

Now,	when	we	first	used	c,	 it	went	 to	 the	end	of	 the	program,	printing	out	our
object.	This	time	around	it's	going	to	continue	until	it	finds	that	debugger	keyword.

Now,	we	can	use	repl,	access	anything	we	like,	for	example,	person.age,	shown	in
this	code:

Once	 we're	 done	 debugging,	 we	 can	 quit	 and	 continue	 through	 the	 program.

Again,	we	can	use	control	+	C	to	quit	repl	and	the	debugger.

All	 real	 debugging	 pretty	much	 happens	with	 the	 debugger	 keyword.	You	 put	 it
wherever	 you	 want	 on	 your	 program,	 you	 run	 the	 program	 in	 debug	 mode,
eventually	 it	 gets	 to	 the	 debugger	 keyword	 and	 you	 do	 something.	 For	 example
you	explore	some	variable	values,	you	run	some	functions,	or	you	play	around
with	a	code	to	find	the	error.	No	one	really	uses	n	to	print	through	the	program,
finding	the	line	that	causes	the	problem.	That	takes	way	too	much	time	and	it's
just	not	realistic.

Using	 debugger	 inside	 the	 notes
application
Now	that	you	know	a	little	bit	about	the	debugger,	I	want	you	to	use	it	inside	our
notes	application.	What	we	will	do	inside	notes.js	is	add	the	debugger	statement	in
logNote	 function	as	 the	first	 line	of	 the	function.	Then	I	will	 run	the	program	in
debug	 mode,	 passing	 in	 some	 arguments	 that	 will	 cause	 logNote	 to	 run;	 for
example,	reading	a	note,	after	the	note	gets	fetched,	it's	going	to	call	logNote.

Now,	 once	 we	 have	 the	 debugger	 keyword	 in	 the	 logNote	 function	 and	 run	 it	 in
debug	mode	with	those	arguments,	 the	program	should	stop	at	this	point.	Once
the	program	starts	in	debug	mode,	we'll	use	c	to	continue,	and	it'll	pause.	Next,
we'll	print	out	the	note	object	and	make	sure	it	looks	okay.	Then,	we	can	quit	repl
and	quit	the	debugger.

Now,	first	we	are	adding	the	debugger	statement	right	here:

var	logNote	=	(note)	=>	{

		debugger;

		console.log('--');

		console.log(`Title:	${note.title}`);

		console.log(`Body:	${note.body}`);

};

We	can	save	the	file,	and	now	we	can	move	into	Terminal;	there's	no	need	to	do
anything	else	inside	our	app.

Inside	Terminal	we're	going	 to	 run	our	app.js	 file,	node	debug	app.js,	 because	we
want	 to	 run	 the	 program	 in	 debug	mode.	Then	we	 can	 pass	 in	 our	 arguments,
let's	say	the	read	command,	and	I'll	pass	in	a	title,	"to	buy"	as	shown	here:

node	debug	app.js	read	--title="to	buy"

In	this	case	I	have	a	note	with	the	title	"to	buy",	as	shown	here:

Now,	when	 I	 run	 the	 preceding	 command,	 it's	 going	 to	 pause	 before	 that	 first
statement	runs,	this	is	expected:

I	 can	 now	 use	 c	 to	 continue	 through	 the	 program.	 It's	 going	 to	 run	 as	 many
statements	as	it	takes	for	either	the	program	to	end	or	for	the	debugger	keyword	to
be	found,	and	as	shown	in	the	following	code,	you	can	see	the	debugger	was	found
and	our	program	has	stopped	on	line	49	of	notes.js:

This	is	exactly	what	we	wanted	to	do.	Now,	from	here,	I'll	go	into	repl	and	print
out	note	argument,	and	as	shown	in	the	following	code,	you	can	see	we	have	the
note	with	the	title	of	to	buy	and	the	body	food:

Now,	if	there	was	an	error	in	this	statement,	maybe	the	wrong	thing	was	printing
to	 the	 screen,	 this	would	 give	 us	 a	 pretty	 good	 idea	 as	 to	why.	Whatever	 gets
passed	into	the	note	is	clearly	being	used	inside	of	the	console.log	statements,	so	if
there	was	an	issue	with	what's	printing,	it's	most	likely	an	issue	with	what	gets
passed	into	the	logNote	function.

Now	that	we've	printed	the	note	variable,	we	can	shut	down	repl,	and	we	can	use
control	+	C	or	quit	to	quit	the	debugger.

Now	we're	back	at	the	regular	Terminal	and	we	have	successfully	completed	the
debugging	inside	the	Node	application.	In	the	next	section,	we're	going	to	look	at
a	 different	 way	 to	 do	 the	 same	 thing,	 a	 way	 with	 a	 much	 nicer	 graphic	 user
interface	that	I	find	a	lot	easier	to	navigate	and	use.

Listing	notes
Now	that	we've	made	some	awesome	progress	on	debugging,	let's	go	back	to	the
commands	 for	 our	 app,	 because	 there	 is	 only	 one	 more	 to	 fill	 out	 (we	 have
covered	the	add,	read,	and	remove	commands	in	the	Chapter	3,	Node	Fundamentals	-
Part	2,	and	this	chapter,	respectively).	It's	the	list	command,	and	it's	going	to	be
really	easy,	there	is	nothing	complex	going	on	in	the	case	of	the	list	command.

Using	the	getAll	function
In	order	to	get	started,	all	we	need	to	do	is	fill	out	the	list	notes	function,	which
in	this	case	we	called	getAll.	The	getAll	function	is	responsible	for	returning	every
single	note.	That	means	it's	going	to	return	an	array	of	objects,	an	array	of	all	of
our	notes.

All	we	have	to	do	that	is	to	return	fetchNotes,	as	shown	here:

var	getAll	=	()	=>	{

		return	fetchNotes();

}

There's	no	need	to	filter,	there's	no	need	to	manipulate	the	data,	we	just	need	to
pass	the	data	from	fetchNotes	back	through	getAll.	Now	that	we	have	this	in	place,
we	can	fill	out	the	functionality	over	inside	of	app.js.

We	have	to	create	a	variable	where	we	can	store	the	notes,	I	was	going	to	call	it
notes,	 but	 I	 probably	 shouldn't	 because	 we	 already	 have	 a	 notes	 variable
declared.	I'll	create	another	variable,	called	allNotes,	setting	it	equal	to	the	return
value	from	getAll,	which	we	know	because	we	just	filled	out	returns	all	the	notes:

else	if	(command	===	'list')	{

		var	allNotes	=	notes.getAll();

}

Now	I	can	use	console.log	to	print	a	little	message	and	I'll	use	template	strings	so	I
can	inject	the	actual	number	of	notes	that	are	going	to	be	printed.

Inside	the	template	strings,	I'll	add	Printing,	then	the	number	of	notes	using	the	$
(dollar)	 sign	 and	 the	 curly	 braces,	 allNotes.length:	 that's	 the	 length	 of	 the	 array
followed	by	 notes	with	 the	 s	 in	 parenthesis	 to	 handle	 both	 singular	 and	 plural
cases,	as	shown	in	the	following	code	block:

else	if	(command	===	'list')	{

		var	allNotes	=	notes.getAll();

		console.log(`Printing	${allNotes.length}	note(s).`);

}

So,	if	there	were	six	notes,	it	would	say	printing	six	notes.

Now	 that	 we	 have	 this	 in	 place,	 we	 have	 to	 go	 about	 the	 process	 of	 actually
printing	each	note,	which	means	we	need	 to	call	logNote	once	for	every	 item	in
the	allNotes	array.	To	do,	this	we'll	use	forEach,	which	is	an	array	method	similar	to
filter.

Filter	 lets	 you	manipulate	 the	 array	 by	 returning	 true	 or	 false	 to	 keep	 items	or
remove	items;	forEach	simply	calls	a	callback	function	once	for	each	item	in	the
array.	 In	 this	 case	 we	 can	 use	 it	 using	 allNotes.forEach,	 passing	 in	 a	 callback
function.	Now,	that	callback	function	will	be	an	arrow	function	(=>)	in	our	case,
and	 it	will	get	called	with	 the	note	variable	 just	 like	 filter	would	have.	And	all
we'll	call	is	notes.logNote,	passing	in	the	note	argument,	which	is	right	here:

else	if	(command	===	'list')	{

		var	allNotes	=	notes.getAll();

		console.log(`Printing	${allNotes.length}	note(s).`);

		allNotes.forEach((note)	=>	{

				notes.logNote(note);

		});

}

And	now	 that	we	have	 this	 in	place,	we	can	actually	simplify	 it	by	adding	 the
logNote	call,	as	shown	in	here:

else	if	(command	===	'list')	{

		var	allNotes	=	notes.getAll();

		console.log(`Printing	${allNotes.length}	note(s).`);

		allNotes.forEach((note)	=>	notes.logNote(note));

}

This	is	the	exact	same	functionality,	only	using	the	expression	syntax.	Now	that
we	have	 our	 arrow	 function	 (=>)	 in	 place,	we	 are	 calling	 notes.logNote	 once	 for
each	item	in	the	all	notes	array.	Let's	save	the	app.js	file	and	test	this	out	over	in
Terminal.

In	order	to	test	out	the	list	command,	all	I'll	use	is	node	app.js	with	the	command
list.	There	is	no	need	to	pass	in	any	arguments:

node	app.js	list

When	I	run	this,	I	do	get	Printing	3	note(s)	and	then	I	get	my	3	notes	to	buy,	to	buy
from	 store,	 and	 things	 to	 do,	 as	 shown	 in	 the	 following	 code	 output,	 which	 is
fantastic:

With	 this	 in	 place,	 all	 of	 our	 commands	 are	 now	working.	We	 can	 add	 notes,
remove	 notes,	 read	 an	 individual	 note,	 and	 list	 all	 of	 the	 notes	 stored	 in	 our
JSON	file.

Moving	on	to	the	next	section,	I	want	to	clean	up	some	of	the	commands.	Inside
app.js	and	notes.js,	we	have	some	console.log	statements	that	are	printing	out	a	few
things	we	no	longer	need.

At	 the	very	 top	of	app.js,	 I	am	going	 to	 remove	 the	console.log('Starting	app.js')
statement,	making	the	constant	fs	the	first	line.

I'll	 also	 remove	 the	 two	 statements:	 console.log('Command:	 ',	 command)	 and
console.log('Yargs',	argv)	that	print	the	command	and	the	yargs	variable	value.

Inside	notes.js,	 I	will	 also	 remove	 the	 console.log('Stating	notes.js')	 statement	 at
the	very	top	of	that	file,	since	it	is	no	longer	necessary,	putting	constant	fs	at	the
top.

It	was	definitely	useful	when	we	first	started	exploring	different	 files,	but	now
we	have	everything	 in	place,	 there's	no	need.	 If	 I	 rerun	 the	list	command,	 this
time	you	can	see	it	looks	a	lot	cleaner:

Printing	three	notes	is	the	very	first	line	showing	up.	With	this	in	place,	we	have
done	our	commands.

In	the	next	section,	we're	going	to	take	a	slightly	more	in-depth	look	at	how	we
can	 configure	 yargs.	 This	 is	 going	 to	 let	 us	 require	 certain	 arguments	 for	 our
commands.	So	 if	 someone	 tries	 to	 add	a	note	without	 a	 title,	we	can	warn	 the
user	and	prevent	the	program	from	executing.

Advanced	yargs
Before	we	get	into	the	advanced	discussion	of	yargs,	first,	I	want	to	pull	up	the
yargs	 docs	 so	 that	 you	 at	 least	 know	 where	 the	 information	 about	 yargs	 is
coming	from.	You	can	get	it	by	Googling	npm	yargs.	We're	going	to	go	to	the	yargs
package	page	on	npm.	This	has	the	documentation	for	yargs,	as	shown	here:

Now	 there	 is	 no	 table	 of	 contents	 for	 the	 yargs	 docs,	which	makes	 it	 kind	 of
difficult	 to	 navigate.	 It	 starts	 off	 with	 some	 examples	 that	 don't	 go	 in	 any
particular	order,	and	then	eventually	it	gets	into	a	list	of	all	the	methods	you	have
available,	and	that's	what	we're	looking	for.

So	I'll	use	command	+	F	(Ctrl	+	F)	to	search	the	page	for	methods,	and	as	shown

in	the	following	screenshot,	we	get	the	methods	header,	which	is	the	one	we're
looking	for:

If	 you	 scroll	 down	 on	 the	 page,	 we	 start	 to	 see	 an	 alphabetical	 list	 of	 all	 the
methods	 you	 have	 access	 to	 inside	 of	 yargs.	 We're	 specifically	 looking	 for
.command;	this	is	the	method	we	can	use	to	configure	all	four	of	our	commands:	the
add,	read,	remove	and	list	notes:

We're	going	to	specify	which	options	they	require,	if	any,	and	we	can	also	set	up
things	like	descriptions	and	help	functionality.

Using	chaining	syntax	on	yargs
Now	 in	 order	 to	 get	 started,	 we	 need	 to	make	 some	 changes	 inside	 of	 app.js.
We're	going	to	start	with	the	add	command	(for	more	information,	please	refer	to
the	Adding	and	saving	notes	section	in	the	previous	chapter).

We	want	to	add	a	few	helpful	pieces	of	information	in	argv	function	inside	app.js,
that	will:

Let	yargs	verify	the	add	command	is	ran	appropriately,	and
Let	the	user	know	how	the	add	command	is	meant	to	be	executed

Now	we	 are	 going	 to	 be	 chaining	 property	 calls,	 which	means	 right	 before	 I
access	.argv	I	want	to	call	.command,	and	then	I'll	call	.argv	on	the	return	value	from
command	as	shown	here:

const	argv	=	yargs

		.command()

		.argv;

Now	this	chaining	syntax	probably	looks	familiar	if	you've	used	jQuery,	a	lot	of
different	 libraries	 are	 supported.	Once	we	 call	 .command	 on	 yargs,	we're	 going	 to
pass	in	three	arguments.

The	first	one	is	the	command	name,	exactly	how	the	user	is	going	to	type	it	 in
Terminal,	in	our	case	it's	going	to	be	add:

const	argv	=	yargs

		.command('add')

		.argv;

Then	we're	going	to	pass	another	string	in,	and	this	is	going	to	be	a	description
of	 what	 the	 command	 does.	 It	 is	 going	 to	 be	 some	 sort	 of	 English	 readable
description	 that	 a	 user	 can	 read	 to	 figure	 out	weather	 that's	 the	 command	 that
they	want	to	run:

const	argv	=	yargs

		.command('add',	'Add	a	new	note')

		.argv;

The	next	one	is	going	to	be	an	object.	This	is	going	to	be	the	options	object	that
lets	us	specify	what	arguments	this	command	requires.

Calling	the	.help	command
Now	before	we	 get	 into	 the	 options	 object,	 let's	 add	 one	more	 call	 right	 after
command.	We're	going	to	call	.help,	which	is	a	method,	so	we're	going	to	call	it
as	a	function,	and	we	don't	need	to	pass	in	any	arguments:

const	argv	=	yargs

		.command('add',	'Add	a	new	note',	{

		})

		.help()

		.argv;

When	 we	 add	 on	 this	 help	 call,	 it	 sets	 up	 yargs	 to	 return	 some	 really	 useful
information	when	 someone	 runs	 the	 program.	 For	 example,	 I	 can	 run	 the	 node
app.js	command	with	the	help	flag.	The	help	flag	is	added	because	we	called	that
help	method,	and	when	I	run	the	program,	you	can	see	all	of	the	options	we	have
available:

node	app.js	--help

As	shown	in	the	preceding	output,	we	have	one	command,	add	Add	a	new	note,	and

a	help	option	for	the	current	command,	help.	And	the	same	thing	holds	true	if	we
run	the	node	app.js	add	command	with	help	as	shown	here:

node	app.js	add	--help

In	 this	output,	we	can	view	all	of	 the	options	and	arguments	 for	add	command,
which	in	this	case	happens	to	be	none	because	we	haven't	set	those	up:

Adding	the	options	object
Let's	 add	options	and	arguments	back	 inside	Atom.	 In	order	 to	 add	properties,
we're	going	 to	 update	 the	 options	 object,	where	 the	 key	 is	 the	 property	 name,
whether	it's	title	or	body,	and	the	value	is	another	object	that	lets	us	specify	how
that	property	should	work,	as	shown	here:

const	argv	=	yargs

		.command('add',	'Add	a	new	note',	{

				title:	{

				

				}

		})

		.help()

		.argv;

Adding	the	title
In	the	case	of	title,	we	would	add	the	title	on	the	left-hand	side,	and	we	would
put	 our	 options	 object	 on	 the	 right-hand	 side.	 Inside	 the	 title,	 we're	 going	 to
configure	three	properties	describe,	demand,	and	alias:

The	describe	property	will	be	set	equal	 to	a	string,	and	 this	 is	going	 to	describe
what	is	supposed	to	be	passed	in	for	the	title.	In	this	case,	we	can	just	use	Title	of
note:

const	argv	=	yargs

		.command('add',	'Add	a	new	note',	{

				title:	{

						describe:	'Title	of	note'

				}

		})

		.help()

		.argv;

Next	we	configure	demand.	It	is	going	to	tell	yarg	whether	or	not	this	argument	is
required.	demand	is	false	by	default,	we'll	set	it	to	true:

const	argv	=	yargs

		.command('add',	'Add	a	new	note',	{

				title:	{

						describe:	'Title	of	note',

						demand:	true

				}

		})

		.help()

		.argv;

Now	if	someone	tries	to	run	the	add	command	without	the	title,	it's
going	 to	 fail,	 and	 we	 can	 prove	 this.	We	 can	 save	 app.js,	 and	 in
Terminal,	we	 can	 rerun	 our	 previous	 command	 removing	 the	 help
flag,	and	when	I	do	that,	you	see	we	get	a	warning,	Missing	required
argument:	title	as	shown	here:

Notice	that	in	the	output	the	title	argument,	is	Title	of	note,	which	is
the	 describe	 string	 we	 used,	 and	 it's	 required	 on	 the	 right	 side,
letting	 you	 know	 that	 you	 have	 to	 provide	 a	 title	 when	 you're
calling	that	add	command.

Along	 with	 describe	 and	 demand	 we	 are	 going	 to	 provide	 a	 third	 option,	 this	 is
called	alias.	The	 alias	 lets	 you	 provide	 a	 shortcut	 so	 you	don't	 have	 to	 type	 --
title;	you	can	set	the	alias	equal	to	a	single	character	like	t:

const	argv	=	yargs

		.command('add',	'Add	a	new	note',	{

				title:	{

						describe:	'Title	of	note',

						demand:	true,

						alias:	't'

				}

		})

		.help()

		.argv;

When	you	have	done	that,	you	can	now	run	the	command	in	Terminal	using	the
new	syntax.

Let's	run	our	add	command,	node	app.js	add,	instead	of	--title.	We're	going	to	use
-t,	which	is	the	flag	version,	and	we	can	set	that	equal	to	whatever	we	like,	for
example,	flag	title	will	be	the	title,	and	--body	will	get	set	equal	to	body	,	as	shown
in	the	following	code.	Note	that	we	haven't	set	up	the	body	argument	yet	so	there
is	no	alias:

node	app.js	add	-t="flag	title"	--body="body"

If	 I	 run	 this	 command,	 everything	works	 as	 expected.	The	 flag	 title	 shows	 up
right	where	it	should,	even	though	we	used	the	alias	version	which	is	the	letter	t,

as	shown	here:

Adding	the	body
Now	that	we	have	our	 title	configured,	we	can	do	the	exact	same	thing	for	 the
body.	 We'll	 specify	 our	 options	 object	 and	 provide	 those	 three	 arguments:
describe,	demand,	and	alias	for	body:

const	argv	=	yargs

		.command('add',	'Add	a	new	note',	{

				title:	{

						describe:	'Title	of	note',

						demand:	true,

						alias:	't'

				},

				body:	{

				

				}

		})

		.help()

		.argv;

The	first	one	is	describe	and	that	one's	pretty	easy.	describe	is	going	to	get	set	equal
to	a	string,	and	in	this	case	Body	of	note	will	get	the	job	done:

const	argv	=	yargs

		.command('add',	'Add	a	new	note',	{

				title:	{

						describe:	'Title	of	note',

						demand:	true,

						alias:	't'

				},

				body:	{

						describe:	'Body	of	note'

				}

		})

		.help()

		.argv;

The	next	one	will	be	 demand,	 and	 to	add	a	note	we	are	going	 to	need	a	 body.	So
we'll	set	demand	equal	to	true,	just	like	we	do	up	previous	for	title:

const	argv	=	yargs

		.command('add',	'Add	a	new	note',	{

				title:	{

						describe:	'Title	of	note',

						demand:	true,

						alias:	't'

				},

				body:	{

						describe:	'Body	of	note'

						demand:	true

				}

		})

		.help()

		.argv;

And	last	but	not	least	is	the	alias.	The	alias	is	going	to	get	set	equal	to	a	single
letter,	I'll	use	the	letter	b	for	body:

const	argv	=	yargs

		.command('add',	'Add	a	new	note',	{

				title:	{

						describe:	'Title	of	note',

						demand:	true,

						alias:	't'

				},

				body:	{

						describe:	'Body	of	note'

						demand:	true,

						alias:	'b'

				}

		})

		.help()

		.argv;

With	 this	 in	place,	we	can	now	save	app.js	 and	 inside	Terminal,	we	can	 take	a
moment	to	rerun	node	app.js	add	with	the	help	flag:

node	app.js	add	--help

When	we	run	this	command,	we	should	now	see	the	body	argument	showing	up,
and	you	can	even	see	it	shows	the	flag	version,	as	shown	in	the	following	output,
the	alias	-b	(Body	of	note),	and	it	is	required:

Now	I'll	run	node	app.js	add	passing	in	two	arguments	t.	I'll	set	that	equal	to	t,	and
b	setting	it	equal	to	b.

When	I	run	the	command,	everything	works	as	expected:

node	app.js	add	-t=t	-b=b

As	shown	in	the	preceding	output	screenshot,	a	new	note	was	created	with	a	title
of	t	and	a	body	of	b.	With	 this	 in	place,	we've	now	successfully	completed	 the
setup	for	the	add	command.	We	have	our	add	command	title,	a	description,	and	the
block	 that	 specifies	 the	 arguments	 for	 that	 command.	 Now	we	 do	 have	 three
more	commands	to	add	support	for,	so	let's	get	started	doing	that.

Adding	 support	 to	 the	 read	 and
remove	commands
On	the	next	line,	I'll	call	.command	again,	passing	in	the	command	name.	Let's	do
the	list	command	first	because	this	one	is	really	easy,	no	arguments	are	required.
Then	we'll	pass	in	the	description	for	the	list	command,	List	all	notes,	as	shown
here:

.command('list',	'List	all	notes')

.help()

.argv;

Next	up,	we'll	call	command	again.	This	time	we'll	do	the	command	for	read.	The
read	 command	 reads	 an	 individual	 note,	 so	 for	 the	 description	 for	 the	 read
command,	we'll	use	something	like	Read	a	note:

.command('list',	'List	all	notes')

.command('read',	'Read	a	note')

.help()

.argv;

Now	the	read	command	does	require	the	title	argument.	That	means	we	are	going
to	need	to	provide	that	options	object.	I'll	take	title	from	add	command,	copy	it,
and	paste	it	in	the	read	command	options	object:

.command('list',	'List	all	notes')

.command('read',	'Read	a	note',	{

		title:	{

				describe:	'Title	of	note',

				demand:	true,

				alias:	't'

		}

})

.help()

.argv;

As	you	probably	just	noticed,	we	have	repeated	code.	The	title	configuration	just
got	 copied	 and	pasted	 into	multiple	 places.	 It	would	be	pretty	 nice	 if	 this	was
DRY,	 if	 it	was	 in	one	variable	we	could	 reference	 in	both	 locations,	 in	add	and
read	commands.

Will	call	command	for	remove,	 just	 following	where	we	called	 the	command	for

read.	 Now,	 the	 remove	 command	 will	 have	 a	 description.	 We'll	 stick	 with
something	simple	like	Remove	a	note,	and	we	will	be	providing	an	options	object:

.command('remove',	'Remove	a	note',	{

})

Now	I	can	add	the	options	object	identical	to	the	read	command.	However,	in	that
options	 object,	 I'll	 set	 title	 equal	 to	 titleOptions,	 as	 shown	 here,	 to	 avoid	 the
repetition	of	code:

.command('remove',	'Remove	a	note',	{

		title:	titleOptions

})

Adding	 the	 titleOption	 and
bodyOption	variables
Now	I	don't	have	the	titleOptions	object	created	yet	so	the	code	would	currently
fail,	but	 this	 is	 the	general	 idea.	We	want	 to	 create	 the	 titleOptions	 object	 once
and	reference	it	in	all	the	locations	we	use	it,	for	add,	read	and	remove	command.	I
can	 take	titleOptions,	 and	 add	 it	 for	 read	 as	well	 as	 for	 add	 command,	 as	 shown
here:

.command('add',	'Add	a	new	note',	{

		title:	titleOptions,

		body:	{

				describe:	'Body	of	note',

				demand:	true,

				alias:	'b'

		}

})

.command('list',	'List	all	notes')

.command('read',	'Read	a	note',	{

		title:	titleOptions

})

.command('remove',	'Remove	a	note',	{

title:	titleOptions

})

Now,	 just	previous	 the	constant	 argv,	 I	 can	 create	 a	 constant	 called	 titleOptions,
and	 I	 can	 set	 it	 equal	 to	 that	 object	 that	we	defined	 for	 add	 and	 read	 command
earlier,	which	is	describe,	demand,	and	alias,	as	shown	here:

const	titleOptions	=	{

		describe:	'Title	of	note',

		demand:	true,

		alias:	't'

};

We	now	have	the	titleOptions	in	place,	and	this	will	work	as	expected.	We	have
the	exact	same	functionality	we	did	before,	but	we	now	have	the	titleOptions	in	a
separate	object,	which	 follows	 the	DRY	principle	we	discussed	 in	 the	Reading
note	section.

Now,	we	could	also	do	the	same	thing	for	body.	It	might	seem	like	overkill	since
we're	only	using	 it	 in	 only	one	 location,	 but	 if	we're	 sticking	 to	 the	pattern	of
breaking	them	out	 into	variables,	 I'll	do	 it	 in	 the	case	of	 the	body	as	well.	 Just

following	the	titleOptions	constant,	I	can	create	the	constant	bodyOptions,	setting	it
equal	 to	 the	 options	 object	 we	 defined	 in	 the	 body,	 for	 add	 command	 in	 the
previous	subsection:

const	bodyOptions	=	{

		describe:	'Body	of	note',

		demand:	true,

		alias:	'b'

};

With	this	in	place,	we	are	now	done.	We	have	add,	read,	and	remove,	all	with	their
arguments	set	up	referencing	the	titleObject	and	bodyObject	variables	defined.

Testing	the	remove	command
Let's	 test	 out	 the	 remove	 command	 in	Terminal.	 I'll	 list	 out	my	 notes	 using	 node
app.js	list,	so	I	can	see	which	notes	I	have	to	remove:

node	app.js	list

I'll	remove	 the	note	with	the	title	t,	using	the	node	app.js	remove	command	and	our
flag	"t":

node	app.js	remove	-t="t"

We'll	 remove	 the	 note	with	 the	 title	 t,	 and	 as	 shown	 previous,	 Note	 was	 removed
prints	to	the	screen.	And	if	I	use	the	up	arrow	key	twice,	I	can	list	the	notes	out
again,	and	you	can	see	the	note	with	the	title	t	has	indeed	gone:

Let's	 remove	 one	 more	 note	 using	 the	 node	 app.js	 remove	 command.	 This	 time
we're	going	to	use	--title,	which	is	the	argument	name,	and	the	note	we're	going
to	remove	has	the	title	flag	title,	as	shown	in	this	code:

When	I	remove	it,	it	says	Note	was	removed,	and	if	I	rerun	the	list	command,	I	can
see	that	we	have	three	notes	left,	the	note	was	indeed	removed	,	as	shown	here:

And	that	is	it	for	the	notes	application.

Arrow	functions
In	this	section,	you're	going	to	learn	the	ins	and	outs	of	the	arrow	function.	It's	an
ES6	feature,	and	we	have	taken	a	little	look	at	it.	Inside	notes.js	we	used	it	in	a
few	 basic	 examples	 to	 create	methods	 such	 as	 fetchNotes	 and	 saveNotes,	 and	we
also	passed	it	into	a	few	array	methods	like	filter,	and	for	each	array,	we	used	it
as	the	callback	function	that	gets	called	once	for	every	item	in	the	array.

Now	 if	 you	 try	 to	 swap	 out	 all	 of	 the	 functions	 in	 a	 program	 with	 arrow
functions,	it's	most	likely	not	going	to	work	as	expected	because	there	are	some
differences	 between	 the	 two,	 and	 it's	 really	 important	 to	 know	 what	 those
differences	are,	so	you	can	make	the	decision	to	use	a	regular	ES5	function	or	an
ES6	arrow	function.

Using	the	arrow	function
The	goal	 in	 this	section	is	 to	give	you	the	knowledge	to	make	that	choice,	and
we'll	kick	things	off	by	creating	a	new	file	in	the	playground	folder	called	arrow-
function.js:

Inside	 this	 file,	 we're	 going	 to	 play	 around	 with	 a	 few	 examples,	 going	 over
some	of	the	subtleties	to	the	arrow	function.	Before	we	type	anything	inside	of
the	 file,	 I'll	 start	 up	 this	 file	 with	 nodemon,	 so	 every	 time	we	make	 a	 change	 it
automatically	refreshes	over	in	Terminal.

If	 you	 remember,	 nodemon	 is	 the	 utility	 we	 installed	 in	 Chapter	 2,	 Node
Fundamentals	-	Part	1.	It	was	a	global	npm	module.	The	nodemon	is	the	command
to	run,	and	then	we	just	pass	in	the	file	path	like	we	would	for	any	other	Node
command.	As	we're	going	 into	 the	 playground	 folder,	 and	 the	 file	 itself	 is	 called
arrow-function.js,	we'll	run	the	following	command:

nodemon	playground/arrow-function.js

We'll	 run	 the	 file,	 and	 nothing	 prints	 to	 the	 screen,	 as	 shown	 in	 the	 following
output,	besides	the	nodemon	logs	because	we	have	nothing	in	the	file:

To	get	started,	in	the	arrowfunction.js	file,	we'll	create	a	function	called	square,	by
making	a	variable	called	square	and	setting	it	equal	to	an	arrow	function.

To	 make	 our	 arrow	 function	 (=>),	 we'll	 first	 provide	 the	 arguments	 inside
parentheses.	Since	we'll	be	squaring	a	number,	we	just	need	one	number,	and	I'll
refer	to	that	number	as	x.	If	I	pass	in	3,	I	should	expect	9	back,	and	if	I	pass	in	9,
I	would	expect	81	back.

After	 the	 arguments	 list,	 we	 have	 to	 put	 the	 arrow	 in	 arrow	 function	 (=>)	 by
putting	 the	 equal	 sign	 and	 the	 greater	 than	 symbol	 together,	 creating	 our	 nice
little	arrow.	From	here	we	can	provide,	inside	curly	braces,	all	the	statements	we
want	to	execute:

var	square	=	(x)	=>	{

};

Next,	we	might	create	a	variable	called	result,	setting	that	equal	to	x	times	x,	then
we	might	return	the	result	variable	using	the	return	keyword,	as	shown	here:

var	square	=	(x)	=>	{

		var	result	=	x	*	x;

		return	result;

};

Now,	obviously	this	can	be	done	on	one	line,	but	the	goal	here	is	to	illustrate	that
when	you	use	 the	 statement	 arrow	 function	 (=>),	 you	 can	put	 as	many	 lines	 as
you	want	in	between	those	curly	braces.	Let's	call	a	square,	we'll	do	that	using
console.log	so	we	can	print	the	result	to	the	screen.	I'll	call	square;	and	we'll	call
square	with	9,	the	square	of	9	would	be	81,	so	we	would	expect	81	to	print	to	the
screen:

var	square	=	(x)	=>	{

		var	result	=	x	*	x;

		return	result;

};

console.log(square(9));

I'll	 save	 the	 arrow	 function	 (=>)	 file,	 and	 in	 Terminal,	 81	 shows	 up	 just	 as	 we
expect:

Now	the	syntax	we	used	in	the	previous	example	is	the	statement	syntax	for	the
arrow	function	(=>).	We've	also	explored	the	expression	syntax	earlier,	which	lets
you	 simplify	 your	 arrow	 functions	when	 you	 return	 some	 expressions.	 In	 this
case	all	we	need	to	do	is	specify	the	expression	we	want	to	return.	In	our	case
that's	x	times	x:

var	square	=	(x)	=>	x	*	x;

console.log(square(9));

You	 don't	 need	 to	 explicitly	 add	 the	 return	 keyword.	When	 you	 use	 an	 arrow
function	 (=>)	 without	 your	 curly	 braces,	 it's	 implicitly	 provided	 for	 you.	 That
means	we	can	save	the	function	as	shown	previous	and	the	exact	same	result	is
going	to	print	to	the	screen,	81	shows	up.

This	 is	 one	 of	 the	 great	 advantages	 of	 arrow	 functions	when	 you	 use	 them	 in
cases	like	filter	or	for	those	which	we	did	in	the	notes.js	file.	It	lets	you	simplify
your	code	keeping	everything	on	one	line	and	making	your	code	a	lot	easier	to
maintain	and	scan.

Now,	 there	 is	 one	 thing	 I	want	 to	 note:	when	 you	 have	 an	 arrow
function	(=>)	that	has	just	one	argument,	you	can	actually	leave	off

the	parentheses.	 If	 you	have	 two	or	more	arguments,	or	you	have
zero	arguments,	you	are	going	to	need	to	provide	the	parentheses,
but	 if	 you	 just	 have	 one	 argument,	 you	 can	 reference	 it	 with	 no
parentheses.

If	I	save	the	file	in	this	state,	81	still	prints	to	the	screen;	and	this	is	great	we	have
an	even	simpler	version	of	our	arrow	function	(=>):

Now	that	we	have	a	basic	example	down,	I	want	to	move	on	to	a	more	complex
example	that's	going	to	explore	the	nuances	between	regular	functions	and	arrow
functions.

Exploring	 the	 difference	 between
regular	and	arrow	functions
To	 illustrate	 the	 difference,	 I'll	 make	 a	 variable	 called	 user,	 which	 will	 be	 an
object.	On	 this	 object	we'll	 specify	one	property,	 name.	Set	 name	equal	 to	 the
string,	your	name,	in	this	case	I'll	set	it	equal	to	the	string	Andrew:

var	user	=	{

		name:	'Andrew'

};

Then	 we	 can	 define	 a	 method	 on	 the	 user	 object.	 Right	 after	 name,	 with	 my
comma	at	the	end	of	the	line,	I'll	provide	the	method	sayHi,	setting	it	equal	to	an
arrow	function	(=>)	that	doesn't	take	any	arguments.	For	the	moment,	we'll	keep
the	arrow	function	really	simple:

var	user	=	{

		name:	'Andrew',

		sayHi:	()	=>	{

		}

};

All	we'll	do	inside	sayHi	is	use	console.log	to	print	to	the	screen,	inside	of	template
strings	Hi:

var	user	=	{

		name:	'Andrew',

		sayHi:	()	=>	{

				console.log(`Hi`);

		}

};

We're	 not	 using	 template	 strings	 yet,	 but	 we	 will	 later	 so	 I'll	 use	 them	 here.
Down	following	the	user	object,	we	can	test	out	sayHi	by	calling	it,	user.sayHi:

var	user	=	{

		name:	'Andrew',

		sayHi:	()	=>	{

				console.log(`Hi`);

		}

};

user.sayHi();

I'll	 call	 it	 then	 save	 the	 file,	 and	we	would	 expect	 that	 Hi	 prints	 to	 the	 screen
because	all	our	arrow	function	(=>)	does	is	use	console.log	to	print	a	static	string.
Nothing	in	this	case	will	cause	any	problems;	you'd	be	able	to	swap	out	a	regular
function	for	an	arrow	function	(=>)	without	issue.

Now	the	first	issue	that	will	arise	when	you	use	arrow	functions	is	the	fact	that
arrow	functions	do	not	bind	a	this	keyword.	So	if	you	are	using	this	inside	your
function,	it's	not	going	to	work	when	you	swap	it	out	for	an	arrow	function	(=>).
Now,	this	 binding;	 refers	 to	 the	 parent	 binding,	 in	 our	 case	 there	 is	 no	parent,
function	 so	 this	 would	 refer	 to	 the	 global	 this	 keyword.	 Now	 we	 have	 our
console.log	that	does	not	use	this,	I'll	swap	it	out	for	a	case	that	does.

We'll	 put	 a	 period	 after	 Hi,	 and	 I'll	 say	 I'm,	 followed	 by	 the	 name,	 which	 we
would	usually	be	able	to	access	via	this.name:

var	user	=	{

		name:	'Andrew',

		sayHi:	()	=>	{

				console.log(`Hi.	I'm	${this.name}`);

		}

};

user.sayHi();

If	I	try	to	run	this	code,	it	is	not	going	to	work	as	expected;	we're	going	to	get	Hi
I'm	undefined	printing	to	the	screen,	as	shown	here:

In	order	 to	 fix	 this,	we'll	 look	at	an	alternative	syntax	 to	arrow	functions	 that's
great	when	you're	defining	object	literals,	as	we	are	in	this	case.

After	sayHi,	I'll	make	a	new	method	called	sayHiAlt	using	a	different	ES6	feature.
ES6	provides	us	a	new	way	to	make	methods	on	objects;	you	provide	the	method
name,	sayHiAlt,	 then	you	go	right	 to	 the	parentheses	skipping	 the	colon.	There's
also	no	need	for	 the	function	keyword,	even	 though	 it	 is	a	 regular	 function	 it's
not	an	arrow	function	(=>).	Then	we	move	on	to	our	curly	braces	as	shown	here:

var	user	=	{

		name:	'Andrew',

		sayHi:	()	=>	{

				console.log(`Hi.	I'm	${this.name}`);

		},

		sayHiAlt()	{

				

		}

};

user.sayHi();

Inside	here	I	can	have	the	exact	same	code	we	have	in	the	sayHi	function,	but	it	is
going	to	work	as	expected.	It's	going	to	print	Hi.	I'm	Andrew.	I'll	call	sayHiAlt	down
following	instead	of	the	regular	sayHi	method:

var	user	=	{

		name:	'Andrew',

		sayHi:	()	=>	{

				console.log(`Hi.	I'm	${this.name}`);

		},

		sayHiAlt()	{

				console.log(`Hi.	I'm	${this.name}`);

		}

};

user.sayHiAlt();

And	in	Terminal,	you	can	see	Hi.	I'm	Andrew,	prints	to	the	screen:

The	sayHiAlt	syntax	is	a	syntax	that	you	can	use	to	solve	this	problem	when	you
create	functions	on	object	literals.	Now	that	we	know	that	the	this	keyword	does
not	 get	 bound,	 let's	 explore	 one	 other	 quirk	 that	 arrow	 functions	 have,	 it	 also
does	not	bind	the	arguments	array.

Exploring	the	arguments	array
Regular	 functions,	 like	 sayHiAlt,	 are	 going	 to	 have	 an	 arguments	 array	 that's
accessible	inside	of	the	function:

var	user	=	{

		name:	'Andrew',

		sayHi:	()	=>	{

				console.log(`Hi.	I'm	${this.name}`);

		},

		sayHiAlt()	{

				console.log(arguments);

				console.log(`Hi.	I'm	${this.name}`);

		}

};

user.sayHiAlt();

Now,	it's	not	an	actual	array,	it's	more	like	an	object	with	array;	like	properties,
but	 the	 arguments	 object	 is	 indeed	 specified	 in	 a	 regular	 function.	 If	 I	 pass	 in
one,	 two,	 and	 three	 and	 save	 the	 file,	 we'll	 get	 that	 back	 when	 we	 log	 out
arguments:

var	user	=	{

		name:	'Andrew',

		sayHi:	()	=>	{

				console.log(`Hi.	I'm	${this.name}`);

		},

		sayHiAlt()	{

				console.log(arguments);

				console.log(`Hi.	I'm	${this.name}`);

		}

};

user.sayHiAlt(1,	2,	3);

Inside	nodemon,	 it's	 taking	 a	 quick	 second	 to	 restart,	 and	 right	 here	we	have	our
object:

We	have	one,	two,	and	three,	we	have	the	index	for	each	as	the	property	name,
and	 this	works	because	we're	using	a	 regular	 function.	 If	we	were	 to	switch	 to
the	arrow	function	(=>)	though,	it	is	not	going	to	work	as	expected.

I'll	add	console.log(arguments)	inside	of	my	arrow	function	(=>),	and	I'll	switch	from
calling	sayHiAlt	back	to	the	original	method	sayHi,	as	shown	here:

var	user	=	{

		name:	'Andrew',

		sayHi:	()	=>	{

				console.log(arguments);

				console.log(`Hi.	I'm	${this.name}`);

		},

		sayHiAlt()	{

				console.log(arguments);

				console.log(`Hi.	I'm	${this.name}`);

		}

};

user.sayHi(1,	2,	3);

When	I	save	the	file	in	arrow-function.js,	we'll	get	something	a	lot	different	from
what	we	 had	 before.	What	we'll	 actually	 get	 is	 the	 global	 arguments	 variable,
which	is	the	arguments	variable	for	that	wrapper	function	we	explored:

In	the	previous	screenshot,	we	have	things	like	the	require	function,	definition,
our	modules	 object,	 and	 a	 couple	 of	 string	 paths	 to	 the	 file	 and	 to	 the	 current
directory.	These	are	obviously	not	what	we're	expecting,	and	that	is	another	thing
that	you	have	to	be	aware	of	when	you're	using	arrow	functions;	you're	not	going
to	get	the	arguments	keyword,	you're	not	going	to	get	the	this	binding	(defined	in
sayHi	syntax)	that	you'd	expect.

These	problems	mostly	arise	when	you	 try	 to	create	methods	on	an	object	and
use	 arrow	 functions.	 I	 would	 highly	 recommend	 that	 you	 switch	 to	 sayHiAlt
syntax	which	we	discussed,	in	those	cases.	You	get	a	simplified	syntax,	but	you
also	get	the	disk	binding	and	you	get	your	arguments	variable	as	you'd	expect.

Summary
In	this	chapter,	we	were	able	to	reuse	the	utility	functions	that	we	already	made
in	previous	chapters,	making	the	process	of	filling	out	a	remove	note	that	much
easier.	Inside	app.js,	we	worked	on	how	the	removeNote	 function	 is	executed,	 if	 it
was	executed	successfully,	we	print	a	message;	 if	 it	didn't,	we	print	a	different
message.

Next,	we	were	able	to	successfully	fill	out	the	read	command	and	we	also	created
a	 really	 cool	 utility	 function	 that	we	 can	 take	 advantage	of	 in	multiple	places.
This	keeps	our	code	DRY	and	prevents	us	from	having	the	same	code	in	multiple
places	inside	of	our	application.

Then	we	discussed	a	quick	introduction	to	debugging.	Essentially,	debugging	is
a	 process	 that	 lets	 you	 stop	 the	 program	at	 any	point	 in	 time	 and	play	 around
with	 the	program	as	 it	exists	at	 that	moment.	That	means	you	can	play	around
with	variables	 that	 exist,	or	 functions,	 or	 anything	 inside	of	Node.	We	 learned
more	about	yargs,	its	configuration,	setting	up	commands,	their	description,	and
arguments.

Last,	you	explored	a	little	bit	more	about	arrow	functions,	how	they	work,	when
to	 use	 them,	 and	 when	 not	 to	 use	 them.	 In	 general,	 if	 you	 don't	 need	 this
keyword,	 or	 the	 arguments	 keyword	 you	 can	 use	 an	 arrow	 function	without	 a
problem,	and	I	always	prefer	using	arrow	functions	over	regular	functions	when
I	can.

In	the	next	chapter,	we	will	explore	asynchronous	programming	and	how	we	can
fetch	 data	 from	 third-party	 APIs.	 We'll	 use	 both	 regular	 functions	 and	 arrow
functions	a	lot	more,	and	you'll	be	able	to	see	firsthand	how	to	choose	between
one	over	the	other.

Basics	 of	 Asynchronous
Programming	in	Node.js
If	 you've	 read	 any	 article	 about	 Node,	 you'd	 have	 probably	 come	 across	 four
terms:	 asynchronous,	 non-blocking,	 event-based,	 and	 single-threaded.	 All	 of
those	are	accurate	terms	to	describe	Node;	the	problem	is	it	usually	stops	there,
and	it's	really	abstract.	The	topic	of	asynchronous	programming	in	Node.js	has
been	divided	into	three	chapters.	The	goal	in	these	upcoming	three	chapters	is	to
make	 asynchronous	 programming	 super	 practical	 by	 putting	 all	 these	 terms	 to
use	 in	our	weather	application.	That's	 the	project	we're	going	 to	be	building	 in
these	chapters.

This	 chapter	 is	 all	 about	 the	 basics	 of	 asynchronous	 programming.	We'll	 look
into	 the	 basic	 concepts,	 terms,	 and	 technology	 related	 to	 async	 programming.
We'll	 look	 into	 making	 requests	 to	 Geolocation	 APIs.	 We'll	 need	 to	 make
asynchronous	HTTP	requests.	Let's	dive	in,	looking	at	the	very	basics	of	async
programming	in	Node.

Specifically,	we'll	look	into	the	following	topics:

The	basic	concept	of	asynchronous	program
Call	stack	and	event	loop
Callback	functions	and	APIs
HTTPS	requests

The	 basic	 concept	 of
asynchronous	program
In	 this	 section,	 we're	 going	 to	 create	 our	 first	 asynchronous	 non-blocking
program.	This	means	our	app	will	continue	to	run	while	 it	waits	for	something
else	 to	 happen.	 In	 this	 section,	we'll	 look	 at	 a	 basic	 example;	 however,	 in	 the
chapter,	we'll	be	building	out	a	weather	app	that	communicates	with	third-party
APIs,	 such	 as	 the	 Google	 API	 and	 a	 weather	 API.	 We'll	 need	 to	 use
asynchronous	code	to	fetch	data	from	these	sources.

For	this,	all	we	need	to	do	is	make	a	new	folder	on	the	desktop	for	this	chapter.
I'll	navigate	onto	my	desktop	and	use	mkdir	to	make	a	new	directory,	and	I'll	call
this	one	weather-app.	All	I	need	to	do	is	navigate	into	the	weather	app:

Now,	I'll	use	the	clear	command	to	clear	the	Terminal	output.

Now,	we	can	open	up	that	new	weather	app	directory	inside	of	Atom:

This	is	the	directory	we'll	use	throughout	this	entire	chapter.	In	this	section,	we'll
not	be	building	out	the	weather	app	just	yet,	we'll	just	play	around	with	the	async
features.	So	inside	weather-app	we'll	make	the	playground	folder.

This	code	is	not	going	to	be	a	part	of	the	weather	app,	but	it	will	be	really	useful
when	 it	 comes	 to	 creating	 the	 weather	 app	 in	 the	 later	 sections.	 Now	 inside
playground,	we	can	make	 the	 file	 for	 this	 section.	We'll	name	 it	 async-basics.js	 as
shown	here:

Illustrating	 the	 async
programming	model
To	illustrate	how	the	asynchronous	programming	model	works,	we'll	get	started
with	a	simple	example	using	console.log.	Let's	get	started	by	adding	a	couple	of
console.log	statements	in	a	synchronous	way.	We'll	create	one	console.log	statement
at	 the	beginning	of	 the	app	that	will	say	Starting	app,	and	we	will	add	a	second
one	to	the	end,	and	the	second	one	will	print	Finishing	up,	as	shown	here:

console.log('Starting	app');

console.log('Finishing	up');

Now	these	are	always	going	 to	 run	synchronously.	No	matter	how	many	 times
you	run	the	program,	Starting	app	is	always	going	to	show	up	before	Finishing	up.

In	 order	 to	 add	 some	 asynchronous	 code,	 we'll	 take	 a	 look	 at	 a	 function	 that
Node	 provides	 called	 setTimeout.	 The	 setTimeout	 function	 is	 a	 great	 method	 for
illustrating	the	basics	of	non-blocking	programming.	It	takes	two	arguments:

The	first	one	is	a	function.	This	will	be	referred	to	as	callback	function,	and
it	will	get	fired	after	a	certain	amount	of	time.
The	second	argument	 is	a	number,	which	tells	 the	number	of	milliseconds
you	want	to	wait.	So	if	you	want	to	wait	for	one	second,	you	would	pass	in
a	thousand	milliseconds.

Let's	call	setTimeout,	passing	in	an	arrow	function	(=>)	as	our	first	argument.	This
will	be	callback	function.	It	will	get	fired	right	away;	that	is,	it	will	get	fired	after
the	 timeout	 is	 up,	 after	 our	 two	 seconds.	And	 then	we	 can	 set	 up	 our	 second
argument	which	is	the	delay,	2000	milliseconds,	which	equals	those	two	seconds:

console.log('Starting	app');

setTimeout(()	=>	{

		

},	2000);

Inside	the	arrow	function	(=>),	all	we'll	do	is	use	a	console.log	statement	so	that	we

can	figure	out	exactly	when	our	function	fires,	because	the	statement	will	print	to
the	screen.	We'll	add	console.log	and	then	inside	callback	to	get	the	job	done,	as
shown	here:

setTimeout(()	=>	{

		console.log('Inside	of	callback');

},	2000);

With	this	in	place,	we're	actually	ready	to	run	our	very	first	async	program,	and
I'll	not	use	nodemon	to	execute	it.	I'll	run	this	file	from	the	Terminal	using	the	basic
Node	command;	node	playground	 and	 the	 file	 inside	 the	 playground	 folder	which	 is
async-basic.js:

node	playground/async-basics.js

Now	pay	close	attention	 to	exactly	what	happens	when	we	hit	 enter.	We'll	 see
two	messages	 show	 up	 right	 away,	 then	 two	 seconds	 later	 our	 final	 message,
Inside	of	callback,	prints	to	the	screen:

The	 sequence	 in	which	 these	messages	 are	 shown	 is:	 first	we	 got	 Starting	 app;
almost	 immediately	 after	 this,	 Finishing	up	 prints	 to	 the	 screen	 and	 finally	 (two
seconds	 later),	 Inside	 of	 callback	 was	 printed	 as	 shown	 in	 the	 previous	 code.
Inside	the	file,	this	is	not	the	order	in	which	we	wrote	the	code,	but	it	is	the	order
the	code	executes	in.

The	 Starting	 app	 statement	 prints	 to	 the	 screen	 as	 we	 expect.	 Next,	 we	 call
setTimeout,	but	we're	not	actually	telling	it	to	wait	two	seconds.	We're	registering	a
callback	 that	 will	 get	 fired	 in	 two	 seconds.	 This	 will	 be	 an	 asynchronous
callback,	which	means	 that	Node	can	do	other	 things	while	 these	 two	 seconds
are	 happening.	 In	 this	 case,	 the	 other	 thing	 it	 moves	 down	 to	 the	 Finishing	 up
message.	Now	since	we	did	register	this	callback	by	using	setTimeout,	it	will	fire
at	some	point	in	time,	and	two	seconds	later	we	do	see	Inside	of	callback	printing

to	the	screen.

By	using	non-blocking	I/O,	we're	able	to	wait,	in	this	case	two	seconds,	without
preventing	the	rest	of	the	program	from	executing.	If	this	was	blocking	I/O,	we
would	 have	 to	 wait	 two	 seconds	 for	 this	 code	 to	 fire,	 then	 the	 Finishing	 up

message	would	print	to	the	screen,	and	obviously	that	would	not	be	ideal.

Now	this	is	a	pretty	contrived	example,	we	will	not	exactly	use	setTimeout	in	our
real-world	apps	to	create	unnecessary	arbitrary	delays,	but	the	principles	are	the
same.	For	example,	when	we	fetch	data	from	the	Google	API	we'll	need	to	wait
about	100	to	200	milliseconds	for	that	data	to	come	back,	and	we	don't	want	the
rest	of	the	program	to	just	be	idle,	it	will	continue.	We'll	register	a	callback,	and
that	callback	will	get	 fired	once	 the	data	comes	back	 from	the	Google	servers.
The	 same	 principles	 applies	 even	 though	 what's	 actually	 happening	 is	 quite
different.

Now,	 we	 want	 to	 write	 another	 setTimeout	 right	 here.	 We	 want	 to	 register	 a
setTimeout	 function	 that	 prints	 a	message;	 something	 like	 Second	 setTimeout	 works.
This	 will	 be	 inside	 the	 callback,	 and	 we	 want	 to	 register	 a	 delay	 of	 0

milliseconds,	 no	 delay	 at	 all.	 Let's	 fill	 out	 the	 async	 basics	 setTimeout.	 I'll	 call
setTimeout	with	my	arrow	 function	 (=>),	 passing	 in	 a	delay	of	 0	milliseconds,	 as
shown	in	the	following	code.	Inside	the	arrow	function	(=>),	I'll	use	console.log	so
I	can	see	exactly	when	this	function	executes,	and	I'll	use	Second	setTimeout	as	the
text:

setTimeout(()	=>	{

		console.log('Second	setTimeout');

},	0);

Now	that	we	have	this	in	place,	we	can	run	the	program	from	the	Terminal,	and
it's	 really	 important	 to	pay	attention	 to	 the	order	 in	which	 the	statements	print.
Let's	run	the	program:

node	playground/async-basics.js

Right	away	we	get	three	statements	and	then	at	the	very	end,	two	seconds	later,
we	get	our	final	statement:

We	 start	 with	 Starting	 app,	 which	 makes	 sense,	 it's	 at	 the	 top.	 Then	 we	 get
Finishing	 up.	 After	 Finishing	 up	 we	 get	 Second	 setTimeout,	 which	 seems	 weird,
because	we	clearly	told	Node	we	want	to	run	this	function	after	0	milliseconds,
which	should	run	it	right	away.	But	in	our	example,	Second	setTimeout	printed	after
Finishing	up.

Finally,	 Inside	 of	 callback	 printed	 to	 the	 screen.	 This	 behavior	 is	 completely
expected.	This	is	exactly	how	Node.js	is	supposed	to	operate,	and	it	will	become
a	lot	clearer	after	the	next	section,	where	we'll	go	through	this	example	exactly,
showing	you	what	happens	behind	the	scenes.	We'll	get	started	with	a	more	basic
example	showing	you	how	the	call	stack	works,	we'll	 talk	all	 about	 that	 in	 the
next	 section,	 and	 then	we'll	 go	 on	 to	 a	more	 complex	 example	 that	 has	 some
asynchronous	events	attached	to	it.	We'll	discuss	the	reason	why	Second	setTimeout
comes	up	after	the	Finishing	up	message	after	the	next	section.

Call	stack	and	event	loop
In	the	last	section,	we	ended	up	creating	our	very	first	asynchronous	application,
but	unfortunately	we	ended	up	asking	more	questions	than	we	got	answers.	We
don't	exactly	know	how	async	programming	works	even	 though	we've	used	 it.
Our	goal	for	this	section	is	to	understand	why	the	program	runs	the	way	it	does.

For	example,	why	does	the	two-second	delay	in	the	following	code	not	prevent
the	 rest	 of	 the	 app	 from	 running,	 and	 why	 does	 a	 0	 second	 delay	 cause	 the
function	to	be	executed	after	Finishing	up	prints	to	the	screen?

console.log('Starting	app');

setTimeout(()	=>	{

		console.log('Inside	of	callback');

},	2000);

setTimeout(()	=>	{

		console.log('Second	setTimeout');

},	0);

console.log('Finishing	up');

These	are	all	questions	we'll	 answer	 in	 this	 section.	This	 section	will	 take	you
behind	 the	 scenes	 into	what	happens	 in	V8	and	Node	when	an	async	program
runs.	Now	let's	dive	right	into	how	the	async	program	runs.	We'll	start	with	some
basic	 synchronous	 examples	 and	 then	 move	 on	 to	 figuring	 out	 exactly	 what
happens	in	the	async	program.

A	synchronous	program	example
The	following	is	example	number	one.	On	the	left-hand	side	we	have	the	code,	a
basic	synchronous	example,	and	on	the	right-hand	side	we	have	everything	that
happens	behind	the	scenes,	the	Call	Stack,	our	Node	APIs,	the	Callback	Queue,
and	the	Event	Loop:

Now	 if	 you've	 ever	 read	 an	 article	or	watched	 any	video	 lesson	on	how	Node
works,	 you've	 most	 likely	 heard	 about	 one	 or	 more	 of	 these	 terms.	 In	 this
section,	 we'll	 be	 exploring	 how	 they	 all	 fit	 together	 to	 create	 a	 real-world,
working	Node	application.	Now	for	our	first	synchronous	example,	all	we	need
to	worry	 about	 is	 the	Call	Stack.	 The	Call	 Stack	 is	 part	 of	 a	V8,	 and	 for	 our
synchronous	example	it's	the	only	thing	that's	going	to	run.	We're	not	using	any
Node	APIs	and	we're	not	doing	any	asynchronous	programming.

The	call	stack
The	 Call	 Stack	 is	 a	 really	 simple	 data	 structure	 that	 keeps	 track	 of	 program
execution	inside	of	a	V8.	It	keeps	track	of	the	functions	currently	executing	and
the	statements	that	are	fired.	The	Call	Stack	is	a	really	simple	data	structure	that
can	do	two	things:

You	can	add	something	on	top	of	it
You	can	remove	the	top	item

This	means	 if	 there's	an	 item	at	 the	bottom	of	 the	data	structure	and	 there's	an
item	above	 it,	 you	 can't	 remove	 the	 bottom	 item,	 you	 have	 to	 remove	 the	 top
item.	If	there's	already	two	items	and	you	want	to	add	something	on	to	it,	it	has
to	go	on	because	that's	how	the	Call	Stack	works.

Think	about	it	like	a	can	of	Pringles	or	a	thing	of	tennis	balls:	if	there's	already
an	item	in	there	and	you	drop	one	in,	the	item	you	just	dropped	will	not	be	the
bottom	item,	 it's	 going	 to	 be	 the	 top	 item.	Also,	 you	 can't	 remove	 the	 bottom
tennis	ball	from	a	can	of	 tennis	balls,	you	have	 to	remove	 the	one	on	 top	first.
That's	exactly	how	the	Call	Stack	works.

Running	 the	 synchronous
program
Now	when	we	start	 executing	 the	program	shown	 in	 the	 following	 screenshot,
the	 first	 thing	 that	will	 happen	 is	Node	will	 run	 the	main	 function.	 The	main
function	is	the	wrapper	function	we	saw	over	in	nodemon	(refer	to,	Installing	the
nodemon	 module	 section	 in	 Chapter	 2,	 Node	 Fundamentals	 Part-1)	 that	 gets
wrapped	around	all	of	our	files	when	we	run	them	through	Node.	In	this	case,	by
telling	V8	to	run	the	main	function	we	are	starting	the	program.

As	 shown	 in	 the	 following	 screenshot,	 the	 first	 thing	we	do	 in	 the	 program	 is
create	a	variable	x,	setting	it	equal	to	1,	and	that's	the	first	statement	that's	going
to	run:

Notice	it	comes	in	on	top	of	main.	Now	this	statement	is	going	to	run,	creating
the	variable.	Once	it's	done,	we	can	remove	it	from	the	Call	Stack	and	move	on
to	the	next	statement,	where	we	make	the	variable	y,	which	gets	set	equal	 to	x,
which	is	1	plus	9.	That	means	y	is	going	to	be	equal	to	10:

As	shown	in	the	previous	screenshot,	we	do	that	and	move	on	to	the	next	line.
The	next	line	is	our	console.log	statement.	The	console.log	statement	will	print	y	is
10	to	the	screen.	We	use	template	strings	to	inject	the	y	variable:

console.log(`y	is	${y}`);

When	we	run	this	line	it	gets	popped	on	to	the	Call	Stack,	as	shown	here:

Once	the	statement	is	done,	it	gets	removed.	At	this	point,	we've	executed	all	the
statements	inside	our	program	and	the	program	is	almost	ready	to	be	complete.
The	 main	 function	 is	 still	 running	 but	 since	 the	 function	 ends,	 it	 implicitly
returns,	 and	 when	 it	 returns,	 we	 remove	 main	 from	 the	 Call	 Stack	 and	 the
program	 is	 finished.	 At	 this	 point,	 our	 Node	 process	 is	 closed.	 Now	 this	 is	 a
really	basic	 example	of	using	 the	Call	Stack.	We	went	 into	 the	main	 function,
and	we	moved	line	by	line	through	the	program.

A	complex	synchronous	program
example
Let's	go	over	a	slightly	more	complex	example,	our	second	example.	As	shown
in	the	following	code,	we	start	off	by	defining	an	add	function.	The	add	function
takes	arguments	a	and	b,	adds	them	together	storing	that	in	a	variable	called	total,
and	 returns	 total.	 Next,	 we	 add	 up	 3	 and	 8,	 which	 is	 11,	 storing	 it	 in	 the	 res
variable.	 Then,	 we	 print	 out	 the	 response	 using	 the	 console.log	 statement,	 as
shown	here:

var	add	=	(a,	b)	=>	{

	var	total	=	a	+	b;

	

	return	total;

};

var	res	=	add(3,	8);

console.log(res);

That's	 it,	 nothing	 synchronous	 is	happening.	Once	again	we	 just	need	 the	Call
Stack.	The	first	thing	that	happens	is	we	execute	the	main	function;	this	starts	the
program	we	have	here:

Then	 we	 run	 the	 first	 statement	 where	 we	 define	 the	 add	 variable.	 We're	 not
actually	executing	the	function,	we're	simply	defining	it	here:

In	the	preceding	image,	the	add()	variable	gets	added	on	to	the	Call	Stack,	and	we
define	 add.	 The	 next	 line,	 line	 7,	 is	 where	 we	 call	 the	 add	 variable	 storing	 the
return	value	on	the	response	variable:

When	 you	 call	 a	 function,	 it	 gets	 added	on	 top	of	 the	Call	Stack.
When	 you	 return	 from	 a	 function,	 it	 gets	 removed	 from	 the	 Call
Stack.

In	this	example,	we'll	call	a	function.	So	we're	going	to	add	add()	on	to	the	Call
Stack,	and	we'll	start	executing	that	function:

As	we	know,	when	we	add	main	we	start	executing	main	and,	when	we	add	add()
we	start	executing	add.	The	first	line	inside	add	sets	the	total	variable	equal	to	a	+
b,	 which	would	 be	 11.	We	 then	 return	 from	 the	 function	 using	 the	 return	 total
statement.	That's	the	next	statement,	and	when	this	runs,	add	gets	removed:

So	when	return	total	finishes,	add()	gets	 removed,	 then	we	move	on	 to	 the	final
line	in	the	program,	our	console.log	statement,	where	we	print	11	to	the	screen:

The	console.log	statement	will	run,	print	11	to	the	screen	and	finish	the	execution,
and	 now	we're	 at	 the	 end	 of	 the	main	 function,	which	 gets	 removed	 from	 the
stack	 when	 we	 implicitly	 return.	 This	 is	 the	 second	 example	 of	 a	 program
running	through	the	V8	Call	Stack.

An	async	program	example
So	far	we	haven't	used	Node	APIs,	the	Callback	Queue,	or	the	Event	Loop.	The
next	example	will	use	all	four	(Call	Stack,	the	Node	APIs,	the	Callback	Queue,
and	 the	 Event	 Loop).	 As	 shown	 on	 the	 left-hand	 side	 of	 the	 following
screenshot,	we	have	our	async	example,	exactly	the	same	as	we	wrote	it	 in	the
last	section:

In	 this	example,	we	will	be	using	 the	Call	Stack,	 the	Node	APIs,	 the	Callback
Queue,	and	the	Event	Loop.	All	four	of	these	are	going	to	come	into	play	for	our
asynchronous	program.	Now	things	are	going	 to	 start	off	as	you	might	expect.
The	first	 thing	that	happens	is	we	run	 the	main	function	by	adding	it	on	 to	 the
Call	Stack.	This	 tells	a	V8	 to	kick	off	 the	code	we	have	on	 the	 left	side	 in	 the
previous	screenshot,	shown	here	again:

console.log('Starting	app');

setTimeout(()	=>	{

		console.log('Inside	of	callback');

},	2000);

setTimeout(()	=>	{

		console.log('Second	setTimeout');

},	0);

console.log('Finishing	up');

The	first	statement	in	this	code	is	really	simple,	a	console.log	statement	that	prints

Starting	app	to	the	screen:

This	 statement	 runs	 right	 away	 and	we	move	on	 to	 the	 second	 statement.	The
second	statement	is	where	things	start	to	get	interesting,	this	is	a	call	to	setTimeout,
which	 is	 indeed	a	Node	API.	 It's	not	 available	 inside	a	V8,	 it's	 something	 that
Node	gives	us	access	to:

The	 Node	 API	 in	 async
programming
When	we	call	the	setTimeout	(2	sec)	function,	we're	actually	registering	the	event
callback	pair	in	the	Node	APIs.	The	event	is	simply	to	wait	two	seconds,	and	the
callback	is	the	function	we	provided,	the	first	argument.	When	we	call	setTimeout,
it	gets	registered	right	in	the	Node	APIs	as	shown	here:

Now	this	statement	will	finish	up,	the	Call	Stack	will	move	on,	and	the	setTimeout
will	start	counting	down.	Just	because	the	setTimeout	is	counting	down,	it	doesn't
mean	the	Call	Stack	can't	continue	to	do	its	job.	The	Call	Stack	can	only	run	one
thing	at	a	time,	but	we	can	have	events	waiting	to	get	processed	even	when	the
Call	 Stack	 is	 executing.	 Now	 the	 next	 statement	 that	 runs	 is	 the	 other	 call	 to
setTimeout:

In	this,	we	register	a	setTimeout	callback	function	with	a	delay	of	0	milliseconds,
and	the	exact	same	thing	happens.	It's	a	Node	API	and	it's	going	to	get	registered
as	 shown	 in	 the	 following	 screenshot.	 This	 essentially	 says	 that	 after	 zero
seconds,	you	can	execute	this	callback:

The	setTimeout	(0	sec)	 statement	gets	 registered	and	 the	Call	Stack	removes	 that
statement.

The	 callback	 queue	 in	 async
programming
At	 this	 point	 let's	 assume	 that	 setTimeout,	 the	 one	 that	 has	 a	 zero	 second	 delay,
finishes.	When	it	finishes,	it's	not	going	to	get	executed	right	away;	it's	going	to
take	that	callback	and	move	it	down	into	the	Callback	Queue,	as	shown	here:

The	Callback	Queue	 is	all	 the	callback	functions	 that	are	 ready	 to	get	 fired.	 In
the	previous	screenshot,	we	move	the	function	from	Node	API	into	the	Callback
Queue.	Now	the	Callback	Queue	is	where	our	callback	functions	will	wait;	they
need	to	wait	for	the	Call	Stack	to	be	empty.

When	 the	 Call	 Stack	 is	 empty	 we	 can	 run	 the	 first	 function.	 There's	 another
function	after	it.	We'll	have	to	wait	for	that	first	function	to	run	before	the	second
one	does,	and	this	is	where	the	Event	Loop	comes	into	play.

The	event	loop
The	Event	Loop	takes	a	look	at	the	Call	Stack.	If	the	Call	Stack	is	not	empty,	it
doesn't	do	anything	because	it	can't,	there	is	nothing	it	can	do	you	can	only	run
one	thing	at	a	time.	If	the	Call	Stack	is	empty,	the	Event	Loop	says	great	let's	see
if	 there's	anything	 to	run.	 In	our	case,	 there	 is	a	callback	function,	but	because
we	don't	have	an	empty	Call	Stack,	the	Event	Loop	can't	run	it.	So	let's	move	on
with	the	example.

Running	the	async	code
The	next	thing	that	happens	in	our	program	is	we	run	our	console.log	 statement,
which	prints	Finishing	up	to	the	screen.	This	is	the	second	message	that	shows	up
in	the	Terminal:

This	statement	runs,	our	main	function	is	complete,	and	it	gets	removed	from	the
Call	Stack.

At	 this	 point,	 the	Event	Loop	 says	 hey	 I	 see	 that	we	 have	 nothing	 in	 the	 call
stack	and	we	do	have	something	in	the	Callback	Queue,	so	let's	run	that	callback
function.	It	will	take	the	callback	and	move	it	into	the	Call	Stack;	this	means	the
function	is	executing:

It	 will	 run	 the	 first	 line	 which	 is	 sitting	 on	 line	 8,	 console.log,	 printing	 Second
setTimeout	to	the	screen.	This	is	why	Second	setTimeout	shows	up	after	Finishing	up	in
our	previous	section	examples,	because	we	can't	run	our	callback	until	the	Call
Stack	is	complete.	Since	Finishing	up	 is	part	of	 the	main	function,	 it	will	always
run	before	Second	setTimeout.

After	our	Second	setTimeout	 statement	 finishes,	 the	function	 is	going	 to	 implicitly
return	and	callback	will	get	removed	from	the	Call	Stack:

At	 this	 point,	 there's	 nothing	 in	 the	 Call	 Stack	 and	 nothing	 in	 the	 Callback
Queue,	 but	 there	 is	 still	 something	 in	 our	 Node	APIs,	 we	 still	 have	 an	 event
listener	registered.	So	the	Node	process	is	not	yet	completed.	Two	seconds	later,
the	 setTimeout(2	 sec)	 event	 is	 going	 to	 fire,	 and	 it's	 going	 to	 take	 that	 callback
function	and	move	 it	 into	 the	Callback	Queue.	 It	 gets	 removed	 from	 the	Node
APIs	and	it	gets	added	to	the	Callback	Queue:

At	this	point,	the	Event	Loop	will	take	a	look	at	the	Call	Stack	and	see	it's	empty.
Then	 it	 will	 take	 a	 quick	 look	 at	 the	Callback	Queue	 and	 see	 there	 is	 indeed
something	to	run.	What	will	it	do?	It	will	take	that	callback,	add	it	on	to	the	Call
Stack,	 and	 start	 the	process	 of	 executing	 it.	This	means	 that	we'll	 run	our	 one
statement	 inside	callback.	After	 that's	 finished,	 the	callback	 function	 implicitly
returns	and	our	program	is	complete:

This	is	exactly	how	our	program	ran.	This	illustrates	how	we're	able	to	register
our	events	using	Node	APIs,	and	why	when	we	use	a	setTimeout	of	zero	the	code
doesn't	 run	 right	 away.	 It	 needs	 to	 go	 through	 the	Node	APIs	 and	 through	 the
Callback	Queue	before	it	can	ever	execute	on	the	Call	Stack.

