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Foreword

Many of the ideas that underpin the Apache Hadoop project are decades old. Aca‐
demia and industry have been exploring distributed storage and computation since
the 1960s. The entire tech industry grew out of government and business demand for
data processing, and at every step along that path, the data seemed big to the people
in the moment. Even some of the most advanced and interesting applications go way
back: machine learning, a capability that’s new to many enterprises, traces its origins
to academic research in the 1950s and to practical systems work in the 1960s and
1970s.

But real, practical, useful, massively scalable, and reliable systems simply could not be
found—at least not cheaply—until Google confronted the problem of the internet in
the late 1990s and early 2000s. Collecting, indexing, and analyzing the entire web was
impossible, using commercially available technology of the time.

Google dusted off the decades of research in large-scale systems. Its architects real‐
ized that, for the first time ever, the computers and networking they required could
be had, at reasonable cost.

Its work—on the Google File System (GFS) for storage and on the MapReduce
framework for computation—created the big data industry.

This work led to the creation of the open source Hadoop project in 2005 by Mike
Cafarella and Doug Cutting. The fact that the software was easy to get, and could be
improved and extended by a global developer community, made it attractive to a
wide audience. At first, other consumer internet companies used the software to fol‐
low Google’s lead. Quickly, though, traditional enterprises noticed that something
was happening and looked for ways to get involved.
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In the decade-plus since the Hadoop project began, the ecosystem has exploded.
Once, the only storage system was the Hadoop Distributed File System (HDFS),
based on GFS. Today, HDFS is thriving, but there are plenty of other choices: Ama‐
zon S3 or Microsoft Azure Data Lake Store (ADLS) for cloud storage, for example, or
Apache Kudu for IoT and analytic data. Similarly, MapReduce was originally the only
option for analyzing data. Now, users can choose among MapReduce, Apache Spark
for stream processing and machine learning workloads, SQL engines like Apache
Impala and Apache Hive, and more.

All of these new projects have adopted the fundamental architecture of Hadoop:
large-scale, distributed, shared-nothing systems, connected by a good network, work‐
ing together to solve the same problem. Hadoop is the open source progenitor, but
the big data ecosystem built on it is vastly more powerful—and more useful—than
the original Hadoop project.

That explosion of innovation means big data is more valuable than ever before.
Enterprises are eager to adopt the technology. They want to predict customer behav‐
ior, foresee failure of machines on their factory floors or trucks in their fleets, spot
fraud in their transaction flows, and deliver targeted care—and better outcomes—to
patients in hospitals.

But that innovation, so valuable, also confounds them. How can they keep up with
the pace of improvement, and the flurry of new projects, in the open source ecosys‐
tem? How can they deploy and operate these systems in their own datacenters, meet‐
ing the reliability and stability expectations of users and the requirements of the
business? How can they secure their data and enforce the policies that protect private
information from cyberattacks?

Mastering the platform in an enterprise context raises new challenges that run deep
in the data. We have been able to store and search a month’s worth of data, or a quar‐
ter’s, for a very long time. Now, we can store and search a decade’s worth, or a cen‐
tury’s. That large quantitative difference turns into a qualitative difference: what new
applications can we build when we can think about a century?

The book before you is your guide to answering those questions as you build your
enterprise big data platform.

Jan, Ian, Lars, and Paul—this book’s authors—are hands-on practitioners in the field,
with many years of experience helping enterprises get real value from big data. They
are not only users of Hadoop, Impala, Hive, and Spark, but they are also active partic‐
ipants in the open source community, helping to shape those projects, and their
capabilities, for enterprise adoption. They are experts in the analytic, data processing,
and machine learning capabilities that the ecosystem offers.

When technology moves quickly, it’s important to focus on techniques and ideas that
stand the test of time. The advice here works for the software—Hadoop and its many
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associated services—that exists today. The thinking and design, though, are tied not
to specific projects but to the fundamental architecture that made Hadoop successful:
large-scale, distributed, shared-nothing software requires a new approach to opera‐
tions, to security, and to governance.

You will learn those techniques and those ideas here.

— Mike Olson
Founder and Chief Strategy Officer at Cloudera
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Preface

If you’re reading this book, it will come as no surprise that we are in the middle of a
revolution in the way data is stored and processed in the enterprise. As anyone who
has been in IT for any length of time knows, the technologies and approaches behind
data processing and storage are always evolving. However, in the past 10 to 15 years,
the pace of change has been remarkable. We have moved from a world where almost
all enterprise data was processed and analyzed using variants of SQL and was con‐
tained in some form of relational database to one in which an enterprise’s data may
be found in a variety of so-called NoSQL storage engines. Each of these engines sacri‐
fices some constraint of the relational model to achieve superior performance and
scalability for a certain use case. The modern data landscape includes nonrelational
key-value stores, distributed filesystems, distributed columnar databases, log stores,
and document stores, in addition to traditional relational databases. The data in these
systems is exploited in a multitude of ways and is processed using distributed batch-
processing algorithms, stream processing, massively parallel processing query
engines, free-text searches, and machine learning pipelines.

There are many drivers for this transformation, but the predominant ones are:

Volume
The phrase big data has been used too much to retain much value, but the sheer
volume of data generated by today’s enterprises, especially those with a heavy
web presence—which is to say all enterprises—is staggering. The explosion of
data from edge computing and Internet of Things (IoT) devices will only add to
the volume. Although storing data in as granular a form as possible may not
seem immediately useful, this will become increasingly important in order to
derive new insights. Storage is cheap, and bad decisions that have lasting conse‐
quences are costly. Better to store in full fidelity with a modern data platform and
have the option to make a new decision later. Traditional architectures based on
relational databases and shared file storage are simply unable to store and pro‐
cess data at these scales. This has led directly to the development of new tools
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and techniques in which computations are linearly scalable and distributed by
default.

Velocity
Gone are the days in which data for analytics would arrive in nice, neat daily
batches. Although this still happens for some datasets, increasingly data arrives
in a streaming fashion at high rates. The velocity of its generation demands a new
way of storing, processing, and serving it up.

Variety
New insights and new models feed off data—the more the better. Hitherto
untapped sources of data, perhaps in semi-structured or completely unstructured
forms, are increasingly in demand. All aspects of an enterprise’s operation are
relevant and potentially valuable sources of information to drive new insights
and, ultimately, revenue. It’s essential to have a single, unified platform with
technologies capable of storing and processing all these many and varied forms
of data.

Competition
The enterprises that will succeed in the data age are the ones building new busi‐
ness strategies and products and, crucially, making decisions based on the
insights gleaned from new data sources. To make the right data-driven decisions,
you need a solid data and computation platform. Such a platform needs to be
capable of embracing both on-premises and cloud deployments. It also needs to
scale to support traditional data analytics and to enable advances in your busi‐
ness from data science, machine learning, and artificial intelligence (AI).

Some Misconceptions
We have only just begun our exploration of Hadoop in the enterprise, but it is worth
dispelling some common misconceptions about data platforms and Hadoop early on:

Data in Hadoop is schemaless
Although it is true that many technologies in the Hadoop ecosystem have more
flexible notions of schemas and do not impose schemas as strictly as, say, a rela‐
tional database, it is a mistake to think that data stored in Hadoop clusters does
not need a defined schema. Applications using data stored in Hadoop still need
to understand the data they are querying, and there is always some sort of under‐
lying data model or structure, either implicit or explicit. What the Hadoop eco‐
system does offer is much more flexibility in the way data is structured and
queried. Instead of imposing a globally fixed schema on the data as it is ingested
and potentially dropping any fields that don’t match the schema, the data gets its
structure from the frameworks and applications using it. This concept is often
referred to as schema on read. You can store any type of data in its raw form and
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then process, transform, and combine it with other sources into the best format
and structure for your use case. And if you get it wrong, you can always build a
new representation from the raw data.

One copy of the data
This is a very common mistake when thinking about modern data platforms.
Different use cases require different access patterns, and this often means storing
the same datasets in different ways using different storage engines. This is a logi‐
cal consequence of the various optimizations each storage engine provides. This
data duplication should be considered par for the course and embraced as a fun‐
damental aspect of the freedom of operating in the Hadoop ecosystem. Hadoop
platforms are designed to be horizontally scalable and to be orders of magnitude
cheaper (if your enterprise IT department has a sensible approach to procure‐
ment, that is) than the proprietary alternatives. But the money you save on stor‐
age is just one aspect—maybe not even the most important aspect—of moving to
a modern data platform. What it also brings you is a multitude of options for
processing and querying the data and for extracting new value through scalable
analytics and machine learning.

One huge cluster
In the initial excitement of moving to Hadoop, the notion of a single, all-
encompassing data lake arose, in which all data was stored in and all processing
and querying were performed on a single cluster, which consisted of potentially
many thousands of machines. Although Hadoop is certainly capable of scaling to
that number of servers, the variety of access patterns and modes of processing
data don’t necessarily mesh well in a single cluster. Colocating use cases that
require strict query completion time guarantees with other ad hoc, variable
workloads is likely to lead to an unsatisfactory experience. Multitenancy controls
do exist, but they can’t change the fact that a finite set of resources can’t satisfy all
requirements all the time. As a result, you should plan for multiple clusters serv‐
ing different use cases with similar processing patterns or service levels. Don’t go
too far the other way, though. Lots of small clusters can be just as bad as a “single
cluster to rule them all.” Clusters can and should be shared, but be prepared to
divide and conquer when necessary.

Some General Trends
The trends in industry are clear to see. Many, if not most, enterprises have already
embarked on their data-driven journeys and are making serious investments in hard‐
ware, software, and services. The big data market is projected to continue growing
apace, reaching somewhere in the region of $90 billion of annual revenue by 2025.
Related markets, such as deep learning and artificial intelligence, that are enabled by
data platforms are also set to see exponential growth over the next decade.

Preface | xix

http://bit.ly/2S4ItWS


The move to Hadoop, and to modern data platforms in general, has coincided with a
number of secular trends in enterprise IT, a selection of which are discussed here.
Some of these trends are directly caused by the focus on big data, but others are a
result of a multitude of other factors, such as the desire to reduce software costs, con‐
solidate and simplify IT operations, and dramatically reduce the time to procure new
hardware and resources for new use cases.

Horizontal Scaling
This trend is already well established. It is now generally accepted that, for storage
and data processing, the right way to scale a platform is to do so horizontally using
distributed clusters of commodity (which does not necessarily mean the cheapest)
servers rather than vertically with ever more powerful machines. Although some
workloads, such as deep learning, are more difficult to distribute and parallelize, they
can still benefit from plenty of machines with lots of cores, RAM, and GPUs, and the
data to drive such workloads will be ingested, cleaned, and prepared in horizontally
scalable environments.

Adoption of Open Source
Although proprietary software will always have its place, enterprises have come to
appreciate the benefits of placing open source software at the center of their data
strategies, with its attendant advantages of transparency and data freedom. Increas‐
ingly, companies—especially public sector agencies—are mandating that new
projects are built with open source technologies at their core.

Embracing Cloud Compute
We have reached a tipping point in the use of public cloud services. These services
have achieved a level of maturity in capability and security where even regulated
industries, such as healthcare and financial services, feel comfortable running a good
deal of their workloads in the cloud. Cloud solutions can have considerable advan‐
tages over on-premises solutions, in terms of agility, scalability, and performance.
The ability to count cloud usage against operational—rather than capital—expendi‐
ture, even if the costs can be considerable over the long run, is also a significant factor
in its adoption. But while the use of public cloud services is growing and will con‐
tinue to do so, it is unlikely to become all-encompassing. Some workloads will need
to stay in traditional on-premise clusters or private clouds. In the current landscape,
data platforms will need to be able to run transparently on-premises, in the public
cloud, and in private cloud deployments.
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There are many exciting developments being made in cloud-based
deployments, particularly around new ways of deploying and run‐
ning frameworks using containerization, such as can be done with
Docker and Kubernetes. Since they are not yet widely adopted
within enterprises, and since best practices and deployment pat‐
terns are still emerging, we do not cover these technologies in great
detail in this book, but we recommend closely following develop‐
ments in this space.

Decoupled Compute and Storage
The desire to decouple compute from storage is strongly related to the move to cloud
computing. In its first few years, when high-throughput networking was relatively
rare and many data use cases were limited by disk bandwidth, Hadoop clusters
almost exclusively employed direct-attached storage (for good reason, as we’ll see in
future chapters). However, the migration of many workloads to the public cloud has
opened up new ways of interacting with persistent data that take advantage of their
highly efficient networked storage systems, to the extent that compute and storage
can be scaled independently for many workloads. This means that the data platform
of the future will need to be flexible in how and from where it allows data to be
accessed, since data in storage clusters will be accessed by both local and remote com‐
pute clusters.

What Is This Book About?
As we discussed writing this book, we gave serious thought to the title. If you saw the
early drafts, you’ll know it originally had a different title: Hadoop in the Enterprise.
But the truth is, the clusters are about much more than the Hadoop Distributed File
System (HDFS), Yet Another Resource Negotiator (YARN), and MapReduce. Even
though it is still common to refer to these platforms as Hadoop clusters, what we
really mean is Hadoop, Hive, Spark, HBase, Solr, and all the rest. The modern data
platform consists of a multitude of technologies, and splicing them together can be a
daunting task.

You may also be wondering why we need yet another book about Hadoop and the
technologies that go around it. Aren’t these things already well—even exhaustively—
covered in the literature, blogosphere, and conference circuit? The answer is yes, to a
point. There is no shortage of material out there covering the inner workings of the
technologies themselves and the art of engineering data applications and applying
them to new use cases. There is also some material for system administrators about
how to operate clusters. There is, however, much less content about successfully inte‐
grating Hadoop clusters into an enterprise context.
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Our goal in writing this book is to equip you to successfully architect, build, integrate,
and run modern enterprise data platforms. Our experience providing professional
services for Hadoop and its associated services over the past five or more years has
shown that there is a major lack of guidance for both the architect and the practi‐
tioner. Undertaking these tasks without a guiding hand can lead to expensive archi‐
tectural mistakes, disappointing application performance, or a false impression that
such platforms are not enterprise-ready. We want to make your journey into big data
in general, and Hadoop in particular, as smooth as possible.

Who Should Read This Book?
We cover a lot of ground in this book. Some sections are primarily technical, while
other sections discuss practice and architecture at a higher level. The book can be
read by anyone who deals with Hadoop as part of their daily job, but we had the fol‐
lowing principal audiences in mind when we wrote the book:

IT managers
Anyone who is responsible for delivering and operating Hadoop clusters in
enterprises (Chapters 1, 2, 5, and 14)

Enterprise architects
Those whose job is making sure all aspects of the Hadoop cluster integrate and
gel with the other enterprise systems and who must ensure that the cluster is
operated and governed according to enterprise standards (Chapters 1–4, 6–7,
and 9–18)

Application architects and data engineers
Developers and architects designing the next generation of data-driven applica‐
tions who want to know how best to fit their code into Hadoop and to take
advantage of its capabilities (Chapters 1–2, 9–13, and 17–18)

System administrators and database administrators (DBAs)
Those who are tasked with operating and monitoring clusters and who need to
have an in-depth understanding of how the cluster components work together
and how they interact with the underlying hardware and external systems (Chap‐
ters 1, 3, 4, and 6–18)

We’ve noted particularly relevant chapters, but readers should not feel limited by that
selection. Each chapter contains information of interest to each audience.

The Road Ahead
This book is about all things architecture. We’ve split it up into three parts. In Part I,
we establish a solid foundation for clusters by looking at the underlying infrastruc‐
ture. In Part II, we look at the platform as a whole and at how to build a rock-solid
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cluster that integrates smoothly with external systems. Finally, in Part III, we cover
the important architectural aspects of running Hadoop in the cloud. We begin with a
technical primer for Hadoop and the ecosystem.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.
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O’Reilly Safari
Safari (formerly Safari Books Online) is a membership-based
training and reference platform for enterprise, government,
educators, and individuals.

Members have access to thousands of books, training videos, Learning Paths, interac‐
tive tutorials, and curated playlists from over 250 publishers, including O’Reilly
Media, Harvard Business Review, Prentice Hall Professional, Addison-Wesley Pro‐
fessional, Microsoft Press, Sams, Que, Peachpit Press, Adobe, Focal Press, Cisco
Press, John Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt,
Adobe Press, FT Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett,
and Course Technology, among others.

For more information, please visit http://oreilly.com/safari.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/architectingModernDataPlat
forms.

To comment or ask technical questions about this book, send email to bookques‐
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia
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CHAPTER 1

Big Data Technology Primer

Apache Hadoop is a tightly integrated ecosystem of different software products built
to provide scalable and reliable distributed storage and distributed processing. The
inspiration for much of the Hadoop ecosystem was a sequence of papers published by
Google in the 2000s, describing innovations in systems to produce reliable storage
(the Google File System), processing (MapReduce, Pregel), and low-latency random-
access queries (Bigtable) on hundreds to thousands of potentially unreliable servers.
For Google, the primary driver for developing these systems was pure expediency:
there simply were no technologies at the time capable of storing and processing the
vast datasets it was dealing with. The traditional approach to performing computa‐
tions on datasets was to invest in a few extremely powerful servers with lots of pro‐
cessors and lots of RAM, slurp the data in from a storage layer (e.g., NAS or SAN),
crunch through a computation, and write the results back to storage. As the scale of
the data increased, this approach proved both impractical and expensive.

The key innovation, and one which still stands the test of time, was to distribute the
datasets across many machines and to split up any computations on that data into
many independent, “shared-nothing” chunks, each of which could be run on the
same machines storing the data. Although existing technologies could be run on mul‐
tiple servers, they typically relied heavily on communication between the distributed
components, which leads to diminishing returns as the parallelism increases (see
Amdahl’s law). By contrast, in the distributed-by-design approach, the problem of
scale is naturally handled because each independent piece of the computation is
responsible for just a small chunk of the dataset. Increased storage and compute
power can be obtained by simply adding more servers—a so-called horizontally scala‐
ble architecture. A key design point when computing at such scales is to design with
the assumption of component failure in order to build a reliable system from unrelia‐
ble components. Such designs solve the problem of cost-effective scaling because the
storage and computation can be realized on standard commodity servers.

1
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1 In common with most open source projects, we avoid the term slave wherever possible.

With advances in commodity networking and the general move to
cloud computing and storage, the requirement to run computa‐
tions locally to the data is becoming less critical. If your network
infrastructure is good enough, it is no longer essential to use the
same underlying hardware for compute and storage. However, the
distributed nature and horizontally scalable approach are still fun‐
damental to the efficient operation of these systems.

Hadoop is an open source implementation of these techniques. At its core, it offers a
distributed filesystem (HDFS) and a means of running processes across a cluster of
servers (YARN). The original distributed processing application built on Hadoop was
MapReduce, but since its inception, a wide range of additional software frameworks
and libraries have grown up around Hadoop, each one addressing a different use
case. In the following section, we go on a whirlwind tour of the core technologies in
the Hadoop project, as well as some of the more popular open source frameworks in
the ecosystem that run on Hadoop clusters.

What Is A Cluster?
In the simplest sense, a cluster is just a bunch of servers grouped together to provide
one or more functions, such as storage or computation. To users of a cluster, it is gen‐
erally unimportant which individual machine or set of machines within the cluster
performs a computation, stores the data, or performs some other service. By contrast,
architects and administrators need to understand the cluster in detail. Figure 1-1
illustrates a cluster layout at a high level.

Figure 1-1. Machine roles in a cluster

Usually we divide a cluster up into two classes of machine: master and worker.1

Worker machines are where the real work happens—these machines store data, per‐
form computations, offer services like lookups and searches, and more. Master
machines are responsible for coordination, maintaining metadata about the data and
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services running on the worker machines, and ensuring the services keep running in
the event of worker failures. Typically, there are two or three master machines for
redundancy and a much larger number of workers. A cluster is scaled up by adding
more workers and, when the cluster gets large enough, extra masters.

Often, we want to allow access to the cluster by users and other applications, so we
provide some machines to act as gateway or edge servers. These servers often do not
run any services at all but just have the correct client configuration files to access
cluster services.

We discuss the various machine types and their purpose in more detail in Chapter 3
and introduce the different types of cluster you might need in Chapter 2.

A Tour of the Landscape
When we say “Hadoop,” we usually really mean Hadoop and all the data engineering
projects and frameworks that have been built around it. In this section, we briefly
review a few key technologies, categorized by use case. We are not able to cover every
framework in detail—in many cases these have their own full book-level treatments
—but we try to give a sense of what they do. This section can be safely skipped if you
are already familiar with these technologies, or you can use it as a handy quick refer‐
ence to remind you of the fundamentals.

The zoo of frameworks, and how they relate to and depend on each other, can appear
daunting at first, but with some familiarization, the relationships become clearer. You
may have seen representations similar to Figure 1-2, which attempt to show how dif‐
ferent components build on each other. These diagrams can be a useful aid to under‐
standing, but they don’t always make all the dependencies among projects clear.
Projects depend on each other in different ways, but we can think about two main
types of dependency: data and control. In the data plane, a component depends on
another component when reading and writing data, while in the control plane, a com‐
ponent depends on another component for metadata or coordination. For the graph‐
ically inclined, some of these relationships are shown in Figure 1-3. Don’t panic; this
isn’t meant to be scary, and it’s not critical at this stage that you understand exactly
how the dependencies work between the components. But the graphs demonstrate
the importance of developing a basic understanding of the purpose of each element
in the stack. The aim of this section is to give you that context.
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Figure 1-2. Standard representation of technologies and dependencies in the Hadoop
stack

Figure 1-3. Graphical representation of some dependencies between components in the
data and control planes
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Where there are multiple technologies with a similar design, archi‐
tecture, and use case, we cover just one but strive to point out the
alternatives as much as possible, either, in the text or in “Also con‐
sider” sections.

Core Components
The first set of projects are those that form the core of the Hadoop project itself or are
key enabling technologies for the rest of the stack: HDFS, YARN, Apache ZooKeeper,
and the Apache Hive Metastore. Together, these projects form the foundation on
which most other frameworks, projects, and applications running on the cluster
depend.

HDFS
The Hadoop Distributed File System (HDFS) is the scalable, fault-tolerant, and dis‐
tributed filesystem for Hadoop. Based on the original use case of analytics over large-
scale datasets, HDFS is optimized to store very large amounts of immutable data with
files being typically accessed in long sequential scans. HDFS is the critical supporting
technology for many of the other components in the stack.

When storing data, HDFS breaks up a file into blocks of configurable size, usually
something like 128 MiB, and stores a replica of each block on multiple servers for
resilience and data parallelism. Each worker node in the cluster runs a daemon called
a DataNode which accepts new blocks and persists them to its local disks. The Data‐
Node is also responsible for serving up data to clients. The DataNode is only aware of
blocks and their IDs; it does not have knowledge about the file to which a particular
replica belongs. This information is curated by a coordinating process, the Name‐
Node, which runs on the master servers and is responsible for maintaining a mapping
of files to the blocks, as well as metadata about the files themselves (things like names,
permissions, attributes, and replication factor).

Clients wishing to store blocks must first communicate with the NameNode to be
given a list of DataNodes on which to write each block. The client writes to the first
DataNode, which in turn streams the data to the next DataNode, and so on in a pipe‐
line. When providing a list of DataNodes for the pipeline, the NameNode takes into
account a number of things, including available space on the DataNode and the loca‐
tion of the node—its rack locality. The NameNode insures against node and rack fail‐
ures by ensuring that each block is on at least two different racks. In Figure 1-4, a
client writes a file consisting of three blocks to HDFS, and the process distributes and
replicates the data across DataNodes.
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Figure 1-4. The HDFS write process and how blocks are distributed across DataNodes

Likewise, when reading data, the client asks the NameNode for a list of DataNodes
containing the blocks for the files it needs. The client then reads the data directly
from the DataNodes, preferring replicas that are local or close, in network terms.

The design of HDFS means that it does not allow in-place updates to the files it
stores. This can initially seem quite restrictive until you realize that this immutability
allows it to achieve the required horizontal scalability and resilience in a relatively
simple way.

HDFS is fault-tolerant because the failure of an individual disk, DataNode, or even
rack does not imperil the safety of the data. In these situations, the NameNode simply
directs one of the DataNodes that is maintaining a surviving replica to copy the block
to another DataNode until the required replication factor is reasserted. Clients read‐
ing data are directed to one of the remaining replicas. As such, the whole system is
self-healing, provided we allow sufficient capacity and redundancy in the cluster
itself.

HDFS is scalable, given that we can simply increase the capacity of the filesystem by
adding more DataNodes with local storage. This also has the nice side effect of
increasing the available read and write throughput available to HDFS as a whole.

It is important to note, however, that HDFS does not achieve this resilience and scal‐
ing all on its own. We have to use the right servers and design the layout of our clus‐
ters to take advantage of the resilience and scalability features that HDFS offers—and
in large part, that is what this book is all about. In Chapter 3, we discuss in detail how
HDFS interacts with the servers on which its daemons run and how it uses the locally
attached disks in these servers. In Chapter 4, we examine the options when putting a
network plan together, and in Chapter 12, we cover how to make HDFS as highly
available and fault-tolerant as possible.
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One final note before we move on. In this short description of HDFS, we glossed over
the fact that Hadoop abstracts much of this detail from the client. The API that a cli‐
ent uses is actually a Hadoop-compatible filesystem, of which HDFS is just one imple‐
mentation. We will come across other commonly used implementations in this book,
such as cloud-based object storage offerings like Amazon S3.

YARN
Although it’s useful to be able to store data in a scalable and resilient way, what we
really want is to be able to derive insights from that data. To do so, we need to be able
to compute things from the data, in a way that can scale to the volumes we expect to
store in our Hadoop filesystem. What’s more, we need to be able to run lots of differ‐
ent computations at the same time, making efficient use of the available resources
across the cluster and minimizing the required effort to access the data. Each compu‐
tation processes different volumes of data and requires different amounts of compute
power and memory. To manage these competing demands, we need a centralized
cluster manager, which is aware of all the available compute resources and the cur‐
rent competing workload demands.

This is exactly what YARN (Yet Another Resource Negotiator) is designed to be.
YARN runs a daemon on each worker node, called a NodeManager, which reports in
to a master process, called the ResourceManager. Each NodeManager tells the
ResourceManager how much compute resource (in the form of virtual cores, or
vcores) and how much memory is available on its node. Resources are parceled out to
applications running on the cluster in the form of containers, each of which has a
defined resource demand—say, 10 containers each with 4 vcores and 8 GB of RAM.
The NodeManagers are responsible for starting and monitoring containers on their
local nodes and for killing them if they exceed their stated resource allocations.

An application that needs to run computations on the cluster must first ask the
ResourceManager for a single container in which to run its own coordination pro‐
cess, called the ApplicationMaster (AM). Despite its name, the AM actually runs on
one of the worker machines. ApplicationMasters of different applications will run on
different worker machines, thereby ensuring that a failure of a single worker machine
will affect only a subset of the applications running on the cluster. Once the AM is
running, it requests additional containers from the ResourceManager to run its actual
computation. This process is sketched in Figure 1-5: three clients run applications
with different resource demands, which are translated into different-sized containers
and spread across the NodeManagers for execution.
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Figure 1-5. YARN application execution.

The ResourceManager runs a special thread, which is responsible for scheduling
application requests and ensuring that containers are allocated equitably between
applications and users running applications on the cluster. This scheduler strives to
allocate cores and memory fairly between tenants. Tenants and workloads are divi‐
ded into hierarchical pools, each of which has a configurable share of the overall clus‐
ter resources.