Now	as	 I	mentioned	 in	 the	beginning	of	 this	 section,	 the	Call	Stack,	 the	Node
APIs,	the	Callback	Queue,	and	the	Event	Loop	are	pretty	confusing	topics.	A	big
reason	why	they're	confusing	is	because	we	never	actually	directly	interact	with
them;	 they're	 happening	 behind	 the	 scenes.	 We're	 not	 calling	 the	 Callback
Queue,	we're	not	firing	an	Event	Loop	method	to	make	these	things	work.	This
means	we're	not	aware	they	exist	until	someone	explains	them.	These	are	topics
that	are	really	hard	to	grasp	the	first	time	around.	By	writing	real	asynchronous
code	it's	going	to	become	a	lot	clearer	how	it	works.

Now	that	we	got	a	little	bit	of	an	idea	about	how	our	code	executes	behind	the

scenes,	we'll	move	on	with	 the	 rest	of	 the	chapter	and	start	 creating	a	weather
app	that	interacts	with	third-party	APIs.

Callback	functions	and	APIs
In	this	section,	we'll	take	an	in-depth	look	at	callback	functions,	and	use	them	to
fetch	some	data	from	a	Google	Geolocation	API.	That's	going	to	be	the	API	that
takes	an	address	 and	 returns	 the	 latitude	and	 longitude	coordinates,	 and	 this	 is
going	to	be	great	 for	 the	weather	app.	This	 is	because	 the	weather	API	we	use
requires	those	coordinates	and	it	returns	the	real-time	weather	data,	such	as	the
temperature,	 five-day	 forecast,	 wind	 speed,	 humidity,	 and	 other	 pieces	 of
weather	information.

The	callback	function
Before	 we	 get	 started	 making	 the	 HTTPS	 request,	 let's	 talk	 about	 callback
functions,	and	we	have	already	used	them.	Refer	to	the	following	code	(we	used
it	in	the	previous	section):

console.log('Starting	app');

setTimeout(()	=>	{

		console.log('Inside	of	callback');

},	2000);

setTimeout(()	=>	{

		console.log('Second	setTimeout');

},	0);

console.log('Finishing	up');

Inside	 the	 setTimeout	 function	we	 used	 a	 callback	 function.	 In	 general,	 a	 callback
function	 is	 defined	 as	 a	 function	 that	 gets	 passed	 as	 an	 argument	 to	 another
function	 and	 is	 executed	 after	 some	 event	 happens.	 Now	 this	 is	 a	 general
definition,	 there	 is	 no	 strict	 definition	 in	 JavaScript,	 but	 it	 does	 satisfy	 the
function	in	this	case:

setTimeout(()	=>	{

		console.log('Inside	of	callback');

},	2000);

Here	 we	 have	 a	 function	 and	 we	 pass	 it	 as	 an	 argument	 to	 another	 function,
setTimeout,	and	it	does	get	executed	after	some	event—two-second	pass.	Now	the
event	could	be	other	things,	it	could	be	a	database	query	finishes,	it	could	be	an
HTTP	request	comes	back.	In	those	cases,	you	will	want	a	callback	function,	like
the	one	in	our	case,	to	do	something	with	that	data.	In	the	case	of	setTimeout,	we
don't	get	any	data	back	because	we're	not	requesting	any;	we're	just	creating	an
arbitrary	delay.

Creating	the	callback	function
Now	before	we	actually	make	an	HTTP	request	to	Google,	let's	create	a	callback
function	 example	 inside	 our	 playground	 folder.	 Let's	 make	 a	 new	 file	 called
callbacks.js:

Inside	 the	 file,	 we'll	 create	 a	 contrived	 example	 of	 what	 a	 callback	 function
would	look	like	behind	the	scenes.	We'll	be	making	real	examples	throughout	the
book	and	use	many	 functions	 that	 require	 callbacks.	But	 for	 this	 chapter,	we'll
start	with	a	simple	example.

To	get	started,	let's	make	a	variable	called	getUser.	This	will	be	the	function	we'll
define	that	will	show	us	exactly	what	happens	behind	the	scenes	when	we	pass	a
callback	 to	 another	 function.	 The	 getUser	 callback	 will	 be	 something	 that
simulates	what	it	would	look	like	to	fetch	a	user	from	a	database	or	some	sort	of
web	API.	It	will	be	a	function,	so	we'll	set	it	as	such	using	arrow	function	(=>):

var	getUser	=	()	=>	{

};

The	arrow	function	(=>)	 is	going	 to	 take	some	arguments.	The	first	argument	 it
will	 take	 is	 the	id,	which	will	be	some	sort	of	a	unique	number	 that	 represents
each	user.	I	might	have	an	id	of	54,	you	might	have	an	id	of	2000;	either	way	we're
going	to	need	the	id	to	find	a	user.	Next	up	we'll	get	a	callback	function,	which	is
what	we	will	call	later	with	the	data,	with	that	user	object:

var	getUser	=	(id,	callback)	=>	{

		

};

This	is	exactly	what	happens	when	you	pass	a	function	to	setTimeout.

The	setTimeout	function	definition	looks	like	this:
var	getUser	=	(callback,	delay)	=>	{

};

It	 has	 a	 callback	 and	 a	 delay.	 You	 take	 the	 callback,	 and	 after	 a
certain	amount	of	time	passes,	you	call	it.	In	our	case,	though,	we'll
switch	the	order	with	an	id	first	and	the	callback	second.

Now	we	can	call	this	function	before	actually	filling	it	out.	We'll	call	getUser,	just
like	we	did	with	setTimeout	in	the	previous	code	example.	I'll	call	getUser,	passing
in	those	two	arguments.	The	first	one	will	be	some	id;	since	we're	faking	it	for
now	it	doesn't	really	matter,	and	I'll	go	with	31.	The	second	argument	will	be	the
function	that	we	want	 to	run	when	the	user	data	comes	back,	and	 this	 is	 really
important.	As	shown,	we'll	define	that	function:

getUser(31,	()	=>	{

		

});

Now	the	callback	alone	 isn't	 really	useful;	being	able	 to	 run	 this	 function	after
the	user	data	comes	back	only	works	if	we	actually	get	the	user	data,	and	that's
what	we'll	expect	here:

getUser(31,	(user)	=>	{

		

});

We'll	expect	that	the	user	objects,	things	like	id,	name,	email,	password,	or	whatever,
comes	 back	 as	 an	 argument	 to	 the	 callback	 function.	 Then	 inside	 the	 arrow
function	(=>),	we	can	actually	do	something	with	that	data,	for	example,	we	could
show	it	on	a	web	app,	respond	to	an	API	request,	or	in	our	case	we	can	simply

print	it	to	the	console,	console.log(user):

getUser(31,	(user)	=>	{

		console.log(user);

});

Now	that	we	have	the	call	in	place,	let's	fill	out	the	getUser	function	to	work	like
we	have	it	defined.

The	first	thing	I'll	do	is	create	a	dummy	object	that's	going	to	be	the	user	object.
In	the	future,	this	is	going	to	come	from	database	queries,	but	for	now	we'll	just
create	a	variable	user	setting	it	equal	to	some	object:

var	getUser	=	(id,	callback)	=>	{

		var	user	=	{

				

		}

};

Let's	set	an	id	property	equal	to	whatever	id	the	user	passes	in,	and	we'll	set	a	name
property	equal	to	some	name.	I'll	use	Vikram:

var	getUser	=	(id,	callback)	=>	{

		var	user	=	{

				id:	id,

				name:	'Vikram'

		};

};

Now	 that	 we	 have	 our	 user	 object,	 what	 we	 want	 to	 do	 is	 call	 the	 callback,
passing	 it	 as	 an	 argument.	We'll	 then	 be	 able	 to	 actually	 run,	 getUser(31,	(user)
function,	printing	 the	 user	 to	 the	 screen.	 In	order	 to	do	 this,	we	would	 call	 the
callback	 function	 like	 any	 other	 function,	 simply	 referencing	 it	 by	 name	 and
adding	our	parentheses	like	this:

var	getUser	=	(id,	callback)	=>	{

		var	user	=	{

				id:	id,

				name:	'Vikram'

		};

		callback();

};

Now	 if	we	 call	 the	 function	 like	 this,	we're	 not	 passing	 any	 data	 from	 getUser
back	 to	 the	 callback.	 In	 this	 case,	 we're	 expecting	 a	 user	 to	 get	 passed	 back,
which	is	why	we	are	going	to	specify	user	as	shown	here:

callback(user);

Now	the	naming	 isn't	 important,	 I	happen	 to	call	 it	user,	but	 I	could	easily	call
this	userObject	and	userObject	as	shown	here:

callback(user);

};

getUser(31,	(userObject)	=>	{

		console.log(userObject);

});

All	that	matters	is	the	arguments,	position.	In	this	case,	we	call	the	first	argument
userObject	and	the	first	argument	pass	back	is	indeed	that	userObject.	With	 this	 in
place	we	can	now	run	our	example.

Running	the	callback	function
In	 the	 Terminal,	 we'll	 run	 the	 callback	 function	 using	 node,	 which	 is	 in	 the
playground	folder,	and	we	call	the	file	callbacks.js:

node	playground/callback.js

When	we	run	the	file,	right	away	our	data	prints	to	the	screen:

We've	 created	 a	 callback	 function	 using	 synchronous	 programming.	 Now	 as	 I
mentioned,	 this	 is	 still	 a	 contrived	 example	 because	 there	 is	 no	 need	 for	 a
callback	in	this	case.	We	could	simply	return	the	user	object,	but	in	that	case,	we
wouldn't	 be	 using	 a	 callback,	 and	 the	 whole	 point	 here	 is	 to	 explore	 what
happens	behind	the	scenes	and	how	we	actually	call	the	function	that	gets	passed
in	as	an	argument.

Simulating	 delay	 using
setTimeout
Now,	we	can	also	simulate	a	delay	using	setTimeout,	so	let's	do	that.	In	our	code,
just	before	the	callback	(user)	statement,	we'll	use	setTimeout	just	like	we	did	before
in	the	previous	section.	We'll	pass	an	arrow	function	(=>)	in	as	the	first	argument,
and	set	a	delay	of	3	seconds	using	3000	milliseconds:

		setTimeout(()	=>	{

						

		},	3000);

		callback(user);

};

Now	I	can	take	my	callback	call,	delete	it	from	line	10,	and	add	it	inside	of	the
callback	function,	as	shown	here:

setTimeout(()	=>	{

				callback(user);

		},	3000);

};

Now	 we'll	 not	 be	 responding	 to	 the	 getUser	 request	 until	 three	 seconds	 have
passed.	Now	this	will	be	more	or	 less	similar	 to	what	happens	when	we	create
real-world	 examples	 of	 callbacks,	 we	 pass	 in	 a	 callback,	 some	 sort	 of	 delay
happens	whether	we're	 requesting	 from	a	database	or	 from	an	HTTP	endpoint,
and	then	the	callback	gets	fired.

If	 I	 save	 callbacks.js	 and	 rerun	 the	 code	 from	 the	Terminal,	 you'll	 see	we	wait
those	three	seconds,	which	is	the	simulated	delay,	and	then	the	user	object	prints
to	the	screen:

This	is	exactly	the	principle	that	we	need	to	understand	in	order	to	start	working
with	callbacks,	and	that	is	exactly	what	we'll	start	doing	in	this	section.

Making	 request	 to	 Geolocation
API
The	 requests	 that	 we'll	 be	 making	 to	 that	 Geolocation	 API	 can	 actually	 be
simulated	 over	 in	 the	 browser	 before	we	 ever	make	 the	 request	 in	Node,	 and
that's	exactly	what	we	want	to	do	to	get	started.	So	follow	along	for	the	URL,	htt
ps://maps.googleapis.com/maps/api/geocode/json.

Now	this	is	the	actual	endpoint	URL,	but	we	do	have	to	specify	the	address	for
which	we	want	 the	 geocode.	We'll	 do	 that	 using	 query	 strings,	 which	will	 be
provided	right	after	 the	question	mark.	Then,	we	can	set	up	a	 set	of	key	value
pairs	and	we	can	add	multiples	using	the	ampersand	in	the	URL,	for	example:	htt
ps://maps.googleapis.com/maps/api/geocode/json?key=value&keytwo=valuetwo.

In	our	case,	all	we	need	is	one	query	string	address,	https://maps.googleapis.com/maps
/api/geocode/json?address,	 and	 for	 the	address	query	 string	we'll	 set	 it	 equal	 to	 an
address.	In	order	to	fill	out	that	query	address,	I'll	start	typing	1301	lombard	street
philadelphia.

Notice	that	we	are	using	spaces	in	the	URL.	This	is	just	to	illustrate	a	point:	we
can	use	spaces	in	the	browser	because	it's	going	to	automatically	convert	 those
spaces	to	something	else.	However,	 inside	Node	we'll	have	 to	 take	care	of	 that
ourselves,	and	we'll	 talk	 about	 that	 a	 little	 later	 in	 the	 section.	 For	 now	 if	we
leave	 the	spaces	 in,	hit	enter,	and	we	can	see	 they	automatically	get	converted
for	us:

Space	characters	get	converted	to	%20,	which	is	the	encoded	version	of	a	space.	In
this	page,	we	have	all	of	the	data	that	comes	back:

https://maps.googleapis.com/maps/api/geocode/json
https://maps.googleapis.com/maps/api/geocode/json?key=value&keytwo=valuetwo
https://maps.googleapis.com/maps/api/geocode/json?address

Now	we'll	 use	 an	 extension	 called	 JSONView,	which	 is	 available	 for	Chrome
and	Firefox.

I	highly	recommend	installing	JSONView,	as	we	should	see	a	much
nicer	 version	 of	 our	 JSON	 data.	 It	 lets	 us	 minimize	 and	 expand
various	properties,	and	it	makes	it	super	easy	to	navigate.

Now	 as	 shown	 in	 the	 preceding	 screenshot,	 the	 data	 on	 this	 page	 has	 exactly
what	we	 need.	We	 have	 an	 address_components	 property,	 we	 don't	 need	 that.
Next,	we	have	a	formatted	address	which	is	really	nice,	it	includes	the	state,	the
zip	code,	and	the	country,	which	we	didn't	even	provide	in	the	address	query.

Then,	we	have	what	we	really	came	for:	in	geometry,	we	have	location,	and	this
includes	the	latitude	and	longitude	data.

Using	 Google	 Maps	 API	 data	 in
our	code
Now,	what	we	got	back	from	the	Google	Maps	API	request	is	nothing	more	than
some	 JSON	 data,	 which	 means	 we	 can	 take	 that	 JSON	 data,	 convert	 it	 to	 a
JavaScript	 object,	 and	 start	 accessing	 these	 properties	 in	 our	 code.	To	 do	 this,
we'll	use	a	 third-party	module	 that	 lets	us	make	 these	HTTP	requests	 inside	of
our	app;	this	one	is	called	request.

We	can	visit	it	by	going	to	https://www.npmjs.com/package/request.	When	we	visit	this
page,	we'll	see	all	 the	documentation	and	all	 the	different	ways	we	can	use	the
request	 package	 to	 make	 our	 HTTP	 requests.	 For	 now,	 though,	 we'll	 stick	 to
some	 basic	 examples.	 On	 the	 request	 documentation	 page,	 on	 the	 right-hand
side,	 we	 can	 see	 this	 is	 a	 super	 popular	 package	 and	 it	 has	 seven	 hundred
thousand	downloads	in	the	last	day:

https://www.npmjs.com/package/request

In	order	to	get	started	we're	going	to	install	the	package	inside	our	project,	and
we'll	make	a	request	to	this	URL.

Installing	the	request	package
To	install	the	package,	we'll	go	to	the	Terminal	and	install	the	module	using	npm
init,	to	create	the	package.json	file:

We'll	run	this	command	and	use	enter	to	use	the	defaults	for	every	single	option:

At	the	end,	we'll	type	yes	and	hit	enter	again.

Now	 that	we	 have	 our	 package.json	 file	we	 can	 use	 npm	install,	 followed	 by	 the
module	 name,	 request,	 and	 I	 will	 specify	 a	 version.	 You	 can	 always	 find	 the
latest	 version	 of	 modules	 on	 the	 npm	 page.	 The	 latest	 version	 at	 the	 time	 of
writing	 is	 2.73.0,	 so	 we'll	 add	 that,	 @2.73.0.	 Then	we	 can	 specify	 the	 save	 flag
because	we	do	want	to	save	this	module	in	our	package.json	file:

npm	install	request@2.73.0	--save

It	will	be	critical	for	running	the	weather	application.

Using	request	as	a	function
Now	 that	 we	 have	 the	 request	 module	 installed,	 we	 can	 start	 using	 it.	 Inside
Atom	we'll	wrap	up	the	section	by	making	a	request	to	that	URL,	in	a	new	file	in
the	root	of	the	project	called	app.js.	This	will	be	the	starting	point	for	the	weather
application.	The	weather	app	will	be	the	last	command-line	app	we	create.	In	the
future	we'll	be	making	the	backend	for	web	apps	as	well	as	real-time	apps	using
Socket.IO.	But	to	illustrate	asynchronous	programming,	a	command-line	app	is
the	nicest	way	to	go.

Now,	we	have	our	app	file,	and	we	can	get	started	by	loading	in	request	just	like
we	 did	 with	 our	 other	 npm	 modules.	 We'll	 make	 a	 constant	 variable,	 call	 it
request,	and	set	it	equal	to	require(request),	as	shown	here:

const	request	=	require('request');

Now	what	we	need	to	do	is	make	a	request.	In	order	to	do	this,	we'll	have	to	call
the	request	function.	Let's	call	it,	and	this	function	takes	two	arguments:

The	 first	 argument	 will	 be	 an	 options	 object	 where	we	 can	 configure	 all
sorts	of	information
The	second	one	will	be	a	callback	function,	which	will	be	called	once	the
data	comes	back	from	the	HTTP	endpoint

request({},	()	=>	{

});

In	our	case,	it's	going	to	get	called	once	the	JSON	data,	the	data	from	the	Google
Maps	API,	comes	back	into	the	Node	application.	We	can	add	the	arguments	that
are	 going	 to	 get	 passed	 back	 from	 request.	 Now,	 these	 are	 arguments	 that	 are
outlined	in	the	request	documentation,	I'm	not	making	up	the	names	for	these:

In	the	documentation,	you	can	see	they	call	it	error,	response,	and	body.	That's
exactly	what	well	call	ours.	So,	inside	Atom,	we	can	add	error,	response,	and	body,
just	like	the	docs.

Now	we	can	fill	out	that	options	object,	which	is	where	we	are	going	to	specify
the	things	unique	to	our	request.	In	this	case,	one	of	the	unique	things	is	the	URL.
The	URL	specifies	exactly	what	you	want	to	request,	and	in	our	case,	we	have
that	in	the	browser.	Let's	copy	the	URL	exactly	as	it	appears,	pasting	it	inside	of
the	string	for	the	URL	property:

request({

		url:	'https://maps.googleapis.com/maps/api/geocode/json?address=1301%20lombard%20street%20philadelphia',

},	(error,	response,	body)	=>	{

		

});

Now	that	we	have	the	URL	property	in	place,	we	can	add	a	comma	at	the	very
end	and	hit	enter.	Because	we	will	specify	one	more	property,	we'll	set	json	equal
to	true:

request({

		url:	'https://maps.googleapis.com/maps/api/geocode/json?address=1301%20lombard%20street%20philadelphia',

		json:	true

},	(error,	response,	body)	=>	{

});

This	 tells	 request	 that	 the	 data	 coming	 back	 is	 going	 to	 be	 JSON	 data,	 and	 it

should	go	ahead,	take	that	JSON	string,	and	convert	it	to	an	object	for	us.	That
lets	us	skip	a	step,	it's	a	really	useful	option.

With	this	in	place,	we	can	now	do	something	in	the	callback.	In	the	future	we'll
be	taking	this	longitude	and	latitude	and	fetching	weather.	For	now,	we'll	simply
print	the	body	to	the	screen	by	using	console.log.	We'll	pass	the	body	argument	into
console.log,	as	shown	here:

request({

		url:	'https://maps.googleapis.com/maps/api/geocode/json?address=1301%20lombard%20street%20philadelphia',

		json:	true

},	(error,	response,	body)	=>	{

		console.log(body);

});

Now	that	we	have	our	very	 first	HTTP	request	set	up,	and	we	have	a	callback
that's	going	to	fire	when	the	data	comes	back,	we	can	run	it	from	the	Terminal.

Running	the	request
To	run	the	request,	we'll	use	node	and	run	the	app.js	file:

node	app.js

When	we	 do	 this,	 the	 file	will	 start	 executing	 and	 there	will	 be	 a	 really	 short
delay	before	the	body	prints	to	the	screen:

What	we	get	back	is	exactly	what	we	saw	in	the	browser.	Some	of	the	properties,
such	as	address_components,	show	object	in	this	case	because	we're	printing	it	to	the
screen.	But	 those	properties	 do	 indeed	 exist;	we'll	 talk	 about	 how	 to	 get	 them
later	in	the	chapter.	For	now,	though,	we	do	have	our	formatted_address	as	shown	in
the	preceding	screenshot,	the	geometry	object,	the	place_id,	and	types.	This	is	what
we'll	be	using	to	fetch	the	longitude	and	latitude,	and	later	to	fetch	the	weather
data.

Now	 that	 we	 have	 this	 in	 place,	 we	 are	 done.	 We	 have	 the	 first	 step	 of	 the
process	 complete.	We've	made	 a	 request	 to	 the	 Google	 Geolocation	API,	 and
we're	getting	the	data	back.	We'll	continue	creating	the	weather	app	in	the	next
section.

Pretty	printing	objects
Before	 we	 continue	 learning	 about	 HTTP	 and	 what	 exactly	 is	 inside	 of	 error,
response,	and	body,	let's	take	a	quick	moment	to	talk	about	how	we	can	pretty	print
an	object	to	the	screen.	As	we	saw	in	the	last	subsection,	when	we	ran	our	app
with	node	app.js,	the	body	prints	to	the	screen.

But	 since	 there	 is	a	 lot	of	objects	nested	 inside	of	each	other,	 JavaScript	 starts
clipping	them:

As	shown	in	the	preceding	screenshot,	it	tells	us	an	object	is	in	the	results,	but	we
don't	 get	 to	 see	 exactly	 what	 the	 properties	 are.	 This	 takes	 place	 for
address_components,	geometry,	and	types.	Obviously	this	is	not	useful;	what	we	want	to
do	is	see	exactly	what's	in	the	object.

Using	the	body	argument
To	explore	all	of	the	properties,	we're	going	to	look	at	a	way	to	pretty	print	our
objects.	This	 is	going	 to	 require	a	 really	simple	 function	call,	a	 function	we've
actually	 already	 used,	 JSON.stringify.	 This	 is	 the	 function	 that	 takes	 your
JavaScript	objects,	which	body	 is,	 remember	we	used	 the	json:	true	 statement	 to
tell	 request	 to	 take	 the	 JSON	 and	 convert	 it	 into	 an	 object.	 In	 the	 console.log,
statement	we'll	take	that	object,	pass	body	in,	and	provide	the	arguments	as	shown
here:

const	request	=	require('request');

request({

		url:	'https://maps.googleapis.com/maps/api/geocode/json?address=1301%20lombard%20street%20philadelphia',

		json:	true

},	(error,	response,	body)	=>	{

		console.log(JSON.stringify(body));

});

Now,	this	 is	how	we've	usually	used	JSON.stringify,	 in	 the	past	we	provided	just
one	argument,	the	object	we	want	to	stringify,	in	this	case	we're	going	to	provide
a	couple	of	other	arguments.	The	next	argument	is	used	to	filter	out	properties.
We	 don't	 want	 to	 use	 that,	 it's	 usually	 useless,	 so	 we're	 going	 to	 leave	 it	 as
undefined	as	of	now:

console.log(JSON.stringify(body,	undefined));

The	reason	we	need	to	provide	it,	is	because	the	third	argument	is	the	thing	we
want.	The	 third	argument	will	 format	 the	JSON,	and	we'll	 specify	exactly	how
many	spaces	we	want	to	use	per	indentation.	We	could	go	with	2	or	4	depending
on	your	preference.	In	this	case,	we'll	pick	2:

console.log(JSON.stringify(body,	undefined,	2));

We'll	save	the	file	and	rerun	it	from	the	Terminal.	When	we	stringify	our	JSON
and	print	it	to	the	screen,	as	we'll	see	when	we	rerun	the	app,	we	get	the	entire
object	showing	up.	None	of	the	properties	are	clipped	off,	we	can	see	the	entire
address_components	array,	everything	shows	up	no	matter	how	complex	it	is:

Next,	we	have	our	geometry	object,	this	is	where	our	latitude	and	longitude	are
stored,	and	you	can	see	them	as	shown	here:

Then	below	that,	we	have	our	types,	which	was	cut	off	before,	even	though	it	was
an	array	with	one	item,	which	is	a	string:

Now	that	we	know	how	to	pretty	print	our	objects,	it	will	be	a	lot	easier	to	scan
data	 inside	 of	 the	 console—none	 of	 our	 properties	 will	 get	 clipped,	 and	 it's
formatted	in	a	way	that	makes	the	data	a	lot	more	readable.	In	the	next	section,
we'll	start	diving	into	HTTP	and	all	of	the	arguments	in	our	callback.

Making	up	of	the	HTTPS	requests
The	 goal	 in	 the	 previous	 section	was	 not	 to	 understand	 how	HTTP	works,	 or
what	exactly	the	arguments,	error,	response,	and	body	are	the	goal	was	to	come	up
with	a	real-world	example	of	a	callback,	as	opposed	to	 the	contrived	examples
that	we've	been	using	so	far	with	setTimeout:

const	request	=	require('request');

request({

	url:	'https://maps.googleapis.com/maps/api/geocode/json?address=1301%20lombard%20street%20philadelphia',

	json:	true

},	(error,	response,	body)	=>	{

	console.log(JSON.stringify(body,	undefined,	2));

});

In	 the	 preceding	 case,	 we	 had	 a	 real	 callback	 that	 got	 fired	 once	 the	 HTTP
request	came	back	from	the	Google	servers.	We	were	able	to	print	the	body,	and
we	saw	exactly	what	we	had	in	the	website.	In	this	section,	we'll	dive	into	these
arguments,	so	let's	kick	things	off	by	taking	a	look	at	the	body	argument.	This	is
the	third	argument	that	request	passes	to	the	callback.

Now	the	body	is	not	something	unique	to	the	request	module	(body	is	part	of	HTTP,
which	stands	for	the	Hypertext	Transfer	Protocol).	When	you	make	a	request
to	a	website,	the	data	that	comes	back	is	the	body	of	the	request.	We've	actually
used	the	body	about	a	million	times	in	our	life.	Every	single	time	we	request	a
URL	in	the	browser,	what	we	get	rendered	inside	the	screen	is	the	body.

In	 the	case	of	 https://www.npmjs.com,	 the	 body	 that	 comes	back	 is	 an	HTML	web
page	that	the	browser	knows	how	to	render.	The	body	could	also	be	some	JSON
information,	which	is	the	case	in	our	Google	API	request.	Either	way,	the	body	is
the	core	data	that	comes	back	from	the	server.	In	our	case,	the	body	stores	all	of
the	location	information	we	need,	and	we'll	be	using	that	information	to	pull	out
the	formatted	address,	the	latitude,	and	the	longitude	in	this	section.

https://www.npmjs.com

The	response	object
Before	we	dive	into	the	body,	let's	discuss	about	the	response	object.	We	can	look
at	 the	 response	 object	 by	 printing	 it	 to	 the	 screen.	 Let's	 swap	 out	 body	 in	 the
console.log	statement	for	response	in	the	code:

const	request	=	require('request');

request({

		url:	'https://maps.googleapis.com/maps/api/geocode/json?address=1301%20lombard%20street%20philadelphia',

		json:	true

},	(error,	response,	body)	=>	{

		console.log(JSON.stringify(response,	undefined,	2));

});

Then	 save	 the	 file	 and	 rerun	 things	 inside	 of	 the	Terminal	 by	 running	 the	 node
app.js	command.	We'll	get	that	little	delay	while	we	wait	for	the	request	to	come
back,	and	then	we	get	a	really	complex	object:

In	 the	 preceding	 screenshot,	we	 can	 see	 the	 first	 thing	we	 have	 in	 the	 response
object	 is	 a	 status	 code.	The	 status	 code	 is	 something	 that	 comes	back	 from	an
HTTP	request;	 it's	a	part	of	 the	response	and	 tells	you	exactly	how	the	request
went.

In	this	case,	200	means	everything	went	great,	and	you're	probably	familiar	with
some	status	codes,	like	404	which	means	the	page	was	not	found,	or	500	which
means	the	server	crashed.	There	are	other	body	codes	we'll	be	using	throughout
the	book.

We'll	 be	 making	 our	 very	 own	 HTTP	 API,	 so	 you'll	 become
intimately	familiar	with	how	to	set	and	use	status	codes.

In	this	section,	all	we	care	about	is	that	the	status	code	is	200,	which	means	things

went	 well.	 Next	 up	 in	 the	 response	 object,	 we	 actually	 have	 the	 body	 repeated
because	it	 is	part	of	the	response.	Since	 it's	 the	most	useful	piece	of	 information
that	 comes	 back,	 the	 request	 module	 developers	 chose	 to	 make	 it	 the	 third
argument,	although	you	could	access	it	using	response.body	as	you	can	clearly	see
in	 this	 case.	 Here,	 we	 have	 all	 of	 the	 information	 we've	 already	 looked	 at,
address	components,	formatted	address	geometry,	so	on.

Next	to	the	body	argument,	we	have	something	called	headers,	as	shown	here:

Now,	headers	are	part	of	the	HTTP	protocol,	they	are	key-value	pairs	as	you	can
see	 in	 the	preceding	 screenshot,	where	 the	 key	 and	 the	 value	 are	 both	 strings.
They	can	be	sent	in	the	request,	from	the	Node	server	to	the	Google	API	server,
and	in	the	response	from	the	Google	API	server	back	to	the	Node	server.

Headers	are	great,	there's	a	lot	of	built-in	ones	like	content-type.	The	content-type	is
HTML	for	a	website,	and	in	our	case,	it's	application/json.	We'll	talk	about	headers
more	 in	 the	 later	 chapters.	 Most	 of	 these	 headers	 are	 not	 important	 to	 our
application,	and	most	we're	never	ever	going	to	use.	When	we	go	on	and	create
our	 own	API	 later	 in	 the	 book,	 we'll	 be	 setting	 our	 own	 headers,	 so	 we'll	 be
intimately	familiar	with	how	these	headers	work.	For	now,	we	can	ignore	them
completely,	 all	 I	 want	 you	 to	 know	 is	 that	 these	 headers	 you	 see	 are	 set	 by
Google,	they're	headers	that	come	back	from	their	servers.

Next	to	the	headers	we	have	the	request	object,	which	stores	some	information
about	the	request	that	was	made:

As	 shown	 in	 the	 preceding	 screenshot,	 you	 can	 see	 the	 protocol	 HTTPS,	 the
host,	 the	 maps.googleapis.com	 website,	 and	 other	 things	 such	 as	 the	 address
parameters,	 the	 entire	 URL,	 and	 everything	 else	 about	 the	 request,	 which	 is
stored	in	this	part.

Next,	 we	 also	 have	 our	 own	 headers.	 These	 are	 headers	 that	 were	 sent	 from
Node	to	the	Google	API:

This	header	got	set	when	we	added	json:	true	to	options	object	in	our	code.	We
told	 request	we	want	 JSON	back	 and	 request	went	 on	 to	 tell	Google,	Hey,	we
want	to	accept	some	JSON	data	back,	so	if	you	can	work	with	that	format	send	it
back!	And	that's	exactly	what	Google	did.

This	is	the	response	object,	which	stores	information	about	the	response	and	about
the	 request.	 While	 we'll	 not	 be	 using	 most	 of	 the	 things	 inside	 the	 response
argument,	it	is	important	to	know	they	exist.	So	if	you	ever	need	to	access	them,
you	 know	where	 they	 live.	We'll	 use	 some	 of	 this	 information	 throughout	 the
book,	but	as	I	mentioned	earlier,	most	of	it	is	not	necessary.

For	the	most	part,	we're	going	to	be	accessing	the	body	argument.	One	thing	we
will	use	is	 the	status.	In	our	case	it	was	200.	This	will	be	important	when	we're
making	 sure	 that	 the	 request	 was	 fulfilled	 successfully.	 If	 we	 can't	 fetch	 the
location	or	if	we	get	an	error	in	the	status	code,	we	do	not	want	to	go	on	to	try	to

fetch	 the	 weather	 because	 obviously	 we	 don't	 have	 the	 latitude	 and	 longitude
information.

The	error	argument
For	now,	we	can	move	on	to	the	final	thing	which	is	error.	As	I	just	mentioned,
the	status	code	can	reveal	that	an	error	occurred,	but	this	is	going	to	be	an	error
on	the	Google	servers.	Maybe	the	Google	servers	have	a	syntax	error	and	their
program	is	crashing,	maybe	 the	data	 that	you	sent	 is	 invalid,	 for	example,	you
sent	an	address	that	doesn't	exist.	These	errors	are	going	to	become	evident	via
the	status	code.

What	the	error	argument	contains	is	errors	related	to	the	process	of	making	that
HTTP	request.	For	example,	maybe	the	domain	is	wrong:	if	I	delete	s	and	the	dot
with	go	in	the	URL,	in	our	code,	I	get	a	URL	that	most	likely	doesn't	exist:

const	request	=	require('request');

request({

		url:	'https://mapogleapis.com/maps/api/geocode/json?address=1301%20lombard%20street%20philadelphia',

In	 this	case,	 I'll	get	an	error	 in	 the	error	object	because	Node	cannot	make	 the
HTTP	request,	 it	can't	even	connect	it	 to	the	server.	I	could	also	get	an	error	if
the	machine	I'm	making	the	request	from	does	not	have	access	to	the	internet.	It's
going	to	try	to	reach	out	to	the	Google	servers,	it's	going	to	fail,	and	we're	going
to	get	an	error.

Now,	we	can	check	out	the	error	object	by	deleting	those	pieces	of	text	from	the
URL	 and	 making	 a	 request.	 In	 this	 case,	 I'll	 swap	 out	 response	 for	 error,	 as
shown	here:

const	request	=	require('request');

request({

		url:	'https://mapogleapis.com/maps/api/geocode/json?address=1301%20lombard%20street%20philadelphia',

		json:	true

},	(error,	response,	body)	=>	{

		console.log(JSON.stringify(error,	undefined,	2));

});

Now,	 inside	 the	Terminal,	 let's	 rerun	 the	 application	by	 running	 the	 node	app.js
command,	and	we	can	see	exactly	what	we	get	back:

When	we	make	 the	bad	request,	we	get	our	error	object	printing	 to	 the	screen,
and	 the	 thing	we	 really	 care	 about	 is	 the	 error	 code.	 In	 this	 case	we	 have	 the
ENOTFOUND	error.	This	means	that	our	local	machine	could	not	connect	to	the	host
provided.	 In	 this	 case	 mapogleapis.com,	 it	 doesn't	 exist	 so	we'll	 get	 an	 error	 right
here.

These	are	going	to	be	the	system	errors,	things	such	as	your	program	not	being
able	to	connect	to	the	internet	or	the	domain	not	being	found.	This	is	also	going
to	 be	 really	 important	 when	 it	 comes	 to	 creating	 some	 error	 handling	 for	 our
application	 there	 is	a	chance	 that	 the	user's	machine	won't	be	connected	 to	 the
internet.	We're	 going	 to	want	 to	make	 sure	 to	 take	 the	 appropriate	 action	 and
we'll	do	that	depending	on	what	is	inside	the	error	object.

If	we	can	fix	the	URL,	setting	it	back	to	maps.googleapis.com,	and	make	 the	exact
same	 request	 by	 using	 the	 up	 arrow	 key	 and	 the	 enter	 key,	 the	 request	 error
object	it's	going	to	be	empty,	and	you	can	see	null	print	to	the	screen:

https://developers.google.com/maps/

In	 this	 case,	 everything	 went	 great,	 there	 was	 no	 error,	 and	 it	 was	 able	 to
successfully	fetch	the	data,	which	it	should	be	able	 to	because	we	have	a	valid
URL.	That	is	a	quick	rundown	of	the	body,	the	response,	and	the	error	argument.
We	will	use	them	in	more	detail	as	we	add	error	handling.

Printing	 data	 from	 the	 body
object
Now,	 we'll	 print	 some	 data	 from	 the	 body	 to	 the	 screen.	 Let's	 get	 started	 by
printing	the	formatted	address,	and	then	we	will	be	responsible	for	printing	both
the	latitude	and	the	longitude.

Printing	the	formatted	address
We'll	start	with	figure	out	where	the	formatted	address	is.	For	this,	we'll	go	to	the
browser	and	use	JSONView.	At	the	bottom	of	the	browser	page,	you	can	see	that
little	 blue	 bar	 shows	 up	 when	 we	 highlight	 over	 items,	 and	 it	 changes	 as	 we
switch	items.	For	formatted	address,	for	example,	we	access	the	results	property,
results	is	an	array.	In	the	case	of	most	addresses,	you'll	only	get	one	result:

We'll	 use	 the	 first	 result	 every	 time,	 so	 we	 have	 the	 index	 of	 0,	 then	 it's	 the
.formatted_address	 property.	 This	 bottom	 line	 is	 exactly	 what	 we	 need	 to	 type
inside	of	our	Node	code.

Inside	Atom,	 in	 our	 code,	we'll	 delete	 the	 console.log	 statement,	 and	 replace	 it
with	 a	 new	 console.log	 statement.	We'll	 use	 template	 strings	 to	 add	 some	 nice
formatting	to	this.	We'll	add	Address	with	a	colon	and	a	space,	then	I'll	inject	the
address	using	the	dollar	sign	and	the	curly	braces.	We'll	access	the	body,	results,
and	 the	 first	 item	 in	 the	 results	array	 followed	by	 formatted	address,	as	 shown
here:

const	request	=	require('request');

request({

	url:	'https://maps.googleapis.com/maps/api/geocode/json?address=1301%20lombard%20street%20philadelphia',

	json:	true

},	(error,	response,	body)	=>	{

	console.log(`Address:	${body.results[0].formatted_address}`);

});

With	this	in	place,	I	can	now	add	a	semicolon	at	the	end	and	save	the	file.	Next,
we'll	 rerun	 the	application	 inside	of	 the	Terminal,	 and	 this	 time	around	we	get
our	address	printing	to	the	screen,	as	shown	here:

Now	that	we	have	the	address	printing	to	the	screen,	what	we	would	like	to	print
both	the	latitude	and	the	longitude	next.

Printing	latitude	and	longitude
In	order	to	get	started,	inside	Atom,	we'll	add	another	console.log	line	right	next	to
the	console.log	we	added	for	formatted	address.	We'll	use	template	strings	again	to
add	some	nice	formatting.	Let's	print	the	latitude	first.

For	this,	we'll	add	latitude	followed	by	a	colon.	Then	we	can	inject	our	variable
using	the	dollar	sign	with	the	curly	braces.	Then,	the	variable	we	want	is	on	the
body.	Just	like	the	formatted	address,	it's	also	in	the	first	results	item;	results	at
the	index	of	zero.	Next,	we'll	be	going	into	geometry.	From	geometry,	we'll	grab
the	location	property,	the	latitude,	.lat,	as	shown	here:

		console.log(`Address:	${body.results[0].formatted_address}`);

		console.log(`Latitude:	${body.results[0].geometry.location.lat}`);

});

Now	that	we	have	this	in	place,	we'll	do	the	exact	same	thing	for	longitude.	We'll
add	another	console.log	statement	in	the	next	line	of	the	code.	We'll	use	template
strings	once	again,	 typing	longitude	first.	After	 that,	we'll	put	a	colon	and	then
inject	 the	value.	 In	 this	case,	 the	value	 is	on	 the	body;	 it's	 in	 that	 same	 results
item,	 the	first	one.	We'll	go	 into	geometry	 location	again.	 Instead	of	.lat,	we'll
access	.lng.	Then	we	can	add	a	semicolon	at	the	end	and	save	the	file.	This	will
look	something	like	the	following:

		console.log(`Address:	${body.results[0].formatted_address}`);

		console.log(`Latitude:	${body.results[0].geometry.location.lat}`);

		console.log(`Longitude:	${body.results[0].geometry.location.lng}`);

});

Now	we'll	 test	 it	from	the	Terminal.	We'll	rerun	the	previous	command,	and	as
shown	in	the	following	screenshot,	you	can	see	we	have	the	latitude,	39.94,	and
the	longitude,	-75.16	printing	to	the	screen:

And	these	are	the	exact	same	values	we	have	inside	the	Chrome	browser,	39.94,
-75.16.	With	this	in	place,	we've	now	successfully	pulled	off	the	data	we	need	to
make	that	request	to	the	weather	API.

Summary
In	 this	 chapter,	 we	 have	 gone	 through	 a	 basic	 example	 of	 asynchronous
programming.	Next,	we	talked	about	what	happens	behind	the	scenes	when	you
run	asynchronous	code.	We	got	a	really	good	idea	about	how	your	program	runs
and	what	tools	and	tricks	are	happening	behind	the	scenes	to	make	it	run	the	way
it	 does.	We	 through	 a	 few	 examples	 that	 illustrate	 how	 the	 Call	 Stack,	 Node
APIs,	the	Callback	Queue,	and	the	Event	Loop	work.

Then,	we	learned	how	to	use	the	request	module	to	make	an	HTTP	request	for
some	information,	the	URL	we	requested	was	a	Google	Maps	Geocoding	URL,
and	we	passed	in	the	address	we	want	the	latitude	and	the	longitude	for.	Then	we
used	a	callback	function	that	got	fired	once	that	data	came	back.

At	the	end	of	the	section	Callback	functions	and	APIs,	we	looked	into	a	quick	tip
on	how	we	can	format	objects	when	we	want	to	print	them	to	the	console.	Last,
we	looked	into	what	makes	up	the	HTTPS	request.

In	the	next	chapter,	we'll	add	some	error	handling	to	this	callback	because	that's
going	to	be	really	important	for	our	HTTP	requests.	There's	a	chance	that	things
will	go	wrong,	and	when	 they	do,	we'll	want	 to	handle	 that	error	by	printing	a
nice	error	message	to	the	screen.

Callbacks	 in	 Asynchronous
Programming
This	chapter	is	the	second	part	of	our	asynchronous	programming	in	Node.js.	In
this	chapter,	we'll	 look	 at	 callbacks,	HTTP	 requests,	 and	more.	We're	going	 to
handle	a	lot	of	the	errors	that	happen	inside	callbacks.	There's	a	lot	of	ways	our
request	in	app.js	can	go	wrong,	and	we'll	want	to	figure	out	how	to	recover	from
errors	 inside	 of	 our	 callback	 functions	 when	 we're	 doing	 asynchronous
programming.

Next,	we'll	be	moving	our	request	code	block	into	a	separate	file	and	abstracting
a	lot	of	details.	We'll	 talk	about	what	that	means	and	why	it's	 important	for	us.
We'll	be	using	Google's	Geolocation	API,	and	we'll	be	using	the	Dark	Sky	API
to	take	location	information	like	a	zip	code	and	turn	that	into	real-world	current
weather	information.

Then,	we'll	start	wiring	up	that	forecast	API,	fetching	real-time	weather	data	for
the	 address	 that's	 geocoded.	 We'll	 add	 our	 request	 inside	 of	 the	 callback	 for
geocodeAddress.	 This	 will	 let	 us	 take	 that	 dynamic	 set	 of	 latitude	 and	 longitude
coordinates,	the	lat/lng	 for	 the	address	used	 in	 the	arguments	 list,	and	fetch	 the
weather	for	that	location.

Specifically,	we'll	look	into	the	following	topics:

Encoding	user	input
Callback	errors
Abstracting	callbacks
Wiring	up	weather	search
Chaining	callbacks	together

Encoding	user	input
In	this	section,	you'll	learn	how	to	set	up	yargs	for	the	weather	app.	You'll	also
learn	how	to	include	user	input,	which	is	very	important	for	our	application.

As	shown	in	the	previous	chapter,	HTTPS	request	section,	the	user	will	not	type
their	 encoded	address	 into	 the	Terminal;	 instead	 they	will	 be	 typing	 in	 a	 plain
text	address	like	1301	Lombard	Street.

Now	this	will	not	work	for	our	URL,	we	need	to	encode	those	special	characters,
like	the	space,	replacing	them	with	%20.	Now	%20	 is	 the	special	character	 for	 the
space,	other	special	characters	have	different	encoding	values.	We'll	learn	how	to
encode	and	decode	strings,	so	we	can	set	up	our	URL	to	be	dynamic.	It's	going
to	be	based	off	of	the	address	provided	in	the	Terminal.	That's	all	we're	going	to
discuss	 in	 this	 section.	By	 the	end	of	 the	section,	you'll	be	able	 to	 type	 in	 any
address	 you	 like,	 and	 you'll	 see	 the	 formatted	 address,	 the	 latitude,	 and	 the
longitude.

Installing	yargs
Before	we	can	get	started	doing	any	encoding,	we	have	to	get	the	address	from
the	user,	and	before	we	can	set	up	yargs	we	have	 to	 install	 it.	 In	 the	Terminal,
we'll	run	the	npm	install	command,	 the	module	name	 is	yargs,	and	we'll	 look	for
version	10.1.1,	which	 is	 the	 latest	version	at	 the	 time	of	writing.	We'll	use	 the
save	flag	to	run	this	installation,	as	shown	in	the	following	screenshot:

Now	the	save	 flag	 is	great	because	as	you	 remember.	 It	updates	 the	 package.json
file	and	that's	exactly	what	we	want.	This	means	that	we	can	get	rid	of	the	node
modules	folder	which	 takes	up	a	 ton	of	space,	but	we	can	always	regenerate	 it
using	npm	install.

If	you	run	npm	install	without	anything	else,	no	other	module	names
or	flags.	It	will	dig	through	that	package.json	 file	looking	for	all	the
modules	 to	 install,	 and	 it	 will	 install	 them,	 recreating	 your	 node
modules	folder	exactly	as	you	left	it.

While	the	installation	is	going	on,	we	do	a	bit	of	configuration	in	the	app.js	file.
So	we	can	get	started	by	first	loading	in	yargs.	For	this,	in	the	app.js	file,	next	to
request	constant,	I'll	make	a	constant	called	yargs,	setting	it	equal	to	require(yargs)
just	like	this:

const	request	=	require('request');

const	yargs	=	require('yargs');

Now	 we	 can	 go	 ahead	 and	 actually	 do	 that	 configuration.	 Next	 we'll	 make
another	constant	called	argv.	This	will	be	 the	object	 that	 stores	 the	 final	parsed
output.	That	will	take	the	input	from	the	process	variable,	pass	it	through	yargs,
and	 the	 result	will	be	 right	here	 in	 the	 argv	 constant.	This	will	get	 set	 equal	 to
yargs,	and	we	can	start	adding	some	calls:

const	request	=	require('request');

const	yargs	=	require('yargs');

const	argv	=	yargs

Now	when	we	created	the	notes	app	we	had	various	commands,	you	could	add	a
note	and	that	required	some	arguments,	 list	a	note	which	required	just	 the	title,
list	 all	 notes	which	 didn't	 require	 any	 arguments,	 and	we	 specified	 all	 of	 that
inside	of	yargs.

For	 the	 weather	 app	 the	 configuration	 will	 be	 a	 lot	 simpler.	 There	 is	 no
command,	 the	 only	 command	would	 be	 get	weather,	 but	 if	we	 only	 have	 one
why	 even	make	 someone	 type	 it.	 In	 our	 case,	when	 a	 user	wants	 to	 fetch	 the
weather	all	 they	will	do	is	 type	node	app.js	 followed	by	 the	address	 flag	 just	 like
this:

node	app.js	--address

Then	 they	 can	 type	 their	 address	 inside	 of	 quotes.	 In	 my	 case	 it	 could	 be
something	like	1301	lombard	street:

node	app.js	--address	'1301	lombard	street'

This	 is	 exactly	 how	 the	 command	 will	 get	 executed.	 There's	 no	 need	 for	 an
actual	command	like	fetch	weather,	we	go	right	from	the	file	name	right	into	our
arguments.

Configuring	yargs
To	configure	yargs,	things	will	look	a	little	different	but	still	pretty	similar.	In	the
Atom,	 I'll	 get	 started	 by	 calling	 .options,	which	will	 let	 us	 configure	 some	 top
level	options.	In	our	case,	we'll	pass	in	an	object	where	we	configure	all	of	the
options	we	need.	Now	I'll	format	this	like	I	do	for	all	of	my	chained	calls,	where
I	move	the	call	to	the	next	line	and	I	indent	it	like	this:

const	argv	=	yargs

		.options({

})

Now	we	can	set	up	our	options	and	in	this	case	we	just	have	one,	it	will	be	that	a
option;	a	will	be	short	for	address.	I	could	either	type	address	in	the	options	and	I
could	put	a	 in	 the	alias,	or	 I	could	put	a	 in	 the	options	and	 type	address	 in	 the
alias.	In	this	case	I'll	put	a	as	shown	here:

const	argv	=	yargs			

		.options({

				a:	{

				}

		})

Next	 up,	 I	 can	 go	 ahead	 and	 provide	 that	 empty	 object,	 and	we'll	 go	 through
these	same	exact	options	we	used	inside	of	the	notes	app.	We	will	demand	it.	If
you'll	 fetch	 the	weather	we	need	an	address	 to	 fetch	 the	weather	 for,	so	I'll	 set
demand	equal	to	true:

const	argv	=	yargs

		.options({

				a:	{

							demand:	true,

				}

		})

Next	up,	we	can	set	an	alias,	I'll	set	alias	equal	to	address.	Then	finally	we'll	set
describe,	we	can	set	describe	to	anything	we	think	would	be	useful,	in	this	case	I'll
go	with	Address	to	fetch	weather	for,	as	shown	here:

const	argv	=	yargs

		.options({

				a:	{

						demand:	true,

						alias:	'address',

						describe:	'Address	to	fetch	weather	for'

				}

		})

Now	 these	 are	 the	 three	 options	we	 provided	 for	 the	 notes	 app,	 but	 I'll	 add	 a
fourth	one	 to	make	our	yargs	configuration	for	 the	weather	app	even	more	full
proof.	This	will	be	an	option	called	string.	Now	string	takes	a	Boolean	either	true
or	false.	In	our	case	we	want	true	to	be	the	value.	This	tells	yargs	to	always	parse
the	a	or	address	argument	as	a	string,	as	opposed	to	something	else	like	a	number
or	a	Boolean:

const	argv	=	yargs

		.options({

				a:	{

						demand:	true,

						alias:	'address',

						describe:	'Address	to	fetch	weather	for',

						string:	true

				}

		})

In	 the	 Terminal,	 if	 I	 were	 to	 delete	 the	 actual	 string	 address,	 yargs	 would	 still
accept	this,	it	would	just	think	I'm	trying	to	add	a	Boolean	flag,	which	could	be
useful	 in	 some	 situations.	 For	 example,	 do	 I	 want	 to	 fetch	 in	 Celsius	 or	 in
Fahrenheit?	But	in	our	case,	we	don't	need	any	sort	of	true	or	false	flag,	we	need
some	data,	so	we'll	set	string	to	true	to	make	sure	we	get	that	data.

Now	that	we	have	our	options	configuration	in	place,	we	can	go	ahead	and	add	a
couple	other	calls	 that	we've	explored.	 I'll	 add	 .help,	 calling	 it	 as	 shown	 in	 the
following	code,	which	adds	 the	 help	 flag.	This	 is	 really	useful	 especially	when
someone	is	first	using	a	command.	Then	we	can	access	.argv,	which	takes	all	of
this	configuration,	 runs	 it	 through	our	arguments,	and	 restores	 the	 result	 in	 the
argv	variable:

const	argv	=	yargs

		.options({

				a:	{

						demand:	true,

						alias:	'address',

						describe:	'Address	to	fetch	weather	for',

						string:	true

				}

		})

		.help()

		.argv;

Now	the	help	method	adds	that	help	argument,	we	can	also	add	an	alias	for	it	right
afterwards	 by	 calling	 .alias.	 Now	 .alias	 takes	 two	 arguments,	 the	 actual
argument	that	you	want	to	set	an	alias	for	and	the	alias.	In	our	case,	we	already
have	help	 registered,	 it	 gets	 registered	when	we	call	 help,	 and	we'll	 set	 an	 alias
which	will	just	be	the	letter	h,	awesome:

.help()

.alias('help',	'h')

.argv;

Now	we	have	all	sorts	of	really	great	configurations	set	up	for	the	weather	app.
For	example,	inside	the	Terminal	I	can	now	run	help,	and	I	can	see	all	of	the	help
information	for	this	application:

I	could	also	use	the	shortcut	-h,	and	I	get	the	exact	same	data	back:

Printing	the	address	to	screen
Now	the	address	is	also	getting	passed	through	but	we	don't	print	it	to	the	screen,
so	 let's	 do	 that.	 Right	 after	 the	 configuration,	 let's	 use	 console.log	 to	 print	 the
entire	argv	variable	to	the	screen.	This	will	include	everything	that	got	parsed	by
yargs:

		.help()

		.alias('help',	'h')

		.argv;

console.log(argv);

Let's	go	ahead	and	rerun	it	 in	the	Terminal,	 this	time	passing	in	an	address.	I'll
use	 the	 a	 flag,	 and	 specifying	 something	 like	 1301	 lombard	 street,	 closing	 the
quotes,	and	hitting	enter:

node	app.js	-a	'1301	lombard	street'

When	we	do	this	we	get	our	object,	and	as	shown	in	the	code	output,	we	have
1301	Lombard	St,	Philadelphia,	PA	19147,	USA,	the	plain	text	address:

In	 the	 preceding	 screenshot,	 notice	 that	 we	 happen	 to	 fetch	 the	 latitude	 and
longitude	for	 that	 address,	but	 that's	 just	because	we	have	 it	hard	coded	 in	 the
URL	in	app.js.	We	still	need	to	make	some	changes	in	order	to	get	the	address,

the	one	that	got	typed	inside	the	argument,	to	be	the	address	that	shows	up	in	the
URL.

Encoding	 and	 decoding	 the
strings
To	explore	how	to	encode	and	decode	strings	we'll	head	into	the	Terminal.	Inside
the	Terminal,	 first	we'll	clear	 the	screen	using	 the	clear	command,	and	 then	we
boot	up	a	node	process	by	typing	the	node	command	as	shown:

node

Here	we	 can	 run	 any	 statements	we	 like.	When	we're	 exploring	 a	 really	 basic
node	or	JavaScript	feature,	we'll	look	into	some	examples	first,	and	then	we	go
ahead	 and	 add	 it	 into	 our	 actual	 application.	 We'll	 look	 at	 two	 functions,
encodeURIComponent	and	decodeURIComponent.	We'll	get	started	with	encoding	first.

Encoding	URI	component
Encoding,	 the	 method	 is	 called	 encodeURIComponent,	 encode	 URI	 in	 uppercase
component,	and	it	takes	just	one	argument,	the	string	you	want	to	encode.	In	our
case,	that	string	will	be	the	address,	something	like	1301	lombard	street	philadelphia.
When	we	run	this	address	through	encodeURIComponent	by	hitting	enter,	we	get	 the
encoded	version	back:

encodeURIComponent('1301	lombard	street	philadelphia')

As	shown	in	the	following	code	output,	we	can	see	all	the	spaces,	like	the	space
between	 1301	 and	 lombard,	 have	 been	 replaced	 with	 their	 encoded	 character,
and	 for	 the	 case	 of	 the	 space	 it	 is	 %20.	 By	 passing	 our	 string	 through
encodeURIComponent,	we'll	create	something	that's	ready	to	get	injected	right	into	the
URL	so	we	can	fire	off	that	dynamic	request.

Decoding	URI	component
Now	the	alternative	to	encodeURIComponent	is.	This	will	take	an	encoded	string	like
the	one	in	the	previous	example,	and	take	all	the	special	characters,	like	%20,	and
convert	them	back	into	their	original	values,	in	this	case	space.	For	this,	inside	of
decodeURIComponent	once	again	we'll	pass	a	string.

Let's	go	ahead	and	type	our	first	and	last	name.	In	my	case	it's	Andrew,	and	instead
of	a	space	between	them	I'll	add	%20,	which	we	know	is	the	encoded	character	for
a	 space.	 Since	 we're	 trying	 to	 decode	 something,	 it's	 important	 to	 have	 some
encoded	 characters	 here.	 Once	 yours	 looks	 like	 the	 following	 code	 with	 your
first	and	last	name,	you	can	go	ahead	and	hit	enter,	and	what	we	get	back	is	the
decoded	version:

decodeURIComponent('Andrew%20Mead')

As	shown	in	the	following	code	output,	I	have	Andrew	Mead	with	the	%20	being
replaced	by	the	space,	exactly	what	we	expected.	This	is	how	we	can	encode	and
decode	URI	components	in	our	app:

Pulling	the	address	out	of	argv
Now	what	we	want	to	do	is	pull	the	address	out	of	argv,	we	already	saw	that	it's
there,	we	want	 to	 encode	 it	 and	we	want	 to	 inject	 it	 in	our	URL	 in	 app.js	 file,
replacing	the	address:

This	will	essentially	create	that	dynamic	request	we've	been	talking	about.	We'll
be	able	to	type	in	any	address	we	want,	whether	it's	an	address	or	a	zip	code	or	a
city	 state	 combination,	 and	 we'll	 be	 able	 to	 fetch	 the	 formatted	 address,	 the
latitude,	and	the	longitude.

In	 order	 to	 get	 started,	 the	 first	 thing	 I'll	 do	 is	 get	 the	 encoded	 address.	 Let's
make	a	variable	called	encodedAddress	in	the	app.js	next	to	the	argv	variable,	where
we	can	store	that	result.	We'll	set	this	equal	to	the	return	value	from	the	method
we	just	explored	in	 the	Terminal,	encodeURIComponent.	This	will	 take	the	plain	 text
address	and	return	the	encoded	result.

Now	we	do	need	to	pass	in	the	string,	and	we	have	that	available	on	argv.address
which	is	the	alias:

		.help()

		.alias('help',	'h')

		.argv;

var	encodedAddress	=	encodeURIComponent(argv.address);

Here	we	could	use	argv.a	as	well	as	argv.address,	both	will	work	the
same.

Now	we	have	that	encoded	result	all	that's	left	to	do	is	inject	it	inside	of	the	URL
string.	In	the	app.js,	currently	we're	using	a	regular	string.	We'll	swap	this	out	for
a	template	string	so	I	can	inject	a	variable	inside	of	it.

Now	 that	we	have	a	 template	 string,	we	can	highlight	 the	static	address	which
ends	at	philadelphia	and	goes	up	to	the	=	sign,	and	remove	it,	and	instead	of	typing
in	a	static	address	we	can	inject	the	dynamic	variable.	Inside	of	my	curly	braces,

encodedAddress,	as	shown	here:

var	encodedAddress	=	encodeURIComponent(argv.address);

request({

		url:	`https://maps.googleapis.com/maps/api/geocode/json?address=${encodedAddress}`,

With	this	in	place	we	are	now	done.	We	get	the	address	from	the	Terminal,	we
encode	 it,	 and	 we	 use	 that	 inside	 of	 a	 geocode	 call.	 So	 the	 formatted	 address,
latitude,	 and	 longitude	 should	match	 up.	 Inside	 the	 Terminal,	we'll	 shut	 down
node	by	using	control	+	C	twice	and	use	clear	to	clear	the	Terminal	output.

Then	we	can	go	ahead	and	run	our	app	using	node	app.js,	passing	in	either	the	a	or
address	 flag.	In	this	case,	we'll	 just	use	a.	Then	we	can	go	ahead	and	type	 in	an
address,	for	example,	1614	south	broad	street	philadelphia	as	shown	here:

node	app.js	-a	'1614	south	broad	street	philadelphia'

When	you	run	 it	 you	 should	have	 that	 small	delay	while	we	 fetch
the	data	from	the	geocode	URL.

In	 this	 case	 we'll	 find	 that	 it's	 actually	 taking	 a	 little	 longer	 than	 we	 would
expect,	about	three	or	four	seconds,	but	we	do	get	the	address	back:

Here	we	have	the	formatted	address	with	a	proper	zip	code	state	and	country,	and
we	 also	 have	 the	 latitude	 and	 longitude	 showing	 up.	 We'll	 try	 a	 few	 other
examples.	For	example	for	a	town	in	Pennsylvania	called	Chalfont,	we	can	type
in	chalfont	pa	which	is	not	a	complete	address,	but	the	Google	Geocode	API	will
convert	it	into	the	closest	thing,	as	shown	here:

We	can	see	that	it's	essentially	the	address	of	the	town,	Chalfont,	PA	18914	is	the
zip,	with	 the	state	USA.	Next,	we	have	 the	general	 latitude	and	 longitude	data
for	 that	 town,	and	this	will	be	fine	for	fetching	weather	data.	The	weather	isn't
exactly	changing	when	you	move	a	few	blocks	over.

Now	that	we	have	our	data	coming	in	dynamically,	we	are	able	to	move	on	to	the
next	 section	 where	 we'll	 handle	 a	 lot	 of	 the	 errors	 that	 happen	 inside	 of
callbacks.	There	are	a	lot	of	ways	this	request	can	go	wrong,	and	we'll	want	to
figure	 out	 how	 to	 recover	 from	 errors	 inside	 of	 our	 callback	 functions	 when
we're	doing	asynchronous	programming.

Callback	errors
In	this	section	we'll	learn	how	to	handle	errors	inside	of	your	callback	functions,
because	as	you	might	guess	things	don't	always	go	as	planned.	For	example,	the
current	version	of	our	 app	has	 a	 few	 really	big	 flaws,	 if	 I	 try	 to	 fetch	weather
using	 node	 app.js	 with	 the	 a	 flag	 for	 a	 zip	 that	 doesn't	 exist,	 like	 000000,	 the
program	crashes,	which	 is	a	 really	big	problem.	 It's	going	off.	 It's	 fetching	 the
data,	eventually	that	data	will	come	back	and	we	get	an	error,	as	shown	here:

It's	 trying	 to	 fetch	 properties	 that	 don't	 exist,	 such	 as
body.results[0].formatted_address	is	not	a	real	property,	and	this	is	a	big	problem.

Our	current	 callback	expects	everything	went	as	planned.	 It	doesn't	 care	about
the	error	object,	doesn't	look	at	response	codes;	it	just	starts	printing	the	data	that
it	wants.	This	is	the	happy	path,	but	in	real	world	node	apps	we	have	to	handle
errors	as	well	otherwise	 the	applications	will	become	really	useless,	and	a	user
can	get	super	frustrated	when	things	don't	seem	to	be	working	as	expected.

In	order	 to	 do	 this,	we'll	 add	 a	 set	 of	 if/else	 statements	 inside	 of	 the	 callback.
This	will	let	us	check	certain	properties	to	determine	whether	or	not	this	call,	the
one	 to	 our	URL	 in	 the	 app.js,	 should	 be	 considered	 a	 success	 or	 a	 failure.	 For
example,	if	the	response	code	is	a	404,	we	might	want	to	consider	that	a	failure
and	we'll	want	to	do	something	other	than	trying	to	print	the	address,	latitude	and
longitude.	If	everything	went	well	though,	this	is	a	perfectly	reasonable	thing	to
do.

There	are	two	types	of	errors	that	we'll	worry	about	in	this	section.	That	will	be:

The	machine	errors,	things	like	being	unable	to	connect	to	a	network,	these
are	usually	will	show	up	in	the	error	object,	and
The	errors	coming	 from	 the	other	 server,	 the	Google	 server,	 this	could	be
something	like	an	invalid	address

In	order	to	get	started,	let's	take	a	look	at	what	can	happen	when	we	pass	a	bad
data	to	the	Google	API.

Checking	 error	 in	 Google	 API
request
To	view	what	actually	comes	back	in	a	call	like	the	previous	example,	where	we
have	an	invalid	address,	we'll	head	over	to	the	browser	and	pull	up	the	URL	we
used	in	the	app.js	file:

We	will	remove	the	address	we	used	earlier	from	the	browser	history,	and	type	in
000000,	hit	enter:

We	get	 our	 results	 arrive	 but	 those	 are	 no	 results,	 and	we	 have	 the	 status,	 the
status	says	ZERO_RESULTS,	and	this	is	the	kind	of	information	that's	really	important
to	track	down.	We	can	use	the	status	text	value	to	determine	whether	or	not	the
request	 was	 successful.	 If	 we	 pass	 in	 a	 real	 zip	 code	 like	 19147,	 which	 is
Philadelphia,	we'll	get	our	results	back,	and	as	shown	in	the	following	image,	the
status	will	get	set	equal	to	OK:

We	can	use	this	status	to	determine	that	things	went	well.	Between	these	status
property	and	the	error	object,	which	we	have	inside	of	our	app,	we	can	determine
what	exactly	to	do	inside	of	the	callback.

Adding	 the	 if	 statement	 for
callback	errors
The	first	 thing	we'll	do	 is	add	an	if	 statement	as	shown	below,	checking	 if	 the
error	object	exists:

request({

		url:	`https://maps.googleapis.com/maps/api/geocode/json?address=${encodedAddress}`,

		json:	true

},	(error,	response,	body)	=>	{

		if	(error)	{

		}

This	will	 run	 the	 code	 inside	 of	 our	 code	 block	 if	 the	 error	 object	 exists,	 if	 it
doesn't	fine,	we'll	move	on	into	the	next	else	if	statement,	if	there	is	any.

If	there	is	an	error,	all	we'll	do	is	add	a	console.log	and	a	message	to	the	screen,
something	like	Unable	to	connect	to	Google	servers:

if	(error)	{

		console.log('Unable	to	connect	Google	servers.');

}

This	will	 let	 the	user	know	that	we	were	unable	 to	connect	 to	 the	user	servers,
not	that	something	went	wrong	with	their	data,	like	the	address	was	invalid.	This
is	what	be	inside	of	the	error	object.

Now	 the	next	 thing	 that	we'll	do	 is	 add	an	 else	if	 statement,	 and	 inside	of	 the
condition	 we'll	 check	 the	 status	 property.	 If	 the	 status	 property	 is	 ZERO_RESULTS,
which	it	was	for	the	zip	code	000000,	we	want	to	do	something	other	than	trying	to
print	the	address.	Inside	of	our	conditional	in	Atom,	we	can	check	that	using	the
following	statement:

if	(error)	{

		console.log('Unable	to	connect	Google	servers.');

}	else	if	(body.status	===	'ZERO_RESULTS')	{

}

If	that's	the	case,	we'll	print	a	different	message,	other	than	Unable	to	connect	Google

servers,	for	this	one	we	can	use	console.log	to	print	Unable	to	find	that	address.:

if	(error)	{

		console.log('Unable	to	connect	Google	servers.');

}	else	if	(body.status	===	'ZERO_RESULTS')	{

		console.log('Unable	to	find	that	address.');

}

This	 lets	 the	user	know	 that	 it	wasn't	 a	problem	with	 the	connection,	we	were
just	unable	to	find	the	address	they	provided,	and	they	should	try	with	something
else.

Now	 we	 have	 error	 handling	 for	 those	 system	 errors,	 like	 being	 unable	 to
connect	 to	 the	Google	 servers,	 and	 for	errors	with	 the	 input,	 in	 this	case	we're
unable	to	find	a	location	for	that	address,	and	this	is	fantastic,	we	have	both	of
our	errors	handled.

Now	the	body.status	property	that	shows	up	in	the	else	if	statement,
is	 not	 going	 to	 be	 on	 every	 API,	 this	 is	 specific	 to	 the	 Google
Geocode	API.	When	you	explore	a	new	API	it's	important	to	try	out
all	sorts	of	data,	good	data	like	a	real	address	and	bad	data	like	an
invalid	 zip	 code,	 to	 see	 exactly	 what	 properties	 you	 can	 use	 to
determine	whether	or	not	the	request	was	successful,	or	if	it	failed.

In	our	case,	if	the	status	is	ZERO_RESULTS,	we	know	the	request	failed	and	we	can	act
accordingly.	Inside	of	our	app,	now	we'll	add	our	last	else	if	clause,	if	things	went
well.

Adding	if	else	statement	to	check
body	status	property
Now	we	want	to	add	the	else	if	clause	checking	if	the	body.status	property	equals
OK.	If	it	does,	we	can	go	ahead	and	run	these	three	lines	inside	of	the	code	block:

		console.log(`Address:	${body.results[0].formatted_address}`);

		console.log(`Latitude:	${body.results[0].geometry.location.lat}`);

		console.log(`Longitude:	${body.results[0].geometry.location.lng}`);

});

If	 it	doesn't,	 these	 lines	 shouldn't	 run	because	 the	code	block	will	not	execute.
Then	we'll	test	things	out	inside	of	the	Terminal,	try	to	fetch	the	address	of	00000,
and	make	 sure	 that	 instead	 of	 the	 program	 crashing	we	 get	 our	 error	message
printing	 to	 the	 screen.	Then	we	go	ahead	and	mess	up	 the	URL	 in	 the	 app	by
removing	some	of	the	important	characters,	and	make	sure	this	time	we	get	the
Unable	to	connect	to	the	Google	servers.	message.	And	last	we'll	see	what	happens
when	we	 enter	 a	 valid	 address,	 and	make	 sure	 our	 three	 console.log	 statements
still	execute.

To	get	started	we'll	add	that	else	if	 statement,	and	 inside	of	 the	condition	we'll
check	if	body.status	is	OK:

if	(error)	{

		console.log('Unable	to	connect	Google	servers.');

}	else	if	(body.status	===	'ZERO_RESULTS')	{

		console.log('Unable	to	find	that	address.');

}	else	if	(body.status	===	'OK')	{

}

If	it	is	OK,	then	we'll	simply	take	the	three	console.log	lines	(shown	in	the	previous
code	block)	 and	move	 them	 in	 the	 else	if	 condition.	 If	 it	 is	 OK,	we'll	 run	 these
three	console.log	statements:

if	(error)	{

		console.log('Unable	to	connect	Google	servers.');

}	else	if	(body.status	===	'ZERO_RESULTS')	{

		console.log('Unable	to	find	that	address.');

}	else	if	(body.status	===	'OK')	{

		console.log(`Address:	${body.results[0].formatted_address}`);

		console.log(`Latitude:	${body.results[0].geometry.location.lat}`);

		console.log(`Longitude:	${body.results[0].geometry.location.lng}`);

}

Now	we	have	a	request	 that	handles	errors	really	well.	 If	anything	goes	wrong
we	have	a	special	message	for	it,	and	if	things	go	right	we	print	exactly	what	the
user	expects,	the	address,	the	latitude,	and	the	longitude.	Next	we'll	test	this.

Testing	the	body	status	property
To	test	this	inside	of	the	Terminal,	we'll	start	by	rerunning	the	command	with	an
address	that's	invalid:

node	app.js	-a	000000

When	we	 run	 this	 command,	we	 see	 that	Unable	 to	 find	address.	 prints	 to	 the
screen.	 Instead	of	 the	program	crashing,	printing	a	bunch	of	errors,	we	simply
have	a	little	message	printing	to	the	screen.	This	is	because	the	code	we	have	in
second	else	if	statement,	that	tried	to	access	those	properties	that	didn't	exist,	no
longer	 runs	because	our	 first	else	if	condition	gets	caught	and	we	simply	print
the	message	to	the	screen.

Now	we	 also	want	 to	 test	 that	 the	 first	message	 (Unable	 to	 connect	 to	 the	 Google
servers.)	prints	when	it	should.	For	this,	we'll	delete	some	part	of	the	URl	in	our
code,	let's	say,	s	and	.,	and	save	the	file:

request({

		url:	`https://mapgoogleapis.com/maps/api/geocode/json?address=${encodedAddress}`,

		json:	true

},	(error,	response,	body)	=>	{

		if	(error)	{

				console.log('Unable	to	connect	Google	servers.');

		}	else	if	(body.status	===	'ZERO_RESULTS')	{

			console.log('Unable	to	find	that	address.');

		}	else	if	(body.status	===	'OK')	{

				console.log(`Address:	${body.results[0].formatted_address}`);

				console.log(`Latitude:	${body.results[0].geometry.location.lat}`);

				console.log(`Longitude:	${body.results[0].geometry.location.lng}`);

		}

});

Then	we'll	 rerun	 the	previous	 command	 in	 the	Terminal.	This	 time	around	we
can	see	Unable	to	connect	to	Google	servers.	prints	to	the	screen	just	like	it	should:

Now	 we	 can	 test	 it	 the	 final	 thing,	 by	 first	 readjusting	 the	 URL	 to	 make	 it
correct,	and	 then	 fetching	a	valid	address	 from	 the	Terminal.	For	example,	we
can	use	the	node	app.js,	setting	address	equal	to	08822,	which	is	a	zip	code	in	New
Jersey:

node	app.js	--address	08822

When	 we	 run	 this	 command,	 we	 do	 indeed	 get	 our	 formatted	 address	 for
Flemington,	NJ,	 with	 a	 zip	 code	 and	 the	 state,	 and	 we	 have	 our	 latitude	 and
longitude	as	shown	here:

We	 now	 have	 a	 complete	 error	 handling	model.	When	 we	make	 a	 request	 to
Google	providing	a	address	that	has	problems,	in	this	case	there's	ZERO_RESULTS,	the
error	object	will	get	populated,	because	it's	not	 technically	an	error	 in	 terms	of
what	request	thinks	an	error	is,	it's	actually	in	the	response	object,	which	is	why
we	have	to	use	body.status	in	order	to	check	the	error.

That	is	it	for	this	section,	we	now	have	error	handling	in	place,	we	handle	system
errors,	Google	server	errors,	and	we	have	our	success	case.

Abstracting	callbacks
In	 this	 section,	 we'll	 be	 refactoring	 app.js,	 taking	 a	 lot	 of	 the	 complex	 logic
related	to	geocoding	and	moving	it	into	a	separate	file.	Currently,	all	of	the	logic
for	making	 the	 request	 and	determining	whether	 or	 not	 the	 request	 succeeded,
our	if	else	statements,	live	inside	of	app.js:

request({

		url:	`https://maps.googleapis.com/maps/api/geocode/json?address=${encodedAddress}`,

		json:	true

},	(error,	response,	body)	=>	{

		if	(error)	{

				console.log('Unable	to	connect	Google	servers.');

		}	else	if	(body.status	===	'ZERO_RESULTS')	{

			console.log('Unable	to	find	that	address.');

		}	else	if	(body.status	===	'OK')	{

				console.log(`Address:	${body.results[0].formatted_address}`);

				console.log(`Latitude:	${body.results[0].geometry.location.lat}`);

				console.log(`Longitude:	${body.results[0].geometry.location.lng}`);

		}

});

This	is	not	exactly	reusable	and	it	really	doesn't	belong	here.	What	I'd	like	to	do
before	we	add	even	more	logic	related	to	fetching	the	forecast,	that's	the	topic	of
the	next	section,	is	break	this	out	into	its	own	function.	This	function	will	live	in
a	separate	file,	like	we	did	for	the	notes	application.

In	the	notes	app	we	had	a	separate	file	that	had	functions	for	adding,	listing,	and
removing	notes	from	our	local	adjacent	file.	We'll	be	creating	a	separate	function
responsible	for	geocoding	a	given	address.	Although	the	logic	will	stay	the	same,
there	really	is	no	way	around	it,	it	will	be	abstracted	out	of	the	app.js	file	and	into
its	own	location.

Refactoring	 app.js	 and	 code	 into
geocode.js	file
First	up,	we	will	need	to	create	a	new	directory	and	a	new	file	then	we'll	add	a
few	more	advanced	features	to	the	function.	But	before	that,	we'll	see	what	the
require	statement	will	look	like.

Working	on	request	statement
We'll	 load	 in	 via	 a	 constant	 variable	 called	 geocode	 the	module,	 and	we'll	 set	 it
equal	 to	 require,	 since	 we're	 requiring	 a	 local	 file	 we'll	 add	 that	 relative	 path,
./geocode/geocode.js:

const	geocode	=	require('./geocode/geocode.js');

That	means	you	need	to	make	a	directory	called	geocode	 in	the	weather-app	folder,
and	a	file	called	geocode.js.	Since	we	have	a	.js	extension,	we	can	actually	leave	it
off	of	our	require	call.

Now,	in	the	app.js	file,	next	to	.argv	object,	we	need	to	call	geocode.geocodeAddress.
The	geocodeAddress	function,	that	will	be	the	function	responsible	for	all	the	logic
we	 currently	 have	 in	 app.js.	 The	 geocodeAddress	 function	 will	 take	 the	 address,
argv.address:

geocode.geocodeAddress(argv.address);

It	 will	 be	 responsible	 for	 doing	 everything,	 encoding	 the	 URL,	 making	 the
request,	and	handling	all	of	the	error	cases.	This	means,	in	that	new	file	we	need
to	export	the	geocodeAddress	function,	just	like	we	exported	functions	from	the	notes
application	file.	Next,	we	have	all	of	the	logic	here:

var	encodedAddress	=	encodedURIComponent(argv.address);

request({

		url:	`https://maps.googleapis.com/maps/api/geocode/json?address=${encodedAddress}`,

		json:	true

},	(error,	response,	body)	=>	{

		if	(error)	{

				console.log('Unable	to	connect	Google	servers.');

		}	else	if	(body.status	===	'ZERO_RESULTS')	{

			console.log('Unable	to	find	that	address.');

		}	else	if	(body.status	===	'OK')	{

				console.log(`Address:	${body.results[0].formatted_address}`);

				console.log(`Latitude:	${body.results[0].geometry.location.lat}`);

				console.log(`Longitude:	${body.results[0].geometry.location.lng}`);

		}

});

This	logic	needs	to	get	moved	inside	of	the	geocodeAddress	function.	Now	we	can
copy	and	paste	the	preceding	shown	code	directly,	there	really	is	no	way	around

some	of	the	more	complex	logic,	but	we	will	need	to	make	a	few	changes.	We'll
need	to	load	requests	 into	that	new	file,	since	we	use	it	and	it	 isn't	going	to	be
required	in	that	file	by	default.	Then	we	can	go	ahead	and	clean	up	the	request
require	call	in	the	code,	since	we	won't	be	using	it	in	this	file.

Next	up,	the	argv	object	is	not	going	to	exist,	we'll	get	that	passed	in	via	the	first
argument,	 just	 like	 the	 argv.address	 in	 the	 geocode.Address	 statement.	 This	 means
we'll	need	to	swap	this	out	for	whatever	we	call	that	first	argument	for	example,
address.	Once	this	is	done,	the	program	should	work	exactly	as	it	works	without
any	changes	in	app.js,	there	should	be	no	change	in	functionality.

Creating	geocode	file
To	get	started,	let's	make	a	brand	new	directory	in	the	weather-app	folder,	that's	the
first	 thing	we	need	 to	do.	The	directory	 is	called	geocode,	which	aligns	with	 the
require	statement	we	have	in	the	geocode	variable.	In	geocode	folder,	we'll	make	our
file	geocode.js:

Now	inside	of	geocode.js,	we	can	get	 started	by	 loading	 in	 request,	 let's	make	a
constant	called	request,	and	we'll	set	it	equal	to	require('request'):

const	request	=	require('request');

Now	we	 can	 go	 ahead	 and	 define	 the	 function	 responsible	 for	 geocoding,	 this
one	 will	 be	 called	 geocodeAddress.	 We'll	 make	 a	 variable	 called	 geocodeAddress,
setting	it	equal	to	an	arrow	function,	and	this	arrow	function	will	get	an	address
argument	past	in:

var	geocodeAddress	=	(address)	=>	{

};

This	 is	 the	 plain	 text	 unencoded	 address.	Now	 before	we	 copy	 the	 code	 from
app.js	into	this	function	body,	we	want	to	export	our	geocodeAddress	function	using
module.exports,	 which	 we	 know	 as	 an	 object.	 Anything	 we	 put	 on	 module.exports

object	will	be	available	to	any	files	that	require	this	file.	In	our	case,	we	want	to
make	 a	 geocodeAddress	 property	 available,	 setting	 it	 equal	 to	 the	 geocodeAddress
function	that	we	defined	in	the	preceding	statement:

var	geocodeAddress	=	(address)	=>	{

};

module.exports.geocodeAddress	=	geocodeAddress;

Now	it's	time	to	actually	copy	all	of	the	code	from	app.js	in	to	geocode.js.	We'll	cut
the	request	function	code,	move	in	to	geocode.js,	and	paste	it	inside	of	the	body	of
our	function:

var	geocodeAddress	=	(address)	=>	{

		var	encodedAddress	=	encodedURIComponent(argv.address);

		request({

				url:	`https://maps.googleapis.com/maps/api/geocode/json?address=${encodedAddress}`,

				json:	true

		},	(error,	response,	body)	=>	{

				if	(error)	{

						console.log('Unable	to	connect	Google	servers.');

				}	else	if	(body.status	===	'ZERO_RESULTS')	{

						console.log('Unable	to	find	that	address.');

				}	else	if	(body.status	===	'OK')	{

						console.log(`Address:	${body.results[0].formatted_address}`);

						console.log(`Latitude:	${body.results[0].geometry.location.lat}`);

						console.log(`Longitude:	${body.results[0].geometry.location.lng}`);

				}

		});

};

module.exports.geocodeAddress	=	geocodeAddress;

The	only	thing	we	need	to	change	inside	of	this	code,	is	how	we	get	the	plaintext
address.	We	no	longer	have	that	argv	object,	instead	we	get	address	passed	in	as	an
argument.	The	final	code	will	look	like	the	following	code	block:

const	request	=	require('request');

var	geocodeAddress	=	(address)	=>	{

		var	encodedAddress	=	encodedURIComponent(argv.address);

		request({

				url:	`https://maps.googleapis.com/maps/api/geocode/json?address=${encodedAddress}`,

				json:	true

		},	(error,	response,	body)	=>	{

				if	(error)	{

						console.log('Unable	to	connect	Google	servers.');

				}	else	if	(body.status	===	'ZERO_RESULTS')	{

						console.log('Unable	to	find	that	address.');

				}	else	if	(body.status	===	'OK')	{

						console.log(`Address:	${body.results[0].formatted_address}`);

						console.log(`Latitude:	${body.results[0].geometry.location.lat}`);

						console.log(`Longitude:	${body.results[0].geometry.location.lng}`);

				}

		});

};

module.exports.geocodeAddress	=	geocodeAddress;

With	 this	 in	 place,	 we're	 now	 done	with	 the	 geocode	 file.	 It	 contains	 all	 of	 the
complex	logic	for	making	and	finishing	the	request.	Over	at	app.js,	we	can	clean
things	 up	 by	 removing	 some	 extra	 spaces,	 and	 removing	 the	 request	 module
which	 is	 no	 longer	 used	 in	 this	 file.	 The	 final	 app.js	 file	 will	 look	 like	 the
following	code	block:

const	yargs	=	require('yargs');

const	geocode	=	require('./geocode/geocode');

const	argv	=	yargs

		.options({

				a:	{

						demand:	true,

						alias:	'address',

						describe:	'Address	to	fetch	weather	for',

						string:	true

				}

		})

		.help()

		.alias('help',	'h')

		.argv;

geocode.geocodeAddress(argv.address);

Now	 at	 this	 point	 the	 functionality	 should	 be	 exactly	 the	 same.	 Inside	 of	 the
Terminal,	I'll	go	ahead	and	run	a	few	to	confirm	the	changes	worked.	We'll	use
the	a	 flag	 to	 search	 for	 a	 zip	code	 that	does	exist,	 something	 like	 19147,	 and	 as
shown,	we	can	see	the	address,	the	latitude,	and	the	longitude:

Now	we'll	swap	out	that	zip	code	to	one	that	does	not	exist,	like	000000,	when	we
run	 this	 through	 the	 geocoder,	 you	 can	 see	 Unable	 to	 find	 address	 prints	 to
screen:

It	means	all	of	the	logic	inside	of	geocode.js	is	still	working.	Now	the	next	step	in
the	process	is	the	process	of	adding	a	callback	function	to	geocodeAddress.

Adding	 callback	 function	 to
geocodeAddress
The	goal	of	refactoring	the	code	and	app.js	was	not	to	get	rid	of	the	callback,	the
goal	was	to	abstract	all	the	complex	logic	related	to	encoding	the	data,	making
that	request,	and	checking	for	errors.	app.js	should	not	care	about	any	of	that,	it
doesn't	even	need	to	know	that	an	HTTP	request	was	ever	made.	All	 the	app.js
should	 care	 about	 is	 passing	 an	 address	 to	 the	 function,	 and	 doing	 something
with	 the	 result.	 The	 result	 being	 either	 an	 error	 message	 or	 the	 data,	 the
formatted	address,	the	latitude,	and	the	longitude.

Setting	 up	 the	 function	 in
geocodeAddress	 function	 in
app.js
Before	we	go	ahead	and	make	any	changes	in	geocode.js,	we	want	to	take	a	look
at	 how	we'll	 structure	 things	 inside	 of	 app.js.	We'll	 pass	 an	 arrow	 function	 to
geocodeAddress,	and	this	will	get	called	after	the	request	comes	back:

geocode.geocodeAddress(argv.address,	()	=>	{

});

In	 the	 parentheses,	 we'll	 expect	 two	 arguments,	 errorMessage,	 which	 will	 be	 a
string,	and	results,	which	will	contain	the	address,	the	latitude,	and	the	longitude:

geocode.geocodeAddress(argv.address,	(errorMessage,	results)	=>	{

});

Out	 of	 these	 two	 only	 one	 will	 be	 available	 at	 a	 time.	 If	 we	 have	 an	 error
message	we'll	 not	 have	 results,	 and	 if	we	 have	 results	we'll	 not	 have	 an	 error
message.	This	will	make	the	logic	in	the	arrow	function,	of	determining	whether
or	not	the	call	succeeded,	much	simpler.	We'll	be	able	to	use	an	if	statement,	if
(errorMessage),	 and	 if	 there	 is	 an	 error	 message,	 we	 can	 simply	 print	 it	 to	 the
screen	using	console.log	statement:

geocode.geocodeAddress(argv.address,	(errorMessage,	results)	=>	{

		if	(errorMessage)	{

				console.log(errorMessage);

		}

});

There's	no	need	to	dig	into	any	sort	of	object	and	figure	out	exactly	what's	going
on,	all	of	that	logic	is	abstracted	in	geocode.js.	Now	if	there	is	no	error	message
inside	of	 the	 else	 clause,	we	 can	 go	 ahead	 and	 print	 the	 results.	We'll	 use	 that
pretty	 print	 method	 we	 talked	 about	 in	 the	 previous	 chapter,	 we'll	 add	 the
console.log(JSON.stringify)	statement,	and	we'll	pretty	print	the	results	object	which
will	 be	 an	 object	 containing	 an	 address	 property,	 a	 latitude	 property,	 and	 a

longitude	property.

Then,	we'll	pass	the	undefined	argument	as	our	second	argument.	This	skips	over
the	filtering	function	which	we	don't	need,	and	then	we	can	specify	the	spacing,
which	will	format	this	in	a	really	nice	way,	we'll	use	two	spaces	as	shown	here:

geocode.geocodeAddress(argv.address,	(errorMessage,	results)	=>	{

		if	(errorMessage)	{

				console.log(errorMessage);

		}	else	{

				console.log(JSON.stringify(results,	undefined,	2));

		}

});

Now	that	we	have	our	function	set	up	inside	of	geocodeAddress	 function	 in	app.js,
and	we	have	a	good	idea	about	how	it	will	look,	we	can	go	ahead	and	implement
it	inside	of	geocode.js.

Implementing	 the	 callback
function	in	geocode.js	file
In	our	arguments	definition,	instead	of	just	expecting	an	address	argument	we'll
also	 expect	 a	 callback	 argument,	 and	 we	 can	 call	 this	 callback	 argument
whenever	we	like.	We'll	call	it	in	three	places.	We'll	call	it	once	inside	of	the	if
(error)	block,	instead	of	calling	console.log	we'll	simply	call	the	callback	with	the
Unable	to	connect	to	Google	servers.	string.	This	string	will	be	the	error	message	we
defined	in	geocodeAddress	function	in	app.js.

In	order	 to	do	 this,	all	we	need	 to	do	 is	change	our	console.log	call	 to	a	callback
call.	We'll	pass	it	as	the	first	argument	our	error	message.	We	can	take	the	string
exactly	as	it	appeared	in	console.log,	and	move	it	into	the	arguments	for	callback.
Then	I	can	remove	the	console.log	call	and	save	the	file.	The	resultant	code	will
look	like	following:

request({

		url:	`https://maps.googleapis.com/maps/api/geocode/json?address=${encodedAddress}`,

		json:	true

},	(error,	response,	body)	=>	{

		if	(error)	{

				callback('Unable	to	connect	to	Google	servers.');

		}

Now	we	 can	 do	 the	 exact	 same	 thing	 in	 the	 next	 else	 if	 block	 for	 our	 other
console.log	 statement,	 when	 there	 is	 zero	 results,	 we'll	 replace	 console.log	 with
callback:

if	(error)	{

		callback('Unable	to	connect	Google	servers.');

}	else	if	(body.status	===	'ZERO_RESULTS')	{

		callback('Unable	to	find	that	address.');

}

Now	the	last	else	if	block	will	be	a	little	trickier.	It's	a	little	trickier	because	we
don't	exactly	have	our	object.	We	also	need	to	create	an	undefined	variable	for	the
first	argument,	since	an	error	message	will	not	be	provided	when	things	go	well.
All	we	have	to	do	to	create	that	undefined	error	message	is	call	callback,	passing
an	undefined	variable	as	the	first	argument.	Then	we	can	go	ahead	and	specify	our
object	as	the	second	argument,	and	this	object,	this	will	be	exactly	what's	in	the

geocodeAddress	function,	results:

}	else	if	(body.status	===	'OK')	{

		callback(undefined,	{

		})

		console.log(`Address:	${body.results[0].formatted_address}`);

		console.log(`Latitude:	${body.results[0].geometry.location.lat}`);

		console.log(`Longitude:	${body.results[0].geometry.location.lng}`);

}

Now	 as	 I	 mentioned	 the	 results	 have	 three	 properties:	 the	 first	 one	 will	 be
formatted	 address,	 so	 let's	 go	 ahead	 and	 knock	 that	 out	 first.	We'll	 set	 address
equal	 to	 body.results,	 just	 like	 we	 have	 in	 the	 Address	 variable	 of	 console.log
statement:

}	else	if	(body.status	===	'OK')	{

		callback(undefined,	{

				address:	body.results[0].formatted_address

		})

		console.log(`Address:	${body.results[0].formatted_address}`);

		console.log(`Latitude:	${body.results[0].geometry.location.lat}`);

		console.log(`Longitude:	${body.results[0].geometry.location.lng}`);

}

Here	we're	making	things	even	easier,	instead	of	having	complex	properties	that
are	 nested	 deep	 inside	 of	 an	 object	 inside	 of	 app.js,	 we'll	 be	 able	 to	 access	 a
simple	address	property,	and	we'll	do	 the	same	 thing	for	Latitude	and	Longitude	of
console.log	statements.

Next,	we'll	 grab	 the	 code	 that	 let	 us	 fetch	 the	 latitude,	 and	 I'll	 add	my	 second
property,	 latitude,	 setting	 it	 equal	 to	 the	 code	 we	 grab	 from	 the	 console.log
statement.	 Then	 we	 can	 go	 ahead	 and	 add	 the	 last	 property,	 which	 will	 be
longitude,	setting	that	equal	to	the	latitude	code,	replacing	lat	with	lng.	Now	that
we	 have	 this	 in	 place	 we	 can	 add	 a	 semicolon	 at	 the	 end,	 and	 remove	 the
console.log	 statements	 since	 they're	 no	 longer	 necessary,	 and	 with	 this	 we	 are
done:

if	(error)	{

		callback('Unable	to	connect	Google	servers.');

}	else	if	(body.status	===	'ZERO_RESULTS')	{

		callback('Unable	to	find	that	address.');

}	else	if	(body.status	===	'OK')	{

		callback(undefined,	{

				address:	body.results[0].formatted_address,

				latitude:	body.results[0].geometry.location.lat,

				longitude:	body.results[0].geometry.location.lng

		});

}

We	can	now	rerun	the	file,	and	when	we	do	we'll	pass	an	address	to	geocodeAddress,
this	will	go	off	and	make	the	request,	and	when	the	request	comes	back,	we'll	be
able	to	handle	that	response	in	a	really	simple	way.

Testing	 the	 callback	 function	 in
geocode.js	file
Inside	 of	 the	 Terminal,	 we'll	 go	 back	 to	 run	 two	 node	 app.js	 commands;	 the
command	where	we	used	the	zip	code	of	19147,	everything	works	as	expected	and
a	bad	zip	code	000000,	to	show	the	error	message.

As	 shown	 in	 the	 following	 code	output,	we	 can	 see	our	 results	 object	with	 an
address	property,	a	latitude	property,	and	a	longitude	property:

In	 case	 of	 a	 bad	 zip	 code,	 we	 just	 want	 to	 make	 sure	 the	 error	 message	 still
shows	up,	and	it	does,	Unable	to	find	that	address.	prints	to	the	screen,	as	shown
here:

This	 is	 happening	 because	 of	 the	 if	 statement	 in	 the	 geocodeAddress	 function	 in
app.js.

After	 abstracting	all	 of	 that	 logic	 to	 the	 geocode	 file,	 the	 app.js	 file	 is	 now	 a	 lot
simpler	 and	a	 lot	 easier	 to	maintain.	We	can	also	 call	 geocodeAddress	 in	multiple
locations.	If	we	want	to	reuse	the	code	we	don't	have	to	copy	and	paste	the	code,
which	 would	 not	 follow	 the	DRY	 principle,	 which	 stands	 for	Don't	 Repeat
Yourself,	instead	we	can	do	the	DRY	thing	and	simply	call	geocodeAddress	like	we

have	 in	 the	 app.js	 file.	With	 this	 in	place	we	are	now	done	 fetching	 the	 geocode
data.

Wiring	up	weather	search
In	this	section,	you'll	make	your	very	first	request	to	the	weather	API,	and	we'll
do	this	in	a	static	way	at	first,	meaning	that	it	will	not	use	the	actual	latitude	and
longitude	 for	 the	 address	we	 passed	 in,	we'll	 simply	 have	 a	 static	URL.	We'll
make	the	request	and	we'll	explore	what	data	we	get	back	in	the	body.

Exploring	 working	 of	 API	 in	 the
browser
Now	before	we	can	add	anything	to	Atom,	we	want	to	go	ahead	and	explore	this
API	so	we	can	see	how	it	works	in	the	browser.	This	will	give	us	a	better	idea
about	what	weather	data	we	get	back,	when	we	pass	a	latitude	and	longitude	to
the	API.	To	do	 this	we'll	 head	over	 to	 the	browser,	 and	we'll	 visit	 a	 couple	of
URLs.

First	up	 let's	go	 to	forecast.io.	 It	 is	a	 regular	weather	website,	you	 type	 in	your
location	and	you	get	all	the	weather	information	you'd	expect:

http://forecast.io

As	 shown	 in	 the	 preceding	 image,	 there's	 warnings,	 there's	 radar,	 there's	 the
current	weather,	and	we	also	have	the	weekly	forecast	in	the	website	as	shown	in
the	following	image:

This	 is	similar	 to	weather.com,	but	 the	one	cool	 thing	about	forecast.io	 is	 that	 the
API	 that	powers	 this	website,	 it's	actually	available	 to	you	as	a	developer.	You
can	 make	 a	 request	 to	 our	 URL,	 and	 you	 can	 fetch	 the	 exact	 same	 weather
information.

That	 is	 exactly	 what	 we'll	 do	 when	 we	 can	 explore	 the	 API	 by	 going	 to	 the
website	developer.forecast.io.	Here	we	can	sign	up	for	a	free	developer	account,	in
order	to	get	started	making	those	weather	requests:

http://weather.com
http://forecast.io
http://developer.forecast.io

The	Dark	Sky	Forecast	API	gives	you	1,000	free	requests	a	day,	and	I	do	not	see
us	going	over	that	limit.	After	the	1,000	requests,	each	costs	a	one	thousandth	of
a	penny,	so	you	get	a	thousand	requests	for	every	penny	you	spend.	We'll	never
go	over	that	limit	so	don't	even	worry	about	it.	There	is	no	credit	card	required	to
get	started,	you'll	simply	get	cut	off	after	you	make	a	thousand	requests.

To	get	started	you'll	need	to	register	for	a	free	account,	it's	really	simple,	we	just
need	an	email	and	a	password.	Once	we've	created	an	account	and	we	can	see
the	dashboard	as	shown	here:

The	only	piece	of	information	we	need	from	this	page	is	our	API	key.	The	API
key	is	like	a	password,	it	will	be	part	of	the	URL	we	request	and	it	will	help	forec
ast.io	keep	 track	of	how	many	requests	we	make	a	day.	Now	I'll	 take	 this	API
key	and	paste	it	in	the	app.js,	so	we	have	it	accessible	later	when	we	need	it.

The	next	 thing	we'll	do	is	explore	the	documentation,	 the	actual	URL	structure
we	 need	 to	 provide	 in	 order	 to	 fetch	 the	 weather	 for	 a	 given	 latitude	 and
longitude.	We	can	get	that	by	clicking	the	API	Docs	link	button,	which	is	present
in	 the	 top-right	 side	 of	 The	 Dark	 Sky	 Forecast	 API	 page.	 This'll	 lead	 us	 to
following	page:

http://forecast.io

In	 the	 API	 Docs	 link,	 we	 have	 a	 Forecast	 Request	 URL.	 As	 shown	 in	 the
preceding	image,	this	URL	is	exactly	what	we	need	to	make	a	request	to	in	order
to	fetch	the	data.

Exploring	the	actual	URL	for	code
Before	we	add	this	URL	into	our	app	and	use	the	request	library,	we	need	to	find
the	actual	URL	which	we	can	use	to	make	the	request.	For	this,	we'll	copy	it	and
paste	it	into	a	new	tab:

Now,	we	do	need	 to	swap	out	some	of	 the	URL	information.	For	example,	we
have	our	API	key	that	needs	to	get	replaced,	we	also	have	latitude	and	longitude.
Both	of	those	need	to	get	replaced	with	the	real	data.	Let's	get	started	with	that
API	key	first	since	we	already	copy	and	pasted	it	inside	of	app.js.	We'll	copy	the
API	key,	and	replace	the	letters	[key]	with	the	actual	value:

Next	 up,	we	 can	 grab	 a	 set	 of	 longitude	 and	 latitude	 coordinates.	 For	 this,	 go
inside	the	Terminal	and	run	our	app,	node	app.js,	and	for	the	address	we	can	use
any	zip	let's	say,	19146	to	fetch	the	latitude	and	longitude	coordinates.

Next	 up,	 we'll	 copy	 these	 and	 place	 into	 the	 URL	 where	 they	 belong.	 The
latitude	goes	between	the	forward	slash	and	the	comma,	and	the	 longitude	will
go	after	the	comma,	as	shown	here:

Once	we	have	a	real	URL	with	all	of	those	three	pieces	of	info	swapped	out	for
actual	 info,	 we	 can	make	 the	 request,	 and	what	 we'll	 get	 back	 is	 the	 forecast
information:

Remember,	 this	 way	 the	 information	 is	 showing	 in	 the	 preceding
image	is	due	to	JSONView,	I	highly	recommend	installing	it.

Now	the	data	we	get	back,	it	is	overwhelming.	We	have	a	forecast	by	the	minute,
we	have	forecasts	by	the	hour,	by	the	week,	by	the	day,	all	sorts	of	information,

it's	really	useful	but	it's	also	super	overwhelming.	In	this	chapter,	we'll	be	using
the	first	object	that	is	currently.	This	stores	all	of	the	current	weather	information,
things	like	the	current	summary	which	is	clear,	the	temperature,	the	precipitation
probability,	the	humidity,	a	lot	of	really	useful	information	is	sitting	in	it.

In	 our	 case,	 what	 we	 really	 care	 about	 is	 the	 temperature.	 The	 current
temperature	 in	 Philadelphia	 is	 shown	 84.95	 degrees.	 This	 is	 the	 kind	 of
information	we	want	to	use	inside	of	our	application,	when	someone	searches	for
the	weather	in	a	given	location.

Making	a	 request	 for	 the	weather
app	using	the	static	URL
Now	 in	 order	 to	 play	 around	with	 the	weather	API,	we'll	 take	 the	 exact	 same
URL	we	have	defined	in	the	previous	section,	and	we'll	make	a	request	in	app.js.
First,	we	want	to	do	a	little	setup	work.

Inside	of	app.js,	we'll	 comment	out	 everything	we	have	 so	 far,	 and	next	 to	our
API	key	we'll	make	a	call	to	request,	requesting	this	exact	URL,	just	like	we	did
for	the	geocode	API	in	the	previous	section/chapter,	before	we	made	it	dynamic.
Then	we'll	print	out	the	body.currently.temperature	property	to	the	screen,	so	when
we	 run	 the	 app	 we'll	 see	 the	 current	 temperature	 for	 whatever	 latitude	 and
longitude	we	 used.	 In	 our	 case	 it's	 a	 static	 latitude	 and	 longitude	 representing
Philadelphia.

In	 order	 to	 get	 started	 we'll	 load	 in	 request.	 Now	we	 had	 it	 in	 the	 app.js	 file
before	and	then	we	removed	it	in	the	previous	section,	but	we'll	add	it	back	once
again.	We'll	add	it	next	to	the	commented	out	code,	by	creating	a	constant	called
request,	and	loading	it	in,	const	request	equals	to	require('request'):

const	request	=	require('request');

Now	 we	 can	 go	 ahead	 and	 make	 the	 actual	 request,	 just	 like	 we	 did	 for	 the
geocode	API	by	calling	request,	it's	a	function	just	like	this:

const	request	=	require('request');

request();

We	have	to	pass	in	our	two	arguments,	the	options	object	is	the	first	one,	and	the
second	one	is	the	arrow	function:

request({},	()	=>	{

});

This	 is	 our	 callback	 function	 that	 gets	 fired	 once	 the	 HTTP	 request	 finishes.
Before	we	 fill	 out	 the	 actual	 function,	we	want	 to	 set	 up	our	options.	There're

two	options,	URL	and	 JSON.	We'll	 set	 url	 equal	 to	 the	 static	 string,	 the	 exact
URL	we	have	in	the	browser:

request({

	url:	'https://api.forecast.io/forecast/4a04d1c42fd9d32c97a2c291a32d5e2d/39.9396284,-75.18663959999999',

	

},	()	=>	{

Then	 in	 the	 next	 line	 after	 comma,	 we	 can	 set	 json	 equal	 to	 true,	 telling	 the
request	library	to	go	ahead	and	parse	that	body	as	JSON,	which	it	is:

request({

	url:	'https://api.forecast.io/forecast/4a04d1c42fd9d32c97a2c291a32d5e2d/39.9396284,-75.18663959999999',

	json:	true

},	()	=>	{

From	here,	we	can	go	ahead	and	add	our	callback	arguments;	error,	response,	and
body.	 These	 are	 the	 exact	 same	 three	 arguments	 we	 have	 in	 the	 if	 block	 of
geocode.js	file	for	the	geocoding	request:

request({

	url:	'https://api.forecast.io/forecast/4a04d1c42fd9d32c97a2c291a32d5e2d/39.9396284,-75.18663959999999',

	json:	true

},	(error,	response,	body)	=>	{

});

Now	that	we	have	this	in	place,	the	last	thing	we	need	to	do	is	print	the	current
temperature,	which	is	available	on	the	body	using	console.log	statement.	We'll	use
console.log	to	print	body.currently.temperature,	as	shown	here:

request({

	url:	'https://api.forecast.io/forecast/4a04d1c42fd9d32c97a2c291a32d5e2d/39.9396284,-75.18663959999999',

	json:	true

},	(error,	response,	body)	=>	{

		console.log(body.currently.temperature);

});

Now	that	we	have	the	temperature	printing,	we	need	to	test	it	by	running	it	from
the	Terminal.	In	the	Terminal,	we'll	rerun	the	previous	command.	The	address	is
not	actually	being	used	here	since	we	commented	out	that	code,	and	what	we	get
is	28.65,	as	shown	in	this	code	output:

With	this	we	have	our	weather	API	call	working	inside	of	the	application.

Error	handling	in	the	the	callback
function
Now	we	do	want	 to	add	a	 little	error	handling	 inside	of	our	callback	 function.
We'll	handle	 errors	 on	 the	 error	 object,	 and	we'll	 also	 handle	 errors	 that	 come
back	from	the	forecast.io	servers.	First	up,	just	like	we	did	for	the	geocoding	API,
we'll	check	if	error	exists.	If	it	does,	that	means	that	we	were	unable	to	connect
to	 the	 servers,	 so	we	 can	print	 a	message	 that	 relays	 that	message	 to	 the	user,
console.log	something	like	Unable	to	connect	to	forecast.io	server.:

request({

	url:	'https://api.forecast.io/forecast/4a04d1c42fd9d32c97a2c291a32d5e2d/39.9396284,-75.18663959999999',

	json:	true

},	(error,	response,	body)	=>	{

		if	(error){

				console.log('Unable	to	connect	to	Forecast.io	server.');

		}

		console.log(body.currently.temperature);

});

Now	that	we've	handled	general	errors,	we	can	move	on	to	a	specific	error	that
the	 forecast.io	 API	 throws.	 This	 happens	 when	 the	 format	 of	 the	 URL,	 the
latitude	and	longitude,	is	not	correct.

For	example,	if	we	delete	some	numbers	including	the	comma	in	the	URL,	and
hit	enter	we'll	get	a	400	Bad	Request:

This	 is	 the	actual	HTTP	status	code.	 If	you	 remember	 from	the	geolocation	API
we	had	a	body.status	property	that	was	either	OK	or	ZERO_RESULTS.	This	is	similar	to
that	 property,	 only	 this	 uses	 the	 HTTP	 mechanisms	 instead	 of	 some	 sort	 of
custom	solution	that	Google	used.	In	our	case,	we'll	want	to	check	if	the	status
code	 is	400.	Now	 if	we	have	a	bad	API	key,	 I'll	 add	a	couple	e's	 in	 the	URL,

http://forecast.io
http://forecast.io

we'll	also	get	a	400	Bad	Request:

So	both	of	these	errors	can	be	handled	using	the	same	code.

Inside	of	Atom,	we	can	handle	this	by	checking	the	status	code	property.	After
our	 if	 statement	 closing	 curly	 brace,	 we'll	 add	 else	 if	 block,	 else	 if

(response.statusCode),	 this	 is	 the	 property	 we	 looked	 at	 when	 we	 looked	 at	 the
response	argument	 in	detail.	response.statusCode	will	be	equal	 to	400	 if	 something
went	wrong,	and	that's	exactly	what	we'll	check	for	here:

if	(error){

		console.log('Unable	to	connect	to	Forecast.io	server.');

}	else	if	(response.statusCode	===	400)	{

}

If	the	status	code	is	400	we'll	print	a	message,	console.log('Unable	to	fetch	weather'):

if	(error){

		console.log('Unable	to	connect	to	Forecast.io	server.');

}	else	if	(response.statusCode	===	400)	{

		console.log('Unable	to	fetch	weather.');

}

Now	we've	handled	those	two	errors,	and	we	can	move	on	to	the	success	case.
For	 this	we'll	 add	 another	 else	 if	 block	with	 response.statusCode	 equals	 200.	 The
status	 code	will	 equal	 200	 if	 everything	went	 well,	 in	 that	 case	 we'll	 print	 the
current	temperature	to	the	screen.

I'll	cut	the	console.log(body.currently.temperature)	 line	out	and	paste	it	 inside	of	the
else	if	code	block:

		if	(error){

				console.log('Unable	to	connect	to	Forecast.io	server.');

		}	else	if	(response.statusCode	===	400)	{

				console.log('Unable	to	fetch	weather.');

		}	else	if	(response.statusCode	===	200)	{

				console.log(body.currently.temparature);

		}

});

Another	way	of	error	handling
There's	is	another	way	to	represent	our	entire	if	block	code.	The	following	is	an
updated	 code	 snippet,	 and	we	 can	 actually	 replace	 everything	we	 have	 in	 the
current	callback	function	with	this	code:

if	(!error	&&	response.statusCode	===	200)	{

		console.log(body.currently.temperature);

}	else	{

		console.log('Unable	to	fetch	weather.');

}

This	condition	checks	if	there	is	no	error	and	the	response	status	code	is	a	200,	if
that's	 the	 case	what	 do	we	 do?	We	 simply	 print	 the	 temperature	 like	we	were
doing	last	time,	that	was	in	the	else	if	clause	at	the	very	bottom.	Now	we	have	an
else	case	in	the	updated	code	snippet,	so	if	there	is	an	error	or	the	status	code	is
not	a	200,	we'll	go	ahead	and	print	 this	message	 to	 the	screen.	This	will	handle
things	like	the	server	not	having	a	network	connection,	or	404s	from	an	invalid
or	 broken	 URL.	 All	 right,	 use	 this	 code	 instead	 and	 everything	 should	 be
working	as	expected	with	the	latest	version	of	the	weather	API.

Testing	 the	 error	 handling	 in
callback
Now	we	have	some	error	handling	in	place	and	we	can	go	ahead	and	test	that	our
app	still	works.	From	 the	Terminal	we'll	 rerun	 the	previous	 command,	 and	we
still	get	a	temperature	28.71:

Back	 inside	 of	 Atom,	 we'll	 trash	 some	 of	 the	 data	 by	 removing	 the	 comma,
saving	the	file:

request({

	url:	'https://api.forecast.io/forecast/4a04d1c42fd9d32c97a2c291a32d5e2d/39.9396284-75.18663959999999',

	json:	true

},	(error,	response,	body)	=>	{

		if	(error){

				console.log('Unable	to	connect	to	Forecast.io	server.');

		}	else	if	(response.statusCode	===	400)	{

				console.log('Unable	to	fetch	weather.');

		}	else	if	(response.statusCode	===	200)	{

				console.log(body.currently.temparature);

		}

});

When	we	rerun	it	from	the	Terminal,	this	time,	we	would	expect	Unable	to	fetch
weather.	to	print	to	the	screen,	and	when	I	rerun	the	app	that	is	exactly	what	we
get,	as	shown	here:

Now,	let's	add	the	comma	back	in	and	test	our	last	part	of	the	code.	To	test	the	if

error,	we	can	test	that	by	removing	something	like	the	dot	from	forecast.io:

request({

	url:	'https://api.forecastio/forecast/4a04d1c42fd9d32c97a2c291a32d5e2d/39.9396284,-75.18663959999999',

	json:	true

},	(error,	response,	body)	=>	{

We	can	rerun	the	app,	and	we	see	Unable	to	connect	to	Forecast.io	server.:

All	 of	 our	 error	 handling	 works	 great,	 and	 if	 there	 is	 no	 errors	 the	 proper
temperature	prints	to	the	screen,	which	is	fantastic.

Chaining	callbacks	together
In	this	section,	we'll	take	the	code	that	we	created	in	the	last	section,	and	break	it
out	 into	 its	 own	 file.	 Similar	 to	what	we	 did	with	 the	Geocoding	API	 request
where	we	called	geocodeAddress	instead	of	actually	having	the	request	call	in	app.js.
That	means	we'll	make	a	new	folder,	a	new	file,	and	we'll	create	a	 function	 in
there	that	gets	exported.

After	that	we'll	go	ahead	and	learn	how	to	chain	callbacks	together.	So	when	we
get	that	address	from	the	Terminal	we	can	convert	that	into	coordinates.	And	we
can	 take	 those	 coordinates	 and	 convert	 them	 into	 temperature	 information,	 or
whatever	weather	data	we	want	to	pull	off	of	the	return	result	from	the	Forecast
API.

Refactoring	 our	 request	 call	 in
weather.js	file
Now	before	we	can	dive	into	the	refactoring,	we'll	create	a	brand	new	file,	and
we'll	worry	about	getting	 the	code	we	created	 in	 the	previous	 section	 into	 that
function.	Then	we'll	go	for	creating	that	callback.

Defining	 the	 new	 function
getWeather	in	weather	file
First,	 let's	make	 the	 directory.	 The	 directory	will	 be	 called	 weather.	And	 in	 the
weather	directory	we'll	make	a	new	file	called	weather.js.

Now	in	this	file	we	can	take	all	of	our	code	from	app.js,	and	paste	it	in	weather.js:

const	request	=	require('request');

request({

		url:	'https://api.forecast.io/forecast/4a04d1c42fd9d32c97a2c291a32d5e2d/39.9396284,-75.18663959999999',

		json:	true

},	(error,	response,	body)	=>	{

		if	(error)	{

				console.log('Unable	to	connect	to	Forecast.io	server.');

		}	else	if	(response.statusCode	===	400)	{

				console.log('Unable	to	fetch	weather.');

		}	else	if	(response.statusCode	===	200)	{

				console.log(body.currently.temperature);

		}

});

The	only	thing	we	need	to	do	in	order	to	take	this	code	and	convert	it	to	create
that	 function,	which	will	 get	 exported.	And	 then	we	 can	move	 our	 call	 to	 the
request	inside	of	it.	We'll	make	a	brand	new	function	called	getWeather	next	to	the
request	variable:

const	request	=	require('request');

var	getWeather	=	()	=>	{

};

getWeather	will	take	some	arguments,	but	that'll	be	added	later.	For	now	we'll	leave
the	arguments	list	empty.	Next,	we'll	take	our	call	to	request	and	move	it	inside
the	getWeather	function:

const	request	=	require('request');

var	getWeather	=	()	=>	{

		request({

			url:	'https://api.forecast.io/forecast/4a04d1c42fd9d32c97a2c291a32d5e2d/39.9396284,-75.18663959999999',

			json:	true

},	(error,	response,	body)	=>	{

		if	(error)	{

				console.log('Unable	to	connect	to	Forecast.io	server.');

		}	else	if	(response.statusCode	===	400)	{

				console.log('Unable	to	fetch	weather.');

		}	else	if	(response.statusCode	===	200)	{

				console.log(body.currently.temperature);

		}

});

};

Then,	 we	 can	 go	 ahead	 and	 export	 this	 getWeather	 function.	 We'll	 add
module.exports.getWeather	and	set	it	equal	to	the	getWeather	 function	that	we	defined
up:

module.exports.getWeather	=	getWeather;

Providing	 weather	 directory	 in
app.js
Now	 that	we	have	 this	 in	place,	we	 can	go	 ahead	 and	move	 into	 app.js	 to	add
some	code.	The	first	thing	we	need	do	is	remove	the	API	key.	We	no	longer	need
that.	And	we'll	highlight	all	of	the	commented	code	and	uncomment	it	using	the
command	/.

Now	we'll	 import	 the	 weather.js	 file.	We'll	 create	 a	 const	 variable	 called	 weather,
and	setting	it	equal	to	the	require,	return	result:

const	yargs	=	require('yargs');

const	geocode	=	require('./geocode/geocode');

const	weather	=	require('');

In	 this	case	we're	requiring	our	brand	new	file	we	just	created.	We'll	provide	a
relative	path	./	because	we're	loading	in	a	file	that	we	wrote.	Then	we'll	provide
the	 directory	 named	 weather	 followed	 by	 the	 file	 named	 weather.js.	And	we	 can
leave	off	that	js	extension,	as	we	already	know:

const	weather	=	require('./weather/weather');

Now	that	we	have	the	Weather	API	loaded	in,	we	can	go	ahead	and	call	it.	We'll
comment	out	our	call	to	geocodeAddress	and,	we'll	run	weather.getWeather():

//	geocode.geocodeAddress(argv.address,	(errorMessage,	results)	=>	{

//		if	(errorMessage)	{

//				console.log(errorMessage);

//		}	else	{

//				console.log(JSON.stringify(results,	undefined,	2));

//		}

//});

weather.getWeather();

Now	as	I	mentioned	before,	there	will	be	arguments	later	in	the	section.	For	now
we'll	leave	them	empty.	And	we	can	run	our	file	from	the	Terminal.	This	means
we	 should	 see	 the	 weather	 printing	 for	 the	 coordinates,	 we	 hard-coded	 in	 the
previous	section.	So,	we'll	run	node	app.js.	We'll	need	to	provide	an	address	since
we	haven't	 commented	out	 the	yargs	 code.	So	we'll	 add	a	dummy	address.	 I'll

use	a	zip	code	in	New	Jersey:

node	app.js	-a	08822

Now,	the	geolocation	code	is	never	running,	because	that	 is	commented	out.	But
we	 are	 running	 the	weather	 code	 that	 got	moved	 to	 the	 new	 file.	And	we	 are
indeed	 seeing	 a	 temperature	 31.82	 degrees,	 which	 means	 that	 the	 code	 is
properly	getting	executed	in	the	new	file.

Passing	 the	 arguments	 in	 the
getWeather	function
Now	we'll	 need	 to	 pass	 in	 some	 arguments,	 including	 a	 callback	 function	 and
inside	 getWeather	 variable	 in	 weather	 file.	 We'll	 need	 to	 use	 those	 arguments
instead	of	a	static	lat/lng	pair.	And	we'll	also	need	to	call	the	callback	instead	of
using	console.log.	The	first	thing	we'll	do	before	we	actually	change	the	weather.js
code	is	change	the	app.js	code.	There	are	three	arguments	to	be	added.	These	are
lat,	lng	and	callback.

First	 up	 we'll	 want	 to	 pass	 in	 the	 latitude.	We'll	 take	 the	 static	 data,	 like	 the
latitude	part	from	the	URL	in	weather.js,	copy	it,	and	paste	it	right	 inside	of	the
arguments	 list	 in	 app.js	 as	 first	 argument.	 The	 next	 one	will	 be	 the	 longitude.
We'll	grab	that	from	the	URL,	copy	it,	and	paste	it	inside	of	app.js	as	the	second
argument:

//	lat,	lng,	callback

weather.getWeather(39.9396284,	-75.18663959999999);

Then	we	 can	 go	 ahead	 and	 provide	 the	 third	 one,	 which	will	 be	 the	 callback
function.	This	function	will	get	fired	once	the	weather	data	comes	back	from	the
API.	 I'll	use	an	arrow	function	 that	will	get	 those	 two	arguments	we	discussed
earlier	in	the	previous	section:	errorMessage	and	weatherResults:

weather.getWeather(39.9396284,	-75.18663959999999,	(errorMessage,	weatherResults)	=>	{

});

The	weatherResults	object	containing	any	sort	of	temperature	information	we	want.
In	this	case	it	could	be	the	temperature	and	the	actual	temperature.	Now,	we	have
used	weatherResults	in	place	of	results,	and	this	is	because,	we	want	to	differentiate
weatherResults	from	the	results	variable	in	geocodeAddress.

Printing	 errorMessage	 in	 the
getWeather	function
Inside	of	the	getWeather	function	in	app.js,	we	now	need	to	use	if-else	statements	in
order	 to	print	 the	appropriate	 thing	 to	 the	screen,	depending	on	whether	or	 not
the	error	message	exists.	If	there	is	errorMessage	we	do	want	to	go	ahead	and	print
it	using	console.log.	In	this	case	we'll	pass	in	the	errorMessage	variable:

weather.getWeather(39.9396284,	-75.18663959999999,	(errorMessage,	weatherResults)	=>	{

		if	(errorMessage)	{

				console.log(errorMessage);

		}

});

Now	 if	 there	 is	 no	 error	 message	 we'll	 use	 the	 weatherResults	 object.	 We'll	 be
printing	 a	 nice	 formatted	 message	 later.	 For	 now	 we	 can	 simply	 print	 the
weatherResults	 object	 using	 the	 pretty	 printing	 technique	we	 talked	 about	 in	 the
previous	chapter,	where	we	call	JSON.stringify	inside	of	console.log:

weather.getWeather(39.9396284,	-75.18663959999999,	(errorMessage,	weatherResults)	=>	{

		if	(errorMessage)	{

				console.log(errorMessage);

		}	else	{

				console.log(JSON.stringify());

		}

});

Inside	 the	 JSON.stringify	 parentheses,	 we'll	 provide	 those	 three	 arguments,	 the
actual	object;	weatherResults,	undefined	for	our	filtering	function,	and	a	number	for
our	indentation.	In	this	case	we'll	go	with	2	once	again:

weather.getWeather(39.9396284,	-75.18663959999999,	(errorMessage,	weatherResults)	=>	{

		if	(errorMessage)	{

				console.log(errorMessage);

		}	else	{

				console.log(JSON.stringify(weatherResults,	undefined,	2));

		}

});

And	now	that	we	have	our	getWeather	call	getting	called	with	all	three	arguments,
we	can	go	ahead	and	actually	implement	this	call	inside	of	weather.js.

Implementing	 getWeather
callback	inside	weather.js	file
To	get	started	we'll	make	the	URL	in	the	weather.js	file	dynamic,	which	means	we
need	 to	 replace	 the	 url	 strings	 with	 template	 strings.	 Once	 we	 have	 template
strings	 in	place,	we	can	 inject	 the	arguments,	 latitude	and	 longitude,	 right	 into
the	URL.

Adding	 dynamic	 latitude	 and
longitude
Let's	go	ahead	and	define	all	 the	arguments	 that	are	getting	passed	 in.	We	add
lat,	lng,	and	our	callback:

var	getWeather	=	(lat,	lng,	callback)	=>	{

First	 off	 let's	 inject	 that	 latitude.	We'll	 take	 the	 static	 latitude,	 remove	 it,	 and
between	 the	 forward	 slash	 and	 the	 comma	we'll	 inject	 it	 using	dollar	with	our
curly	braces.	This	lets	us	inject	a	value	into	our	template	string;	in	this	case	lat.
And	we	can	do	 the	exact	same	thing	right	after	 the	comma	with	 the	 longitude.
We'll	 remove	 the	 static	 longitude,	 use	 the	 dollar	 sign	with	 our	 curly	 braces	 to
inject	the	variable	into	the	string:

var	getWeather	=	(lat,	lng,	callback)	=>	{

		request({

				url:	`https://api.forecast.io/forecast/4a04d1c42fd9d32c97a2c291a32d5e2d/${lat},${lng}`,

Now	that	the	URL	is	dynamic,	the	last	thing	we	need	to	do	inside	of	getWeather	is
change	our	console.log	calls	to	callback	calls.

Changing	 console.log	 calls	 into
callback	calls
To	change	our	console.log	into	callback	calls,	 for	 the	first	 two	console.log	calls	we
can	replace	console.log	with	callback.	And	this	will	line	up	with	the	arguments	that
we	specified	in	app.js,	where	the	first	one	is	the	errorMessage	and	the	second	one	is
the	 weatherResults.	 In	 this	 case	 we'll	 pass	 the	 errorMessage	 back	 and	 the	 second
argument	is	undefined,	which	it	should	be.	We	can	do	the	same	thing	for	Unable	to
fetch	weather:

if	(error)	{

		callback('Unable	to	connect	to	Forecast.io	server.');

}	else	if	(response.statusCode	===	400)	{

		callback('Unable	to	fetch	weather.');

}

Now	the	third	console.log	call	will	be	a	little	more	complex.	We'll	have	to	actually
create	 an	 object	 instead	 of	 just	 passing	 the	 temperature	 back.	 We'll	 call	 the
callback	with	 the	 first	 argument	being	 undefined,	 because	 in	 this	 case	 there	 is	no
errorMessage.	Instead	we'll	provide	that	weatherResults	object:

if	(error)	{

		callback('Unable	to	connect	to	Forecast.io	server.');

}	else	if	(response.statusCode	===	400)	{

		callback('Unable	to	fetch	weather.');

}	else	if	(response.statusCode	===	200)	{

		callback(undefined,	{

		})

		console.log(body.currently.temperature);

}

Inside	the	parentheses,	we	can	define	all	 the	temperature	properties	we	like.	In
this	case	we'll	define	temperature,	setting	it	equal	to	body.currently,	which	stores	all
of	the	currently	weather	data,	.temperature:

else	if	(response.statusCode	===	200)	{

		callback(undefined,	{

				temperature:	body.currently.temperature

		})

		console.log(body.currently.temperature);

}

Now	 that	 we	 have	 the	 temperature	 variable	 we	 can	 go	 ahead	 and	 provide	 that

second	property	to	the	object,	which	is	actual	temperature.	Actual	temperature	will
account	for	things	like	humidity,	wind	speed,	and	other	weather	conditions.	The
actual	 temperature	 data	 is	 available	 under	 a	 property	 on	 currently	 called
apparentTemperature.	We'll	provide	that.	And	as	the	value	we'll	use	the	same	thing.
This	gets	us	to	the	currently	object,	just	like	we	do	for	temperature.	This	will	be
body.currently.apparentTemperature:

else	if	(response.statusCode	===	200)	{

		callback(undefined,	{

				temperature:	body.currently.temperature,

				apparentTemperature:	body.currently.apparentTemperature

		})

		console.log(body.currently.temperature);

}

Now	we	have	our	two	properties,	so	we	can	go	ahead	and	remove	that	console.log
statement.	Add	a	semicolon.	The	final	code	will	look	like:

const	request	=	require('request');

var	getWeather	=	(lat,	lng,	callback)	=>	{

		request({

				url:	`https://api.forecast.io/forecast/4a04d1c42fd9d32c97a2c291a32d5e2d/${lat},${lng}`,

				json:	true

		},	(error,	response,	body)	=>	{

				if	(error)	{

						callback('Unable	to	connect	to	Forecast.io	server.');

				}	else	if	(response.statusCode	===	400)	{

						callback('Unable	to	fetch	weather.');

				}	else	if	(response.statusCode	===	200)	{

						callback(undefined,	{

								temperature:	body.currently.temperature,

								apparentTemperature:	body.currently.apparentTemperature

						});

				}

		});

};

module.exports.getWeather	=	getWeather;

Now	we	can	go	ahead	and	run	the	app.	We	have	our	getWeather	function	wired	up
both	inside	of	the	weather.js	file	and	inside	of	app.js.	Now	once	again	we	are	still
using	static	coordinates,	but	 this	will	be	 the	 last	 time	we	 run	 the	 file	with	 that
static	data.	From	the	Terminal	we'll	rerun	the	application:

And	as	shown	we	get	our	temperature	object	printing	to	the	screen.	We	have	our
temperature	 property	 48.82	 and	 we	 have	 the	 apparentTemperature,	 which	 is
already	at	47.42	degrees.

With	this	in	place	we're	now	ready	to	learn	how	to	chain	our	callbacks	together.
That	means	in	app.js	we'll	take	the	results	that	come	back	from	geocodeAddress,	pass
them	in	to	getWeather,	and	use	that	to	print	dynamic	weather	for	the	address	you
provide	over	here	in	the	Terminal.	In	this	case	we	would	get	the	address	for	the
town	in	New	Jersey.	As	opposed	to	 the	static	address	which	we're	using	 in	 the
app.js	file	that	latitude/longitude	pair	is	for	Philadelphia.

Chaining	 the	 geocodeAddress
and	 getWeather	 callbacks
together
To	get	started	we	have	to	take	our	getWeather	call	and	actually	move	it	 inside	of
the	callback	function	for	geocodeAddress.	Because	inside	this	callback	function	is	the
only	place	we	have	access	to	the	latitude	and	longitude	pairs.

Now	if	we	open	the	geocode.js	file,	we	can	see	that	we	get	formatted_address	back	as
the	 address	 property,	we	 get	 the	 latitude	 back	 as	 latitude,	 and	we	 get	 longitude
back	as	longitude.	We'll	start	wiring	this	up.

Moving	 getWeather	 call	 into
geocodeAddress	function
First,	we	do	need	to	remove	the	comments	of	geocodeAddress	in	the	app.js.

Next,	we'll	go	ahead	and	 take	 the	 console.log	 statement	 in	 the	 success	 case	 and
replace	it	with	a	console.log	call	that	will	print	the	formatted	address:

geocode.geocodeAddress(argv.address,	(errorMessage,	results)	=>	{

		if	(errorMessage)	{

				console.log(errorMessage);

		}	else	{

				console.log(results.address);

		}

});

This	will	print	the	address	to	the	screen,	so	we	know	exactly	what	address	we're
getting	weather	data	for.

Now	that	we	have	our	console.log	printing	the	address,	we	can	take	the	getWeather
call,	and	move	it	right	below	the	console.log	line:

geocode.geocodeAddress(argv.address,	(errorMessage,	results)	=>	{

		if	(errorMessage)	{

				console.log(errorMessage);

		}	else	{

				console.log(results.address);

				weather.getWeather(39.9396284,	-75.18663959999999,	

				(errorMessage,	weatherResults)	=>	{

						if	(errorMessage)	{

								console.log(errorMessage);

						}	else	{

								console.log(JSON.stringify(weatherResults,	undefined,	2));

						}

				});

		}

});

And	 with	 this	 in	 place	 we're	 now	 really	 close	 to	 actually	 chaining	 the	 two
callbacks	together.	All	that's	left	to	do	is	take	these	static	coordinates	and	replace
them	with	the	dynamic	ones,	which	will	be	available	in	the	results	object.

Replacing	static	coordinates	with
dynamic	coordinates
The	 first	 argument	 will	 be	 results.latitude,	 which	 we	 defined	 in	 app.js	 on	 the
object.	And	the	second	one	will	be	results.longitude:

geocode.geocodeAddress(argv.address,	(errorMessage,	results)	=>	{

		if	(errorMessage)	{

				console.log(errorMessage);

		}	else	{

				console.log(results.address);

				weather.getWeather(results.latitude,	results.longitude,	

				(errorMessage,	weatherResults)	=>	{

						if	(errorMessage)	{

								console.log(errorMessage);

						}	else	{

								console.log(JSON.stringify(weatherResults,	undefined,	2));

						}

				});

		}

});

This	 is	 all	we	 need	 to	 do	 to	 take	 the	 data	 from	 geocodeAddress	 and	 pass	 it	 in	 to
getWeather.	 This	will	 create	 an	 application	 that	 prints	 our	 dynamic	weather,	 the
weather	for	the	address	in	the	Terminal.

Now	before	we	go	ahead	and	run	this,	we'll	replace	the	object	call	with	a	more
formatted	 one.	 We'll	 take	 both	 of	 the	 pieces	 of	 information-the	 temperature
variable	and	 the	apparentTemperature	variable	 from	weather.js	 file,	and	use	 them	in
that	 string	 in	 app.js.	 This	means	 that	we	 can	 remove	 the	 console.log	 in	 the	 else
block	of	getWeather	call,	replacing	it	with	a	different	console.log	statement:

if	(errorMessage)	{

		console.log(errorMessage);

}	else	{

		console.log();

}

We'll	 use	 template	 strings,	 since	we	 plan	 to	 inject	 a	 few	 variables	 in;	 these're
currently,	 followed	 by	 the	 temperature.	 We'll	 inject	 that	 using
weatherResults.temperature.	And	 then	we	 can	 go	 ahead	 and	 put	 a	 period,	 and	 add
something	 along	 the	 lines	 of:	 It	 feels	 like,	 followed	 by	 the	 apparentTemperature
property,	which	I'll	 inject	using	weatherResults.apparentTemperature.	 I'll	put	 a	period

after	that:

if	(errorMessage)	{

		console.log(errorMessage);

}	else	{

		console.log(`It's	currently	${weatherResults.temperature}.	It	feels	like	

				${weatherResults.apparentTemperature}`);

}

We	now	have	 a	 console.log	 statement	 that	 prints	 the	weather	 to	 the	 screen.	We
also	have	one	that	prints	the	address	to	the	screen,	and	we	have	error	handlers	for
both	geocodeAddress	and	getWeather.

Testing	the	chaining	of	callbacks
Let's	 go	 ahead	 and	 test	 this	 by	 rerunning	 the	 node	 app.js	 command	 in	 the
Terminal.	We'll	use	the	same	zip	code,	08822:

node	app.js	-a	08822

When	we	run	it	we	get	Flemington,	NJ	as	the	formatted	address	and	It's	currently
is	 31.01.	 It	 feels	 like	 24.9.	 Now	 to	 test	 that	 this	 is	 working	 we'll	 type	 in
something	else	inside	of	quotes,	something	like	Key	West	fl:

node	app.js	-a	'Key	West	fl'

And	 when	 we	 run	 this	 command	 we	 do	 get	 Key	 West,	 FL	 as	 shown	 as	 the
formatted	address,	and	It's	currently	64.51.	It	feels	like	64.52.

With	this	in	place,	the	weather	application	is	now	wired	up.	We	take	the	address
we	get	the	latitude/longitude	pair	using	the	Google	Geocoding	API.	Then	we	use
our	 forecast	 API	 to	 take	 that	 latitude/longitude	 pair	 and	 convert	 it	 into
temperature	information.

Summary
In	this	chapter,	we	learned	about	how	to	set	up	yargs	for	the	weather-app	file	and
how	to	include	user	input	in	it.	Next,	we	looked	into	how	to	handle	errors	inside
of	our	callback	functions	and	how	to	recover	from	those	errors.	We	simply	added
else/if	statements	inside	of	the	callback	function.	Callbacks	are	just	one	function,
so	in	order	to	figure	out	if	things	went	well	or	if	things	didn't	go	well,	we	have	to
use	 else/if	 statements,	 this	 lets	 us	 do	 different	 things,	 such	 as	 print	 different
messages,	 depending	on	whether	 or	 not	we	 perceive	 the	 request	 to	 have	 gone
well.	Then,	we	made	our	first	request	to	the	weather	API,	and	we	looked	into	a
way	to	fetch	the	weather	based	off	of	the	latitude-longitude	combination.

Last,	 we	 looked	 in	 chaining	 the	 geocodeAddress	 and	 getWeather	 call	 functions.	We
took	 that	 request	 call	 that	 was	 originally	 in	 app.js,	 and	 we	 moved	 it	 into
weather.js,	defining	 it	 there.	We	used	a	callback	 to	pass	 the	data	 from	weather.js
into	app.js	where	we	imported	the	weather.js	file.	Then,	inside	of	the	callback	for
geocodeAddress	we	call	getWeather	and	inside	of	that	callback	we	printed	the	weather
specific	information	to	the	screen.	This	was	all	done	using	callback	functions.

In	 the	 next	 chapter,	 we'll	 talk	 about	 a	 different	 way	 we	 can	 synchronize	 our
asynchronous	code	using	ES6	promises.

Promises	 in	 Asynchronous
Programming
In	 the	 previous	 two	 chapters,	 we	 looked	 at	 many	 important	 concepts	 of
asynchronous	programming	 in	Node.	This	chapter	 is	about	promises.	Promises
are	available	in	JavaScript	since	ES6.	Although	they	have	been	around	in	third-
party	 libraries	 for	 quite	 some	 time,	 they	 finally	made	 their	 way	 into	 the	 core
JavaScript	language,	which	is	great	because	they're	a	really	fantastic	feature.

In	 this	 chapter,	we'll	 learn	 about	 how	promises	work,	we'll	 start	 to	 understand
exactly	 why	 they're	 useful,	 and	 why	 they've	 even	 come	 to	 exist	 inside
JavaScript.	We'll	take	a	look	at	a	library	called	axios	that	supports	promises.	This
will	 let	 us	 simplify	 our	 code,	 creating	 our	 promise	 calls	 easily.	We'll	 actually
rebuild	an	entire	weather	app	in	the	last	section.

Specifically,	we'll	look	into	following	topics:

Introduction	to	ES6	promises
Advanced	promises
Weather	app	with	promises

Introduction	to	ES6	promises
Promises	aim	to	solve	a	lot	of	the	problems	that	come	up	when	we	have	a	lot	of
asynchronous	code	 in	our	application.	They	make	 it	a	 lot	easier	 to	manage	our
asynchronous	 computations—things	 such	 as	 requesting	 data	 from	 a	 database.
Alternatively,	 in	the	case	of	a	weather	app,	 things	such	as	fetching	data	from	a
URL.

In	the	app.js	file	we	do	a	similar	thing	using	callbacks:

const	yargs	=	require('yargs');

const	geocode	=	require('./geocode/geocode');

const	weather	=	require('./weather/weather');

const	argv	=	yargs

		.options({

				a:	{

						demand:	true,

						alias:	'address',

						describe:	'Address	to	fetch	weather	for',

						string:	true

				}

		})

		.help()

		.alias('help',	'h')

		.argv;

geocode.geocodeAddress(argv.address,	(errorMessage,	results)	=>	{

		if	(errorMessage)	{

				console.log(errorMessage);

		}	else	{

				console.log(results.address);

				weather.getWeather(results.latitude,	results.longitude,	(errorMessage,	weatherResults)	=>	{

						if	(errorMessage)	{

								console.log(errorMessage);

						}	else	{

								console.log(`It's	currently	${weatherResults.temperature}.	It	feels	like	${weatherResults.apparentTemperature}.`);

						}

				});

		}

});

In	this	code,	we	have	two	callbacks:

One	that	gets	passed	into	geocodeAddress
One	that	gets	passed	into	getWeather

We	use	this	to	manage	our	asynchronous	actions.	In	our	case,	it's	things	such	as

fetching	data	from	an	API,	using	an	HTTP	request.	We	can	use	promises	in	this
example	to	make	the	code	a	lot	nicer.	This	is	exactly	the	aim	later	in	the	chapter.

In	this	section,	we'll	explore	the	basics	concept	of	promises.	We'll	compare	and
contrast	callbacks	with	 promises	 just	 yet,	 because	 there's	 a	 lot	more	 subtleties
than	can	be	described	without	knowing	exactly	how	promises	work.	So,	before
we	talk	about	why	they're	better,	we	will	simply	create	some.

Creating	an	example	promise
In	 the	 Atom,	 inside	 the	 playground	 folder,	 we'll	 create	 a	 new	 file	 and	 call
it	promise.js.	Before	we	define	promises	and	 talk	about	exactly	how	 they	work,
we	will	run	through	a	simple	example	because	that	is	the	best	way	to	learn	just
about	anything—going	through	an	example	and	seeing	how	it	works.

To	get	started,	we'll	work	through	a	very	basic	example.	We'll	stick	to	the	core
promise	features.

To	 get	 started	 with	 this	 very	 simple	 example,	 we'll	 make	 a	 variable	 called
somePromise.	This	will	eventually	store	the	promise	object.	We'll	be	calling	various
methods	 on	 this	 variable	 to	 do	 something	 with	 the	 promise.	 We'll	 set	 the
somePromise	 variable	 equal	 to	 the	 return	 result	 from	 the	 constructor	 function	 for
promises.	We'll	use	the	new	keyword	to	create	a	new	instance	of	a	promise.	Then,
we'll	 provide	 the	 thing	we	want	 to	 create	 a	 new	 instance	 of,	 Promise,	 as	 shown
here:

var	somePromise	=	new	Promise

Now	 this	 Promise	 function,	which	 is	 indeed	 a	 function—we	 have	 to	 call	 it	 like
one;	that	is,	it	takes	one	argument.	This	argument	will	be	a	function.	We'll	use	an
anonymous	arrow	 function	 (=>),	 and	 inside	 it,	we'll	 do	 all	 of	 the	 asynchronous
stuff	we	want	to	do:

var	somePromise	=	new	Promise(()	=>	{

	

});

It	will	 all	 be	 abstracted,	 kind	 of	 like	we	 abstract	 the	HTTP	 request	 inside	 the
geocodeAddress	function	in	the	geocode.js	file:

const	request	=	require('request');

var	geocodeAddress	=	(address,	callback)	=>	{

		var	encodedAddress	=	encodeURIComponent(address);

		request({

				url:	`https://maps.googleapis.com/maps/api/geocode/json?address=${encodedAddress}`,

				json:	true

		},	(error,	response,	body)	=>	{

				if	(error)	{

						callback('Unable	to	connect	to	Google	servers.');

				}	else	if	(body.status	===	'ZERO_RESULTS')	{

						callback('Unable	to	find	that	address.');

				}	else	if	(body.status	===	'OK')	{

						callback(undefined,	{

								address:	body.results[0].formatted_address,

								latitude:	body.results[0].geometry.location.lat,

								longitude:	body.results[0].geometry.location.lng

						});

				}

		});

};

module.exports.geocodeAddress	=	geocodeAddress;

All	 of	 the	 complex	 logic	 in	 the	 geocodeAddress	 function	 does	 indeed	 need	 to
happen,	but	the	app.js	file	doesn't	need	to	worry	about	it.	The	geocode.geocodeAddress
function	 in	 the	 app.js	 file	 has	 a	 very	 simple	 if	 statement	 that	 checks	 whether
there's	an	error.	If	there	is	an	error,	we	will	print	a	message,	and	if	there's	not,	we
move	on.	The	same	thing	will	be	true	with	promises.