It should be clear from the description that YARN itself does not perform any com‐
putation but rather is a framework for launching such applications distributed across
a cluster. YARN provides a suite of APIs for creating these applications; we cover two
such implementations, MapReduce and Apache Spark, in “Computational Frame‐
works” on page 10.

You’ll learn more about making YARN highly available in Chapter 12.

Apache ZooKeeper
The problem of consensus is an important topic in computer science. When an appli‐
cation is distributed across many nodes, a key concern is getting these disparate com‐
ponents to agree on the values of some shared parameters. For example, for
frameworks with multiple master processes, agreeing on which process should be the
active master and which should be in standby is critical to their correct operation.

Apache ZooKeeper is the resilient, distributed configuration service for the Hadoop
ecosystem. Within ZooKeeper, configuration data is stored and accessed in a
filesystem-like tree of nodes, called znodes, each of which can hold data and be the
parent of zero or more child nodes. Clients open a connection to a single ZooKeeper
server to create, read, update and delete the znodes.

For resilience, ZooKeeper instances should be deployed on different servers as an
ensemble. Since ZooKeeper operates on majority consensus, an odd number of
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servers is required to form a quorum. Although even numbers can be deployed, the
extra server provides no extra resilience to the ensemble. Each server is identical in
functionality, but one of the ensemble is elected as the leader node—all other servers
are designated followers. ZooKeeper guarantees that data updates are applied by a
majority of ZooKeeper servers. As long as a majority of servers are up and running,
the ensemble is operational. Clients can open connections to any of the servers to
perform reads and writes, but writes are forwarded from follower servers to the
leader to ensure consistency. ZooKeeper ensures that all state is consistent by guaran‐
teeing that updates are always applied in the same order.

In general, a quorum with n members can survive up to floor((n–
1)/2) failures and still be operational. Thus, a four-member ensem‐
ble has the same resiliency properties as an ensemble of three
members.

As outlined in Table 1-1, many frameworks in the ecosystem rely on ZooKeeper for
maintaining highly available master processes, coordinating tasks, tracking state, and
setting general configuration parameters. You’ll learn more about how ZooKeeper is
used by other components for high availability in Chapter 12.

Table 1-1. ZooKeeper dependencies

Project Usage of ZooKeeper
HDFS Coordinating high availability

HBase Metadata and coordination

Solr Metadata and coordination

Kafka Metadata and coordination

YARN Coordinating high availability

Hive Table and partition locking and high availability

Apache Hive Metastore
We’ll cover the querying functionality of Apache Hive in a subsequent section when
we talk about analytical SQL engines, but one component of the project—the Hive
Metastore—is such a key supporting technology for other components of the stack
that we need to introduce it early on in this survey.

The Hive Metastore curates information about the structured datasets (as opposed to
unstructured binary data) that reside in Hadoop and organizes them into a logical
hierarchy of databases, tables, and views. Hive tables have defined schemas, which are
specified during table creation. These tables support most of the common data types
that you know from the relational database world. The underlying data in the storage
engine is expected to match this schema, but for HDFS this is checked only at run‐
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time, a concept commonly referred to as schema on read. Hive tables can be defined
for data in a number of storage engines, including Apache HBase and Apache Kudu,
but by far the most common location is HDFS.

In HDFS, Hive tables are nothing more than directories containing files. For large
tables, Hive supports partitioning via subdirectories within the table directory, which
can in turn contain nested partitions, if necessary. Within a single partition, or in an
unpartitioned table, all files should be stored in the same format; for example,
comma-delimited text files or a binary format like Parquet or ORC. The metastore
allows tables to be defined as either managed or external. For managed tables, Hive
actively controls the data in the storage engine: if a table is created, Hive builds the
structures in the storage engine, for example by making directories on HDFS. If a
table is dropped, Hive deletes the data from the storage engine. For external tables,
Hive makes no modifications to the underlying storage engine in response to meta‐
data changes, but merely maintains the metadata for the table in its database.

Other projects, such as Apache Impala and Apache Spark, rely on the Hive Metastore
as the single source of truth for metadata about structured datasets within the cluster.
As such it is a critical component in any deployment.

Going deeper
There are some very good books on the core Hadoop ecosystem, which are well
worth reading for a thorough understanding. In particular, see:

• Hadoop: The Definitive Guide, 4th Edition, by Tom White (O’Reilly)
• ZooKeeper, by Benjamin Reed and Flavio Junqueira (O’Reilly)
• Programming Hive, by Dean Wampler, Jason Rutherglen, and Edward Capriolo

(O’Reilly)

Computational Frameworks
With the core Hadoop components, we have data stored in HDFS and a means of
running distributed applications via YARN. Many frameworks have emerged to
allow users to define and compose arbitrary computations and to allow these compu‐
tations to be broken up into smaller chunks and run in a distributed fashion. Let’s
look at two of the principal frameworks.

Hadoop MapReduce
MapReduce is the original application for which Hadoop was built and is a Java-
based implementation of the blueprint laid out in Google’s MapReduce paper. Origi‐
nally, it was a standalone framework running on the cluster, but it was subsequently
ported to YARN as the Hadoop project evolved to support more applications and use
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cases. Although superseded by newer engines, such as Apache Spark and Apache
Flink, it is still worth understanding, given that many higher-level frameworks com‐
pile their inputs into MapReduce jobs for execution. These include:

• Apache Hive
• Apache Sqoop
• Apache Oozie
• Apache Pig

The terms map and reduce are borrowed from functional program‐
ming, where a map applies a transform function to every element
in a collection, and a reduce applies an aggregation function to
each element of a list, combining them into fewer summary values.

Essentially, MapReduce divides a computation into three sequential stages: map,
shuffle, and reduce. In the map phase, the relevant data is read from HDFS and pro‐
cessed in parallel by multiple independent map tasks. These tasks should ideally run
wherever the data is located—usually we aim for one map task per HDFS block. The
user defines a map() function (in code) that processes each record in the file and pro‐
duces key-value outputs ready for the next phase. In the shuffle phase, the map out‐
puts are fetched by MapReduce and shipped across the network to form input to the
reduce tasks. A user-defined reduce() function receives all the values for a key in
turn and aggregates or combines them into fewer values which summarize the inputs.
The essentials of the process are shown in Figure 1-6. In the example, files are read
from HDFS by mappers and shuffled by key according to an ID column. The reduc‐
ers aggregate the remaining columns and write the results back to HDFS.

Figure 1-6. Simple aggregation performed in MapReduce
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Sequences of these three simple linear stages can be composed and combined into
essentially any computation of arbitrary complexity; for example, advanced transfor‐
mations, joins, aggregations, and more. Sometimes, for simple transforms that do not
require aggregations, the reduce phase is not required at all. Usually, the outputs
from a MapReduce job are stored back into HDFS, where they may form the inputs
to other jobs.

Despite its simplicity, MapReduce is incredibly powerful and extremely robust and
scalable. It does have a couple of drawbacks, though. First, it is quite involved from
the point of view of a user, who needs to code and compile map() and reduce() func‐
tions in Java, which is too high a bar for many analysts—composing complex pro‐
cessing pipelines in MapReduce can be a daunting task. Second, MapReduce itself is
not particularly efficient. It does a lot of disk-based I/O, which can be expensive when
combining processing stages together or doing iterative operations. Multistage pipe‐
lines are composed from individual MapReduce jobs with an HDFS I/O barrier in
between, with no recognition of potential optimizations in the whole processing
graph.

Because of these drawbacks, a number of successors to MapReduce have been devel‐
oped that aim both to simplify development and to make processing pipelines more
efficient. Despite this, the conceptual underpinnings of MapReduce—that data pro‐
cessing should be split up into multiple independent tasks running on different
machines (maps), the results of which are then shuffled to and grouped and collated
together on another set of machines (reduces)—are fundamental to all distributed
data processing engines, including SQL-based frameworks. Apache Spark, Apache
Flink, and Apache Impala, although all quite different in their specifics, are all essen‐
tially different implementations of this concept.

Apache Spark
Apache Spark is a distributed computation framework, with an emphasis on effi‐
ciency and usability, which supports both batch and streaming computations. Instead
of the user having to express the necessary data manipulations in terms of pure map()
and reduce() functions as in MapReduce, Spark exposes a rich API of common
operations, such as filtering, joining, grouping, and aggregations directly on Datasets,
which comprise rows all adhering to a particular type or schema. As well as using API
methods, users can submit operations directly using a SQL-style dialect (hence the
general name of this set of features, Spark SQL), removing much of the requirement
to compose pipelines programmatically. With its API, Spark makes the job of com‐
posing complex processing pipelines much more tractable to the user. As a simple
example, in Figure 1-7, three datasets are read in. Two of these unioned together and
joined with a third, filtered dataset. The result is grouped according to a column and
aggregated and written to an output. The dataset sources and sinks could be batch-
driven and use HDFS or Kudu, or could be processed in a stream to and from Kafka.
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Figure 1-7. A typical simple aggregation performed in Spark

A key feature of operations on datasets is that the processing graphs are run through
a standard query optimizer before execution, very similar to those found in relational
databases or in massively parallel processing query engines. This optimizer can rear‐
range, combine, and prune the processing graph to obtain the most efficient execu‐
tion pipeline. In this way, the execution engine can operate on datasets in a much
more efficient way, avoiding much of the intermediate I/O from which MapReduce
suffers.

One of the principal design goals for Spark was to take full advantage of the memory
on worker nodes, which is available in increasing quantities on commodity servers.
The ability to store and retrieve data from main memory at speeds which are orders
of magnitude faster than those of spinning disks makes certain workloads radically
more efficient. Distributed machine learning workloads in particular, which often
operate on the same datasets in an iterative fashion, can see huge benefits in runtimes
over the equivalent MapReduce execution. Spark allows datasets to be cached in
memory on the executors; if the data does not fit entirely into memory, the partitions
that cannot be cached are spilled to disk or transparently recomputed at runtime.

Spark implements stream processing as a series of periodic microbatches of datasets.
This approach requires only minor code differences in the transformations and
actions applied to the data—essentially, the same or very similar code can be used in
both batch and streaming modes. One drawback of the micro-batching approach is
that it takes at least the interval between batches for an event to be processed, so it is
not suitable for use cases requiring millisecond latencies. However, this potential
weakness is also a strength because microbatching allows much greater data through‐
put than can be achieved when processing events one by one. In general, there are
relatively few streaming use cases that genuinely require subsecond response times.
However, Spark’s structured streaming functionality promises to bring many of the
advantages of an optimized Spark batch computation graph to a streaming context,
as well as a low-latency continuous streaming mode.

Spark ships a number of built-in libraries and APIs for machine learning. Spark
MLlib allows the process of creating a machine learning model (data preparation,
cleansing, feature extraction, and algorithm execution) to be composed into a dis‐
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tributed pipeline. Not all machine learning algorithms can automatically be run in a
distributed way, so Spark ships with a few implementations of common classes of
problems, such as clustering, classification and regression, and collaborative filtering.

Spark is an extraordinarily powerful framework for data processing and is often
(rightly) the de facto choice when creating new batch processing, machine learning,
and streaming use cases. It is not the only game in town, though; application archi‐
tects should also consider options like Apache Flink for batch and stream processing,
and Apache Impala (see “Apache Impala” on page 16) for interactive SQL.

Going deeper.    Once again, Hadoop: The Definitive Guide, by Tom White, is the best
resource to learn more about Hadoop MapReduce. For Spark, there are a few good
references:

• The Spark project documentation
• Spark: The Definitive Guide, by Bill Chambers and Matei Zaharia (O’Reilly)
• High Performance Spark, by Holden Karau and Rachel Warren (O’Reilly)

Analytical SQL Engines
Although MapReduce and Spark are extremely flexible and powerful frameworks, to
use them you do need to be comfortable programming in a language like Java, Scala,
or Python and should be happy deploying and running code from the command line.
The reality is that, in most enterprises, SQL remains the lingua franca of analytics,
and the largest, most accessible skill base lies there. Sometimes you need to get things
done without the rigmarole of coding, compiling, deploying, and running a full appli‐
cation. What’s more, a large body of decision support and business intelligence tools
interact with data stores exclusively over SQL. For these reasons, a lot of time and
effort has been spent developing SQL-like interfaces to structured data stored in
Hadoop. Many of these use MapReduce or Spark as their underlying computation
mechanism, but some are computation engines in their own right. Each engine is
focused on querying data that already exists in the storage engine or on inserting new
data in bulk into those engines. They are designed for large-scale analytics and not
for small-scale transactional processing. Let’s look at the principal players.

Apache Hive
Apache Hive is the original data warehousing technology for Hadoop. It was devel‐
oped at Facebook and was the first to offer a SQL-like language, called HiveQL, to
allow analysts to query structured data stored in HDFS without having to first com‐
pile and deploy code. Hive supports common SQL query concepts, like table joins,
unions, subqueries, and views. At a high level, Hive parses a user query, optimizes it,
and compiles it into one or more chained batch computations, which it runs on the
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cluster. Typically these computations are executed as MapReduce jobs, but Hive can
also use Apache Tez and Spark as its backing execution engine. Hive has two main
components: a metadata server and a query server. We covered the Hive Metastore
earlier, so we focus on the querying functionality in this section.

Users who want to run SQL queries do so via the query server, called HiveServer2
(HS2). Users open sessions with the query server and submit queries in the HQL dia‐
lect. Hive parses these queries, optimizes them as much as possible, and compiles
them into one or more batch jobs. Queries containing subqueries get compiled into
multistage jobs, with intermediate data from each stage stored in a temporary loca‐
tion on HDFS. HS2 supports multiple concurrent user sessions and ensures consis‐
tency via shared or exclusive locks in ZooKeeper. The query parser and compiler uses
a cost-based optimizer to build a query plan and can use table and column statistics
(which are also stored in the metastore) to choose the right strategy when joining
tables. Hive can read a multitude of file formats through its built-in serialization and
deserialization libraries (called SerDes) and can also be extended with custom
formats.

Figure 1-8 shows a high-level view of Hive operation. A client submits queries to a
HiveServer2 instance as part of a user session. HiveServer2 retrieves information for
the databases and tables in the queries from the Hive Metastore. The queries are then
optimized and compiled into sequences of jobs (J) in MapReduce, Tez, or Spark.
After the jobs are complete, the results are returned to the remote client via
HiveServer2.

Figure 1-8. High-level overview of Hive operation

Hive is not generally considered to be an interactive query engine (although recently
speed improvements have been made via long-lived processes which begin to move it
into this realm). Many queries result in chains of MapReduce jobs that can take many
minutes (or even hours) to complete. Hive is thus ideally suited to offline batch jobs
for extract, transform, load (ETL) operations; reporting; or other bulk data manipula‐
tions. Hive-based workflows are a trusted staple of big data clusters and are generally
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extremely robust. Although Spark SQL is increasingly coming into favor, Hive
remains—and will continue to be—an essential tool in the big data toolkit.

We will encounter Hive again when discussing how to deploy it for high availability
in Chapter 12.

Going deeper.    Much information about Hive is contained in blog posts and other
articles spread around the web, but there are some good references:

• The Apache Hive wiki (contains a lot of useful information, including the HQL
language reference)

• Programming Hive, by Dean Wampler, Jason Rutherglen, and Edward Capriolo
(O’Reilly)

Although we covered it in “Computational Frameworks” on page
10, Spark is also a key player in the analytical SQL space. The Spark
SQL functionality supports a wide range of workloads for both ETL
and reporting and can also play a role in interactive query use
cases. For new implementations of batch SQL workloads, Spark
should probably be considered as the default starting point.

Apache Impala
Apache Impala is a massively parallel processing (MPP) engine designed to support
fast, interactive SQL queries on massive datasets in Hadoop or cloud storage. Its key
design goal is to enable multiple concurrent, ad hoc, reporting-style queries covering
terabytes of data to complete within a few seconds. It is squarely aimed at supporting
analysts who wish to execute their own SQL queries, directly or via UI-driven busi‐
ness intelligence (BI) tools.

In contrast to Hive or Spark SQL, Impala does not convert queries into batch jobs to
run under YARN. Instead it is a standalone service, implemented in C++, with its
own worker processes which run queries, the Impala daemons. Unlike with Hive,
there is no centralized query server; each Impala daemon can accept user queries and
acts as the coordinator node for the query. Users can submit queries via JDBC or
ODBC, via a UI such as Hue, or via the supplied command-line shell. Submitted
queries are compiled into a distributed query plan. This plan is an operator tree divi‐
ded into fragments. Each fragment is a group of plan nodes in the tree which can run
together. The daemon sends different instances of the plan fragments to daemons in
the cluster to execute against their local data, where they are run in one or more
threads within the daemon process.

Because of its focus on speed and efficiency, Impala uses a different execution model,
in which data is streamed from its source through a tree of distributed operators.
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Rows read by scan nodes are processed by fragment instances and streamed to other
instances, which may be responsible for joining, grouping, or aggregation via
exchange operators. The final results from distributed fragment instances are
streamed back to the coordinator daemon, which executes any final aggregations
before informing the user there are results to fetch.

The query process is outlined in Figure 1-9. A client chooses an Impala daemon
server to which to submit its query. This coordinator node compiles and optimizes
the query into remote execution fragments which are sent to the other daemons in
the cluster (query initialization). The daemons execute the operators in the fragments
and exchange rows between each other as required (distributed execution). As they
become available, they stream the results to the coordinator, which may perform final
aggregations and computations before streaming them to the client.

Figure 1-9. A simplified view of the query execution process in Impala

Impala can read data from a wide range of data sources, including text files, HBase
tables, and Avro, but its preferred on-disk format is Parquet. Impala can take advan‐
tage of the fact that Parquet files store data by columns to limit the data read from
disk to only those columns referenced in the query itself. Impala also uses predicate
pushdown to filter out rows right at the point that they are read. Currently Impala can
read data stored in HDFS, Apache HBase, Apache Kudu, Amazon S3, and Microsoft
Azure Data Lake Store (ADLS).
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Going deeper.    For more details on Impala, we recommend the following sources:
• Cloudera’s Apache Impala Guide
• Getting Started with Impala, by John Russell (O’Reilly)

Also consider.    There are many more analytical frameworks out there. Some other
SQL-based distributed query engines to certainly bear in mind and consider for your
use cases are:

• Presto
• Apache Drill
• Apache Phoenix (based on Apache HBase, discussed in the next section)

Storage Engines
The original storage engine in the Hadoop ecosystem is HDFS, which excels at stor‐
ing large amounts of append-only data to be accessed in sequential scans. But what
about other access patterns, such as random record retrieval and updates? What
about document search? Many workloads deal with large and varied datasets but are
not analytical in nature. To cater to these different use cases, a few projects have been
developed or adapted for use with Hadoop.

Apache HBase
The desire by some early web companies to store tens of billions to trillions of
records and to allow their efficient retrieval and update led to the development of
Apache HBase—a semi-structured, random-access key-value store using HDFS as its
persistent store. As with many of the Hadoop projects, the original blueprint for the
framework came from a paper published by Google describing its system Bigtable.
Essentially, HBase provides a means by which a random-access read/write workload
(which is very inefficient for HDFS) is converted to sequential I/O (which HDFS
excels at).

HBase is not a relational store. Instead, it stores semi-structured key-value pairs,
called cells, in a distributed table. HBase subdivides the cell key into a hierarchy of
components to allow related cells to be stored and accessed efficiently together. The
first portion of the key is called the row key, and it defines a logical grouping of cells,
called a row. Next, the key is further subdivided into column families, which again
represent a grouping of cells. Column families are stored separately in memory and
on disk, and there are usually no more than a handful per table. Column families are
the only part of the key schema that need to be defined when the table is created.
Within a column family there is a further subdivision, called a column qualifier, of
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which there can be millions or more per row. Finally, each cell has a timestamp
which defines a version. Multiple cells with different timestamps but otherwise the
same key can be stored as different versions. HBase treats each component of the key
(apart from the timestamp) and the value as arrays of bytes. As a result, HBase
doesn’t impose any restrictions on, or have any knowledge of, types in any part of the
cell, making it a semi-structured store.

In HBase, cells are stored in order according to their key components. They are sor‐
ted first by their row key and then by column family, column qualifier, and finally by
timestamp. HBase employs horizontal partitioning—that is, the cells in a table are
divided up into partitions, which are distributed around the cluster. The space of row
keys in a table is divided up into partitions called regions, each responsible for a non‐
overlapping range of the sorted row keys. The boundaries between regions are called
region splits. For example, if you know your rows will have row keys with a random
alphabetical prefix, you might create your table initially with 26 regions with splits at
b, c, d, ..., v, w, x, y, z. Any key starting with a will go in the first region, with c the
third region and z the last region. New splits can be added manually or can be auto‐
matically created by HBase for busy regions. In this way, a table can be easily dis‐
tributed and scaled.

The learning curve for operational aspects of HBase can be steep, and it is not neces‐
sarily for the faint of heart. Getting the right design for the table and the cell keys is
absolutely critical for the performance of your given use case and access pattern.
Designing the right table layout requires a solid working understanding of how
HBase works, or you are liable to end up with pathological behaviors, such as full-
table scans, region hotspotting, or compaction storms. HBase excels at servicing ran‐
dom I/O workloads: well-distributed write or read requests for relatively small groups
of cells, via either row gets or range scans. It is not as good at supporting much larger
scans, such as those that are typical in analytical workloads. These are expensive to
execute and return to the client. Such workloads are typically much better performed
directly against the HDFS files themselves.

If managed well and used correctly, HBase is one of the most valuable tools in the
ecosystem and can deliver blazing fast performance on huge datasets. It should abso‐
lutely be used—just be sure you are using it for the right thing and in the right way.

Going deeper.    There are some absolute must-read references if you are serious about
using or running HBase:

• HBase: The Definitive Guide, 2nd Edition, by Lars George (O’Reilly)
• Architecting HBase Applications, by Jean-Marc Spaggiari and Kevin O’Dell

(O’Reilly)
• The Apache HBase Reference Guide
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Also consider.    HBase is not the only semi-structured store based on HDFS. Others
include:

• Apache Cassandra
• Apache Accumulo

Apache Kudu
One of the principal pain points of the traditional Hadoop-based architecture is that,
in order to support both efficient high-throughput analytics and low-latency
random-access reads on the same data, multiple storage engines must be used. This
results in relatively complex ingestion and orchestration pipelines. Such use cases
require something like HBase or Accumulo to service the random-access queries,
along with a combination of HDFS, Parquet and Impala, Spark SQL, or Hive for the
analytical workloads.

If the incoming data includes updates to existing rows, the picture becomes even
more complicated, as it can require wholesale rewrites of data on HDFS or complex
queries based on application of the latest deltas. Recognizing this, the creators of
Kudu set out to create a storage and query engine that could satisfy both access pat‐
terns (random-access and sequential scans) and efficiently allow updates to existing
data. Naturally, to allow this, some performance trade-offs are inevitable, but the aim
is to get close to the performance levels of each of the native technologies—that is, to
service random-access reads within tens of milliseconds and perform file scans at
hundreds of MiB/s.

Kudu is a structured data store which stores rows with typed columns in tables with a
predefined schema. A subset of the columns is designated as the primary key for the
table and forms an index into the table by which Kudu can perform row lookups.
Kudu supports the following write operations: insert, update, upsert (insert if the row
doesn’t exist, or update if it does), and delete. On the read side, clients can construct a
scan with column projections and filter rows by predicates based on column values.

Kudu distributes tables across the cluster through horizontal partitioning. A table is
broken up into tablets through one of two partitioning mechanisms, or a combina‐
tion of both. A row can be in only one tablet, and within each tablet, Kudu maintains
a sorted index of the primary key columns. The first partitioning mechanism is range
partitioning and should be familiar to users of HBase and Accumulo. Each tablet has
an upper and lower bound within the range, and all rows with partition keys that sort
within the range belong to the tablet.

The second partitioning mechanism is hash partitioning. Users can specify a fixed
number of hash buckets by which the table will be partitioned and can choose one or
more columns from the row that will be used to compute the hash for each row. For
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each row, Kudu computes the hash of the columns modulo the number of buckets
and assigns the row to a tablet accordingly.

The two partitioning mechanisms can be combined to provide multiple levels of par‐
titioning, with zero or more hash partitioning levels (each hashing a different set of
columns) and a final optional range partition. Multilevel partitioning is extremely
useful for certain use cases which would otherwise be subject to write hotspotting.
For example, time series always write to the end of a range, which will be just one
tablet if only range partitioning is used. By adding a hash partition on a sensible col‐
umn, the writes can be spread evenly across all tablets in the table and the table can
be scaled by dividing each hash bucket up by range.

With all storage and query engines, choosing the right schema and table layout is
important for efficient operation. Kudu is no different, and practitioners will need to
familiarize themselves with the trade-offs inherent in different row schemas and par‐
titioning strategies in order to choose the optimal combination for the use case at
hand. Common use cases for Kudu include:

• Large metric time series, such as those seen in IoT datasets
• Reporting workloads on large-scale mutable datasets, such as OLAP-style analy‐

ses against star schema tables

Going deeper.    The best place to start to learn more about Kudu is the official project
documentation. Other resources well worth reading include:

• “Kudu: Storage for Fast Analytics on Fast Data”, by Todd Lipcon et al. (the origi‐
nal paper outlining the design and operation of Kudu)

• Getting Started with Kudu, by Jean-Marc Spaggiari et al. (O’Reilly)

Apache Solr
Sometimes SQL is not enough. Some applications need the ability to perform more
flexible searches on unstructured or semi-structured data. Many use cases, such as log
search, document vaults, and cybersecurity analysis, can involve retrieving data via
free-text search, fuzzy search, faceted search, phoneme matching, synonym match‐
ing, geospatial search, and more. For these requirements, often termed enterprise
search, we need the ability to automatically process, analyze, index, and query billions
of documents and hundreds of terabytes of data. There are two primary technologies
in the ecosystem at present: Apache Solr and Elasticsearch. We cover only Apache
Solr here, but Elasticsearch is also a great choice for production deployments. Both
are worth investigating carefully for your enterprise search use case.

To support its search capabilities, Solr uses inverted indexes supplied by Apache
Lucene, which are simply maps of terms to a list of matching documents. Terms can
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be words, stems, ranges, numbers, coordinates, and more. Documents contain fields,
which define the type of terms found in them. Fields may be split into individual
tokens and indexed separately. The fields a document contains are defined in a
schema.

The indexing processing and storage structure allows for quick ranked document
retrieval, and a number of advanced query parsers can perform exact matching, fuzzy
matching, regular expression matching, and more. For a given query, an index
searcher retrieves documents that match the query’s predicates. The documents are
scored and, optionally, sorted according to certain criteria; by default, the documents
with the highest score are returned first.

In essence, Solr wraps the Lucene library in a RESTful service, which provides index
management and flexible and composable query and indexing pipelines. Through the
SolrCloud functionality, a logical index can be distributed across many machines for
scalable query processing and indexing. Solr can additionally store its index files on
HDFS for resilience and scalable storage.

Solr stores documents in collections. Collections can be created with a predefined
schema, in which fields and their types are fixed by the user. For use cases that deal
with documents with arbitrary names, dynamic fields can be used. These specify
which type to use for document fields that match a certain naming pattern. Solr col‐
lections can also operate in so-called schemaless mode. In this mode, Solr guesses the
types of the supplied fields and adds new ones as they appear in documents.