The	new	Promise	callback	function	will	get	called	with	two	arguments,	resolve	and
reject:

var	somePromise	=	new	Promise((resolve,	reject)	=>	{

	

});

This	 is	how	we'll	manage	 the	state	of	our	promise.	When	we	make	a	promise,
we're	making	a	promise;	we're	saying,	"Hey,	I'll	go	off	and	I'll	fetch	that	website
data	 for	 you."	 Now	 this	 could	 go	 well,	 in	 which	 case,	 you	 will	 resolve	 the
promise,	 setting	 its	 state	 to	 fulfilled.	When	a	promise	 is	 fulfilled,	 it's	 gone	out
and	it's	done	the	thing	you've	expected	it	to	do.	This	could	be	a	database	request,
an	HTTP	request,	or	something	else	completely.

Now	when	you	call	reject,	you're	saying,	"Hey,	we	 tried	 to	get	 that	 thing	done
man,	but	we	just	could	not."	So	the	promise	has	been	considered	rejected.	These
are	 the	 two	states	 that	you	can	set	a	promise	 to—fulfilled	or	 rejected.	Just	 like
inside	geocode.js,	we	either	provide	one	argument	for	an	error,	or	we	provide	the
second	argument	if	things	went	well.	Instead	of	doing	that	though,	promises	give
us	two	functions	we	can	call.

Now,	in	order	to	illustrate	exactly	how	we	can	use	these,	we'll	call	resolve.	Once
again,	this	is	not	asynchronous.	We're	not	doing	anything	quite	yet.	So	all	of	this
will	 happen	 essentially	 in	 real	 time,	 as	 far	 as	 you	 see	 in	 Terminal.	We'll	 call

resolve	with	some	data.	In	this	case,	I'll	pass	in	a	string,	Hey.	It	worked!,	as	shown
here:

var	somePromise	=	new	Promise((resolve,	reject)	=>	{

					resolve('Hey.	It	worked!');

});

Now	this	string	is	the	value	the	promise	was	fulfilled	with.	This	is	exactly	what
someone	will	get	back.	In	case	of	the	geocode.geocodeAddress	function	in	app	file,	it
could	 be	 the	 data,	 whether	 it's	 the	 results	 or	 the	 error	 message.	 In	 our	 case
though,	we're	using	resolve,	so	this	will	be	the	actual	data	the	user	wanted.	When
things	go	well,	Hey.	It	worked!	is	what	they	expect.

Now	 you	 can	 only	 pass	 one	 argument	 to	 both	 resolve	 and	 reject,
which	 means	 that	 if	 you	 want	 to	 provide	 multiple	 pieces	 of
information	I	recommend	that	you	resolve	or	reject	an	object	 that
you	 can	 set	multiple	 properties	 on.	 In	 our	 case	 though,	 a	 simple
message,	Hey.	It	worked!,	will	do	the	job.

Calling	the	promise	method	then
Now	in	order	to	actually	do	something	when	the	promise	gets	either	resolved	or
rejected,	we	need	to	call	a	promise	method	called	then;	somePromise.then.	The	then
method	lets	us	provide	callback	functions	for	both	success	and	error	cases.	This	is
one	of	the	areas	where	callbacks	differ	from	promises.	In	a	callback,	we	had	one
function	that	fired	no	matter	what,	and	the	arguments	let	us	know	whether	or	not
things	went	well.	With	promises	we'll	have	two	functions,	and	this	will	be	what
determines	whether	or	not	things	went	as	planned.

Now	before	we	dive	 into	 adding	 two	 functions,	 let's	 start	with	 just	 one.	Right
here,	I'll	call	then,	passing	in	one	function.	This	function	will	only	get	called	if
the	promise	gets	fulfilled.	This	means	that	it	works	as	expected.	When	it	does,	it
will	get	called	with	the	value	passed	to	resolve.	In	our	case,	it's	a	simple	message,
but	it	can	be	something	like	a	user	object	in	the	case	of	a	database	request.	For
now	though,	we'll	stick	with	message:

somePromise.then((message)	=>	{

	

})

This	will	print	message	 to	 the	screen.	 Inside	 the	callback,	when	 the	promise	gets
fulfilled	we'll	 call	 console.log,	 printing	 Success,	 and	 then	 as	 a	 second	 argument,
we'll	print	the	actual	message	variable:

somePromise.then((message)	=>	{

		console.log('Success:	',	message);

})

Running	 the	 promise	 example	 in
Terminal
Now	that	we	have	a	very	basic	promise	example	 in	place,	 let's	 run	 it	 from	 the
Terminal	 using	 nodemon,	 which	 we	 installed	 in	 the	 previous	 chapter.	 We'll	 add
nodemon,	and	then	we'll	go	into	the	playground	folder,	/promise.js:

When	we	do	this	right	away,	our	app	runs	and	we	get	success.	Hey.	It	worked!	This
happens	instantaneously.	There	was	no	delay	because	we	haven't	done	anything
asynchronously.	Now	when	we	first	explored	callbacks	(refer	to	Chapter	5,	Basics
of	 Asynchronous	 Programming	 in	 Node.js),	 we	 used	 setTimeout	 to	 simulate	 a
delay,	and	this	is	exactly	what	we'll	do	in	this	case.

Inside	our	somePromise	function,	we'll	call	setTimeout,	passing	in	the	two	arguments:
the	function	to	call	after	the	delay	and	the	delay	in	milliseconds.	I'll	go	with	2500,
which	is	2.5	seconds:

var	somePromise	=	new	Promise((resolve,	reject)	=>	{

	setTimeout(()	=>	{

	

},	2500);

Now	after	 those	2.5	seconds	are	up,	 then,	and	only	then,	do	we	want	 to	resolve
the	promise.	This	means	that	our	function,	the	one	we	pass	into	then	will	not	get
called	 for	 2.5	 seconds.	Because,	 as	we	 know,	 this	will	 not	 get	 called	 until	 the
promise	resolves.	I'll	save	the	file,	which	will	restart	nodemon:

In	Terminal,	you	can	see	we	have	our	delay,	and	then	success:	Hey	it	worked!	prints
to	the	screen.	This	2.5	second	delay	was	caused	by	this	setTimeout.	After	the	delay
was	up	 (in	 this	case	 it's	an	artificial	delay,	but	 later	 it'll	be	a	 real	delay),	we're
able	to	resolve	with	the	data.

Error	handling	in	promises
Now	there's	a	chance	that	things	didn't	go	well.	We	have	to	handle	errors	inside
our	Node	applications.	In	that	case,	we	wouldn't	call	resolve,	we	would	call	reject.
Let's	comment	out	the	resolve	line,	and	create	a	second	one,	where	we	call	reject.
We'll	call	reject	much	 the	 same	way	we	called	 resolve.	We	have	 to	pass	 in	one
argument,	 and	 in	 this	 case,	 a	 simple	 error	 message	 like	 Unable	 to	 fulfill

promise	will	do:

var	somePromise	=	new	Promise((resolve,	reject)	=>	{

		setTimeout(()	=>	{

				//	resolve('Hey.	It	worked!');

				reject('Unable	to	fulfill	promise');

		},	2500);

});

Now	when	we	call	reject,	we're	telling	the	promise	that	it	has	been	rejected.	This
means	that	the	thing	we	tried	to	do	did	not	go	well.	Currently,	we	don't	have	an
argument	that	handles	this.	As	we	mentioned,	this	function	only	gets	called	when
things	go	as	expected,	not	when	we	have	errors.	If	I	save	the	file	and	rerun	it	in
Terminal,	what	we'll	get	is	a	promise	that	rejects:

However,	we	don't	have	a	handler	for	it,	so	nothing	will	print	to	the	screen.	This
will	be	a	pretty	big	problem.	We	need	to	do	something	with	that	error	message.
Maybe	we	will	alert	the	user,	or	we	will	try	some	other	code.

As	shown	in	the	previous	code	output,	we	can	see	that	nothing	printed	between
the	restarting	 and	 exiting.	 In	order	 to	do	 something	with	 the	 error,	we'll	 add	 a
second	argument	to	the	then	method.	This	second	argument	is	what	lets	us	handle
errors	 in	 our	 promises.	 This	 argument	 will	 get	 executed	 and	 called	 with	 that
value.	In	this	case,	it's	our	message.	We'll	create	an	argument	called	errorMessage,
as	shown	here:

somePromise.then((message)	=>	{

		console.log('Success:	',	message);

},	(errorMessage)	=>	{

	

});

Inside	the	argument,	we	can	do	something	with	that.	In	this	case,	we'll	print	it	to
the	screen	using	console.log,	printing	Error	with	a	colon	and	a	space	to	add	some
nice	formatting,	followed	by	the	actual	value	that	was	rejected:

},	(errorMessage)	=>	{

		console.log('Error:	',	errorMessage);

});

Now	that	we	have	this	in	place,	we	can	refresh	things	by	saving	the	file.	We	will
now	see	our	error	message	in	Terminal,	because	we	now	have	a	place	for	it	to	do
something:

Here,	we	have	a	place	for	it	to	print	the	message	to	the	screen;	Unable	to	fulfill
promise	prints	to	the	screen,	which	works	exactly	as	expected.

Merits	of	promises
We	 now	 have	 a	 promise	 that	 can	 either	 get	 resolved	 or	 rejected.	 If	 it	 gets
resolved,	meaning	 the	 promise	 was	 fulfilled,	 we	 have	 a	 function	 that	 handles
that.	If	it	gets	rejected,	we	have	a	function	that	handles	that	as	well.	This	is	one
of	 the	 reasons	 why	 promises	 are	 awesome.	 You	 get	 to	 provide	 different
functions,	 depending	 on	 whether	 or	 not	 the	 promise	 got	 resolved	 or	 rejected.
This	lets	you	avoid	a	lot	of	complex	if	statements	inside	of	our	code,	which	we
needed	to	do	in	app.js	to	manage	whether	or	not	the	actual	callback	succeeded	or
failed.

Now	 inside	 a	 promise,	 it's	 important	 to	 understand	 that	 you	 can	 only	 either
resolve	or	reject	a	promise	once.	If	you	resolve	a	promise	you	can't	reject	 it	 later,
and	if	you	resolve	it	with	one	value	you	can't	change	your	mind	at	a	later	point	in
time.	Consider	this	example,	where	I	have	a	code	like	the	following	code;	here	I
resolve	first	and	then	I	reject:

var	somePromise	=	new	Promise((resolve,	reject)	=>	{

		setTimeout(()	=>	{

				resolve('Hey.	It	worked!');

				reject('Unable	to	fulfill	promise');

		},	2500);

});

somePromise.then((message)	=>	{

		console.log('Success:	',	message);

},	(errorMessage)	=>	{

		console.log('Error:	',	errorMessage);

});

In	this	case,	we'll	get	our	success	message	printing	to	 the	screen.	We'll	never	see
errorMessage,	because,	as	 I	 just	 said,	you	can	only	do	one	of	 these	actions	once.
You	can	either	resolve	once	or	you	can	reject	once.	You	can't	do	both;	you	can't
do	either	twice.

This	 is	 another	 great	 advantage	 over	 callbacks.	 There's	 nothing	 preventing	 us
from	accidentally	calling	the	callback	function	twice.	Let's	consider	the	geocode.js
file	for	example.	Let's	add	another	line	in	the	if	block	of	geocode	request	call,	as
shown	here:

const	request	=	require('request');

var	geocodeAddress	=	(address,	callback)	=>	{

		var	encodedAddress	=	encodeURIComponent(address);

		request({

				url:	`https://maps.googleapis.com/maps/api/geocode/json?address=${encodedAddress}`,

				json:	true

		},	(error,	response,	body)	=>	{

				if	(error)	{

						callback('Unable	to	connect	to	Google	servers.');

						callback();

This	is	a	more	obvious	example,	but	it	could	easily	be	hidden	inside	of	complex
if-else	 statements.	 In	 this	 case,	 our	 callback	 function	 in	 app.js	 will	 indeed	 get
called	 twice,	which	 can	 cause	 really	 big	 problems	 for	 our	 program.	 Inside	 the
promise	example	this	callback	will	never	get	called	twice,	no	matter	how	many
times	you	try	to	call	resolve	or	reject,	this	function	will	only	get	fired	once.

We	 can	 prove	 that	 right	 now	by	 calling	 resolve	 again.	 In	 the	 promise	 example
case,	let's	save	the	file	with	the	following	changes:

var	somePromise	=	new	Promise((resolve,	reject)	=>	{

		setTimeout(()	=>	{

				resolve('Hey.	It	worked!');

				resolve();

				reject('Unable	to	fulfill	promise');

		},	2500);

});

Now,	let's	refresh	things;	we'll	resolve	with	our	message,	Hey.	It	worked!	and	we'll
never	ever	have	the	function	fired	a	second	time	with	no	message.	Because,	as
we	said,	the	promise	is	already	resolved.	Once	you	set	a	promise's	state	to	either
fulfilled	or	rejected,	you	can't	set	it	again.

Now	before	a	promise's	 resolve	or	reject	 function	gets	 called,	 a	promise	 is	 in	 a
state	known	as	pending.	This	means	that	you're	waiting	for	information	to	come
back,	or	you're	waiting	for	your	async	computation	to	finish.	In	our	case,	while
we're	 waiting	 for	 the	 weather	 data	 to	 come	 back,	 the	 promise	 would	 be
considered	 pending.	 A	 promise	 is	 considered	 settled	 when	 it	 has	 been	 either
fulfilled	or	rejected.

No	matter	which	one	you	chose,	you	could	say	the	promise	has	settled,	meaning
that	it's	no	longer	pending.	In	our	case,	this	would	be	a	settled	promise	that	was
indeed	fulfilled	because	resolve	is	called	right	here.	So	these	are	just	a	couple	of
the	benefits	of	promises.	You	don't	have	to	worry	about	having	callbacks	called
twice,	you	can	provide	multiple	functions—one	for	success	handling	and	one	for

error	handling.	It	really	is	a	fantastic	utility!

Now	 that	 we've	 gone	 through	 a	 quick	 example	 of	 how	 promises	 work,	 going
over	 just	 the	 very	 fundamentals,	we'll	 to	move	 on	 to	 something	 slightly	more
complex.

Advanced	promises
In	 this	 section,	 we'll	 explore	 two	 more	 ways	 to	 use	 promises.	 We'll	 create
functions	 that	 take	 input	 and	 return	 a	 promise.	 Also,	 we'll	 explore	 promise
chaining,	which	will	let	us	combine	multiple	promises.

Providing	input	to	promises
Now	the	problem	with	the	example	we	discussed	in	the	previous	section	is	that
we	have	 a	 promise	 function,	 but	 it	 doesn't	 take	 any	 input.	 This	most	 likely	 is
never	going	to	be	the	case	when	we're	using	real-world	promises.	We'll	want	to
provide	some	input,	such	as	the	ID	of	a	user	to	fetch	from	the	database,	a	URL	to
request,	or	a	partial	URL,	for	example,	just	the	address	component.

In	order	to	do	this,	we'll	have	to	create	a	function.	For	this	example,	we'll	make	a
variable,	which	will	be	a	function	called	asyncAdd:

var	asyncAdd	=	()	=>	{

	

}

This	will	be	a	function	that	simulates	the	async	functionality	using	setTimeout.	In
reality,	 it's	 just	 going	 to	 add	 two	 numbers	 together.	However,	 it	 will	 illustrate
exactly	what	we	need	 to	do,	 later	 in	 this	chapter,	 to	get	our	weather	app	using
promises.

Now	 in	 the	 function,	 we	will	 take	 two	 arguments,	 a	 and	 b,	 and	 we'll	 return	 a
promise:

var	asyncAdd	=	(a,	b)	=>	{

	

};

So,	whoever	calls	this	asyncAdd	method,	they	can	pass	in	input,	but	they	can	also
get	 the	 promise	 back	 so	 that	 they	 can	 use	 then	 to	 sync	 up	 and	 wait	 for	 it	 to
complete.	Inside	the	asyncAdd	function,	we'll	use	return	to	do	this.	We'll	return	 the
new	Promise	object	using	the	exact	same	new	Promise	syntax	we	did	when	we	created
the	somePromise	variable.	Now	this	is	the	same	function,	so	we	do	need	to	provide
the	constructor	function	that	gets	called	with	both	resolve	and	reject,	just	like	this:

var	asyncAdd	=	(a,	b)	=>	{

	return	new	Promise((resolve,	reject)	=>	{

	

	});

Now	 we	 have	 an	 asyncAdd	 function,	 which	 takes	 two	 numbers	 and	 returns	 a

promise.	The	only	thing	left	to	do	is	to	actually	simulate	the	delay,	and	make	the
call	 to	 resolve.	 To	 do	 this,	we'll	 simulate	 the	 delay	 using	 setTimeout.	 Then	we'll
pass	 in	 my	 callback	 function,	 setting	 the	 delay	 to	 1.5	 seconds,	 or	 1500

milliseconds:

return	new	Promise((resolve,	reject)	=>	{

	setTimeout(()	=>	{

	

	},	1500)

	});

In	 the	callback	 function,	we'll	write	a	simple	if-else	 statement	 that	will	check	 if
the	type	of	both	a	and	b	is	a	number.	If	it	is,	great!	We'll	resolve	the	value	of	the
two	numbers	added.	If	they're	not	numbers	(one	or	more),	then	we'll	reject.	To	do
this,	we'll	use	the	if	statement	with	the	typeof	operator:

setTimeout(()	=>	{

		if	(typeof	a	===	'number')

	},	1500);

Here,	we're	using	the	typeof	object	to	get	the	string	type	before	the	variable.	Also,
we're	 checking	whether	 it's	 equal	 to	 a	 number,	which	 is	what	will	 come	 back
from	typeof	when	we	have	a	number.	Now	similar	to	a,	we'll	add	typeof	b,		which
is	also	a	number:

				if	(typeof	a	===	'number'	&&	typeof	b	===	'number')	{}

We	can	add	the	two	numbers	up,	resolving	the	value.	Inside	the	code	block	of	the
if	statement,	we'll	call	resolve,	passing	in	a	+	b:

	return	new	Promise((resolve,	reject)	=>	{

			setTimeout(()	=>	{

					if	(typeof	a	===	'number'	&&	typeof	b	===	'number')	{	

							resolve(a	+	b);

					}

			},	1500);

This	will	add	the	two	numbers	up,	passing	in	one	argument	to	resolve.	Now	this
is	the	happy	path	when	both	a	and	b	are	indeed	numbers.	If	things	don't	go	well,
we'll	 want	 to	 add	 reject.	 We'll	 use	 the	 else	 block	 to	 do	 this.	 If	 the	 previous
condition	fails,	we'll	reject	by	calling	reject('Arguments	must	be	numbers'):

			if	(typeof	a	===	'number'	&&	typeof	b	===	'number')	{	

					resolve(a	+	b);

			}	else	{

					reject('Argumets	must	be	numbers');

			}

Now	we	 have	 an	 asyncAdd	 function	 that	 takes	 two	 variables,	 a	 and	 b,	 returns	 a
promise,	 and	anyone	who	happens	 to	call	 asyncAdd	 can	 add	 a	 then	 call	 onto	 the
return	result	to	get	that	value.

Returning	the	promises
Now	what	exactly	will	this	look	like?	To	show	this,	first	we'll	comment	out	all	of
the	code	we	have	in	the	newPromise	variable	of	promise.js.	Following	this,	we'll	call
the	asyncAdd	variable	where	we	make	asyncAdd.	We'll	call	it	like	we	would	any	other
function,	 by	passing	 in	 two	values.	Remember,	 this	 could	be	 a	 database	 ID	or
anything	 else	 for	 an	 async	 function.	 In	 our	 case,	 it's	 just	 two	 numbers.	 Let's
say,	5	and	7.	Now	the	return	value	from	this	function	is	a	promise.	We	can	make	a
variable	and	call	then	on	that	variable,	but	we	can	also	just	tack	the	then	method,
as	shown	here:

asyncAdd(5,	7).then

This	is	exactly	what	we'll	do	when	we	use	promises;	we'll	tack	on	then,	passing
in	our	callbacks.	The	 first	callback	being	 the	success	case,	and	 the	second	one
being	the	error	case:

ouldasyncAdd(5,	7).then(()	=>	{

},	()	=>	{

});

In	the	second	callback,	we'll	get	our	errorMessage,	which	we	can	log	to	the	screen
using	the	console.log(errorMessage);	statement,	as	shown	here:

asyncAdd(5,	7).then(()	=>	{

},	(errorMessage)	=>	{

	console.log(errorMessage);

});

If	one	or	more	of	the	numbers	are	not	actually	numbers,	 the	error	 function	will
fire	because	we	called	reject.	If	both	are	numbers,	all	we'll	do	will	get	the	result
and	 print	 it	 to	 the	 screen,	 using	console.log.	We'll	 add	 res	 and	 inside	 the	 arrow
function	(=>),	we'll	add	the	console.log	statement	and	print	the	string	Result	with	a
colon.	 Then,	 as	 the	 second	 argument	 in	 console.log,	 we'll	 pass	 in	 the	 actual
number,	which	will	print	it	to	the	screen	as	well:

asyncAdd(5,	7).then(()	=>	{

	console.log('Result:',	res);

},	(errorMessage)	=>	{

	console.log(errorMessage);

});

Now	that	we	have	our	promise	asyncAdd	function	in	place,	let's	test	this	out	inside
Terminal.	To	do	this,	we'll	run	nodemon	to	start	up	nodemon	playground/promise.js:

Right	 away,	 we'll	 get	 the	 delay	 and	 the	 result,	 12	 prints	 to	 the	 screen.	 This	 is
fantastic!	We	are	able	to	create	the	function	that	takes	the	dynamic	input,	but	still
returns	a	promise.

Now	notice	 that	we've	 taken	 an	 async	 function	 that	 usually	 requires	 callbacks
and	we've	wrapped	it	to	use	promises.	This	is	a	good	handy	feature.	As	you	start
using	promises	in	Node,	you'll	come	to	realize	that	some	things	do	not	support
promises	and	you'd	like	them	to.	For	example,	the	request	library	that	we	used	to
make	our	HTTP	requests	does	not	support	promises	natively.	However,	we	can
wrap	our	request	call	inside	of	a	promise,	which	is	what	we'll	to	do	later	in	the
section.	For	now	though,	we	have	a	basic	example	 illustrating	how	this	works.
Next,	we'd	like	to	talk	about	promise	chaining.

Promise	chaining
Promise	chaining	is	the	idea	of	having	multiple	promises	run	in	a	sequence.	For
example,	 I	want	 to	 take	an	address	and	convert	 that	 into	coordinates,	 and	 take
those	coordinates	and	convert	them	into	weather	information;	this	is	an	example
of	needing	 to	 synchronize	 two	 things.	Also,	we	can	do	 that	 really	easily	using
promise	chaining.

In	 order	 to	 chain	 our	 promises,	 inside	 our	 success	 call	 we'll	 return	 a	 new
promise.	In	our	example,	we	can	return	a	new	promise	by	calling	asyncAdd	again.
I'll	 call	 asyncAdd	 next	 to	 the	 res	 and	 console.log	 statements,	 passing	 in	 two
arguments:	the	result,	whatever	the	previous	promise	has	returned,	and	some	sort
of	new	number;	let's	use	33:

asyncAdd(5,	7).then((res)	=>	{

	console.log('Result:',	res);

	return	asyncAdd(res,	33);

Now	we're	returning	a	promise	so	we	can	add	my	chaining	onto	it	by	calling	the
then	method	again.	The	then	method	will	to	get	called	after	we	close	the	closing
parenthesis	 for	 our	 previous	 then	 method.	 This	 will	 also	 take	 one	 or	 more
arguments.	We	can	pass	 in	a	 success	handler,	which	will	 be	 a	 function	 and	 an
error	handler,	which	will	also	be	a	function:

	asyncAdd(5,	7).then((res)	=>	{

			console.log('Result:',	res);

			return	asyncAdd(res,	33);

	},	(errorMessage)	=>	{

			console.log(errorMessage);

	}).then(()	=>	{

	

	},	()	=>	{

	

	})

Now	that	we	have	our	then	callbacks	set	up,	we	can	actually	fill	them	out.	Once
again	we	will	get	a	result;	this	will	be	the	result	of	5	plus	7,	which	is	12,	plus	33,
which	will	be	45.	Then,	we	can	print	console.log	('Should	be	45').	Next,	we'll	print
the	actual	value	from	results	variable:

}).then((res)	=>	{

	console.log('Should	be	45',	res);

},	()	=>	{

});

Now	our	 error	 handler	will	 also	 be	 the	 same.	We'll	 have	 errorMessage	 and	we'll
print	it	to	the	screen	using	the	console.log,	printing	errorMessage:

}).then((res)	=>	{

	console.log('Should	be	45',	res);

},	(errorMessage)	=>	{

	console.log(errorMessage);

});

Now	what	we	have	 is	 some	chaining.	Our	 first	 then	callback	 functions	will	 fire
based	on	the	result	of	our	first	asyncAdd	call.	If	it	goes	well,	the	first	one	will	fire.
If	it	goes	poorly,	the	second	function	will	fire.	Our	second	then	call	will	be	based
on	 the	 asyncAdd	 call,	 where	 we	 add	 33.	 This	 will	 let	 us	 chain	 the	 two	 results
together,	and	we	should	get	45	printing	to	the	screen.	We'll	save	this	file,	which
will	restart	things	inside	nodemon.	Eventually,	we'll	get	our	two	results:	12	and	our
Should	be	45.	As	shown	 in	 the	 following	code	 image,	we	get	 just	 that,	Result:	12
and	Should	be	45,	printing	to	the	screen:

Error	 handling	 in	 promises
chaining
Now	when	it	comes	to	error	handling,	there	are	a	few	quirks;	so,	we'll	simulate
some	errors.	First	up,	let's	simulate	an	error	in	our	second	asyncAdd	call.	We	know
we	can	do	that	by	passing	in	a	value	that's	not	a	number.	In	this	case,	let's	wrap
33	inside	quotes:

	asyncAdd(5,	7).then((res)	=>	{

			console.log('Result:',	res);

			return	asyncAdd(res,	'33');

	},	(errorMessage)	=>	{

			console.log(errorMessage);

	}).then((res)	=>	{

			console.log('Should	be	45',	res);

	},	(errorMessage)	=>	{

			concole.log(errorMessage);

	})

This	will	be	a	string	and	our	call	should	reject.	Now	we	can	save	the	file	and	see
what	happens:

We	get	Result:	12,	 then	we	get	our	error,	Arguments	must	be	numbers.	Exactly	as	we
expect,	 this	is	printing	on	the	screen.	Instead	of	getting	Should	be	45,	we	get	our
error	message.

But	 things	 get	 a	 little	 trickier	when	 something	 earlier	 on	 in	 the	 promise	 chain
gets	 rejected.	Let's	 swap	 '33'	with	 the	number	 33.	Then	 let's	 replace	 7	with	 the
string	'7',	as	shown	here:

	asyncAdd(5,	'7').then((res)	=>	{

			console.log('Result:',	res);

			return	asyncAdd(res,	33);

	},	(errorMessage)	=>	{

			console.log(errorMessage);

	}).then((res)	=>	{

			console.log('Should	be	45',	res);

	},	(errorMessage)	=>	{

			concole.log(errorMessage);

	})

This	will	cause	our	first	promise	to	fail,	which	means	we'll	never	see	the	result.
We	should	see	the	error	message	printing	to	the	screen,	but	that's	not	what	will
happen:

When	we	restart,	we	do	indeed	get	the	error	message	printing	to	the	screen,	but
then	we	 also	 get	 Should	 be	 45	 undefined.	 The	 second	 then	 console.log	 is	 running
because	we	provided	an	error	handler	in	the	second	asyncAdd	function.	It's	running
the	error	handler.	Then	it	says,	Okay,	things	must	be	good	now	we	ran	the	error
handler.	Let's	move	on	to	the	next	then	call	calling	the	success	case.

The	catch	method
To	 fix	 the	 error,	we	 can	 remove	 both	 of	 our	 error	 handlers	 from	both	 the	 then
calls,	 and	 replace	 them	with	 a	 call	 at	 the	 very	 bottom,	 to	 a	 different	method,
which	we'll	call	.catch:

asyncAdd(5,	'7').then((res)	=>	{

	console.log('Result:',	res);

	return	asyncAdd(res,	33);

}).then((res)	=>	{

	console.log('Should	be	45',	res);

}).catch;

The	catch	promise	method	is	similar	to	then,	but	it	just	takes	one	function.	This
is	 the	error	handler.	As	shown	in	 the	following	code,	we	can	specify	one	error
handler	if	any	of	our	promise	calls	fail.	We'll	take	errorMessage	and	print	it	to	the
screen	using	console.log(errorMessage):

asyncAdd(5,	'7').then((res)	=>	{

	console.log('Result:',	res);

	return	asyncAdd(res,	33);

}).then((res)	=>	{

	console.log('Should	be	45',	res);

}).catch((errorMessage)	=>	{

	console.log(errorMessage)

});

For	now	though,	if	things	are	a	little	blurry	that	is	okay,	as	long	as	you're	starting
to	 see	exactly	what	we're	doing.	We're	 taking	 the	 result	 from	one	promise	and
passing	 it	 to	a	different	one.	 In	 this	case,	 the	 result	works	exactly	as	expected.
The	 first	 promise	 fails,	 we	 get,	 Arguments	 must	 be	 numbers	 printing	 to	 the	 screen.
Also,	we	 don't	 get	 that	 broken	 statement	where	we	 try	 to	 print	45,	 but	we	 get
undefined	instead.	Using	catch,	we	can	specify	an	error	handler	that	will	fire	for
all	of	our	previous	failures.	This	is	exactly	what	we	want.

The	request	library	in	promises
Now	as	I	mentioned	earlier,	some	libraries	support	promises	while	others	don't.
The	 request	 library	 does	 not	 support	 promises.	We	 will	 make	 a	 function	 that
wraps	 request,	 returning	 a	 promise.	 We'll	 use	 some	 functionalities	 from	 the
geocode.js	file	from	the	previous	chapter.

First,	let's	discuss	a	quick	setup,	and	then	we'll	actually	fill	it	out.	In	the	playground
folder,	we	can	make	a	new	file	to	store	this,	called	promise-2.js:

We'll	make	a	 function	 called	 geocodeAddress.	The	geocodeAddress	 function	will	 take
the	plain	text	address,	and	it	will	return	a	promise:

var	geocodeAddress	=	(address)	=>	{

};

The	geocodeAddress	function	will	return	a	promise.	So	if	I	pass	in	a	ZIP	code,	such
as	19146,	I	would	expect	a	promise	to	come	back,	which	I	can	attach	a	then	call	to.
This	will	 let	me	wait	for	 that	request	 to	finish.	Right	here,	I'll	 tack	on	a	call	to
then,	passing	 in	my	 two	functions:	 the	success	handler	 for	when	 the	promise	 is
fulfilled	and	the	error	handler	for	when	the	promise	is	rejected:

geocodeAddress('19146').then(()	=>	{

},	()	=>	{

	

})

Now	when	 things	 go	well,	 I'll	 expect	 the	 location	 object	with	 the	 address,	 the
latitude,	 and	 the	 longitude,	 and	 when	 things	 go	 poorly,	 I'll	 expect	 the	 error
message:

geocodeAddress('19146').then((location)	=>	{

},	(errorMessage)	=>	{

	

})

When	the	error	message	happens,	we'll	just	print	it	to	the	screen	using	console.log
(errorMessage).	For	now,	when	things	go	well	and	the	success	case	runs,	we'll	just
print	that	entire	object	using	our	pretty	printing	technique,	console.log.	Then,	we'll
call	 JSON.stringify,	 like	 we've	 done	 many	 times	 before,	 passing	 in	 the	 three
arguments—the	object,	undefined	for	 the	 filter	method—which	we'll	never	use
in	the	book,	and	the	number	2	for	the	number	of	spaces	we'd	like	to	use	as	our
indentation:

geocodeAddress('19146').then((location)	=>	{

	console.log(JSON.stringify(location,	undefined,	2));

},	(errorMessage)	=>	{

	console.log(errorMessage);	

});

This	is	what	we	want	to	create,	 the	function	that	lets	this	functionality	work	as
expected.	This	then	call	should	work	as	shown	in	the	previous	code.

To	get	started	I'll	return	the	promise	by	calling:	return	new	Promise,	passing	in	my
constructor	function:

var	geocodeAddress	=	(address)	=>	{

	return	new	Promise(()	=>	{

	});

};

Inside	 the	 function,	we'll	 add	 that	 call	 to	 request.	Let's	 provide	 the	 resolve	 and
reject	arguments:

	return	new	Promise((resolve,	reject)	=>	{

	});

};

Now	that	we	have	our	Promise	set	up,	we	can	load	in	the	request	module	on	top	of
the	 code,	 creating	 a	 constant	 called	request	 and	 setting	 that	 equal	 to	 the	 return
result	from	require('request'):

const	request	=	require('request');

var	geocodeAddress	=	(address)	=>	{

Next,	 we'll	 move	 into	 the	 geocode.js	 file,	 grab	 code	 inside	 the	 geocodeAddress
function,	and	move	it	over	into	promise-2	file,	inside	of	the	constructor	function:

const	request	=	require('request');

var	geocodeAddress	=	(address)	=>	{

	return	new	Promise((resolve,	reject)	=>	{

	var	encodedAddress	=	encodeURIComponent(address);

request({

	url:	`https://maps.googleapis.com/maps/api/geocode/json?address=${encodedAddress}`,

	json:	true

	},	(error,	response,	body)	=>	{

			if	(error)	{

			callback('Unable	to	connect	to	Google	servers.');

	}	else	if	(body.status	===	'ZERO_RESULTS')	{

			callback('Unable	to	find	that	address.');

	}	else	if	(body.status	===	'OK')	{

			callback(undefined,	{

					address:	body.results[0].formatted_address,

					latitude:	body.results[0].geometry.location.lat,

					longitude:	body.results[0].geometry.location.lng

					});

				}

			});

	});

};

Now	we	are	mostly	good	to	go;	we	only	need	to	change	a	few	things.	The	first
thing	we	need	to	do	is	to	replace	our	error	handlers.	In	the	if	block	of	the	code,
we	have	called	our	callback	handler	with	one	argument;	instead,	we'll	call	reject,
because	if	this	code	runs,	we	want	to	reject	the	promise.	We	have	the	same	thing
in	 the	 next	 else	 block.	We'll	 call	 reject	 if	 we	 get	 ZERO_RESULTS.	 This	 is	 indeed	 a
failure,	and	we	do	not	want	to	pretend	we	succeeded:

if	(error)	{

			reject('Unable	to	connect	to	Google	servers.');

	}	else	if	(body.status	===	'ZERO_RESULTS')	{

			reject('Unable	to	find	that	address.');

Now	 in	 the	next	 else	 block,	 this	 is	where	 things	did	go	well;	 here	we	can	 call
resolve.	Also,	we	 can	 remove	 the	 first	 argument,	 as	we	know	 resolve	 and	 reject
only	take	one	argument:

if	(error)	{	

		reject('Unable	to	connect	to	Google	servers.');

	}	else	if	(body.status	===	'ZERO_RESULTS')	{

			reject('Unable	to	find	that	address.');

	}	else	if	(body.status	===	'OK')	{

			resolve(

We	are	able	to	specify	multiple	values	though,	because	we	resolve	an	object	with
properties	on	it.	Now	that	we	have	this	 in	place,	we	are	done.	We	can	actually
save	our	file,	rerun	it	inside	Terminal,	and	test	things	out.

Testing	the	request	library
To	 test,	we'll	 save	 the	 file,	move	 into	Terminal,	 and	 shut	 down	 nodemon	 for	 the
promise.js	file.	We'll	run	node	for	the	promise.js	file.	It's	in	the	playground	folder,	and
it's	called	promise-2.js:

node	playground/promise-2.js

Now,	when	we	run	this	program,	we're	actually	making	that	HTTP	request.	As
shown	in	the	following	code	output,	we	can	see	the	data	comes	back	exactly	as
we	expected:

We	get	our	 address,	latitude,	 and	 longitude	 variables.	This	 is	 fantastic!	Now	 let's
test	 to	see	what	happens	when	we	pass	 in	an	 invalid	address,	something	 like	5
zeroes,	which	we've	used	before	to	simulate	an	error:

const	request	=	require('request');

var	geocodeAddress	=	(address)	=>	{

		return	new	Promise((resolve,	reject)	=>	{

				var	encodedAddress	=	encodeURIComponent(address);

		request({

			url:	`https://maps.googleapis.com/maps/api/geocode/json?address=${encodedAddress}`,

			json:	true

	},	(error,	response,	body)	=>	{

			if	(error)	{

					reject('Unable	to	connect	to	Google	servers.');

			}	else	if	(body.status	===	'ZERO_RESULTS')	{

					reject('Unable	to	find	that	address.');

			}	else	if	(body.status	===	'OK')	{

					resolve({

							address:	body.results[0].formatted_address,

							latitude:	body.results[0].geometry.location.lat,

							longitude:	body.results[0].geometry.location.lng

						});

					}

			});

		});

};

We'll	save	the	file,	rerun	the	program,	and	Unable	to	find	that	address.	prints	to	the
screen:

This	happens	only	because	we	call	reject.	We	will	call	reject	inside	of	the	Promise
constructor	function.	We	have	our	error	handler,	which	prints	the	message	to	the
screen.	 This	 is	 an	 example	 of	 how	 to	 take	 a	 library	 that	 does	 not	 support
promises	 and	 wrap	 it	 in	 a	 promise,	 creating	 a	 promise	 ready	 function.	 In	 our
case,	that	function	is	geocodeAddress.

Weather	app	with	promises
In	this	section,	we'll	learn	how	to	use	a	library	that	has	promises	built	in.	We'll
explore	the	axios	library,	which	is	really	similar	to	request.	Although,	instead	of
using	callbacks	as	request	does,	it	uses	promises.	So	we	don't	have	to	wrap	our
calls	 in	 promises	 to	 get	 that	 promise	 functionality.	We'll	 actually	 be	 recreating
the	entire	weather	app	in	this	section.	We'll	only	have	to	write	about	25	lines	of
code.	 We'll	 go	 through	 the	 entire	 process:	 taking	 the	 address,	 getting	 the
coordinates,	and	then	fetching	the	weather.

Fetching	 weather	 app	 code	 from
the	app.js	file
To	fetch	weather	app	code	from	the	app.js	file,	we'll	duplicate	app.js,	because	we
configure	yargs	in	the	original	app.js	file	and	we'll	want	to	carry	the	code	over	to
the	 new	 project.	 There's	 no	 need	 to	 rewrite	 it.	 In	 the	 weather	 directory,	 we'll
duplicate	app.js,	giving	it	a	new	name,	app-promise.js.

Inside	app-promise.js,	 before	we	 add	 anything,	 let's	 rip	 some	 stuff	 out.	We'll	 be
ripping	 out	 the	 geocode	 and	 weather	 variable	 declarations.	We'll	 not	 be	 requiring
any	files:

Then	 I'll	 remove	everything	after	our	 yargs	 configuration,	which	 in	 this	 case	 is
just	our	call	to	geocodeAddress.	The	resultant	code	will	look	like	the	following:

const	yargs	=	require('yargs');

const	argv	=	yargs

	.options({

			a:	{

					demand:	true,

					alias:	'address',

					describe:	'Address	to	fetch	weather	for',

					string:	true

			}

	})

	.help()

	.alias('help',	'h')

	.argv;

Axios	documentations
Now	that	we	have	a	clean	slate,	we	can	get	started	by	installing	the	new	library.
Before	 we	 run	 the	 npm	 install	 command,	 we'll	 see	 where	 we	 can	 find	 the
documentation.	 We	 can	 get	 it	 by	 visiting:	 https://www.npmjs.com/package/axios.	 As
shown	in	the	following	screenshot,	we	have	the	axios	npm	library	page,	where
we	can	view	all	sorts	of	information	about	it,	including	the	documentation:

https://www.npmjs.com/package/axios

Here	we	can	see	some	things	that	look	familiar.	We	have	calls	to	then	and	catch,
just	like	we	do	when	we	use	promises	outside	of	axios:

Inside	 the	 stats	 column	 of	 this	 page,	 you	 can	 see	 that	 this	 is	 a	 super	 popular
library.	 The	 most	 recent	 version	 is	 0.13.1.	 This	 is	 the	 exact	 version	 we'll	 be
using.	Feel	free	to	go	to	this	page	when	you	use	axios	in	your	projects.	There	are
a	lot	of	really	good	examples	and	documentation.	For	now	though,	we	can	install
it.

Installing	axios
To	install	axios,	inside	Terminal,	we'll	be	running	npm	install;	the	library	name	is
axios,	 and	 we'll	 specify	 the	 version	 0.17.1	 with	 the	 save	 flag	 updating	 the
package.json	file.	Now	I	can	run	the	install	command,	to	install	axios:

Making	 calls	 in	 the	 app-promise
file
Inside	our	app-promise	file,	we	can	get	started	by	loading	in	axios	at	the	top.	We'll
make	a	constant	called	axios,	setting	it	equal	to	require('axios'),	as	shown	here:

const	yargs	=	require('yargs');

const	axios	=	require('axios');

Now	 that	we	 have	 this	 in	 place,	we	 can	 actually	 start	making	 the	 calls	 in	 the
code.	This	will	involve	us	pulling	out	some	of	the	functionality	from	the	geocode
and	weather	files.	So	we'll	open	up	the	geocode.js	and	weather.js	files.	Because	we
will	be	pulling	some	of	 the	code	 from	 these	 files,	 things	such	as	 the	URL	and
some	of	the	error	handling	techniques.	Although	we'll	talk	about	the	differences
as	they	come	up.

The	first	thing	we	need	to	do	is	to	encode	the	address	and	get	the	geocode	URL.
Now	this	stuff	happens	inside	geocode.js.	So	we'll	actually	copy	the	encodedAddress
variable	line,	where	we	create	the	encoded	address,	and	paste	it	in	the	app-promise
file,	following	the	argv	variable:

		.argv;

var	encodedAddress	=	encodeURIComponent(argv.address);

Now	we	do	need	to	tweak	this	a	little	bit.	The	address	variable	doesn't	exist;	but
we	have	argv.address.	So,	we'll	switch	address	with	argv.address:

var	encodeAddress	=	encodeURIComponent(argv.address);

Now	we	have	the	encoded	address;	the	next	thing	we	need	to	get	before	we	can
start	using	axios	is	the	URL	that	we	want	to	make	the	request	to.	We'll	grab	that
from	 the	 geocode.js	 file	 as	well.	 In	 app-promise.js,	 we	will	make	 a	 new	 variable
called	geocodeURI.	Then,	we'll	take	the	URL	present	in	geocode.js,	from	the	opening
tick	to	the	closing	tick,	copy	it,	and	paste	it	in	app-promise.js,	equal	to	geocodeURI:

var	encodedAddress	=	encodeURIComponent(argv.address);

var	geocodeUrl	=	`https://maps.googleapis.com/maps/api/geocode/json?address=${encodedAddress}`;

Now	we	use	the	encoded	address	variable	inside	the	URL;	this	is	fine	because	it
does	exist	 in	our	code.	So	at	 this	point,	we	have	our	geocodeUrl	variable	and	we
can	get	started	in	making	our	very	first	axios	request.

Making	axios	request
In	our	case,	we'll	be	taking	the	address	and	getting	the	latitude	and	longitude.	To
make	our	request,	we'll	call	a	method	available	on	axios,	axios.get:

var	geocodeUrl	=	`https://maps.googleapis.com/maps/api/geocode/json?address=${encodedAddress}`;

axios.get

The	get	is	the	method	that	lets	us	make	our	HTTP	get	request,	which	is	exactly
what	we	want	to	do	in	this	case.	Also,	it's	really	simple	to	set	up.	When	you're
expecting	JSON	data,	all	you	have	to	do	is	to	pass	in	the	URL	that	we	have	in
the	geocodeUrl	variable.	There's	no	need	to	provide	any	other	options,	such	as	an
option	letting	it	know	it's	JSON.	axios	knows	how	to	automatically	parse	our	JSON
data.	What	get	 returns	 is	 actually	 a	promise,	which	means	we	can	use	 .then	 in
order	 to	 run	 some	 code	 when	 the	 promise	 gets	 fulfilled	 or	 rejected,	 whether
things	go	well	or	poorly:

axios.get(geocodeUrl).then()

Inside	 then,	 we'll	 provide	 one	 function.	 This	 will	 be	 the	 success	 case.	 The
success	 case	 will	 get	 called	 with	 one	 argument,	 which	 the	 axios	 library
recommends	that	you	call	response:

axios.get(geocodeUrl).then((response)	=>	{

});

Technically,	we	could	call	anything	you	like.	Now	inside	the	function,	we'll	get
access	to	all	of	the	same	information	we	got	inside	of	the	request	library;	things
such	 as	 our	 headers,	 response,	 and	 request	 headers,	 as	 well	 as	 the	 body
information;	 all	 sorts	 of	 useful	 info.	 What	 we	 really	 need	 though	 is	 the
response.data	property.	We'll	print	that	using	console.log:

axios.get(geocodeUrl).then((response)	=>	{

		console.log(response.data);

});

Now	that	we	have	this	in	place,	we	can	run	our	app-promise	file,	passing	in	a	valid
address.	Also,	we	can	see	what	happens	when	we	make	that	request.

Inside	command	 line	 (Terminal),	we'll	use	 the	clear	 command	 first	 to	 clear	 the
Terminal	output.	Then	we	can	run	node	app-promise.js,	passing	in	an	address.	Let's
use	a	valid	address,	for	example,	1301	lombard	street,	philadelphia:

node	app-promise.js	-a	'1301	lombard	street	philadelphia

The	request	goes	out.	And	what	do	we	get	back?	We	get	back	the	results	object
exactly	as	we	saw	it	when	we	used	the	other	modules	in	the	previous	chapters:

The	only	difference	in	this	case	is	that	we're	using	promises	built	in,	instead	of
having	to	wrap	it	in	promises	or	using	callbacks.

Error	handling	in	axios	request
Now	aside	 from	 the	 success	handler	we	used	 in	 the	previous	example,	we	can
also	add	a	call	to	catch,	to	let	us	catch	all	of	the	errors	that	might	occur.	We'll	to
get	 the	 error	 object	 as	 the	 one-and-only	 argument;	 then	we	 can	 do	 something
with	that	error	object:

axios.get(geocodeUrl).then((response)	=>	{

	console.log(response.data);

});catch((e)	=>	{

});

Inside	 the	 function,	 we'll	 kick	 things	 off,	 using	 console.log	 to	 print	 the	 error
argument:

}).catch((e)	=>	{

	console.log(e)

});

Now	let's	simulate	an	error	by	removing	the	dot	in	the	URL:

var	encodedAddress	=	encodeURIComponent(argv.address);

var	geocodeUrl	=	`https://mapsgoogleapis.com/maps/api/geocode/json?address=${encodedAddress}`;

axios.get(geocodeUrl).then((response)	=>	{

			console.log(response.data);

}).catch((e)	=>	{

			console.log(e)

});

We	can	 see	what	 happens	when	we	 rerun	 the	program.	Now	 I'm	doing	 this	 to
explore	the	axios	 library.	 I	know	exactly	what	will	happen.	This	 is	not	why	I'm
doing	it.	I'm	doing	it	to	show	you	how	you	should	approach	new	libraries.	When
you	 get	 a	 new	 library,	 you	want	 to	 play	 around	with	 all	 the	 different	 ways	 it
works.	What	exactly	comes	back	in	that	error	argument	when	we	have	a	request
that	fails?	This	is	important	information	to	know;	so	when	you	write	a	real-world
app,	you	can	add	the	appropriate	error	handling	code.

In	this	case,	if	we	rerun	the	exact	same	command,	we'll	get	an	error:

As	you	can	see,	 there	really	is	nothing	to	print	on	the	screen.	We	have	a	lot	of
very	 cryptic	 error	 codes	 and	 even	 the	 errorMessage	 property,	 which	 usually
contains	something	good	or	does	not.	Then	we	have	an	error	code	followed	by
the	URL.	What	we	want	instead	is	print	a	plain	text	English	message.

To	 do	 this,	we'll	 use	 an	 if-else	 statement,	 checking	what	 the	 code	 property	 is.
This	is	the	error	code	and	in	this	case	ENOTFOUND;	we	know	it	means	that	it	could
not	connect	 to	 the	server.	 In	app-promise.js,	 inside	 the	error	handler,	we	can	add
this	by	having	if	and	checking	the	condition:

}).catch((e)	=>	{

	if	(e.code	===	'ENOTFOUND')	{

}

If	 that	 is	 the	case,	we'll	print	some	sort	of	custom	message	 to	 the	screen	using
console.log:

}).catch((e)	=>	{

		if	(e.code	===	'ENOTFOUND')	{

			console.log('Unable	to	connect	to	API	servers.');

		}	

		console.log(e);

	});

Now	we	have	an	error	handler	that	handles	this	specific	case.	So	we	can	remove
our	call	to	console.log:

axios.get(geocodeUrl).then((response)	=>	{

		console.log(response.data);

}).catch((e)	=>	{

		if	(e.code	===	'ENOTFOUND')	{

				console.log('Unable	to	connect	to	API	servers.');

	}

});

Now	if	we	save	the	file,	and	rerun	things	from	Terminal,	we	should	get	a	much
nicer	error	message	printing	to	the	screen:

This	is	exactly	what	we	get:	Unable	to	connect	to	API	servers.	Now	I'll	add	that	dot
back	 in,	 so	 things	 start	working.	We	can	worry	 about	 the	 response	 that	 comes
back.

Error	 handling	 with
ZERO_RESULT	body	status
As	you	remember,	inside	the	geocode	file,	there	were	some	things	we	needed	to
do.	We've	already	handled	the	error	related	to	server	connection,	but	there	is	still
another	error	pending,	 that	 is,	 if	 the	 body.status	 property	equals	 ZERO_RESULTS.	We
want	to	print	an	error	message	in	that	case.

To	do	this,	we'll	inside	app-promise,	create	our	very	own	error.	We'll	throw	an	error
inside	the	axios.get	function.	This	error	will	cause	all	of	the	code	after	it,	not	to
run.	It	will	move	right	into	the	error	handler.

Now	we	only	want	to	throw	an	error	if	 the	status	property	is	set	 to	ZERO_RESULTS.
We'll	 add	 an	 if	 statement	 at	 the	 very	 top	 of	 the	 get	 function	 to	 check	 if
(response.data.status)	equals	ZERO_RESULTS:

axios.get(geocodeUrl).then((response)	=>	{

		if	(response.data.status	===	'ZERO_RESULTS')	{

		}

If	that	is	the	case,	then	things	went	bad	and	we	do	not	want	to	move	on	to	make
the	weather	 request.	We	want	 to	 run	our	 catch	code	we	have.	To	 throw	a	new
error	 that	our	promise	 can	 catch,	we'll	 use	 a	 syntax	 called	 throw	new	Error.	 This
creates	and	throws	an	error	letting	Node	know	that	something	went	wrong.	We
can	provide	our	own	error	message,	something	that's	readable	to	a	user:	Unable	to
find	that	address:

axios.get(geocodeUrl).then((response)	=>	{

		if	(response.data.status	===	'ZERO_RESULTS')	{

				throw	new	Error('Unable	to	find	that	address.');

		}

This	is	a	message	that'll	let	that	user	know	exactly	what	went	wrong.	Now	when
this	error	gets	thrown,	the	same	catch	code	will	run.	Currently,	we	only	have	one
if	condition	 that	checks	whether	 the	code	property	 is	ENOTFOUND.	So	we'll	add	an
else	clause:

axios.get(geocodeUrl).then((response)	=>	{

	if	(response.data.status	===	'ZERO_RESULTS')	{

			throw	new	Error('Unable	to	find	that	address.');

	}

	

	console.log(response.data);

}).catch((e)	=>	{

	if	(e.code	===	'ENOTFOUND')	{

			console.log('Unable	to	connect	to	API	servers.');

	}	else	{

	

	}

});

Inside	 the	 else	 block,	 we	 can	 print	 the	 error	 message,	 which	 is	 the	 string	 we
typed	in	the	throw	new	Error	syntax	using	the	e.	message	property,	as	shown	here:

axios.get(geocodeUrl).then((response)	=>	{

	if	(response.data.status	===	'ZERO_RESULTS')	{

			throw	new	Error('Unable	to	find	that	address.');

	}

	

	console.log(response.data);

}).catch((e)	=>	{

		if	(e.code	===	'ENOTFOUND')	{

			console.log('Unable	to	connect	to	API	servers.');

	}	else	{

			console.log(e.message);

	}

});

If	 the	 error	 code	 is	 not	 ENOTFOUND,	we'll	 simply	 print	 the	message	 to	 the	 screen.
This	will	happen	 if	we	get	zero	 results.	So	 let's	 simulate	 that	 to	make	sure	 the
code	works.	Inside	Terminal,	we'll	rerun	the	previous	command	passing	in	a	zip
code.	At	first,	we'll	use	a	valid	zip	code,	08822	and	we	should	get	our	data	back.
Then	we'll	use	an	invalid	one:	00000.

When	we	run	the	request	with	a	valid	address,	we	get	this:

When	we	run	the	request	with	the	invalid	address,	we	get	the	error:

By	 calling	 throw	 new	 Error,	 we're	 immediately	 stopping	 the	 execution	 of	 this
function.	 So	 console.log	 with	 e.message	 never	 prints,	 which	 is	 exactly	 what	 we
want.	Now	that	we	have	our	error	handler	in	place,	we	can	start	generating	that
weather	URL.

Generating	the	weather	URL
In	order	to	generate	the	weather	URL,	we'll	copy	the	URL	from	the	weather	file,
taking	it	with	the	ticks	in	place,	and	moving	it	into	the	app-promise	file.	We'll	make
a	new	variable	called	weatherUrl,	setting	it	equal	to	the	copied	URL:

url:	`https://api.forecast.io/forecast/4a04d1c42fd9d32c97a2c291a32d5e2d/${lat},${lng}`,

Now	weatherUrl	does	need	a	few	pieces	of	information.	We	need	the	latitude	and
longitude.	 We	 have	 two	 variables	 lat	 and	 lng,	 so	 let's	 create	 them,	 getting	 the
appropriate	value	from	that	response	object,	var	lat	and	var	lng:

var	lat;

var	lng;

url:	`https://api.forecast.io/forecast/4a04d1c42fd9d32c97a2c291a32d5e2d/${lat},${lng}`,

Now	in	order	to	pull	them	off,	we	have	to	go	through	that	process	of	digging	into
the	object.	We've	done	 it	before.	We'll	be	 looking	 in	 the	response	object	at	 the
data	property,	which	is	similar	to	the	body	in	the	request	library.	Then	we'll	go
into	results,	grabbing	the	first	item	and	accessing	the	geometry	property,	then	we'll
access	location.lat:

var	lat	=	response.data.results[0].geometry.location.lat;

Now	similarly,	we	can	add	things	for	the	longitude	variable:

var	lat	=	response.data.results[0].geometry.location.lat;

var	lng	=	response.data.results[0].geometry.location.lng;

Now	 before	 we	 make	 that	 weather	 request,	 we	 want	 to	 print	 the	 formatted
address	 because	 that's	 something	 the	 previous	 app	 did	 as	 well.	 In	 our
console.log(response.data)	statement,	and	instead	of	printing	response.data,	we'll	dive
into	 the	 data	 object	 getting	 the	 formatted	 address.	 This	 is	 also	 on	 the	 results
array's	first	item.	We'll	be	accessing	the	formatted_address	property:

var	lat	=	response.data.results[0].geometry.location.lat;

var	lng	=	response.data.results[0].geometry.location.lng;

var	weatherUrl	=	`https://api.forecast.io/forecast/4a04d1c42fd9d32c97a2c291a32d5e2d/${lat},${lng}`;

console.log(response.data.results[0].formatted_address);

Now	that	we	have	our	formatted	address	printing	to	the	screen,	we	can	make	our

second	call	by	returning	a	new	promise.	This	is	going	to	let	us	chain	these	calls
together.

Chaining	the	promise	calls
To	get	started,	we'll	return	a	call	to	axios.get,	passing	in	the	URL.	We	just	defined
that,	it	is	weatherUrl:

	var	lat	=	response.data.results[0].geometry.location.lat;

	var	lng	=	response.data.results[0].geometry.location.lng;

	var	weatherUrl	=	`https://api.forecast.io/forecast/4a04d1c42fd9d32c97a2c291a32d5e2d/${lat},${lng}`;

	console.log(response.data.results[0].formatted_address);

	return	axios.get(weatherUrl);

Now	 that	 we	 have	 this	 call	 returning,	 we	 can	 attach	 another	 then	 call	 right
between	 our	 previous	 then	 call	 and	 catch	 call,	 by	 calling	 then,	 passing	 in	 one
function,	just	like	this:

	return	axios.get(weatherUrl);

}).then(()	=>	{

	

}).catch((e)	=>	{

	if	(e.code	===	'ENOTFOUND')	{

This	 function	will	get	called	when	 the	weather	data	comes	back.	We'll	get	 that
same	response	argument,	because	we're	using	the	same	method,	axios.get:

}).then((response)	=>	{

Inside	the	then	call,	we	don't	have	to	worry	about	throwing	any	errors,	since	we
never	 needed	 to	 access	 a	 body	 property	 in	 order	 to	 check	 if	 something	 went
wrong.	With	the	weather	request	if	this	callback	runs,	then	things	went	right.	We
can	 print	 the	 weather	 information.	 In	 order	 to	 get	 that	 done,	 we'll	 make	 two
variables:

temperature

apparentTemperature

The	temperature	variable	will	get	set	equal	to	response.data.	Then	we'll	access	 that
currently	 property.	 Then	 we'll	 access	 temperature.	 We'll	 pull	 out	 the	 second
variable,	the	actual	temperature	or	apparentTemperature,	which	is	the	property	name,
var	 apparentTemperature.	 We'll	 be	 setting	 this	 equal	 to
response.data.currently.apparentTemperature:

}).then((response)	=>	{

	var	temperature	=	response.data.currently.temperature;

	var	apparentTemperature	=	response.data.currently.apparentTemperature;

Now	 that	we	 have	 our	 two	 things	 pulled	 out	 into	 variables,	we	 can	 add	 those
things	inside	of	a	call,	console.log.	We	chose	to	define	two	variables,	so	that	we
don't	have	to	add	the	two	really	long	property	statements	to	console.log.	We	can
simply	reference	the	variables.	We'll	add	console.log	and	we'll	use	template	strings
in	 the	 console.log	 statement,	 so	 that	 we	 can	 inject	 the	 previous	mentioned	 two
values	inside	of	quotes:	It's	currently,	followed	by	temperature.	Then	we	can	add	a
period,	It	feels	like,	followed	by	apparentTemperature:

}).then((response)	=>	{

	var	temperature	=	response.data.currently.temperature;

	var	apparentTemperature	=	response.data.currently.apparentTemperature;

	console.log(`It's	currently	${temperature}.	It	feels	like	${apparentTemperature}.`);

Now	 that	 we	 have	 our	 string	 printing	 to	 the	 screen,	 we	 can	 test	 that	 our	 app
works	 as	 expected.	 We'll	 save	 the	 file	 and	 inside	 Terminal,	 we'll	 rerun	 the
command	from	two	commands	ago	where	we	had	a	valid	zip	code:

When	 we	 run	 this,	 we	 get	 the	 weather	 info	 for	 Flemington,	 New	 Jersey.	 It's
currently	 84	 degrees,	 but	 it	 feels	 like	 90.	 If	 we	 run	 something	 that	 has	 a	 bad
address,	we	do	get	the	error	message:

So	everything	looks	great!	Using	the	axios	 library,	we're	able	 to	chain	promises

like	 the	 app-promise	 without	 needing	 to	 do	 anything	 too	 crazy.	 The	 axios	 get

method	returns	a	promise,	so	we	can	access	it	directly	using	then.

In	 the	code,	we	use	 then	once	 to	do	something	with	 that	geolocation	data.	We
print	the	address	to	the	screen.	Then	we	return	another	promise,	where	we	make
the	request	for	the	weather.	Inside	of	our	second	then	call,	we	print	the	weather	to
the	screen.	We	also	added	a	catch	call,	which	will	handle	any	errors.	If	anything
goes	wrong	with	either	of	our	promises,	or	 if	we	throw	an	error,	catch	will	get
fired	printing	the	messages	to	the	screen.

This	is	all	it	takes	to	use	axios	and	set	up	promises	for	your	HTTP	requests.	Now
one	 reason	 people	 love	 promises	 over	 traditional	 callbacks	 is	 that	 instead	 of
nesting	we	can	simply	chain.	So	our	code	doesn't	get	indented	to	crazy	levels.	As
we	saw	in	app.js	in	the	previous	chapter,	we	went	a	few	indentation	levels	deep
just	to	add	two	calls	together.	If	we	needed	to	add	a	third	it	would	have	gotten
even	worse.	With	promises,	we	can	keep	everything	at	 the	same	level,	keeping
our	code	a	lot	easier	to	maintain.

Summary
In	this	chapter,	we've	gone	through	a	quick	example	of	how	promises	work,	by
going	over	 just	 the	 very	 fundamentals.	Async	 is	 a	 critical	 part	 to	Node.js.	We
went	 through	 the	 very	 basics	 of	 callbacks	 and	 promises.	 We	 looked	 a	 few
examples,	creating	a	pretty	cool	weather	app.

This	 brings	 us	 to	 the	 end	 of	 our	 asynchronous	Node.js	 programming,	 but	 this
does	not	mean	 that	you	have	 to	stop	building	out	 the	weather	app.	There	are	a
couple	ideas	as	to	what	you	could	do	to	continue	on	with	this	project.	First	up,
you	can	load	in	more	information.	The	response	we	get	back	from	the	weather
API	contains	a	ton	of	stuff	besides	just	the	current	temperature,	which	is	what	we
used.	 It'd	 great	 if	 you	 can	 incorporate	 some	 of	 that	 stuff	 in	 there,	whether	 it's
high/low	temperatures,	or	chances	of	precipitation.

Next	up,	it'd	be	really	cool	to	have	a	default	 location	ability.	There	would	be	a
command	that	lets	me	set	a	default	location,	and	then	I	could	run	the	weather	app
with	no	location	argument	to	use	that	default.	We	could	always	specify	a	location
argument	 to	 search	 for	 weather	 somewhere	 else.	 This	 would	 be	 an	 awesome
feature,	and	it	would	work	kind	of	similar	to	the	Notes	app,	where	we	save	data
to	the	filesystem.

In	the	next	chapter,	we'll	start	creating	web	servers,	which	will	be	async.	We'll
make	APIs,	 which	will	 be	 async.	 Also,	 we'll	 create	 real-time	 Socket.IO	 apps,
which	will	 be	 async.	We'll	move	 on	 to	 creating	Node	 apps	 that	we	 deploy	 to
servers,	making	those	servers	accessible	to	anybody	with	a	web	connection.

Web	Servers	in	Node
We'll	cover	a	ton	of	exciting	stuff	in	this	chapter.	We'll	learn	how	to	make	a	web
server	and	how	to	integrate	version	control	 into	Node	applications.	Now	to	get
all	 this	done,	we	will	 look	at	a	 framework	called	Express.	 It's	one	of	 the	most
popular	npm	 libraries,	 and	 for	 good	 reason.	 It	makes	 it	 really	 easy	 to	 do	 stuff
such	as	creating	a	web	server	or	an	HTTP	API.	It's	kind	of	similar	 to	the	Dark
Sky	API	we	used	in	the	last	chapter.

Now	most	courses	start	with	Express,	and	that	can	be	confusing	because	it	blurs
the	 line	 between	 what	 is	 Node	 and	 what	 is	 Express.	We'll	 kick	 things	 off	 by
adding	Express	to	a	brand	new	Node	app.

Specifically,	we'll	cover	the	following	topics:

Introducing	Express
Static	server
Rendering	templates
Advanced	templates
Middleware

Introducing	Express
In	 this	 section,	 you'll	 make	 your	 very	 first	 Node.js	 web	 server,	 which	 means
you'll	 have	 a	whole	 new	way	 for	 users	 to	 access	 your	 app.	 Instead	 of	 having
them	run	it	from	the	Terminal	passing	in	arguments,	you'll	be	able	to	give	them	a
URL	 they	 can	visit	 to	 view	your	web	 app	or	 a	URL	 they	 can	make	 an	HTTP
request	to	to	fetch	some	data.

This	 will	 be	 similar	 to	 what	 we	 did	 when	 we	 used	 the	 geocode	 API	 in	 the
previous	 chapters.	 Instead	 of	 using	 an	API	 though,	we'll	 be	 able	 to	 create	 our
own.	We'll	also	be	able	to	set	up	a	static	website	for	something	like	a	portfolio
site.	Both	are	really	valid	use	cases.	Now	all	of	this	will	be	done	using	a	library
called	Express,	which	 is	 the	most	popular	npm	 library.	 It's	 actually	one	of	 the
reasons	that	Node	got	so	popular	because	it	was	so	easy	to	make	REST	APIs	and
static	web	servers.

Configuring	Express
Express	 is	 a	 no-nonsense	 library.	 Now	 there	 are	 a	 lot	 of	 different	 ways	 to
configure	it.	So	it	can	get	pretty	complex.	That's	why	we'll	be	using	it	throughout
the	next	couple	of	chapters.	To	get	started,	let's	make	a	directory	where	we	can
store	all	of	the	code	for	this	app.	This	app	will	be	our	web	server.

On	 the	 desktop	 let's	 us	make	 a	 directory	 called	 node-web-server,	 by	 running	 the
mkdir	node-web-server	command	in	the	Terminal:

Once	this	directory	is	created,	we'll	navigate	into	it	using	cd:

And	 we'll	 also	 open	 it	 up	 inside	 Atom.	 In	 Atom,	 we'll	 open	 it	 up	 from	 the
desktop:

Now	before	going	further,	we'll	run	the	npm	init	command	so	we	can	generate	the
package.json	file.	As	shown	in	the	following	code,	we'll	run	npm	init:

Then,	we'll	use	the	default	value	just	by	pressing	enter	through	all	of	the	options
shown	in	the	following	screenshot.	There's	no	need	to	customize	any	of	these	as

of	now:

Then	we'll	type	yes	in	the	last	statement	Is	this	ok?	(yes)	and	the	package.json	 file
goes	in	place:

Express	docs	website
As	mentioned	 earlier,	Express	 is	 a	 really	 big	 library.	There's	 an	 entire	website
dedicated	to	the	Express	docs.	Instead	of	a	simple	README.md	file,	you	can	go	to	www
.expressjs.com	to	view	everything	the	website	have	to	offer:

We'll	 find	 Getting	 started,	 help	 articles,	 and	 many	 more.	 The	 website	 has
the	 Guide	 option	 to	 help	 you	 do	 things	 such	 as	 Routing,	 Debugging,	 Error
handling,	and	an	API	reference,	 so	we	can	 look	 into	exactly	what	methods	we
have	access	to	and	what	they	do.	It's	a	very	handy	website.

http://expressjs.com/

Installing	Express
Now	that	we	have	our	node-web-server	directory,	we'll	install	Express	so	we	can	get
started	making	our	web	server.	In	the	Terminal	we'll	run	the	clear	command	first
to	clear	the	output.	Then	we'll	run	the	npm	install	command.	The	module	name	is
express	 and	we'll	 be	 using	 the	 latest	 version,	 @4.16.0.	We'll	 also	provide	 the	 save
flag	to	update	the	dependencies	inside	of	our	package.json	file	as	shown	here:

npm	install	express@4.16.0	--save

Once	again	we'll	use	the	clear	command	to	clear	the	Terminal	output.

Now	that	we	have	Express	installed,	we	can	actually	create	our	web	server	inside
Atom.	In	order	to	run	the	server,	we	will	need	a	file.	I'll	call	this	file	server.js.	It
will	sit	right	in	the	root	of	our	application:

This	 is	 where	 we'll	 configure	 the	 various	 routes,	 things	 like	 the	 root	 of	 the
website,	pages	like	/about,	and	so	on.	It's	also	where	we'll	start	the	server,	binding
it	to	a	port	on	our	machine.	Now	we'll	be	deploying	to	a	real	server.	Later	we'll
talk	about	how	that	works.	For	now,	most	of	our	server	examples	will	happen	on
our	localhost.

Inside	server.js,	 the	first	 thing	we'll	do	is	load	in	Express	by	making	a	constant
called	express	and	setting	it	equal	to	require('express'):

const	express	=	require('express');

Next	 up,	 what	 we'll	 do	 is	 make	 a	 new	 Express	 app.	 To	 do	 this	 we'll	 make	 a
variable	called	app	and	we'll	set	it	equal	to	the	return	result	from	calling	express
as	a	function:

const	express	=	require('express');

var	app	=	express();

Now	 there	are	no	arguments	we	need	 to	pass	 into	 express.	We	will	 do	 a	 ton	of
configuration,	but	that	will	happen	in	a	different	way.