SolrCloud allows collections to be partitioned and distributed across Solr servers and
thus to store billions of documents and to support high query concurrency. As with
all storage and query engines, Solr has its strengths and weaknesses. In general, a
well-operated and configured SolrCloud deployment can support distributed collec‐
tions containing billions of documents, but you must take care to distribute query
and indexing load properly. The strengths of Solr lie in its flexible querying syntax
and ability to do complex subsecond searches across millions of documents, ulti‐
mately returning tens to hundreds of documents to the client. It is generally not suit‐
able for large-scale analytical use cases which return millions of documents at a time.
And for those who can’t live without it, Solr now supports a SQL dialect for querying
collections.

You’ll learn more about using Solr in highly available contexts in “Solr” on page 367.

Going deeper.    We have only covered the very basics of Solr here. We highly recom‐
mend that you consult the official documentation, which has much more detail about
schema design and SolrCloud operation. The following are also worth a look:

• Solr in Action, 3rd Edition, by Trey Grainger and Timothy Potter (Manning).
Although slightly dated, this resource contains an excellent description of the
inner workings of Solr.
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• Solr ’n Stuff. Yonik Seeley’s blog contains a wealth of background information
about various Solr features and an “Unofficial Solr Guide.”

Also consider.    As we noted earlier, Elasticsearch is a strong alternative to Solr.

Apache Kafka
One of the primary drivers behind a cluster is to have a single platform that can store
and process data from a multitude of sources. The sources of data within an enter‐
prise are many and varied: web logs, machine logs, business events, transactional
data, text documents, images, and more. This data arrives via a multitude of modes,
including push-based, pull-based, batches, and streams, and in a wide range of proto‐
cols: HTTP, SCP/SFTP, JDBC, AMQP, JMS, and more. Within the platform ecosys‐
tem, there are multiple sinks for incoming data: HDFS, HBase, Elasticsearch, and
Kudu, to name but a few. Managing and orchestrating the ingestion into the platform
in all these modes can quickly become a design and operational nightmare.

For streaming data, in particular, the incumbent message broker technologies strug‐
gle to scale to the demands of big data. Particular pain points are the demands of sup‐
porting hundreds of clients, all wanting to write and read at high bandwidths and all
wanting to maintain their own positions in the streams. Guaranteeing delivery in a
scalable way using these technologies is challenging, as is dealing with data backlogs
induced by high-volume bursts in incoming streams or failed downstream processes.
These demands led directly to the development of Apache Kafka at LinkedIn.

Read more about the background and motivations for a log-based,
publish/subscribe architecture in “The Log: What every software
engineer should know about real-time data’s unifying abstraction”.

Apache Kafka is a publish/subscribe system designed to be horizontally scalable in
both volume and client read and write bandwidth. Its central idea is to use dis‐
tributed, sequential logs as the storage mechanism for incoming messages and to
allow clients, or groups of clients, to consume data from a given point using simple
numerical offsets. Kafka has become a critical glue technology, providing a resilient
and highly available ingestion buffer, which integrates multiple upstream sources and
downstream sinks. Increasingly, stream processing and stateful querying of streams is
supported within the Kafka ecosystem itself, with Kafka operating as the system of
record.

The fundamental data structure in Kafka is the topic, which is a sequence of messages
(or records) distributed over multiple servers (or brokers). Each topic can be created
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with multiple partitions, each of which is backed by an on-disk log. For resilience,
partitions have multiple replicas residing on different brokers.

Messages in Kafka are key-value pairs, where the key and value are arbitrary byte
arrays. Clients publish messages to partitions of Kafka topics via producers. Each par‐
tition of a topic is an ordered and immutable log. New messages are appended
sequentially to the end of the log, which makes the I/O operation very efficient.
Within the partition, each message is written together with an offset, which is an
always-increasing index into the log. Clients can read from topics using consumers.
For scalability, separate consumers can be combined into a consumer group. Con‐
sumers can retrieve their last known offset on startup and easily resume where they
left off.

Kafka can be used in many ways. Most commonly, it is used as a scalable buffer for
data streaming to and from storage engines on Hadoop. It is also frequently used as a
data interchange bus in flexible stream processing chains, where systems such as
Kafka Connect, Apache Flume, or Spark Streaming consume and process data and
write their results out to new topics.

Increasingly, architectures are being built in which Kafka acts as the central system of
record and temporary views are built in external serving systems, like databases and
key-value stores. It is for this reason that we categorized Kafka as a storage engine
rather than as an ingestion technology. However it is used, Kafka is a key integration
technology in enterprise big data platforms.

Going deeper.    There is a wealth of information about Kafka’s background and usage.
Some good places to start include:

• The Apache Kafka documentation
• Kafka: The Definitive Guide, by Gwen Shapira, Neha Narkhede, and Todd Palino

(O’Reilly)
• I Heart Logs, by Jay Kreps (O’Reilly)

Ingestion
There are a lot of technologies in the ingestion space—too many to cover in this sur‐
vey. Traditionally, two of the main ingestion technologies have been Apache Flume,
which is targeted at scalable ingestion for streams of data, and Apache Sqoop, which
is focused on importing and exporting data in relational databases. Many other
options have emerged, though, to simplify the process of ingestion pipelines and to
remove the need for custom coding.

Two notable open source options are:
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• Apache NiFi
• StreamSets Data Collector

Orchestration
Batch ingestion and analytics pipelines often consist of multiple dependent phases,
potentially using different technologies in each phase. We need to orchestrate and
schedule such pipelines and to be able to express their complex interdependencies.

Apache Oozie
Apache Oozie is the job scheduling and execution framework for Hadoop. The basic
units of execution within Oozie jobs are actions, which represent tasks that run in the
Hadoop ecosystem, such as Hive queries or MapReduce jobs. Actions are composed
into workflows, which represent logical sequences or orderings of tasks that need to
be run together. Workflows can be run to a schedule via coordinators, which in turn
can be grouped together into bundles for logical grouping of applications. An Oozie
job can refer to a workflow, coordinator, or bundle.

Oozie jobs are defined via XML files. Each workflow contains a directed (acyclic)
graph of actions, basically akin to a flowchart of processing. Coordinators define an
execution schedule for workflows, based on time intervals and input dataset availabil‐
ity. Bundles define groups of related coordinators with an overall kickoff time.

Jobs are submitted to the Oozie server, which validates the supplied XML and takes
care of the job life cycle. This means different things for different job types. For work‐
flows, it means starting and keeping track of individual action executions on the
Hadoop cluster and proceeding through the graph of actions until the workflow com‐
pletes successfully or encounters an error. For coordinators, the Oozie server
arranges for workflows to be started according to the schedule and checks that all
input datasets are available for the particular instance of the workflow execution,
potentially holding it back until its input data is ready. The Oozie server runs each of
the coordinators defined in a bundle.

Workflow actions come in two flavors: asynchronous and synchronous. The majority
of actions are run asynchronously on YARN via launchers. Launchers are map-only
jobs which, in turn, may submit a further Hadoop job (e.g., Spark, MapReduce, or
Hive). This architecture allows the Oozie server to remain lightweight and,
consequently, to easily run hundreds of actions concurrently. It also insulates long-
running applications from Oozie server failures; because the job state is persisted in
an underlying database, the Oozie server can pick up where it left off after a restart
without affecting running actions. Some actions are considered lightweight enough
to not need to be run via YARN but instead run synchronously, directly in the Oozie
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server. These include sending emails and some HDFS commands. Oozie job defini‐
tions and all associated files and libraries must be stored in HDFS, typically in a
directory per application. Oozie exposes a RESTful HTTP API backed by a multi‐
threaded web server through which a user submits, monitors, and controls jobs.

We cover Oozie further in relation to high availability in “Oozie” on page 370.

Also consider
Oozie isn’t everyone’s cup of tea, and a couple of very capable contenders have
emerged. They are arguably more flexible and usable and well worth considering for
greenfield deployments:

• Apache Airflow (incubating)
• Luigi from Spotify

Summary
We have covered a fair amount of ground in this primer, beginning with the basic
definition of a cluster, which we will cover more in the next chapter. From there, we
looked at the core components of Hadoop clusters, computational frameworks, SQL
analytics frameworks, storage engines, ingestion technologies, and finally, orchestra‐
tion systems. Table 1-2 briefly summarizes the components that were covered and
outlines their primary intended functionality.

Table 1-2. Component summary

Project Description Used for Depends on
ZooKeeper Distributed configuration service Sharing metadata between distributed

processes and distributed locking
-

HDFS Distributed file storage Scalable bulk storage of immutable data ZooKeeper

YARN Distributed resource scheduling
and execution framework

Frameworks requiring scalable, distributed
compute resources

ZooKeeper, HDFS

MapReduce Generic distributed computation
framework

Batch compute workloads YARN, HDFS

Spark Generic distributed computation
framework

Batch, analytical SQL, and streaming
workloads

Resource scheduler (e.g.,
YARN or Mesos), data
sources (e.g., HDFS, Kudu)

Hive SQL analytics query framework Analytical SQL workloads YARN, data sources (e.g.,
HDFS, Kudu)

Impala MPP SQL analytics engine Analytical, interactive SQL workloads Data sources (HDFS, Kudu,
HBase)

HBase Distributed, sorted store for
hierarchical key-value data

Random, low-latency read/write access to
row-based data with structured keys

HDFS, ZooKeeper
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Project Description Used for Depends on
Kudu Distributed store for structured

data
Combined random read/write access and
analytical workloads

-

Solr Enterprise search framework Scalable document indexing and querying on
arbitrary fields

HDFS, ZooKeeper

Kafka Distributed pub/sub messaging
framework

Scalable publishing and consumption of
streaming data

ZooKeeper

Oozie Workflow scheduler Regular and on-demand data processing
pipelines

-

With this working knowledge under your belt, the rest of the book should be easier to
digest. If you forget some of the details, you can always use this section to refamilia‐
rize yourself with the key technologies.
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PART I

Infrastructure

The defining characteristics of big data—volume, variety, and velocity—don’t just
apply to the information stored within a modern data platform; they also apply to the
knowledge required to build and use one effectively.

The topics touched upon are varied and deep, ranging from hardware selection and
datacenter management through to statistics and machine learning. Even from just a
platform architecture perspective, which is the scope of this book, the body of knowl‐
edge required is considerable. With such a wide selection of topics to cover, we have
decided to present the material in parts.

In this first part, our intention is to equip the reader with foundational knowledge
and understanding relating to infrastructure, both physical and organizational. Some
chapters will be a deep dive into subjects such as compute and storage technologies,
while others provide a high-level overview of subjects such as datacenter considera‐
tions and organizational challenges.





CHAPTER 2

Clusters

Before we perform a deep dive into modern cluster infrastructure, this chapter will
consider clusters from a wider perspective, showing how multiple modern data plat‐
forms fit together within the enterprise context.

First, we dispel the myth of the single cluster, describing how and why organizations
choose to deploy multiple clusters. We then briefly look at the black art of cluster siz‐
ing and cluster growth, and finally at the data replication implications of deploying
multiple clusters.

Reasons for Multiple Clusters
The aspiration to have a single large cluster that stores everything and removes data
silos is tantalizing to many organizations, but the reality is that multiple clusters are
inevitable—particularly within an enterprise setting. As we describe in this section,
there are many valid reasons for deploying multiple clusters, and they all have one
thing in common: the need for independence.

Multiple Clusters for Resiliency
Architecting a system for resilient operation involves ensuring that elements are
highly available, and designing out any single points of failure such as power or cool‐
ing, as discussed in Chapters 6 and 12. Ultimately, every cluster sits within a single
point of failure simply due to geography—even a cloud deployment built using mul‐
tiple availability zones (AZs).

Total system resiliency can therefore only be assured by using multiple datacenters in
different geographic regions, ensuring that business processes can withstand even
catastrophic events, such as earthquakes, floods, or political instability.
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Although it can be tempting to consider deploying a single cluster over multiple loca‐
tions, the bandwidth and latency requirements almost certainly make this unfeasible.
However, deploying an independent cluster at each of two sites is an entirely practical
and achievable solution, leading to our first reason for deploying multiple clusters:
disaster recovery (DR), which is discussed in Chapter 13.

Sizing resilient clusters
In many cases, organizations deploy a second cluster at a remote site with the same
storage and processing capabilities as the main cluster, with the intention of migrat‐
ing production workloads in the event of a disaster. Rather than being inactive, the
remote cluster can provide additional business value by performing data exploration
or reporting workloads that are more ad hoc in nature.

Alternatively, depending on the requirements, remote clusters can be sized for data
archiving than for workload migration—effectively building a backup/archive cluster
rather than a secondary active cluster. Obviously, this approach has drawbacks
regarding recovery time in comparison to a secondary cluster.

Multiple Clusters for Software Development
Innovation is undoubtedly one of the main benefits of a modern data platform and a
significant reason for enterprise adoption. Paradoxically, many organizations find
that the high level of change within the platform presents an uncomfortable level of
risk.

Any software or configuration change has an element of risk, since it has the poten‐
tial to cause a performance or functional regression, whether that change is within
the OS, data platform, or application. By deploying separate clusters for some (or all)
phases of the development process, changes can be staged through these lower envi‐
ronments and validated through testing, mitigating the risk of impacting critical pro‐
duction environments.

Although this practice is common throughout the traditional IT landscape, it is par‐
ticularly relevant to modern data platforms due to their inherent scale, complexity,
and pace of innovation. Examples of this practice include:

• Deploying separate system integration testing (SIT) clusters to perform upgrade
testing in isolation

• Deploying separate user acceptance testing (UAT) clusters to tune platform con‐
figuration in isolation

Since the balance between innovation and stability is a common enterprise concern,
platform vendors strike a balance by providing guarantees of stable platform inter‐
faces while supplying fixes to critical issues.
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Variation in cluster sizing
Because the various phases of the development process often have different storage
and processing requirements, it follows that each environment can be sized differ‐
ently.

In traditional enterprises, it is common for development phases such as implementa‐
tion (dev), testing (test), and quality assurance (QA) to require smaller clusters, since
those phases focus more on functional correctness than on performance and thus
don’t require large datasets. Phases such as user acceptance and preproduction are
often larger, since testing at scale is required to ensure that processes perform and
scale correctly when run over production-level data volumes.

However, when using modern data platforms for machine learning workloads, the
size balance can be inverted. Experimentation, exploratory data analysis, and model
training are often intensive processes, requiring larger platforms than production,
which only runs known, verified workloads, such as model scoring.

Multiple Clusters for Workload Isolation
Every workload performed by a cluster uses resources from the underlying hardware
—CPU cycles, memory space, memory bandwidth, storage space, storage bandwidth,
or network bandwidth—and each has capacity limits. Concurrent workloads often
need the same resources at the same time, so it necessarily follows that there is always
the possibility of resource contention.

Workloads vary in how they react to contention. Although some degrade gracefully,
even under high contention, others are more severely affected, often to the point that
it makes more sense to deploy those workloads in isolation to guarantee their
performance.

Resource contention can also occur between cluster services. Each service is designed
to support a particular use case or access path. For example, HBase is highly opti‐
mized for random reads and writes, while HDFS is far better at handling sequential
scans. During operation, each service makes very different demands of the underly‐
ing hardware resources, which can lead to contention.

The following are some common scenarios in which a dedicated cluster makes sense:

HBase
HBase is designed to support highly concurrent random read and random write
workloads. If predictably low-latency queries are a requirement, as determined
by a specific service level agreement (SLA), HBase needs predictable disk seek
latency for reads as well as high levels of predictable, sequential file I/O for write-
ahead logging (WAL) and compactions.
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If HBase workloads are co-deployed against heavy analytical workloads, such as
Spark or MapReduce, query throughput can drop drastically, since the disk usage
pattern significantly differs.

Kafka
Kafka is designed to support high-performance messaging by using memory-
mapped files to store messages. Effectively, this means that the Linux page cache
(rather than Kafka) is responsible for caching the most recently written messages.
This approach has several advantages:

• The Linux page cache is already very highly tested and optimized.
• The latest messages are mostly read from memory rather than from disk.
• The disk workload consists mostly of sequential writes.
• The cache remains in place even when restarting Kafka.

The Linux page cache is an opportunistic optimization, since it’s better for mem‐
ory to be used for caching files than to be empty. The corollary is that if memory
is in demand, such as when Kafka is codeployed against workloads that use large
amounts of physical memory, the page cache is reduced in size and pages rele‐
vant to Kafka are evicted. When that occurs, Kafka may need to read messages
from disk, causing slower read performance and unpredictable latency. For this
reason, Kafka is commonly deployed on a dedicated cluster that doesn’t run any
other workload.

Sizing multiple clusters for workload isolation
A clear advantage of deploying services such as Kafka and HBase separately is that
they can be scaled to match their service-specific workload demands. Furthermore,
that advantage extends throughout the lifetime of a service—changes in demand pro‐
file over time can be directly reflected in the size of the cluster.

Multiple Clusters for Legal Separation
As every system architect knows, not all architecturally significant decisions can be
made on a purely technical basis—legal obligations and company policies are often
preeminent.

Many countries have laws that control where data can be stored and processed, par‐
ticularly when that data relates to health, finance, or other sensitive personal infor‐
mation. Large multinational organizations routinely collect data, both intentionally
and incidentally, about their customers and employees around the world. When legal
frameworks specify that this data should be kept segregated, it is highly likely that the
result is multiple clusters.
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Multiple Clusters and Independent Storage and Compute
Computing workloads come in all shapes and sizes. Some workloads, such as bitcoin
mining, use huge amounts of CPU but almost no network or disk resources. At the
opposite end of the scale, data archiving makes heavy use of disk storage but very lit‐
tle CPU.

As multipurpose environments, modern data platforms need to support a wide range
of workloads, often simultaneously. We discuss how clusters can vary in terms of
their hardware profiles to support a variety of workloads in Chapter 3.

At the time of Hadoop’s inception, network bandwidth was a precious resource.
Moving the code rather than the data ensured that the first hop in the analysis chain
was almost always performed by reading local disks rather than by requesting huge
data volumes over the network.

Decoupled storage and compute has been a design goal of the IT industry for many
years. The architectural basis for this is compelling, since it allows system designers
to size each resource separately. Fast-forward a few years, though, and the large cloud
vendors demonstrated that, with enough network capacity, storage can again be
remote.

Object stores such as Microsoft Azure Data Lake Storage (ADLS) and Amazon Sim‐
ple Storage Service (Amazon S3) allow transient virtual machines (VMs) to store data
persistently at low cost. Crucially, these object stores can also be used by multiple
clusters simultaneously, thereby enabling transient workload isolation. For example,
a department can request that a transient cluster be created and run for a few hours,
storing the results in ADLS, while a different department performs similar work pat‐
terns, but with a cluster five times the size due to its particular computational
demand.

Decoupling storage and compute (while also allowing parallel access) enables
modern data platforms to provide novel patterns for workload isolation. However,
for the enterprise, sharing data between clusters is necessary but not sufficient. Enter‐
prises need consistent security, governance, and lineage applied across environments
in order for data management to scale. Vendors like Cloudera are introducing archi‐
tectures, such as the Shared Data Experience (SDX), in order to provide that consis‐
tent data context around shared data.

Multitenancy
Part of the reason that many organizations find the single large cluster so compelling
is that it has the potential to realize significant cost savings and reduced complexity. 
Any time a dataset is required on multiple clusters, the additional copies increase
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costs due to additional server and network hardware, installation, ongoing cluster
management, and data management and governance.

Multitenancy is the practice of sharing a cluster between multiple groups or work‐
loads. Although this can simply mean sharing the physical storage and processing
capabilities, a better value proposition is to enable the sharing of stored data. Much of
the benefit of a modern platform such as Hadoop is the emergent value that can arise
when combining data from disparate parts of an enterprise—in essence, the data can
become more valuable than the sum of its bytes. For this kind of benefit to occur,
data from multiple sources must necessarily be cohosted.

Multitenancy is a broad term though, and it can be applied to a cluster in different
ways. Consider the following examples:

• A cluster shared between multiple departments within an enterprise
• A cluster used for multiple development phases, such as implementation (dev)

and user acceptance testing
• An archive cluster used to back up data from multiple remote production

clusters

Each of these examples could be described as multitenancy, yet each is dissimilar.

Multitenancy can also be attractive to an enterprise because it fits well with the idea
of centralizing cluster management to a specialist team, rather than having a dispa‐
rate platform administration function within each department. There are certainly
advantages and disadvantages to both approaches, which are discussed in more detail
in Chapter 5.

Requirements for Multitenancy
In order for multiple workloads to coexist on a cluster, the following areas of compat‐
ibility must be considered:

Cluster life cycle
For this discussion, a cluster life cycle is defined as the major events in the life‐
time of a cluster, such as installation, starting and stopping of services (whether
temporary or permanent), software upgrades, significant configuration changes,
and, ultimately, decommissioning.

Any workload hosted on a cluster needs to be compatible with the life cycle
changes that cluster imposes. When multiple workloads require mutually incom‐
patible life cycle events to occur, those workloads are in conflict and should not
be cohosted.

As an example, consider platform upgrade testing. This activity requires software
upgrades, service (re)configuration, and restarts—life cycle changes that are
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incompatible with a production cluster. Clearly, production workloads are fun‐
damentally incompatible with upgrade testing, and so multiple clusters are a
strong requirement.

Resource management
For multitenancy on a cluster to be possible, workloads must be compatible in
the resources they intend to share—or at least degrade gracefully when under
contention. Perhaps less obviously, multitenancy also requires that workloads
agree about which resources should be actively managed and how. This is known
as the resource model.

Within a single server, resource management is performed by the Linux kernel
using container groups (cgroups). This enables hierarchical groups of processes
to be controlled through prioritization, determining CPU scheduling and access
to block I/O and network I/O. In simple terms, processes with higher priorities
are given more frequent access to server resources. Beyond processes, filesystems
(such as ext4 and XFS) also perform simple resource management in the form of
storage quotas.

Platform services such as YARN provide cluster-level resource management that
spans multiple servers, allowing distributed applications such as Spark to request
CPU resources (allocated in virtual cores) and memory resources (allocated in
bytes) from a pool of servers. Other platform services, such as Apache Impala
and Apache Kafka, allow query concurrency and message ingestion or consump‐
tion rate quotas to be specified—effectively, higher-level forms of resource
management.

Although cgroups in the Linux kernel do provide block I/O priori‐
tization, this only applies to processes that read or write directly to
a local filesystem. Writes to HDFS are actually performed as net‐
work operations between the client and the DataNode rather than
block I/O. The same is true of remote reads.
As network operations, writes and remote reads are not subject to
block I/O prioritization (but may be subject to network I/O priori‐
tization in the future). When short-circuit reads are enabled in
HDFS, local reads are performed through a shared memory seg‐
ment. As such, local reads are subject to I/O prioritization.

Sizing Clusters
After the number and purpose of clusters is determined, the logical next step is to
decide how large each of those clusters should be. We discuss several approaches to
sizing in this section, and we consider data storage, ingestion, and processing
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requirements. In practice and where possible, all three should be considered and
combined.

Keep in mind that none of the approaches listed here can be considered an exact sci‐
ence. Always consider including additional overhead capacity as a safety net.

Sizing by Storage
When building out a new cluster to host an existing dataset, the size of the dataset is
often known in advance. Sizing the cluster based on how much data it needs to store
follows a simple algorithm:

1. Determine how much data needs to be stored.
2. Determine how much storage space is needed in total.
3. Determine how much storage space is provided per server.
4. Divide the storage needed by the storage per server.

Sizing HDFS by storage
The cluster size required to store a given data volume in HDFS depends on how the
data will be stored. If using the default replication strategy, simply multiply the data‐
set size by a factor of four. This allows for 3× replication and 1× additional scratch
space for temporary data. If using erasure coding, multiply the data size by 2.5. This
allows for the 50% overhead of erasure coding and 1× additional scratch space for
temporary data.

If this approach seems surprisingly straightforward to you, you’ll be pleased to note
that there are several additional complexities to consider:

Data representation
Will the data remain in its original format, or will it be transformed into a more
efficient columnar representation, such as Apache Parquet? If transformed, will
the data also be compressed? What compression codec will be used, and what
compression ratio can we expect? Will data compaction be required to manage
the number of files?

Data growth
Is the size of the dataset expected to increase over time? If so, do we size the clus‐
ter based on the near-term demand and expect to add capacity, or do we size for
the longer term? Do we size based on a conservative growth estimate or include
additional contingency?

38 | Chapter 2: Clusters



Data retention
Do we need to keep data over the long term for regulatory purposes? Do we need
to keep data in its original supplied format in addition to the transformed/
filtered/cleansed version? Do we need to keep all transactions for all time, or will
aggregations suffice for older data?

Dataset size accuracy
Is the dataset being used for cluster sizing already stored in a file-based storage
format, or are we basing size estimates on what another IT system is using to
store the dataset? If the source system is another relational database management
system (RDBMS), the reported dataset size is dependent on the data representa‐
tion of that system.

Helpfully, HDFS has thousands of production-level installations comprising more
than 100 servers, with several well-known examples of clusters of up to 3,000 servers,
at the time of this writing. The scalability of HDFS is unlikely to be a limitation.

Sizing Kafka by storage
The storage available within Apache Kafka is bounded by the storage capacity of the
servers on which it operates. A typical retention policy is to keep messages for seven
days, with an optional hard limit on how large a particular topic can become.

If a producer sends an unusually high volume of messages, the effective retention
time may be reduced, since Kafka limits the storage space used. If seven-day retention
is required for business reasons, it follows that the Kafka cluster needs to be sized
large enough to maintain seven days’ worth of retention, even during peak ingest
periods.

Sizing Kudu by storage
Kudu stores data in a highly optimized columnar format on disk. Since this is neces‐
sarily a change in data representation, we highly recommend that you perform an
ingestion proof of concept (PoC) to fully understand how much space your dataset
will require when stored in Kudu.

At the time of this writing, the following deployment recommendations exist:

• The recommended maximum number of tablet servers is 100.
• The recommended maximum number of masters is three.
• The recommended maximum amount of stored data, post-replication and post-

compression, per tablet server is 8 TB.
• The recommended maximum number of tablets per tablet server is 2,000, post-

replication.

Sizing Clusters | 39



• The maximum number of tablets per table for each tablet server is 60, post-
replication, at table-creation time.

Sizing by Ingest Rate
Although the size of a dataset is often readily apparent, the rate at which that size
increases is sometimes less understood. Finding out how the rate varies, whether due
to time of day, seasonality, or growth patterns, is invaluable when designing high-
performance ingestion pipelines.

After the maximum required ingest rate for all datasets is understood, that property
can be considered when sizing a cluster. Sizing for ingest rate follows another simple
recipe:

1. Determine how fast data will arrive.
2. Determine how fast the data platform can ingest per server.
3. Divide the two to find out how many servers are needed.

Ingest rate requirements are often associated with streaming ingest patterns, but they
apply equally to bursty ingest patterns generated by traditional batch-style applica‐
tions, particularly if the batch process has an SLA to adhere to.

As an example, consider a calculation grid that computes a 1 TB financial risk analy‐
sis. The resulting dataset is small enough to fit on a single hard drive, yet writing it to
a single drive would take several hours. If the requirement is to write the result in less
than 5 minutes, at least 35 drives would be required, assuming each could be pushed
to 100 MB/s and the write could be performed in parallel.

In practice, the speed of a single write to HDFS could be as low as 40 MB/s due to the
replication pipeline. Writing 1 TB at that rate in less than 5 minutes requires a mini‐
mum of 88 parallel writes. As we discuss in Chapter 3, modern servers with 24 physi‐
cal drives can make even an 88-way parallel write trivial with only a handful of
servers.

Determining cluster size from a target ingest rate does have some additional com‐
plexities to consider, however:

Peak versus average ingest rate
Ingest rates for many datasets vary over time, but in some scenarios this can be a
dramatic shift. Cluster sizing must therefore be derived from the maximum
expected ingest rate rather than the average; otherwise, performance problems
and system instability could occur.
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Ingest bandwidth
Data ingestion necessarily means transferring data via the network, often using
existing systems and infrastructure from beyond the cluster boundary. Sufficient
data ingest bandwidth between a cluster and source systems is therefore essential.
More details on how to design performant networking can be found in Chap‐
ter 4.

Write durability
When writing data to a modern data platform, it is often possible to specify how
durable that write operation is. For example, in HDFS, a client can specify the
level of replication for each file as it is written, and Kafka producers can specify
how many brokers should have accepted the message before it is considered reli‐
ably written.

This ability allows clients to directly express how critical the data is, choosing the
most appropriate option for a given use case. Higher levels of write durability
almost always have a performance impact, since ensuring data is correctly repli‐
cated takes time and effort.

Sizing by Workload
Sizing a cluster by storage space or ingest rate is straightforward because those prop‐
erties are fundamentally knowable, even if they aren’t known. Sizing by workload is a
greater challenge because the performance depends on a huge number of variables,
including infrastructure capability and software configuration.

Crucially though, the performance depends on the following questions:

• What processing does the workload perform?
• What the data look like?

Both of these questions are unanswerable by infrastructure teams. The answers may
not even be known by the architects until the cluster is in place and operating. Data
and processing skew can negatively affect parallelization and are intrinsically linked
to data content and processing. This means that the most accurate estimate of how a
workload will perform can only be obtained by performing PoC testing.

Cluster Growth
Data has been described as “the new oil”—a largely untapped, hugely valuable
resource to be extracted, processed, and refined. The commercial imperative to col‐
lect ever more data and use it effectively is clear. Organizations that can become data-
driven will be more successful, more innovative, and better able to adapt to the world
around them, simply because their decisions are based on evidence.
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The Drivers of Cluster Growth
Unlike oil, data can be created at will, at close to zero cost. As an example, consider a
company selling a product or service: within a single development sprint, a usage
metrics feature can be added that publishes psuedonymized data back to the com‐
pany’s datacenters. By understanding historical usage (and correlating that to previ‐
ous outcomes), companies can more accurately predict customer satisfaction,
retention, and ultimately future revenue.

Data growth obviously drives cluster growth in terms of storage, but often also
requires additional compute capacity in order to maintain processing SLAs—a form
of workload growth. Fortunately, cluster workloads are often linearly scalable. That
is, if incoming data grows in size, increasing the cluster size to match can keep the
processing time constant, if needed.

After being extracted and stored, data (again unlike oil) can be reprocessed without
limit. As new questions arise, analytical processes can be created at will to search for
answers. Indeed, the process of exploratory data analysis (EDA) is iterative by design,
and, as is true of all good research, each answer often gives rise to further questions.

In addition, many organizations have a backlog of potential workloads that are sup‐
pressed by the inability of their existing systems to handle them. After a highly flexi‐
ble and scalable modern platform is introduced, that latent demand finds an outlet.
After cluster capacity becomes available, new workloads arrive to exploit it. In eco‐
nomic theory, this effect is known as induced demand.

Implementing Cluster Growth
Modern data platforms, such as Spark and Hadoop, may have horizontal scalability
as a core architectural principle, but adding nodes can still be challenging.

In many enterprises, the procurement and installation of cluster servers requires the
effective cooperation of multiple teams, which may include purchasing, datacenter
operations, networking, and system administration—before we even consider
platform software installation and configuration. Chapter 5 talks about these aspects,
and Chapter 17 talks about automated provisioning, a critical aspect of cluster
management.

Implementing cluster growth by adding single servers is entirely possible with cloud
environments, but on-premises clusters are more likely to grow by adding multiple
servers at once; it’s more cost-effective to amortize the procurement and installation
costs by adding a rack at a time.

From a technical perspective, adding servers to services, such as HDFS and Kafka,
can be done with minimal difficulty. For HDFS, rebalancing can be helpful to ensure
that the new servers share the existing read workload; otherwise they remain
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underutilized until they accumulate enough data. For Kafka, the partition reassign‐
ment tool can be used to perform data migration to new servers. If additional
throughput capacity is required on a particular topic, the number of partitions for
that topic can also be increased.

Data Replication
Whenever multiple clusters are deployed there is the possibility that data needs to be
replicated, but this is particularly true when deploying multiple clusters for geo‐
graphic resiliency. In that scenario, each cluster requires an identical copy of the data,
which is synchronized on a frequent (or even continuous) basis. Since disaster recov‐
ery is a frequent concern within many enterprises, replication is discussed in great
detail in Chapter 13.

DR is the most common reason for using data replication, but it’s far from the only
reason. At the start of this chapter, we covered some of the many reasons why multi‐
ple clusters might be the right architectural choice. Often, those scenarios call for
data replication.

Replication for Software Development
In many forms of software and platform testing, data is required to ensure software
correctness and performance. Although some testing can be performed using syn‐
thetic data, real data is often preferable, since the underlying complexities of real data
are time-consuming and difficult to model with any accuracy.

Testing often takes the form of comparing expectations to reality. For example, in
unit testing, developers explicitly code their expectations and then run their code to
see where the differences occur. User acceptance testing is similar, but often the com‐
parison is against a baseline (a known good previous result) rather than an explicitly
coded set of results.

A key strategy in any testing is to change one thing at a time, in order to accurately
understand the source of any variances. Another is for a dataset to remain unchanged
to enable repeatable testing. Without this, comparing performance and correctness to
a baseline is impossible.

For these reasons, data replication is often a strong requirement when performing
testing. When testing is performed on a separate cluster, the replication process takes
the form of a distributed copy (DistCp) operation or similar.

Replication and Workload Isolation
When workloads require a common dataset but also need to be isolated enough that
multiple clusters are required, replication is inevitable. Conversely, if datasets are
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already replicated between multiple clusters for resiliency, workload isolation can be
achieved by ensuring that both clusters are active.

For example, consider an organization that has a mix of production workloads and
ad hoc data exploration jobs. One approach would be to cohost these on a single clus‐
ter using multitenancy. However, if there is a DR cluster available, a potential alterna‐
tive would be to host the ad hoc exploration workload on the DR cluster. This
approach is interesting for several reasons:

• The workloads are fully isolated.
• The data exploration workload has access to more resources.
• The DR cluster is active, not passive.

From a commercial viewpoint, the capital and operational expenses of a cluster can
be nontrivial. By ensuring both clusters are in active use, the return on investment of
both can be maximized.

Recall that workload isolation can also be required when specific technologies are
deployed, due to their usage of underlying platform resources. In those scenarios,
data replication is also likely to occur.

Summary
This chapter introduced a range of architectural and pragmatic reasons for consider‐
ing both multitenant and multicluster deployments. These strategies, though some‐
times seen as in opposition, are orthogonal. Deploying multiple multitenanted
clusters is common practice in many organizations, particularly for software develop‐
ment life cycle (SDLC) management.

Deploying a number of clusters brings with it the requirement for data to exist in
multiple places, so data replication is a must. This is a broad topic, but we mention it
here in order to raise awareness of the requirement. Further details on the practical
aspects and challenges are available in Chapter 13.

Finally, we discussed the topics of cluster sizing and growth, which apply to all clus‐
ters, regardless of their intended usage.
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CHAPTER 3

Compute and Storage

Although it is perfectly possible to use a machine without understanding its inner
workings, for best results, a practitioner should understand at least a little of how it
functions. Only then can the user operate the machine with what Jackie Stewart
called “mechanical sympathy”. This principle is particularly true when the machine is
actually composed of many smaller machines acting in concert and each smaller
machine is composed of many subcomponents. This is exactly what a Hadoop cluster
is: a set of distributed software libraries designed to run on many servers, where each
server is made up of an array of components for computation, storage, and commu‐
nication. In this chapter, we take a brief look at how these smaller machines function.

We begin with important details of computer architecture and the Linux operating
system. We then talk about different server sizes, before finally covering how these
different server types can be combined into standard cluster configurations.

You probably won’t need to memorize all the details in this chapter, but understand‐
ing the fundamentals of how Hadoop interacts with the machines on which it runs is
invaluable in your mission to build and operate rock-solid use cases on Hadoop clus‐
ters. Refer to this chapter when you need to guide decisions on component selection
with infrastructure teams, procurement departments, or even your manager.

During the initial years of its enterprise adoption, the recommendation for Hadoop
IT infrastructure was simple and unambiguous: Hadoop should be run on dedicated
commodity servers, each with locally attached storage.

These requirements are seemingly at odds with the apparent state of the art in com‐
pute and storage and with the emergence of cloud environments for Hadoop. From
its beginnings as a large-scale backend batch framework for the big Web 2.0 content
providers, Hadoop is today evolving into a versatile framework required to operate in
heterogeneous IT environments. Although Hadoop’s paradigm of colocating com‐

45

http://bit.ly/2OTA2eQ


pute and storage is still mandatory to achieve the best performance and efficiency,
Hadoop distributors in the meantime invest intensively to support Hadoop in cloud
environments, either with local or remote storage, as we will see in Part III.

Even while the number of cloud-based Hadoop deployments is rapidly growing, on-
premises installations are still the dominant form of deploying Hadoop. Therefore,
the concepts in this chapter are developed with on-premises Hadoop infrastructure
in mind.

Computer Architecture for Hadoop
We first review fundamental concepts in computer architecture that are required to
understand Hadoop’s function and performance on the individual worker node.
These concepts include commodity server designs and form factors, CPU memory
architectures, and a full-stack analysis of the storage stack in a modern computer,
running on Linux. Having a working knowledge of these concepts will prove to be
quite useful when we talk about cluster-wide functionality in later sections. An
understanding of the content here will greatly help when comparing offerings in pub‐
lic and private cloud infrastructure in Part III.

Commodity Servers
It is widely understood that Hadoop, like most commercial computation workloads
today, runs on standard x86 servers, which over the last 10 years have become com‐
modity products. A commodity server consists of components that are manufactured
by a multitude of vendors according to industry standards. The commoditization in
the case of x86 servers has gone up to the level of the mainboard and the chassis itself
as a result of initiatives such as Open Compute and original design manufacturing
(ODM).

That being said, you should not think that “commodity” implies simplicity or medio‐
cre performance. Modern x86 servers are extremely powerful and complex machines
that need to keep up with the ever-increasing demand of computational needs in the
enterprise and consumer sectors. The vast majority of servers in a modern datacenter
use the 64-bit x86 CPU architecture, and they almost always have multiple cores
nowadays. The largest commercial x86 server processors feature 24 cores, but with
many cores come many challenges. Writing an application that fully takes advantage
of multicore parallelism is far from trivial.

The increase in processing cores in CPUs that started in the mid-2000s and continues
today is a technical necessity. Core scaling ensures the continuing growth of compu‐
tational capability of server processors in the face of the physical limits of scaling the
single core clock frequency of processors.
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As we will see, the majority of Hadoop clusters are implemented with two processors
per system (often referred to as a two-socket system), although it is also possible to
run Hadoop on servers that feature four or even eight processors per system.
Figure 3-1 shows a simplified block diagram of the relevant hardware components in
a commodity server. In this example, two CPUs, each of which has three cores, are
interconnected via an inter-processor link.

Figure 3-1. A modern computer

Central components that speed up computation on modern CPUs are caches, which
buffer the most frequently used portions of data in the main memory in very fast
storage. The CPU cores on each processor typically have three hierarchies or levels of
cache, which are called the L1, L2, and L3 caches. The latter of these is typically
shared by all cores in a processor. L1 is the fastest cache and the smallest. L3 caches
have the largest size but are also significantly slower than L1 or L2 caches. L3 caches
are still much faster than the main memory, referred to as random access memory
(RAM).

All changes to the data in caches must be propagated to all others coherently, mean‐
ing that any change by any processor core is reflected in the caches of all other pro‐
cessor cores for read accesses that occur after the change, and further changes
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become visible in the same order they were performed. All caches thereby present a
uniform view of the memory; they are coherent.

Cache coherency becomes more difficult when multiple processors are involved. As
shown in Figure 3-1, the cache coherence domains of both CPUs become one; i.e., a
core on CPU 1 will see the updates of a core on CPU 2 exactly the same way that a
core on CPU 1 will see the updates of another core on CPU 1.

Each processor implements a memory controller to attach DDR3/4 DRAM (dynamic
RAM) memory. The memory controller takes part in cache coherence, since it also
snoops on the bus. If none of the caches is the owner of the address in question, the
memory controller is the owner.

I/O operations are implemented via a PCI Express root complex, which attaches
downstream I/O controllers for SATA, USB, and Ethernet connections, among oth‐
ers. All CPU-internal components—the cores, L3 cache, memory controller, PCI
Express root complex, and interconnect unit—are themselves interconnected via an
on-die interconnect bus. Commodity servers that feature more than two CPUs will
typically be organized in a ring topology via the CPU interconnect, but otherwise
adhere to the same general structure as illustrated in Figure 3-1. Although it is always
possible to populate a two-socket server with only a single CPU, commodity servers
with only a single processor socket are rare today.

Server CPUs and RAM
It goes without saying that the CPU is by far the most complex component in a com‐
puter. However, if we look at a CPU in isolation in the context of Hadoop, there are
only a few things for architects to consider beyond the CPU’s basic specifications.
This is because so much commoditization has occurred around the x86-based pro‐
cessor architectures in recent years. Therefore, we can distill the essence of the cur‐
rent state of server CPU technology and its market in rather simple terms.

The role of the x86 architecture
The x86 architecture dominates the market for server CPUs with a market share of
more than 90%, according to most sources. Although there have been efforts by vari‐
ous commercial and noncommercial parties to port Hadoop to ARM and the IBM
Power Architecture, reliable Hadoop distributor support focuses on x86-based pro‐
cessors and the Linux operating system. The main driver for this focus is the testing
effort on behalf of distributors that is required to support additional architectures,
when there is a small market demand to run on other architectures.

Although other large open source software projects, such as the Linux operating sys‐
tem, can be versatile assets in the server, mobile, embedded, and desktop markets,
Hadoop is really just focused on scalable infrastructure in the datacenter. Other
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drivers for the focus on x86 include technical issues around certain native Java libra‐
ries and third-party dependencies, such as the Java NIO libraries and Google’s proto‐
col buffers, but also JDK/JRE distribution and availability on other architectures.
More novel components, like Apache Impala and Apache Kudu, are implemented in
C++, and so far there are no efforts to port these to other architectures.

Many Hadoop components today make use of x86-specific instruction set extensions,
such as the AES New Instructions (AES-NI), which are supported by most AMD and
Intel-based server processors. Intel has also led several software initiatives around
Hadoop security, and for a brief period marketed its own Hadoop distribution. Intel
continues to invest in this area by aligning its processor features closely to open
source library implementations, such as the Apache Commons Crypto library, which
is optimized to support AES-NI. Another example of x86-specific optimizations for
Hadoop is the Intel Intelligent Storage Acceleration Library (ISA-L); it uses
Advanced Vector Extensions, which play a significant role in speeding up HDFS era‐
sure coding, as we discuss in “Erasure Coding Versus Replication” on page 71.

Within the x86 realm, according to most sources, Intel holds a consistent market
share of more than 70%, and the remainder is deployments on AMD processors.

Threads and cores in Hadoop
Whether you are a Hadoop engineer and you manage the resources of your cluster or
you are a Hadoop developer and need to fit a computational problem into the clus‐
ter’s resource footprint, you’ll be continuously involved with cores.

Cores in Hadoop, whether in the context of Spark, YARN, or MapReduce, always
map to a processor’s thread, which is distinct from the processor’s core. These terms
are often confused, especially when someone is drawing comparisons among multi‐
ple clusters. In this section, we provide the information you need when talking about
threads and cores in hardware.

Everyone who works in IT has heard the term hyper-threading, which is the Intel
brand name for a technology known as simultaneous multithreading (SMT).

SMT means that multiple computation threads simultaneously execute the same
CPU core, and these threads appear as completely separate processes to the operating
system. The rationale behind SMT is to better utilize the existing hardware on a sin‐
gle core by adding just a small amount of additional core logic. SMT works by shar‐
ing certain components, such as the L2 cache and instruction units and their
pipelines, while each thread maintains its own state with its own set of instruction
registers, stack pointer, and program counter.

By no means does an additional thread give you twice the performance, though ven‐
dors claim an improvement of up to 30% versus running an equivalent core without
SMT. Hyper-threading is useful when threads wait for I/O frequently and the shared
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resources can be used by the partner thread, for example when accessing disks or
even just the main memory. For very compute-heavy workloads, it is often recom‐
mended to switch off hyper-threading since it may pose an overhead. Hadoop is typi‐
cally all about data and I/O, which includes in-memory computation by services such
as Spark. Thus, hyper-threading is in general deemed very beneficial for big data
workloads.

Conversely to SMT, an additional core really means a complete replication of on-die
logic and typically results in double the performance (always assuming that your
workload can be linearly scaled). However, all cores typically share the L3 cache.
When a processor features multiple cores and/or when multiple processors are
present in the same system the term symmetric multiprocessing (SMP) is used.

To summarize, a core in YARN or Spark is a processor thread as in hyper-threading,
as in SMT.

Nonuniform Memory Access
A crucial element of the discussion around SMP and SMT is an understanding of the
concept of nonuniform memory access (NUMA) that they incur.

When multiple processors share the memory in a system, the mechanism by which it
is made accessible becomes an important factor in the overall system design. In some
early multiprocessor designs, all memory was exposed to the processors equally on a
common bus or via a crossbar switch, but this approach is not practical anymore.
Today, CPUs need to accommodate DRAM with bus speeds beyond 2 GHz, and
since CPUs are considered modular pluggable entities, each processor implements an
interface to the DRAM. The result is that any program that is running on a given
CPU that also needs to access memory from another CPU must first traverse the
inter-processor link, as shown in Figure 3-1.

Although this link can serve billions of transfers per second and individual requests
complete very quickly, running from another processor’s memory introduces a sig‐
nificant overhead when compared to running on the processor’s local memory. This
distinction between local and distant memory is what we mean when we talk about
NUMA. A common example could be a process of a Hadoop service that is allowed
to be very large and may actually be allocated in a memory range that physically must
span both processors. In this scenario, multiple threads could be running on both
physical CPUs, each trying to access a location of memory that is distant for some of
these threads and local to others.

To improve the speed of repeated access, some of this remote memory will naturally
reside in the local processor’s L3, L2, or L1 caches, but this comes at the cost of
additional overhead in the coherency protocol, which now also spans the inter-
processor connect.
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Linux provides tools and interfaces through which users and programs can influence
NUMA behavior directly. Crucially, this allows for requesting an optimal mapping
for applications on a given processor, which in NUMA terminology is called a
NUMA node (not to be confused with a core or a thread within a processor).

Showing NUMA Topology
NUMA information for a process in Linux can be obtained and influenced via the
numactl command. Assume that we have a system with two processors, as indicated
in Figure 3-1. Each of the processors is responsible for 128 GB of memory. Let’s start
with displaying the available NUMA nodes (i.e., processors) on the system:

# numactl --hardware
available: 2 nodes (0-1)
node 0 cpus: 0 1 2 3 4 5 6 7 8 9 10 11 24 25 26 27 28 29 30 31 [...]
node 0 size: 130946 MB
node 0 free: 111703 MB
node 1 cpus: 12 13 14 15 16 17 18 19 20 21 22 23 36 37 38 39 40 41 [...]
node 1 size: 131072 MB
node 1 free: 119840 MB
node distances:
node   0   1
  0:  10  21
  1:  21  10

In the first row of the output, we see the number of available NUMA nodes. Next, the
amount of attached and free memory is shown per node, after which the output ulti‐
mately lists a table of NUMA distances. Linux assigns a score of 10 for access to the
local processor and 21 for an adjacent processor. Higher costs may be associated with
topologies where there is no direct connection between the originating processor and
the target processor, in which case access would occur by traversing through an adja‐
cent processor in order to reach the processor that manages the target memory range.
In this example, we see that most memory on this machine is not allocated (free) and
that the existing allocations are fairly evenly distributed.

There are certain problems related to NUMA that you will encounter with system
performance, especially when you dedicate large amounts of memory to single
Hadoop services, such as Hive, Impala, or HBase.

As a programmer for these systems, you should be aware of NUMA. If you know that
your query will need more memory than is available on a single NUMA node, you
should make a conscious decision about the NUMA policy with which it runs.
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NUMA Example
You can access detailed NUMA information for a process via the proc filesystem, as
shown in the following simplistic example. Here we see how a YARN NodeManager
maps the gcc runtime library:

cat /proc/<process-id>/numa_maps|grep libgcc
7f527fa8e000 prefer:1 file=/[...]libgcc[...]so.1 mapped=3 N0=3
7f527faa3000 prefer:1 file=/[...]libgcc[...]so.1
7f527fca2000 prefer:1 file=/[...]libgcc[...]so.1 anon=1 dirty=1 active=0 N0=1
7f527fca3000 prefer:1 file=/[...]libgcc[...]so.1 anon=1 dirty=1 active=0 N0=1

The output fields are:1

<address>
The starting address in the virtual memory address space of the region mapped.

Mapping memory is a common term used in operating sys‐
tems related to virtual memory. Software and the operating
system look at physical memory and even I/O devices for the
PCI Express bus via a large virtual memory address space. This
address space is so large that the operating system can conven‐
iently give all running applications their own subset address
space and manage permissions to actual memory and I/O
devices by mapping those virtual addresses to physical
addresses. As you’ll see later in this chapter, such mapping can
even be established directly for a file via the mmap() system call.
Access to unmapped addresses does not succeed and raises the
infamous “segmentation fault” under Linux.

prefer:1

The NUMA placement policy in effect for the memory range. It is always best
practice to prefer a specific NUMA node, such that reads to distant memory are
minimized. For processes that consume lots of memory, there is a point where
the preference cannot be fulfilled anymore. This can easily happen for certain
processes on Hadoop worker nodes, such as Impala daemons.

file=<file>
The file that backs mapping. Often multiple disjoint mappings are created for a
file, and frequently only part of the file is mapped.
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N<node>=<number of mapped pages>
The number of pages mapped by a certain node. This is what you should look
out for. It may pose a problem with performance when you see many node
entries (for instance, N0=50000 N1=50000).

anon=

The number of pages that are anonymously mapped. These correspond to stack
and runtime program data which is not backed by a file.

dirty=

The number of dirty pages—that is, pages that have not been flushed to storage.

active=

Shown only if there are also inactive pages in the mapping. This tells you whether
pages from this range may be about to be evicted due to infrequent use.

In the previous example, node 1 is preferred, while all pages are actually mapped to
node 0.

Linux allows you to control the NUMA characteristics when a process is launched via
the numactl command, which we just looked at. Most importantly, numactl provides
options to control the NUMA node on which a process is launched:

$ numactl --preferred=0 <process>

This launches <process> and allocates its memory on node 0. If memory allocation is
not possible there, it launches the process on another node. When you launch a pro‐
cess in this way, all of its children inherit the same NUMA policy. In the preceding
sidebar, which shows actual NUMA mappings, all entries have inherited their prefer‐
ence from the original command, which started the NodeManager.

Most Hadoop distributions today leverage some amount of optimization for NUMA
configuration for the processes that are launched by their management tools, such as
Cloudera Manager or Apache Ambari. However, those optimizations are currently
limited, for the most part, to Java garbage collection.

Why is NUMA important for big data?
You should take away the following points on NUMA:

• People may be unaware of NUMA, but it significantly affects system
performance.

Computer Architecture for Hadoop | 53



2 Ahsan Javed Awan et al., “Architectural Impact on Performance of In-memory Data Analytics: Apache Spark
Case Study”, April 2016.

3 See, e.g., IMPALA-4835 and IMPALA-3200, Apache Software Foundation.

• When applications access memory from another NUMA node, this can drasti‐
cally impact performance. Hadoop job completion times can be affected by up to
15%, as recent research2 shows.

• Since Hadoop very frequently launches JVMs (e.g., as part of executor launches
and more) and since non-JVM processes occupy large portions of memory (e.g.,
the Impala daemon), nonuniform memory access is quite likely without proper
optimizations.

• NUMA optimizations for YARN are gradually being added to the Hadoop soft‐
ware stack, and at the time of this writing, modern JVMs are getting them. For
Impala, there are now some optimizations3 that avoid migrations of memory
buffers, for example during memory recycling to a distant NUMA node.

• If job completion times show significant and otherwise inexplicable variations,
you should certainly investigate NUMA as a possible root cause. The commands
in our example give you an initial starting point to conduct these investigations.

In addition to NUMA, the access to I/O hardware also occurs in a nonuniform fash‐
ion, as illustrated in Figure 3-1. Each processor implements its I/O fabric via PCI
Express, which is a high-speed, point-to-point communications protocol and the de
facto standard for I/O interconnects in modern servers. This implies that the I/O
chip, which connects further downstream bus systems like SATA, SAS, and Ethernet,
can only connect to a single upstream PCI Express root complex. For obvious rea‐
sons, only a single I/O chipset is actually connected to any I/O device, such that all
but one of the processors are required to communicate via the inter-processor link
before they can reach I/O devices. Even though I/O completion time may increase by
up to 130% as a result of the additional hop, this overhead must be accepted since all
processors need to communicate with the outside world via a single I/O hub.

CPU Specifications
Software frameworks in the Hadoop ecosystem are specifically designed to take
advantage of many servers and many cores, and they often spend time on I/O waits.
Thus, with Hadoop, you do not rely on high single-thread performance, and when
you choose a CPU for Hadoop, your main objective should be to maximize cores.

The greatest number of physical cores in x86 processors today is 24, though a core
count this high is mostly intended for large-scale 4U SMP systems (see “Server Form
Factors” on page 91). In today’s Hadoop deployments, a core count between 12 and 18
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per CPU is most common. Apart from core count and core frequency, you may con‐
sider the L3 cache size, which typically increases with the core count and may go as
high as 60 MB. More cores usually make it necessary to operate with a slightly
reduced clock speed. However, all modern x86 processors are able to dynamically
overlock by as much as 150% if other cores are idle. The practical limitations to buy‐
ing the beefiest CPUs are typically rack power consumption and cost. Server vendors
typically have a set of preferred models which they offer at lower rates, since they in
turn can procure them at lower rates from the chip manufacturers.

Finally, it is important to be mindful that the processor lines are distinguished by
how many inter-processor links are supported. Most server processors support two-
socket configurations, and four-socket support adds significant cost. A few of the
available Intel chips even support eight-socket configurations.

RAM
As described in the previous sections, the main memory interconnect is implemented
by the CPU itself. Your only worry about main memory should be that you have
enough per node, since there is now a clear focus in all Hadoop-based software
frameworks (which include Apache Spark and Apache Impala) on leveraging mem‐
ory as well as possible. Earlier frameworks, such as MapReduce, were really tailored
for batch workloads, and they frequently used the disks to persist data in between
individual processing stages. But for the most part, everything to which the ecosys‐
tem has since evolved, such as Apache HBase, Apache Impala, Apache Spark, and
Hive on Spark, easily leverages dozens of gigabytes of memory, making it possible to
run large-scale SQL or Spark join operations without having to spill to disk.