Creating	an	app
In	 order	 to	 create	 an	 app,	 all	 we	 have	 to	 do	 is	 call	 the	 method.	 Next	 to	 the
variable	app	we	can	start	setting	up	all	of	our	HTTP	route	handlers.	For	example,
if	someone	visits	the	root	of	the	website	we're	going	to	want	to	send	something
back.	Maybe	it's	some	JSON	data,	maybe	it's	an	HTML	page.

We	can	register	a	handler	using	app.get	function.	This	will	let	us	set	up	a	handler
for	an	HTTP	get	request.	There	are	two	arguments	we	have	to	pass	into	app.get:

The	first	argument	is	going	to	be	a	URL
The	 second	argument	 is	going	 to	be	 the	 function	 to	 run;	 the	 function	 that
tells	Express	what	to	send	back	to	the	person	who	made	at	the	request

In	 our	 case	we're	 looking	 for	 the	 root	 of	 the	 app.	 So	we	 can	 just	 use	 forward
slash	(/)	for	the	first	argument.	In	the	second	argument,	we'll	use	a	simple	arrow
function	(=>)	as	shown	here:

const	express	=	require('express');

var	app	=	express();

app.get('/',	(req,	res)	=>	{

				

};

Now	the	arrow	function	(=>)	will	get	called	with	two	arguments.	These	are	really
important	to	how	Express	works:

The	 first	 argument	 is	 request	 (req)	 stores	 a	 ton	 of	 information	 about	 the
request	 coming	 in.	 Things	 like	 the	 headers	 that	 were	 used,	 any	 body
information,	or	the	method	that	was	made	with	a	request	to	the	path.	All	of
that	is	stored	in	request.
The	 second	argument,	 respond	 (res),	 has	 a	bunch	of	methods	 available	 so
we	 can	 respond	 to	 the	 HTTP	 request	 in	 whatever	 way	 we	 like.	 We	 can
customize	what	data	we	send	back	and	we	could	set	our	HTTP	status	codes.

We'll	 explore	 both	 of	 these	 in	 detail.	 For	 now	 though,	 we'll	 use	 one	 method,
res.send.	 This	 will	 let	 us	 respond	 to	 the	 request,	 sending	 some	 data	 back.	 In

app.get	function,	let's	call	res.send,	passing	in	a	string.	In	the	parenthesis	we'll	add
Hello	Express!:

app.get('/',	(req,	res)	=>	{

		res.send('Hello	Express!');

});

This	is	the	response	for	the	HTTP	request.	So	when	someone	views	the	website
they	will	see	this	string.	If	they	make	a	request	from	an	application,	they	will	get
back	Hello	Express!	as	the	body	data.

Now	at	this	point	we're	not	quite	done.	We	have	one	of	our	routes	set	up,	but	the
app	 is	 never	 going	 to	 actually	 start	 listening.	 What	 we	 need	 to	 do	 is	 call
app.listen.	 The	 app.listen	 function	 will	 bind	 the	 application	 to	 a	 port	 on	 our
machine.	 In	 this	 case	 for	 our	 local	 host	 app,	 we	 will	 use	 port	 3000,	 a	 really
common	port	for	developing	locally.	Later	in	the	chapter,	we'll	talk	about	how	to
customize	 this	 depending	 on	 whatever	 server	 you	 use	 to	 deploy	 your	 app	 to
production.	For	now	though,	a	number	like	3000	works:

app.get('/',	(req,	res)	=>	{

		res.send('Hello	Express!');

});

app.listen(3000);

With	this	in	place	we	are	now	done.	We	have	our	very	first	Express	server.	We
can	actually	run	things	from	the	Terminal,	and	view	it	in	the	browser.	Inside	the
Terminal,	we'll	use	nodemon	server.js	to	start	up	our	app:

nodemon	server.js

This	 will	 start	 up	 the	 app	 and	 you'll	 see	 that	 the	 app	 never	 really	 finishes	 as
shown	here:

Right	now	it's	hanging.	It's	waiting	for	requests	to	start	coming	in.	The	apps	that
use	app.listen,	they	will	never	stop.	You'll	have	to	shut	them	down	manually	with
control	+	C,	like	we've	done	before.	It	might	crash	if	you	have	an	error	in	your
code.	But	it'll	never	stop	normally,	since	we	have	that	binding	set	up	here.	It	will
listen	to	requests	until	you	tell	it	to	stop.

Now	that	the	server	is	up,	we	can	move	into	the	browser	and	open	up	a	new	tab
visiting	the	website,	localhost:	followed	by	the	port	3000:

This	will	 load	 up	 the	 root	 of	 the	website,	 and	we	 specify	 the	 handler	 for	 that
route.	Hello	Express!	shows	up,	which	is	exactly	what	we	expected.	Now	there's
no	thrills.	There's	no	formatting.	We're	just	sending	a	string	from	the	server	back
to	the	client	that	made	the	request.

Exploring	 the	 developer	 tools	 in
the	browser	for	the	app	request
What	we'd	 like	 to	 do	 next	 is	 open	 up	 the	 developer	 tools,	 so	we	 can	 explore
exactly	what	happened	when	that	request	was	made.	Inside	Chrome	you	can	get
to	the	Developer	Tools	using	Settings|	More	Tools|	Developer	Tools:

Or	you	can	use	the	keyboard	shortcut	shown	along	with	Developer	Tools	for	the
operating	system.

I	 would	 highly	 recommend	 memorizing	 that	 keyboard	 shortcut
because	 you'll	 use	 the	 Developer	 Tools	 a	 ton	 in	 your	 career	 with

Node.

We'll	now	open	up	the	Developer	Tools,	which	should	 look	similar	 to	 the	ones
we	used	when	we	ran	the	Node	Inspector	debugger.	They're	a	little	different,	but
the	idea	is	the	same:

We	have	a	bunch	of	tabs	up	top,	and	then	we	have	our	tab	specific	information
down	following	on	the	page.	In	our	case,	we	want	to	go	to	the	Network	tab,	and
currently	we	have	nothing.	So	we'll	refresh	the	page	with	the	tab	open,	and	what
we	see	right	here	is	our	localhost	request:

This	 is	 the	request	 that's	 responsible	 for	showing	Hello	Express!	 to	 the	 screen.
We	can	actually	click	the	request	to	view	its	details:

This	page	can	be	a	 little	overwhelming	at	first.	There	is	a	a	 lot	of	 information.
Up	on	top	we	have	some	general	info,	such	as	the	URL	that	was	requested,	the
method	 that	 the	 client	 wanted;	 in	 this	 case,	 we	made	 a	GET	 request,	 and	 the
status	 code	 that	 came	 back.	 The	 default	 status	 code	 being	 200,	 meaning	 that
everything	went	great.	We'd	like	to	point	the	attention	to	is	one	response	header.

Under	 Response	Headers	 we	 have	 a	 header	 called	 Content-Type.	 This	 header
tells	the	client	what	type	of	data	came	back.	Now	this	could	be	something	like	an
HTML	website,	 some	 text,	 or	 some	 JSON	data	 and	 the	 client	 could	 be	 a	web
browser,	 an	 iPhone,	 an	 Android	 device,	 or	 any	 other	 computer	 with	 network
capabilities.	In	our	case,	we're	telling	the	browser	that	what	came	back	is	some
HTML,	so	why	don't	you	render	it	as	such.	We	use	the	text/html	Content-Type.
And	 this	 automatically	 got	 set	 by	Express,	which	 is	 one	 of	 the	 reasons	 it's	 so
popular.	It	handles	a	lot	of	that	mundane	stuff	for	us.

Passing	HTML	to	res.send
Now	 that	 we	 have	 a	 very	 basic	 example,	 we	 want	 to	 step	 things	 up	 a	 notch.
Inside	 Atom,	 we	 can	 actually	 provide	 some	 HTML	 right	 inside	 of	 send	 by
wrapping	our	Hello	Express!	message	 in	an	 h1	 tag.	Later	 in	 this	 section,	we'll	be
setting	up	a	static	website	that	has	HTML	files	that	get	served	up.	We'll	also	look
at	 templating	 to	 create	 dynamic	web	 pages.	But	 for	 now,	we	 can	 actually	 just
pass	in	some	HTML	to	res.send:

app.get('/',	(req,	res)	=>	{

		res.send('<h1>Hello	Express!</h1>');

});

app.listen(3000);

We'll	save	the	server	file,	which	should	restart	 things	in	the	browser.	When	we
give	the	browser	a	refresh,	we	get	Hello	Express!	printing	to	the	screen:

This	 time	 though,	 we	 have	 it	 in	 an	 h1	 tag,	 which	means	 it's	 formatted	 by	 the
default	browser	styles.	 In	 this	case	 it	 looks	nice	and	big.	With	 this	 in	place	we
can	 now	 open	 up	 the	 request	 inside	 the	Network	 tab,	 and	what	 we	 get	 is	 the
exact	same	thing	we	had	before.	We're	still	 telling	the	browser	 that	 it's	HTML.
Only	one	difference	this	time:	we	actually	have	an	HTML	tag,	so	it	gets	rendered
using	the	browser's	default	styles.

Sending	JSON	data	back
The	 next	 thing	 we'd	 look	 into	 is	 how	 we	 can	 send	 some	 JSON	 data	 back.
Sending	JSON	is	really	easy	with	Express.	To	illustrate	how	we	can	do	it	we'll
comment	out	our	 current	 call	 to	 res.send	 and	add	a	new	one.	We'll	 call	 res.send
passing	in	an	object:

app.get('/',	(req,	res)	=>	{

		//	res.send('<h1>Hello	Express!</h1>');

		res.send({

		})

});

On	this	object	we	can	provide	whatever	we	like.	We	can	create	a	name	property,
setting	 it	 equal	 to	 the	 string	 version	 of	 any	 name,	 say	 Andrew.	We	 can	make	 a
property	called	likes,	setting	it	equal	to	an	array,	and	we	can	specify	some	things
we	may	like.	Let's	add	Biking	as	one	of	them,	and	then	add	Cities	as	another:

		res.send({

				name:	'Andrew',

				likes:	[

						'Biking',

						'Cities'

]

		});

When	we	call	res.send	passing	in	an	object,	Express	notices	that.	Express	takes	it,
converts	it	into	JSON,	and	sends	it	back	to	the	browser.	When	we	save	server.js
and	nodemon	refreshes,	we	can	refresh	the	browser,	and	what	we	get	is	my	data
formatted	using	JSON	view:

This	means	we	can	collapse	the	properties	and	quickly	navigate	the	JSON	data.

Now	the	only	reason	JSON	view	picked	up	on	this	is	because	that	Content-Type
header	 that	 we	 explored	 in	 our	 last	 request	 it	 actually	 changed.	 If	 I	 open	 up
localhost,	 a	 lot	 of	 things	 look	 the	 same.	 But	 now	 Content-Type	 has	 an
application/json	Content-Type:

This	 Content-Type	 tells	 the	 requester	 whether	 it's	 an	 Android	 phone,	 an	 iOS
device,	or	the	browser	that	JSON	data	is	coming	back,	and	it	should	parse	it	as
such.	That's	exactly	what	the	browser	does	in	this	case.

Express	also	makes	it	really	easy	to	set	up	other	routes	aside	from	the	root	route.
We	 can	 explore	 that	 inside	 Atom	 by	 calling	 app.get	 a	 second	 time.	 We'll	 call
app.get.	We'll	create	a	second	route.	We'll	call	this	one	about:

app.get('/about')

app.listen(3000);

Notice	 that	we	 just	used	/about	 as	 the	 route.	 It's	 important	 to	keep	 that	 forward
slash	 in	place,	but	after	 that	you	can	 type	whatever	you	 like.	 In	 this	case	we'll
have	 a	 /about	 page	 that	 someone	 can	 visit.	 Then	 I'll	 provide	 the	 handler.	 The
handler	will	take	the	req	and	the	res	object:

app.get('/about',	(req,	res)	=>	{

});

app.listen(3000);

This	will	let	us	figure	out	what	kind	of	request	came	in,	and	it	will	let	us	respond
to	 that	 request.	For	now	just	 to	 illustrate	we	can	create	more	pages,	we'll	keep
the	response	simple,	res.send.	Inside	the	string	we're	going	to	print	About	Page:

app.get('/about',	(req,	res)	=>	{

		res.send('About	Page');

});

Now	when	we	save	the	server.js	file,	the	server	is	going	to	restart.	In	the	browser
we	can	visit	localhost:3000/about.	At	/about	we	should	now	see	our	new	data,	and
that's	exactly	what	we	get	back,	About	Page	shows	up	as	shown	here:

Using	app.get	we're	able	 to	specify	as	many	routes	as	we	 like.	For	now	we	just
have	an	about	route	and	a	/	route,	which	is	also	referred	to	as	the	root	route.	The
root	 route	 returns	 some	data,	which	 happens	 to	 be	 JSON,	 and	 the	 about	 route
returns	a	little	bit	of	HTML.	Now	that	we	have	this	in	place	and	we	have	a	very
basic	understanding	about	how	we	can	set	up	routes	in	Express,	we'd	like	you	to
create	a	new	route	/bad.	This	is	going	to	simulate	what	happens	when	a	request
fails.

Error	 handling	 in	 the	 JSON
request
To	show	the	error	handling	request	with	JSON,	we're	going	to	call	app.get.	This
app.get	is	going	to	let	us	register	another	handler	for	a	get	HTTP	request.	In	our
case	 the	 route	 we're	 looking	 for	 inside	 of	 quotes	 is	 going	 to	 be	 /bad.	 When
someone	 makes	 a	 request	 for	 this	 page,	 what	 we	 want	 to	 do	 is	 going	 to	 be
specified	in	the	callback.	The	callback	will	take	our	two	arguments,	req	and	res.
We'll	use	an	arrow	function	(=>),	which	I've	used	for	all	of	the	handlers	so	far:

app.get('/bad',	(req,	res)	=>	{

		});

app.listen(3000);

Inside	 the	 arrow	 function	 (=>),	we'll	 send	 back	 some	 JSON	by	 calling	 res.send.
But	instead	of	passing	in	a	string,	or	some	string	HTML,	we'll	pass	in	an	object:

app.get('/bad',	(req,	res)	=>	{

		res.send({

		});

});

Now	that	we	have	our	object	in	place	we	can	specify	the	properties	we	want	to
send	 back.	 In	 this	 case	 we'll	 set	 one	 errorMessage.	 We'll	 set	 my	 error	 message
property	equal	to	a	string,	Unable	to	handle	request:

app.get('/bad',	(req,	res)	=>	{

		res.send({

				errorMessage:	'Unable	to	handle	request'

		});

});

Next	up	we'll	save	the	file,	restarting	it	in	nodemon,	and	visit	it	in	the	browser.
Make	sure	our	error	message	showed	up	correctly.	In	the	browser,	we'll	visit	/bad,
hit	enter,	and	this	is	what	we	get:

We	get	our	JSON	showing	up	using	JSON	view.	We	have	our	error	message,	and
we	 have	 the	message	 showing	 up:	 Unable	 to	 handle	 request.	 Now	 if	 you	 are
using	 JSON	view	 and	you	want	 to	 view	 the	 raw	 JSON	data,	 you	 can	 actually
click	on	View	source,	and	it	will	show	it	in	a	new	tab.	Here,	we're	looking	at	the
raw	JSON	data,	where	everything	is	wrapped	in	those	double	quotes:

I'll	stick	to	the	JSON	view	data	because	it's	a	lot	easier	to	navigate	and	view.	We
now	have	a	very	basic	Express	application	up	and	running.	It	listens	on	port	3000
and	it	currently	has	handlers	for	3	URLs:	when	we	get	the	root	of	the	page,	when
we	get	/about,	and	when	we	make	a	get	request	for	/bad.

The	static	server
In	 this	 section,	 we'll	 learn	 how	 to	 set	 up	 a	 static	 directory.	 So	 if	 we	 have	 a
website	with	HTML,	CSS,	JavaScript,	and	images,	we	can	serve	that	up	without
needing	 to	provide	a	custom	route	 for	every	single	 file,	which	would	be	a	 real
burden.	Now	setting	this	up	is	really	simple.	But	before	we	make	any	updates	to
server.js,	we'd	create	some	static	assets	inside	of	our	project	that	we	can	actually
serve	up.

Making	an	HTML	page
In	this	case	we'll	make	one	HTML	page	that	we'll	be	able	to	view	in	the	browser.
Before	we	 get	 started,	 we	 do	 need	 to	 create	 a	 new	 directory,	 and	 everything
inside	this	directory	will	be	accessible	via	the	web	server,	so	it's	important	to	not
put	anything	in	here	that	you	don't	want	prying	eyes	to	see.

Everything	in	the	directory	should	be	intended	to	be	view	able	by	anybody.	We'll
create	a	public	folder	to	store	all	of	our	static	assets,	and	inside	here	we'll	make
an	HTML	page.	We'll	create	a	help	page	for	our	example	project	by	creating	a
file	called	help.html:

Now	in	help.html	we	will	make	a	quick	basic	HTML	file,	although	we'll	not	touch
on	all	of	the	subtleties	of	HTML,	since	this	is	not	really	an	HTML	book.	Instead,
we'll	just	set	up	a	basic	page.

The	first	thing	we	need	to	do	is	create	a	DOCTYPE	which	lets	the	browser	know	what
version	of	HTML	we're	using.	That	will	look	something	like	this:

<!DOCTYPE	html>

After	the	opening	tag,	and	the	exclamation	mark,	we'd	type	DOCTYPE	in	uppercase.
Then,	we	provide	the	actual	DOCTYPE	for	HTML5,	the	latest	version.	Then	we	can
use	 the	greater	 than	sign	to	close	 things	up.	 In	 the	next	 line,	we'll	open	up	our

html	tag	so	we	can	define	our	entire	HTML	file:

<!DOCTYPE	html>

<html>

</html>

Inside	html,	there	are	two	tags	we'll	use:	the	head	tag	which	lets	us	configure	our
doc,	and	the	body	tag	which	contains	everything	we	want	to	render	to	the	screen.

The	head	tag
We'll	create	the	head	tag	first:

<!DOCTYPE	html>

<html>

		<head>

				

		</head>

</html>

Inside	head,	we'll	provide	two	pieces	of	info,	charset	and	title	tag:

First	up	we	have	to	set	up	the	charset	which	lets	the	browser	know	how	to
render	our	characters.
Next	up	we'll	provide	the	title	tag.	The	title	tag	lets	the	browser	know	what
to	render	in	that	title	bar,	where	the	new	tab	usually	is.

As	shown	in	the	following	code	snippet,	we'll	set	meta.	And	on	meta,	we'll	set	the
charset	property	using	equals,	and	provide	the	value	utf-8:

		<head>

				<meta	charset="utf-8">

		</head>

For	the	title	tag,	we	can	set	it	to	whatever	we	like;	Help	Page	seems	appropriate:

		<head>

				<meta	charset="utf-8">

				<title>Help	Page</title>

		</head>

The	body	tag
Now	 that	 our	 head	 is	 configured,	 we	 can	 add	 something	 to	 the	 body	 of	 our
website.	This	is	the	stuff	that's	actually	going	to	be	viewable	inside	the	viewport.
Next	to	the	head,	we'll	open	and	close	the	body	tag:

		<body>

		</body>

Inside	body	again,	we'll	provide	two	things:	an	h1	title	and	a	p	paragraph	tag.

The	title	is	going	to	match	the	title	tag	we	used	in	the	head,	Help	Page,	and	 the
paragraph	will	just	have	some	filler	text—Some	text	here:

<!DOCTYPE	html>

<html>

		<head>

				<meta	charset="utf-8">

				<title>Help	Page</title>

		</head>

		<body>

				<h1>Help	Page</h1>

				<p>Some	text	here</p>

		</body>

</html>

Now	we	have	an	HTML	page	and	the	goal	is	to	be	able	to	serve	this	page	up	in
our	Express	app	without	having	to	manually	configure	it.

Serving	 the	 HTML	 page	 in	 the
Express	app
We'll	 serve	 our	 HTML	 page	 in	 the	 Express	 app	 using	 a	 piece	 of	 Express
middleware.	Middleware	 lets	us	configure	how	our	Express	application	works,
and	 it's	something	we'll	use	extensively	 throughout	 the	book.	For	now,	we	can
think	of	it	kind	of	like	a	third-party	add-on.

In	 order	 to	 add	 some	 middleware,	 we'll	 call	 app.use.	 The	 app.use	 takes	 the
middleware	 function	we	want	 to	 use.	 In	 our	 case,	we'll	 use	 a	 built-in	 piece	of
middleware.	So	inside	server.js,	next	to	the	variable	app	statement,	we'll	provide
the	function	off	of	the	express	object:

const	express	=	require('express');

var	app	=	express();

app.use();

We	will	be	making	our	own	middleware	in	the	next	chapter,	so	it'll	become	clear
exactly	 what's	 getting	 passed	 into	 use	 in	 a	 little	 bit.	 For	 now,	 we'll	 pass	 in
express.static	and	to	call	it	as	a	function:

var	app	=	express();

app.use(express.static());

Now	express.static	takes	the	absolute	path	to	the	folder	you	want	to	serve	up.	If
we	want	to	be	able	to	serve	up	/help,	we'll	need	to	provide	the	path	to	the	public
folder.	This	means	we	need	to	specify	the	path	from	the	root	of	our	hard	drive,
which	can	 be	 tricky	 because	 your	 projects	move	 around.	Luckily	we	 have	 the
__dirname	variable:

app.use(express.static(__dirname));

This	 is	 the	 variable	 that	 gets	 passed	 into	 our	 file	 by	 the	wrapper	 function	we
explored.	The	__dirname	variable	stores	the	path	to	your	projects	directory.	In	this
case,	it	stores	the	path	to	node-web-server.	All	we	have	to	do	is	concatenate	/public
to	tell	it	to	use	this	directory	for	our	server.	We'll	concatenate	using	the	plus	sign

and	the	string,	/public:

app.use(express.static(__dirname	+	'/public'));

With	 this	 in	 place,	 we	 are	 now	 done.	We	 have	 our	 server	 set	 up	 and	 there's
nothing	 else	 to	 do.	 Now	 we	 should	 be	 able	 to	 restart	 our	 server	 and	 access
/help.html.	We	should	now	see	the	HTML	page	we	have.	In	the	Terminal	we	can
now	start	the	app	using	nodemon	server.js:

Once	 the	 app	 is	 up	 and	 running	we	 can	 visit	 it	 in	 the	 browser.	We'll	 start	 by
going	to	localhost:3000:

Here	we	get	our	JSON	data,	which	is	exactly	what	we	expect.	And	if	we	change
that	URL	to	/help.html	we	should	get	our	Help	Page	rendering:

And	that	is	exactly	what	we	get,	we	have	our	Help	Page	showing	to	the	screen.
We	 have	 the	 Help	 Page	 title	 as	 the	 head,	 and	 the	 Some	 text	 here	 paragraph
following	as	body.	Being	able	 to	 set	up	a	 static	directory	 that	 easily	has	made
Node	the	go-to	choice	for	simple	projects	that	don't	really	require	a	backend.	If
you	want	to	create	a	Node	app	for	the	sole	purpose	of	serving	up	a	directory	you
can	do	it	in	about	four	lines	of	code:	the	first	three	lines	and	the	last	line	in	the
server.js	file.

The	call	to	app.listen
Now	 one	more	 thing	 we'd	 discuss	 is	 the	 call	 to	 app.listen(3000).	 The	 app.listen
does	 take	 a	 second	 argument.	 It's	 optional.	 It's	 a	 function.	 This	will	 let	 us	 do
something	 once	 the	 server	 is	 up	 because	 it	 can	 take	 a	 little	 bit	 of	 time	 to	 get
started.	In	our	case	we'll	assign	console.log	a	message:	Server	is	up	on	port	3000:

app.listen(3000,	()	=>	{

		console.log('Server	is	up	on	port	3000');

});

Now	it's	really	clear	to	the	person	who	started	the	app	that	the	server	is	actually
ready	to	go	because	the	message	will	print	to	the	screen.	If	we	save	server.js,	and
go	back	into	the	Terminal	we	can	see	Server	is	up	on	port	3000	prints:

Back	inside	the	browser	we	can	refresh	and	we	get	the	exact	same	results:

That's	 it	 for	 this	section.	We	now	have	a	static	directory	where	we	can	include
JavaScript,	CSS,	images,	or	any	other	file	types	we	like.

Rendering	templates
In	the	last	couple	sections,	we	looked	at	multiple	ways	that	we	can	render	HTML
using	Express.	We	passed	some	HTML	into	response.send,	but	obviously	that	was
not	ideal.	It's	a	real	pain	to	write	the	markup	in	a	string.	We	also	created	a	public
directory	where	we	can	have	our	static	HTML	files,	such	as	our	help	file,	and	we
can	serve	these	up	to	the	browser.	Both	of	those	work	great	but	there	is	a	third
solution,	and	 that	will	be	 the	 topic	 in	 this	section.	The	solution	 is	a	 templating
engine.

A	 templating	 engine	 will	 let	 you	 render	 HTML	 but	 do	 it	 in	 a	 dynamic	 way,
where	we	can	 inject	values,	 such	as	 a	username	or	 the	 current	date,	 inside	 the
template,	kind	of	like	we	would	in	Ruby	or	PHP.	Using	this	templating	engine,
we'll	 also	 be	 able	 to	 create	 reusable	markup	 for	 things	 such	 as	 a	 header	 or	 a
footer,	which	 is	 going	 to	 be	 the	 same	 on	 a	 lot	 of	 your	 pages.	 This	 templating
engine,	 handlebars,	 will	 be	 the	 topic	 of	 this	 section	 and	 the	 next,	 so	 let's	 get
started.

Installing	the	hbs	module
The	first	thing	we'll	do	is	install	the	hbs	module.	This	is	a	handlebars	view	engine
for	Express.	Now	there	are	a	ton	of	other	view	engines	for	Express,	for	example
EJS	or	Pug.	We'll	go	with	handlebars	because	its	syntax	is	great.	It's	a	great	way
to	get	started.

Now	we'll	see	a	few	things	inside	of	the	browser.	First	up	we	will	visit	handlebarsj
s.com.	This	is	the	documentation	for	handlebars.	It	shows	you	exactly	how	to	use
all	of	its	features,	so	if	we	want	to	use	anything,	we	can	always	go	here	to	learn
how	to	use	it.

Now	we'll	install	a	module	that's	a	wrapper	around	handlebars.	It	will	let	us	use
it	as	an	Express	view	engine.	To	view	this,	we'll	go	to	npmjs.com/package/hbs.

This	 is	 the	URL	structure	for	all	packages.	So	if	you	ever	want	 to
find	a	packages	page,	you	simply	 type	npmjs.com/package/	the	package
name.

This	module	is	pretty	popular.	It's	a	really	great	view	engine.	They	have	a	lot	of
documentation.	 I	 just	 want	 to	 let	 you	 know	 this	 exists	 as	 well.	 Now	 we	 can
install	and	integrate	it	into	our	application.	In	the	Terminal,	we'll	install	hbs	using
npm	install,	 the	module	name	 is	hbs,	and	 the	most	 recent	version	 is	@4.0.1.	 I	will
use	the	save	flag	to	update	package.json:

Now	 actually	 configuring	Express	 to	 use	 this	 handlebars	 view	 engine	 is	 super

http://handlebarsjs.com/
https://www.npmjs.com/package/hbs

simple.	All	 we	 have	 to	 do	 is	 import	 it	 and	 add	 one	 statement	 to	 our	 Express
configuration.	We'll	do	just	that	inside	Atom.

Configuring	handlebars
Inside	Atom,	let's	get	started	by	loading	in	handlebars	const	hbs	=	require	hbs,	as
shown	and	from	here	we	can	add	that	one	line:

const	express	=	require('express');

const	hbs	=	require('hbs');

Next,	let's	call	app.set	where	we	call	app.use	for	Express	static:

app.set

app.use(express.static(__dirname	+	'/public'));

This	 lets	 us	 set	 some	 various	 Express-related	 configurations.	 There's	 a	 lot	 of
built-in	ones.	We'll	 be	 talking	 about	more	 of	 them	 later.	 For	 now,	 about	what
we'll	do	is	pass	in	a	key-value	pair,	where	 the	key	 is	 the	 thing	you	want	 to	set
and	the	value	is	the	value	you	want	to	use.	In	this	case,	the	key	we're	setting	is
view	engine.	 This	will	 tell	 Express	what	 view	 engine	we'd	 like	 to	 use	 and	we'll
pass	in	inside	of	quotes	hbs:

app.set('view	engine',	'hbs');

app.use(express.static(__dirname	+	'/public'));

This	is	all	we	need	to	do	to	get	started.

Our	first	template
Now	in	order	 to	create	our	very	 first	 template,	what	we'd	 like	 to	do	 is	make	a
directory	in	the	project	called	views.	The	views	is	the	default	directory	that	Express
uses	for	your	templates.	So	what	we'll	do	is	add	the	views	directory	and	then	we'll
add	a	template	inside	it.	We'll	make	a	template	for	our	About	Page.

Inside	 views,	we'll	 add	 a	 new	 file	 and	 the	 file	 name	will	 be	 about.hbs.	 The	 hbs
handlebars	extension	is	important.	Make	sure	to	include	it.

Now	Atom	already	knows	how	to	parse	hbs	files.	At	the	bottom	of	the	about.hbs
file,	 where	 it	 shows	 the	 current	 language	 it's	 using,	 HTML	 in	 parentheses
mustache.

Mustache	 is	 used	 as	 the	 name	 for	 this	 type	 of	 handlebars	 syntax
because	when	you	type	the	curly	braces	({)	I	guess	they	kind	of	look
like	mustaches.

What	we'll	do	to	get	started	though	is	 take	the	contents	of	help.html	and	copy	 it
directly.	Let's	copy	this	file	so	we	don't	have	to	rewrite	that	boilerplate,	and	we'll
paste	it	right	in	the	about.hbs:

<!DOCTYPE	html>

<html>

		<head>

				<meta	charset="utf-8">

				<title>Help	Page</title>

		</head>

		<body>

				<h1>Help	Page</h1>

				<p>Some	text	here</p>

		</body>

</html>

Now	we	can	 try	 to	 render	 this	page.	We'll	change	 the	h1	 tag	from	help	page	 to
about	page:

		<body>

				<h1>About	Page</h1>

				<p>Some	text	here</p>

		</body>

We'll	 talk	 about	 how	 to	dynamically	 render	 stuff	 inside	 this	 page	 later.	Before
that	we'd	like	to	just	get	this	rendering.

Getting	 the	 static	 page	 for
rendering
Inside	server.js,	we	already	have	a	root	for	/about,	which	means	we	can	render	our
hbs	template	instead	of	sending	back	this	about	page	string.	We	will	remove	our
call	to	res.send	and	we'll	replace	it	with	res.render:

app.get('/about',	(req,	res)	=>	{

		res.render

});

Render	will	 let	us	render	any	of	 the	 templates	we	have	set	up	with	our	current
view	engine	about.hbs	file.	We	do	indeed	have	the	about	template	and	we	can	pass
that	name,	about.hbs,	in	as	the	first	and	only	argument.	We'll	render	about.hbs:

app.get('/about',	(req,	res)	=>	{

		res.render('about.hbs');

});

This	will	be	enough	to	get	that	static	page	rendering.	We'll	save	server.js	and	in
the	 Terminal,	 we'll	 clear	 the	 output	 and	 we'll	 run	 our	 server	 using	 nodemon
server.js:

Once	the	server	is	up	and	running,	it	is	showing	on	port	3000.	We	can	open	up	this
/about	 URL	 and	 see	 what	 we	 get.	 We'll	 head	 into	 Chrome	 and	 open	 up
localhost:3000	/about,	and	when	we	do	that,	we	get	the	following:

We	 get	my	 about	 page	 rendered	 just	 like	we'd	 expect	 it.	We've	 got	 an	 h1	 tag,
which	shows	up	nice	and	big,	and	we	have	our	paragraph	tag,	which	shows	up
the	following.	So	far	we	have	used	hbs	but	we	haven't	actually	used	any	of	 its
features.	Right	now,	we're	rendering	a	dynamic	page,	so	we	might	as	well	have
not	 even	 included	 it.	What	 I	want	 to	 do	 is	 talk	 about	 how	we	 can	 inject	 data
inside	of	our	templates.

Injecting	data	inside	of	templates
Let's	 come	 up	 with	 some	 things	 that	 we	 want	 to	 make	 dynamic	 inside	 our
handlebars	file.	First	up,	we'll	make	this	h1	 tag	dynamic	so	 the	page	name	gets
passed	into	the	template	in	about.hbs	page,	and	we'll	also	add	a	footer.	For	now,
we'll	just	make	that	a	simple	footer	tag:

				<footer>

						

				</footer>

		</body>

</html>

Inside	 of	 the	 footer,	 we'll	 add	 a	 paragraph	 and	 that	 paragraph	 will	 have	 the
copyright	 for	our	website.	We'll	 just	 say	 something	 like	copyright	 followed	by
the	year,	which	is	2018:

				<footer>

						<p>Copyright	2018</p>

				</footer>

Now	year	should	also	be	dynamic,	so	that	as	the	years	change,	we	don't	have	to
manually	update	our	markup.	We'll	look	at	how	to	make	both	the	2018	and	the
about	 page	 dynamic,	 which	 means	 they're	 getting	 passed	 in	 instead	 of	 being
typed	in	the	handlebars	file.

In	order	to	do	this,	we'll	have	to	do	two	things:

We'll	have	to	pass	some	data	into	the	template.	This	will	be	an	object	a	set
of	key	value	pairs,	and
We'll	have	to	learn	how	to	pull	off	some	of	those	key-value	pairs	inside	of
our	handlebars	file

Passing	in	data	is	pretty	simple.	All	we	have	to	do	is	specify	a	second	argument
to	 res.render	 in	 server.js.	 This	 will	 take	 an	 object,	 and	 on	 this	 object	 we	 can
specify	whatever	we	like.	We	might	have	a	pageTitle	 that	gets	set	equal	 to	About
Page:

app.get('/about',	(req,	res)	=>	{

		res.render('about.hbs',	{

				pageTitle:	'About	Page'

		});

});

We	have	one	piece	of	data	getting	injected	in	the	template.	It's	not	used	yet	but	it
is	 indeed	getting	 injected.	We	could	also	add	another	one	 like	currentYear.	We'll
put	currentYear	next	to	the	pageTitle	and	we'll	set	currentYear	equal	to	the	actual	year
off	of	the	date	JavaScript	constructor.	This	will	look	something	like	this:

app.get('/about',	(req,	res)	=>	{

		res.render('about.hbs',	{

				pageTitle:	'About	Page',

				currentYear:	new	Date().getFullYear()

		});

});

We'll	 create	 a	new	date	which	makes	 a	new	 instance	of	 the	date	object.	Then,
we'll	use	a	method	called	getFullYear,	which	returns	the	year.	In	this	case,	it	would
return	2018,	 just	 like	 this	 .getFullYear.	Now	we	have	a	 pageTitle	 and	a	 currentYear.
These	are	both	getting	passed	in,	and	we	can	use	them.

In	order	to	use	these	pieces	of	data,	what	we	have	to	do	inside	of	our	template	is
use	 that	handlebars	 syntax	which	 looks	a	 little	bit	 like	 shown	 in	 the	 following
code.	We	start	by	opening	up	two	curly	braces	in	the	h1	 tag,	 then	we	close	two
curly	 braces.	 Inside	 the	 curly	 braces,	 we	 can	 reference	 any	 of	 the	 props	 we
passed	 in.	 In	 this	 case,	 let's	 use	 pageTitle,	 and	 inside	 our	 copyright	 paragraph,
we'll	use,	inside	of	double	curly	braces,	currentYear:

		<body>

				<h1>{{pageTitle}}</h1>

				<p>Some	text	here</p>

				<footer>

						<p>Copyright	2018</p>

				</footer>

		</body>

</html>

With	 this	 in	 place,	 we	 now	 have	 two	 pieces	 of	 dynamic	 data	 getting	 injected
inside	our	application.	Now	nodemon	should	have	restarted	 in	 the	background,
so	there's	no	need	to	manually	do	anything	there.	When	we	refresh	the	page,	we
do	still	get	About	Page,	which	is	great:

This	 comes	 from	 the	 data	we	 defined	 in	 server.js,	 and	we	 get	Copyright	 2018
showing	up.	Well	this	web	page	is	pretty	simple	and	doesn't	look	that	interesting.
At	 least	you	know	how	 to	create	 those	 servers	and	 inject	 that	data	 inside	your
web	page.	All	you	have	to	do	from	here	is	add	some	custom	styles	to	get	things
looking	nice.

Before	 we	 go	 ahead,	 let's	 move	 into	 the	 about	 file	 and	 swap	 out	 the	 title.
Currently,	it	says	Help	Page.	That's	left	over	from	the	public	folder.	Let's	change	it
to	Some	Website:

<!DOCTYPE	html>

<html>

		<head>

				<meta	charset="utf-8">

				<title>Some	Website</title>

		</head>

		<body>

				<h1>{{pageTitle}}</h1>

				<p>Some	text	here</p>

				<footer>

						<p>Copyright	2018</p>

				</footer>

		</body>

</html>

Now	that	we	have	this	in	place.	Next,	we'll	create	a	brand	new	template	and	that
template	is	going	 to	get	 rendered	when	someone	visits	 the	root	of	our	website,
the	/	route.	Now	currently,	we	render	some	JSON	data:

app.get('/',	(req,	res)	=>	{

		//	res.send('<h1>Hello	Express!</h1>');

		res.send({

				name:	'Andrew',

				likes:	[

						'Biking',

						'Cities'

]

		});

What	we	want	to	do	is	replace	this	with	a	call	to	response.render,	rendering	a	brand
new	view.

Rendering	 the	 template	 for	 the
root	of	the	website
To	get	started,	we'll	duplicate	the	about.hbs	file	so	we	can	start	customizing	it	for
our	needs.	We'll	duplicate	it,	and	call	this	one	home.hbs:

<!DOCTYPE	html>

<html>

		<head>

				<meta	charset="utf-8">

				<title>Some	Website</title>

		</head>

		<body>

				<h1>{{pageTitle}}</h1>

				<p>Some	text	here</p>

				<footer>

						<p>Copyright	2018</p>

				</footer>

		</body>

</html>

Now	from	here	most	things	are	going	to	stay	the	same.	We'll	keep	the	pageTitle	in
place.	We'll	also	keep	the	Copyright	and	footer	following.	What	we	want	to	change
though	is	this	paragraph.	It	was	fine	that	the	About	Page	as	a	static	one,	but	for	the
home	page,	we'll	set	it	equal	to,	inside	curly	braces,	the	welcomeMessage	property:

		<body>

				<h1>{{pageTitle}}</h1>

				<p>{{welcomeMessage}}</p>

				<footer>

						<p>Copyright	{{currentYear}}</p>

				</footer>

		</body>

Now	 welcomeMessage	 is	 only	 going	 to	 be	 available	 on	 home.hbs,	 which	 is	 why	we
have	specifying	it	in	home.hbs	but	not	in	about.hbs.

Next	up,	we	needed	to	call	response	render	inside	of	the	callback.	This	will	let	us
actually	render	the	page.	We'll	add	response.render,	passing	in	the	template	name
we	want	to	render.	This	one	is	called	home.hbs.	Then	we'll	pass	in	our	data:

app.get('/',	(req,	res)	=>	{

		res.render('home.hbs',	{

		})

});

Now	to	get	started,	we	can	pass	in	the	page	title.	We'll	set	this	equal	to	Home	Page
and	we'll	pass	 in	some	sort	of	generic	welcome	message	-	Welcome	to	my	website.
Then	 we'll	 pass	 in	 the	 currentYear,	 and	 we	 already	 know	 how	 to	 fetch	 the
currentYear:	new	Date(),	and	on	the	date	object,	we'll	call	the	getFullYear	method:

	res.render('home.hbs',	{

				pageTitle:	'Home	Page',

				welcomeMessage:	'Welcome	to	my	website',

				currentYear:	new	Date().getFullYear()

		})

With	 this	 in	place,	all	we	needed	 to	do	 is	 save	 the	 file,	which	 is	automatically
going	to	restart	the	server	using	nodemon	and	refresh	the	browser.	When	we	do
that,	we	get	the	following:

We	 get	 our	 Home	 Page	 title,	 our	 Welcome	 to	 my	 website	 message,	 and	 my
copyright	with	the	year	2018.	And	if	we	go	to	/about,	everything	still	looks	great.
We	have	our	dynamic	page	 title	and	copyright	and	we	have	our	static	some	text
here	text:

With	this	in	place,	we	are	now	done	with	the	very	basics	of	handlebars.	We	see
how	this	 can	 be	 useful	 inside	 of	 a	 real-world	web	 app.	Aside	 from	 a	 realistic
example	such	as	the	copyright,	other	reasons	you	might	use	this	is	to	inject	some
sort	of	dynamic	user	data	-	things	such	as	a	username	and	email	or	anything	else.

Now	that	we	have	a	basic	understanding	about	how	to	use	handlebars	to	create
static	pages,	we'll	 look	 at	 some	more	 advanced	 features	of	hbs	 inside	 the	next
section.

Advanced	templates
In	this	section,	we'll	 learn	a	few	more	advanced	features	that	handlebars	has	to
offer.	 This	 will	 make	 it	 easier	 to	 render	 our	markup,	 especially	markup	 that's
used	 in	multiple	 places,	 and	 it	 will	make	 it	 easier	 to	 inject	 dynamic	 data	 into
your	web	pages.

In	 order	 to	 illustrate	 the	 first	 thing	 we'll	 talk	 about,	 I	 want	 to	 open	 up	 both
about.hbs	and	home.hbs,	 and	you'll	notice	down	at	 the	bottom	 that	 they	both	have
the	exact	same	footer	code	as	follows:

<footer>

		<p>Copyright	{{currentYear}}</p>

</footer>

We	have	a	little	copyright	message	for	both	and	they	both	have	the	same	header
area,	which	is	the	h1	tag.

Now	this	really	isn't	a	problem	because	we	have	two	pages,	but	as	you	add	more
and	more	pages	it's	going	to	become	a	real	pain	to	update	your	header	and	your
footer.	You'll	have	to	go	into	every	file	and	manage	the	code	there,	but	what	we'll
talk	about	instead	is	something	called	a	partial.

Adding	partials
A	 partial	 is	 a	 partial	 piece	 of	 your	 website.	 It's	 something	 you	 can	 reuse
throughout	 your	 templates.	 For	 example,	 we	 might	 have	 a	 footer	 partial	 that
renders	 the	 footer	 code.	You	 can	 include	 that	 partial	 on	 any	 page	 you	 need	 a
footer.	You	could	do	the	same	thing	for	header.	In	order	to	get	started,	the	first
thing	we	need	 to	do	 is	set	up	our	server.js	 file	 just	 a	 little	bit	 to	 let	handlebars
know	that	we	want	to	add	support	for	partials.

In	 order	 to	 do	 this,	 we'll	 add	 one	 line	 of	 code	 in	 the	 server.js	 file	 where	 we
declared	 our	 view	 engine	 previously,	 and	 it	 will	 look	 something	 like	 this
(hbs.registerPartials):

hbs.registerPartials

app.set('view	engine',	'hbs');

app.use(express.static(__dirname	+	'/public'));

Now	registerPartials	is	going	to	take	the	directory	you	want	to	use	for	all	of	your
handlebar	partial	files,	and	we'll	be	specifying	that	directory	as	the	first	and	only
argument.	Once	again,	this	does	need	to	be	the	absolute	directory,	so	I'll	use	the
__dirname	variable:

hbs.registerPartials(__dirname)

Then	we	can	concatenate	the	rest	of	the	path,	which	will	be	/views.	In	this	case,	I
want	you	to	use	/partials.

hbs.registerPartials(__dirname	+	'/views/partials')

We'll	 store	our	 partial	 files	 right	 inside	a	directory	 in	 the	 views	 folder.	Now	we
can	create	that	folder	right	in	views	called	partials.

Inside	partials,	we	 can	put	 any	of	 the	handlebars	 partials	we	 like.	To	 illustrate
how	they	work,	we'll	create	a	file	called	footer.hbs:

Inside	footer.hbs,	we'll	have	access	to	the	same	handlebars	features,	which	means
we	can	write	some	markup,	we	can	inject	variables,	we	can	do	whatever	we	like.
For	now,	what	we'll	do	is	copy	the	footer	tag	exactly,	pasting	it	inside	footer.hbs:

<footer>

		<p>Copyright	{{getCurrentYear}}</p>

</footer>

Now	we	have	our	footer.hbs	file,	this	is	the	partial	and	we	can	include	it	in	both
about.hbs	and	home.hbs.	 In	 order	 to	 do	 that,	we'll	 delete	 the	 code	 that	we	 already
have	in	the	partial	and	we'll	replace	it	with	opening	and	closing	two	curly	braces.
Now	instead	of	 injecting	data,	we	want	 to	 inject	 a	 template	and	 the	 syntax	 for
that	is	to	add	a	greater	than	symbol	with	a	space,	followed	by	the	partial	name.
In	our	case	that	partial	is	called	footer,	so	we	can	add	this	right	here:

				{{>	footer}}

		</body>

</html>

Then	I	can	save	about	and	do	the	same	thing	over	in	home.hbs.	We	now	have	our
footer	partial.	It's	rendering	on	both	pages.

Working	of	partial
To	illustrate	how	this	works,	I'll	fire	up	my	server	and	by	default	nodemon;	it's	not
going	to	watch	your	handlebars	files.	So	if	you	make	a	change,	the	website's	not
going	to	render	as	you	might	expect.	We	can	fix	this	by	running	nodemon,	passing
in	server.js	and	providing	the	-e	flag.	This	lets	us	specify	all	of	the	extensions	we
want	to	watch.	In	our	case,	we'll	watch	the	JS	extension	for	the	server	file,	and
after	the	comma,	the	hds	extension:

Now	our	app	is	up	and	running,	we	can	refresh	things	over	in	the	browser,	and
they	should	look	the	same.	We	have	our	about	page	with	our	footer:

We	have	our	home	page	with	the	exact	same	footer:

The	advantage	now	is	if	we	want	to	change	that	footer,	we	just	do	it	in	one	place,
in	the	footer.hbs	file.

We	 can	 add	 something	 to	 our	 footer	 paragraph	 tag.	 Let's	 add	 a	 little	 message
created	by	Andrew	Mead	with	a	-:

<footer>

	<p>Created	By	Andrew	Mead	-	Copyright	{{CurrentYear}}</p>

</footer>

Now,	 save	 the	 file	 and	when	we	 refresh	 the	 browser,	we	 have	 our	 brand	 new
footer	for	Home	Page:

We	have	our	brand	new	footer	for	About	Page:

It	will	show	up	for	both	the	home	page	and	the	about	page.	There's	no	need	to	do
you	 anything	 manual	 in	 either	 of	 these	 pages,	 and	 this	 is	 the	 real	 power	 of
partials.	You	have	some	code,	you	want	 to	reuse	it	 inside	your	website,	so	you
simply	create	a	partial	and	you	inject	it	wherever	you	like.

The	Header	partial
Now	that	we	have	the	footer	partial	in	place,	let's	create	the	header	partial.	That
means	we'll	need	to	create	a	brand	new	file	header.hbs.	We'll	want	to	add	the	h1	tag
inside	that	file	and	then	we'll	render	the	partial	in	both	about.hbs	and	home.hbs.	Both
pages	should	still	look	the	same.

We'll	get	started	by	creating	a	new	file	in	the	partials	folder	called	header.hbs.

Inside	header.hbs,	we'll	take	the	h1	tag	from	our	website,	paste	it	right	inside	and
save	it:

<h1>{{pageTitle}}</h1>

Now	we	can	use	this	header	partial	in	both	about	and	home	files.	Inside	of	about,	we
need	 to	do	 this	using	 the	 syntax,	 the	double	curly	braces	with	 the	greater	 than
sign,	followed	by	the	partial	name	header.	We'll	do	 the	exact	same	thing	for	 the
home	page.	In	the	home	page,	we'll	delete	our	h1	 tag,	 inject	 the	header	and	save	the
file:

Now	we'd	create	something	slightly	different	just	so	we	can	test	that	it	actually	is
using	the	partial.	We'll	type	123	right	after	the	h1	tag	in	header.hbs:

<h1>{{pageTitle}}</h1>123

Now	that	all	the	files	are	saved,	we	should	be	able	to	refresh	the	browser,	and	we

see	about	page	with	123	printing,	which	is	fantastic:

This	means	the	header	partial	is	indeed	working,	and	if	I	go	back	to	the	home	page,
everything	still	looks	great:

Now	that	we	have	the	header	broken	out	into	its	own	file,	we	can	do	all	sorts	of
things.	We	 can	 take	 our	 h1	 tag	 and	 put	 it	 inside	 of	 a	 header	 tag,	 which	 is	 the
appropriate	way	to	declare	your	header	inside	of	HTML.	As	shown,	we	add	an
opening	 and	 closing	 header	 tag.	We	 can	 take	 the	 h1	 and	 we	 can	 move	 it	 right
inside:

<header>

	<h1>{{pageTitle}}</h1>

</header>

We	could	also	add	some	links	to	the	other	pages	on	our	website.	We	could	add
an	anchor	tag	for	the	homepage	by	adding	an	a	tag:

<header>

	<h1>{{pageTitle}}</h1>

	<p><a></p>

</header>

Inside	the	a	tag,	we'll	specify	the	link	text	we'd	like	to	show	up.	I'll	go	with	Home,
then	inside	the	href	attribute,	we	can	specify	the	path	the	link	should	take	you	to,
which	would	just	be	/:

<header>

	<h1>{{pageTitle}}</h1>

	<p>Home</p>

</header>

Then	we	can	take	the	same	paragraph	tag,	copy	it	and	paste	it	in	the	next	line	and
make	a	link	for	the	about	page.	I'll	change	the	page	text	to	About,	the	link	text,	and
the	URL	instead	of	going	to	/	will	go	to	/about:

<header>

	<h1>{{pageTitle}}</h1>

	<p>Home</p>

	<p>About</p>

</header>

Now	we've	made	a	change	to	our	header	file	and	it	will	be	available	on	all	of	the
pages	of	our	website.	I'm	on	the	home	page.	If	I	refresh	it,	I	get	Home	and	About
page	links:

I	can	click	on	the	About	to	go	to	the	About	Page:

Similarly,	I	can	click	on	Home	to	come	right	back.	All	of	this	is	much	easier	to
manage	now	that	we	have	partials	inside	of	our	website.

The	Handlebars	helper
Now	before	we	go	further,	there	is	one	more	thing	I	want	to	talk	about,	that	is,	a
handlebars	 helper.	 Handlebars	 helpers	 are	 going	 to	 be	ways	 for	 us	 to	 register
functions	to	run	to	dynamically	create	some	output.	For	example,	inside	server.js,
we	currently	 inject	 the	current	year	 inside	of	both	of	our	 app.get	 templates	 and
that's	not	really	necessary.

There	 is	 a	 better	 way	 to	 pass	 this	 data	 in,	 and	 this	 data	 shouldn't	 need	 to	 be
provided	because	we'll	always	use	the	exact	same	function.	We'll	always	take	the
new	date	 getfullYear	 return	 value	 passing	 it	 in.	 Instead,	we'll	 use	 a	 partial,	 and
we'll	 set	ours	up	right	now.	Now	a	partial	 is	nothing	more	 than	a	 function	you
can	run	from	inside	of	your	handlebars	templates.

All	we	need	to	do	is	register	it	and	I'll	do	that	in	the	server.js,	following	on	from
where	we	set	up	our	Express	middleware.	As	shown	in	the	following	code,	we'll
call	hbs.register	and	we'll	be	registering	a	helper,	so	we'll	call	a	registerHelper:

hbs.registerPartials(__dirname	+	'/views/partials')

app.set('view	engine',	'hbs');

app.use(express.static(__dirname	+	'/public'));

hbs.registerHelper();

Now	registerHelper	takes	two	arguments:

The	name	of	the	helper	as	the	first	argument
The	function	to	run	as	the	second	argument.

The	 first	 argument	 right	 here	 will	 be	 getCurrentYear	 in	 our	 case.	We'll	 create	 a
helper	that	returns	that	current	year:

hbs.registerHelper('getCurrentYear',);

The	second	argument	will	be	our	function.	I'll	use	an	arrow	function	(=>):

hbs.registerHelper('getCurrentYear',	()	=>	{

});

Anything	 we	 return	 from	 this	 function	 will	 get	 rendered	 in	 place	 of	 the
getCurrentYear	 call.	 That	 means	 if	 we	 call	 getCurrentYear	 inside	 the	 footer,	 it	 will
return	the	year	from	the	function,	and	that	data	is	what	will	get	rendered.

In	the	server.js,	we	can	return	the	year	by	using	return	and	having	the	exact	same
code	we	have	app.get	object:

hbs.registerHelper('getCurrentYear'),	()	=>	{

	return	new	Date().getFullYear()

});

We'll	make	a	new	date	and	we'll	call	its	getFullYear	method.	Now	that	we	have	a
helper,	we	can	remove	this	data	from	every	single	one	of	our	rendering	calls:

hbs.registerHelper('getCurrentYear,	()	=>	{

	return	new	Date().getFullYear()

});

app.get('/',	(req,	res)	=>	{

	res.render('home.hbs',	{

			pageTitle:	'Home	Page',

			welcomeMessage:	'Welcome	to	my	website'

	});

});

app.get('/about',	(req,	res)	=>	{

	res.render('about.hbs',	{

			pageTitle:	'About	Page'

	});

});

This	is	going	to	be	really	fantastic	because	there	really	is	no	need	to	compute	it
for	 every	 page	 since	 it's	 always	 the	 same.	 Now	 that	 we've	 removed	 that	 data
from	the	 individual	calls	 to	 render,	we	will	have	 to	use	getCurrentYear	 inside	 the
footer.hbs	file:

<footer>

	<p>Created	By	Andrew	Mead	-	Copyright	{{getCurrentYear}}</p>

</footer>

Instead	 referencing	 the	 current	 year,	 we	 will	 use	 the	 helper	 getCurrentYear,	 and
there's	 no	 need	 for	 any	 special	 syntax.	When	 you	 use	 something	 inside	 curly
braces	 that	 clearly	 isn't	 a	 partial,	 handlebars	 is	 first	 going	 to	 look	 for	 a	 helper
with	 that	 name.	 If	 there	 is	 no	 helper,	 it'll	 look	 for	 a	 piece	 of	 data	 with	 that
getCurrentYear	name.

In	this	case,	it	will	find	the	helper,	so	everything	will	work	as	expected.	We	can
now	 save	 footer.hbs,	move	 into	 the	 browser,	 and	give	 things	 a	 refresh.	When	 I

refresh	the	page,	we	still	get	Copyright	2018	in	Home	Page:

If	I	go	to	the	About	Page,	everything	looks	great:

We	 can	 prove	 that	 data	 is	 coming	 back	 from	 our	 helper	 by	 simply	 returning
something	else.	 Let's	 comment	 out	 our	 helper	 code	 in	 server.js	 and	 before	 the
comment,	we	can	use	return	test,	just	like	this:

hbs.registerHelper('getCurrentYear',	()	=>	{

	return	'test';//return	new	Date().getFullYear()

});

We	can	now	save	server.js,	refresh	the	browser,	and	we	get	tests	showing	up	as
shown	here:

So	 the	data	 that	 renders	 right	 after	 the	Copyright	word	 is	 indeed	coming	 from
that	helper.	Now	we	can	remove	the	code	so	we	return	the	proper	year.

Arguments	in	Helper
Helpers	can	also	take	arguments,	and	this	is	really	useful.	Let's	create	a	second
helper	that's	going	to	be	a	capitalization	helper.	We'll	call	the	helper	screamIt	and
its	job	will	be	to	take	some	text	and	it	will	return	that	text	in	uppercase.

In	order	to	do	this,	we	will	be	calling	hbs.registerHelper	again.	This	helper	will	be
called	screamIt,	and	it	will	take	a	function	because	we	do	need	to	run	some	code
in	order	to	do	anything	useful:

hbs.registerHelper('getCurrentYear',	()	=>	{

		return	new	Date().getFullYear()

});

hbs.registerHelper('screamIt',	()	=>	{

});

Now	screamIt	is	going	to	take	text	to	scream	and	all	it	will	do	is	call	on	that	string
the	toUpperCase	method.	We'll	return	text.toUpperCase,	just	like	this:

hbs.registerHelper('screamIt',	(text)	=>	{

		return	text.toUpperCase();

});

Now	we	 can	 actually	 use	 screamIt	 in	 one	 of	 our	 files.	 Let's	move	 into	 home.hbs.
Here,	 we	 have	 our	 welcome	 message	 in	 the	 p	 tag.	 We'll	 remove	 it	 and	 we'll
scream	the	welcome	message.	In	order	to	pass	data	into	one	of	our	helpers,	we
first	 have	 to	 reference	 the	 helper	 by	 name,	 screamIt,	 then	 after	 a	 space	we	 can
specify	whatever	data	we	want	to	pass	in	as	arguments.

In	this	case,	we'll	pass	 in	the	welcome	message,	but	we	could	also	pass	in	two
arguments	by	typing	a	space	and	passing	in	some	other	variable	which	we	don't
have	access	to:

<!DOCTYPE	html>

<html>

		<head>

				<meta	charset="utf-8">

				<title>Some	Website</title>

		</head>

		<body>

				{{>	header}}

				<p>{{screamIt	welcomeMessage}}</p>

				{{>	footer}}

		</body>

</html>

For	now,	we'll	use	it	like	this,	which	means	we'll	call	the	screamIt	helper,	passing
in	 one	 argument	 welcomeMessage.	 Now	we	 can	 save	 home.hbs,	 move	 back	 into	 the
browser,	go	to	the	Home	Page	and	as	shown	following,	we	get	WELCOME	TO
MY	WEBSITE	in	all	uppercase:

Using	handlebars	helpers,	we	can	create	both	functions	that	don't	take	arguments
and	functions	that	do	take	arguments.	So	when	you	need	to	do	something	to	the
data	inside	of	your	web	page,	you	can	do	that	with	JavaScript.	Now	that	we	have
this	in	place,	we	are	done.

Express	Middleware
In	this	section,	you'll	learn	how	to	use	Express	middleware.	Express	middleware
is	 a	 fantastic	 tool.	 It	 allows	 you	 to	 add	 on	 to	 the	 existing	 functionality	 that
Express	has.	So	if	Express	doesn't	do	something	you'd	like	it	to	do,	you	can	add
some	middleware	and	teach	 it	how	to	do	 that	 thing.	Now	we've	already	used	a
little	bit	of	middleware.	In	server.js	file,	we	used	some	middleware	and	we	teach
Express	how	to	read	from	a	static	directory,	which	is	shown	here:

app.use(express.static(__dirname	+	'/public'));

We	called	app.use,	which	is	how	you	register	middleware,	and	then	we	provided
the	middleware	function	we	want	to	use.

Now	middleware	 can	 do	 anything.	You	 could	 just	 execute	 some	 code	 such	 as
logging	something	to	the	screen.	You	could	make	a	change	to	the	request	or	the
response	 object.	 We'll	 do	 just	 that	 in	 the	 next	 chapter	 when	 we	 add	 API
authentication.	We'll	want	to	make	sure	the	right	header	is	sent.	That	header	will
be	expected	to	have	an	API	token.	We	can	use	middleware	to	determine	whether
or	 not	 someone's	 logged	 in.	 Basically,	 it	 will	 determine	 whether	 or	 not	 they
should	 be	 able	 to	 access	 a	 specific	 route,	 and	we	 can	 also	 use	middleware	 to
respond	to	a	request.	We	could	send	something	back	from	the	middleware,	just
like	we	would	anywhere	else,	using	response.render	or	response.send.

Exploring	middleware
In	 order	 to	 explore	 middleware,	 we'll	 create	 some	 basic	 middleware.	 Just
following	where	we	call	app.use	registering	our	Express	static	middleware,	we'll
call	app.use	again:

app.use(express.static(__dirname	+	'/public'));

app.use();

Now	app.use	 is	 how	you	 register	middleware,	 and	 it	 takes	 a	 function.	 So,	we'll
pass	in	an	arrow	function	(=>):

app.use(()	=>		{

});

The	 use	 function	 takes	 just	 one	 function.	 There	 is	 no	 need	 to	 add	 any	 other
arguments.	 This	 function	 will	 get	 called	 with	 the	 request	 (req)	 object,	 the
response	(res)	object	and	a	third	argument,	next:

app.use((req,	res,	next)	=>		{

});

Now	request	and	response	objects,	 these	should	seem	familiar	by	now.	They're
the	 exact	 same	 arguments	 we	 get	 whenever	 we	 register	 a	 handler.	 The	 next
argument	is	where	things	get	a	little	trickier.	The	next	argument	exists	so	you	can
tell	Express	when	your	middleware	function	is	done,	and	this	is	useful	because
you	can	have	as	much	middleware	as	you	like	registered	to	a	single	Express	app.
For	 example,	 I	 have	 some	middleware	 that	 serves	 up	 a	 directory.	We'll	 write
some	more	that	logs	some	request	data	to	the	screen,	and	we	could	have	a	 third
piece	that	helps	with	application	performance,	keeping	track	of	response	times,
all	of	that	is	possible.

Now	 inside	 app.use	 function,	 we	 can	 do	 anything	 we	 like.	 We	 might	 log
something	to	the	screen.	We	might	make	a	database	request	to	make	sure	a	user
is	authenticated.	All	of	that	is	perfectly	valid	and	we	use	the	next	argument	to	tell
Express	when	we're	done.	So	if	we	do	something	asynchronous,	the	middleware
is	not	going	to	move	on.	Only	when	we	call	next,	will	the	application	continue	to

run,	like	this:

app.use((req,	res,	next)	=>		{

		next();

});

Now	 this	means	 if	 your	middleware	 doesn't	 call	 next,	 your	 handlers	 for	 each
request,	they're	never	going	to	fire.	We	can	prove	this.	Let's	call	app.use,	passing
in	an	empty	function:

app.use((req,	res,	next)	=>		{

});

Let's	 save	 the	 file	 and	 in	 the	 Terminal,	 we'll	 run	 our	 app	 using	 nodemon	 with
server.js:

nodemon	server.js

I'll	move	into	the	browser	and	I'll	make	a	request	for	the	home	page.	I'll	refresh
the	page	and	you	can	see	that	up	top,	it	is	trying	to	load	but	it's	never	going	to
finish:

Now	it's	not	that	it	can't	connect	to	the	server.	It	connects	to	the	server	just	fine.
The	 real	 problem	 is	 that	 inside	 our	 app,	we	 have	middleware	 that	 doesn't	 call
next.	To	fix	this,	all	we'll	do	is	call	next	like	this:

app.use((req,	res,	next)	=>	{

		next();

});

Now	when	things	refresh	over	inside	the	browser,	we	get	our	Home	Page	exactly
as	we	expect	it:

The	 only	 difference	 is	 now	 we	 have	 a	 place	 where	 we	 can	 add	 on	 some
functionality.

Creating	a	logger
Inside	app.use,	we're	going	to	get	started	by	creating	a	logger	that	will	log	out	all
of	the	requests	that	come	in	to	the	server.	We'll	store	a	timestamp	so	we	can	see
exactly	when	someone	made	a	request	for	a	specific	URL.

To	 get	 started	 inside	 the	 middleware,	 let's	 get	 the	 current	 time.	 I'll	 make	 a
variable	called	now,	setting	it	equal	to	newDate,	creating	a	new	instance	of	our	date
object,	and	I'll	call	it	toString	method:

app.use((req,	res,	next)	=>	{

	var	now	=	new	Date().toString();

	next();

});

The	toString	method	creates	a	nice	formatted	date,	a	human-readable	timestamp.
Now	 that	we	 have	 our	 now	 variable	 in	 place,	we	 can	 start	 creating	 the	 actual
logger	by	calling	console.log.

Let's	call	console.log,	passing	in	whatever	I	 like.	Let's	pass	in	inside	of	ticks	the
now	variable	with	a	colon	after:

app.use((req,	res,	next)	=>	{

		var	now	=	new	Date().toString();

	

		console.log(`${now};`)

		next();

});

Now	if	I	save	my	file,	things	are	going	to	restart	in	the	Terminal	because	nodemon
is	 running.	 When	 we	 make	 a	 request	 for	 the	 site	 again	 and	 we	 go	 into	 the
Terminal,	we	should	see	the	log:

Currently	it's	just	a	timestamp,	but	we	are	on	the	right	track.	Now	everything	is
working	because	we	called	next,	so	after	this	console.log	call	prints	to	the	screen,
our	application	continues	and	it	serves	up	the	page.

Inside	middleware,	we	can	add	on	more	 functionality	by	exploring	 the	 request
object.	On	the	request	object,	we	have	access	to	everything	about	the	request—
the	HTTP	method,	the	path,	query	parameters,	and	anything	that	comes	from	the
client.	Whether	the	client	is	an	app,	a	browser,	or	an	iPhone,	it	is	all	going	to	be
available	 in	 that	 request	 object.	 Two	 things	 we'll	 pull	 off	 now	 are	 the	 HTTP
method	and	the	path.

If	you	want	to	look	at	a	full	list	of	the	things	you	have	access	to,	you	can	go	to	ex
pressjs.com,	and	go	to	API	reference:

We	happen	to	be	using	a	4.x	version	of	Express,	so	we'll	click	that	link:

http://expressjs.com/

On	the	right-hand	side	of	 this	 link,	we	have	both	Request	and	Response.	We'll
look	for	the	request	objects,	so	we'll	click	that.	This'll	lead	us	to	the	following:

We'll	be	using	two	request	properties:	req.url	and	req.method.	Inside	Atom,	we	can
start	implementing	those,	adding	them	into	console.log.	Right	after	the	timestamp,
we'll	print	the	HTTP	method.	We'll	be	using	other	methods	later.	For	now	we've
only	 used	 the	 get	 method.	 Right	 inside	 the	 console.log,	 I'll	 inject
request.method	printing	it	to	the	console:

app.use((req,	res,	next)	=>	{

		var	now	=	new	Date().toString();

	

		console.log(`${now}:	${req.method}`)

		next();

});

Next	 up	 we	 can	 print	 the	 path	 so	 we	 know	 exactly	 what	 page	 the	 person
requested.	I'll	do	that	by	injecting	another	variable,	req.url:

			console.log(`${now}:	${req.method}	${req.url}`);

With	this	in	place,	we	now	have	a	pretty	useful	piece	of	middleware.	It	takes	the
request	 object,	 it	 spits	 out	 some	 information	 and	 then	 it	moves	 on,	 letting	 the
server	process	 that	 request	which	was	added.	 If	we	 save	 the	 file	 and	 rerun	 the
app	from	the	browser,	we	should	be	able	to	move	into	the	Terminal	and	see	this
new	logger	printing	to	the	screen,	and	as	shown	following	we	get	just	that:

We	 have	 our	 timestamp,	 the	 HTTP	method	 which	 is	 GET,	 and	 the	 path.	 If	 we
change	 the	 path	 to	 something	more	 complicated,	 such	 as	 /about,	 and	we	move
back	into	the	Terminal,	we'll	see	the	/about	where	we	accessed	req.url:

Now	this	 is	a	pretty	basic	example	of	 some	middleware.	We	can	 take	 it	a	 step
further.	Aside	 from	 just	 logging	 a	 message	 to	 the	 screen,	 we'll	 also	 print	 the
message	to	a	file.

Printing	message	to	file
To	print	the	message	to	a	file,	let's	load	in	fs	up	in	the	server.js	file.	We'll	create	a
constant.	Call	that	const	fs	and	set	 that	equal	 to	the	return	result	from	requiring
the	module:

const	express	=	require('express');

const	hbs	=	require('hbs');

const	fs	=	require('fs');

Now	 we	 can	 implement	 this	 down	 following	 in	 the	 app.use.	 We'll	 take	 our
template	string,	which	is	currently	defined	inside	console.log.	We'll	cut	it	out	and
instead	store	in	a	variable.	We'll	make	a	variable	called	log,	setting	it	equal	to	that
template	string	as	shown	here:

app.use((req,	res,	next)	=>	{

		var	now	=	new	Date().toString();

		var	log	=	`${now}:	${req.method}	${req.url}`;

		console.log();

		next();

});

Now	we	can	pass	that	log	variable	into	both	console.log	and	into	an	fs	method	to
write	to	our	file	system.	For	console.log,	we	will	call	log	like	this:

		console.log(log);

For	fs,	I'll	call	fs.appendFile.	Now	as	you	remember,	appendFile	lets	you	add	on	to	a
file.	It	takes	two	arguments:	the	file	name	and	the	thing	we	want	to	add.	The	file
name	we'll	use	 is	server.log.	We'll	 create	a	nice	 log	 file	 and	 the	actual	 contents
will	just	be	the	log	message.	We	will	need	to	add	one	more	thing:	we	also	want	to
move	 on	 to	 the	 next	 line	 after	 every	 single	 request	 gets	 logged,	 so	 I'll
concatenate	the	new	line	character,	which	will	be	\n:

		fs.appendFile('server.log',	log	+	'\n');

If	you're	using	Node	V7	or	greater,	you	will	need	to	make	a	small
tweak	to	this	line.	As	shown	in	the	following	code,	we	added	a	third
argument	 to	 fs.appendFile.	 This	 is	 a	 callback	 function.	 It's	 now
required.

	
fs.appendFile('server.log',	log	+	'\n',	(err)	=>	{

		if	(err)	{

				console.log('Unable	to	append	to	server.log.')

		}

});

If	 you	 don't	 have	 a	 callback	 function,	 you'll	 get	 a	 deprecation
warning	over	inside	the	console.	Now	as	you	can	see,	our	callback
function	here	takes	an	error	argument.	If	there	is	an	error,	we	just
print	a	message	to	the	screen.	If	you	change	your	line	to	look	like
this,	 regardless	 of	 your	 Node	 version,	 you'll	 be	 future	 proof.	 If
you're	on	Node	V7	or	greater,	 the	warning	 in	 the	 console	will	 go
away.	 Now	 the	 warning	 is	 going	 to	 say	 something	 such	 as
deprecation	 warning.	 Calling	 an	 asynchronous	 function	 without
callback	is	deprecated.	If	you	see	that	warning,	make	this	change.