Recent worker node configurations typically have a minimum of 128 GB of RAM,
but more and more deployments go beyond this, up to 256 GB or more. DDR4 RAM
is specified to operate at between 1.6 and 2.4 gigatransfers per second, but as we
described, the focus is on avoiding using the disk and fitting into RAM rather than on
the ability to access RAM quickly.

Commoditized Storage Meets the Enterprise
In this book, we often stress that Hadoop means a paradigm change. That change
manifests itself most clearly in the storage realm. Although CPU and memory are
indeed the most commoditized components of modern servers, a frequent area of
optimization in Hadoop deployments is the storage subsystem. So, before we dive
into the nitty gritty of storage in big data clusters, let us look at the drivers and some
typical friction points that emerge during strategic decision making around big data:
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From terabytes to petabytes
We have worked with web-native companies as well as with players from the
industrial and financial sectors that already manage petabytes of data with
Hadoop storage systems. If your organization is not there yet, it is highly likely
that it will be in less than a few years. Enterprises increasingly comprehend data
as an asset, transitioning from necessity to opportunity, while legally required
retention periods of data are increasing in most industries.

The global data lake, hub, and store
Everyone aspires to have one place where all data is stored, which represents a
single version of truth. Data silos are costly and unmanageable, but it is likely
that every enterprise has had at least one unsuccessful project to consolidate the
silos. In our view, the technology for enterprise data lakes was not ready for fully
fledged, large-scale enterprise adoption until recently. But now it is, and it
requires organizations to think differently about storage. We are at a defining
point, even more so than with the adoption of data warehouses or CRM systems
about 15 years ago. Leveraging data at scale can impact the business models of
companies as a whole.

Terabytes need bandwidth
Running through dozens, hundreds, or thousands of terabytes requires invest‐
ment. There is no big data for small money. You can and should use commodity
hardware to process big data, and it reduces cost. Nevertheless, advanced data
analytics at unprecedented scale require organizations to invest.

It is clear to most organizations that the sheer volume, novel access patterns, and
unprecedented throughput requirements require new answers, beyond the prevalent
model of storage area network– and network attached storage–centric datacenter
storage design. This is not to say that SAN and NAS storage technologies are not rele‐
vant for Hadoop. As we will see in Chapter 14, in addition to all its existing merits in
enterprise IT, a SAN is also a very convenient way to implement small virtual
Hadoop clusters. SAN-based Hadoop mainly has to do with the public cloud, and we
rarely see it support clusters of greater than 30 nodes, which would already be cost-
prohibitive as an on-premises solution to most enterprise IT organizations.

The storage systems included in Hadoop distributions help organizations to solve
many of these challenges already, but technical and organizational friction often
remain. Some of this friction is an inevitable part of the aforementioned paradigm
change, and some of it simply needs to be clarified.

Let us step through the following possible challenges to make informed choices about
them.
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Modularity of Compute and Storage
This concerns the fact that in its default form, Hadoop uses servers with local storage.
Point taken. However, Hadoop distributors have reached out to embrace modulariz‐
ing compute and storage, which they didn’t do early on. Yet the laws of physics still
apply, and you can’t have it all. You need to colocate—or at least tightly couple com‐
pute and storage—or spend millions on your storage network infrastructure and
operations, which typically only makes sense in the hyperscale context of public
clouds.

Everything Is Java
Well, first of all, it’s not. Storage systems in the big data open source ecosystem today
include Apache Kafka as well as Apache Kudu, which were introduced in Chapter 1.
They are implemented in alternative languages, such as C/C++ or even Scala. HDFS
is written in Java, but is that really a problem? In some organizations, there seems to
be reluctance to run on an enterprise storage system that is implemented in Java. But
consider that some of the world’s largest operational datasets are run on HDFS:

• Facebook is known to run many dozens-of-petabyte volumes in production on
HDFS.

• Years ago, Twitter publicly referred to more than 300 PB of HDFS-based storage.
• Yahoo! has presented about its massive use of HDFS several times.

Just like others, these three companies cannot afford to lose data, particularly since
data is the basis of their business model. Many commercial users of HDFS are run‐
ning very successfully in the petascale range, mainly via the help of Hadoop distribu‐
tors. Today, HDFS is a commercial enterprise storage system that also happens to be
an open source project.

Replication or Erasure Coding?
Time and time again, we have witnessed strategic discussions that fundamentally
questioned the usage of Hadoop for its storage efficiency. Many IT departments are
plainly disappointed by the prospect of replicating data when SAN appliances have
featured RAID and parity schemes for years.

Indeed, many modern storage appliances today use erasure coding or advanced
RAID technology, but with a few exceptions, those are single- or dual-rack enclosures
and not distributed systems. Modern big data platforms, however, are distributed and
run on commodity servers, which makes the implementation of erasure coding much
more challenging than in an appliance context.
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At around the time of this book’s release, though, Hadoop 3.0 will become generally
available in Hadoop distributions, and it introduces erasure coding as one of its most
important features.

So that solves everything then, right? Not quite.

Depending on the context, either erasure coding or replication may be appropriate
for your use case. We cover both in detail in “Erasure Coding Versus Replication” on
page 71.

Alternatives
The overwhelming number of successful data lake projects that we currently see in an
enterprise context rely on HDFS, but there are alternatives for scale-out storage on
commodity hardware that are slowly establishing themselves in the enterprise con‐
text. We briefly discuss those approaches in Chapters 14 and 16.

Hadoop and the Linux Storage Stack
In this section, we review the fundamental concepts of the Linux storage subsystem
on a single Hadoop worker node.

Figure 3-2 provides an overview of the layers that make up the storage operations of a
Hadoop worker node. Storage in modern computing includes two key concepts: a
persistence layer and caching. Persistence is achieved via physical media such as hard
disk drives or solid state disks. Caching is achieved on multiple levels in a modern
server. The discussion in the following sections focuses on how caching goes hand in
hand with the actual persistence layer, which means that you, as an engineer or a pro‐
grammer, need to assert influence over both.

The design and function of HDFS itself are described in much more detail in existing
literature, such as Hadoop: The Definitive Guide, by Tom White. Our discussion of
the Hadoop storage stack focuses on how HDFS and related storage frameworks
interact with the facilities of the Linux storage subsystem and the underlying
hardware.

User Space
We begin our discussion at the top level, which in our case is the Linux user space.
This is where all the Hadoop storage services, such as HDFS or Kafka, run. Figure 3-2
illustrates various Hadoop storage systems that may be used alternatively or concur‐
rently.
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Figure 3-2. Simplified overview of the Linux storage stack

Whether to run multiple storage services on a single node, like
Kafka and HDFS, is a typical and often fiercely debated question in
Hadoop projects. For example, Hadoop engineers often prefer to
run Kafka and HDFS on separate nodes, to ensure that enough
memory and dedicated throughput are available to each service.
Project managers may be unable to spare budget for this and see a
synergy in colocating both services. Hadoop distributors are typi‐
cally supportive of each case but prefer separated services on dedi‐
cated nodes. We strongly recommend against sharing disks
between services, since the colocation would be detrimental to the
throughput gains of sequential access (which each service benefits
from individually).
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Hadoop distributions support HDFS as the main storage system, and some also
include support for Kafka, which provides an alternative for use cases focusing on
data in flight. Kudu provides an alternative persistence layer for optimizing random
access. We briefly introduced both in Chapter 1.

To achieve high aggregate throughput and to support large storage capacity per node,
it is common to equip a worker node with 12 to 24 physical disks, where either a sin‐
gle or a pair of mirrored disks are typically reserved for use by the operating system.
Although the raw device cannot be accessed from user programs directly, it becomes
accessible by mounting it via a filesystem implementation to a user-chosen location in
the directory tree, which is referred to as the mount point.

Linux and the underlying storage controller can also apply inter‐
mediate mechanisms, which combine multiple disks into a single
logical disk. Examples for this are Linux’s Logical Volume Man‐
ager/device mapper or RAID. We strongly discourage use of those
technologies for worker node disks, and this is mostly unsupported
by distributors. For a detailed discussion of this subject, see
“RAID?” on page 82.

When Hadoop storage systems interact with the mount points of disks, they rely on a
Linux filesystem implementation such as ext4 or XFS, to handle each disk’s block-
level interface, as indicated in Figure 3-2. Filesystems are accessed via a standard sys‐
tem call interface and certain additional user space libraries. Linux models its system
call interface according to Portable Operating System Interface (POSIX) standards.
All system call interaction in Linux is abstracted via a common generic layer, called 
the virtual filesystem (VFS), before the filesystem itself is invoked. As a Hadoop
admin, you will not interfere with the VFS, but it is important to understand that it
provides abstractions before actual filesystem implementations are invoked in the
Linux kernel. The VFS is also the layer that gives Linux the ability to mount multiple
filesystems into the same root-level directory tree, and it provides uniform and auto‐
mated access for filesystem I/O to various Linux caches (most importantly the page
cache, which we cover in “The Linux Page Cache” on page 62).

When a user space daemon on the Hadoop worker node, for example an HDFS Data‐
Node, has successfully retrieved blocks from the Linux storage subsystem to fulfill a
client’s read request, the default is to transfer them to the client via TCP/IP. Corre‐
spondingly, for the write case, the default is that the daemons receive blocks from cli‐
ents via TCP/IP. This network transfer can be avoided to speed up the overall
transfer, as we discuss in “Short-Circuit and Zero-Copy Reads” on page 65.
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Important System Calls
As just mentioned, system calls are the fundamental means for user space applica‐
tions to interact with storage. Let us review the most relevant system calls used by
Hadoop storage systems in that standard and put them in perspective of common
usage patterns by client Hadoop services. In the following descriptions, you may
come across some terms you have not heard before. You will find explanations in the
following sections:

read(), write(), open(), seek()
These are regular POSIX system calls for reading a range of blocks from a file.
The HDFS DataNodes use them to service block read or append requests from
clients. The classes BlockSender and BlockReceiver in HDFS DataNode imple‐
mentations use the FileInputStream and FileOutputStream classes, which in
turn use these system calls via the Java RandomAccessFile class.

fsync()

This important POSIX system call synchronizes all pending data for the file out
to the disk and blocks until the synchronization completes. This flushes relevant
portions of the Linux page cache and, depending on the underlying filesystem,
on-disk caches. When fsync() completes, you can be sure that everything is
stored persistently on disk. A common example where this behavior is crucial is a
database checkpoint. Depending on how much of the file is cached, this can take
a long time, so only use fsync() if it is really required. In HDFS, it is exposed to
clients via the hsync() API call. If you want to dig deeper, you can study the
FileChannelImpl class, which calls fsync() via FileDispatcherImpl.force().
The force() method invokes the native implementation of the Java file I/O sub‐
system, the NIO library (libnio.so on Linux). fsync()s are, for example, a cru‐
cial operation for the function of the HDFS JournalNodes, as we will see further
on.

fflush()

This system call is very similar to fsync() except that it does not block. This
means that the operating system will begin to force data to disk, just like with
fsync(), but fflush() returns without waiting for hardware to confirm that the
persistence operations concluded. The advantage is that your program can con‐
tinue immediately. HDFS offers similar, but not equal, semantics via the
hflush() API call. If invoked, this call blocks until the full replica pipeline to all
DataNodes has completed but does not wait until that data is persistently stored
on disk on any of the DataNodes. For example, if a file has three replicas on
DataNode 0 to DataNode 2 (DN0–2), the successful completion of hflush()
means that DN2 has sent back acknowledgments for all packets in the file to
DN1, which in turn has sent back acknowledgments for those packets to DN0,
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which has sent back acknowledgments to the client. hflush() also invokes the
flush() method on the Java OutPutStream on each replica, but this merely
ensures that the JVM’s internal buffers are flushed to the operating system’s
underlying file descriptor and does not imply a POSIX fflush(). After
hflush(), you are safe from single disk or DataNode failures, but if multiple
DataNodes fail at the same time, you could lose data. If your application requires
a guarantee for data durability at a critical point, use hsync().

mmap()

This POSIX system call maps a portion of the Linux page cache into the user
space memory of the calling process. This allows users to access the pages which
are backing the file on disk directly, without the need to copy the user space
application buffers into kernel space, as with write(). It is used by HDFS to
implement caching and zero-copy reads, which we explain shortly.

mlock()

This locks a mapped memory region and prevents it from being swapped out to
disk. Paging (see the next section) may occur to make room for more frequently
used file content. mlock() prevents this from happening. HDFS uses this system
call to implement caches. MappableBlock uses calls into the Hadoop native I/O
libraries, which implement the mlock() Java method as a wrapper around the
mlock_native() method in NativeIO.java which, in turn, invokes the Linux
mmap() method in NativeIO.c.

Figure 3-3 (in the next section) illustrates various ways by which Hadoop services can
interface with the storage subsystem.

The actual pattern of system calls for reading a file is abstracted by
the JVM’s InputStream implementation, which runs the DataNode
daemon. It will actually include more system calls, such as open(),
seek(), and so on, to traverse the requested file. In Linux distribu‐
tions of JVMs, this function is implemented in the libnio.sh
library.

The Linux Page Cache
Linux uses any physical memory not used by user space processes or the Linux kernel
as a RAM-based cache for filesystems, called the page cache. All memory in Linux is
managed in multiples of 4 KB, called memory pages. The page size typically also lines
up with the hard disk block size, which defines the minimum unit of transfer between
disks and the host system. Linux filesystem implementations use blocks as a common
layer of abstraction, and all of them use the page cache as a buffer for frequently
accessed blocks.
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The size of the page cache is continuously adapted by Linux during runtime. When
applications request more file content than can be contained in the page cache at its
current size, Linux identifies the least recently used pages and persists them to back‐
ing storage media in favor of newer, more frequently used file content. Its current
size is shown as Cached in /proc/meminfo.

Since program code and libraries also have a filesystem-backed source, they are
cached in the page cache too. As such, every process, including all of the Hadoop dae‐
mons, automatically benefits from the page cache. It is arguably the most important
means for Linux to safeguard adequate performance of the storage subsystem for
applications. The process of automatically reading newer pages into the page cache
and of evicting infrequently used pages is generally referred to as paging.

In addition to the page cache, all Linux distributions use a feature called swapping to
buffer infrequently used anonymous memory assigned to applications on a dedicated
partition on a physical disk, which is called swap space.

The term “swapping” originates from a much older mechanism to
implement virtual memory, before paging existed.

The memory regions that are subject to swapping are called anonymous, since they
represent application data and program stack space, which is not backed by file con‐
tent. In “NUMA Example” on page 52, we saw that some pages were flagged as anon.
You can also see the swap space as anonymous user space memory in Figure 3-3.

The impact of swapping can be quite disruptive for query systems like Impala or
HBase, which is why swapping should be avoided in all circumstances. Linux can be
explicitly instructed to not swap or to limit swapping via a sysctl command. How‐
ever, in newer releases and/or distributions of Linux, completely disabling swapping
may lead to out-of-memory exceptions, which may force Linux to kill processes of
Hadoop services. This often necessitates permitting a minimum amount of swapping,
e.g., by setting vm.swappiness to 1.

In certain situations it is necessary to instruct the operating system to persist data to
disk immediately, which can be achieved on the HDFS level via the hsync() API call, 
as discussed in the previous section.

In yet other situations, you may want to avoid the page cache altogether. When
assessing the performance of the storage stack with certain microbenchmarks, you
may want to target the raw disks without using a Hadoop storage system and without
using operating system caches. As illustrated in Figure 3-3, you can instruct Linux to
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minimize caching by supplying the O_DIRECT flag during the system call when open‐
ing a file. See Chapter 8 for an overview of such microbenchmarks.

Although fsync() makes sure that pages are written to disk, and although O_DIRECT
will not use the cache for writing data, this does not ensure that blocks of the given
file are not resident in the page cache from previous operations. If you want to be
certain that file data is not contained in the cache, you can instruct Linux to persist
the complete page cache to disk:

$ echo 3 > /proc/sys/vm/drop_caches

The page cache is a facility from which all of the Hadoop daemons greatly benefit.
When planning Hadoop deployments, it is important to factor in a certain percent‐
age of the overall RAM capacity to always be available for the page cache. If not
enough memory is available for the page cache, the likelihood of frequent paging
increases, and this will negatively impact overall system performance. On the other
hand, if not enough memory is reserved for mission-critical queries, such as large in-
memory join operations, they may have trouble performing adequately. The exact
ratio of page cache versus application memory will likely depend on the specifics of
your use case. As a general recommendation, you should reserve 20–30% of the over‐
all system memory on a worker node for the operating system.

Figure 3-3 illustrates various examples of how Hadoop clients access storage through
the layers of Linux on an HDFS DataNode. For simplicity, we focus mainly on the
read path. The HDFS DataNode identifies the files on its local filesystems that make
up the requested HDFS blocks and queries the operating system via the read() sys‐
tem call. The size of these files aligns with the HDFS block size, which is typically 128
MB. As shown in the image, the requested data is copied from the Linux page cache.
If the data is not present in the page cache, the Linux kernel copies the requested
pages from the disk storage subsystem. The read() system call concludes by copying
the data from the page cache to a user space buffer in the DataNode. Linux performs
this copy via a special-purpose internal call, copy_to_user().

As we have mentioned before, the DataNode—or equally the daemons of other stor‐
age systems, such as Kudu—then delivers the blocks to the requesting clients. There
are two basic cases that we distinguish here, and they greatly differ in overall access 
performance:

• Reads where the client is local to the DataNode process (i.e., executes on the
same host). In this case, we can apply the optimizations detailed in the next
section.

• Reads where the client is remote. The copied data is then forwarded to the HDFS
client (not as a whole) via a TCP connection as a continuous stream of data.
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Figure 3-3. How Hadoop uses the Linux storage stack via HDFS

Short-Circuit and Zero-Copy Reads
More often than not, HDFS clients reside side by side with the DataNode on the same
worker node; for example, a YARN NodeManager and an Impala daemon are almost
always local clients of a DataNode. In that case, it is unnecessary overhead to transfer
data from the DataNode buffer to the client via TCP, which would incur another
copy of the data and would be slow due to the nature of the socket connection. As an
optimization, it is possible to configure clients to take advantage of a feature called
short-circuit reading (SCR) in HDFS, which allows clients to access the file data
directly. In Figure 3-3 you can see that Impala takes advantage of this feature, but
YARN containers can also be configured to take advantage of short-circuit reads.
HDFS exposes an API that allows for local short-circuit reads via the DFSInput
Stream class by overloading the HDFS read() API call:

public synchronized ByteBuffer read(ByteBufferPool bufferPool,
  int maxLength, EnumSet<ReadOption> opts)
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4 See HDFS-4949 and HDFS-4953.

For short-circuit reads to succeed, the following conditions must be met:

• The client is local to the DataNode.
• The client requests short-circuit reads in the opts object of the read() call.
• The client and the DataNode are using the native Hadoop I/O libraries (libha
doop.so).

• The client is using the dfs.client.read.shortcircuit configuration flag in
hdfs-site.xml.

• The client is using the short-circuit read API just shown.

In addition to short-circuit reading, HDFS provides the ability to avoid the
copy_to_user() call shown in Figure 3-3. Linux achieves this via the mmap() system
call.

As introduced in “Important System Calls” on page 61, mmap() creates a mapping in
the user’s logical memory space which points to a range in the page cache that holds
the file data that a client wants to access. User space applications can then directly
read from and write to this mapped memory range. If the blocks that pertain to the
mmap()ed file are already in the page cache, the application is accessing the page cache
memory directly—i.e., without the need to copy them to user space. If the blocks that
pertain to the mmap()ed file are not yet in the page cache, reading them will create
page faults and will result in first paging in the required blocks from disk before they
can be read in the same direct fashion. Linux can also lock mmap()ed pages via the
mlock() system call, such that it will not page them back to disk when it tries to make
room for new pages.

The combination of short-circuit reads with mmap() and mlock() is referred to as
zero-copy reading (ZCR) in HDFS, since all unnecessary copies are avoided in this
access pattern.4

For zero-copy reading to kick in all conditions required for short-circuit reads need
to be fulfilled, as well as the following additional condition:

• Data being read is mlock()ed by the DataNode, or the client explicitly asks that
checksums for the read are not used.

You’re probably wondering when and why blocks are mlock()ed by the DataNode.
HDFS provides a feature known as HDFS caching. HDFS administrators can create a
cached region for an HDFS path via the hdfs cacheadmin -addPool command. The
Hadoop project website has a list of all cache administration commands. When a

66 | Chapter 3: Compute and Storage

http://bit.ly/2QZdviC
http://bit.ly/2KlDVZB
http://bit.ly/2DOyzFF
http://bit.ly/2DOyzFF
http://bit.ly/2Q7sNF8


5 See Colin McCabe, “How Improved Short-Circuit Local Reads Bring Better Performance and Security to
Hadoop”, Cloudera Engineering Blog, August 16, 2013.

cache is created, the NameNode identifies a DataNode that holds a replica for the
blocks. The DataNode is requested to mmap() and mlock() the blocks in its main
memory. As shown in Figure 3-3, local and remote clients can access cached data on
a DataNode that holds data in its page cache. When creating a block list for clients
that request a cached file, the NameNode will prefer DataNodes that are known to
hold the file in their cache.

Optionally, a number of replicas can be specified for the cached region—i.e., multiple
DataNodes may be instructed to mmap() and mlock(). From an API perspective, cli‐
ents use the same short-circuit read API in the HDFS client library introduced earlier
to perform ZCR reads.

If no cache directive exists for the data being read, the client library falls back to an
SCR read or, if the request was not performed locally, regular reads. If a cache direc‐
tive exists for the data being read, the HDFS client library performs its own mmap()
on the same HDFS blocks a second time. This second mmap() is necessary to give the
client an address range in its own memory space.

If you are curious about the source code, the MappableBlock class in the DataNode
invokes mmap() via the FileChannel.map() method. For local zero-copy and short-
circuit reads, BlockReaderLocal creates a mapping via the ShortCircuitReplica
class, which also relies on FileChannel.map(). The FileChannel.map() method is
implemented in libnio.so on Linux.

The reason that ZCR is only available via a caching directive is a deliberate caution by
the developers of HDFS. The cache directive ensures that mmap()ed data has been
checksummed by the DataNode and does not have to be checksummed again during
the life cycle of the cache directive, since it is mlock()ed. A client can, however, cir‐
cumvent this restriction by explicitly opting out of DataNode checksumming via the
dfs.client.read.shortcircuit.skip.checksum configuration option in hdfs-
site.xml or by directly specifying SKIP_CHECKSUM in the read() call’s ReadOptions. In
this case, we recommend that the client implement its own checksumming, for exam‐
ple via the file format.

SCR and ZCR: What Is the Benefit?
Performance data on SCR stems from the open source development community pro‐
cess and is by no means exhaustive for deriving a scientific analysis. Related experi‐
ments5 indicate a speedup of up to 30% for SCR. Zero-copy reads allow throughput
improvements even up to 100%, but the benefits greatly depend on the access pattern:
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• Accessing data hotspots via mmap() is arguably the best-case scenario.
• Really, with Hadoop’s distributed nature, a hotspot could cover terabytes of data

in a given dataset.
• In addition, large-scale scans, where data sizes outweigh the available RAM, are

ultimately bound by the transfer speed of the disk.

But beyond the debate of sheer numbers, SCR and ZCR are a best practice for all
HDFS clients:

• Apache Impala always uses short-circuit reads when an Impala daemon is local
to a DataNode. Impala automatically performs zero-copy reads when you cache a
table. Cached tables can help resolve problems with reference tables that are used
in joins with many other large tables. Such a reference table should have three
characteristics: it should be small, it should be always required, and there should
be an indication that it is getting evicted from the page cache often (e.g., when
the cluster is very busy). If this is the case, the replication count can be increased
to the number of DataNodes, and each replica is pinned into memory via an
HDFS cache directive.

• Impala actually supports checksumming in its scanner Parquet data pages, and
future optimizations might include the ability to enable completely mmap()ed
tables.

• The YARN NodeManager also can leverage this feature, which is a great help to
Spark applications.

• HBase benefits even more from SCR and ZCR due to much more frequent
requests for small data items. Since HBase performs its own checksumming on
the HFile level, it is an excellent candidate to invoke the ZCR API with the
SKIP_CHECKSUM flag.

Unless checksumming is explictly skipped, ZCR can only be used in conjunction with
HDFS caching, which mlock()s regions into memory once the data is initially check‐
summed by the DataNode. Thus it makes finite space available, since naturally only a
small fraction of the HDFS data can be pinned in RAM.

As mentioned earlier, any user space application can deactivate DataNode checksum‐
ming at its own peril. You could also argue that checksumming for disk I/O already
happens at lower levels in the kernel, since modern hard drives perform cyclic redun‐
dancy check (CRC) and error correction code (ECC) checking on a per-sector level.
There is, however, good reason to perform integrity checks at the application level as
well.
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6 See Jonathan Corbet’s article “ext4 and data loss”, LWN.net, March 11, 2009.

Filesystems
The choice of block-level filesystem usually does not play a decisive role in the archi‐
tecture of a Hadoop cluster, but it can have an important impact on operational pro‐
cedures.

The available choices of block-level filesystems, given today’s market of Linux and
Hadoop distributions, boil down to these three:

ext3
This has been the traditional choice for years in most Linux distributions. It is
likely to have the most coverage in conjunction with HDFS. ext3 was among the
first filesystems in Linux to introduce journaling capabilities—for every update
of data written to disk, ext3 also updates a journal to track the changes. As per
the default setting in most Linux distributions, ext3 starts to persist changes on
data immediately and then triggers journal updates. A change in the journal only
gets committed after data changes have been persisted to disk. This makes ext3
very robust compared to some other filesystems, as it guarantees consistency in
the internal structure of the filesystem. Compared to more modern filesystems,
this robustness comes at the cost of performance.

ext4
This is the successor to ext3 and introduced a range of new features, most of
them targeted toward better performance. A prominent feature is delayed alloca‐
tion, which allows ext4 to defer the physical allocation of disk blocks until they
are ultimately flushed to disk, enabling more efficient I/O. ext4 also relaxes the
rigidity of journal commits. Although there is nothing inherently wrong with
that (you can always use fsync()—see “Important System Calls” on page 61),
this initially resulted in an outcry among some users. The behavior, which trades
performance for the operational risk of losing filesystem consistency, however,
can be directly configured by two sysctl variables in the Linux kernel.6 ext4’s
developers have since gone to lengths to include additional heuristics to control
when files are required to be immediately flushed.

XFS
XFS is a longtime contender in the filesystem space, supporting large-scale and
high-performance use cases. Like ext4, it uses delayed allocation. Unlike ext4, it
uses a B+-tree for filesystem allocation, which yields significant performance
advantages during file and filesystem creation, as well as consistency checks.
Some Linux distributions are now using XFS as their default.
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In addition to these general points, when choosing a filesystem from the list you
should consider the following points:

• ext3 will easily become fragmented and is notoriously slow when performing file‐
system consistency checks via fsck. ext4 performs these checks up to 10 times
faster, and XFS is faster than ext4 by a factor of 2 to 4, depending on filesystem
size and file count. From an operational standpoint, this can play a role in your
Hadoop cluster. Consider scheduled maintenance, requiring a worker node to
reboot. If your Linux operations team requires that periodic filesystem checks are
enabled on your worker node, which happens to have very large disks (say, 6 TB
or larger), an fsck on all of that node’s disks may be forced due to the fsck
schedule. This can take up to 30 minutes for an inode (file-object) count of about
5 million, assuming there is no contention on the CPU side. In the case of HDFS,
the grace period for that node’s blocks to be unavailable could be exceeded, caus‐
ing it to start re-replicating all the missing blocks on that node—and there may
be a lot. Though re-replication is slow in comparison and a node coming back
would stop the process, it could lead to unnecessary operational overhead.
Although Hadoop storage systems mostly create rather large files, you might not
host this many blocks on your disks. However, file-object count ultimately
depends on the behavior of the user base.