Now	 that	we	 have	 this	 in	 place,	we	 can	 test	 things	 out.	 I	 save	 the	 file,	which
should	be	restarting	things	inside	of	nodemon.	Inside	Chrome,	we	can	give	the	page
a	 refresh.	 If	we	head	back	 into	 the	Terminal,	we	do	 still	 get	my	 log,	which	 is
great:

Notice	we	 also	 have	 a	 request	 for	 a	 favicon.ico.	 This	 is	 usually	 the	 icon	 that's
shown	 in	 the	 browser	 tab.	 I	 have	 one	 cached	 from	 a	 previous	 project.	 There
actually	is	no	icon	file	defined,	which	is	totally	fine.	The	browser	still	makes	the
request	 anyway,	 which	 is	 why	 that	 shows	 up	 as	 shown	 in	 the	 previous	 code
snippet.

Inside	Atom,	we	now	have	our	server.log	file,	and	if	we	open	it	up,	we	have	a	log
of	all	the	requests	that	were	made:

We	have	timestamps,	HTTP	methods,	and	paths.	Using	app.use,	we	were	able	to
create	some	middleware	that	helps	us	keep	track	of	how	our	server	is	working.

Now	there	are	times	where	you	might	not	want	to	call	next.	We	learned	that	we
could	 call	 next	 after	 we	 do	 something	 asynchronous,	 such	 as	 a	 read	 from	 a
database,	 but	 imagine	 something	 goes	 wrong.	 You	 can	 avoid	 calling	 next	 to
never	move	on	to	the	next	piece	of	middleware.	We	would	like	to	create	a	new
view	 inside	 the	 views	 folder.	 We'll	 call	 this	 one	 maintenance.hbs.	 This	 will	 be	 a
handlebars	template	that	will	render	when	the	site	is	in	maintenance	mode.

The	 maintenance	 middleware
without	the	next	object
We'll	 start	 with	 making	 the	 maintenance.hbs	 file	 by	 duplicating	 home.hbs.	 Inside
maintenance.hbs,	all	we'll	do	is	wipe	the	body	and	add	a	few	tags:

<!DOCTYPE	html>

<html>

		<head>

				<meta	charset="utf-8">

				<title>Some	Website</title>

	</head>

	<body>

	

		</body>

</html>

As	shown	in	the	following	code,	we'll	add	an	h1	 tag	to	print	a	little	message	to
the	user:

	<body>

			<h1></h1>

	</body>

We're	going	to	use	something	like	We'll	be	right	back:

	<body>

			<h1>We'll	be	right	back</h1>

	</body>

Next,	I	can	add	a	paragraph	tag:

	<body>

			<h1>We'll	be	right	back</h1>

			<p>

	

			</p>

	</body>

Now	we	will	be	able	to	use	p	followed	by	the	tab.	This	is	a	shortcut
inside	Atom	 for	 creating	 an	HTML	 tag.	 It	works	 for	 all	 tags.	We
could	type	body	and	hit	enter	or	I	could	type	p	and	press	enter,	and
the	tag	will	be	created.

Inside	the	paragraph,	I'll	leave	a	little	message:	The	site	is	currently	being	updated:

	<p>

			The	site	is	currently	being	updated.

	</p>

Now	 that	 we	 have	 our	 template	 file	 in	 place,	 we	 can	 define	 our	maintenance
middleware.	This	is	going	to	bypass	all	of	our	other	handlers,	where	we	render
other	files	and	print	JSON,	and	instead	it'll	just	render	this	template	to	the	screen.
We'll	save	the	file,	move	into	server.js,	and	define	that	middleware.

Right	next	 to	the	previously-defined	middleware,	we	can	call	app.use	passing	 in
our	 function.	 The	 function	 will	 take	 those	 three	 arguments:	 request	 (req),
response	(res),	and	next:

app.use((req,	res,	next)	=>	{

})

Inside	 the	 middleware,	 all	 we'll	 need	 to	 do	 is	 call	 res.render.	 We'll	 add
res.render	 passing	 in	 the	 name	 of	 the	 file	 we	 want	 to	 render;	 in	 this	 case,	 it's
maintenance.hbs:

app.use((req,	res,	next)	=>	{

		res.render('maintenance.hbs');

});

That	 is	 all	 you	needed	 to	do	 to	 set	 up	our	main	middleware.	This	middleware
will	 stop	 everything	 after	 it	 from	 executing.	We	 don't	 call	 next,	 so	 the	 actual
handlers	in	the	app.get	function,	they	will	never	get	executed	and	we	can	test	this.

Testing	 the	 maintenance
middleware
Inside	the	browser,	we'll	refresh	the	page,	and	we	will	get	the	following	output:

We	get	the	maintenance	page.	We	can	go	to	the	home	page	and	we	get	the	exact
same	thing:

Now	there's	one	more	really	important	piece	to	middleware	we	haven't	discussed
yet.	Remember	inside	the	public	folder,	we	have	a	help.html	file	as	shown	here:

If	we	visit	this	in	the	browser	by	going	to	localhost:3000/help.html,	we'll	still	get	the
help	page.	We'll	not	get	the	maintenance	page:

That	is	because	middleware	is	executed	in	the	order	you	call	app.use.	This	means
the	first	thing	we	do	is	we	set	up	our	Express	static	directory,	then	we	set	up	our
logger,	and	finally	we	set	up	our	maintenance.hbs	logger:

app.use(express.static(__dirname	+	'/public'));

app.use((req,	res,	next)	=>	{

		var	now	=	new	Date().toString();

		var	log	=	`${now}:	${req.method}	${req.url}`;

		console.log(log);

		fs.appendFile('server.log',	log	+	'\n');

		next();

});

app.use((req,	res,	next)	=>	{

		res.render('maintenance.hbs');

});

This	 is	a	pretty	big	problem.	 If	we	also	want	 to	make	 the	public	directory	files
such	 as	 help.html	 private,	 we'll	 have	 to	 reorder	 our	 calls	 to	 app.use	 because
currently	 the	 Express	 server	 is	 responding	 inside	 of	 the	 Express	 static
middleware,	so	our	maintenance	middleware	doesn't	get	a	chance	to	execute.

To	resolve	this,	we'll	take	the	app.use	Express	static	call,	remove	it	from	the	file,
and	add	it	after	we	render	the	maintenance	file	to	the	screen.	The	resultant	code
is	going	to	look	like	this:

app.use((req,	res,	next)	=>	{

		var	now	=	new	Date().toString();

		var	log	=	`${now}:	${req.method}	${req.url}`;

		console.log(log);

		fs.appendFile('server.log',	log	+	'\n');

		next();

});

app.use((req,	res,	next)	=>	{

		res.render('maintenance.hbs');

});

app.use(express.static(__dirname	+	'/public'));

Now,	everything	will	work	as	expected,	no	matter	what	we're	going	 to	 log	 the
request.	 Then	 we'll	 check	 if	 we're	 in	 maintenance	 mode	 if	 the	 maintenance
middleware	function	is	in	place.	If	it	is,	we'll	render	the	maintenance	file.	If	it's
not,	we'll	 ignore	 it	 because	 it'll	 be	 commented	 out	 or	 something	 like	 that,	 and
finally	we'll	be	using	Express	static.	This	is	going	to	fix	all	those	problems.	If	I
re-render	the	app	now,	I	get	the	maintenance	page	on	help.html:

If	I	go	back	to	the	root	of	the	website,	I	still	get	the	maintenance	page:

Now	 once	 we're	 done	 with	 the	 maintenance	 middleware,	 we	 can	 always
comment	 it	out.	This	will	 remove	 it	 from	being	executed,	and	 the	website	will
work	as	expected.

This	has	been	a	quick	dive	into	Express	middleware.	We'll	be	using	it	a	lot	more
throughout	the	book.	We'll	be	using	middleware	to	check	if	our	API	requests	are
actually	 authenticated.	 Inside	 the	 middleware,	 we'll	 be	 making	 a	 database
request,	checking	if	the	user	is	indeed	who	they	say	they	are.

Summary
In	this	chapter	you	learned	about	Express	and	how	it	can	be	used	to	easily	create
websites.	We	looked	at	how	we	can	set	up	a	static	web	server,	so	when	we	have
an	entire	directory	of	JavaScript,	images,	CSS,	and	HTML.	We	can	serve	that	up
easily	without	needing	to	provide	routes	for	everything.	This	will	let	us	create	all
sorts	of	applications,	which	we'll	be	doing	throughout	the	rest	of	the	book.

Next,	we	continued	on	learning	how	to	use	Express.	We	took	a	look	at	how	we
can	render	dynamic	 templates,	 kind	of	 like	we	would	with	 a	PHP	or	Ruby	on
Rails	 file.	We	have	 some	variables	and	we	 rendered	a	 template	 injecting	 those
variables.	 Then	we	 learned	 a	 little	 bit	 about	 handlebars	 partials,	 which	 let	 us
create	reusable	chunks	of	code	like	headers	and	footers.	We	also	learned	about
Handlebars	helpers,	which	is	a	way	to	run	some	JavaScript	code	from	inside	of
your	handlebars	templates.	Lastly,	we	moved	back	to	talking	about	Express	and
how	it	can	customize	our	requests,	responses,	our	server.

In	the	next	chapter,	we'll	look	into	deploying	applications	to	the	web.

Deploying	Applications	to	Web
In	 this	 chapter,	 we'll	 worry	 about	 adding	 version	 control	 and	 deploying	 our
applications	because	when	it	comes	to	creating	real-world	Node	apps,	deploying
your	app	to	the	Web	is	obviously	a	pretty	big	part	of	that.	Now	in	the	real	world,
every	 single	 company	uses	 some	 form	of	 version	 control.	 It	 is	 essential	 to	 the
software	 development	 process,	 and	 most	 of	 them	 aren't	 using	 Git.	 Git	 has
become	 really	popular,	 dominating	 the	market	 share	 for	version	control.	Git	 is
also	free	and	open	source,	and	there	is	a	ton	of	great	educational	material.	They
have	a	book	on	how	to	learn	Git.	It's	free	and	Stack	Overflow	is	filled	with	Git-
specific	questions	and	answers.

We'll	be	using	Git	to	save	our	project.	We'll	also	be	using	it	to	back	up	our	work
to	a	service	called	GitHub,	and	finally	we'll	be	using	Git	 to	deploy	our	project
live	 to	 the	 Web.	 So	 we'll	 be	 able	 to	 take	 our	 web	 server	 and	 deploy	 it	 for
anybody	to	visit.	It	won't	just	be	available	on	localhost.

Specifically,	we'll	look	into	the	following	topics:

Setting	up	and	using	Git
Setting	up	GitHub	and	SSH	keys
Deploying	Node	app	to	the	web
The	workflow	of	the	entire	development	life	cycle

Adding	version	control
In	this	section,	we'll	learn	how	to	set	up	and	use	Git,	which	is	a	version	control
system.	Git	will	let	us	keep	track	of	the	changes	to	our	project	over	time.	This	is
really	useful	when	 something	goes	wrong	and	we	need	 to	 revert	 to	 a	previous
state	in	the	project	where	things	were	working.	It's	also	super	useful	for	backing
up	our	work.

Installing	Git
To	get	started,	we	will	need	to	install	Git	on	the	computer,	but	luckily	for	us	it	is
a	really	simple	installation	process.	It's	one	of	those	installers	where	we	just	click
on	the	Next	button	through	a	few	steps.	So	let's	go	ahead	and	do	that.

1.	 We	can	grab	the	installer	by	heading	over	to	the	browser	and	going	to	git-sc
m.com.

Before	we	go	ahead	and	install	it,	I	want	to	show	you	the	link	to	the
book	called	Pro	Git	(https://git-scm.com/book/en/v2).	 It	 is	a	 free	book
and	also	available	for	online	reading.	It	covers	everything	that	Git
has	to	offer.	We'll	be	looking	at	some	of	the	more	basic	features	in
this	 chapter,	 but	 we	 could	 easily	 create	 an	 entire	 course	 on	 Git.
There	actually	are	Udemy	courses	just	on	Git	and	GitHub,	so	if	you
want	to	learn	more	than	what	we	cover	in	this	book,	I'd	recommend
reading	 this	 book	 or	 checking	 out	 a	 course,	 whatever	 your
preferred	learning	method	is.

2.	 Click	on	 the	download	button	present	on	 the	 right-hand	 side	of	 the	home
page,	 for	 all	 the	 operating	 systems,	 whether	 it's	 Windows,	 Linux,	 or
macOS.	This	should	take	us	to	the	installer	page	and	we	should	be	able	to
get	the	installer	downloading	automatically.	If	you	see	any	problem	with	Sou
rceForge.net,	then	we	may	have	to	actually	click	on	it	to	download	manually
in	order	to	start	the	download.

3.	 Once	the	installer	is	downloaded,	we	can	simply	run	it.
4.	 Next,	move	through	the	installer:

http://git-scm.com
https://git-scm.com/book/en/v2
http://SourceForge.net

5.	 Click	on	Continue	and	install	the	package:

6.	 Once	 it's	 done,	 we	 can	 go	 ahead	 and	 actually	 test	 that	 things	 installed
successfully:

Git	on	macOS
If	you're	on	macOS,	you'll	need	 to	 launch	 the	package	 installer	and	you	might
get	the	following	message	box	saying	that	it's	from	an	unidentified	developer:

This	 is	 because	 it	 is	 distributed	 via	 a	 third	 party	 as	 opposed	 to	 being	 in	 the
macOS	App	Store.	We	can	go	ahead	and	right-click	on	the	package,	 then	click
on	the	Open	button	and	confirm	that	we	do	indeed	want	to	open	it.

Once	 you're	 at	 the	 installer,	 the	 process	 is	 going	 to	 be	 pretty	 simple.	You	 can
essentially	click	on	Continue	and	Next	throughout	every	step.

Git	on	Windows
If	 you're	 on	 Windows	 though,	 there	 is	 an	 important	 distinction.	 Inside	 the
installer	you're	going	to	see	a	screen	just	like	this:

It	 is	really	 important	 that	you	also	 install	Git	Bash	as	shown	in	 the	screenshot.
Git	Bash	is	a	program	that	simulates	a	Linux-type	Terminal,	and	it's	going	to	be
really	 essential	when	we	 create	 our	 SSH	 keys	 in	 the	 next	 section	 to	 uniquely
identify	our	machine.

Testing	the	installation
Now,	let's	move	in	to	the	Terminal	to	test	the	installation.	From	the	Terminal	we
can	go	ahead	and	run	git	--version.	This	is	going	to	print	a	new	version	of	Git	we
have	installed:

git	--version

As	shown	in	the	following	screenshot,	we	can	see	we	have	git	version	2.14.3:

Now	 if	 you	 have	 your	 Terminal	 still	 open	 and	 you're	 getting	 an
error	like	git	command	not	found,	 I'd	recommend	 trying	 to	restart
your	 Terminal.	 Sometimes	 that	 is	 required	 when	 you're	 installing
new	commands	such	as	the	git	command,	which	we	just	installed.

Turning	 the	 node-web-server
directory	into	a	Git	repository
With	successful	 installation	of	Git,	we	are	now	ready	to	 turn	our	node-web-server
directory	into	a	Git	repository.	In	order	to	do	this,	we'll	the	following	command:

git	init

The	git	init	 command	 needs	 to	 get	 executed	 from	 the	 root	 of	 our	 project,	 the
folder	 that	 has	 everything	 that	we	want	 to	 keep	 track	of.	 In	 our	 case,	 node-web-
server	 is	 that	 folder.	 It	 has	our	 server.js	 file,	 our	 package.json	 file,	 and	 all	 of	 our
directories.	So,	from	the	server	folder,	we'll	run	git	init:

This	creates	a	.git	directory	inside	that	folder.	We	can	prove	that	by	running	the
ls	-a	command:

ls	-a

As	shown	in	the	following	screenshot,	we	get	all	of	the	directories	including	the
hidden	ones	and	right	here	I	do	indeed	have	.git:

For	 Windows,	 go	 ahead	 and	 run	 these	 commands	 from	 the	 Git
Bash.

Now	this	directory	 is	not	something	we	should	be	manually	updating.	We'll	be
using	commands	from	the	Terminal	in	order	to	make	changes	to	the	Git	folder.

You	don't	want	to	be	going	in	there	manually	messing	around	with
things	because	there's	a	pretty	good	chance	you're	going	to	corrupt
the	Git	 repository	 and	 all	 of	 your	 hard	work	 is	 going	 to	 become
useless.	 Now	 obviously	 if	 it's	 backed	 up,	 it's	 not	 a	 big	 deal,	 but
there	really	is	no	reason	to	go	into	that	Git	folder.

Let's	use	the	clear	command	to	clear	the	Terminal	output,	and	now	we	can	start
looking	at	exactly	how	Git	works.

Using	Git
As	mentioned	earlier,	Git	is	responsible	for	keeping	track	of	the	changes	to	our
project,	but	by	default	 it	doesn't	actually	track	any	of	our	files.	We	have	to	tell
Git	exactly	which	files	we	want	it	to	keep	track	of	and	there's	a	good	reason	for
this.	There	are	files	in	every	project	that	we're	most	likely	not	going	to	want	to
add	to	our	Git	repo,	and	we'll	talk	about	which	ones	and	why	later.	For	now	let's
go	ahead	and	run	the	following	command:

git	status

Now	 all	 these	 commands	 need	 to	 get	 executed	 from	 inside	 of	 the	 root	 of	 the
project.	 If	 you	 try	 to	 run	 this	 outside	 a	 repository,	 you'll	 get	 an	 error	 like	 git
repository	not	found.	What	that	means	is	that	Git	cannot	find	that	.git	directory
in	order	to	actually	get	the	status	of	your	repository.

When	we	run	this	command,	we'll	get	some	output	that	looks	like	this:

The	 important	pieces	 for	now	 is	 the	Untracked	files	header	and	all	of	 the	 files

underneath	 it.	 These	 are	 all	 of	 the	 files	 and	 folders	 that	 Git	 seized,	 but	 it's
currently	not	tracking.	Git	doesn't	know	if	you	want	to	keep	track	of	the	changes
to	these	files	or	if	you	want	to	ignore	them	from	your	repository.

Now	the	views	folder,	for	example,	is	something	we	definitely	want	to	keep	track
of.	This	 is	 going	 to	 be	 essential	 to	 the	 project	 and	we	want	 to	make	 sure	 that
whenever	someone	downloads	 the	repository,	 they	get	 the	views	 folder.	The	 log
file	on	the	other	hand	doesn't	really	need	to	be	included	in	Git.	In	general	our	log
files	 are	 not	 going	 to	 be	 committed,	 since	 they	 usually	 contain	 information
specific	to	a	point	in	time	when	the	server	was	running.

As	shown	in	the	preceding	code	output,	we	have	server.js,	our	public	folder,	and
package.json.	These	are	all	essential	to	the	process	of	executing	the	app.	These	are
definitely	going	 to	 be	 added	 to	 our	Git	 repository,	 and	 the	 first	 one	 above	we
have	is	the	node_modules	folder.	The	node_modules	folder	is	what's	called	a	generated
folder.

Generated	folders	are	easily	generated	by	running	a	command.	In	our	case,	we
can	regenerate	this	entire	directory	using	npm	install.	We're	not	going	to	want	to
add	Node	modules	to	our	Git	repository	because	its	contents	differ	depending	on
the	 version	 of	 npm	you	have	 installed	 and	depending	 on	 the	 operating	 system
you're	using.	It's	best	to	leave	off	Node	modules	and	let	every	person	who	uses
your	 repository	 manually	 install	 the	 modules	 on	 the	 machine	 they're	 actually
going	to	be	running	the	app.

Adding	untracked	files	to	commit
Now	we	have	these	six	folders	and	files	listed,	so	let's	go	ahead	and	add	the	four
folders	and	files	we	want	to	keep.	To	get	started,	we'll	use	any	git	add	command.
The	git	add	command	lets	us	tell	the	Git	we	want	to	keep	track	of	a	certain	file.
Let's	type	the	following	command:

git	add	package.json

After	we	do	this,	we	can	run	it	git	status	again,	and	this	time	we	get	something
very	different:

Now	 we	 have	 an	 Initial	 commit	 header.	 This	 is	 new,	 and	 we	 have	 our	 old
Untracked	files	header.	Notice	under	Untracked	files,	we	don't	have	package.json
anymore.	That	is	moved	up	to	the	Initial	commit	header.	These	are	all	of	the	files
that	 are	going	 to	be	 saved,	 also	known	as	committed,	when	we	make	our	 first
commit.	Now	we	can	move	on	adding	the	3	others.	We'll	use	a	git	add	command

again	 to	 tell	 Git	 we	 want	 to	 track	 the	 public	 directory.	 We	 can	 run	 a	 git
status	command	to	confirm	it	was	added	as	expected:

As	 shown	 in	 the	 preceding	 screenshot,	we	 can	 see	 the	 public/help.html	 file	 is
now	going	to	be	committed	to	Git	once	we	run	a	commit.

Next	 up	we	 can	 add	 server.js	 with	 git	 add	 server.js,	 and	 we	 can	 add	 the	 views
directory	using	git	add	views,	just	like	this:

git	add	server.js

git	add	views/

We'll	run	a	git	status	command	to	confirm:

Everything	 looks	 good.	Now	 the	Untracked	 files	 are	 going	 to	 sit	 around	 here
until	 we	 do	 one	 of	 two	 things—we	 either	 add	 them	 to	 the	 Git	 repository	 or
ignore	them	using	a	custom	file	that	we're	going	to	create	inside	Atom.

Inside	Atom,	we'd	 like	 to	make	 a	 new	 file	 called	 .gitignore,	 in	 our	 root	 of	 our
project.	The	gitignore	file	is	going	to	be	part	of	our	Git	repository	and	it	tells	get
which	 folders	 and	 files	 you	want	 to	 ignore.	 In	 this	 case	we	 can	 go	 ahead	 and
ignore	node_modules,	just	like	this:

When	we	save	the	gitignore	file	and	rerun	git	status	from	the	Terminal,	we'll	now
get	a	really	different	result:

As	 shown,	 we	 can	 see	 we	 have	 a	 new	 untracked	 file—.gitignore—but	 the
node_modules	 directory	 is	 nowhere	 in	 sight,	 and	 that's	 exactly	what	we	want.	We

want	to	remove	this	completely,	making	sure	that	it	never	ever	gets	added	to	the
Git	repo.	Next	up,	we	can	go	ahead	and	 ignore	 that	server.log	 file	by	 typing	 its
name,	server.log:

node	modules/

server.log

We'll	save	gitignore,	 run	git	status	 from	 the	Terminal	one	more	 time,	and	make
sure	everything	looks	great:

As	shown,	we	have	a	gitignore	file	as	our	only	untracked	file.	The	server.log	 file
and	node_modules	are	nowhere	in	sight.

Now	 that	we	 have	 gitignore,	 we	 are	 going	 to	 be	 adding	 it	 to	Git	 using	 git	 add
.gitignore	and	when	we	run	git	status,	we	should	be	able	to	see	that	all	 the	files
that	show	up	are	under	the	initial	commit:

git	add	.gitignore

git	status

So	now	it's	time	to	make	a	commit.	A	commit	really	only	requires	two	things.	It
requires	some	change	 in	 the	repository.	 In	 this	case,	we're	 teaching	Git	how	to
track	a	ton	of	new	files,	so	we	are	indeed	changing	something,	and	it	requires	a
message.	We've	already	handled	the	file	part	of	things.	We've	told	Git	what	we
want	to	save,	we	just	haven't	actually	saved	it	yet.

Making	a	commit
In	order	to	make	our	first	commit	and	save	our	first	thing	into	the	Git	repository,
we'll	run	git	commit	and	provide	one	flag,	the	m	flag,	which	is	short	message.	After
that	 inside	 quotes,	 we	 can	 specify	 the	 message	 that	 we	 want	 to	 use	 for	 this
commit.	It's	really	important	to	use	these	messages	so	when	someone's	digging
through	the	commit	history,	the	list	of	all	the	changes	to	the	project	can	be	seen,
which	are	actually	useful.	In	this	case,	Initial	commit	is	always	a	good	message	for
your	first	commit:

git	commit	-m	'Initial	commit'

I'll	go	ahead	and	hit	enter	and	as	shown	in	the	following	screenshot,	we	see	all	of
the	changes	that	happened	to	the	repo:

We	have	created	a	bunch	of	new	files	inside	of	the	Git	repository.	These	are	all
of	the	files	that	we	told	Git	we	want	to	keep	track	of	and	this	is	fantastic.

We	now	have	our	very	 first	commit,	which	essentially	means	 that	we've	saved
the	project	at	its	current	state.	If	we	make	a	big	change	to	server.js,	messing	stuff
up	to	not	be	able	figure	out	how	to	get	it	back	to	the	way	it	was,	we	can	always
get	it	back	because	we	made	a	Git	commit.	Now	we'll	explore	some	more	fancy
Git	 things	 in	 the	 later	 sections.	We'll	 be	 talking	 about	 how	 to	 do	most	 of	 the
things	you	want	 to	do	with	Git,	 including	deploying	 to	Heroku	and	pushing	 to
GitHub.

Setting	up	GitHub	and	SSH	keys
Now	that	you	have	a	local	Git	repository,	we'll	look	at	how	we	can	take	that	code
and	push	it	up	to	a	third-party	service	called	GitHub.	GitHub	is	going	to	let	us
host	our	Git	repositories	remotely,	so	if	our	machine	ever	crashes	we	can	get	our
code	 back,	 and	 it	 also	 has	 great	 collaboration	 tools,	 so	we	 can	 open-source	 a
project,	letting	others	use	our	code,	or	we	can	keep	it	private	so	only	people	we
choose	to	collaborate	with	can	see	the	source	code.

Now	in	order	to	actually	communicate	between	our	machine	and	GitHub,	we'll
have	 to	 create	 something	 called	 an	 SSH	 key.	 SSH	 keys	 were	 designed	 to
securely	 communicate	 between	 two	 computers.	 In	 this	 case,	 it	 will	 be	 our
machine	and	the	GitHub	server.	This	will	let	us	confirm	that	GitHub	is	who	they
say	 they	 are	 and	 it	will	 let	GitHub	 confirm	 that	we	 indeed	have	 access	 to	 the
code	we're	trying	to	alter.	This	will	all	be	done	with	SSH	keys	and	we'll	create
them	 first,	 then	 we'll	 configure	 them,	 and	 finally	 we'll	 push	 our	 code	 up	 to
GitHub.

Setting	up	SSH	keys
The	process	of	setting	up	SSH	keys	can	be	a	 real	burden.	This	 is	one	of	 those
topics	where	there's	really	small	room	for	error.	If	you	type	any	of	the	commands
wrong,	things	are	just	not	going	to	work	as	expected.

Now	if	you're	on	Windows,	you'll	need	to	do	everything	in	 this	section	from	a
Git	 Bash	 as	 opposed	 to	 the	 regular	 Command	 Prompt	 because	we'll	 be	 using
some	 commands	 that	 just	 are	 not	 available	 on	Windows.	 They	 are,	 however,
available	 on	 Linux	 and	 macOS.	 So	 if	 you're	 using	 either	 of	 those	 operating
systems,	you	can	continue	using	the	Terminal	you've	been	using	throughout	the
book.

SSH	keys	documentations
Before	we	dive	into	the	commands,	I	want	to	show	you	a	quick	guide	that	exists
online	in	case	you	get	stuck	or	you	have	any	questions.	You	can	Google	GitHub
SSH	keys,	and	 this	 is	going	 to	 link	you	 to	an	article	called	generating	an	SSH
key:	https://help.github.com/articles/connecting-to-github-with-ssh/.	Once	you're	here,
you'll	 be	 able	 to	 click	on	 the	SSH	breadcrumb,	 and	 this	 is	 going	 to	 bring	you
back	to	all	of	their	articles	on	SSH	keys:

Out	of	these	articles,	the	nested	four	are	the	ones	we'll	be	focusing	on	checking	if
we	 have	 a	 key,	 generating	 a	 new	 key,	 adding	 the	 key	 to	 GitHub,	 and	 finally
testing	that	everything	worked	as	expected.	If	you	run	into	any	problems	along
any	of	these	steps,	you	can	always	click	on	the	guide	for	that	step	and	you	can

https://help.github.com/articles/connecting-to-github-with-ssh/

pick	the	operating	system	you're	using	so	you	can	see	the	appropriate	commands
for	that	OS.	Now	that	you	know	this	exists,	let's	go	ahead	and	do	it	together.

Working	on	commands
The	first	command	we'll	run	from	the	Terminal	is	going	to	check	if	we	have	an
existing	SSH	key.	Now	if	you	don't,	that's	fine.	We'll	go	ahead	and	create	one.	If
you	do	or	you're	not	sure	you	do,	you	can	run	the	following	command	to	confirm
whether	or	not	you	have	one:	 ls	with	 the	 al	 flag.	This	 is	going	 to	print	 all	 the
files	in	a	given	directory,	and	the	directory	where	SSH	keys	are	stored	by	default
on	your	machine	is	going	to	be	at	the	user	directory,	which	you	can	use	(~)	as	a
shortcut	for	/.ssh:

ls	-al	~/.ssh

When	 you	 run	 the	 command,	 you'll	 see	 all	 of	 the	 contents	 inside	 of	 that	 SSH
directory:

In	 this	 case	 I've	 deleted	 all	 of	 my	 SSH	 keys	 so	 I	 have	 nothing	 inside	 my
directory.	I	 just	have	paths	for	the	current	directory	and	the	previous	one.	Now
that	we	have	this	in	place	and	we've	confirmed	we	don't	have	a	key,	we	can	go
ahead	and	generate	one.	If	you	do	already	have	a	key,	a	file	like	id_rsa,	you	can
go	ahead	and	skip	the	process	of	generating	the	key.

Generating	a	key
To	make	a	key	we'll	use	the	ssh-keygen	command.	Now	the	ssh-keygen	 takes	 three
arguments.	We'll	 pass	 in	 t	 setting	 it	 equal	 to	 rsa.	We'll	 pass	 in	 b	 which	 is	 for
bytes,	setting	that	equal	to	4096.	Make	sure	to	match	these	arguments	exactly,	and
we'll	be	setting	a	capital	C	flag	which	will	get	set	equal	to	your	email:

ssh-keygen	-t	rsa	-b	4096	-C	'garyngreig@gmail.com'

Now	 the	 scope	 of	what's	 actually	 happening	 behind	 the	 scenes	 is
not	part	of	this	book.	SSH	keys	and	setting	up	security,	 that	could
be	an	entire	course	in	and	of	itself.	We'll	be	using	this	command	to
simplify	the	entire	process.

Now	we	can	go	ahead	and	hit	enter,	which	will	generate	two	new	files	in	our	.ssh
folder.	When	you	run	this	command,	you'll	get	greeted	with	a	few	steps.	I	want
you	to	use	the	default	for	all	of	them:

Here	 they	 want	 to	 ask	 you	 if	 you	 want	 to	 customize	 the	 file	 name.	 I	 do	 not
recommend	doing	that.	You	can	just	hit	enter:

Next	up	they	ask	you	for	a	passphrase,	which	we'll	not	use.	I'll	hit	enter	for	no
passphrase,	then	I	need	to	confirm	the	passphrase,	so	I'll	just	hit	enter	again:

As	shown,	we	get	 a	 little	message	 that	our	SSH	key	was	properly	created	and
that	it	was	indeed	saved	in	our	folder.

With	this	in	place,	I	can	now	cycle	back	through	my	previous	commands	running
the	ls	command,	and	what	do	I	get?

We	get	id_rsa	and	I	get	the	id_rsa.pub	file.	The	id_rsa	file	contains	the	private	key.
This	 is	 the	key	you	should	never	give	 to	anyone.	It	 lives	on	your	machine	and
your	machine	only.	The	 .pub	 file,	which	 is	 the	 public	 file.	 This	 one	 is	 the	 one
you'll	 give	 to	 third-party	 services	 such	 as	 GitHub	 or	 Heroku,	 which	 we'll	 be
doing	in	the	next	several	sections.

Starting	up	the	SSH	agent
Now	that	our	keys	are	generated,	the	last	thing	we	need	to	do	is	start	up	the	SSH
agent	and	add	 this	key	 so	 it	knows	 that	 it	 exists.	We'll	do	 this	by	 running	 two
commands.	These	are:

eval

ssh-add

First	up	we'll	 run	 eval,	 and	 then	we'll	open	 some	quotes	and	 inside	 the	quotes,
we'll	use	the	dollar	sign	and	open	and	close	some	parentheses	just	like	this:

eval	"$()"

Inside	our	parentheses	we'll	type	ssh-agent	with	the	s	flag:

eval	"$(ssh-agent	-s)"

This	will	start	up	the	SSH	agent	program	and	it	will	also	print	the	process	ID	to
confirm	it	is	indeed	running,	and	as	shown,	we	get	Agent	pid	1116:

The	process	ID	is	obviously	going	to	be	different	for	everyone.	As	long	as	you
get	something	back	like	this	you	are	good	to	go.

Next	up	we	have	to	tell	the	SSH	agent	where	this	file	lives.	We'll	do	that	using
ssh-add.	 This	 takes	 the	 path	 to	 our	 private	 key	 file	 which	we	 have	 in	 the	 user
directory	/.ssh/id_rsa:

ssh-add	~/.ssh/id_rsa

When	I	run	this,	I	should	get	a	message	like	identity	added:

This	means	that	the	local	machine	now	knows	about	this	public/private	key	pair
and	 it'll	 try	 to	 use	 these	 credentials	 when	 it	 communicates	 with	 a	 third-party
service	 such	 as	 GitHub.	 Now	 that	 we	 have	 this	 in	 place,	 we	 are	 ready	 to
configure	GitHub.	We'll	make	 an	 account,	 set	 it	 up,	 and	 then	we'll	 come	back
and	test	that	things	are	working	as	expected.

Configuring	GitHub
To	configure	GitHub,	follow	these	steps:

1.	 First	head	into	the	browser	and	go	to	github.com.
2.	 Here	log	into	your	existing	account	or	create	a	new	one.	If	you	need	a	new

one,	sign	up	for	GitHub.	If	you	have	an	existing	one,	go	ahead	and	sign	into
it.

3.	 Once	signed	in,	you	should	see	the	following	screen.	This	 is	your	GitHub
dashboard:

4.	 From	 here,	 navigate	 to	 Settings,	 present	 at	 the	 top-left	 hand	 side,	 by	 the

https://github.com/

profile	picture.	Go	to	Settings	|	SSH	and	GPG	keys	|	SSH	keys:

5.	 From	here	we	can	add	the	public	key,	letting	GitHub	know	that	we	want	to
communicate	using	SSH.

6.	 Add	the	new	SSH	key:

Here,	you	need	to	do	two	things:	give	it	a	name,	and	add	the	key.

First	add	the	name.	The	name	can	be	anything	you	like.	For	example,	I
usually	 use	 one	 that	 uniquely	 identifies	 my	 computer	 since	 I	 have	 a
couple.	I'll	use	MacBook	Pro,	just	like	this.

Next	up,	add	the	key.

To	 add	 the	 key,	we	 need	 to	 grab	 the	 contents	 of	 the	 id_rsa.pub	 file,	we
generated	in	the	previous	sub-section.	That	file	contains	the	information
that	 GitHub	 needs	 in	 order	 to	 securely	 communicate	 between	 our

machine	and	their	machines.	There	are	different	methods	to	grab	the	key.
In	 the	 browser,	 we	 have	 the	 Adding	 a	 new	 SSH	 key	 to	 your	 GitHub
account	article	for	our	reference.

7.	 This	contains	a	command	you	can	use	 to	copy	 the	contents	of	 that	 file	 to
your	clipboard	from	right	inside	the	Terminal.	Now	obviously	it	is	different
for	 the	 operating	 systems,	 macOS,	 Windows,	 and	 Linux,	 so	 run	 the
command	for	your	operating	system.

8.	 Use	the	pbcopy	command	which	is	available	for	macOS.

Then,	move	into	the	Terminal	and	run	it.

						pbcopy	<	~/.ssh/id_rsa.pub

This	copies	 the	contents	of	 the	 file	 to	 the	clipboard.	You	can	also	open
the	command	up	with	a	regular	 text	editor	and	copy	the	contents	of	 the
file.	We	can	use	any	method	to	copy	the	file.	It	doesn't	matter	how	you	do
it.	All	that	matters	is	you	do.

9.	 Now	move	back	into	GitHub,	click	on	the	text	area	and	paste	it	in.

The	contents	of	id_rsa.pub	should	start	with	ssh-rsa	and	it	should	end	with
that	email	you	used.

10.	 Once	you're	done,	go	ahead	and	click	on	Add	SSH	key.

Now	we	can	go	ahead	and	test	that	things	are	working	by	running	one	command
from	the	Terminal.	Once	again	this	command	can	be	executed	from	anywhere	on
your	machine.	You	don't	need	to	be	in	your	project	folder	to	do	this.

Testing	the	configuration
To	 test	 the	working	 of	 our	GitHub	 configuration,	we'll	 use	 ssh,	 which	 tries	 to
make	a	connection.	We'll	use	the	T	flag,	followed	by	the	URL	we	want	to	connect
to	you	get	at	git@github.com:

ssh	-T	git@github.com

This	 is	 going	 to	 test	 our	 connection.	 It	 will	make	 sure	 that	 the	 SSH	 keys	 are
properly	set	up	and	we	can	securely	communicate	with	GitHub.	When	I	run	the
command	 I	 get	 a	 message	 saying	 that	 The	 authenticity	 of	 host	 'github.com
(192.30.253.113)'	can't	be	established.

We	 know	 that	 we	 want	 to	 communicate	 with	 github.com.	 We're	 expecting	 that
communication	to	happen,	so	we	can	go	ahead	and	enter	yes:

From	here,	we	get	a	message	from	the	GitHub	servers	as	shown	in	the	preceding
screenshot.	 If	 you	 are	 seeing	 this	 message	 with	 your	 username	 then	 you	 are
done.	You're	ready	to	create	your	first	repository	and	push	your	code	up.

Now	if	you	don't	see	this	message,	something	went	wrong	along	the
way.	 Maybe	 the	 SSH	 key	 wasn't	 generated	 correctly	 or	 it's	 not
getting	recognized	by	GitHub.

Next,	 we'll	 move	 into	 GitHub,	 go	 back	 to	 the	 home	 page,	 and	 create	 a	 new
repository.

http://www.github.com

Creating	a	new	repository
To	create	a	new	repository,	follow	these	steps:

1.	 On	 the	GitHub	 home	 page,	 in	 the	 right-hand	 side	 corner,	 navigate	 to	 the
New	 repository	 button,	 which	 should	 look	 like	 this	 (click	 on	 Start	 New
Project	if	it's	a	new	one):

This	will	lead	us	to	the	new	repository	page:

2.	 Here,	 all	we	need	 to	do	 is	give	 it	 a	name.	 I'm	going	 to	call	 this	one	 node-

course-2-web-server:

Once	you	have	a	name,	you	could	give	it	an	optional	description	and	you
can	pick	whether	you	want	to	go	with	a	public	or	private	repository.

Now	private	repositories	do	put	you	on	a	$7	plan.	I	do	recommend
that	if	you're	creating	projects	with	other	companies.

3.	 In	 this	 case	 though,	 we're	 creating	 pretty	 simple	 projects	 and	 it	 doesn't
really	matter	if	someone	else	finds	the	code,	so	go	ahead	and	use	a	public
repository	by	clicking	that	option.

4.	 Once	you	have	 those	 two	 things	 filled	out,	 click	on	 the	Create	 repository
button:

This	is	going	to	get	brought	to	your	repository	page:

It	will	give	you	a	little	setup	because	currently	there	is	no	code	to	view,	so	it	will
give	you	a	few	instructions	depending	on	which	situation	you're	in.

Setting	up	the	repository
Now,	 out	 of	 the	 preceding	 three	 setup	 instructions,	we	 don't	 need	 the	 one	 for
creating	 a	 new	 repository.	We	 are	 not	 going	 to	 use	 the	 one	 for	 importing	 our
code	from	some	other	URL.	What	we	have	is	an	existing	repository	and	we	want
to	push	it	from	the	command	line.

We'll	run	these	two	commands	from	inside	our	project:

The	first	one	adds	a	new	remote	to	our	Git	repository
The	second	command	is	going	to	push	it	up	to	GitHub

Remotes	let	Git	know	which	third-party	URLs	you	want	to	sync	up	with.	Maybe
I	want	to	push	my	code	to	GitHub	to	communicate	with	my	co-workers.	Maybe	I
also	want	 to	be	able	 to	push	up	 to	Heroku	 to	deploy	my	app.	That	means	you
would	want	two	remotes.	In	our	case,	we'll	just	add	one,	so	I'll	copy	this	URL,
move	into	the	Terminal,	paste	it,	and	hit	enter:

git	remote	add	origin	https://github.com/garygreig/node-course-2-web-server.git

Now	 that	we	 have	 our	 git	remote	 added,	we	 can	 go	 ahead	 and	 run	 that	 second
command.	We'll	 use	 the	 second	command	extensively	 throughout	 the	book.	 In
the	Terminal,	we	can	copy	and	paste	the	code	for	second	command,	and	run	it:

git	push	-u	origin	master

As	 shown	 in	 the	 preceding	 screenshot,	we	 can	 see	 everything	went	 great.	We
were	able	to	successfully	write	all	of	our	data	up	to	GitHub,	and	if	we	go	back
into	the	browser	and	refresh	the	page,	we're	no	longer	going	to	see	those	setup
instructions.	Instead,	we're	going	to	see	our	repository,	kind	of	like	a	tree	view:

Here	we	can	see	we	have	our	server.js	file,	which	is	great.	We	don't	see	the	log
file	or	node_module	file,	which	is	good,	because	we	ignored	that.	I	have	my	public

directory.	Everything	works	really	really	well.	We	also	have	issues	tracking,	Pull
requests.	You	can	create	a	Wiki	page	which	lets	you	set	up	instructions	for	your
repository.	There's	a	lot	of	really	great	features	that	GitHub	has	to	offer.	We'll	be
using	just	the	very	basic	features.

On	our	repository,	we	can	see	we	have	one	commit	and	if	we	click	on	that	one
commit	 button,	 you	 can	 actually	 go	 to	 the	 commits	 page	 and	 here	we	 see	 the
initial	 commit	 message	 that	 we	 typed.	We	made	 that	 commit	 in	 the	 previous
section:

This	 is	going	 to	 let	us	keep	 track	of	all	our	code,	 revert	 if	we	make	unwanted
changes,	and	manage	our	repository.	Now	that	we	have	our	code	pushed	up,	we
are	done.

Deploying	 the	 node	 app	 to	 the
Web
In	 this	section,	you'll	deploy	your	Node	app	live	 to	 the	Web	using	Heroku.	By
the	end	of	the	section,	you'll	have	the	URL	you	can	give	anybody	and	they'll	be
able	to	go	to	that	URL	in	their	browser	to	view	the	application.	We'll	do	this	via
Heroku.

Heroku	 is	 a	 website.	 It's	 a	 web	 app	 for	 managing	 web	 applications	 that	 are
hosted	in	the	cloud.	It's	a	really	great	service.	They	make	it	almost	effortless	to
create	 new	 apps,	 deploy	 your	 apps,	 update	 apps,	 and	 add	 cool	 add-on-things
such	 as	 logging	 and	 error	 tracking,	 all	 of	 that	 is	 built	 in.	 Now	 Heroku,	 like
GitHub,	does	not	require	a	credit	card	to	sign	up	and	there	is	a	free	tier,	which
we'll	use.	They	have	paid	plans	for	 just	about	everything,	but	we	can	get	away
with	the	free	tier	for	everything	we'll	do	in	this	section.

Installing	 Heroku	 command-line
tools
To	kick	things	off,	we'll	open	up	the	browser	and	go	to	heroku.com.	Here	we	can	go
ahead	and	sign	up	 for	a	new	account.	Take	a	quick	moment	 to	either	 log	 in	 to
your	 existing	 one	 or	 sign	 up	 for	 a	 new	 one.	 Once	 log	 in,	 it'll	 show	 you	 the
dashboard.	Now	your	dashboard	will	look	something	like	this:

Although	there	might	be	a	greeting	telling	you	to	create	a	new	application,	which
you	 can	 ignore.	 I	 have	 a	 bunch	 of	 apps.	 You	 might	 not	 have	 these.	 That	 is
perfectly	fine.

The	next	thing	we'll	do	is	install	the	Heroku	command-line	tools.	This	will	let	us

https://www.heroku.com/

create	apps,	deploy	apps,	open	apps,	and	do	all	sorts	of	really	cool	stuff	from	the
Terminal,	without	having	to	come	into	the	web	app.	That	will	save	us	time	and
make	development	a	lot	easier.	We	can	grab	the	download	by	going	to	toolbelt.he
roku.com.

Here	we're	able	to	grab	the	installer	for	whatever	operating	system,	you	happen
to	be	running	on.	So,	let's	start	the	download.	It's	a	really	small	download	so	it
should	happen	pretty	quickly.

Once	it's	done,	we	can	go	ahead	and	run	through	the	process:

https://devcenter.heroku.com/articles/heroku-cli

This	 is	 a	 simple	 installer	where	 you	 just	 click	 on	 Install.	 There	 is	 no	 need	 to
customize	anything.	You	don't	have	to	enter	any	specific	information	about	your
Heroku	account.	Let's	go	ahead	and	complete	the	installer.

This	will	give	us	a	new	command	from	the	Terminal	that	we	can	execute.	Before
we	can	do	 that,	we	do	have	 to	 log	 in	 locally	 in	 the	Terminal	and	 that's	exactly
what	we'll	do	next.

Log	in	to	Heroku	account	locally
Now	we	will	 start	 off	 the	Terminal.	 If	you	already	have	 it	 running,	you	might
need	 to	 restart	 it	 in	 order	 for	 your	 operating	 system	 to	 recognize	 the	 new
command.	You	 can	 test	 that	 it	 got	 installed	 properly	 by	 running	 the	 following
command:

heroku	--help

When	you	run	 this	command,	you'll	 see	 that	 it's	 installing	 the	CLI	for	 the	first
time	and	then	we'll	get	all	the	help	information.	This	will	tell	us	what	commands
we	have	access	to	and	exactly	how	they	work:

Now	we	will	need	to	log	in	to	the	Heroku	account	locally.	This	process	is	pretty
simple.	In	the	preceding	code	output,	we	have	all	of	the	commands	available	and
one	of	them	happens	to	be	login.	We	can	run	heroku	login	just	like	this	to	start	the
process:

heroku	login

I'll	run	the	login	command	and	now	we	just	use	the	email	and	password	that	we
had	set	up	before:

I'll	 type	in	my	email	and	password.	Typing	for	Password	 is	hidden	because	 it's
secure.	And	when	I	do	that	you	see	Logged	in	as	garyngreig@gmail.com	shows
up	and	this	is	fantastic:

Now	we're	 logged	 in	and	we're	able	 to	 successfully	communicate	between	our
machine's	command	line	and	the	Heroku	servers.	This	means	we	can	get	started
creating	and	deploying	applications.

Getting	SSH	key	to	Heroku
Now	 before	 going	 ahead,	 we'll	 use	 the	 clear	 command	 to	 clear	 the	 Terminal
output	and	get	our	SSH	key	on	Heroku,	kind	of	like	what	we	did	with	GitHub,
only	this	time	we	can	do	it	via	the	command	line.	So	it's	going	to	be	a	lot	easier.
In	order	to	add	our	local	keys	to	Heroku,	we'll	run	the	heroku	keys:add	command.
This	will	scan	our	SSH	directory	and	add	the	key	up:

heroku	keys:add

Here	you	can	see	it	found	a	key	the	id_rsa.pub	file:	Would	you	like	to	upload	it	to
Heroku?.

Type	Yes	and	hit	enter:

Now	we	have	our	key	uploaded.	That	 is	all	 it	 took.	Much	easier	 than	it	was	to
configure	with	GitHub.	From	here,	we	can	use	the	heroku	keys	command	to	print
all	the	keys	currently	on	our	account:

heroku	keys

We	could	always	remove	them	using	heroku	keys:remove	command	followed	by	the
email	related	to	 that	key.	In	 this	case,	we'll	keep	the	Heroku	key	 that	we	have.
Next	up,	we	can	test	our	connection	using	SSH	with	the	v	flag	and	git@heroku.com:

ssh	-v	git@heroku.com

This	will	communicate	with	the	Heroku	servers:

As	shown,	we	can	see	it's	asking	that	same	question:	The	authenticity	of	the	host
'heroku.com'	can't	be	established,	Are	you	sure	you	want	to	continue	connecting?
Type	Yes.

You	will	see	the	following	output:

Now	when	you	run	that	command,	you'll	get	a	lot	of	cryptic	output.	What	you're
looking	for	 is	 authentication	 succeeded	 and	 then	 public	 key	 in	 parentheses.	 If
things	did	not	go	well,	you'll	see	the	permission	denied	message	with	public	key
in	parentheses.	In	this	case,	the	authentication	was	successful,	which	means	we
are	good	to	go.	I'll	run	clear	again,	clearing	the	Terminal	output.

Setting	up	in	the	application	code
for	Heroku
Now	we	can	turn	our	attention	towards	the	application	code	because	before	we
can	deploy	to	Heroku,	we	will	need	to	make	two	changes	to	the	code.	These	are
things	 that	Heroku	expects	 your	 app	 to	 have	 in	 place	 in	 order	 to	 run	 properly
because	Heroku	 does	 a	 lot	 of	 things	 automatically,	 which	means	 you	 have	 to
have	 some	basic	 stuff	 set	 up	 for	Heroku	 to	work.	 It's	 not	 too	 complex—some
really	simple	changes,	a	couple	one-liners.

Changes	in	the	server.js	file
First	up	in	the	server.js	file	down	at	the	very	bottom	of	the	file,	we	have	the	port
and	our	app.listen	statically	coded	inside	server.js:

app.listen(3000,	()	=>	{

		console.log('Server	is	up	on	port	3000');

});

We	need	 to	make	 this	 port	 dynamic,	which	means	we	want	 to	 use	 a	 variable.
We'll	be	using	an	environment	variable	that	Heroku	is	going	to	set.	Heroku	will
tell	your	app	which	port	to	use	because	that	port	will	change	as	you	deploy	your
app,	which	means	that	we'll	be	using	that	environment	variable	so	we	don't	have
to	swap	out	our	code	every	time	we	want	to	deploy.

With	environment	variables,	Heroku	can	set	a	variable	on	the	operating	system.
Your	Node	 app	 can	 read	 that	 variable	 and	 it	 can	 use	 it	 as	 the	 port.	 Now	 all
machines	have	environment	variables.	You	can	actually	view	 the	ones	on	your
machine	by	running	the	env	command	on	Linux	or	macOS	or	the	set	command	on
Windows.

What	you'll	get	when	you	do	that	is	a	really	long	list	of	key-value	pairs,	and	this
is	all	environment	variables	are:

Here,	 we	 have	 a	 LOGNAME	 environment	 variable	 set	 to	 Andrew.	 I	 have	 a
HOME	environment	variable	set	to	my	home	directory,	all	sorts	of	environment
variables	throughout	my	operating	system.

One	of	these	that	Heroku	is	going	to	set	is	called	PORT,	which	means	we	need	to
go	ahead	and	grab	that	port	variable	and	use	it	in	server.js	instead	of	3000.	Up	at
the	very	top	of	the	server.js	file,	we'd	to	make	a	constant	called	port,	and	this	will
store	the	port	that	we'll	use	for	the	app:

const	express	=	require('express');.

const	hbs	=	require('hbs');

const	fs	=	require('fs');

const	port

Now	the	first	thing	we'll	do	is	grab	a	port	from	process.env.	The	process.env	 is	an
object	that	stores	all	our	environment	variables	as	key-value	pairs.	We're	looking
for	one	that	Heroku	is	going	to	set	called	PORT:

const	port	=	process.env.PORT;

This	is	going	to	work	great	for	Heroku,	but	when	we	run	the	app	locally,	the	PORT
environment	variable	is	not	going	to	exist,	so	we'll	set	a	default	using	the	OR	(||)

operator	in	this	statement.	If	process.env.port	does	not	exist,	we'll	set	port	equal	to
3000	instead:

const	port	=	process.env.PORT	||	3000;

Now	 we	 have	 an	 app	 that's	 configured	 to	 work	 with	 Heroku	 and	 to	 still	 run
locally,	just	like	it	did	before.	All	we	have	to	do	is	take	the	PORT	variable	and	use
that	in	app.listen	instead	of	3000.	As	shown,	I'm	going	to	reference	port	and	inside
our	message,	I'll	swap	it	out	for	template	strings	and	now	I	can	replace	3000	with
the	injected	port	variable,	which	will	change	over	time:

app.listen(port,	()	=>	{

		console.log(`Server	is	up	on	port	${port}`);

});

With	this	in	place,	we	have	now	fixed	the	first	problem	with	our	app.	I'll	now	run
node	server.js	from	the	Terminal,	like	we	did	in	the	previous	chapter:

node	server.js

We	still	get	the	exact	same	message:	Server	is	up	on	port	3000,	so	your	app	will
still	works	locally	as	expected:

Changes	in	the	package.json	file
Next	up,	we	have	to	specify	a	script	in	package.json.	Inside	package.json,	you	might
have	noticed	we	have	a	scripts	object,	and	in	there	we	have	a	test	script.

This	gets	set	by	default	for	npm:

We	can	create	 all	 sorts	of	 scripts	 inside	 the	 scripts	 object	 that	do	whatever	we
like.	A	script	is	nothing	more	than	a	command	that	we	run	from	the	Terminal,	so
we	could	take	this	command,	node	server.js,	and	turn	it	into	a	script	instead,	and
that's	exactly	what	we're	going	to	do.

Inside	 the	 scripts	 object,	we'll	 add	 a	 new	 script.	 The	 script	 needs	 to	 be	 called
start:

This	is	a	very	specific,	built-in	script	and	we'll	set	it	equal	to	the	command	that
starts	our	app.	In	this	case,	it	will	be	node	server.js:

"start":	"node	server.js"

This	 is	 necessary	 because	 when	 Heroku	 tries	 to	 start	 our	 app,	 it	 will	 not	 run

Node	with	your	file	name	because	it	doesn't	know	what	your	file	name	is	called.
Instead,	 it	 will	 run	 the	 start	 script	 and	 the	 start	 script	 will	 be	 responsible	 for
doing	the	proper	thing;	in	this	case,	booting	up	that	server	file.

Now	we	can	run	our	app	using	that	start	script	from	the	Terminal	by	using	the
following	command:

npm	start

When	I	do	that,	we	get	a	little	output	related	to	npm	and	then	we	get	Server	is	up
on	port	3000,	and	if	we	visit	the	app	in	the	browser,	everything	works	exactly	as
it	did	in	the	previous	chapter:

The	big	difference	is	that	we	are	now	ready	for	Heroku.	We	could	also	run	the
test	script	using	from	the	Terminal	npm	test:

npm	test

Now,	we	have	no	tests	specified	and	that	is	expected:

Making	a	commit	in	Heroku
The	next	step	in	the	process	will	be	to	make	the	commit	and	then	we	can	finally
start	 getting	 it	 up	 on	 the	Web.	 From	 the	 Terminal,	 we'll	 use	 some	 of	 the	 Git
commands	we	explored	earlier	in	this	chapter.	First	up,	git	status.	When	we	run
git	status,	we	have	something	a	little	new:

Instead	of	new	 files,	we	have	modified	 files	here	 as	 shown	 in	 the	 code	output
here.	We	have	a	modified	package.json	file	and	we	have	a	modified	server.js	 file.
These	are	not	going	to	be	committed	if	we	were	to	run	a	git	commit	 just	yet;	we
still	 have	 to	 use	 git	add.	What	we'll	 do	 is	 run	 git	 add	 with	 the	 dot	 as	 the	 next
argument.	Dot	is	going	to	add	every	single	thing	showing	up	and	get	status	to	the
next	commit.

Now	 I	 only	 recommend	 using	 the	 syntax	 of	 everything	 you	 have	 listed	 in	 the
Changes	 not	 staged	 for	 commit	 header.	 These	 are	 the	 things	 you	 actually	 want	 to
commit,	and	in	our	case,	that	is	indeed	what	we	want.	If	I	run	git	add	and	then	a
rerun	git	status,	we	can	now	see	what	is	going	to	be	committed	next,	under	the
Changes	to	be	committed	header:

Here	we	have	our	package.json	file	and	the	server.js	file.	Now	we	can	go	ahead	and
make	that	commit.

I'll	run	a	git	commit	command	with	the	m	flag	so	we	can	specify	our	message,	and	a
good	 message	 for	 this	 commit	 would	 be	 something	 like	 Setup	 start	 script	 and

heroku	port:

git	commit	-m	'Setup	start	script	and	heroku	port'

Now	we	can	go	ahead	and	run	that	command,	which	will	make	the	commit.

Now	we	can	go	ahead	and	push	that	up	to	GitHub	using	the	git	push	command,
and	we	can	leave	off	the	origin	remote	because	the	origin	is	the	default	remote.
I'll	go	ahead	and	run	the	following	command:

git	push

This	will	push	it	up	to	GitHub,	and	now	we	are	ready	to	actually	create	the	app,
push	our	code	up,	and	view	it	over	in	the	browser:

Running	 the	 Heroku	 create
command
The	next	step	in	the	process	will	be	to	run	a	command	called	heroku	create	 from
the	Terminal.	heroku	create	needs	to	get	executed	from	inside	your	application:

heroku	create

Just	like	we	run	our	Git	commands,	when	I	run	heroku	create,	a	couple	things	are
going	to	happen:

First	up,	it's	going	to	make	a	real	new	application	over	in	the	Heroku	web
app
It's	also	going	to	add	a	new	remote	to	your	Git	repository

Now	 remember	 we	 have	 an	 origin	 remote,	 which	 points	 to	 our	 GitHub
repository.	 We'll	 have	 a	 Heroku	 remote,	 which	 points	 to	 our	 Heroku	 Git
repository.	When	we	deploy	to	the	Heroku	Git	repository,	Heroku	is	going	to	see
that.	It	will	take	the	changes	and	it	will	deploy	them	to	the	Web.	When	we	run
Heroku	create,	all	of	that	happens:

Now	 we	 do	 still	 have	 to	 push	 up	 to	 this	 URL	 in	 order	 to	 actually	 do	 the
deploying	process,	and	we	can	do	that	using	git	push	followed	by	heroku:

git	push	heroku

The	brand	new	remote	was	just	added	because	we	ran	heroku	create.	Now	pushing
it	 this	 time	around	will	go	 through	 the	normal	process.	You'll	 then	start	seeing
some	logs.

These	 are	 logs	 coming	 back	 from	Heroku	 letting	 you	 know	 how	 your	 app	 is
deploying.	 It's	 going	 through	 the	 entire	 process,	 showing	 you	 what	 happens
along	 the	way.	This	will	 take	about	10	seconds	and	at	 the	very	end	we	have	a
success	message—Verifying	deploy...	done:

It	also	verified	that	the	app	was	deployed	successfully	and	that	did	indeed	pass.
From	here	we	actually	have	a	URL	we	can	visit	(https://sleepy-retreat-32096.heroku
app.com/).	We	can	take	it,	copy	it,	and	paste	it	in	the	browser.	What	I'll	do	instead
is	use	the	following	command:

heroku	open

The	heroku	open	will	open	up	the	Heroku	app	in	the	default	browser.	When	I	run
this,	it	will	switch	over	to	Chrome	and	we	get	our	application	showing	up	just	as
expected:

https://sleepy-retreat-32096.herokuapp.com/

We	can	switch	between	pages	and	everything	works	just	like	it	did	locally.	Now
we	have	a	URL	and	this	URL	was	given	to	us	by	Heroku.	This	is	the	default	way
Heroku	 generates	 app	 URLs.	 If	 you	 have	 your	 own	 domain	 registration
company,	you	can	go	ahead	and	configure	 its	DNS	to	point	 to	 this	application.
This	will	let	you	use	a	custom	URL	for	your	Heroku	app.	You'll	have	to	refer	to
the	specific	instructions	for	your	domain	registrar	in	order	to	do	that,	but	it	can
indeed	be	done.

Now	 that	 we	 have	 this	 in	 place,	 we	 have	 successfully	 deployed	 our	 Node
applications	live	to	Heroku,	and	this	is	just	fantastic.	In	order	to	do	this,	all	we
had	 to	 do	 is	make	 a	 commit	 to	 change	 our	 code	 and	 push	 it	 up	 to	 a	 new	Git
remote.	It	could	not	be	easier	to	deploy	our	code.

You	 can	 also	 manage	 your	 application	 by	 going	 back	 over	 to	 the	 Heroku
dashboard.	 If	 you	 give	 it	 a	 refresh,	 you	 should	 see	 that	 brand	 new	 URL
somewhere	on	the	dashboard.	Remember	mine	was	sleepy	retreat.	Yours	is	going
to	be	something	else.	If	I	click	on	the	sleepy	retreat,	I	can	view	the	app	page:

Here	we	can	do	a	 lot	of	configuration.	We	can	manage	Activity	and	Access	so
we	can	collaborate	with	others.	We	have	metrics,	we	have	Resources,	all	sorts	of
really	cool	stuff.	With	this	in	place,	we	are	now	done	with	our	basic	deploying
section.

In	 the	 next	 section,	 your	 challenge	 will	 be	 to	 go	 through	 that	 process	 again.
You'll	add	some	changes	to	the	Node	app.	You'll	commit	them,	deploy	them,	and
view	them	live	in	the	Web.	We'll	get	started	by	creating	the	local	changes.	That
means	I'll	register	a	new	URL	right	here	using	app.get.

We'll	create	a	new	page/projects,	which	 is	why	I	have	 that	as	 the	route	 for	my
HTTP	 get	 handler.	 Inside	 the	 second	 argument,	 we	 can	 specify	 our	 callback
function,	which	will	get	called	with	request	and	response,	and	like	we	do	for	the
other	 routes	 above,	 the	 root	 route	 and	 our	 about	 route,	 we'll	 be	 calling
response.render	 to	 render	 our	 template.	 Inside	 the	 render	 arguments	 list,	 we'll
provide	two.

The	 first	 one	will	 be	 the	 file	 name.	 The	 file	 doesn't	 exist,	 but	we	 can	 still	 go
ahead	and	call	render.	 I'll	call	 it	projects.hbs,	 then	we	can	specify	 the	options	we
want	to	pass	to	the	template.	In	this	case,	we'll	set	page	title,	setting	it	equal	to
Projects	with	a	capital	P.	Excellent!	Now	with	this	in	place,	the	server	file	is	all
done.	There	are	no	more	changes	there.

What	I'll	do	is	go	ahead	and	go	to	the	views	directory,	creating	a	new	file	called
projects.hbs.	In	here,	we'll	be	able	to	configure	our	template.	To	kick	things	off,
I'm	going	to	copy	the	template	from	the	about	page.	Since	it's	really	similar,	I'll
copy	it.	Close	about,	paste	it	into	projects,	and	I'm	just	going	to	change	this	text
to	project	page	text	would	go	here.	Then	we	can	save	the	file	and	make	our	last
change.

The	 last	 thing	we	want	 to	do	 is	update	 the	header.	We	now	have	a	brand	new
projects	page	that	lives	at	/projects.	So	we'll	want	to	go	ahead	and	add	that	to	the
header	links	list.	Right	here,	I'll	create	a	new	paragraph	tag	and	then	I'll	make	an
anchor	 tag.	The	 text	 for	 the	 link	will	 be	 Projects	with	 a	 capital	 P	 and	 the	 href,
which	 is	 the	 URL	 to	 visit	 when	 that	 link	 is	 clicked.	 We'll	 set	 that	 equal	 to
/projects,	just	like	we	did	for	about,	where	we	set	it	equal	to	/about.

Now	that	we	have	this	in	place,	all	our	changes	are	done	and	we	are	ready	to	test
things	out	locally.	I'll	fire	up	the	app	locally	using	Node	with	server.js	as	the	file.
To	start,	we're	up	on	localhost	3000.	So	over	in	the	browser,	I	can	move	 to	 the
localhost	tab,	as	opposed	to	the	Heroku	app	tab,	and	click	on	Refresh.	Right	here
we	have	Home,	which	goes	to	home,	we	have	About	which	goes	to	about,	and
we	have	Projects	which	does	indeed	go	to	/projects,	rendering	the	projects	page.
Project	page	text	would	go	here.	With	this	in	place	we're	now	done	locally.

We	have	the	changes,	we've	tested	them,	now	it's	time	to	go	ahead	and	make	that
commit.	That	will	happen	over	inside	the	Terminal.	I'll	shut	down	the	server	and
run	Git	status.	This	will	show	me	all	the	changes	to	my	repository	as	of	the	last
commit.	I	have	two	modified	files:	the	server	file	and	the	header	file,	and	I	have
my	brand	new	projects	file.	All	of	this	looks	great.	I	want	to	add	all	of	this	to	the
next	commit,	so	I	can	use	a	Git	add	with	the	.	to	do	just	that.

Now	before	I	actually	make	the	commit,	I	do	like	to	test	that	the	proper	things
got	 added	 by	 running	 Git	 status.	 Right	 here	 I	 can	 see	 my	 changes	 to	 be
committed	are	showing	up	in	green.	Everything	looks	great.	Next	up,	we'll	run	a

Git	commit	to	actually	make	the	commit.	This	is	going	to	save	all	of	the	changes
into	the	Git	repository.	A	message	for	this	one	would	be	something	like	adding	a
project	page.

With	a	commit	made,	the	next	thing	you	needed	to	do	was	push	it	up	to	GitHub.
This	will	back	our	code	up	and	let	others	collaborate	on	it.	I'll	use	Git	push	to	do
just	that.	Remember	we	can	 leave	off	 the	origin	remote	as	origin	 is	 the	default
remote,	so	if	you	leave	off	a	remote	it'll	just	use	that	anyway.

With	our	GitHub	repository	updated,	the	last	thing	to	do	is	deploy	to	Heroku	and
we	 do	 that	 by	 pushing	 up	 the	 Git	 repository,	 using	 Git	 push,	 to	 the	 Heroku
remote.	When	we	do	this,	we	get	our	long	list	of	logs	as	the	Heroku	server	goes
through	the	process	of	installing	our	npm	modules,	building	the	app,	and	actually
deploying	it.	Once	it's	done,	we'll	get	brought	back	to	the	Terminal	like	we	are
here,	and	then	we	can	open	up	the	URL	in	the	browser.	Now	I	can	copy	it	from
here	or	run	Heroku	open.	Since	I	already	have	a	tab	open	with	the	URL	in	place,
I'll	 simply	 give	 it	 a	 refresh.	Now	you	might	 have	 a	 little	 delay	 as	 you	 refresh
your	app.	Sometimes	starting	up	the	app	right	after	a	new	app	was	deployed	can
take	 about	10	 to	15	 seconds.	That	will	 only	happen	 as	 you	 first	 visit	 it.	Other
times	where	you	click	on	the	Refresh	button,	it	should	reload	instantly.

Now	we	have	the	projects	page	and	if	I	visit	it,	everything	looks	awesome.	The
navbar	 is	working	 great	 and	 the	 projects	 page	 is	 indeed	 rendering	 at	 /projects.
With	this	in	place,	we	are	now	done.	We've	gone	through	the	process	of	adding	a
new	 feature,	 testing	 it	 locally,	making	 a	Git	 commit,	 pushing	 it	 up	 to	GitHub,
and	deploying	 it	 to	Heroku.	We	now	have	 a	workflow	 for	 building	 real-world
web	applications	using	Node.js.	This	also	brings	a	close	to	this	section.

Summary
You	also	learned	about	Git,	GitHub,	and	Heroku.	These	are	the	tools	I	prefer	to
use	when	I'm	creating	applications.	 I	 like	 to	use	Git	because	 it's	super	popular.
It's	basically	 the	only	 choice	 these	days.	 I	 like	 to	use	GitHub	because	 it	 has	 a
great	user	interface.	It	has	a	ton	of	awesome	features	and	pretty	much	everyone
else	is	using	it	too.	There's	a	great	community.	And	I	like	to	use	Heroku	because
it	is	just	dead	simple	to	deploy	new	versions	of	your	application.	You	can	swap
out	any	of	these	tools	with	any	other	tools.	You	can	use	services	such	Amazon
Web	Services	to	host.	You	could	use	Bitbucket	as	your	GitHub	alternative.	These
are	perfectly	 fine	 solutions.	All	 that	 really	matters	 is	you	have	some	 tools	 that
are	working	for	you,	you	have	a	Git	repository	backed	up	somewhere,	whether
it's	GitHub	or	Bitbucket,	and	you	have	an	easy	way	to	deploy	so	you	can	make
changes	quickly	and	get	them	out	to	your	users	fast.

In	different	sections,	we	looked	at	how	to	add	files	to	Git	and	how	to	make	that
first	commit.	Next,	we	set	up	both	GitHub	and	Heroku,	then	we	looked	at	how	to
push	our	code	and	deploy	it.	Then,	we	looked	at	how	we	can	communicate	with
Heroku	 to	 deploy	 our	 code.	 Then	 after	 that,	 we	 looked	 at	 some	 real-world
workflows	 for	 creating	 new	 commits,	 pushing	 to	 GitHub,	 and	 deploying	 to
Heroku.

In	the	next	chapter,	we'll	look	into	testing	our	applications.

Testing	 the	 Node	 Applications	 –
Part	1
In	this	chapter,	we'll	look	at	how	we	can	test	our	code	to	make	sure	it's	working
as	expected.	Now,	if	you've	ever	set	up	test	cases	for	other	languages,	then	you
know	 how	 hard	 it	 can	 be	 to	 get	 started.	 You	 have	 to	 set	 up	 the	 actual	 test
infrastructure.	Then	you	have	 to	write	 your	 individual	 test	 cases.	Every	 time	 I
didn't	test	an	application,	it	was	because	the	setup	process	and	the	tools	available
to	me	were	such	a	burden.	Then	you	dig	around	for	information	online	and	you
get	 really	 simple	examples,	but	not	 examples	 for	 testing	 real-world	 things	 like
asynchronous	code.	We'll	be	doing	all	of	that	in	this	chapter.	I'll	give	you	a	very
simple	setup	for	testing	and	writing	your	test	cases.