• XFS can create very large filesystems significantly faster than its ext counterparts,
which may also play into operational processes, depending on your organiza‐
tional setup.

• When considering performance over consistency, bear in mind the many layers
of caching as discussed in the previous sections. The loss of filesystem-level con‐
sistency in the event of a node crash is only one aspect to consider with regard to
the overall consistency of the Hadoop storage system. Hadoop is able to recover
node failures and quickly remedy the situation due to the plurality of other file‐
system instances in your cluster. In practice, you may choose to relax rigid jour‐
nal updates in favor of better storage performance.

Also note the following points that apply to all of these choices:

• Linux normally tracks file access times in filesystems. Since Hadoop storage sys‐
tems implement their own metadata layer and the actual content on the block
layer filesystem is meaningless without the higher-level metadata, it is generally
recommended to supply `noatime` as a mount flag. This flag will direct Linux to
stop recording the access times for both files and directories.

• With regard to explicit consistency, an fsync() will trigger a SCSI SYNCHRONIZE
CACHE command or its SATA equivalent FLUSH CACHE EXT for ext3, ext4, and
XFS. This is important in terms of durability. We talk about this more in “Disk
Layer” on page 84, when we cover disk caches.

70 | Chapter 3: Compute and Storage

http://bit.ly/2TxeV5A


• All of the discussed filesystems reserve some space that is available only to privi‐
leged processes. This amount can typically be reduced on large disk drives, since
for example 5% would equate to 500 GB on a 10 TB drive. The percentage of this
area can be changed via the tune2fs command. For example, tune2fs -m

1 /dev/sdX sets the area to 1% for ext filesystems. With all desire to optimize,
there are still good reasons to keep some extra space around:
— ext3 runs into problems with fragmentation and becomes very slow when the

disk is filled up more than a certain amount, depending on disk size. The
merit of an extra few percent of space is drastically limited if the other fraction
does not perform adequately. Changing the amount of reserved space to a few
gigabytes rather than hundreds allows defragmentation operations to con‐
tinue, while increasing the footprint of available space for Hadoop.

— ext4 and XFS are are better at avoiding defragmentation, but they also need a
very small amount of reserved blocks during initial file-allocation operations
(for example, during a mount operation).

— For XFS, you could use the xfs_io utility to reduce reserved space, but this is
strongly discouraged by Linux distributors since it could actually result in
ENOSPC errors during mount.

Which Filesystem Is Best?
All of the Linux filesystems we list here can get the job done. ext3 nowadays is a leg‐
acy choice, but it might be necessary. Operational experience of the support staff is
key when dealing with filesystems. As far as ext4 and XFS go, that experience still
widely differs, just like experience with the user space utilities (such as resize2fs,
tune2fs, xfs_repair, and xfs_admin) themselves. First and foremost, determine
whether any of the options pose added operational risk in your case.

Erasure Coding Versus Replication
As we mentioned in “Commoditized Storage Meets the Enterprise” on page 55,
HDFS erasure coding is a novel feature that is becoming available in commercial
Hadoop distributions.

Erasure coding is a well established and very effective error recovery technique,
which turns a chunk of data into a longer, coded chunk. When part of the data is lost,
it can be reconstructed from the remaining parts. The size of the data chunk that is
added and the size that can be lost and reconstructed depend on the implementation.
Although we do not provide details of the theory of erasure coding here, it is very
well covered in existing sources.
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Crucially, replication and erasure coding in HDFS can be run in parallel on the same
HDFS instance on a per-directory basis.

The community around HDFS has chosen a specific implementation of erasure cod‐
ing based on Reed–Solomon codes. Although multiple policies are supported, the
default uses six data cells and three parity cells, which means that data can still be
reconstructed when up to three out of the total nine resulting cells (including parity
cells) are lost.

Erasure coding has been used in a variety of distributed storage systems for quite
some time. For example, Facebook has been using an implementation of erasure cod‐
ing for cold data and archival use cases, which is referred to as HDFS RAID, since
2014.

Now that we have covered context, let us focus on how erasure coding will be avail‐
able to enterprises, beginning with Hadoop 3.0.

In Figure 3-4, we provide an overview of how erasure coding works in HDFS, as
compared to the well-known replication approach. In the example, we chose a small
HDFS cluster with nine DataNodes, which is the minimum number of nodes, as we
will see. In our example, those DataNodes are installed across two racks, which is also
crucial for understanding the differences between erasure coding and replication.

To highlight the differences, the same file is stored in HDFS in an erasure-coded
directory (1) and a directory using triple replication (2). Initially, the file is logically
split into blocks of 128 MB. The illustration shows how the first four blocks of the file
are processed by either method.

128 MB is currently the default block size in HDFS. The block size
is configurable on a per-file basis. We could have chosen any other
value for the sake of the example.

With standard replication, as indicated under (2), the 128 MB block directly corre‐
sponds to the storage layout on the DataNode. For each 128 MB block in the original
file, HDFS creates three copies, called replicas, which we denominate with n, n', and
n'' for the first, second, and third replica, respectively.

With erasure coding, as shown in (1), the storage layout vastly differs, but the Name‐
Node still manages the file content in units of the block size on a logical level, which
is why the 128 MB block in erasure coding is referred to as a logical block.
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Figure 3-4. Erasure coding and replication at a glance

In (1), note that erasure coding splits the file into small chunks of 1 MB of data, called
cells. For each six cells that are read from the file, HDFS computes three parity cells,
which together form a stripe. The next stripe is then generated from the next six cells
in the original file. This process happens for all logical 128 MB blocks.

The first 128 MB in the file, i.e., logical block 1, thus consists of a contiguous range of
stripes. The first stripe is made up of cells 1a–1f with parity cells p1a–p1c, the second
stripe includes cells 1g–1l with parity cells p1d–p1f, and so on, until all 128 MB are
completely striped. Likewise, logical block 2 consists of a range of stripes, the first of
which contains cells 2a–2f with parity cells p2a–p2c; the second stripe of cells 2g–2l
with parity cells p2d–p2f, and so on until logical block 2 is completely striped. The
illustration goes on to indicate the same process for logical blocks 3 and 4.
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The nomenclature around logical blocks, stripes, and storage blocks
is HDFS-specific, and even within the HDFS community alterna‐
tive terms are used for these concepts.

Before we look at how the logical layout is physically distributed, let us note the fol‐
lowing intuitive observations:

• The erasure-coded storage layout is much more complicated than just copying
blocks into replicas. We must calculate the parity information for each stripe.
The encoding of parity information in Reed–Solomon is compute-intensive.

• On the other hand, for any stripe in erasure coding, the storage overhead is only
50%: six blocks, for example 1a–1f, require only three parity blocks, for example
p1a–p1c. Hence, the total overhead of all stripes in a block is also just 50%.

• Replication requires an overhead of 200%: block 1 is replicated to 1' and 1''.

The erasure-coded cells in each stripe are placed on all DataNodes in the cluster in a
round-robin fashion. In fact, this distribution is exactly what striping means and why
the group of nine cells is called a stripe. Our example is the most simplistic: there are
nine cells in a stripe (including parity cells), and we have nine DataNodes. This
means that each DataNode will hold exactly one cell of each stripe, as shown in the
illustration. Cells 1a, 1g, 2a, 2g, and so on reside on DataNode1. Cells 1b, 1h, 2b, 2h,
and so on reside on DataNode2. The last cell in all stripes is always placed on Data‐
Node6. The parity blocks of all stripes are placed on DataNodes 7–9, accordingly. It
should be apparent that nine is therefore also the minimum number for DataNodes
to tolerate three DataNode failures, as the 6,3 erasure coding scheme advertises.

While the cells in a logical block are striped across DataNodes, many of them natu‐
rally end up on the same DataNode. These cells are stored together and form a con‐
tiguous storage block. In our example, there is a storage block for logical block 1 on
DataNode1, starting with cells 1a and 1g and a storage block for logical block 2 on
DataNode3, which starts with cells 2c and 2i. With the changes introduced around
erasure coding in Hadoop 3.0, the storage block is used as an index in the Name‐
Node’s block map and points the client to the DataNode on which the required cell is
stored.

With replication, the blocks are, in turn, placed on the set of available DataNodes as a
whole. The standard block placement policy in HDFS places a block on a DataNode,
identifies a DataNode in a different rack for the second replica, and uses another ran‐
domly chosen DataNode in the second rack for the third replica.
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How Are Blocks Distributed Again?
The placement of blocks when using replication is determined entirely by the Name‐
Node. When a client writes a file into HDFS, it queries the NameNode for the block
locations it should use. However, if the client resides on a DataNode, the NameNode,
in an attempt to optimize for locality, chooses that DataNode as the location of the
first replica of each block written.

You can test this by running the following simple commands on either a DataNode
or a gateway host:

dd if=/dev/zero of=./640MB bs=1M count=640
hdfs dfs -put 640MB
hdfs fsck /user/<your user>/640MB -files -blocks -locations

When executing these commands on the DataNode, the first replica of all five blocks
will reside on the same node and the second and the third replicas of all five blocks
will reside on two additional hosts.

When executing these commands on a host that is not a DataNode, all five blocks and
their replicas will be distributed across the set of DataNodes in round-robin fashion
or in available space, depending which block placement policy is configured.

A few more observations:

• HDFS can direct applications to run their work directly on DataNodes that hold
the blocks of the file in question. This well-known feature is called block locality.
With erasure coding, this feature is lost, since the logical blocks are striped across
DataNodes.

• As you can see with cell 1f, cells from a given stripe can be distributed across
racks. This means that even reading a single logical block from a file has a high
likelihood to entail cross-rack traffic, if your cluster is implemented across racks.

With two racks, a single failure of a whole rack means data loss. To
tolerate as many rack fails as can be compensated in a Reed–
Solomon stripe, you would actually have to run on nine racks,
which is not feasible for initial adopters with small to medium clus‐
ters. However, in “Rack Awareness and Rack Failures” on page 165,
we discuss how to minimize the likelihood of rack failure by using
standard mechanisms available to most enterprise IT organiza‐
tions.

• When a client is reading an erasure-coded block of an HDFS file, many
DataNodes at once participate in sending data to the client. Several DataNodes
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sending data to a single client at once can yield a significant speedup for reads. In
contrast, when a client reads a replicated block, only a single thread on a single
DataNode delivers its content to the client.

We now know the most important concepts regarding how erasure coding functions
in the cluster, but we have not looked at the motivation behind some of the design
decisions. The Cloudera blog post “Introduction to HDFS Erasure Coding in Apache
Hadoop” offers more background on the implementation details and the reasoning
behind them.

Here, we move on to discuss the ramifications of erasure coding for your uses cases
and cluster planning.

Discussion
HDFS erasure coding is useful for a range of use cases, but others are better served by
replication. This also holds true for any other large-scale enterprise storage systems
outside of the HDFS context.

This may sound like a typical “it depends” answer, but it actually does depend, and
we give you the specifics in the following sections.

Network performance
This is the most relevant criterion when contemplating erasure coding in HDFS. Due
to the cross-rack distribution of cells we just noted, cross-rack network bandwidth
for reads becomes a key design factor for erasure-coded areas in HDFS. Typically,
cross-rack transfers take longer than those of the rack-local cells.

You can compensate for this simply with faster cross-rack connections. To put it con‐
cisely, 10 Gbps of intra-rack bandwidth can be seen as a practical minimum require‐
ment for erasure coding. If you aim to maintain the performance characteristics of
replication, 20 Gbps via port trunking is recommended, and likewise cross-rack
bandwidth oversubscription should be as small as possible, ideally not greater than
1:1.5.

As you have undoubtedly noticed, the discussion around erasure
coding requires a fair amount of knowledge of how Hadoop uses
the network, and especially about network oversubscription, all of
which we introduce in Chapter 4.

On large clusters, this could be cost-prohibitive and may quickly negate the savings
that are generated by the reduction of disk space.
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February 3, 2016.

8 Greg Tucker, “Storage Acceleration with ISA-L,” Intel, 2017.

9 Rui Li et al., “Progress Report: Bringing Erasure Coding to Apache Hadoop”.

On the other hand, the release of HDFS erasure coding roughly coincides in timing
with the first waves of 40 Gb Ethernet adoption in many enterprise datacenters. For
some organizations that are already firm adopters of Hadoop, this may be a good
opportunity to rethink scale-out enterprise storage.

Write performance
The next key factor to consider is write performance. Creating parity information
with Reed–Solomon requires a significant amount of compute power. This can make
the CPU a bottleneck in the write path, which negatively impacts write performance
compared to replication.

From a networking perspective, erasure coding actually relaxes the
write path. Replication always writes 200% of all data to remote
racks, but erasure coding only transfers, at most, 150% of net data
to remote racks.

The key influence on local write performance in erasure coding is the software library
that is used for generating the parity information, which is referred to as the coder.
Currently, two coders exist in the context of HDFS erasure coding:

Java coder
The standard Java encoder is quite demanding, in terms of CPU consumption.
For most scenarios the CPU will become a bottleneck when using this coder, and
thus, despite parallel communication, with many DataNodes up to 15% perfor‐
mance degradation has been observed7 in tests with this coder, compared to rep‐
lication. Its main purpose now is actually testing.

ISA-L coder
This coder uses the Intel ISA library, which provides assembly-level code optimi‐
zation for a variety of storage and encryption-related functions. With the ISA-L
SIMD optimizations8 for the required matrix operations, the CPU of the client is
not a bottleneck when stripes are encoded and it can fully benefit from the per‐
formance gains that are yielded when writing to multiple DataNodes in parallel.
This makes it possible to achieve up to an 80% performance increase9 compared
to replication with this coder. Because of the round-robin striping, write perfor‐
mance may still be degraded compared to replication, if the network turns out to
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be a bottleneck. The ISA-L coder is the default coder in relevant Hadoop distri‐
butions.

Locality optimization
Since block locality is not available, some workloads may suffer performance impacts.
This, of course, depends on the aforementioned factor of network performance, but
also on the profile of the cluster’s workload in general:

• There are certain workloads that rely strongly on locality, such as certain Hive
and Impala queries. For these types of workloads, erasure coding may actually
impose a performance penalty.

• Because of the striped block layout, some functions in the HDFS API, such as
append() or hflush(), become very difficult to implement, which is why they
are not available in the initial release of HDFS erasure coding. The work to
improve this is documented under HDFS-11348.

Some Hadoop query systems depend on append() and hflush().
For example, the HBase write-ahead log uses hflush(). Thus, it is
currently not possible to run HBase on top of erasure coding.

There is an effort in the open source community to compensate for the missing local‐
ity features of erasure coding, which is also documented as a JIRA under HDFS-8030.

Read performance
Unlike with write performance, the coder is less relevant in this scenario, since the
data merely needs to be reassembled and no actual decoding work is required. Only
when cells are missing in a stripe during read requests does the client depend on the
coder to perform online recovery. In both cases, the client loads cells in a stripe from
many disks on many DataNodes in parallel, which can increase read performance by
several hundred percent compared to replication. But this only works when the
aggregate bandwidth of the disks in question is not already fully saturated and, as we
covered, requires that network performance is not a bottleneck.

Recovery can happen online, i.e., when the client discovers missing
cells during read, or offline, i.e., when the DataNodes discover bad
cells outside of serving read operations.
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Also bear in mind that, with erasure coding, there is only one real copy of the data to
read from. When dealing with datasets that are read by many clients at once, replica‐
tion helps to avoid hotspotting.

However, rebuilding lost cells is more complicated and more CPU-intensive than re-
replicating a lost block, which may affect read performance significantly compared to
replication.

Guidance
Erasure coding makes HDFS a much more versatile option for large-scale distributed
storage in the enterprise context. Organizations that have previously been cautious
about HDFS replication as a strategy for enterprise storage can look to it as a path
toward more efficiency. As with any scale-out storage system, though, there is a price
tag attached to it, in the form of added performance requirements in the network.

Table 3-1 attempts a comparison between replication and erasure coding.

Table 3-1. Erasure coding and replication

Erasure coding (RS-6-3) Replication (3n)
Write performance • Depending on network topology, significant performance

increase compared to replication when using ISA-L coder.

• Performance degradation with standard Java coder.

Full speed of current replica
(typically disk-bound).

Read performance Depending on network topology, significant increase in read
throughput.

Full speed of current replica
(typically disk-bound).

Storage requirement 1.5n 3n

Locality optimization Currently none. Performance of certain queries is degraded
compared to replication.

Locality can be fully leveraged by
execution frameworks.

Durability Tolerates failure of up to three DataNodes/disks. Tolerates failure of up to two
DataNodes/disks.

Recovery impact on
throughput (two
DataNodes failing)

• 25% degradation of read throughput with ISA-L coder.

• 60% (or more) throughput degradation with Java coder.

No impact.

Champions of Hadoop can take erasure coding as a quick win for storage efficiency
for a variety of use cases. Erasure coding is often recommended for archival use cases
due to the missing block locality and the overhead in the write path, but it is impor‐
tant to differentiate and to note that the challenges with erasure coding in distributed
systems—especially those around network bandwidth—are universal. Some applian‐
ces, such as EMC Isilon, deal with this challenge by incorporating a dedicated back‐
bone network for the distribution of data. Other challenges around compute
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requirements for the write and rebuild functions are met by enterprise storage appli‐
ances via an optimized combination of software and hardware.

With HDFS erasure coding, it is up to you, the Hadoop architect or Hadoop engi‐
neer, to create the right infrastructure for it—and this, again, depends on your use
cases. It is hard to get definitive decision criteria, but we when we decided to write a
book around Hadoop in enterprise IT, we pledged to be as descriptive as possible in
our guidance. Thus, you can use the flowchart in Figure 3-5 as a decision methodol‐
ogy around the current state of erasure coding and replication in HDFS. The thresh‐
olds in this flowchart are debatable and don’t appropriately address each and every
use case or datacenter infrastructure setting, but you may use it as a checklist to help
define your decision making.

It is good practice to test the same workload in both modes, and that is easy since it
only involves a simple temporary copy of the data from a replicated directory to an
erasure-coded directory and vice versa.

Figure 3-5. Deciding when to use erasure coding
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As you can see, the main criterion is the use case itself. Archived and cold data—i.e.,
any datasets where higher retrieval latencies are tolerable—are almost always a good
fit for erasure coding. Some use cases that depend heavily on locality10 should most
likely remain in replicated areas of HDFS.

For everything else, take into account your infrastructure as indicated by the flow‐
chart. Do you have the budget and organizational backing to implement a fast, non‐
blocking cluster network? This obviously depends on the size of your cluster. It is
relatively easy to provide very fast networking across one or two racks, simply by
using a single large switch. The adoption of 40 Gb Ethernet and the time when your
network team intends to support it as a production standard both play an obvious
role here, as well. 40 Gb Ethernet and low cross-rack oversubscription ratios may
bring you into the efficiency zone, even for a complete multirack cluster.

Finally, make sure you take advantage of hardware optimizations via the ISA-L
library, if at all possible.

Erasure coding is generally very good news for the Hadoop practitioner, since it is
not mutually exclusive with replication and you can run both in parallel on a per–use
case basis. We strongly recommend testing both alternatives for a given use case on
the same cluster before moving it to production.

Even though erasure coding sounds intriguing as an advanced technology, in many
cases you may simply be better off with replication. Taking all things into account,
the additional storage requirements of replication often are quite tolerable, especially
since HDD and flash memory prices continue to decline. Replication is also undoubt‐
edly less CPU-intensive for the write path and for rebuild operations.

Low-Level Storage
Hadoop storage does not end at the operating system level or when deciding on era‐
sure coding versus replication. In order to build performant distributed storage, you
also need to be quite knowledgeable about the hardware layers below Linux. These
include the storage controller and the various options for disk storage.

Storage Controllers
Much mystery has surrounded the choice of storage controllers for Hadoop
DataNodes ever since the Hadoop platform hit enterprise computing. Hadoop is
designed to tolerate component failure and hence does not require any additional
logic on behalf of the storage controller. It is merely required for the storage control‐
ler to present the individual devices to the operating system, which is commonly
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known as a just a bunch of disks (JBOD) array. However, as enterprises mostly pro‐
cure their hardware assets from established server vendors, many server vendors
actually had to deliberately unlock the JBOD feature in their storage controllers to
fulfill this requirement. In many cases, where JBOD was not available, Hadoop clus‐
ters have been deployed on a range of single-disk redundant array of independent
disks (RAID) 0 volumes.

RAID?
Indeed, the use of RAID, in most cases, is highly inefficient for Hadoop. It may 
appear that there is no merit to a discussion of RAID versus raw disk setups, but it
provides us with several interesting observations about HDFS’s capabilities when
handling errors versus the error handling in storage arrays, which we use when we
discuss private cloud environments.

All Hadoop storage systems are capable of managing the failure of disk drives. The
required resilience level can be managed centrally and can be overridden for each
storage artifact, such as a directory or a file in HDFS or a topic in Kafka.

Let us compare standard HDFS replication to a RAID scenario in a cluster. By
default, all blocks are replicated three times. This guarantees that data is available, as
long as no more than two disks in the cluster suffer failure at the same instant:

• In this scenario, if one or two disks fail on a worker node, the missing blocks are
immediately reconstructed from other replicas in the cluster. This process occurs
swiftly and does not even have to involve the node on which the disk failure
occurred (it may be down). Due to the block distribution, there is a high chance
that many other worker nodes contribute to it.

• If more than two disks fail at the same instant, blocks may be lost. The probabil‐
ity of this is influenced by the total number of blocks and the number of disks in
the cluster. Even then, the node can still service blocks that it stores on the non‐
faulty disks.

• During and after a successful rebuild of replicas, the worker nodes can continue
with their normal operation, even if several of their disks fail at once. And when
the worker nodes no longer hold a certain block locally, they may still be chosen
to contribute their compute capacity for tasks in the Hadoop cluster and process
block content, which they read remotely from other worker nodes.

Conversely, when considering large arrays of between 12 and 24 disks configured as a
RAID-6 array:

• If one or two disks fail on a worker node, the missing blocks can get re-
constructed only if a sufficient amount of hot-spare disks are present in the array
or after the faulty disks are replaced. The rebuild can only happen locally on the
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same node. If the node is unavailable (it may be down), the rebuild must wait
until the node becomes available again. The rebuild itself will take a lot of time,
since it happens locally on the node.

• If more than two disks fail in the RAID-6 scenario, data is definitely lost and the
node can no longer service any blocks.

• The amount of traffic that is incurred by the rebuild will make it unlikely to per‐
form adequately in HDFS. If push comes to shove and the rebuild is done offline,
the NameNode may decide to replicate the missing blocks on other locations.

Controller cache
When server infrastructure is purchased for Hadoop, a frequent question is whether
hardware caches on enterprise-grade RAID controllers are required. Although not
required, their usage can, in fact, prove to be of significant benefit for overall storage
performance.

Read-ahead caching.    Many storage controllers and disk devices alike use an adaptive
read-ahead algorithm, which detects sequential disk accesses. In addition, certain
storage controllers are able to detect this even if the overall workload stems from dif‐
ferent operating system threads. The rationale of these firmware-based algorithms is
that, when there are sequential accesses, there will be more sequential accesses at suc‐
cessive addresses. The controller thus lifts that data in anticipation of the following
read requests into its cache. This significantly reduces request latency, since the OS’s
I/O request can now be fulfilled in microseconds rather than in milliseconds. Because
many workloads in Hadoop, such as database scans or text search, feature fairly
sequential access patterns, hardware read caching typically proves to be very
beneficial.

Write-back caching.    When write requests arrive at the controller, without write-back
caching it needs to locate the target device and wait until the device confirms that the
data has been written before it returns the call to the operating system.

Conversely, if the controller uses write-back caching, the overall performance will
improve:

• Write requests from the operating system will be posted to the cache memory,
which is significantly faster than spinning media. The posted request will return
to the operating system immediately, which minimizes I/O latency in the user
program.

• Typically, the cache quickly fills up with written data. The controller continu‐
ously analyzes the contents for adjacent addresses on-disk and waits until it can
rearrange the order of requests (i.e., merge requests that write into adjacent
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logical disk blocks) so that the head movement of the underlying disk devices is
reduced.

• Read requests to hotspots (i.e., areas of storage that are accessed often) benefit
from the resident data in the cache, since it will be returned almost immediately
from high-speed cache memory.

Guidelines
In general, the read cache on storage controllers should be enabled. It is important to
understand, though, that the contents of the cache are lost in the case of a server-level
failure or loss of power. Anything that has not been committed to disk at this point
will be lost, which is why most enterprise-level controllers feature a battery that will
refresh the cache’s DRAM for an extended period of time (typically more than 24
hours). Apart from the discussion on hardware caches, you will recall from our dis‐
cussion on filesystems and the page cache that OS-level caches are equally volatile.
Although it is possible to explicitly instruct the OS to write the cache contents to the
physical disk via fsync() and fflush(), the controller may not pass on the corre‐
sponding SCSI synchronization commands to the disks, which is why the on-disk
write cache should always be disabled when the disks are operated behind a battery-
backed cache. If the controller does not support pure JBOD, each individual disk
should be configured as a one-disk RAID-0 array. In the case when a multitude of
RAID-0 arrays must be configured, it is advisable to experiment with the arrays’
stripe size to optimize throughput. Also make sure to review the various storage
options covered in Chapter 14.

Disk Layer
Even though most workloads in Hadoop prove to be compute-bound, the choice of
physical storage media can have a significant impact on the Hadoop cluster’s perfor‐
mance. Typically, as an architect or engineer, you may not be consulted about disks
at all when a new service is implemented, but if you are involved in the component
selection process, you have a chance to change the cluster’s performance for the bet‐
ter by making intelligent choices about the disks.

For most Hadoop clusters, sheer throughput is imperative (also see “Workload Pro‐
files” on page 96). And you will probably want to design your worker nodes to contain
more disks before you optimize the individual device. For an individual device,
higher rotational speed, which results in shorter seek times, is the more decisive fac‐
tor than theoretical throughput, though.

A common question we get from customers is, “Can a single disk really deliver 200
MB/s?” Yes, it can, but these values are based on a completely idealistic access pat‐
tern, often found in disk microbenchmarks. The values serve to establish a baseline
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for throughput capabilities. A clean baseline of best-case performance is important
before you consider advanced tests and disk access patterns (though disk access pat‐
terns are more sequential in Hadoop than in most other enterprise workloads). You
can find more details about testing your Hadoop cluster in Chapter 8.

Table 3-2 shows a few key characteristics of various drive types. The values are aver‐
ages based on the specification across multiple vendors.

Table 3-2. Characteristics of different hard disk drive types

Drive type (rotational speed, interface) Sustained max. throughput rate (MB/s) Access time (ms) Capacity range
3.5 in, 7200 RPM, SAS 140–250 10.6–16.4 1–10 TB

3.5 in, 7200 RPM, SATA 140–250 10.6–16.4 1–10 TB

2.5 in, 10K RPM, SAS 224–247 6.6–6.8 300 GB–1.8 TB

2.5 in, 15K RPM, SAS 233–271 4.8–5 300 GB–600 GB

2.5 in, 7,2K RPM, SAS/SATA 136 10,6–16,4 1 TB–2 TB

SAS, Nearline SAS, or SATA (or SSDs)?
Until recently, the realm of enterprise versus consumer disks was neatly separated via
SAS versus SATA drives. SAS is traditionally the more enterprise-targeted option—
more durable and also more costly—and SATA is traditionally targeted for consumer
devices.

For a number of reasons, most disk vendors today also include SATA drives in their
enterprise lines. There are many features that hard disk vendors can employ to make
a disk more resilient to failure. Some of those depend on the choice of SAS versus
SATA, but most don’t.11 Here are a few examples:12

• Hard disks can be designed with a higher maximum operating temperature.
Entry-level drives usually cannot exceed operating conditions of more than 40°C,
whereas enterprise-grade drives can operate at up to 60°C.

• Command queue depths can significantly differ. SAS allows for up to 216 com‐
mands to be queued and reordered, and SATA allows up to 32 commands.

• There are many options in internal mechanical design, such as vibration com‐
pensation, dual or single anchoring of the disk spindle, actuator magnet sizing,
and more, that influence performance, error rates, and durability. None of these
are tied to the storage interface.
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• SAS allows for dual connectors, such that a single drive can fail over to another
controller if the initial controller becomes unavailable.

• Disk quality is further distinguished by the amount of electronics, e.g., to control
actuators and the data path via separate processors, and the amount of internal
integrity checks that are performed. This is not related to the storage interface.

• The spindle motor may or may not allow for high RPMs (i.e., beyond 7,200).
Typically, these speeds are only available for SAS drives.

Instead of the traditional segmentation into consumer and enterprise disks, hard disk
vendors have changed their portfolios to address use cases, such as high-
performance/low-latency database workloads versus big-data/volume versus hot-
archive for the enterprise segment of the market, and backup use cases or high
performance in the consumer-centric sector. All of the itemized points are consid‐
ered when hard disk vendors target either segment of their market. In simple terms,
this signifies low cost versus high value, and now SATA is also present in the enter‐
prise segment to address volume-centric use cases. Often the term Nearline SAS (NL-
SAS) emerges in this discussion. Though not necessarily dominant in the
nomenclature of all disk vendors, NL-SAS denotes a disk drive that implements the
full SAS command set, but which mechanically consists mostly of components that
would only be used in standard SATA drives.

SAS also still generally coincides with higher cost, typically by a factor of 1.5–2x, as
outlined earlier.

Ultimately, the choice of hard drive depends on your use case and total cost of own‐
ership, which would also include service time for disks. That said, in the section
“RAID?” on page 82, we noted that Hadoop is quite resilient to losing disks. In
HDFS, you can configure the number of disks that are allowed to fail per DataNode
before the entire DataNode is taken out of service. Even if that happens, HDFS will
still automatically recreate the lost block replicas. Thus, you may deliberately decide
to opt for less-resilient disks (though it is best practice to leave enough headroom in
HDFS to cover for lost capacity when blocks are re-replicated after failures via HDFS
quotas).

Solid-State Drives (SSDs)?
Occasionally, architects or engineers ask why they shouldn’t use SSDs for Hadoop.
SSDs can be several categories faster than spinning disks, but not significantly so for
sequential access, and Hadoop applications and storage systems access storage in a
fairly sequential way. This is due to the applications themselves, as well as to the large
block sizes of storage systems such as HDFS.

Furthermore, when you want to storage large volumes of data, SSDs become cost-
prohibitive. There are some models that exceed 3 TB in size, but they also exceed the
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price of a 3 TB HDD by a factor of more than 15, so it is generally safe to say that
scaling Hadoop storage with SSDs is still cost-prohibitive today. Large SSD drives
also have decreased durability—although a 400 GB SSD drive can sustain up to 25
daily full writes per device (DWPDs), the top-capacity models can only sustain up to
3 DWPDs.

Disk sizes
With available disk sizes of 10 TB (at the time of this writing), you may wonder
whether there is too much capacity on a disk. This is a plausible question for two
reasons:

• Disk capacity for newer disk generations increases more quickly than possible
throughput. For search or scan-heavy use cases, the amount of data that needs to
be accessed will, therefore, grow more while single disk performance stays more
or less constant, which ultimately results in reduced scan performance.

• Disk failures take longer to recover. As covered in “RAID?” on page 82, we know
that HDFS is very efficient at restoring lost block replicas, but you should con‐
sider best- and worst-case scenarios for the loss of a disk drive, which is influ‐
enced by the number of DataNodes/disks, available network bandwidth, and
overall cluster load. For example, a very small cluster with five DataNodes with
twelve 6 TB drives each, which is connected via 1 Gb Ethernet, may actually
struggle to keep up with acceptable recovery objectives.

Disk cache
Just like storage controllers feature a cache, all modern hard disk drives have a hard‐
ware cache, typically between 32 MB and 256 MB in size. Considering the amount
that can be cached on a disk device and the amount of storage in the higher-level
caches in the storage controller or the OS, there will typically be only very few direct
cache hits on the disk cache’s read path. The disk cache is still tremendously helpful
in opportunistically prefetching data from the disk, though, and typically does so
without adding cost in time to other pending storage requests. Due to these benefits
and since there are no concerns about data durability, the read cache is always
enabled on modern disk drives.

When the disk’s write-back cache is enabled, the disk device is able to post a request
to the cache and return to the calling entity immediately, which reduces latency.
When the write portion of the disk’s cache is filled up, the disk drive will destage
cache content—i.e., write it to physical media. The disk’s I/O scheduler can typically
operate very efficiently when destaging writes from the disk cache, since the schedu‐
ler can choose from many more options when sorting and rearranging I/O requests
into a more ideal, more sequential order. Further information on the principles of
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hard disk operation can be found in Bruce Jacob et al.’s book Memory Systems:
Cache, DRAM, Disk (Morgan Kaufmann).

Despite its benefits, there is some conventional wisdom in the IT industry that says to
not use the on-disk cache for buffering write operations, especially for database
workloads. Due to Hadoop’s distributed nature, you can generally rely on the follow‐
ing:

• Running write pipelines for HDFS file data begin shipping data to replica loca‐
tions immediately, regardless of explicit consistency operations. However, you
do not have a guarantee that they are finished without explicitly using consis‐
tency operations.

• When consistency operations are used, they will return only if the data has been
fully replicated. In the case of hsync(), this ensures that all data actually resides
on all disks of the identified replicas (assuming proper filesystem behavior). In
the case of hflush(), it is ensured that all data has at least been transferred to the
identified replica nodes’ RAM.

• When one or more DataNodes fail during a consistency operation, the operation
will fail on the client, enabling the client to appropriately handle the error.

Data loss or inconsistency occurs only if all of the corresponding replica disks/
DataNodes suffer a catastrophic error. To summarize the discussion on hardware
caches in the I/O subsystem, let us take a brief look at how they affect performance.
We omit latency and input/output operations per second (IOPS) and focus on
throughput.

The listings that follow show a simple, idealistic experiment for testing throughput
under Linux, running with the hard disk cache enabled and disabled. Note that the
impact on throughput is significant. The traffic pattern inflicted by using the dd tool,
as follows, is by no means realistic in that it is purely sequential, but it serves to estab‐
lish a baseline for most Hadoop workloads and access patterns (which are largely
sequential):

root@linux:~# hdparm -W1 /dev/sdb1
  /dev/sdb1:
   setting drive write-caching to 1 (on)
   write-caching   1 (on)
  root@linux:~# dd if=/dev/zero of=/mnt/dd-run bs=1024K /

count=1024 oflag=direct conv=fdatasync
  1024+0 records in
  1024+0 records out
  1073741824 bytes (1.1 GB, 1.0 GiB) copied, 9.58533 s, 112 MB/s

  root@linux:~# hdparm -W0 /dev/sdb1
  /dev/sdb1:
   setting drive write-caching to 0 (off)

88 | Chapter 3: Compute and Storage



   write-caching   0 (off)
  root@linux:~# dd if=/dev/zero of=/mnt/dd-run bs=1024K /

count=1024 oflag=direct conv=fdatasync
  1024+0 records in
  1024+0 records out
  1073741824 bytes (1.1 GB, 1.0 GiB) copied, 18.1312 s, 59.2 MB/s

We now extend these measurements to include the cache of the storage controller,
which sits in front of 12 SATA drives. Figures 3-6 and 3-7 show various measure‐
ments based on concurrent runs of dd on each disk. The measurements vary in cache
settings and total transfer size to show how increasing transfer sizes impact the bene‐
fit of the cache.

Figure 3-6. Effect of caches on read throughput
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Figure 3-7. Effect of caches on write throughput

We can see that running with both the controller and hard disk write caches enabled,
read throughput is actually slightly less than when using the controller’s cache only.
This can be attributed to the strictly sequential access pattern and the twofold pre-
fetching and the additional hop that the data takes through both caches. Writes bene‐
fit most with both caches enabled, since it allows them to be posted. Running only
with the disk write cache yields slightly worse performance than the two options
involving the controller cache for both reads and writes. When not using any write
caching, write throughput drops to less than half.

Running with the disk write cache and the controller cache enabled
poses a risk to data durability, since many hardware RAID imple‐
mentations do not pass the SCSI SYNCHRONIZE CACHE command
down to the disks, which can effectively break the semantics of the
fsync() system call.

In summary, we highly advise that you try to leverage hardware caches at some point
in the I/O subsystem. If you trust consistency operations, such as hflush() and
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hsync(), in your applications, you can rely on disk caches to gain additional perfor‐
mance, as long as you do not enable both controller and disk caches in conjunction.
If you cannot rely just on those consistency operations, you should not use disk
caches, since they are not battery-backed. You should invest in the controller having
a significant amount of battery-backed cache.

Server Form Factors
Now that we know how the individual layers of hardware and software in a Hadoop
server work together, we review which server form factors are available to implement
Hadoop clusters. We focus on standard 19-inch rack-mount architectures, which is
the predominant form factor in most datacenters today. Other standards such as
Open Compute, which are motivated by large Web 2.0 content providers (especially
Facebook), propose alternatives but are typically not relevant to enterprise IT.

A central part of this discussion is the rack unit, which is a measure of the server
enclosure’s height. A 19-inch rack is between 40 and 42 rack units high and the server
form factors simply differ in how many rack units they use; width and depth are
common among all enclosure types. Rack units are abbreviated with the letter U.

We evaluate several rack-mount form factors based on the following characteristics:

CPU density
Expressed via the normalization (CPU cores x (GHz/core)) / rack unit, similar to
Amazon’s ECU metric

Memory density
The amount of GB per rack unit for RAM

Storage density
The capability of raw storage in TiB/U

Storage I/O density
The capability of local storage I/O throughput per rack unit in MB/s (max)

Network I/O density
The capability of I/O throughput per rack unit

Software license efficiency
The amount of software licenses per CPU (lower values are better, obviously)

1U servers can provide high compute density by making two CPU sockets available
per rack unit. If you have a sufficient amount of network ports in a single rack and if
power and cooling budgets allow, it is possible to build very dense and performant
medium-sized Hadoop environments within a single rack with the 1U form factor.
As depicted in Figure 3-8, a 1U server can package up to 10 front-accessible 2.5”
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HDDs, allowing for a good balance between compute and storage bandwidth. The
HDD front section is followed by a series of fan packs, behind which the processor
and RAM are located, allowing up to 12 memory modules per processor with most
vendors.

Figure 3-8. 1U form factor

2U servers have evolved into the most widely used form factor for enterprise Hadoop
deployments. As shown in Figure 3-9, most models can accommodate 12 3.5” hard
disks and thereby combine high storage density and bandwidth with adequate mem‐
ory and compute density for most applications. 2U servers are typically shipped with
two CPU sockets and allow for 12 memory modules per CPU, like 1U servers. A few
models exist that are able to fit four CPUs and double the amount of memory into a
single 2U enclosure while maintaining the same I/O density and storage density.
However, like with dense 1U systems, such density may not be easily scalable due to
power and cooling budgets in your datacenter.
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Figure 3-9. 2U form factor

4U servers are typically used for large SMP systems. They typically hold four CPU
sockets, but they provide only relatively small amounts of storage capacity and
throughput. Since the CPUs in 4U servers are typically the most powerful in the chip
vendor’s portfolio, the fan packs used for cooling often use up a lot of server front
space, which reduces the available space for front-accessible disk drives. Certain
implementations allow an HDD capacity of up to 24 in this form factor, but they are
quite rare.

In certain applications of Hadoop, storage density and high storage I/O are not
required. If that is the case, the 4U form factor might be used to provide better effi‐
ciency of software licensing, since most Hadoop distributions are licensed per node.
A downside of 4U servers in the case of Hadoop is often network connectivity. A 2U
system is typically connected via a dual-port 10 Gb Ethernet adapter, yielding one 10
GbE port for one CPU. To achieve the same ratio on a 4U system, you will likely be
required to purchase additional network adapters but may potentially deviate from
the production standards of your network department when using four instead of
two ports per system.

In addition, it must be considered that CPUs that support four-socket SMP setups are
significantly more expensive than two-socket alternatives.

Server Form Factors | 93



Form Factor Comparison
This section compares a number of applicable hardware configurations amongst the
discussed form factors, as well as their price ranges, based on publicly available list
prices across various server vendors. Server form factors are differentiated mostly by
density of CPU, memory, and storage, as shown in Table 3-3.

Table 3-3. Standard rack-mount form factors

Form
factor

CPU density Memory
density

Storage
density (raw
TB/U)

Storage I/O density
(disks/U)

Network I/O
density

License
efficiencya

1U Up to 2 x 22 cores
© x (2.2 GHz/C) /
1U (96.8)

1,536 GB /
1U

Up to 20 TB /
1U

Up to approximately
2,700 MB/s / 1U

Up to 20 Gbps /
1U (practical
limit)

0.5

2U Up to 2 x 22C x 2.2
GHz/C / 2U (48.4)

1,536 GB /
1U

Up to 60 TB /
1U

Up to approximately
3,200 MB/s / 1U

up to 10 Gbps /
1U (practical
limit)

0.5

4U up to 4 x 24C x 2.2
GHz/C / 4U (52.8)

1,536 GB /
1U

Up to 12 TB /
1U

Up to approximately
1,600 MB/s / 1U

Up to 5 Gbps /
1U (practical
limit)

0.25

a Lower values are better.

Some additional notes on this data:

• Storage I/O density is based on 2.5” HDDs (not SSDs).
• Storage density values on 2U servers are based on 3.5” HDDs.
• Some 2U servers are available as 4-CPU systems: for example, the HPE ProLiant

DL560. The 2U row does not include those models.

Let us next look at some representative example configurations and their pricing. For
this, we compiled samples from different hardware vendors for worker node configu‐
rations in 1U, 2U, and 4U form factors. For each form factor, a minimal configura‐
tion and a real-life configuration are presented in Table 3-4.

The minimal configuration reflects the low end of what can be configured for a given
form factor—basically the chassis and the smallest set of compute and storage resour‐
ces. As implied by its name, the real-life configuration reflects a useful configuration
for a Hadoop worker node in that form factor. Note that, in some cases, it is not pos‐
sible to find exactly the same configuration for a given form factor among multiple
vendors.
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Table 3-4. Configurations used for price sampling

Configuration Specifications
1U minimal 1 x 4 core @ 1.8 GHz, 10 MB cache, 8 GB RAM, 1 x 1 TB 2.5” HDD

2U minimal 1 x 4 core @ 1.8 GHz, 10 MB cache, 8 GB RAM, 1 x 1 TB 2.5” HDD

4U minimal 1 x 8 core @ 2 GHz, 20 MB cache, 8 GB RAM, 1 x 1 TB 2.5” HDD

1U real-life 2 x 18 core @ 2.1–2.3 GHz, 45 MB cache, 256 GB RAM, 8 x 1 TB 2.5” HDD

2U real-life 2 x 18 core @ 2.1–2.3 GHz, 45 MB cache, 256 GB RAM, 12 x 8 TB 3.5” HDD

4U real-life 4 x 18 core @ 2.2 GHz, 45 MB cache, 512 GB RAM, 8x–24x 1 TB 2.5” HDD

Figure 3-10 shows the price spans for each configuration, indicating the median of
the samples. The image also displays the price differences between the median of the
minimal and real-life configurations for each form factor. This price difference
reflects approximately how much you invest into pure compute and storage capabili‐
ties on top of the pure chassis in a given form factor.

Figure 3-10. Form factor configurations and their price ranges (in USD)

Naturally, the capabilities that are thereby added to the resulting worker node differ
depending on the form factor. For example, the 2U servers in Table 3-4, while also
upgraded with additional CPU and RAM, would most importantly be enriched with
lots of disks to get to the real-life configuration. On the other hand, the 4U form fac‐
tor would add significantly more compute and RAM and only very few disks for a
real-life configuration.

Guidance
If you need a balance of compute and storage, you most likely should choose 2U
servers, due to their ability to hold a large amount of 3.5” disks. If you know for cer‐
tain that the focus in your cluster is on computational capabilities, you may consider
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1U or 4U form factors. Since most Hadoop distributors charge licenses on a per-
server basis, we have sometimes seen organizations consider 4U servers to achieve
advantages on software license efficiency. For example, as shown in Table 3-3, on a
4U server a license can serve four CPUs, but a 2U server typically only serves two
CPUs.

Figure 3-10 shows, however, that the investment in a 4U chassis is disproportionately
higher than that of a 2U chassis, and we can also see that the cost of adding roughly
the same compute and storage capabilities results in a similar increase of cost in both
form factors. Whether there really is an advantage to using a 4U chassis in terms of
software licensing is therefore likely to be a close call that depends on the actual
license price you pay.

The presented data should not be considered reference data, since list prices are
short-lived and do not include any discounts. However, the data serves to offer a
rough idea of how the cost between form factors varies.

Workload Profiles
Now that you know all about servers and their available form factors, you need to
decide which server configuration is best for the use cases that will run on your
Hadoop cluster. In this section, we introduce how certain use cases and Hadoop
workloads are typically more compute-bound or more I/O-bound. If you know
beforehand the workloads your cluster will predominantly run, you can choose your
worker nodes more wisely, equipped with the learnings from the previous sections in
this book.

Most clusters, especially during initial Hadoop adoption, aim to keep compute and
I/O capabilities balanced. Beyond initial adoption, many users run a mixture of use
cases that require that this balance be maintained, even though certain use cases are
clearly bound by I/O or compute. Other users determine over time that they typically
run short of either CPU and/or RAM or I/O for the vast majority of their jobs. This is
typically determined via continuous profiling of cluster resources in a third-party
hardware monitoring tool, such as Ganglia, Cloudera Manager, or Ambari.

Even though the actual usage pattern is very individual to your specific mix of appli‐
cations, most can be roughly categorized by their use of the worker node’s resources.
In Figure 3-11, we plot a range of application categories by their usage of I/O resour‐
ces, i.e., disk and network, on the x-axis, and compute resources, i.e., CPU and RAM,
on the y-axis. Of course, none of the actual metrics on the axes are thought to be pre‐
cise. However, the plot can give you a head start in understanding how an application
will or won’t use the resources on your cluster. For example, if you already know that
your cluster is hopelessly strained on compute capabilities, adding a heavyweight
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classification app will certainly add to that strain, but adding a sorting application
may not add conflict.

Figure 3-11. Various workload profiles and their ramifications on optimal hardware
selection

Cluster Configurations and Node Types
Up to now, we have focused on worker nodes. In this section, we present sample con‐
figurations for all the nodes required to build fully fledged Hadoop clusters. We look
at configurations for small, medium, and large clusters, all of which are based on the
server form factors introduced in the previous section. These configurations will
build on a set of master nodes that combine various master roles of the services, as
well as a larger set of worker nodes that combine the worker roles of services. For
example, the HDFS NameNode and the YARN ResourceManager are master roles
that run together on the same set of master nodes, while an HBase RegionServer and
an HDFS DataNode are worker roles that run together on the same set of worker
nodes.
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If you are not familiar with the individual roles of these services, refer back to Chap‐
ter 1, where we introduce them briefly and provide further pointers.

The cluster configurations will show redundant roles throughout to provide for high
availability, a concept which we introduce by example here and cover in much more
depth in Chapter 12.

Master Nodes
Master nodes run the roles that control the various Hadoop services, such as:

• HDFS NameNode
• HDFS JournalNode
• HDFS Failover Controller
• YARN ResourceManager
• YARN History Server
• Spark History Server
• HBase Master
• Kudu Master
• Impala StateStore Server
• Sentry server
• ZooKeeper server

In Table 3-5, we recommend using two 450 GB hard disks for the operating system.
In Table 3-6, we show the recommended layout for those disks.

Table 3-5. Recommended configuration for master nodes

Small cluster Medium cluster Large cluster
Form factor 1U

CPU 2x10 core 2x 16 core

RAM 128 GB 256 GB 384 GB

OS disks 2 x 450 GB

Data disks 2 x 300 GB

Table 3-6. Recommended disk layout for OS disks on master nodes

OS disks Disk 1 Disk 2
Option 1: 450 GB RAID-1/2+ Operating system

NameNode metadata
Hadoop service data
OS log files and Hadoop log files (/var/log)

Option 2: 2 x 450 GB, separate disks
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It is typical for master nodes to have the operating system installed on a RAID-1
array. If that is not the case, we recommend that you configure the NameNode to
store replicas of its metadata on an additional disk drive, which can be conveniently
configured in the NameNode’s service configuration via the dfs.name.dir setting.
Optionally, in that case, we recommend mounting the log directory to the additional
disk.

Regarding the layout for data disks, we strongly recommend Option 1 in Table 3-7;
i.e., that you store ZooKeeper and HDFS JournalNode data on separate disks. Both of
these services are very latency-sensitive, due to the quorum and locking functionality
they implement. If you have a strict requirement to leverage RAID to avoid disk-
related outages, ensure that the presence of RAID on your controller does not in any
way negatively influence latency characteristics.

Table 3-7. Recommended disk layout for data disks on master nodes

Data disks Disk 1 Disk2
Option 1: 2 x 300 GB, separate disks ZooKeeper data JournalNode data

Option 2: 2 x 300 GB, RAID-1 ZooKeeper data
JournalNode data

In an enterprise context, it is typically advisable to procure master nodes with dual
power supplies and redundant fan pack configurations.

Worker Nodes
Worker nodes perform the actual heavy lifting in the cluster. They typically imple‐
ment the following roles:

• HDFS DataNode
• YARN NodeManager
• HBase RegionServer
• Impala daemon
• Solr server
• Kudu Tablet Server
• Kafka broker

The worker node form factor and configuration depend on your use case, as
described in “Server Form Factors” on page 91 and “Workload Profiles” on page 96.
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Although it is perfectly fine to colocate roles from multiple query
or compute systems (e.g., Spark and Impala) on a single worker
node, we recommend, as noted in “User Space” on page 58, that
you run only one data service (DataNode, Kudu Tablet Server, or
Kafka broker) per worker node.

An additional design decision on the worker nodes includes whether to provision the
OS disk as RAID-1 to provide additional redundancy, in addition to redundancy of
power supplies and fan packs.

Utility Nodes
Utility nodes run the roles that control the various Hadoop services, such as:

• Vendor/distributor-specific management and monitoring tools, such as
Cloudera Manager or Apache Ambari

• (Optional) Service databases, MySQL, or PostgreSQL, needed by various Hadoop
services to keep internal state and metadata (see also “Service Databases” on page
194 for more details on setting up your service databases)

• (Optional) Kerberos Key Distribution Center (KDC) and Kerberos admin server,
if Kerberos is enabled in your cluster

• Hive Metastore server
• Impala Catalog Server
• Oozie server
• Flume agent

In Table 3-8, we recommend providing 1–4 TB of hard disk space, depending on
cluster size, optionally protected by RAID-1. The reason for the increased hard disk
space is the extensive amount of logging data that the vendor-specific Hadoop man‐
agement tools typically accumulate.

Table 3-8. Hardware specifications for utility nodes

Small cluster Medium cluster Large cluster
Form factor 1U

CPU 2 x 8 core 2 x 12 core 2 x 18 core

RAM 128 GB 256 GB 384 GB

OS disks 1-2x 1 TB 1-2 x 4 TB

100 | Chapter 3: Compute and Storage



Edge Nodes
Edge nodes implement the contact points of the outside world with the cluster and
therefore typically run the following roles:

• Hadoop clients, to expose necessary command-line utilities, (typically to power
users)

• Hue, to provide a web UI for many common tasks around SQL and HBase quer‐
ies, Spark applications, HDFS interaction, and more

• HiveServer2, to implement a SQL interface into the cluster
• Custom or third-party software for data ingestion
• A Flume agent, to receive continuous ingest events

Also, edge nodes may be used as a landing zone for data, which is why they might
offer additional local storage capacity.

Depending on the size of the cluster, there may be several edge nodes to keep up with
the large amounts of incoming data. Thus, the actual hardware configuration of edge
nodes widely varies. We recommend a typical configuration range, as shown in
Table 3-9.

Table 3-9. Hardware specifications for edge nodes

Small cluster Medium cluster Large cluster
Form factor 1U

CPU 1 x 8 core – 2 x 16 core

RAM 64 GB – 196 GB

OS disks 1–2 x 300 GB

Data disks Use case–dependent

In small cluster configurations, the roles of an edge node may be run on a master
node. Alternatively, edge nodes are often colocated with utility nodes.

Small Cluster Configurations
We define a small cluster as not exceeding 20 worker nodes. Small clusters are typi‐
cally implemented on a single rack, but if Hadoop services are deployed redundantly,
it is perfectly feasible to distribute even small clusters on multiple racks. (See Chap‐
ter 12 for an in-depth discussion of Hadoop high availability.) Figure 3-12 shows a
single-rack cluster. In this example there are three management nodes, of which one
also colocates utility and edge cluster roles.
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Figure 3-12. Example of a small cluster configuration

Medium Cluster Configurations
Medium cluster sizes do not exceed 200 nodes. Figure 3-13 shows an entry-level,
medium-size cluster with two racks. All master nodes are now exclusively dedicated
to master roles, and two utility nodes are dedicated to utility roles. Two edge nodes
are dedicated to expose the cluster to the outside world. When the amount of worker
nodes scales beyond the second rack, you should distribute your third master role to
the third rack to optimize redundancy.

102 | Chapter 3: Compute and Storage



Figure 3-13. Example of a medium cluster configuration

Large Cluster Configurations
Large Hadoop clusters can scale up to very high node counts. However, within the
scope of enterprise computing today, one rarely encounters node counts beyond 500.
Hadoop distribution vendors usually keep a practical limit of scalability in their man‐
agement technology if higher node counts are attempted. In Figure 3-14, there are
five master nodes, each of which runs NameNode, ResourceManager, JournalNode,
ZooKeeper Server, and other roles. We recommend that you not exceed a practical
limit of five NameNodes so as not to overburden the system with the overhead of
HDFS metadata management. Quorum services, such as ZooKeeper or HDFS Jour‐
nalNodes, should only be deployed in odd numbers, such as three or five, to maintain
quorum capability.
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Figure 3-14. Example of a large cluster configuration

Summary
In this chapter we reviewed everything you need to know about commodity servers
and their building blocks for your big data platform. We covered the basics of com‐
puter architecture and modern design points for symmetric multiprocessing and the
resulting NUMA characteristics. We then explored the storage path in Hadoop sys‐
tems, especially that of HDFS, covering the user space as well as Linux internals and
the page cache. And we looked at how Hadoop optimizations around short-circuit
and zero-copy reads enhance overall performance.