We'll	look	at	the	best	tools	available	so	you'll	actually	be	excited	to	write	those
test	cases	and	see	all	of	 those	green	checkmarks.	We'll	be	testing	from	here	on
out	as	well,	so	let's	dive	in	looking	at	how	we	can	test	some	code.

Basic	testing
In	this	section,	you'll	create	your	very	first	test	case	so	that	you	can	test	whether
your	 code	 is	working	 as	 expected.	By	 adding	 automatic	 testing	 to	 our	 project,
we'll	be	 able	 to	 verify	 that	 a	 function	 does	what	 it	 says	 it'll	 do.	 If	we	make	 a
function	 that's	 supposed	 to	 add	 two	 numbers	 together,	 we	 can	 automatically
verify	it's	doing	that.	And	if	we	have	a	function	that's	supposed	to	fetch	a	user
from	the	database,	we	can	make	sure	it's	doing	that	as	well.

Now	 to	get	 started	 in	 this	 section,	we'll	 look	at	 the	very	basics	of	 setting	up	a
testing	suite	inside	a	Node.js	project.	We'll	be	testing	a	real-world	function.

Installing	the	testing	module
In	order	to	get	started,	we	will	make	a	directory	to	store	our	code	for	this	chapter.
We'll	make	one	on	the	desktop	using	mkdir	and	we'll	call	this	directory	node-tests:

mkdir	node-tests

Then	we'll	change	directory	 inside	 it	using	cd,	 so	we	can	go	ahead	and	 run	 npm
init.	We'll	be	installing	modules	and	this	will	require	a	package.json	file:

cd	node-tests

npm	init

We'll	 run	 npm	init	 using	 the	 default	 values	 for	 everything,	 simply	 hitting	 enter
throughout	every	single	step:

Now	once	that	package.json	file	is	generated,	we	can	open	up	the	directory	inside
Atom.	It's	on	the	desktop	and	it's	called	node-tests.

From	here,	we're	ready	to	actually	define	a	function	we	want	to	test.	The	goal	in
this	 section	 is	 to	 learn	 how	 to	 set	 up	 testing	 for	 a	Node	 project,	 so	 the	 actual
functions	we'll	be	testing	are	going	to	be	pretty	trivial,	but	it	will	help	illustrate
exactly	how	to	set	up	our	tests.

Testing	a	Node	project
To	get	started,	let's	make	a	fake	module.	This	module	will	have	some	functions
and	we'll	test	those	functions.	In	the	root	of	the	project,	we'll	create	a	brand	new
directory	and	I'll	call	this	directory	utils:

We	can	assume	this	will	store	some	utility	functions,	such	as	adding	a	number	to
another	 number,	 or	 stripping	 out	 whitespaces	 from	 a	 string,	 anything	 kind	 of
hodge-podge	 that	 doesn't	 really	 belong	 to	 any	 specific	 location.	We'll	 make	 a
new	file	in	the	utils	folder	called	utils.js,	and	this	is	a	similar	pattern	to	what	we
did	when	we	created	the	weather	and	location	directories	in	our	weather	app	in	the
previous	chapter:

You're	probably	wondering	why	we	have	a	folder	and	a	file	with	the	same	name.
This	will	be	clear	when	we	start	testing.

Now	before	we	can	write	our	first	 test	case	to	make	sure	something	works,	we
need	something	 to	 test.	 I'll	make	a	very	basic	 function	 that	 takes	 two	numbers
and	adds	them	together.	We'll	create	an	adder	function	as	shown	in	the	following
code	block:

module.exports.add	=	()	=>	{

}

This	arrow	function	(=>)	will	take	two	arguments,	a	and	b,	and	inside	the	function,
we'll	return	the	value	a	+	b.	Nothing	too	complex	here:

module.exports.add	=	()	=>	{

		return	a	+	b;

};

Now	since	we	 just	 have	one	 expression	 inside	 our	 arrow	 function	 (=>)	 and	we
want	to	return	it,	we	can	actually	use	the	arrow	function	(=>)	expression	syntax,
which	lets	us	add	our	expression	as	shown	in	the	following	code,	a	+	b,	and	it'll
be	implicitly	returned:

module.exports.add	=	(a,	b)	=>	a	+	b;

There's	no	need	to	explicitly	add	a	return	keyword	on	to	the	function.	Now	that
we	have	utils.js	ready	to	go,	let's	explore	testing.

We'll	be	using	a	framework	called	Mocha	in	order	to	set	up	our	test	suite.	This
will	 let	us	configure	our	 individual	 test	 cases	and	also	 run	all	of	our	 test	 files.
This	will	be	really	important	for	creating	and	running	tests.	The	goal	here	is	to
make	testing	simple	and	we'll	use	Mocha	to	do	just	that.	Now	that	we	have	a	file
and	a	function	we	actually	want	to	test,	let's	explore	how	to	create	and	run	a	test
suite.

Mocha	–	the	testing	framework
We'll	 be	 doing	 the	 testing	 using	 the	 super	 popular	 testing	 framework	Mocha,
which	you	can	find	at	mochajs.org.	This	is	a	fantastic	framework	for	creating	and
running	test	suites.	It's	super	popular	and	their	page	has	all	the	information	you'd
ever	want	to	know	about	setting	it	up,	configuring	it,	and	all	 the	cool	bells	and
whistles	it	has	included:

If	you	scroll	down	on	this	page,	you'll	be	able	to	see	a	table	of	contents:

https://mochajs.org/

Here	you	can	explore	everything	Mocha	has	to	offer.	We'll	be	covering	most	of	it
in	this	chapter,	but	for	anything	we	don't	cover,	I	do	want	to	make	you	aware	you
can	always	learn	about	it	on	this	page.

Now	that	we've	explored	the	Mocha	documentation	page,	let's	install	it	and	start
using	 it.	 Inside	 the	 Terminal,	 we'll	 install	 Mocha.	 First	 up,	 let's	 clear	 the

Terminal	output.	Then	we'll	install	it	using	the	npm	install	command.	When	you
use	npm	install,	you	can	also	use	the	shortcut	npm	i.	This	has	the	exact	same	effect.
I'll	 use	 npm	 i	 with	 mocha,	 specifying	 the	 version	 @3.0.0.	 This	 is	 the	 most	 recent
version	of	the	library	as	of	this	filming:

npm	i	mocha@3.0.0

Now	we	do	want	to	save	this	into	the	package.json	file.	Previously,	we've	used	the
save	flag,	but	we'll	talk	about	a	new	flag,	called	save-dev.	The	save-dev	flag	is	will
save	 this	 package	 for	 development	 purposes	 only—and	 that's	 exactly	 what
Mocha	will	be	for.	We	don't	actually	need	Mocha	to	run	our	app	on	a	service	like
Heroku.	We	just	need	Mocha	locally	on	our	machine	to	test	our	code.

When	you	use	the	save-dev	flag,	it	installs	the	module	much	the	same	way:

npm	i	mocha@5.0.0	--save-dev

But	if	you	explore	package.json,	you'll	see	 things	are	a	 little	different.	 Inside	our
package.json	 file,	 instead	 of	 a	 dependencies	 attribute,	 we	 have	 a	 devDependencies
attribute:

In	 there	 we	 have	 Mocha,	 with	 the	 version	 number	 as	 the	 value.	 The
devDependencies	are	fantastic	because	they're	not	going	to	be	installed	on	Heroku,
but	 they	will	 be	 installed	 locally.	This	will	 keep	 the	Heroku	boot	 times	 really,
really	quick.	It	won't	need	to	install	modules	that	it's	not	going	to	actually	need.
We'll	 be	 installing	 both	 devDependencies	 and	 dependencies	 in	 most	 of	 our	 projects
from	here	on	out.

Creating	 a	 test	 file	 for	 the	 add
function
Now	that	we	have	Mocha	installed,	we	can	go	ahead	and	create	a	test	file.	In	the
utils	folder,	we'll	make	a	new	file	called	utils.test.js:

This	file	will	store	our	test	cases.	We'll	not	store	our	test	cases	in	utils.js.	This
will	be	our	application	code.	Instead,	we'll	make	a	file	called	utils.test.js.	When
we	use	this	test.js	extension,	we're	basically	 telling	our	app	 that	 this	will	store
our	 test	 cases.	When	Mocha	 goes	 through	 our	 app	 looking	 for	 tests	 to	 run,	 it
should	run	any	file	with	this	extension.

Now	we	have	a	test	file,	the	only	thing	left	to	do	is	create	a	test	case.	A	test	case
is	 a	 function	 that	 runs	 some	 code,	 and	 if	 things	 go	 well,	 great,	 the	 test	 is
considered	to	have	passed.	And	if	things	do	not	go	well,	the	test	is	considered	to
have	failed.	We	can	create	a	new	test	case,	using	it.	It	is	a	function	provided	by
Mocha.	 We'll	 be	 running	 our	 project	 test	 files	 through	 Mocha,	 so	 there's	 no
reason	to	import	it	or	do	anything	like	that.	We	simply	call	it	just	like	this:

it();

Now	it	lets	us	define	a	new	test	case	and	it	takes	two	arguments.	These	are:

The	first	argument	is	a	string
The	second	argument	is	a	function

First	up,	we'll	have	a	string	description	of	what	exactly	the	test	is	doing.	If	we're
testing	that	the	adder	function	works,	we	might	have	something	like:

it('should	add	two	numbers');

Notice	here	that	 it	plays	into	the	sentence.	It	should	read	like	this,	it	should	add
two	numbers;	describes	exactly	what	 the	 test	will	verify.	This	 is	called	behavior-
driven	development,	or	BDD,	and	that's	the	principles	that	Mocha	was	built	on.

Now	that	we've	set	up	the	test	string,	the	next	thing	to	do	is	add	a	function	as	the
second	argument:

it('should	add	two	numbers',	()	=>	{

});

Inside	this	function,	we'll	add	the	code	that	tests	that	the	add	function	works	as
expected.	 This	 means	 it	 will	 probably	 call	 add	 and	 check	 that	 the	 value	 that
comes	 back	 is	 the	 appropriate	 value	 given	 the	 two	 numbers	 passed	 in.	 That
means	we	do	need	to	import	the	util.js	file	up	at	the	top.	We'll	create	a	constant,
call	utils,	setting	it	equal	to	the	return	result	from	requiring	utils.	We're	using	./
since	we	will	be	requiring	a	local	file.	It's	in	the	same	directory	so	I	can	simply
type	utils	without	the	js	extension	as	shown	here:

const	utils	=	require('./utils');

it('should	add	two	numbers',	()	=>	{

});

Now	that	we	have	the	utils	library	loaded	in,	inside	the	callback	we	can	call	it.
Let's	make	a	variable	to	store	the	return	results.	We'll	call	this	one	results.	And
we'll	set	it	equal	to	utils.add	passing	in	two	numbers.	Let's	use	something	like	33
and	11:

const	utils	=	require('./utils');

it('should	add	two	numbers',	()	=>	{

		var	res	=	utils.add(33,	11);

});

We	would	 expect	 it	 to	 get	 44	 back.	Now	 at	 this	 point,	we	 do	 have	 some	 code
inside	of	our	test	suites	so	we	run	it.	We'll	do	that	by	configuring	that	test	script
we	looked	at	in	the	previous	chapter	inside	a	package.json.

Currently,	 the	 test	 script	 simply	 prints	 a	message	 to	 the	 screen	 saying	 that	 no
tests	exist.	What	we'll	do	instead	is	call	Mocha.	As	shown	in	the	following	code,
we'll	be	calling	Mocha,	passing	in	as	the	one	and	only	argument	the	actual	files
we	want	to	test.	We	can	use	a	globbing	pattern	to	specify	multiple	files.	In	this
case,	we'll	be	using	**	to	look	in	every	single	directory.	We're	looking	for	a	file
called	utils.test.js:

"scripts":	{

		"test":	"mocha	**/utils.test.js"

},

Now	 this	 is	 a	 very	 specific	 pattern.	 It's	 not	 going	 to	 be	 particularly	 useful.
Instead,	we	can	swap	out	the	file	name	with	a	star	as	well.	Now	we're	looking	for
any	file	on	the	project	that	has	a	file	name	ending	in	.test.js:

"scripts":	{

		"test":	"mocha	**/*.test.js"

},

And	this	is	exactly	what	we	want.	From	here,	we	can	run	our	test	suite	by	saving
package.json	and	moving	to	the	Terminal.	We'll	use	the	clear	command	to	clear	the
Terminal	output	and	 then	we	can	 run	our	 test	 script	 using	command	 shown	as
follows:

npm	test

When	we	run	this,	we'll	execute	that	Mocha	command:

It'll	go	off.	It'll	fetch	all	of	our	test	files.	It'll	run	all	of	them	and	print	the	results
on	the	screen	inside	Terminal	as	shown	in	the	preceding	screenshot.	Here	we	can

see	we	have	a	green	checkmark	next	to	our	test,	should	add	two	numbers.	Next,	we
have	a	little	summary,	one	passing	test,	and	it	happened	in	8	milliseconds.

Now	in	our	case,	we	don't	actually	assert	anything	about	the	number	that	comes
back.	It	could	be	700	and	we	wouldn't	care.	The	test	will	always	pass.	To	make	a
test	fail	what	we	have	to	do	is	throw	an	error.	That	means	we	can	throw	a	new
error	and	we	pass	into	the	constructor	function	whatever	message	we	want	to	use
as	 the	 error	 as	 shown	 in	 the	 following	 code	 block.	 In	 this	 case,	 I	 could	 say
something	like	Value	not	correct:

const	utils	=	require('./utils');

it('should	add	two	numbers',	()	=>	{

		var	res	=	utils.add(33,	11);

		throw	new	Error('Value	not	correct')

});

Now	with	this	in	place,	I	can	save	the	test	file	and	rerun	things	from	the	Terminal
by	rerunning	npm	test,	and	when	we	do	that	now	we	have	0	tests	passing	and	we
have	1	test	failing:

Next	we	can	see	 the	one	 test	 is	should	add	 two	numbers,	and	we	get	our	error
message,	Value	not	correct.	When	we	throw	a	new	error,	the	test	fails	and	that's
exactly	what	we	want	to	do	for	add.

Creating	 the	 if	 condition	 for	 the
test
Now,	we'll	create	an	if	statement	for	the	test.	If	the	response	value	is	not	equal	to
44,	that	means	we	have	a	problem	on	our	hands	and	we'll	throw	an	error:

const	utils	=	require('./utils');

it('should	add	two	numbers',	()	=>	{

		var	res	=	utils.add(33,	11);

		

		if	(res	!=	44){

				

		}

});

Inside	the	if	condition,	we	can	throw	a	new	error	and	we'll	use	a	template	string
as	our	message	string	because	I	do	want	to	use	the	value	that	comes	back	in	the
error	 message.	 I'll	 say	 Expected	 44,	 but	 got,	 then	 I'll	 inject	 the	 actual	 value,
whatever	happens	to	come	back:

const	utils	=	require('./utils');

it('should	add	two	numbers',	()	=>	{

		var	res	=	utils.add(33,	11);

		

		if	(res	!=	44){

				throw	new	Error(`Expected	44,	but	got	${res}.`);

		}

});

Now	in	our	case,	everything	will	line	up	great.	But	what	if	the	add	method	wasn't
working	 correctly?	 Let's	 simulate	 this	 by	 simply	 tacking	 on	 another	 addition,
adding	on	something	like	22	in	utils.js:

module.exports.add	=	(a,	b)	=>	a	+	b	+	22;

I'll	save	the	file,	rerun	the	test	suite:

Now	we	get	an	error	message:	Expected	44,	but	got	66.	This	error	message	 is
fantastic.	It	lets	us	know	that	something	is	going	wrong	with	the	test	and	it	even
tells	us	exactly	what	we	got	back	and	what	we	expected.	This	will	let	us	go	into
the	add	function,	look	for	errors,	and	hopefully	fix	them.

Creating	test	cases	doesn't	need	to	be	something	super	complex.	In	this	case,	we
have	a	simple	test	case	that	tests	a	simple	function.

Testing	 the	 squaring	 a	 number
function
Now,	we'll	 create	a	new	function	 that	 squares	a	number	and	 returns	 the	 result.
We'll	define	that	in	the	utils.js	file	using	module.exports.square.	We'll	set	that	equal
to	an	arrow	function	(=>)	that	takes	in	one	number,	x,	and	we'll	return	x	times	x,	x
*	x,	just	like	this:

module.exports.add	=	(a,	b)	=>	a	+	b;

module.exports.square	=	(x)	=>	x	*	x;

Now	we	have	 this	brand	new	 function	 square	 and	we'll	 create	 a	new	 test	 case
that	makes	sure	square	works	as	expected.	In	utils.test.js,	next	to	the	if	condition
for	add	function,	we'll	call	the	it	function	again:

const	utils	=	require('./utils');

it('should	add	two	numbers',	()	=>	{

		var	res	=	utils.add(33,	11);

		

		if	(res	!=	44){

				throw	new	Error(`Expected	44,	but	got	${res}.`);

		}

});

it();

Inside	the	it	function,	we'll	add	our	two	arguments,	the	string,	and	the	callback
function.	Inside	the	string,	we'll	create	our	message,	should	square	a	number:

it('should	square	a	number',	()	=>	{

});

And	inside	the	callback	function,	we	can	actually	go	ahead	and	call	square.	Now
we	do	want	to	create	a	variable	to	store	the	result	so	we	can	check	that	the	result
is	what	we	expect	it	to	be.	Then	we	can	call	utils.square	passing	in	a	number.	I'll
go	with	3	in	this	case,	which	means	I	should	expect	9	to	come	back:

it('should	square	a	number',	()	=>	{

		var	res	=	utils.square(3);

});

In	the	next	line,	we	can	have	an	if	statement,	if	the	result	does	not	equal	9,	then
we'll	throw	a	message	because	things	went	wrong:

it('should	square	a	number',	()	=>	{

		var	res	=	utils.square(3);

		if	(res	!==	9)	{

		}

});

We	can	throw	an	error	using	throw	new	Error,	passing	in	whatever	message	we	like.
We	can	use	a	regular	string,	but	I	always	prefer	using	a	template	string	so	we	can
inject	 values	 easily.	 I'll	 say	 something	 like	 Expected	 9,	 but	 got,	 followed	 by	 the
value	that's	not	correct;	in	this	case,	that's	stored	in	the	response	variable:

it('should	square	a	number',	()	=>	{

		var	res	=	utils.square(3);

		if	(res	!==	9)	{

				throw	new	Error(`Expected	9,	but	got	${res}`);

		}

});

Now	I	can	save	this	test	case	and	run	the	test	suite	from	the	Terminal.	Using	the
up	arrow	key	and	the	enter	key,	we	can	rerun	the	last	command:

npm	test

We	get	two	tests	passing,	should	add	two	numbers	and	should	square	a	number
both	 have	 checkmarks	 next	 to	 them.	 And	 we	 ran	 both	 tests	 in	 just	 14
milliseconds,	which	is	fantastic.

Now	the	next	thing,	we	want	to	do	is	mess	up	the	square	 function	to	make	sure

our	test	fails	when	the	number	is	not	correct.	I'll	add	1	on	to	the	result	in	utils.js,
which	will	cause	the	test	to	fail:

module.exports.add	=	(a,	b)	=>	a	+	b;

module.exports.square	=	(x)	=>	x	*	x	+	1;

Then	 we	 can	 rerun	 things	 from	 the	 Terminal	 and	 we	 should	 see	 the	 error
message:

We	 get	 Expected	 9,	 but	 got	 10.	 This	 is	 fantastic.	 We	 now	 have	 a	 test	 suite
capable	of	testing	both	the	add	function	and	the	square	function.	I'll	remove	that	+
1,	and	we	are	done.

We	 now	 have	 a	 very,	 very	 basic	 test	 suite	 that	 we	 can	 execute	 with	 Mocha.
Currently,	we	 have	 two	 tests	 and	 to	 create	 those	 tests	 we	 used	 the	 it	method
provided	by	Mocha.	In	the	upcoming	sections,	we'll	be	exploring	more	methods
that	Mocha	gives	us	and	we'll	also	be	looking	at	better	ways	to	do	our	assertions.
Instead	 of	manually	 creating	 them,	we'll	 be	 using	 an	 assertion	 library	 to	 help
with	the	heavy	lifting.

Autorestarting	the	tests
Before	we	write	more	test	cases,	let's	see	an	automatic	way	to	rerun	our	test	suite
when	we	change	either	our	test	code	or	our	application	code.	We'll	be	doing	that
with	nodemon.	Now,	previously	we	used	nodemon	like	this:

nodemon	app.js

We	would	 type	 nodemon	 and	we	would	 pass	 in	 a	 file	 like	 app.js.	Whenever	 any
code	 in	 our	 app	 changed,	 it	would	 rerun	 the	 app.js	 file	 as	 a	Node	 application.
What	we	can	actually	do	is	specify	any	command	in	the	world	we	want	to	run
when	our	files	change.	This	means	we	can	rerun	npm	test	when	the	files	change.

To	 do	 this,	 we'll	 use	 the	 exec	 flag.	 This	 flag	 tells	 nodemon	 that	 we'll	 specify	 a
command	 to	 run,	and	 it	might	not	necessarily	be	a	Node	file.	As	shown	in	 the
following	command,	we	can	specify	that	command.	It'll	be	'npm	test':

nodemon	--exec	'npm	test'

If	you	are	using	Windows,	remember	to	use	double	quotes	in	place
of	single	quotes.

With	this	in	place,	we	can	now	run	the	nodemon	command.	It'll	kick	off	for	the	first
time	running	our	test	suite:

Here	we	see	we	have	two	tests	passing.	Let's	go	ahead	into	the	app	utils.js	and
make	a	change	to	one	of	the	functions,	so	it	fails.	We'll	add	3	or	4	onto	the	result
for	add:

module.exports.add	=	(a,	b)	=>	a	+	b	+	4;

module.exports.square	=	(x)	=>	x	*	x;

It	automatically	restarts	over	here:

And	now	we	 see	 that	we	have	a	 test	 suite	where	one	 test	passes	and	one	 tests
fails.	I	can	always	go	ahead	and	undo	that	error	we	added,	save	the	file,	and	the
test	suite	will	automatically	rerun.

This	 will	 make	 testing	 your	 application	 that	 much	 easier.	 You	 won't	 have	 to
switch	 to	 the	Terminal	 and	 rerun	 the	 npm	test	 command	 every	 time	we	make	 a
change	to	our	application.	Now	we	have	a	command	that	we	can	run,	we'll	shut
down	nodemon	and	use	the	up	arrow	key	to	show	it	again.

And	we	can	actually	move	this	into	a	script	inside	of	package.json.

Inside	package.json	we'll	make	a	new	script	right	after	the	test	script.	Now	we've
used	the	start	script	and	the	test	script—these	are	built-in—we'll	create	a	custom
one	called	test-watch,	and	we	can	run	the	test-watch	script	to	kick	things	off.	Inside
of	test-watch,	we'll	 have	 the	 exact	 same	 command	we	 ran	 from	Terminal.	 That
means	we'll	be	rounding	nodemon.	We'll	be	using	the	exec	flag	and	inside	of	quotes,
we'll	be	running	npm	test:

"scripts":	{

		"test":	"mocha	**/*.test.js",

		"test-watch":	"nodemon	--exec	'npm	test'"

},

Now	 that	 we	 have	 this	 in	 place,	 we	 can	 run	 the	 script	 from	 the	 Terminal	 as
opposed	to	having	to	type	out	this	command	every	single	time	we	want	to	start
up	the	autotest	suite.

The	script	we	have	inside	package.json	currently	will	work	on	macOS
and	Linux.	It'll	also	work	on	Heroku,	which	uses	Linux.	But	it	will
not	work	on	Windows.	The	following	script	will:
"test-watch":	"nodemon	--exec	\"npm	test\"".
As	you	can	see	here,	we're	escaping	the	quotes	surrounding	npm	test
and	 we're	 using	 double	 quotes,	 which	 as	 we	 know	 are	 the	 only
quotes	 supported	by	Windows.	 This	 script	will	 remove	 any	 errors
you're	seeing,	something	like	npm	cannot	be	found,	which	you	will
get	 if	 you	 wrap	 npm	 tests	 in	 single	 quotes	 and	 run	 the	 script	 on
Windows.	So	use	the	above	script	for	cross-OS	compatibility.

To	 run	 a	 script	with	 a	 custom	name,	 such	 as	 test-watch,	 in	 the	Terminal	 all	we
need	to	do	is	run	npm	run	followed	by	the	script	name,	test-watch,	as	shown	in	the
following	command:

npm	run	test-watch

If	I	do	this,	it	will	start	things	off.	We'll	get	our	test	suite	and	it's	still	waiting	for
changes,	as	shown	here:

Now,	 every	 time	 you	 start	 the	 test	 suite	 you	 can	 simply	 use	 npm	 run	 test-watch.
That'll	start	up	the	test-watch	script,	which	starts	up	nodemon.	Every	time	a	change
happens	in	your	project,	it'll	rerun	npm	test,	showing	the	results	of	the	test	suite	to

the	screen.

Now	that	we	have	a	way	to	automatically	restart	our	test	suite,	let's	go	ahead	and
get	back	into	the	specifics	of	testing	in	Node.

Using	 assertion	 libraries	 in
testing	Node	modules
In	the	previous	sections,	we	made	two	test	cases	to	verify	that	utils.add	and	our
utils.square	method	work	as	expected.	We	did	that	using	an	if	condition,	that	is,	if
the	value	was	not	44	that	means	something	went	wrong	and	we	threw	an	error.	In
this	section,	we'll	 learn	how	to	use	an	assertion	library,	which	will	 take	care	of
all	of	the	if	condition	in	utils.test.js	code	for	us:

if	(res	!==	44)

		throw	new	Error(`Expected	44,	but	got	${res}.`)

}

Because	when	we	add	more	and	more	tests,	the	code	will	end	up	looking	pretty
similar	and	there's	no	reason	to	keep	rewriting	it.	Assertion	libraries	let	us	make
assertions	about	values,	whether	it's	about	their	type,	the	value	itself,	whether	an
array	contains	an	element,	all	sorts	of	things	like	that.	They	really	are	fantastic.

The	one	we'll	be	using	is	called	expect.	You	can	find	it	by	going	to	Google	and
googling	mjackson	expect.	And	this	is	the	result	we're	looking	for:

It's	mjackson's	 repository,	 expect.	 It	 is	 a	 fantastic	 and	 super	 popular	 assertion
library.	This	library	will	let	us	pass	in	a	value	and	make	some	assertions	about	it.
On	 this	page,	we	scroll	down	past	 the	 introduction	and	 the	 installation	we	can
get	down	to	an	example:

As	 shown	 in	 the	preceding	 screenshot,	we	have	our	Assertions	header	 and	we
have	our	 first	assertion,	toExist.	This	will	verify	 that	a	value	exists.	 In	 the	next
line,	we	have	an	example,	we	pass	in	a	string	to	expect:

This	is	the	value	we	want	to	make	some	assertions	about.	In	the	context	of	our
application,	that	would	be	the	response	variable	in	the	utils.test.js,	shown	here:

const	utils	=	require('./utils');

it('should	add	two	numbers',	()	=>	{

		var	res	=	utils.add(33,	11);

		if	(res	!==	44)	{

				throw	new	Error(`Expected	44,	but	got	${res}.`)

		}

});

We	want	to	assert	that	it	is	equal	to	44.	After	we	call	expect,	we	can	start	chaining
on	some	assertion	calls.	In	the	assertion	example,	next	we	check	if	it	does	exist:

expect('something	truthy').toExist()

This	would	not	throw	an	error	because	a	string	is	indeed	truthy	inside	JavaScript.
If	we	passed	in	something	like	undefined,	which	is	not	truthy,	toExist	would	fail.	It
would	 throw	an	error	and	 the	 test	case	would	not	pass.	Using	 these	assertions,
we	can	make	it	really,	really	easy	to	check	the	values	in	our	tests	without	having
to	write	all	of	that	code	ourselves.

Exploring	assertion	libraries
Let's	go	ahead	and	start	exploring	the	assertion	libraries.	First	up,	let's	install	the
module	 inside	 the	 Terminal	 by	 running	 npm	 install.	 The	module	 name	 itself	 is
called	expect	and	we'll	grab	the	most	recent	version,	@1.20.2.	Once	again,	we'll	be
using	 the	save-dev	 flag	 like	we	did	with	Mocha.	Because	we	do	 indeed	want	 to
save	this	dependency	in	package.json,	but	it's	a	dev	dependency,	it's	not	required	for
the	application	to	run	whether	it's	on	Heroku	or	some	other	service:

npm	install	expect@1.20.2	--save-dev

The	expect	library	has	been	donated	to	a	different	organization.	The
latest	version,	which	is	v21.1.0	is	not	compatible	with	the	backward
version	we	are	using	here	 that	 is	1.20.2.	What	 I	 like	 you	 to	 do	 is
install	 the	1.20.2	version	 in	 the	section	 that	will	make	sure,	you'll
use	in	next	several	sections.

Let's	go	ahead	and	install	this	dependency.

Then	 we	 can	 move	 to	 the	 application,	 and	 check	 out	 the	 package.json	 file,	 as
shown	in	the	following	screenshot,	it	looks	great:

We	have	 both	 expect	 and	Mocha.	Now,	 inside	 our	 utils.test	 file,	we	 can	 kick
things	off	by	loading	in	the	library	and	making	our	first	assertions	using	expect.
Up	at	the	very	top	of	the	file,	we'll	load	in	the	library,	creating	a	constant	called
expect	and	require('expect'),	just	like	this:

const	expect	=	require('expect');

Now,	we	can	get	started	by	swapping	out	the	if	condition	in	the	utils.test.js	code
with	a	call	to	expect	instead:

const	expect	=	require('expect');

const	utils	=	require('./utils');

it('should	add	two	numbers',	()	=>	{

		var	res	=	utils.add(33,	11);

		//	if(res	!==	44)	{

		//			throw	new	Error(`Expected	44,	but	got	${res}.`)

		//}

});

As	you	saw	in	the	example	on	assertion/expect	page,	we'll	start	all	our	assertions

by	calling	expect	as	a	 function	passing	 in	 the	value	we	want	 to	make	assertions
about.	In	this	case,	that	is	the	res	variable:

const	expect	=	require('expect');

const	utils	=	require('./utils');

it('should	add	two	numbers',	()	=>	{

		var	res	=	utils.add(33,	11);

		expect(res)

		//	if(res	!==	44)	{

		//			throw	new	Error(`Expected	44,	but	got	${res}.`)

		//}

});

Now,	we	 can	 assert	 all	 sorts	 of	 things.	 In	 this	 case,	we	want	 to	 assert	 that	 the
value	is	equal	to	44.	We'll	make	our	assertion	toBe.	On	the	documentation	page,	it
looks	like	this:

This	asserts	 that	a	value	equals	another	value	and	 that's	exactly	what	we	want.
We	 assert	 that	 our	 value	 passed	 into	 expect	 equals	 another	 value	 using	 toBe,
passing	that	value	in	as	the	first	argument.	Back	inside	Atom,	we	can	go	ahead
and	 use	 this	 assertion,	 .toBe,	 and	 we're	 expecting	 the	 result	 variable	 to	 be	 the
number	44,	just	like	this:

const	expect	=	require('expect');

const	utils	=	require('./utils');

it('should	add	two	numbers',	()	=>	{

		var	res	=	utils.add(33,	11);

		expect(res).toBe(44);

		//	if(res	!==	44)	{

		//			throw	new	Error(`Expected	44,	but	got	${res}.`)

		//}

});

Now	 we	 have	 our	 test	 case	 and	 it	 should	 work	 exactly	 as	 it	 did	 with	 the	 if
condition.

To	prove	it	does	work,	let's	move	into	the	Terminal	and	use	the	clear	command	to

clear	the	Terminal	output.	Now	we	can	run	that	test-watch	script	as	shown	in	the
following	command	line:

npm	run	test-watch

As	 shown	 in	 the	preceding	 code	output,	we	get	 our	 two	 tests	 passing	 just	 like
they	did	before.	Now	we	were	to	change	44	to	some	other	value	that	would	throw
an	error	like	40:

const	expect	=	require('expect');

const	utils	=	require('./utils');

it('should	add	two	numbers',	()	=>	{

		var	res	=	utils.add(33,	11);

		expect(res).toBe(40);

		//	if(res	!==	44)	{

		//			throw	new	Error(`Expected	44,	but	got	${res}.`)

		//}

});

We	save	the	file,	and	we'll	get	an	error	and	the	expect	library	will	generate	useful
error	messages	for	us:

It's	saying	that	we	Expected	44	to	be	40.	Clearly	that's	not	the	case,	so	an	error
gets	thrown.	I'll	change	this	back	to	44,	save	the	file,	and	all	of	our	tests	will	pass.

Chaining	multiple	assertions
Now	 we	 can	 also	 chain	 together	 multiple	 assertions.	 For	 example,	 we	 could
assert	 that	 the	 value	 that	 comes	 back	 from	 add	 is	 a	 number.	 This	 can	 be	 done
using	 another	 assertion.	 So	 let's	 head	 into	 the	 docs	 and	 take	 a	 look.	 Inside
Chrome,	 we'll	 scroll	 down	 through	 the	 assertion	 docs	 list.	 There	 are	 a	 lot	 of
methods.	We'll	be	exploring	some	of	them.	In	this	case,	we're	looking	for	toBeA,
the	method	that	takes	a	string:

This	takes	the	string	type	and	it	uses	the	typeof	operator	to	assert	that	the	value	is
of	a	certain	 type.	Here	we're	expecting	2	 to	be	a	number.	We	can	do	that	exact
same	 thing	 over	 in	 our	 code.	 Inside	 Atom,	 right	 after	 toBe,	 we	 can	 chain	 on
another	call,	toBeA,	followed	by	the	type.	This	could	be	something	like	a	string,	it
could	be	something	like	an	object,	or	in	our	case,	it	could	be	a	number,	just	like
this:

const	expect	=	require('expect');

const	utils	=	require('./utils');

it('should	add	two	numbers',	()	=>	{

		var	res	=	utils.add(33,	11);

		expect(res).toBe(44).toBeA('number');

		//	if(res	!==	44)	{

		//			throw	new	Error(`Expected	44,	but	got	${res}.`)

		//}

});

We'll	open	up	the	Terminal	so	we	can	see	the	results.	It's	currently	hidden.	Save
the	file.	Our	tests	will	rerun	and	we	can	see	they're	both	passing:

Let's	use	a	different	type,	something	that	was	going	to	cause	the	test	 to	fail	for
example	string:

	expect(res).toBe(44).toBeA('string');

We	would	then	get	an	error	message,	Expected	44	to	be	a	string:

This	is	really	useful.	It'll	help	us	clean	up	our	errors	really	quickly.	Let's	change
the	code	back	to	number	and	we	are	good	to	go.

Multiple	assertions	for	the	square
function
Now	we'd	like	to	do	the	same	thing	for	our	tests	for	square	a	number	function.
We'll	use	expect	 to	 assert	 that	 the	 response	 is	 indeed	 the	number	 9	 and	 that	 the
type	 is	 a	 number.	 We'll	 use	 these	 same	 two	 assertions	 we	 do	 with	 the	 add
function.	 First,	 we	 need	 to	 do	 to	 delete	 the	 current	 square	 if	 condition	 code,
since	we	will	not	be	using	that	anymore.	As	shown	in	the	following	code,	we'll
make	some	expectations	about	the	res	variable.	We'll	expect	it	to	be	the	number
9,	just	like	this:

it('should	square	a	number',	()	=>	{

		var	res	=	utils.square(3);

		expect(res).toBe(9);

});

We'll	save	the	file	and	make	sure	the	test	passes,	and	it	does	indeed	pass:

Now,	we'll	assert	the	type	using	toBeA.	Here,	we're	checking	that	the	type	of	the
return	value	from	the	square	method	is	a	number:

it('should	square	a	number',	()	=>	{

		var	res	=	utils.square(3);

		expect(res).toBe(9).toBeA('number');

});

When	we	save	the	file,	we	get	both	of	our	tests	still	passing,	which	is	fantastic:

Now	 this	 is	 just	a	 small	 test	 as	 to	what	 expect	 can	do.	Let's	 create	a	bogus	 test
case	that	will	explore	a	few	more	ways	we	can	use	expect.	We'll	not	be	testing	an
actual	 function.	 We'll	 just	 play	 around	 with	 some	 assertions	 inside	 of	 the	 it
callback.

Exploring	 usage	 of	 expect	 with
bogus	test
To	create	the	bogus	test,	we'll	make	a	new	test	using	the	it	callback	function:

it('should	expect	some	values');

We	can	put	whatever	we	want	in	here,	it's	not	too	important.	And	we'll	pass	in	an
arrow	function	(=>)	as	our	callback	function:

it('should	expect	some	values',	()	=>	{

});

Now	as	we've	seen	already,	one	of	the	most	fundamental	assertions	you'll	make
is	you're	just	going	to	check	for	equality.	We	want	to	check	if	something	like	the
response	variable	equals	something	else,	like	the	number	44.	Inside	expect,	we	can
also	do	 the	 opposite.	We	 can	 expect	 that	 a	 value	 like	 12	 does	 not	 equal,	 using
toNotBe.	And	then	we	can	assert	that	it	doesn't	equal	some	other	value,	like	11:

it('should	expect	some	values',	()	=>	{

		expect(12).toNotBe(11);

});

The	 two	 aren't	 equal,	 so	when	we	 save	 the	 file	 over	 in	 the	Terminal,	 all	 three
tests	should	be	passing:

If	I	set	that	equal	to	the	same	value,	it'll	not	work	as	expected:

it('should	expect	some	values',	()	=>	{

		expect(12).toNotBe(12);

});

We'll	get	an	error,	Expected	12	to	not	be	12:

Now	toBe	and	toNotBe	work	great	for	numbers,	strings,	and	Booleans,	but	if	you're
trying	to	compare	arrays	or	objects,	they	will	not	work	as	expected	and	we	can
prove	this.

Using	 toBe	 and	 toNotBe	 to
compare	array/objects
We'll	start	with	removing	the	current	code	by	commenting	it	out.	We'll	 leave	it
around	so	we	use	it	later:

it('should	expect	some	values',	()	=>	{

		//	expect(12).toNotBe(12);

});

We'll	expect	an	object	with	the	name	property	set	to	Andrew,	toBe,	and	we'll	assert	that
it	is	another	object	where	the	name	property	is	equal	to	Andrew,	just	like	this:

it('should	expect	some	values',	()	=>	{

		//	expect(12).toNotBe(12);

		expect({name:	'Andrew'})

});

We'll	use	toBe,	 just	like	we	did	with	number,	checking	if	it	is	the	same	as	another
object	where	name	equals	Andrew:

it('should	expect	some	values',	()	=>	{

		//	expect(12).toNotBe(12);

		expect({name:	'Andrew'}).toBe({name:	'Andrew'});

});

Now	when	we	save	this,	you	might	think	the	test	will	pass,	but	it	doesn't:

As	shown	in	the	preceding	output,	we	see	that	we	expected	the	two	names	to	be
equal.	When	objects	are	compared	for	equality	using	the	triple	equals,	which	is
what	toBe	 uses,	 they'll	 not	 be	 the	 same	 because	 it's	 trying	 to	 see	 if	 they're	 the
exact	same	object,	and	they're	not.	We've	created	two	separate	objects	with	the
same	properties.

Using	the	toEqual	and	toNotEqual
assertions
To	check	if	the	two	names	are	equal,	we'll	have	to	use	something	different.	It's
called	toEqual	as	shown	here:

it('should	expect	some	values',	()	=>	{

		//	expect(12).toNotBe(12);

		expect({name:	'Andrew'}).toEqual({name:	'Andrew'});

});

If	we	save	the	file	now,	this	will	work.	It'll	rip	into	the	object	properties,	making
sure	they	have	the	same	ones:

The	same	thing	goes	for	toNotEqual.	This	checks	if	two	objects	are	not	equal.	To
check	 this,	we'll	go	ahead	and	change	 the	 first	object	 to	have	a	 lowercase	a	 in
andrew:

it('should	expect	some	values',	()	=>	{

		//	expect(12).toNotBe(12);

		expect({name:	'andrew'}).toNotEqual({name:	'Andrew'});

});

Now,	the	test	passes.	They	are	not	equal:

This	 is	 how	 we	 do	 equality	 with	 our	 objects	 and	 arrays.	 Now	 another	 really
useful	thing	we	have	is	toInclude.

Using	toInclude	and	toExclude
The	toInclude	assertion	checks	if	an	array	or	an	object	includes	some	things.	Now
if	it's	an	array,	we	can	check	 if	 it	 includes	a	certain	 item	in	 the	array.	 If	 it's	an
object,	 we	 can	 check	 if	 it	 includes	 certain	 properties.	 Let's	 run	 through	 an
example	of	that.

We'll	expect	 that	an	array	with	the	numbers	2,	3,	and	4	 inside	 the	it	callback	has
the	number	5	inside	and	we	can	do	that	using	toInclude:

it('should	expect	some	values',	()	=>	{

		//	expect(12).toNotBe(12);

		//	expect({name:	'andrew'}).toNotEqual({name:	'Andrew'});

		expect([2,3,4]).toInclude(5);

});

The	toInclude	assertion	takes	the	item.	In	this	case,	we'll	check	if	the	array	has	5
inside.	Now	clearly	it	doesn't,	so	this	test	will	fail:

We	get	the	message,	Expected	[2,	3,	4]	to	include	5.	That	does	not	exist.	Now
we	change	this	to	a	number	that	does	exist,	for	example	2:

it('should	expect	some	values',	()	=>	{

		//	expect(12).toNotBe(12);

		//	expect({name:	'andrew'}).toNotEqual({name:	'Andrew'});

		expect([2,3,4]).toInclude(2);

});

We'll	rerun	the	test	suite	and	everything	will	work	as	expected:

Now,	along	with	toInclude,	we	have	toExclude	like	this:

it('should	expect	some	values',	()	=>	{

		//	expect(12).toNotBe(12);

		//	expect({name:	'andrew'}).toNotEqual({name:	'Andrew'});

		expect([2,3,4]).toExclude(1);

});

This	will	check	if	something	does	not	exist,	for	example	the	number	1,	which	is
not	in	the	array.	If	we	run	this	assertion,	the	test	passes:

The	same	two	methods,	toInclude	and	toExclude,	work	with	objects	as	well.	We	can
play	 with	 that	 right	 on	 the	 next	 line.	 I'll	 expect	 that	 the	 following	 object	 has

something	on	it:

it('should	expect	some	values',	()	=>	{

		//	expect(12).toNotBe(12);

		//	expect({name:	'andrew'}).toNotEqual({name:	'Andrew'});

		//	expect([2,3,4]).toExclude(1);

		expect({

		})

});

Let's	go	ahead	and	create	an	object	that	has	a	few	properties.	These	are:

name:	We'll	set	it	equal	to	any	name,	let's	say	Andrew.
age:	We'll	set	that	equal	to	age,	say	25.
location:	We'll	set	that	equal	to	any	location,	for	example	Philadelphia.

This	will	look	like	the	following	code	block:

it('should	expect	some	values',	()	=>	{

		//	expect(12).toNotBe(12);

		//	expect({name:	'andrew'}).toNotEqual({name:	'Andrew'});

		//	expect([2,3,4]).toExclude(1);

		expect({

				name:	'Andrew',

				age:	25,

				location:	'Philadelphia'

		})

});

Now	let's	say	we	want	to	make	some	assertions	about	particular	properties,	not
necessarily	 the	 entire	 object.	We	 can	 use	 toInclude	 to	 assert	 that	 the	 object	 has
some	properties	and	that	those	property	values	equals	the	value	we	pass	in:

it('should	expect	some	values',	()	=>	{

		//	expect(12).toNotBe(12);

		//	expect({name:	'andrew'}).toNotEqual({name:	'Andrew'});

		//	expect([2,3,4]).toExclude(1);

		expect({

				name:	'Andrew',

				age:	25,

				location:	'Philadelphia'

		}).toInclude({

		})

});

For	 example,	 the	 age	 property.	 Let's	 say	 we	 only	 care	 about	 the	 age.	We	 can
assert	that	the	object	has	an	age	property	equal	to	25	by	typing	the	following	code:

it('should	expect	some	values',	()	=>	{

		//	expect(12).toNotBe(12);

		//	expect({name:	'andrew'}).toNotEqual({name:	'Andrew'});

		//	expect([2,3,4]).toExclude(1);

		expect({

				name:	'Andrew',

				age:	25,

				location:	'Philadelphia'

		}).toInclude({

				age:	25

		})

});

It	doesn't	matter	that	there's	a	name	property.	The	name	property	could	be	any	value.
That	is	irrelevant	in	this	assertion.	Now	let's	use	the	value,	23:

.toInclude({

				age:	23

		})

This	test	will	fail	as	shown	here	since	the	value	is	not	correct:

We	expected	the	age	property	to	be	23,	but	it	was	indeed	25,	so	the	test	fails.	The
same	thing	goes	with	the	toExclude	assertion.

Here	 we	 can	 save	 our	 test	 files.	 This	 checks	 if	 the	 object	 does	 not	 have	 a

property	age	equal	to	23.	It	does	indeed	not	have	that,	so	the	test	passes:

This	 is	 just	a	quick	 taste	as	 to	what	expect	can	do.	For	a	 full	 list	of	 features,	 I
recommend	diving	through	the	documentation.	There's	a	ton	of	other	assertions
you	can	use,	things	like	checking	if	a	number	is	greater	than	another	number,	if	a
number	 is	 less	 than	 or	 equal	 to	 another	 number,	 all	 sorts	 of	 math-related
operations	are	included	as	well.

Testing	the	setName	method
Now	let's	wrap	up	this	section	with	some	more	testing.	Over	in	utils.js,	we	can
make	a	new	function,	one	that	we'll	be	testing,	module.exports.setName.	The	setName
function	is	will	 take	two	arguments.	It'll	 take	a	user	object,	 some	fictitious	user
object	with	some	generic	properties,	and	it'll	take	fullName	as	a	string:

module.exports.add	=	(a,	b)	=>	a	+	b;

module.exports.square	=	(x)	=>	x	*	x;

module.exports.setName	(user,	fullName)

The	job	of	setName	will	be	to	rip	apart	fullName	into	two	parts—the	first	name	and
the	 last	 name—by	 splitting	 it	 on	 the	 space.	We'll	 set	 the	 two	 properties,	 first
name	and	 last	name,	 and	 return	 the	 user	 object.	We'll	 fill	 out	 the	 function	 then
we'll	write	the	test	case.

The	first	thing	we'll	do	is	split	the	name	into	a	names	array,	var	names	will	be	that
array:

module.exports.add	=	(a,	b)	=>	a	+	b;

module.exports.square	=	(x)	=>	x	*	x;

module.exports.setName	(user,	fullName)	=>	{

		var	names

};

It'll	have	two	values,	assuming	there's	only	one	space	inside	of	the	name.	We're
assuming	someone	types	their	first	name,	hits	a	space,	and	types	their	last	name.
We'll	set	this	equal	to	fullName.split	and	we'll	split	on	the	space.	So	I'll	pass	in	an
empty	string	with	a	space	inside	it	as	the	value	to	split:

module.exports.add	=	(a,	b)	=>	a	+	b;

module.exports.square	=	(x)	=>	x	*	x;

module.exports.setName	(user,	fullName)	=>	{

		var	names	=	fullName.split('	');

};

Now	we	have	a	names	array	where	the	first	item	is	the	firstName	and	the	last	item	is
the	lastName.	So	we	can	start	updating	the	user	object.	user.firstName	will	equal	the

first	item	in	the	names	array	and	we'll	grab	the	index	of	0,	which	is	the	first	item.
We'll	 do	 something	 similar	 for	 last	 name,	 user.lastName	 equals	 the	 second	 item
from	the	names	array:

module.exports.add	=	(a,	b)	=>	a	+	b;

module.exports.square	=	(x)	=>	x	*	x;

module.exports.setName	(user,	fullName)	=>	{

		var	names	=	fullName.split('	');

		user.firstName	=	names[0];

		user.lastName	=	names[1];

};

Now	we're	 all	 done,	we	have	 the	names	 set,	 and	we	can	 return	 the	 user	 object
using	return	user,	just	like	this:

module.exports.add	=	(a,	b)	=>	a	+	b;

module.exports.square	=	(x)	=>	x	*	x;

module.exports.setName	(user,	fullName)	=>	{

		var	names	=	fullName.split('	');

		user.firstName	=	names[0];

		user.lastName	=	names[1];

		return	user;

};

Inside	the	utils.test	file,	we	can	now	kick	things	off.	First,	we'll	comment	out	our
it('should	expect	some	values')	handler:

const	expect	=	require('expect');

const	utils	=	require('./utils');

it('should	add	two	numbers',	()	=>	{

		var	res	=	utils.add(33,	11);

		expect(res).toBe(44).toBeA('number');

});

it('should	square	a	number',	()	=>	{

		var	res	=	utils.square(3);

		expect(res).toBe(9).toBeA('number');

});

//	it('should	expect	some	values',	()	=>	{

//			//	expect(12).toNotBe(12);

//			//	expect({name:	'andrew'}).toNotEqual({name:	'Andrew'});

//			//	expect([2,3,4]).toExclude(1);

//			expect({

//						name:	'Andrew',

//						age:	25,

//						location:	'Philadelphia'

//				}).toExclude({

//						age:	23

//				})

//		});

This	 is	 pretty	 great	 for	 documentation.	You	 can	 always	 explore	 it	 later	 if	 you
forget	how	things	work.	We'll	create	a	new	test	 that	should	verify	first	and	last
names	are	set.

We'll	 create	 a	 user	 object.	On	 that	 user	 object,	 we	want	 to	 set	 some	 properties
such	as	age	and	location.	Then	we'll	pass	the	variable	user	into	the	setName	method.
That'll	be	the	first	argument	defined	in	the	utils.js	file.	We'll	pass	in	a	string.	The
string	with	firstName	followed	by	a	space	followed	by	lastName.	Then	we'll	get	the
result	 back	 and	 we'll	 make	 some	 assertions	 about	 it.	 We	 want	 to	 assert	 the
returning	object	includes	using	the	toInclude	assertion.

As	shown	in	the	following	code,	we'll	call	it	to	make	the	new	test	case.	We'll	be
testing:

it('should	set	firstName	and	lastName')

Inside	it,	we	can	now	provide	our	second	argument,	which	will	be	our	callback
function.	Let's	set	 that	 to	an	arrow	function	(=>)	and	now	we	can	make	the	user
object:

it('should	set	firstName	and	lastName',	()	=>	{

});

The	 user	 object	 will	 have	 a	 few	 properties.	 Let's	 add	 something	 like	 location,
setting	that	equal	to	Philadelphia,	and	then	set	an	age	property,	setting	that	equal	to
25:

it('should	set	firstName	and	lastName',	()	=>	{

		var	user	=	{location:	'Philadelphia',	age:	25};

});

Now	we'll	call	the	method	we	defined	over	in	utils.js,	the	setName	method.	We'll
do	that	on	the	next	line,	creating	a	variable	called	res	to	store	the	response.	Then
we'll	set	that	equal	to	utils.setName	passing	in	the	two	arguments,	 the	user	object
and	fullName,	Andrew	Mead:

it('should	set	firstName	and	lastName',	()	=>	{

		var	user	=	{location:	'Philadelphia',	age:	25};

		var	res	=	utils.setName(user,	'Andrew	Mead');

});

Now	 at	 this	 point,	 the	 result	 should	 be	 what	 we	 expect.	We	 should	 have	 the
firstName	and	lastName	properties.	We	should	have	the	location	property	and	the	age
property.

Now	if	you	know	a	lot	about	JavaScript,	you	might	know	that	objects	are	passed
by	 reference,	 so	 the	 user	 variable	 has	 actually	 been	 updated	 as	 well.	 That	 is
expected.	Both	user	and	res	will	have	the	exact	same	value.	We	can	actually	go
ahead	and	prove	that	using	an	assertion.	We'll	expect	that	user	equals	using	toEqual
the	res:

it('should	set	firstName	and	lastName',	()	=>	{

		var	user	=	{location:	'Philadelphia',	age:	25};

		var	res	=	utils.setName(user,	'Andrew	Mead');

		expect(user).toEqual(res);

});

Inside	Terminal,	we	can	see	the	test	does	indeed	pass:

Let's	delete	expect(user).toEqual(res);.	Now,	we	want	check	if	the	user	object	or	the
res	 object	 includes	 certain	 properties.	 We'll	 check	 using	 expect	 that	 the	 res
variable	has	some	properties	using	toInclude:

it('should	set	firstName	and	lastName',	()	=>	{

		var	user	=	{location:	'Philadelphia',	age:	25};

		var	res	=	utils.setName(user,	'Andrew	Mead');

		expect(res).toInclude({

		})

});

The	properties	we're	looking	for	are	firstName	equal	to	what	we	would	expect	that
to	be,	Andrew,	and	lastName	equal	to	Mead:

it('should	set	firstName	and	lastName',	()	=>	{

		var	user	=	{location:	'Philadelphia',	age:	25};

		var	res	=	utils.setName(user,	'Andrew	Mead');

		expect(res).toInclude({

				firstName:	'Andrew',

				lastName:	'Mead'

		})

});

These	 are	 the	 assertions	 that	 should	 be	made	 in	 order	 to	 verify	 that	 setName	 is
working	as	expected.	If	I	save	the	file,	the	test	suite	reruns	and	we	do	indeed	get
the	passing	tests	as	shown	here:

We	have	three	of	them	and	it	took	just	10	milliseconds	to	run.

And	with	this	in	place,	we	now	have	an	assertion	library	for	our	test	suite.	That's
fantastic	because	writing	test	cases	just	got	way	easier,	and	the	whole	goal	of	the
chapter	is	to	make	testing	approachable	and	easy.

In	 the	 next	 section,	 we'll	 start	 looking	 at	 how	 we	 can	 test	 more	 complex
asynchronous	functions.

The	asynchronous	testing
In	 this	section,	you'll	 learn	how	to	 test	asynchronous	functions.	The	process	of
testing	asynchronous	 functions	 isn't	 that	 different	 from	 synchronous	 ones,	 like
what	we've	done	already,	but	it	is	a	little	different	so	it	justifies	its	own	section.

Creating	 the	 asyncAdd	 function
using	the	setTimeout	object
To	kick	things	off,	we'll	make	a	fake	async	function	using	setTimeout	to	simulate	a
delay	inside	utils.js.	Just	below	where	we	make	our	add	function,	let's	make	one
called	asyncAdd.	It'll	essentially	have	the	same	features,	but	it'll	use	setTimeout	and
it'll	have	a	callback	to	simulate	a	delay.	Now	in	the	real	world,	this	delay	might
be	 a	 database	 request	 or	 an	 HTTP	 request.	 We'll	 be	 dealing	 with	 that	 in	 the
following	chapters.	For	now	though,	let's	add	module.exports.asyncAdd:

module.exports.add	=	(a,	b)	=>	a	+	b;

module.exports.asyncAdd	=	()

This	will	take	three	arguments,	as	opposed	to	the	two	the	add	function	took,	a,	b,
and	callback:

module.exports.add	=	(a,	b)	=>	a	+	b;

module.exports.asyncAdd	=	(a,	b,	callback)

This	 is	what's	 going	 to	make	 the	 function	 asynchronous.	 Eventually,	 once	 the
setTimeout	 is	up,	we'll	call	 the	callback	with	the	sum,	whether	it's	one	plus	three
being	four,	or	 five	plus	nine	being	 fourteen.	Next	up,	we	can	put	 the	arrow	 in
arrow	function	(=>)	and	open	and	close	our	curly	braces:

module.exports.asyncAdd	=	(a,	b,	callback)	=>	{

};

Inside	 the	arrow	 function	 (=>),	 as	mentioned,	we'll	 be	 using	 setTimeout	 to	 create
the	delay.	We'll	pass	in	a	callback	and	we'll	pass	in	our	setTimeout.	Let's	go	with	1
second	in	this	case:

module.exports.asyncAdd	=	(a,	b,	callback)	=>	{

		setTimeout(()	=>	{

		},	1000);

};

Now,	by	default,	if	our	tests	take	longer	than	2	seconds,	Mocha	will	assume	that

is	not	what	we	wanted	and	it'll	fail.	That's	why	we're	using	1	second	in	this	case.
Inside	our	callback,	we	can	call	the	actual	callback	argument	with	the	sum	a	+	b,
just	like	this:

module.exports.asyncAdd	=	(a,	b,	callback)	=>	{

		setTimeout(()	=>	{

				callback(a	+	b);

		},	1000);

};

We	now	have	an	asyncAdd	function	and	we	can	start	writing	a	test	for	it.

Writing	the	test	 for	 the	asyncAdd
function
Inside	of	the	utils.test	file,	just	under	our	previous	test	for	utils.add,	we'll	add	a
new	one	for	asyncAdd.	The	test	setup	will	look	really	similar.	We	will	be	calling	it
and	 passing	 in	 a	 string	 as	 the	 first	 argument	 and	 a	 callback	 as	 the	 second
argument.	Then	we'll	add	our	callback,	just	like	this:

it('should	async	add	two	numbers',	()	=>	{

});

Inside	 the	 callback,	we	 can	 get	 started	 calling	 utils.asyncAdd.	We'll	 call	 it	 using
utils.asyncAdd	 and	we'll	 pass	 in	 those	 three	 arguments.	We'll	 use	 4	 and	 3,	which
should	 result	 in	 7.	 And	 we'll	 provide	 the	 callback	 function,	 which	 should	 get
called	with	that	value,	the	value	being	7:

it('should	async	add	two	numbers',	()	=>	{

		utils.asyncAdd(4,	3,	()	=>	{

		});

});

Inside	 the	 callback	 arguments,	 we	 would	 expect	 something	 like	 sum	 to	 come
back:

it('should	async	add	two	numbers',	()	=>	{

		utils.asyncAdd(4,	3,	(sum)	=>	{

		});

});

Making	 assertion	 for	 the
asyncAdd	function
Now	we	can	start	making	some	assertions	about	that	sum	variable	using	the	expect
object.	We	 can	 pass	 it	 into	 expect	 to	make	 our	 assertions,	 and	 these	 assertions
aren't	 going	 to	 be	 new.	 It's	 stuff	 we've	 already	 done.	We'll	 expect	 that	 the	 sum
variable	 equals,	 using	 toBe,	 the	 number	 7.	 Then	we'll	 check	 that	 it's	 a	 number,
using	toBeA,	inside	quotes,	number:

it('should	async	add	two	numbers',	()	=>	{

		utils.asyncAdd(4,	3,	(sum)	=>	{

				expect(sum).toBe(7).toBeA('number');

		});

});

Now	obviously	if	it	is	equal	to	7	that	means	it	is	a	number,	but	we're	using	both
just	to	simulate	exactly	how	chaining	will	work	inside	of	our	expect	calls.

Now	that	we	have	our	assertions	in	place,	let's	save	the	file	and	run	our	test	and
see	what	happens.	We'll	 run	 it	 from	Terminal,	 npm	 run	 test-watch	 to	 start	 up	our
nodemon	watching	script:

npm	run	test-watch

Now	our	tests	will	run	and	the	test	does	indeed	pass:

The	only	problem	is	that	it's	passing	for	the	wrong	reasons.	If	we	change	7	to	10
and	save	the	file:

it('should	async	add	two	numbers',	()	=>	{

		utils.asyncAdd(4,	3,	(sum)	=>	{

				expect(sum).toBe(10).toBeA('number');

		});

});

In	this	case,	the	test	is	still	going	to	pass.	Right	here,	you	see	we	have	four	tests
passing:

Adding	the	done	argument
Now	the	reason	this	test	is	passing	is	not	because	the	assertion	in	utils.test.js	is
valid.	It's	passing	because	we	have	an	asynchronous	action	that	takes	1	second.
This	function	will	return	before	the	async	callback	gets	fired.	When	I	say	function
returning,	I'm	referring	to	the	callback	function,	the	second	argument	to	it.

This	 is	when	Mocha	 thinks	your	 test	 is	done.	This	means	 that	 these	assertions
never	run.	The	Mocha	output	has	already	said	our	test	passes	before	this	callback
ever	gets	fired.	What	we	need	to	do	is	tell	Mocha	this	will	be	an	asynchronous
test	that'll	take	time.	To	do	this,	all	we	do	is	we	provide	an	argument	inside	the
callback	function	we	pass	to	it.	We'll	call	this	one	done:

it('should	async	add	two	numbers',	(done)	=>	{

When	we	have	the	done	argument	specified,	Mocha	knows	that	means	we	have	an
asynchronous	 test	 and	 it'll	 not	 finish	 processing	 this	 test	 until	 done	 gets	 called.
This	means	we	can	call	done	after	our	assertions:

it('should	async	add	two	numbers',	(done)	=>	{

		utils.asyncAdd(4,	3,	(sum)	=>	{

				expect(sum).toBe(10).toBeA('number');

				done();

		});

});

With	 this	 in	place,	our	 test	will	now	run.	The	function	will	 return	right	after	 it
calls	 async.Add,	 but	 that's	 OK	 because	 we	 have	 done	 specified.	 About	 a	 second
later,	our	callback	 function	will	 fire.	 Inside	 the	asyncAdd	 callback	 function,	we'll
make	our	assertions.	This	 time	 the	assertions	will	matter	because	we	have	done
and	we	haven't	called	it	yet.	After	the	assertions	we	call	done,	this	tells	Mocha
that	we're	all	done	with	the	test.	It	can	go	ahead	and	process	the	result,	letting	us
know	whether	it	passed	or	failed.	This	will	fix	that	error.

If	I	save	the	file	in	this	state,	it'll	rerun	the	tests	and	we'll	see	that	our	test	should
async.Add	 two	numbers	will	 indeed	 fail.	 Inside	Terminal,	 let's	 open	up	 the	 error
message,	we	have	Expected	7	to	be	10:

This	 is	 exactly	what	we	 thought	would	 happen	 the	 first	 time	 around	when	we
didn't	 use	 done,	 but	 as	 we	 can	 see,	 we	 do	 need	 to	 use	 done	 when	 we're	 doing
something	asynchronous	inside	of	our	tests.

Now	we	can	change	this	expectation	back	to	7,	save	the	file:

it('should	async	add	two	numbers',	(done)	=>	{

		utils.asyncAdd(4,	3,	(sum)	=>	{

				expect(sum).toBe(7).toBeA('number');

				done();

		});

});

This	time	around	things	should	work	as	expected	after	1	second	delay	as	it	runs
this	test:

It	can't	report	right	away	because	it	has	to	wait	for	done	to	get	called.	Notice	that
our	 total	 test	 time	 is	 now	 about	 a	 second.	We	 can	 see	 that	we	 have	 four	 tests
passing.	Mocha	also	warns	us	when	a	test	takes	a	long	time	because	it	assumes
that's	 not	 expected.	 Nothing	 inside	 Node,	 even	 a	 database	 or	 HTTP	 request,
should	take	even	close	to	a	second,	so	it's	essentially	letting	us	know	that	there's
probably	an	error	somewhere	inside	of	your	function—it's	taking	a	really,	really
long	time	to	process.	In	our	case	though,	the	one	second	delay	was	clearly	set	up
inside	of	utils	so	there's	no	need	to	worry	about	that	warning.

With	this	in	place,	we	now	have	a	test	for	our	very	first	asynchronous	method.
All	we	 had	 to	 do	 is	 add	 a	 done	 as	 an	 argument	 and	 call	 it	 once	we	were	 done
making	our	assertions.

The	asynchronous	testing	for	the
square	function
Now	let's	create	an	asynchronous	version	of	the	square	method	as	we	did	with	the
synchronous	one.	In	order	to	get	started,	we'll	define	the	function	first	and	then
we'll	worry	about	writing	that	test.

Creating	 the	 async	 square
function
Inside	the	utils	file,	we	can	get	started	next	to	the	square	method	creating	a	new
one	called	asyncSquare:

module.exports.square	=	(x)	=>	x	*	x;

module.exports.asyncSquare

It'll	take	two	arguments:	the	original	argument	which	we	called	x,	and	the	callback
function	that'll	get	called	after	our	1-second	delay:

module.exports.square	=	(x)	=>	x	*	x;

module.exports.asyncSquare	=	(x,	callback)	=>	{

};

Then	we	can	finish	up	the	arrow	function	(=>)	and	we	can	start	working	on	the
body	of	asyncSquare.	It'll	look	pretty	similar	to	the	asyncAdd	one.	We'll	call	setTimeout
passing	in	a	callback	and	a	delay.	In	this	case,	the	delay	will	be	the	same;	we'll
go	with	1	second:

module.exports.square	=	(x)	=>	x	*	x;

module.exports.asyncSquare	=	(x,	callback)	=>	{

		setTimeout(()	=>	{

		},	1000);

};

Now	we	can	actually	call	the	callback.	This	will	trigger	the	callback	function	that
got	passed	in	and	we'll	pass	in	the	value	x	times	x,	which	will	properly	square	the
number	passed	in	place	of	x:

module.exports.square	=	(x)	=>	x	*	x;

module.exports.asyncSquare	=	(x,	callback)	=>	{

		setTimeout(()	=>	{

				callback(x	*	x);

		},	1000);

};

Writing	test	for	asyncSquare
Now	inside	the	test	 file,	 things	are	 indeed	passing,	but	we	haven't	added	a	 test
for	the	asyncSquare	function	so	let's	do	that.	Inside	the	utils.test	file,	the	next	thing
you	needed	to	do	was	call	it.	Next	to	it	for	testing	the	asyncAdd	function,	let's	call
it	to	make	a	new	test	for	this	asyncSquare	function:

it('should	square	a	number',	()	=>	{

		var	res	=	utils.square(3);

	

		expect(res).toBe(9).toBeA('number');

});

it('should	async	square	a	number')

Next	 up,	 we'll	 provide	 the	 callback	 function	 that'll	 get	 called	 when	 the	 test
actually	executes.	And	since	we	are	testing	an	async	function,	we'll	put	done	in	the
callback	function	as	shown	here:

it('should	async	square	a	number',	(done)	=>	{

});

This	will	tell	Mocha	to	wait	until	done	is	called	to	decide	whether	or	not	the	test
passed.	Next,	we	can	now	call	utils.asyncSquare	passing	in	a	number	of	our	choice.
We'll	use	5.	Next	up,	we	can	pass	in	a	callback:

it('should	async	square	a	number',	(done)	=>	{

		utils.asyncSquare(5,	()	=>	{

		})

});

This	will	get	the	final	result.	In	the	arrow	function	(=>),	we'll	create	a	variable	to
store	that	result:

	utils.asyncSquare(5,	(res)	=>	{

		});

Now	that	we	have	this	in	place,	we	can	start	making	our	assertions.

Making	 assertions	 for	 the
asyncSquare	function
The	assertions	will	be	done	using	the	expect	 library.	We'll	make	some	assertions
about	the	res	variable.	We'll	assert	that	it	equals,	using	toBe,	the	number	25,	which
is	5	times	5.	We'll	also	use	toBeA	to	assert	something	about	the	type	of	the	value:

it('should	async	square	a	number',	(done)	=>	{

		utils.asyncSquare(5,	(res)	=>	{

				expect(res).toBe(25).toBeA('number');

		});

});

In	this	case,	we	want	to	make	sure	that	the	square	is	indeed	a	number,	as	opposed
to	 a	Boolean,	 string,	 or	object.	With	 this	 in	place,	we	do	need	 to	 call	 done	 and
then	save	the	file:

it('should	async	square	a	number',	(done)	=>	{

		utils.asyncSquare(5,	(res)	=>	{

				expect(res).toBe(25).toBeA('number');

				done();

		});

});

Remember,	 if	 you	 don't	 call	 done,	 your	 test	 will	 never	 finish.	 You
might	 find	 that	 every	once	 in	 a	while	 you'll	 get	 an	error	 like	 this
inside	the	Terminal:

You're	 getting	 an	 error	 timeout,	 the	 2,000	 milliseconds	 has	 exceeded.	 This	 is
when	Mocha	cuts	off	your	test.	If	you	see	this,	this	usually	means	two	things:

You	have	an	async	 function	that	never	actually	calls	 the	callback,	so	you're
call	to	done	never	gets	fired.
You	just	never	called	done.

If	 you	 see	 this	 message,	 it	 usually	 means	 there's	 a	 small	 typo
somewhere	in	the	async	function.	To	overcome	this,	either	fix	things
in	the	method	(utils.js)	by	making	sure	the	callback	is	called,	or	fix
things	in	the	test	(utils.test.js)	by	calling	done,	and	when	you	save
the	file	you	should	now	see	all	of	your	tests	are	passing.

In	 our	 case,	we	 have	 5	 tests	 passing	 and	 it	 took	 2	 seconds	 to	 do	 that.	 This	 is
fantastic:

We	now	have	a	way	to	test	synchronous	functions	and	asynchronous	functions.
This	will	make	testing	a	lot	more	flexible.	It'll	 let	us	test	essentially	everything
inside	of	our	applications.

Summary
In	 this	 chapter,	 we	 looked	 into	 testing	 the	 synchronous	 and	 asynchronous
functions.	 We	 looked	 into	 basic	 testing.	 We	 explored	 the	 testing	 framework,
Mocha.	Then,	we	look	into	using	assertion	libraries	in	testing	Node	modules.

In	the	next	chapter,	we'll	look	at	how	we	can	test	our	Express	apps.

Testing	 the	 Node	 Applications	 –
Part	2
In	this	chapter,	we'll	continue	our	journey	of	testing	the	Node	applications.	In	the
previous	 chapter,	 we	 looked	 at	 the	 basic	 testing	 framework	 and	 worked	 on
synchronous	 as	 well	 as	 asynchronous	 Node	 application.	 In	 this	 chapter	 we'll
move	 on	 to	 testing	 the	 Express	 applications,	 then	we'll	 look	 into	 a	method	 to
organize	our	test	better	 in	 the	result	output,	and	last	but	not	 least	we'll	get	 into
some	advanced	methods	of	testing	Node	application.

Specifically,	we'll	look	into	the	following	topics:

Setting	up	testing	for	Express	app
Testing	Express	application
Organizing	test	with	describe()
Test	spies

Testing	the	Express	application
In	this	section,	we'll	be	setting	up	an	Express	app	and	then,	we'll	look	at	how	we
can	test	it	to	verify	that	the	data	that	comes	back	from	our	routes	is	what	the	user
should	 be	 getting.	 Now	 before	 we	 do	 any	 of	 that,	 we	 will	 need	 to	 create	 an
Express	server	and	that's	the	goal	of	this	section.

Setting	up	testing	for	the	Express
app
We'll	start	with	 installing	Express.	We'll	use	npm	i,	which	 is	short	 for	 install,	 to
install	Express.	Remember,	you	could	always	 replace	 install	with	i.	We'll	 grab
the	most	recent	version,	@4.16.2.	Now,	we'll	be	using	the	save	flag	as	opposed	to
the	save	dev	flag	that	we've	used	for	testing	in	the	previous	chapter:

npm	i	express@4.16.2	--save

This	 command	 is	 going	 to	 install	 Express	 as	 a	 regular	 dependency,	 which	 is
exactly	what	we	want:

We	need	Express	when	we	deploy	 to	production,	whether	 it's	Heroku	or	 some
other	service.

Back	inside	the	app,	if	we	open	up	package.json,	we	can	see	we	have	dependencies
which	we've	seen	before,	and	devDependencies	which	is	new	to	us:

		"devDependencies":	{

				"expect":	"^1.20.2",

				"mocha":	"^3.0.0"

		},

		"dependencies":	{

				"express":	"^4.14.0"

		}

}

This	is	how	we	can	break	up	the	different	dependencies.	From	here,	we'll	make	a
server	folder	inside	the	root	of	the	project	where	we	can	store	the	server	example

as	well	as	 the	 test	 file.	We'll	make	a	directory	called	server.	Then	 inside	 server,
we'll	make	a	file	called	server.js.

The	 server.js	 file	 will	 contain	 the	 actual	 code	 that	 starts	 up	 our	 server.	 We'll
define	our	routes,	we'll	listen	to	a	port,	all	that	stuff	is	going	to	happen	in	here.
This	is	what	we	had	before	for	the	previous	server	chapter.	In	server.js,	we'll	add
const	express,	and	this	will	get	equal	to	the	require	('express')	return	result:

const	express	=	require('express');

Next	 up,	 we	 can	 make	 our	 application	 by	 creating	 a	 variable	 called	 app	 and
setting	it	equal	to	a	call	to	express:

const	express	=	require('express');

var	app	=	express();

Then	we	can	start	configuring	our	routes.	Let's	set	up	 just	one	for	 this	section,
app.get:

const	express	=	require('express');

var	app	=	express();

app.get

This	will	set	up	an	HTTP	GET	handler.	The	URL	will	be	just	/	(forward	slash),
the	root	of	the	website.	And	when	someone	requests	that,	for	the	moment	we'll
specify	 a	 really	 simple	 string	 as	 the	 return	 result.	We	 get	 the	 request	 and	 the
response	 object	 like	we	 do	 for	 all	 of	 our	 express	 routes.	Yo	 respond,	we'll	 call
res.send,	sending	back	the	string	Hello	World!:

app.get('/',	(req,	res)	=>	{

		res.send('Hello	world!');

});

The	last	step	in	the	process	will	be	to	listen	on	a	port	using	app.listen.	We'll	bind
to	port	3000	by	passing	it	in	as	the	first	and	only	argument:

app.get('/',	(req,	res)	=>	{

		res.send('Hello	world!');

});

app.listen(3000);

With	this	in	place,	we	are	now	done.	We	have	a	basic	Express	server.	Before	we

move	on	 to	 explore	 how	 to	 test	 these	 routes,	 let's	 start	 it	 up.	We'll	 do	 that	 by
using	the	following	command:

node	server/server.js

When	we	 run	 this,	we	don't	get	 any	 logs	because	we	haven't	 added	a	callback
function	for	when	the	server	starts,	but	it	should	indeed	be	up.

If	we	go	over	to	Chrome	and	visit	localhost:3000,	we	get	Hello	world!	printing	to
the	screen:

Now,	we	are	ready	to	move	on	to	start	testing	our	Express	application.

Testing	 the	 Express	 app	 using
SuperTest
Now,	we'll	learn	an	easy,	no-nonsense	way	to	test	our	Express	applications.	That
means	we	can	verify	that	when	we	make	an	HTTP	GET	request	to	the	/	URL,	we
get	the	Hello	world!	response	back.

Now	traditionally,	testing	HTTP	apps	has	been	one	of	the	more	difficult	things	to
test.	We	would	have	to	fire	up	a	server,	like	we	did	in	the	previous	section.	Then
we	would	need	some	code	to	actually	make	the	request	to	the	appropriate	URL.
And	 then	 we	 have	 to	 dig	 through	 the	 response,	 getting	 what	 we	 want,	 and
making	 assertions	 about	 it,	 whether	 it's	 headers,	 the	 status	 code,	 the	 body,	 or
anything	else.	It	is	a	real	burden.	That	is	not	the	goal	for	this	section.	Our	goal
here	 is	 to	 make	 testing	 easy	 and	 approachable,	 so	 we'll	 use	 a	 library	 called
SuperTest	to	test	our	Express	applications.

SuperTest	was	created	by	the	developers	who	originally	created	Express.	It	has
built-in	support	for	Express	and	it	makes	testing	your	Express	apps	dead	simple.

The	SuperTest	documentation
In	order	to	get	started,	let's	pull	up	the	docs	page	so	you	know	where	it	lives	if
you	 ever	want	 to	 look	 at	 any	other	 features	 that	 it	 has	 to	 offer.	 If	 you	Google
supertest,	it	should	be	the	first	result:

It's	the	VisionMedia	repository	and	the	repository	itself	is	called	SuperTest.	Let's
switch	over	to	the	repository	page	and	we	can	take	a	quick	look	at	what	it	has	to
offer.	On	 this	page,	we	can	 find	 installation	 instructions	and	 introduction	stuff.
We	don't	really	need	that.	Let's	take	a	quick	look	at	an	example:

As	shown	in	the	previous	screenshot,	we	can	see	an	example	of	how	SuperTest
works.	We	create	an	Express	application,	 just	 like	we	normally	would,	and	we
define	a	route.	Then	we	make	a	call	to	the	request	method,	which	is	provided	by
SuperTest,	 passing	 in	 our	Express	 application.	We	 say	we	want	 to	make	 a	 get
request	 to	 the	 /	 URL.	 Then	 we	 start	 making	 assertions.	 There's	 no	 need	 to
manually	 check	 either	 the	headers,	 the	 status	 code,	 or	 the	body.	 It	 has	built-in
assertions	for	all	of	that.

Creating	 a	 test	 for	 the	 Express
app
To	get	started,	we'll	 install	SuperTest	 in	our	application	by	running	npm	install
from	the	Terminal.	We	have	the	Node	server	still	running.	Let's	shut	that	down
and	then	install	the	module.

We	can	use	npm	i,	 the	module	name	 is	 supertest	 and	we'll	be	grabbing	 the	most
recent	version,	@2.0.0.	This	is	a	test-specific	module	so	we'll	be	installing	it	with
save.	We'll	use	save-dev	to	add	it	to	the	devDependencies	in	package.json:

npm	i	supertest@3.0.0	--save-dev

With	SuperTest	installed,	we	are	now	ready	to	work	on	the	server.test.js	file.	As
it	doesn't	yet	exist	inside	the	server	folder,	so	we	can	create	it.	It's	going	to	sit	just
alongside	server.js:

Now	 that	we	have	 server.test.js	 in	place,	we	can	 start	 setting	up	our	very	 first
test.	First,	we'll	be	creating	a	constant	called	request	and	setting	that	equal	to	the
return	result	from	requiring	supertest:

const	request	=	require('supertest');

This	is	the	main	method	we'll	be	using	to	test	our	Express	apps.	From	here,	we
can	 load	 in	 the	 Express	 application.	 Now	 inside	 server.js,	 we	 don't	 have	 an
export	 that	 exports	 the	 app,	 so	 we'll	 have	 to	 add	 that.	 I'll	 add	 it	 next	 to	 the

app.listen	statement	by	creating	module.exports.app	and	setting	that	equal	to	the	app
variable:

app.listen(3000);

module.exports.app	=	app;

Now	 we	 have	 an	 export	 called	 app	 that	 we	 can	 access	 from	 other	 files.	 The
server.js	is	still	going	to	run	as	expected	when	we	start	it	from	the	Terminal,	not
in	test	mode.	We	just	added	an	export	so	if	anyone	happens	to	require	it,	they	can
get	access	to	that	app.	Inside	server.test.js,	we'll	make	a	variable	to	import	this.
We'll	call	 the	variable	app.	Then	we'll	 require	using	require('./server.js'),	or	 just
server.	Then	we'll	access	the	.app	property:

const	request	=	require('supertest');

var	app	=	require('./server').app;

With	this	in	place,	we	now	have	everything	we	need	to	write	our	very	first	test.

Writing	 the	 test	 for	 the	 Express
app
The	 first	 test	 we'll	 write	 is	 a	 test	 that	 verifies	 when	we	make	 an	HTTP	GET
request	to	the	/	URL,	we	get	Hello	world!	back.	To	do	this,	we	will	be	calling	it
just	like	we	did	for	our	other	tests	in	the	previous	chapter.	We're	still	using	mocha
as	the	actual	test	framework.	We're	using	SuperTest	to	fill	in	the	gaps:

var	app	=	require('./server').app;

it('should	return	hello	world	response')

Now	we'll	set	up	the	function	as	follows:

it('should	return	hello	world	response',	(done)	=>	{

});

This	is	going	to	be	an	asynchronous	call	so	I	are	providing	done	as	the	argument
to	 let	 mocha	 know	 to	wait	 before	 determining	whether	 or	 not	 the	 test	 passed	 or
failed.	 From	 here,	 we	 can	 now	 make	 our	 very	 first	 call	 to	 request.	 To	 use
SuperTest,	we	call	request	passing	in	the	actual	Express	application.	In	this	case,
we	pass	in	the	app	variable:

it('should	return	hello	world	response',	(done)	=>	{

		request(app)

});

Then	 we	 can	 start	 chaining	 together	 all	 the	 methods	 we	 need	 to	 make	 the
request,	make	our	assertions,	and	finally	wrap	things	up.	First	up,	you'll	be	using
a	method	to	actually	make	that	request,	whether	it's	a	get,	put,	delete,	or	a	post.

For	now,	we'll	be	making	a	get	request,	so	we	will	use	.get.	The	.get	request	takes
the	URL.	So,	we'll	provide	/	(forward	slash),	just	as	we	did	in	server.js:

it('should	return	hello	world	response',	(done)	=>	{

		request(app)

				.get('/')

});

Next	 up,	 we	 can	make	 some	 assertions.	 To	make	 assertions,	 we'll	 use	 .expect.

Now	.expect	is	one	of	those	methods	that	does	different	things	depending	on	what
you	 pass	 to	 it.	 In	 our	 case,	 we'll	 be	 passing	 in	 a	 string.	 Let's	 pass	 in	 a	 string
which	will	be	the	response	body	that	we	assert,	Hello	world!:

it('should	return	hello	world	response',	(done)	=>	{

		request(app)

				.get('/')

				.expect('Hello	world!')

});

Now	that	we're	done	and	we've	made	our	assertions,	we	can	wrap	things	up.	To
wrap	up	a	 request	 in	SuperTest,	all	we	do	 is	we	call	.end	passing	 in	done	 as	 the
callback:

it('should	return	hello	world	response',	(done)	=>	{

		request(app)

				.get('/')

				.expect('Hello	world!')

				.end(done);

});

This	 handles	 everything	 behind	 the	 scenes	 so	 you	 don't	 need	 to	manually	 call
done	 at	 a	 later	point	 in	 time.	All	of	 it	 is	handled	by	SuperTest.	With	 these	 four
lines	 (in	 the	 previous	 code),	 we	 have	 successfully	 tested	 our	 very	 first	 API
request.

Testing	our	first	API	request
We'll	kick	things	off	in	the	Terminal	by	running	our	test-watch	script:

npm	run	test-watch

The	test	script	is	going	to	start	and	as	shown	here,	we	have	some	tests:

We	have	our	 test,	 should	 return	 hello	 world	 response,	 showing	 up	 in	 the	 previous
screenshot.

Now	we	can	take	things	a	step	further	making	other	assertions	about	the	data	that
comes	 back.	 For	 example,	 we	 can	 use	 expect	 after	 the	 .get	 request	 in
server.test.js	 to	make	an	 assertion	 about	 the	 status	 code.	By	default,	 all	 of	our
Express	calls	are	going	to	return	a	200	status	code,	which	means	that	things	went
OK:

it('should	return	hello	world	response',	(done)	=>	{

		request(app)

				.get('/')

				.expect(200)

				.expect('Hello	world!')

				.end(done);

});

If	we	save	the	file,	the	test	still	passes:

Now	let's	make	some	changes	to	the	request	to	make	these	tests	fail.	First	up,	in
server.js	we'll	just	add	a	few	characters	(ww)	to	the	string,	and	save	the	file:

app.get('/',	(req,	res)	=>	{

		res.send('Hello	wwworld!');

});

app.listen(3000);

module.exports.app	=	app;

This	should	cause	the	SuperTest	test	to	fail	and	it	does	indeed	do	that:

As	 shown	 in	 the	 previous	 screenshot,	we	 get	 a	message,	 expected	 'Hello	 world!'
response	 body,	 but	 we	 got	 'Hello	 wwworld!'.	 This	 is	 letting	 us	 know	 exactly	 what
happened.	Back	 inside	server.js,	we	can	 remove	 those	extra	characters	 (ww)	 and
try	something	else.

Setting	up	custom	status
Now	we	haven't	talked	about	how	to	set	a	custom	status	for	our	response,	but	we
can	do	that	with	one	method,	.status.	Let's	add	.status	in	server.js,	chaining	it	on,
before,	send('Hello	world!'),	just	like	this:

app.get('/',	(req,	res)	=>	{

		res.status().send('Hello	world!');

});

Then,	we	can	pass	in	the	numerical	status	code.	For	example,	we	could	use	a	404
for	page	not	found:

app.get('/',	(req,	res)	=>	{

		res.status(404).send('Hello	world!');

});

If	we	save	the	file	this	time	around,	the	body	is	going	to	match	up,	but	inside	the
Terminal	we	can	see	we	now	have	a	different	error:

We	expected	a	200,	but	we	got	a	404.	Using	SuperTest,	we	can	make	all	sorts	of
assertions	about	our	application.	Now	the	same	thing	is	true	for	different	types	of
responses.	For	example,	we	can	create	an	object	 as	 the	 response.	Let's	make	a
simple	object	and	we'll	create	a	property	called	error.	Then	we'll	set	error	equal	to
a	generic	error	message	for	a	404,	something	like	Page	not	found:

app.get('/',	(req,	res)	=>	{

		res.status(404).send({

				error:	'Page	not	found.'

		});

});

Now,	 we're	 sending	 back	 a	 JSON	 body,	 but	 currently	 we're	 not	 making	 any
assertions	about	that	body	so	the	test	is	going	to	fail:

We	can	update	our	tests	to	expect	JSON	to	come	back.	In	order	to	get	that	done,
all	we	have	to	do	inside	server.test	 is	change	what	we	pass	 to	expect.	Instead	of
passing	in	a	string,	we'll	pass	in	an	object:

it('should	return	hello	world	response',	(done)	=>	{

		request(app)

				.get('/')

				.expect(200)

				.expect({

				})

				.end(done);

});

Now	we	can	match	up	that	object	exactly.	Inside	the	object,	we'll	expect	that	the
error	property	exists	and	that	it	equals	exactly	what	we	have	in	server.js:

				.expect({

						error:	'Page	not	found.'

				})

Then,	we'll	change	the	.expect	call	to	a	404	from	200:

				.expect(404)

				.expect({

				error:	'Page	not	found.'

				})

With	this	in	place,	our	assertions	now	match	up	with	the	actual	endpoint	we've
defined	inside	the	Express	application.	Let's	save	the	file	and	see	if	all	the	tests
pass:

As	shown	in	the	previous	screenshot,	we	can	see	it	is	indeed	passing.	The	Should
return	 hello	 world	 response	 is	 passing.	 It	 took	 about	 41ms	 (milliseconds)	 to
complete,	and	that	is	perfectly	fine.

Adding	flexibility	to	SuperTest
A	 lot	 of	 the	 built-in	 assertions	 do	 get	 the	 job	 done	 for	 the	majority	 of	 cases.
There	 are	 times	 where	 you	 want	 a	 little	 more	 flexibility.	 For	 example,	 in	 the
previous	chapter,	we	learned	about	all	those	cool	assertions	expect	can	make.	We
can	use	toInclude,	toExclude,	all	of	that	stuff	is	really	handy	and	it's	a	shame	to	lose
it.	Luckily,	there's	a	lot	of	flexibility	with	SuperTest.	What	we	can	do	instead	of
taking	an	object	and	passing	it	into	expect,	or	a	number	for	the	status	code,	we
can	provide	a	function.	This	function	will	get	called	by	SuperTest	and	it	will	get
passed	the	response:

				.expect((res)	=>	{

				})

This	means	we	can	access	headers,	body,	anything	we	want	 to	access	from	the
HTTP	 response—it's	 going	 to	 be	 available	 in	 the	 function.	 We	 can	 pipe	 it
through	 the	 regular	 expect	 assertion	 library	 like	 we've	 done	 in	 the	 previous
chapter.

Let's	 load	 it	 in,	 creating	 a	 constant	 called	 expect	 and	 setting	 it	 equal	 to	 require
expect:

const	express	=	require('supertest');

const	express	=	require('express');

Now	before	we	look	at	how	it's	going	to	work,	we'll	make	a	change	in	server.js.
Here,	we'll	add	a	second	property	on	to	the	.status	object.	We'll	add	an	error	and
then	add	something	else.	Let's	use	name,	setting	it	equal	to	the	application	name,
Todo	App	v1.0:

app.get('/',	(req,	res)	=>	{

		res.status(404).send({

				error:	'Page	not	found.',

				name:	'Todo	App	v1.0'

		});

});

Now	 that	we	 have	 this	 in	 place,	we	 can	 take	 a	 look	 at	 how	we	 can	 use	 those
custom	assertions	 inside	our	 test	 file.	 In	 the	.expect	object,	we'll	have	access	 to
the	 response	 and	 in	 the	 response	 there	 is	 a	 body	 property.	 This	 will	 be	 a

JavaScript	object	with	key-value	pairs,	which	means	we	would	expect	to	have	an
error	property	and	a	name	property,	which	we	set	in	server.js.

Back	inside	our	test	file,	we	can	make	a	custom	assertion	using	expect.	I'll	expect
something	about	 the	body,	res.body.	Now	we	can	use	any	assertion	we	 like,	not
just	the	equals	assertion,	which	is	the	only	one	SuperTest	supports.	Let's	use	the
toInclude	assertion:

				.expect((res)	=>	{

						expect(res.body).toInclude({

						});

				})

Remember,	toInclude	lets	you	specify	a	subset	of	the	properties	on	the	object.	As
long	as	it	has	those	ones	that's	fine.	It	doesn't	matter	that	it	has	extra	ones.	In	our
case,	inside	toInclude,	we	can	just	specify	the	error	message,	 leaving	off	 the	fact
that	 name	 exists	 at	 all.	We	want	 to	 check	 that	 error:	 Page	 not	 found,	 formatted
exactly	like	we	have	it	inside	of	server.js:

				.expect((res)	=>	{

						expect(res.body).toInclude({

								error:	'Page	not	found.'

						});

				})

Now	when	we	save	the	file	back	inside	the	Terminal,	things	restart	and	all	of	my
tests	are	passing:

Using	 a	 combination	 of	 SuperTest	 and	 expect	we	 can	 have	 super	 flexible	 test
suites	 for	 our	HTTP	 endpoints.	With	 this	 in	 place,	we'll	 create	 another	 express
route	and	we'll	define	a	test	that	makes	sure	it	works	as	expected.

Creating	an	express	route
There	will	be	two	sides	to	this	express	route,	the	actual	setup	in	server.js	and	the
test.	We	can	start	inside	server.js.	In	here,	we'll	make	a	new	route.	First,	let's	add
a	few	comments	 to	specify	exactly	what	we'll	do.	It's	going	to	be	an	HTTP	GET
route.	The	route	itself	will	be	/users	and	we	can	just	assume	this	returns	an	array
of	users:

app.get('/',	(req,	res)	=>	{

		res.status(404).send({

				error:	'Page	not	found.',

				name:	'Todo	App	v1.0'

		});

});

		//	GET	/users

We	can	pass	an	array	back	through	the	send	method,	just	like	we	do	an	object	in
the	previous	code.	Now	this	array	is	going	to	be	an	array	of	objects	where	each
object	is	a	user.	For	now,	we	want	to	give	users	a	name	property	and	an	age	prop:

		//	GET	/users

		//	Give	users	a	name	prop	and	age	prop

Then	we'll	 create	 two	or	 three	users	 for	 this	 example.	Now	once	we	have	 this
done,	we'll	 be	 responsible	 for	writing	 a	 test	 that	 asserts	 it	 works	 as	 expected.
That's	going	 to	 happen	 in	 server.test.js.	 Inside	 server.test.js,	 we'll	make	 a	 new
test:

it('should	return	hello	world	response',	(done)	=>	{

		request(app)

				.get('/')

				.expect(404)

				.expect((res)	=>	{

						expect(res.body).toInclude({

								error:	'Page	not	found.'

						});

				})

				.end(done);

});

//	Make	a	new	test

And	 this	 test	 is	 going	 to	 assert	 a	 couple	 of	 things.	 First	 up,	we	 assert	 that	 the
status	code	that	comes	back	is	a	200	and	we	want	to	make	an	assertion	that	inside

of	that	array	and	we'll	do	that	using	toInclude:

//	Make	a	new	test

//	assert	200

//	Assert	that	you	exist	in	users	array

Let's	 start	 with	 defining	 the	 endpoint	 first.	 Inside	 server.js,	 just	 following	 the
comments,	we'll	call	app.get	so	we	can	register	the	brand	new	HTTP	endpoint	for
our	application.	This	one	is	going	to	be	at	/users:

app.get('/users')

//	GET	/users

//	Give	users	a	name	prop	and	age	prop

Next	up,	we'll	specify	the	callback	that	takes	both	request	and	response:

app.get('/users',	(req,	res)	=>	{

				

});

//	GET	/users

//	Give	users	a	name	prop	and	age	prop

This	 will	 let	 us	 actually	 respond	 to	 the	 request,	 and	 the	 goal	 here	 is	 just	 to
respond	with	 an	 array.	 In	 this	 case,	 I'll	 call	 response.send	 passing	 in	 an	 array	 of
objects:

app.get('/users',	(req,	res)	=>	{

		res.send([{

				}])

		});	

The	first	object	will	be	name.	We'll	set	 the	name	equal	to	Mike	and	we'll	 set	his	age
equal	to	27:

app.get('/users',	(req,	res)	=>	{

		res.send([{

				name:	'Mike',

				age:	27

		}])		

});

Then	 I	 can	add	another	object.	Let's	 add	 the	 second	object	 to	 the	array	with	 a
name	equal	to	Andrew	and	an	age	equal	to	25:

app.get('/users',	(req,	res)	=>	{

		res.send([{

				name:	'Mike',

				age:	27

		},	{

				name:	'Andrew',

				age:	25

		}])				

});

In	the	last	one,	we'll	set	the	name	equal	to	Jen	and	the	age	equal	to	26:

app.get('/users',	(req,	res)	=>	{

		res.send([{

				name:	'Mike',

				age:	27

		},	{

				name:	'Andrew',

				age:	25

		},	{

				name:	'Jen',

				age:	26

		}])				

});

Now	 that	 we	 have	 our	 endpoint	 done,	 we	 can	 save	 server.js,	 move	 into
server.test.js,	and	start	worrying	about	actually	creating	our	test	case.

Writing	 the	 test	 for	 the	 express
route
In	 server.test.js,	 just	 following	 the	 comments,	 we	 need	 to	 start	 things	 out	 by
calling	it.	it	is	the	only	way	to	make	a	new	test:

//	Make	a	new	test

//	assert	200

//	Assert	that	you	exist	in	users	array

it('should	return	my	user	object')

Then	 we'll	 specify	 the	 callback	 function.	 It	 will	 get	 past	 the	 done	 argument
because	this	one	is	going	to	be	asynchronous:

//	Make	a	new	test

//	assert	200

//	Assert	that	you	exist	in	users	array

it('should	return	my	user	object',	(done)	=>	{

});

To	kick	things	off	inside	the	test	case,	we'll	be	calling	requests	just	like	we	did	in
hello	world	response,	passing	in	the	Express	application:

it('should	return	my	user	object',	(done)	=>	{

		request(app)

});

Now	we	can	set	up	 the	actual	call.	 In	 this	case,	we're	 just	making	a	call,	 a	 get
request,	to	the	following	URL,	inside	of	quotes,	/users:

it('should	return	my	user	object',	(done)	=>	{

		request(app)

				.get('/users')

});

Next	up,	we	can	start	making	our	assertions	and	the	first	thing	we're	supposed	to
assert	 that	 the	 status	 code	 is	 at	 200,	 which	 is	 the	 default	 status	 code	 used	 by
Express.	We	can	assert	that	by	calling	.expect	and	passing	in	the	status	code	as	a
number.	In	this	case,	we'll	pass	in	200:

it('should	return	my	user	object',	(done)	=>	{

		request(app)

				.get('/users')

				.expect(200)

});

After	 this,	we'll	 use	 a	 custom	 expect	 assertion.	This	means	 that	we'll	 call	 expect
passing	 in	a	 function	and	use	 toInclude	 inside	it	 to	make	 the	 assertion	 that	 you
exist	in	that	users	array.	We'll	call	expect	the	method	passing	in	the	function,	and
that	function	will	get	called	with	the	response:

it('should	return	my	user	object',	(done)	=>	{

		request(app)

				.get('/users')

				.expect(200)

				.expect((res)	=>	{

				

				})

});

This	will	 let	us	make	 some	assertions	about	 the	 response.	What	we're	 actually
going	to	do	is	make	an	assertion	using	expect.	We'll	expect	something	about	the
response	body.	In	this	case,	we'll	be	checking	that	it	includes	using	toInclude,	our
user	object:

it('should	return	my	user	object',	(done)	=>	{

		request(app)

				.get('/users')

				.expect(200)

				.expect((res)	=>	{

						expect(res.body).toInclude()

				

				})

});

Now	remember	you	can	call	 toInclude	on	both	arrays	and	objects.	All	we	do	 is
pass	 in	 the	 item	we	want	 to	 confirm	 is	 in	 the	 array.	 In	 our	 case,	 it's	 an	 object
where	the	name	property	equals	Andrew	and	the	age	property	equals	25,	which	is	what
we	used	inside	server.js:

				expect(res.body).toInclude({

						name:	'Andrew',

						age:	25

				})

Now	that	we	have	our	custom	expect	call	in	place,	at	the	very	bottom	we	can	call
.end.	This	is	going	to	wrap	up	the	request	and	we	can	pass	in	done	as	the	callback
so	it	can	properly	fire	off	those	errors	if	any	actually	occurred:

				expect(res.body).toInclude({

						name:	'Andrew',

						age:	25

				})

		})

		.end(done);

With	this	in	place,	we	are	ready	to	get	going.	We	can	save	the	file.

Inside	the	Terminal,	we	can	see	the	tests	are	indeed	rerunning:

We	have	a	test	as	shown	in	the	previous	screenshot,	should	return	my	user	object.	It
is	passing.

Now	we	 can	 confirm	 that	we'll	 not	 go	 crazy	 and	 test	 the	wrong	 thing	 by	 just
messing	up	the	data.	We	will	now	add	a	lowercase	a	after	the	uppercase	one	in
Andrew	in	server.js,	as	shown	here:

app.get('/users',	(req,	res)	=>	{

		res.send([{

				name:	'Mike',

				age:	27

		},	{

				name:	'Aandrew',

				age:	25

		},	{

				name:	'Jen',

				age:	26

		}])				

});

The	test	is	going	to	fail.	We	can	see	that	in	the	Terminal:

We	have	done	testing	for	our	Express	apps.	We'll	now	talk	about	one	more	way
we	can	test	our	Node	code.

Organizing	test	with	describe()
In	this	section,	we	will	learn	how	to	use	describe().	describe	is	a	function	injected
into	our	test	files,	 just	 like	the	it	function	is.	It	comes	from	mocha	and	it's	really
fantastic.	Essentially,	it	lets	us	group	tests	together.	That	makes	it	a	lot	easier	to
scan	the	test	output.	If	we	run	our	npm	test	command	in	the	Terminal,	we	get	our
tests:

We	have	seven	tests	and	currently	they're	all	grouped	together.	It's	really	hard	to
look	for	the	tests	in	the	utils	file	and	it's	impossible	to	find	the	tests	for	asyncAdd
without	scanning	all	of	the	text.	What	we'll	do	is	call	describe().	This	will	let	us
make	groups	of	tests.	We	can	give	that	group	a	name.	It	will	make	our	test	output
much	more	readable.

In	the	utils.test.js	file,	right	after	the	utils	constant,	we'll	call	describe():

const	expect	=	require('expect');

const	utils	=	require('./utils');

describe()

The	describe	object	takes	two	arguments,	just	like	it.	The	first	one	is	the	name
and	 the	other	 is	 the	callback	 function.	We'll	 use	 Utils.	This	will	 be	 the	 describe
block	 that	 contains	 all	 of	 the	 tests	 in	 the	 utils.test	 file.	Then	we'll	 provide	 the

function.	This	is	the	callback	function:

describe('Utils',	()	=>	{

});

Inside	 the	 callback	 function,	 we'll	 be	 defining	 tests.	 Any	 test	 defined	 in	 the
callback	function	will	be	a	part	of	the	utils	block.	That	means	we	can	take	our
existing	 tests,	 cut	 them	 out	 of	 the	 file,	 paste	 them	 in	 there,	 and	 we'll	 have	 a
describe	block	called	utils	with	all	of	the	tests	for	this	file.	So,	let's	do	just	that.

We'll	grab	all	 the	 tests,	excluding	 the	ones	 that	are	 just	playground	tests	where
we	play	around	with	various	expect	functionality.	We'll	then	paste	them	right	into
the	callback	function.	The	resultant	code	is	going	to	look	like	this:

describe('Utils',	()	=>	{

		it('should	add	two	numbers',	()	=>	{

				var	res	=	utils.add(33,	11);

				expect(res).toBe(44).toBeA('number');

		});

		it('should	async	add	two	numbers',	(done)	=>	{

				utils.asyncAdd(4,	3,	(sum)	=>	{

						expect(sum).toBe(7).toBeA('number');

						done();

				});

		});

		it('should	square	a	number',	()	=>	{

				var	res	=	utils.square(3);

				expect(res).toBe(9).toBeA('number');

		});

		it('should	async	square	a	number',	(done)	=>	{

				utils.asyncSquare(5,	(res)	=>	{

						expect(res).toBe(25).toBeA('number');

						done();

				});

		});

});

These	are	four	tests	for	add,	asyncAdd,	square,	and	asyncSquare	respectively.	Now	we'll
save	the	file	and	we	can	start	up	the	test-watch	script	from	the	Terminal	and	check
the	output:

npm	run	test-watch

The	 script	will	 start	 and	 run	 through	 our	 tests,	 and	 as	 shown	 in	 the	 following
screenshot,	we'll	have	different	outputs:

We	have	a	Utils	section	and	under	Utils,	we	have	all	of	 the	tests	 in	that	describe
block.	This	makes	reading	and	scanning	your	 tests	much,	much	easier.	We	can
do	the	same	thing	for	the	individual	methods.

Adding	 describe()	 for	 individual
methods
Now,	in	the	case	of	utils.test.js	(refer	to	the	previous	screenshot),	we	have	one
test	 per	 method,	 but	 if	 you	 have	 a	 lot	 of	 tests	 that	 are	 targeting	 a	 complex
method,	 it's	 best	 to	 wrap	 that	 in	 its	 own	 describe	 block.	 We	 can	 nest	 describe
blocks	and	tests	in	any	way	we	like.	For	example,	right	inside	utils	just	after	the
describe	 statement,	 we	 can	 call	 describe	 again.	We	 can	 pass	 a	 new	 description.
Let's	use	#	(pound	sign)	followed	by	add:

describe('Utils',	()	=>	{

		describe('#add')

The	 #	 (pound	 sign)	 followed	 by	 the	 method	 name	 is	 the	 common	 syntax	 for
adding	a	describe	block	for	a	specific	method.	Then	we	can	provide	that	callback
function:

describe('Utils',	()	=>	{

		describe('#add',	()	=>	{

		})

Then,	we	can	 take	any	 tests	we	want	 to	add	 into	 that	group,	cut	 them	out,	and
paste	them	in:

describe('Utils',	()	=>	{

		describe('#add',	()	=>	{

				it('should	add	two	numbers',	()	=>	{

						var	res	=	utils.add(33,	11);

						expect(res).toBe(44).toBeA('number');

				});

		});

Then	 I	 can	 save	 the	 file.	 This	 will	 rerun	 the	 test	 suite	 and	 now	we	 have	 test
output	that's	even	more	scannable:

It's	super	easy	to	find	the	utils	add	method	tests	because	they're	clearly	labelled.
Now	you	could	go	as	crazy	or	as	uncrazy	with	this	as	you	want.	There	really	is
no	 hard-and-fast	 rule	 for	 how	 often	 to	 use	 describe	 to	 structure	 your	 tests.	 It's
really	up	 to	you	 to	 figure	out	what	makes	sense	given	 the	amount	of	 tests	you
have	for	a	method	or	a	file.

In	this	case,	we	have	quite	a	few	tests	in	the	file	so	it	definitely	makes	sense	to
add	 that	utils	block.	And	 I	 just	wanted	 to	 show	you	you	could	nest	 them,	so	 I
added	 it	 for	 add	 as	well.	 If	 I	was	writing	 this	 code,	 I	 probably	wouldn't	 add	 a
second	 layer	 of	 tests,	 but	 if	 I	 had	more	 than	 one	 test	 per	method,	 I	 definitely
would	add	a	second	describe	block.

Adding	 the	 route	 describe	 block
for	the	server.test.js	file
Now,	let's	create	some	describe	blocks	in	the	server.test	 file.	We'll	create	a	route
describe	 block	called	 Server.	Then	we'll	 create	 describe	 blocks	 for	 both	 the	 route
URL	and	for	/users.	We'll	have	GET/.	That	will	have	the	test	case	in	there,	some	test
case.	Then	alongside	//,	we'll	have	GET	/users,	and	that	will	have	its	own	test	case,
some	test	case	as	explained	in	the	comments	next:

const	request	=	require('supertest');

const	expect	=	require('expect');

var	app	=	require('./server').app;

//	Server

		//	GET	/

				//	some	test	case

		//	GET	/	user

				//	some	test	case

Now	 the	 test	 cases	 are	 obviously	 already	 defined.	 All	 we	 need	 to	 do	 is	 call
describe	three	times	to	generate	the	previously	explained	structure.

We'll	 start	 with	 calling	 describe()	 once	 following	 the	 comments	 part,	 and	 this
description	will	be	for	the	route,	so	we'll	call	this	one	Server:

//	Server

		//	GET	/

				//	some	test	case

		//	GET	/	user

				//	some	test	case

				

		describe('Server')

This	 is	going	to	contain	all	 the	 tests	 in	our	server	 file.	We	can	add	the	callback
function	next	and	we	can	move	on:

describe('Server',	()	=>	{

})

Next	 up,	we'll	 call	 describe	 again.	 This	 time	we're	 creating	 a	 describe	 block	 for
tests	that	test	the	GET	/	route	and	add	the	callback	function:

describe('Server',	()	=>	{

		describe('GET	/',	()	=>	{

		

		})

		

})

Now	we	can	simply	take	our	test,	cut	it	out,	and	paste	it	right	inside	the	describe
callback.	The	resultant	code	is	going	to	look	like	this:

describe('Server',	()	=>	{

		describe('GET	/',	()	=>	{

				it('should	return	hello	world	response',	(done)	=>	{

						request(app)

								.get('/')

								.expect(404)

								.expect((res)	=>	{

										expect(res.body).toInclude({

												error:	'Page	not	found.'

										});

								})

								.end(done);

				});

		});

})

Next	up,	we'll	call	describe	 the	third	time.	We'll	be	calling	describe	passing	 in	as
the	description	GET	/users:

		describe('GET	/users')

We'll	have	our	callback	function	as	always	and	then	we	can	copy	and	paste	our
test	right	inside:

		describe('GET	/users'),	()	=>	{

				it('should	return	my	user	object',	(done)	=>	{

						request(app)

								.get('/users')

								.expect(200)

								.expect((res)	=>	{

										expect(res.body).toInclude({

												name:	'Andrew',

												age:	25

										});

								})

								.end(done);

				});

		});

With	 this	 in	place,	we	are	now	done.	We	have	a	much	better	 structure	 for	our
tests	and	when	we	rerun	the	test	suite	by	saving	the	file,	we'll	be	able	to	see	that

in	the	Terminal:

As	shown	in	the	previous	code,	we	have	a	much	more	scannable	test	suite.	We
can	 see	 our	 server	 tests	 right	 away.	 We	 can	 create	 groups	 of	 tests	 for	 each
feature.	Since	we	have	static	data	right	now,	we	really	don't	need	more	than	one
test	per	 feature.	But	down	 the	 line,	we	will	have	multiple	 tests	 for	each	of	our
HTTP	requests,	so	it's	a	good	idea	to	get	into	that	habit	of	creating	describe	blocks
early.	And	that's	it	for	this	one!

Test	spies
In	this	section,	which	is	the	final	section	for	the	testing	chapter,	we'll	learn	some
pretty	advanced	testing	techniques.	We'll	be	using	these	techniques	as	we	build
real-world	apps,	but	 for	now	let's	 start	off	with	an	example.	We'll	worry	about
the	vocabulary	for	what	we're	about	to	do	in	just	a	second.

For	the	moment,	we'll	close	all	our	current	files	and	create	a	new	directory	in	the
root	of	 the	project.	We'll	make	a	new	folder	called	spies.	We'll	 talk	about	what
exactly	spies	 are	 and	 how	 they	 relate	 to	 testing	 in	 just	 a	moment.	 Inside	 spies,
we'll	make	two	files:	app.js	(this	is	the	file	that	we'll	be	testing)	and	a	second	one,
called	db.js.	 In	our	example,	we	can	 just	assume	 that	db.js	 is	 a	 file	 that	has	 all
sorts	of	methods	for	saving	and	reading	data	from	the	database.

Inside	db.js,	we'll	create	one	function	using	module.exports.	Let's	create	a	function
called	saveUser.	The	saveUser	function	will	be	a	really	simple	function,	and	it	will
take	a	user	object	like	this:

module.exports.saveUser	=	(user)	=>	{

}

Now,	we'll	just	print	it	to	the	screen	using	the	console.log	statement.	We'll	print	it
a	little	message,	Saving	the	user,	and	we'll	also	print	out	the	object	as	shown	here:

module.exports.saveUser	=	(user)	=>	{

		console.log('Saving	the	user',	user);

}

Now	obviously,	 this	 is	not	a	real	saveUser	 function.	We	do	not	 interact	with	any
sort	of	database,	but	 it	will	 illustrate	exactly	how	we	will	be	using	spies	 to	 test
our	code.

Next	up,	we	will	fill	our	app.js,	and	this	is	the	file	we'll	actually	be	testing.	Inside
app.js,	we'll	create	a	new	function:	module.exports.handleSignup.	In	the	context	of	an
application	 with	 authentication,	 handleSignup	 might	 take	 an	 email	 and	 a	 password;
maybe	it	goes	ahead	and	checks	if	the	email	already	exists.	If	it	doesn't,	great;	it
saves	the	user	and	then	it	sends	some	sort	of	a	welcome	email.	We	can	simulate

that	by	creating	an	arrow	function	(=>)	that	takes	in	email	and	a	password:

module.exports.handleSignup	=	(email,	password)	=>	{

};

Inside	the	arrow	function	(=>),	we'll	leave	three	comments.	These	will	be	things
that	the	function	is	supposed	to	do.	It	will	check	if	the	email	already	exists;	it	will
save	the	user	to	the	database;	and	finally,	we'll	send	that	welcome	email:

module.exports.handleSignup	=	(email,	password)	=>	{

		//	Check	if	email	already	exists

		//	Save	the	user	to	the	database

		//	Send	the	welcome	email

};

Now,	these	three	things	are	just	an	example	of	what	a	handleSignup	method	might
actually	 do.	When	we	go	 through	 the	 real	 process,	 you'll	 see	 how	 it	 pans	 out.
Now,	we	already	have	one	of	these	in	place.	We	just	created	saveUser,	so	we'll	do
is	call	saveUser	instead	of	having	this	second	comment:

		//	Check	if	email	already	exists

		db.saveUser()

		//	Send	the	welcome	email

It's	not	imported	just	yet,	but	that's	not	going	to	stop	us	from	calling	it;	we'll	add
the	 import	 in	 just	 a	 second,	 and	we'll	 pass	 in	what	 it	 expects,	 the	 user	 object.
Now,	we	don't	have	a	user	object;	we	have	an	email	and	a	password.	We	can	create
that	user	 object	 by	 setting	 email	 equal	 to	 the	 email	 argument	 and	 setting	 password
equal	to	the	password	argument:

db.saveUser({

		email:	email,

		password:	password

});

Now	one	important	thing	to	note:	inside	ES6,	if	the	property	name	in	an	object
you're	setting	 is	 the	 same	as	 the	variable	name,	you	can	actually	define	 it	 like
this:

db.saveUser({

		email,

		password

});

In	this	example,	since	we're	setting	a	password	property	equal	to	whatever	on	the
password	variable,	there's	no	need	to	have	both.	This	ES6	syntax	also	allows	us	to

create	a	much	simpler-looking	call.	There's	no	need	to	have	it	on	multiple	lines
since	it's	pretty	reasonable	in	length.

Now,	at	the	top,	we	can	load	in	db	by	creating	a	variable,	calling	it	db,	and	setting
it	equal	to	require('db.js').	That	is	a	local	file,	so	we'll	start	it	with	a	./	to	grab	it
from	the	current	directory:

var	db	=	require('./db.js');

Now,	this	is	an	example	of	something	that	we'll	want	to	test	inside	our	code.	We
have	a	handleSignup	method.	It	takes	an	email	and	a	password,	and	we	need	to	make
sure	 that	 db.saveUser	works	 as	well.	 That	 is	 a	 big	 problem,	 and	 this	means	 that
we're	not	just	testing	handleSignup,	we	are	also	testing	the	following:

We're	testing	handleSignup
We're	testing	our	code	that	checks	if	an	email	exists
Maybe	that	allows	another	function
We're	checking	if	the	saveUser	function	works	as	expected
we're	checking	if	the	welcome	email	is	sent

This	is	a	real	pain.	What	we'll	do	instead	is	fake	the	saveUser	function.	It's	never
actually	going	to	execute	the	code	inside	it	db,	but	it	will	let	us	verify	that	when
we	 run	 handleSignup,	saveUser	 gets	 called.	We're	 going	 to	 do	 this	with	 something
called	spies.

The	spies	function	let	you	swap	out	a	real	function	such	as	saveUser	for	a	testing
utility.	When	that	test	function	gets	called	we	can	create	various	assertions	about
it,	making	sure	it	was	called	with	certain	arguments.	Let's	start	exploring	that.

Creating	a	test	file	for	spies
We'll	start	it	with	creating	a	new	file.	Inside	the	spies	directory,	we'll	make	a	new
file	 called	 app.test.js,	 and	 we	 can	 start	 playing	 around	 with	 spies.	 Now,	 spies
comes	built-in	with	expect,	so	all	we	have	to	do	is	load	it	in:

const	expect	=	require('expect');

From	here	we	can	create	our	very	first	test.	We'll	put	this	in	a	describe	block	so
it's	easier	to	find	over	in	our	test	output:

const	expect	=	require('expect');

describe('')

We'll	call	this	describe	block	App	and	we'll	add	my	callback	function:

describe('App',	()	=>	{

});

Now	we	can	add	individual	test	cases.	First	up,	we'll	call	it	and	make	a	new	test
where	we	can	just	play	around	with	spies:

describe('App',	()	=>	{

		it('')

		

});

We	won't	 be	 calling	 the	 function	 in	 our	 app.js	 file	 just	 yet.	We'll	 add	 in	 the	 it
object	a	string	say,	Should	call	the	spy	correctly:

describe('App',	()	=>	{

		it('should	call	the	spy	correctly',	()	=>	{

		});

		

});

In	order	to	visualize	how	spies	work,	we'll	go	through	the	most	basic	example	we
can.	First	up,	creating	a	spy.

Creating	a	spy
To	 create	 a	 spy,	 we'll	 call	 a	 function	 expect.createSpy	 inside	 the	 it	 callback
function:

		it('should	call	the	spy	correctly',	()	=>	{

				expect.createSpy();

		});

The	createSpy	is	going	to	return	a	function,	and	that	is	the	function	that	we'll	swap
out	 for	 the	 real	 one,	 which	means	 we	 do	want	 to	 store	 that	 in	 a	 variable.	 I'll
create	a	variable	called	spy,	setting	it	equal	to	the	returned	result:

			it('should	call	the	spy	correctly',	()	=>	{

				var	spy	=	expect.createSpy();

			});

And	 now	we	would	 inject	 spy	 into	 our	 code,	whether	 it's	 app.js	 or	 some	 other
function,	and	we	would	wait	for	it	to	get	called.	We	can	call	it	directly	just	like
this:

		it('should	call	the	spy	correctly',	()	=>	{

				var	spy	=	expect.createSpy();

				spy();

			});

Setting	up	spies	assertions
Next	up,	we	can	set	up	a	series	of	assertions	using	expect's	spies	assertions	by
heading	 over	 to	 the	 browser	 and	 going	 to	 the	 expect	 documentation,	mjackson
expect	(https://github.com/mjackson/expect).

On	this	page,	we	can	scroll	down	to	the	spies	section,	where	they	talk	about	all
the	 assertions	 we	 have	 access	 to.	We	 should	 start	 seeing	 spies	 in	 the	 method
names,	and	that's	when	we	know	we've	gotten	there:

>

https://github.com/mjackson/expect

As	shown	in	the	previous	code,	we	have	the	toHaveBeenCalled	function	and	this	is
our	first	assertion	with	spies.	We	can	assert	that	our	spy	was	indeed	called.	Inside
Atom,	we'll	do	that	by	calling	expect	and	passing	in	the	spy,	just	like	this:

		it('should	call	the	spy	correctly',	()	=>	{

				var	spy	=	expect.createSpy();

				spy();

				expect(spy)

		});

Then,	we'll	add	the	assertion,	toHaveBeenCalled:

				expect(spy).toHaveBeenCalled();

This	will	cause	the	test	to	pass	if	spy	was	called,	which	it	was,	and	it'll	cause	the

test	 to	 fail	 if	 the	 spy	 was	 never	 called.	 We	 can	 run	 the	 test	 suite	 inside	 the
Terminal	using	the	npm	run	test-watch	command,	and	this	 is	going	to	kick	off	 the
tests	using	nodemon:

As	shown	in	the	previous	screenshot,	we	have	all	our	test	cases,	and	under	the
App	 one,	 we	 have	 should	 call	 the	 spy	 correctly.	 It	 did	 indeed	 pass,	 which	 is
fantastic.

Now	let's	comment	out	the	line	where	I	call	spy:

		it('should	call	the	spy	correctly',	()	=>	{

				var	spy	=	expect.createSpy();

				//	spy();

				expect(spy).toHaveBeenCalled();

		});

And	this	time	around,	the	test	should	fail	because	spy	was	never	actually	called,
and	as	shown	in	the	following	screenshot,	we	see	spy	was	not	called:

More	details	out	of	spy	assertion
Now,	checking	if	a	spy	was	called	or	not	called	is	great,	but	we	can	get	even	more
detail	 out	 of	 our	 assertions.	 For	 example,	what	 if	 I	 call	 the	 spy	with	 the	 name
Andrew	and	the	age	25:

		it('should	call	the	spy	correctly',	()	=>	{

				var	spy	=	expect.createSpy();

				spy('Andrew',	25);

				expect(spy).toHaveBeenCalled();

		});

Now,	we	want	to	verify	if	 the	spy	was	not	 just	called	but	was	called	with	 these
arguments?	 Well,	 luckily,	 we	 have	 an	 assertion	 for	 that	 too.	 Instead	 of
toHaveBeenCalled,	 we	 can	 call	 toHaveBeenCalledWith,	 and	 this	 lets	 us	 pass	 in	 some
arguments	and	verify	the	spy	was	indeed	called	with	those	arguments.

As	shown	in	 the	following	code,	we'll	assert	 that	my	spy	was	called	with	Andrew
and	the	number	25:

				expect(spy).toHaveBeenCalledWith('Andrew',	25);

When	 we	 save	 the	 file	 and	 the	 test	 cases	 restart,	 we	 should	 see	 all	 the	 tests
passing,	and	that's	exactly	what	we	get:

Now,	if	the	spy	was	not	called	with	the	mentioned	data,	I'll	remove	25:

		it('should	call	the	spy	correctly',	()	=>	{

				var	spy	=	expect.createSpy();

				spy('Andrew');

				expect(spy).toHaveBeenCalledWith('Andrew',	25);

		});

Now	if	we	rerun	the	test	suite,	the	test	will	fail.	It	will	give	you	an	error	message
letting	you	know	that	spy	was	never	called	with	['Andrew',	25].	This	is	causing	the
test	to	fail,	which	is	fantastic.

There	are	plenty	of	other	assertions	we	can	use	with	our	spies.	You
can	find	them	in	the	expect	docs.	We	have	toHaveBeenCalled,	which	we
used;	toNotHaveBeenCalled,	verifying	that	a	spy	was	not	called.	Then	we
have	toHaveBeenCalledWith,	which	we	also	used.	You	can	see	there's	a
lot	more	to	spies	as	well:	how	to	create	spies,	which	we've	already
done,	and	a	few	other	methods.

Swapping	of	the	function	with	spy
For	our	purposes,	we	need	a	spy	so	we	can	simulate	that	function	inside	of	app.js
(saveUser).	We	need	 a	way	 to	 replace	 saveUser	 function	with	 a	 spy.	 Then	we	 can
verify	 that	when	 handleSignup	 gets	 called,	 it	 does	 indeed	 call	 saveUser.	 It	 doesn't
need	to	actually	go	through	the	process	over	in	db.js;	this	is	not	important	to	our
tests.	The	 only	 thing	 that	 is	 important	 is	 that	 the	 function	was	 called	with	 the
correct	arguments.

To	do	 that,	we'll	 look	 at	 an	 npm	module	 called	 rewire,	which	 lets	 us	 swap	out
variables	for	our	tests.	In	our	case,	in	our	test	file,	we'll	be	able	to	replace	the	db
object	 with	 something	 else	 completely.	 Then,	 when	 the	 code	 runs,	 instead	 of
calling	db.saveUser	as	defined	in	app.js,	it	will	be	calling	db.saveUser,	which	will	be
a	spy.

Installing	 and	 setting	 up	 the
rewire	function
To	get	 started,	we	do	need	 to	 install	 rewire	 in	 the	Terminal.	 It's	 a	 fantastic	 test
utility.	It's	pretty	essential	for	testing	functions	with	side	effects,	like	the	one	we
have	seen	in	this	section.	Let's	run	npm	install.	The	module	name	itself	is	called
rewire,	and	we'll	be	grabbing	the	most	recent	version	as	of	 this	filming,	version
@3.0.2.	This	is	a	test-specific	module.	We'll	not	need	it	for	our	application	to	run
regularly,	 so	 we	 will	 be	 using	 the	 --save-dev	 flag	 to	 add	 it	 to	 our	 package.json
dependencies	list:

npm	install	rewire@3.0.2	--save-dev

Once	the	module	is	installed	we	can	get	started	using	it,	and	it's	pretty	simple	to
set	up.	Inside	app.test.js	we	can	start	by	 loading	 it	 in.	Up	at	 the	very	 top,	we'll
create	a	new	constant.	This	one	will	be	called	rewire,	and	we'll	set	it	equal	to	the
returned	result	from	requiring	rewire:

const	expect	=	require('expect');

const	rewire	=	require('rewire');

Replacing	db	with	the	spy
Now,	the	way	that	rewire	works	is	it	requires	you	to	use	rewire	instead	of	require
when	you're	loading	in	the	file	that	you	want	to	mock	out.	For	this	example,	we
want	to	replace	db	with	something	else,	so	when	we	load	an	app	we	have	to	load	it
in	 in	 a	 special	way.	We'll	make	 a	 variable	 called	 app,	 and	we'll	 set	 it	 equal	 to
rewire	followed	by	what	we	would	usually	put	inside	of	require.	In	this	case	it's	a
relative	file,	a	file	that	we	created	./app	will	get	the	job	done:

const	expect	=	require('expect');

const	rewire	=	require('rewire');

var	app	=	rewire('./app');

Now	rewire	 loads	your	 file	 through	require,	but	 it	also	adds	 two	methods	onto
app.	These	methods	are:

app.__set__

app.__get__

We	 can	 use	 these	 to	mock	 out	 various	 data	 inside	 of	 app.js.	 That	means	we'll
make	a	simulation	of	the	db	object,	the	one	that	comes	back	from	db.js,	but	we'll
swap	out	the	function	with	a	spy.

Inside	 our	 describe	 block,	 we	 can	 kick	 things	 off	 by	 making	 a	 variable.	 This
variable	is	going	to	be	called	db,	and	we'll	set	it	equal	to	an	object:

describe('App',	()	=>	{

		var	db	=	{

		}

The	 only	 thing	we	 need	 to	mock	 out	 in	 our	 case	 is	 saveUser.	 Inside	 the	 object,
we'll	 define	 saveUser	 and	 then	 I'll	 set	 it	 equal	 to	 a	 spy	 by	 creating	 one	 using
expect.createSpy,	just	like	this:

describe('App',	()	=>	{

		var	db	=	{

				saveUser:	expect.createSpy()

		};

Now	we	have	this	db	variable,	and	the	only	thing	left	to	do	is	replace	it.	We	do
that	using	app.__set__,	and	this	is	going	to	take	two	arguments:

describe('App',	()	=>	{

		var	db	=	{

				saveUser:	expect.createSpy()

		};

		app.__set__();

The	 first	 one	 is	 the	 thing	 you	want	 to	 replace.	We're	 trying	 to	 replace	 db,	 and
we're	 trying	 to	 replace	 it	with	 the	 db	 variable,	which	 is	 our	 object	 that	 has	 the
saveUser	function:

describe('App',	()	=>	{

		var	db	=	{

				saveUser:	expect.createSpy()

		};

		app.__set__('db',	db);

With	 that	 in	 place,	we	 can	 now	write	 a	 test	 that	 verifies	 that	 handleSignup	 does
indeed	call	saveUser.

Writing	 a	 test	 to	 verify	 swapping
of	the	function
To	verify	if	handleSignup	calls	saveUser,	inside	app.test.js,	we'll	call	it:

describe('App',	()	=>	{

		var	db	=	{

				saveUser:	expect.createSpy()

		};

		app.__set__('db',	db);

		it('should	call	the	spy	correctly',	()	=>	{

				var	spy	=	expect.createSpy();

				spy('Andrew',	25);

				expect(spy).toHaveBeenCalledWith('Andrew',	25);

		});

		it('should	call	saveUser	with	user	object')

Then	we	can	pass	in	our	function,	and	this	is	what	will	actually	run	when	the	test
gets	executed,	and	there's	no	need	to	use	any	asynchronous	done	arguments.	This
will	be	a	synchronous	test	for	now:

		it('should	call	saveUser	with	user	object',	()	=>	{

		});

Inside	 the	 callback	 function,	we	 can	 come	 up	with	 an	 email	 and	 a	 password	 that
we'll	pass	 in	 to	handleSignup	 in	db.js.	We'll	make	a	variable	called	email	 setting	 it
equal	 to	 some	 email	 andrew@example.com,	 and	we	 can	 do	 the	 same	 thing	with	 the
password,	var	password;	we'll	set	that	equal	to	123abc:

		it('should	call	saveUser	with	user	object',	()	=>	{

				var	email	=	'andrew@example.com';

				var	password	=	'123abc';

		});

Next	up,	we	will	call	handleSignup.	This	is	the	function	we	want	to	test.	We'll	call
app.handleSignup,	passing	in	our	two	arguments,	email	and	password:

		it('should	call	saveUser	with	user	object',	()	=>	{

				var	email	=	'andrew@example.com';

				var	password	=	'123abc';

				app.handleSignup(email,	password);

		});

Now	at	this	point,	handleSignup	will	get	executed.	This	means	 that	 the	code	over
here	will	run	and	it	will	fire	db.saveUser,	but	db.saveUser	is	not	the	method	in	db.js;
it's	a	spy	instead,	which	means	we	can	now	use	those	assertions	we	just	learned
about.

Inside	of	the	test	case,	we'll	use	expect	to	expect	something	about	db;	 the	variable
.saveUser,	which	we	set	equal	to	a	spy:

				app.handleSignup(email,	password);

				expect(db.saveUser)

We'll	 call	 .toHaveBeenCalledWith	 with	 an	 object	 because	 that	 is	 what	 db.js	 should
have	been	called	with.	We'll	use	that	same	ES6	shortcut:	email,	password:

				app.handleSignup(email,	password);

				expect(db.saveUser).toHaveBeenCalledWith({email,	password});

		});

This	creates	an	email	attribute	set	to	the	email	variable,	and	a	password	attribute	set
to	the	password	variable.	With	this	in	place,	we	can	now	save	our	test	file,	and	in
the	Terminal	we	can	restart	the	test-watch	script	by	using	the	up	arrow	key	twice
to	rerun	our	npm	run	test-watch	command.	This	is	going	to	kick	off	our	test	suite,
starting	up	all	of	our	tests:

As	shown	in	the	previous	screenshot,	we	see	should	call	the	spy	correctly	passes.
Also,	the	test	case	we	just	created	also	passes.	We	can	see	should	call	saveUser	with
the	 user	 object,	 and	 this	 is	 fantastic.	We	 now	 have	 a	 way	 to	 test	 pretty	 much

anything	 inside	 Node.	 We	 can	 even	 test	 functions	 that	 call	 other	 functions,
verifying	that	 the	communication	happens	as	expected.	All	of	 this	can	be	done
using	spies.

Summary
In	 this	chapter,	we	 looked	 into	 testing	 the	Express	applications	as	we	did	with
the	synchronous	and	async	Node	applications	in	the	previous	chapter.	Then,	we
worked	on	organizing	our	tests	with	the	describe()	object	so	that	we	can	see	our
different	test	methods	right	away.

In	the	last	section	we	explored	one	more	way	we	can	test	our	Node	applications,
that	 is,	 spies.	We	created	 test	 files	 for	 spies,	 looked	 into	 the	 spy	 assertions	 and
swapping	of	a	function	with	spy.

Conclusion
That's	 the	 end	 of	 the	 book!	 Through	 the	 course	 of	 is	 book,	 you	 learned	 the
fundamentals	of	Node.js	so	that	you	test	and	deploy	Node.js	applications	on	the
web.	We	hope	 that	you	 liked	 the	 journey	 this	book	has	 taken	you	 through.	We
wish	 you	 all	 the	 success	 and	 hope	 that	 you	 continue	 to	 better	 your	 Node.js
applications.

Another	Book	You	May	Enjoy
If	you	enjoyed	this	book,	you	may	be	interested	in	another	book	by	Packt:

Node	Cookbook	-	Third	Edition
David	Mark	Clements,	Mathias	Buus,	Matteo	Collina,	Peter	Elger

ISBN:	978-1-78588-008-7

Debug	Node.js	programs
Write	and	publish	your	own	Node.js	modules
Detailed	coverage	of	Node.js	core	API’s
Use	web	 frameworks	 such	as	Express,	Hapi	 and	Koa	 for	accelerated	web
application	development
Apply	Node.js	streams	for	low-footprint	data	processing
Fast-track	performance	knowledge	and	optimization	abilities
Persistence	 strategies,	 including	 database	 integrations	 with	 MongoDB,
MySQL/MariaDB,	Postgres,	Redis,	and	LevelDB
Apply	critical,	essential	security	concepts
Use	Node	with	best-of-breed	deployment	technologies:	Docker,	Kubernetes
and	AWS

https://www.packtpub.com/web-development/node-cookbook-third-edition

Leave	a	review	-	let	other	readers
know	what	you	think
Please	share	your	thoughts	on	this	book	with	others	by	leaving	a	review	on	the
site	 that	 you	 bought	 it	 from.	 If	 you	 purchased	 the	 book	 from	Amazon,	 please
leave	us	an	honest	review	on	this	book's	Amazon	page.	This	is	vital	so	that	other
potential	 readers	 can	 see	 and	 use	 your	 unbiased	 opinion	 to	 make	 purchasing
decisions,	we	can	understand	what	our	customers	think	about	our	products,	and
our	authors	can	see	your	feedback	on	the	title	that	they	have	worked	with	Packt
to	create.	It	will	only	 take	a	few	minutes	of	your	 time,	but	 is	valuable	 to	other
potential	customers,	our	authors,	and	Packt.	Thank	you!

	Preface
	Who this book is for
	What this book covers
	To get the most out of this book
	Download the example code files
	Conventions used

	Get in touch
	Reviews

	Getting Set Up
	Node.js installation
	Node.js version confirmation
	Installing Node
	Verifying installation

	What is Node?
	Differences between JavaScript coding using Node and in the browser

	Why use Node
	Blocking and non-blocking software development
	The working of blocking I/O
	The working non-blocking I/O

	Blocking and non-blocking examples using Terminal
	Node community – problem solving open source libraries

	Different text editors for node applications
	Hello World – creating and running the first Node app
	Creating the Node application
	Running the Node application

	Summary

	Node Fundamentals – Part 1
	Module basics
	Using case for require()
	Initialization of an application
	The built-in module to use require()
	Creating and appending files in the File System module
	The OS module in require()
	Concatenating user.username
	Using template strings

	Require own files
	Making a new file to load other files
	Exporting files from note.js to use in app.js
	A simple example of the working of the exports object
	Exporting the functions
	Exercise – adding a new function to the export object
	Solution to the exercise

	Third-party modules
	Creating projects using npm modules
	Installing the lodash module in our app
	Installation of lodash
	Using the utilities of lodash
	Using the _.isString utility
	Using _.uniq

	The node_modules folder

	Global modules
	Installing the nodemon module
	Executing nodemon

	Getting input
	Getting input from the user inside the command line
	Accessing the command-line argument for the notes application
	Adding if/else statements
	Exercise – adding two else if clauses to an if block
	Solution to the exercise

	Getting the specific note information

	Summary

	Node Fundamentals – Part 2
	yargs
	Installing yargs
	Running yargs
	Working with the add command
	Working with the list command
	The read command
	Dealing with the errors in parsing commands
	The remove command

	Fetching command

	JSON
	Converting objects into strings
	Defining a string and using in app as an object
	Converting a string back to an object
	Storing the string in a file
	Writing the file in the playground folder
	Reading out the content in the file

	Adding and saving notes
	Adding notes
	Adding notes to the notes array
	Fetching new notes

	Trying and catching code block
	Making the title unique

	Refactoring
	Moving functionality into individual functions
	Working with fetchNotes
	Working with saveNotes

	Testing the functionality

	Summary

	Node Fundamentals – Part 3
	Removing a note
	Using the removeNote function
	Printing a message of removing notes

	Reading note
	Using the getNote function
	Running the getNote function

	The DRY principle
	Using the logNote function

	Debugging
	Executing a program in debug mode
	Working with debugging
	Using debugger inside the notes application

	Listing notes
	Using the getAll function

	Advanced yargs
	Using chaining syntax on yargs
	Calling the .help command
	Adding the options object
	Adding the title
	Adding the body

	Adding support to the read and remove commands
	Adding the titleOption and bodyOption variables
	Testing the remove command

	Arrow functions
	Using the arrow function
	Exploring the difference between regular and arrow functions
	Exploring the arguments array

	Summary

	Basics of Asynchronous Programming in Node.js
	The basic concept of asynchronous program
	Illustrating the async programming model

	Call stack and event loop
	A synchronous program example
	The call stack
	Running the synchronous program
	A complex synchronous program example

	An async program example
	The Node API in async programming
	The callback queue in async programming
	The event loop
	Running the async code

	Callback functions and APIs
	The callback function
	Creating the callback function
	Running the callback function

	Simulating delay using setTimeout

	Making request to Geolocation API
	Using Google Maps API data in our code
	Installing the request package
	Using request as a function
	Running the request

	Pretty printing objects
	Using the body argument

	Making up of the HTTPS requests
	The response object
	The error argument
	Printing data from the body object
	Printing the formatted address
	Printing latitude and longitude

	Summary

	Callbacks in Asynchronous Programming
	Encoding user input
	Installing yargs
	Configuring yargs
	Printing the address to screen

	Encoding and decoding the strings
	Encoding URI component
	Decoding URI component

	Pulling the address out of argv

	Callback errors
	Checking error in Google API request
	Adding the if statement for callback errors
	Adding if else statement to check body status property
	Testing the body status property

	Abstracting callbacks
	Refactoring app.js and code into geocode.js file
	Working on request statement
	Creating geocode file

	Adding callback function to geocodeAddress
	Setting up the function in geocodeAddress function in app.js
	Implementing the callback function in geocode.js file
	Testing the callback function in geocode.js file

	Wiring up weather search
	Exploring working of API in the browser
	Exploring the actual URL for code

	Making a request for the weather app using the static URL
	Error handling in the the callback function
	Another way of error handling
	Testing the error handling in callback

	Chaining callbacks together
	Refactoring our request call in weather.js file
	Defining the new function getWeather in weather file
	Providing weather directory in app.js
	Passing the arguments in the getWeather function
	Printing errorMessage in the getWeather function

	Implementing getWeather callback inside weather.js file
	Adding dynamic latitude and longitude
	Changing console.log calls into callback calls

	Chaining the geocodeAddress and getWeather callbacks together
	Moving getWeather call into geocodeAddress function
	Replacing static coordinates with dynamic coordinates
	Testing the chaining of callbacks

	Summary

	Promises in Asynchronous Programming
	Introduction to ES6 promises
	Creating an example promise
	Calling the promise method then

	Running the promise example in Terminal
	Error handling in promises
	Merits of promises

	Advanced promises
	Providing input to promises
	Returning the promises

	Promise chaining
	Error handling in promises chaining
	The catch method

	The request library in promises
	Testing the request library

	Weather app with promises
	Fetching weather app code from the app.js file
	Axios documentations
	Installing axios
	Making calls in the app-promise file
	Making axios request
	Error handling in axios request
	Error handling with ZERO_RESULT body status

	Generating the weather URL
	Chaining the promise calls

	Summary

	Web Servers in Node
	Introducing Express
	Configuring Express
	Express docs website
	Installing Express

	Creating an app
	Exploring the developer tools in the browser for the app request
	Passing HTML to res.send

	Sending JSON data back
	Error handling in the JSON request

	The static server
	Making an HTML page
	The head tag
	The body tag

	Serving the HTML page in the Express app
	The call to app.listen

	Rendering templates
	Installing the hbs module
	Configuring handlebars
	Our first template
	Getting the static page for rendering
	Injecting data inside of templates
	Rendering the template for the root of the website

	Advanced templates
	Adding partials
	Working of partial
	The Header partial

	The Handlebars helper
	Arguments in Helper

	Express Middleware
	Exploring middleware
	Creating a logger
	Printing message to file

	The maintenance middleware without the next object
	Testing the maintenance middleware

	Summary

	Deploying Applications to Web
	Adding version control
	Installing Git
	Git on macOS
	Git on Windows
	Testing the installation

	Turning the node-web-server directory into a Git repository
	Using Git
	Adding untracked files to commit
	Making a commit

	Setting up GitHub and SSH keys
	Setting up SSH keys
	SSH keys documentations
	Working on commands
	Generating a key

	Starting up the SSH agent

	Configuring GitHub
	Testing the configuration

	Creating a new repository
	Setting up the repository

	Deploying the node app to the Web
	Installing Heroku command-line tools
	Log in to Heroku account locally
	Getting SSH key to Heroku

	Setting up in the application code for Heroku
	Changes in the server.js file
	Changes in the package.json file

	Making a commit in Heroku
	Running the Heroku create command

	Summary

	Testing the Node Applications – Part 1
	Basic testing
	Installing the testing module
	Testing a Node project
	Mocha – the testing framework
	Creating a test file for the add function
	Creating the if condition for the test

	Testing the squaring a number function

	Autorestarting the tests

	Using assertion libraries in testing Node modules
	Exploring assertion libraries
	Chaining multiple assertions
	Multiple assertions for the square function

	Exploring usage of expect with bogus test
	Using toBe and toNotBe to compare array/objects
	Using the toEqual and toNotEqual assertions
	Using toInclude and toExclude

	Testing the setName method

	The asynchronous testing
	Creating the asyncAdd function using the setTimeout object
	Writing the test for the asyncAdd function
	Making assertion for the asyncAdd function
	Adding the done argument

	The asynchronous testing for the square function
	Creating the async square function
	Writing test for asyncSquare
	Making assertions for the asyncSquare function

	Summary

	Testing the Node Applications – Part 2
	Testing the Express application
	Setting up testing for the Express app
	Testing the Express app using SuperTest
	The SuperTest documentation
	Creating a test for the Express app
	Writing the test for the Express app
	Testing our first API request
	Setting up custom status
	Adding flexibility to SuperTest

	Creating an express route
	Writing the test for the express route

	Organizing test with describe()
	Adding describe() for individual methods
	Adding the route describe block for the server.test.js file

	Test spies
	Creating a test file for spies
	Creating a spy
	Setting up spies assertions
	More details out of spy assertion

	Swapping of the function with spy
	Installing and setting up the rewire function
	Replacing db with the spy
	Writing a test to verify swapping of the function

	Summary
	Conclusion

	Another Book You May Enjoy
	Leave a review - let other readers know what you think