We compared standard replication in HDFS to erasure coding and learned that era‐
sure coding does not simply supersede replication, but that they can be run side by
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side. In terms of which storage path is more beneficial, we discovered that it depends
on use cases.

We continued our discussion of storage by moving into the hardware layer, which
can prove crucial in the performance of the overall system. We covered various rele‐
vant server form factors and their advantages and disadvantages for given require‐
ments, before we put it all together into various blueprints for small, medium, and
large cluster configurations.

The concepts we’ve discussed are important foundational knowledge for the planning
and architecture cycle of on-premises Hadoop solutions. Even for public cloud infra‐
structure, where most low-level specifications are conveniently hidden from the user,
the size of virtual machine instances and their storage capabilities are based on the
underlying physical machines, which influence performance and cost.

The role of the Linux storage stack, the relationship between compute and I/O, the
performance of individual components, and their contribution to cost equally apply
to cloud infrastructure, as we will learn in Part III.

As such, this chapter should serve as your baseline when comparing any Hadoop
infrastructure choices.
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CHAPTER 4

Networking

This chapter looks at how cluster services such as Spark and Hadoop use the network
and how that usage affects network architecture and integration. We also cover
implementation details relevant to network architects and cluster builders.

Services such as Hadoop are distributed, which means that networking is a funda‐
mental, critical part of their overall system architecture. Rather than just affecting
how a cluster is accessed externally, networking directly affects the performance, scal‐
ability, security, and availability of a cluster and the services it provides.

How Services Use a Network
A modern data platform comprises of a range of networked services that are selec‐
tively combined to solve business problems. Each service provides a unique capabil‐
ity, but fundamentally, they are each built using a common set of network use cases.

Remote Procedure Calls (RPCs)
One of the most common network use cases is when clients request that a remote ser‐
vice perform an action. Known as remote procedure calls (RPCs), these mechanisms
are a fundamental unit of work on a network, enabling many higher-level use cases
such as monitoring, consensus, and data transfers.

All platform services are distributed, so by definition, they all provide RPC capabili‐
ties in some form or other. As would be expected, the variety of available remote calls
reflects the variety of the services themselves—RPCs to some services last only milli‐
seconds and affect only a single record, but calls to other services instantiate complex,
multiserver jobs that move and process petabytes of information.
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Implementations and architectures
The definition of an RPC is broad, applying to many different languages and libraries
—even a plain HTTP transfer can be considered to be an RPC.

Data platform services are a loosely affiliated collection of open source projects, writ‐
ten by different authors. This means there is very little standardization between them,
including the choice of RPC technology. Some services use industry-standard
approaches, such as REST, and others use open source frameworks, such as Apache
Thrift. Others, including Apache Kudu, provide their own custom RPC frameworks,
in order to better control the entire application from end to end.

Services also differ widely in terms of their underlying architectures. For example,
Apache Oozie provides a simple client-server model for submitting and monitoring
workflows—Oozie then interacts with other services on your behalf. By contrast,
Apache Impala combines client-server interactions over JDBC with highly concur‐
rent server-server interactions, reading data from HDFS and Kudu and sending tuple
data between Impala daemons to execute a distributed query.

Platform services and their RPCs
Table 4-1 shows examples of RPCs across the various services.

Table 4-1. Services and how they use RPCs

Service Client-server interactions Server-server interactions
ZooKeeper Znode creation, modification, and deletion Leader election, state replication

HDFS File and directory creation, modification, and deletion Liveness reporting, block management, and
replication

YARN Application submission and monitoring, resource allocation
requests

Container status reporting

Hive Changes to metastore metadata, query submission via JDBC Interactions with YARN and backing RDBMS

Impala Query submission via JDBC Tuple data exchange

Kudu Row creation, modification, and deletion; predicate-based
scan queries

Consensus-based data replication

HBase Cell creation, modification, and deletion; scans and cell
retrieval

Liveness reporting

Kafka Message publishing and retrieval, offset retrieval and
commits

Data replication

Oozie Workflow submission and control Interactions with other services, such as HDFS or
YARN, as well as backing RDBMS

Process control
Some services provide RPC capabilities that allow for starting and stopping remote
processes. In the case of YARN, user-submitted applications are instantiated to
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perform diverse workloads, such as machine learning, stream processing, or batch
ETL, with each submitted application spawning dedicated processes.

Management software, such as Cloudera Manager or Apache Ambari, also uses RPCs
to install, configure, and manage Hadoop services, including starting and stopping
them as required.

Latency
Every call to a remote procedure undergoes the same lengthy process: the call creates
a packet, which is converted into a frame, buffered, sent to a remote switch, buffered
again within the switch, transferred to the destination host, buffered yet again within
the host, converted into a packet, and finally handed to the destination application.

The time it takes for an RPC to make it to its destination can be significant, often
taking around a millisecond. Remote calls often require that a response be sent back
to the client, further delaying the completion of the interaction. If a switch is heavily
loaded and its internal buffers are full, it may need to drop some frames entirely,
causing a retransmission. If that happens, a call could take significantly longer than
usual.

Latency and cluster services.    Cluster services vary in the extent to which they can toler‐
ate latency. For example, although HDFS can tolerate high latency when sending
blocks to clients, the interactions between the NameNode and the JournalNodes
(which reliably store changes to HDFS in a quorum-based, write-ahead log) are more
sensitive. HDFS metadata operation performance is limited by how fast the Jour‐
nalNodes can store edits.

ZooKeeper is particularly sensitive to network latency. It tracks which clients are
active by listening to heartbeats—regular RPC calls. If those calls are delayed or lost,
ZooKeeper assumes that the client has failed and takes appropriate action, such as
expiring sessions. Increasing timeouts can make applications more resilient to occa‐
sional spikes, but the downside is that the time taken to detect a failed client is
increased.

Although ZooKeeper client latency can be caused by a number of factors, such as
garbage collection or a slow disk subsystem, a poorly performing network can still
result in session expirations, leading to unreliability and poor performance.

Data Transfers
Data transfers are a fundamental operation in any data management platform, but
the distributed nature of services like Hadoop means that almost every transfer
involves the network, whether intended for storage or processing operations.
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As a cluster expands, the network bandwidth required grows at the same rate—easily
to hundreds of gigabytes per second and beyond. Much of that bandwidth is used
within the cluster, byserver nodes communicating between themselves, rather than
communicating to external systems and clients—the so-called east-west traffic
pattern.

Data transfers are most commonly associated with a few use cases: ingest and query,
data replication, and data shuffling.

Replication
Replication is a common strategy for enhancing availability and reliability in dis‐
tributed systems—if one server fails, others are available to service the request. For
systems in which all replicas are available for reading, replication can also increase
performance through clients choosing to read the closest replica. If many workloads
require a given data item simultaneously, having the ability for multiple replicas to be
read can increase parallelism.

Let’s take a look at how replication is handled in HDFS, Kafka, and Kudu:

HDFS
HDFS replicates data by splitting files at 128 MB boundaries and replicating the
resulting blocks, rather than replicating files. One benefit of this is that it enables
large files to be read in parallel in some circumstances, such as when re-
replicating data. When configured for rack awareness, HDFS ensures that blocks
are distributed over multiple racks, maintaining data availability even if an entire
rack or switch fails.

Blocks are replicated during the initial file write, as well as during ongoing cluster
operations. HDFS maintains data integrity by replicating any corrupted or miss‐
ing blocks. Blocks are also replicated during rebalancing, allowing servers added
into an existing HDFS cluster to immediately participate in data management by
taking responsibility for a share of the existing data holdings.

During initial file writes, the client only sends one copy. The DataNodes form a
pipeline, sending the newly created block along the chain until successfully
written.

Although the replication demands of a single file are modest, the aggregate work‐
load placed on HDFS by a distributed application can be immense. Applications
such as Spark and MapReduce can easily run thousands of concurrent tasks, each
of which may be simultaneously reading from or writing to HDFS. Although
those application frameworks attempt to minimize remote HDFS reads where
possible, writes are almost always required to be replicated.
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Kafka
The replication path taken by messages in Kafka is relatively static, unlike in
HDFS where the path is different for every block. Data flows from producers to
leaders, but from there it is read by all followers independently—a fan-out archi‐
tecture rather than a pipeline. Kafka topics have a fixed replication factor that is
defined when the topic is created, unlike in HDFS where each file can have a dif‐
ferent replication factor. As would be expected, Kafka replicates messages on
ingest.

Writes to Kafka can also vary in terms of their durability. Producers can send
messages asynchronously using fire-and-forget, or they can choose to write syn‐
chronously and wait for an acknowledgment, trading performance for durability.
The producer can also choose whether the acknowledgment represents success‐
ful receipt on just the leader or on all replicas currently in sync.

Replication also takes place when bootstrapping a new broker or when an exist‐
ing broker comes back online and catches up with the latest messages. Unlike
with HDFS, if a broker goes offline its partition is not automatically re-replicated
to another broker, but this can be performed manually.

Kudu
A Kudu cluster stores relational-style tables that will be familiar to any database
developer. Using primary keys, it allows low-latency millisecond-scale access to
individual rows, while at the same time storing records in a columnar storage
format, thus making deep analytical scans efficient.

Rather than replicating data directly, Kudu replicates data modification opera‐
tions, such as inserts and deletes. It uses the Raft consensus algorithm to ensure
that data operations are reliably stored on at least two servers in write-ahead logs
before returning a response to the client.

Shuffles
Data analysis depends on comparisons. Whether comparing this year’s financial
results with the previous year’s or measuring a newborn’s health vitals against
expected norms, comparisons are everywhere. Data processing operations, such as
aggregations and joins, also use comparisons to find matching records.

In order to compare records, they first need to be colocated within the memory of a
single process. This means using the network to perform data transfers as the first
step of a processing pipeline. Frameworks such as Spark and MapReduce pre-
integrate these large-scale data exchange phases, known as shuffles, enabling users to
write applications that sort, group, and join terabytes of information in a massively
parallel manner.
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During a shuffle, every participating server transfers data to every other simultane‐
ously, making shuffles the most bandwidth-intensive network activity by far. In most
deployments, it’s the potential bandwidth demand from shuffles that determines the
suitability of a network architecture.

Shuffles and the Network
During large workloads, shuffles can cause data transfers to occur between every pair
of servers in a cluster. Since physically interconnecting all servers in a full mesh is
clearly impractical, network switches are deployed as intermediaries between servers,
considerably reducing the number of physical connections.

In a sense, the physical network modulates the ideal shuffle transfer flows by impos‐
ing connectivity and bandwidth constraints. This idea is shown in Figures 4-1 and
4-2, where we can see the logical flows that exist directly between servers being physi‐
cally constrained by the available connectivity.

Figure 4-1. Logical and physical shuffle flows

It follows that when the same logical cluster is deployed over a different network
architecture, different physical flows will result. Figure 4-2 shows the effect of naively
adding a second switch to our previous example.

Although this architecture contains more switches, it actually performs significantly
worse than the single-switch architecture. On average, 50% of the total network traf‐
fic would need to transit between the switches, causing congestion on the inter-switch
link.
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Figure 4-2. Flows over two interconnected switches

Monitoring
Enterprise-grade systems require use cases such as enforcing security through audit‐
ing and activity monitoring, ensuring system availability and performance through
proactive health checks and metrics, and enabling remote diagnostics via logging and
phone-home capabilities.

All of these use cases fall under the umbrella of monitoring, and all require the net‐
work. There is also overlap between them. For example, activity monitoring logs can
be used for both ensuring security through auditing and historical analysis of job per‐
formance—each is just a different perspective on the same data. Monitoring informa‐
tion in a Hadoop cluster takes the form of audit events, metrics, logs, and alerts.

Backup
Part of ensuring overall system resiliency in an enterprise-grade system is making
sure that, in the event of a catastrophic failure, systems can be brought back online
and restored. As can be seen in Chapter 13, these traditional enterprise concerns are
still highly relevant to modern data architectures. In the majority of IT environments,
backup activities are performed via the network since this is easier and more efficient
than physically visiting remote locations.

For a modern cluster architecture comprising hundreds of servers, this use of the net‐
work for backups is essential. The resulting network traffic can be considerable, but
not all servers need backing up in their entirety. Stored data is often already replica‐
ted, and build automation can frequently reinstall the required system software. In
any event, take care to ensure that backup processes don’t interfere with cluster oper‐
ations, at the network level or otherwise.
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Consensus
Consider a client that performs an RPC but receives no response. Without further
information, it’s impossible to know whether that request was successfully received.
If the request was significant enough to somehow change the state of the target sys‐
tem, we are now unsure as to whether the system is actually changed.

Unfortunately, this isn’t just an academic problem. The reality is that no network or
system can ever be fully reliable. Packets get lost, power supplies fail, disk heads
crash. Engineering a system to cope with these failures means understanding that
failures are not exceptional events and, consequently, writing software to account for
—and reconcile—those failures.

One way to achieve reliability in the face of failures is to use multiple processes,
replacing any single points of failure (SPOFs). However, this requires that the pro‐
cesses collaborate, exchanging information about their own state in order to come to
an agreement about the state of the system as a whole. When a majority of the pro‐
cesses agree on that state, they are said to hold quorum, controlling the future evolu‐
tion of the system’s state.

Consensus is used in many cluster services in order to achieve correctness:

• HDFS uses a quorum-based majority voting system to reliably store filesystem
edits on three different JournalNodes, ideally deployed across multiple racks in
independent failure domains.

• ZooKeeper uses a quorum-based consensus system to provide functions such as
leader election, distributed locking, and queuing to other cluster services and
processes, including HDFS, Hive, and HBase.

• Kafka uses consensus when tracking which messages should be visible to a con‐
sumer. If a leader accepts writes but the requisite number of replicas are not
yet in sync, those messages are held back from consumers until sufficiently
replicated.

• Kudu uses the Raft consensus algorithm for replication, ensuring that inserts,
updates, and deletes are persisted on at least two nodes before responding to the
client.

Network Architectures
Networking dictates some of the most architecturally significant qualities of a dis‐
tributed system,including reliability, performance, and security. In this section we
describe a range of network designs suitable for everything from single-rack deploy‐
ments to thousand-server behemoths.
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Small Cluster Architectures
The first cluster network architecture to consider is that of a single switch.

Single switch
Although almost too simple to be considered an architecture, the approach is never‐
theless appropriate in many use cases. Figure 4-3 illustrates the architecture.

Figure 4-3. A single-switch architecture

From a performance perspective, this design presents very few challenges. Almost all
modern switches are non-blocking (meaning that all ports can be utilized simultane‐
ously at full load), so internal traffic from shuffles and replication should be handled
effortlessly.

However, although simple and performant, this network architecture suffers from an
inherent lack of scalability—once a switch runs out of ports, a cluster can’t grow fur‐
ther. Since switch ports are often used for upstream connectivity as well as local
servers, small clusters with high ingest requirements may have their growth restricted
further.

Another downside of this architecture is that the switch is a SPOF—if it fails, the
cluster will fail right along with it. Not all clusters need to be always available, but for
those that do, the only resolution is to build a resilient network using multiple
switches.

Making Cluster Networks Resilient
Multiple physical connections can be bonded together into a single logical link using
the Link Aggregation Control Protocol (LACP), but this only increases the resiliency of
a link. If the switch itself fails, a resilient link won’t help.

To become truly resilient, a server needs to connect to two switches simultaneously. If
either switch fails, the other switch continues to supply all connected devices. How‐
ever, rather than connecting to multiple independent networks, what’s required is a
way for a single logical connection to span multiple switches.
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Multi-Chassis Link Aggregation (MC-LAG) can be used to design a resilient network
by replacing the top-of-rack switch with a pair of switches, which function as a single
logical switch. Network devices connect to both switches using LACP and behave as
if they’re connected to a single device.

Scalability, however, remains limited to the size of a single switch, and any upstream
links also need to be made resilient in the same manner. Oherwise, the external link
could become yet another single point of failure. Figure 4-4 shows the resulting
architecture.

Figure 4-4. A resilient switch pair cluster

A range of proprietary technologies, including those discussed in “Network Fabrics”
on page 127, provide the same functionality and are widely used in enterprises. MC-
LAG and most of these alternatives can be deployed in either an active-passive or
active-active configuration. Although both improve resiliency, active-active also
increases the available bandwidth (and thus increases cluster performance).

In practice, most organizations deploy LACP using failover (active-passive) mode
rather than using round-robin or balance (active-active) configurations, since the
aggregation groups typically need to be built on each switch pair individually, which
is a considerable administrative effort. It also makes sense from a resource manage‐
ment perspective because a simple failover does not result in a reduction of the avail‐
able bandwidth to a server.

Implementation.    With a single-switch architecture, because of the inherent simplicity
of the design, there is very little choice in the implementation. The switch will host a
single Layer 2 broadcast domain within a physical LAN or a single virtual LAN
(VLAN), and all hosts will be in the same Layer 3 subnet.

Medium Cluster Architectures
When building clusters that will span multiple racks, we highly recommend the
architectures described in “Large Cluster Architectures” on page 124, since they provide
the highest levels of scalability and performance. However, since not all clusters need
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such high capabilities, more modest clusters may be able to use one of the alternative
architectures described in this section.

Network Oversubscription
Whenever a cluster network is built using multiple switches there is the possibility of 
encountering oversubscription—a performance bottleneck imposed by the physical
network design. The term originates in telephony, in which a old-fashioned tele‐
phone exchange has more local subscribers than long-distance lines available, result‐
ing in long distance service being temporarily unavailable at busy times.

Network switches that connect a high number of local devices with a small number of
remote switches can become similarly oversubscribed if the uplink bandwidth
capacity is insufficient. In essence, there is more bandwidth demand than capacity,
leading to contention that results in slower data transfers.

The degree of oversubscription present is simply the ratio between the bandwidth
demand and capacity. For example, a switch with 24 x 1 Gb/s ports could potentially
demand 24 Gb/s in total. If that demand was entirely for remote systems via an
uplink of 4 Gb/s, there would be an oversubscription of 24:4, or 6:1.

Stacked networks
Some network vendors provide switches that can be stacked—connected together
with high-bandwidth, proprietary cables, making them function as a single switch. 
This provides an inexpensive, low-complexity option for expanding beyond a single
switch. Figure 4-5 shows an example of a stacked network.

Figure 4-5. A stacked network of three switches
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Although stacking switches may sound similar to using a highly available switch pair
(which can also function as a single logical switch), they are in fact quite different.
Stackable switches use their proprietary interconnects to carry high volumes of user
data, whereas a high-availability (HA) switch pair only uses the interconnect for
managing the switch state. Stacking isn’t limited to a pair of switches, either; many
implementations can interconnect up to seven switches in a single ring (though as
we’ll see, this has a large impact on oversubscription, severely affecting network per‐
formance).

Resiliency.    Stackable switches connect using a bidirectional ring topology. Therefore,
each participant always has two connections: clockwise and counterclockwise. This
gives the design resiliency against ring link failure—if the clockwise link fails, traffic
can flow instead via the counterclockwise link, though the overall network bandwidth
might be reduced.

In the event of a switch failure in the ring, the other switches will continue to func‐
tion, taking over leadership of the ring if needed (since one participant is the master).
Any devices connected only to a single ring switch will lose network service.

Some stackable switches support Multi-Chassis Link Aggregation (see “Making Clus‐
ter Networks Resilient” on page 115). This allows devices to continue to receive net‐
work service even if one of the switches in the ring fails, as long as the devices
connect to a pair of the switches in the stack. This configuration enables resilient
stacked networks to be created (see Figure 4-6 for an example).

Figure 4-6. A resilient stacked network of three switches

In normal operations, the bidirectional nature of the ring connections means there
are two independent rings. During link or switch failure, the remaining switches
detect the failure and cap the ends, resulting in a horseshoe-shaped, unidirectional
loop.
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Performance.    The stacking interconnects provide very high bandwidth between the
switches, but each link still provides less bandwidth than the sum of the ports, neces‐
sarily resulting in network oversubscription.

With only two switches in a ring, there are two possible routes to a target switch—
clockwise and counterclockwise. In each direction, the target switch is directly con‐
nected. With three switches in a ring, the topology means that there are still only two
possible directions, but now a target switch will only be directly connected in one
direction. In the other direction, an intermediate switch is between the source and
the target.

The need for traffic to traverse intermediate switches means that oversubscription
increases as we add switches to the ring. Under normal circumstances, every switch
in the ring has a choice of sending traffic clockwise or counterclockwise, and this can
also affect network performance.

Determining oversubscription in stacked networks.    Within a stacked network, there are
now two potential paths between a source and destination device, which makes over‐
subscription more complex to determine, but conceptually the process is unchanged.

In this first scenario, we look at oversubscription between a pair of stacked switches,
each of which has 48 10 GbE ports and bidirectional stacking links operating at 120
Gb/s (the flow diagram can be seen in Figure 4-7). Each switch is directly connected
to the other by two paths, giving a total outbound flow capacity of 240 Gb/s. Since
there is a potential 480 Gb/s inbound from the ports, we see an oversubscription ratio
of 480:240, or 2:1.

Figure 4-7. Network flows between a pair of stacked switches

With three switches in the ring, each switch is still directly connected to every other,
but the 240 Gb/s outbound bandwidth is now shared between the two neighbors.
Figure 4-8 shows the network flows that occur if we assume that traffic is perfectly
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balanced and the switches make perfect decisions about path selection (ensuring no
traffic gets sent via an intermediate switch). In that scenario, each neighbor gets sent
120 Gb/s and the total outbound is 240 Gb/s, making the oversubscription ratio 2:1.

Figure 4-8. Best-case network flows between three stacked switches

If somehow the stacked switches were to make the worst possible path selections
(sending all traffic via the longer path, as shown in Figure 4-9), the effective band‐
width would be reduced because each outbound link would now carry two flows
instead of one. This increased contention would reduce the bandwidth available per
flow to only 60 Gb/s, making the oversubscription ratio 480:120, or 4:1.

Figure 4-9. Worst-case network flows between three stacked switches

While this is a pathological example, it nevertheless demonstrates clearly the idea of a
load-dependent oversubscription ratio. A real-world three-switch stack would almost
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certainly perform far closer to the best case than the worst, and in any case, even a 4:1
oversubscription ratio is still a reasonable proposition for a Hadoop cluster.

With only two switches in the stack, the traffic on the interconnection links was
always direct. With three switches, the traffic is still mostly direct, with the possibility
of some indirect traffic under high load.

When the ring has four switches or more, indirect traffic becomes completely
unavoidable, even under perfect conditions. As switches are added to a stack, indirect
traffic starts to dominate the workload, making oversubscription too problematic.
Alternative architectures become more appropriate.

Stacked network cabling considerations.    The proprietary stacking cables used to make
the ring are very short—typically only a meter or so—and are designed for stacking
switches in a literal, physical sense. It is possible for stacking switches to be placed in
adjacent racks, but it’s generally best to avoid this, since not all racks allow cabling to
pass between them.

One way around the ring cabling length restriction is to place the switch stack
entirely in a single rack and use longer cables between the switches and servers. This
has the disadvantage, though, of connecting all of the switches to a single power dis‐
tribution unit (PDU), and is therefore subject to a single point of failure. If you need
to place racks in different aisles due to space constraints, stacking isn’t for you.

Implementation.    With a stacked-switch architecture, there are two implementation
options to consider—deploying a subnet per switch or deploying a single subnet
across the entire ring.

Deploying a subnet per switch is most appropriate for when servers connect to a sin‐
gle switch only. This keeps broadcast traffic local to each switch in the ring. In sce‐
narios where servers connect to multiple stack switches using MC-LAG, deploying a
single subnet across the entire ring is more appropriate.

In either scenario, a physical LAN or single VLAN per subnet is appropriate.

Fat-tree networks
Networks such as the fat-tree network are built by connecting multiple switches in a
hierarchical structure. A single-core switch connects through layers of aggregation
switches to access switches, which connect to servers.

The architecture is known as a fat tree because the links nearest the core switch are
higher bandwidth, and thus the tree gets “fatter” as you get closer to the root.
Figure 4-10 shows an example of a fat-tree network.
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Figure 4-10. The fat-tree network architecture

Since many small clusters start by using a single switch, a fat-tree network can be
seen as a natural upgrade path when considering network expansion. Simply dupli‐
cate the original single-switch design, add a core switch, and connect everything up.

Scalability.    The performance of a fat-tree network can be determined by looking at
the degree of network oversubscription. Consider the example in Figure 4-11.

Figure 4-11. An example fat-tree network

The access switches each have 48 10 GbE ports connected to servers and 2 40 GbE
ports connecting to the core switch, giving an oversubscription ratio of 480:80, or 6:1,
which is considerably higher than recommended for Hadoop workloads. This can be
improved by either reducing the number of servers per access switch or increasing
the bandwidth between the access switches and the core switch using link aggrega‐
tion.

This architecture scales out by adding access switches—each additional switch
increases the total number of ports by 48. This can be repeated until the core switch
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port capacity is reached, at which point greater scale can only be achieved by using a
larger core switch or a different architecture.

Oversubscription as a Worst Case
Figure 4-11 shows an access switch with 480 Gb/s inbound and 80 Gb/s outbound,
making the oversubscription ratio 6:1. In other words, if all servers decided to send
traffic over the uplink to nonlocal destinations, each could only send about 1/6 of its
capacity—around 1.7 Gb/s.

Oversubscription only applies to traffic leaving the switch via uplinks, not to traffic
routed locally. During a shuffle, every server transfers data to every other, but that
includes servers that are local. With two access switches a server sends, on average,
around 50% to local and 50% to nonlocal servers, assuming that the shuffle itself is
evenly distributed across servers. That lowers the effective oversubscription since, of
the 480 Gb/s potential demand, only 240 Gb/s requires the uplink. When 240 Gb/s is
constrained down to 80 Gb/s, that makes an effective oversubscription ratio of
240:80, or 3:1.

As the number of access switches increases, the percentage of servers that are remote
goes up with it, increasing the impact of the oversubscription. With four access
switches, 75% of the servers are remote, resulting in an effective oversubscription
ratio of 4.5:1. With eight access switches, 87.5% of the servers are remote, raising the
effective ratio to 5.25:1. At the limit, when 100% of the traffic is destined for nonlocal
destinations, the oversubscription ratio would be 6:1, as originally calculated.

The oversubscription ratio calculated at the access switch therefore represents the
worst possible case, which assumes all traffic requires upstream bandwidth.

Resiliency.    When implemented without redundant switches, the reliability of this
architecture is limited due to the many SPOFs. The loss of an access switch would
affect a significant portion of the cluster, and the loss of the core switch would be
catastrophic.

Removing the SPOFs by replacing single switches with switch pairs greatly improves
the resiliency. Figure 4-12 shows a fat-tree network built with multichassis link aggre‐
gation.
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Figure 4-12. A resilient fat-tree network

Implementation.    A hierarchical network can either be built using a single subnet
across the entire tree or using a subnet per switch. The first option is easiest to imple‐
ment, but it means that broadcast traffic will traverse links beyond the access layer.
The second option scales better but is more complex to implement, requiring net‐
work administrators to manage routing—a process that can be error-prone.

Large Cluster Architectures
All of the architectures discussed so far have been limited in terms of either scale or
scalability: single switches quickly run out of ports, stacked networks are limited to a
few switches per stack at most, and fat-tree networks can only scale out while the core
switch has enough ports.

This section discusses network designs that can support larger and/or more scalable
clusters.

Modular switches
In general, there are only two ways to scale a network: scaling up using larger
switches or scaling out using more switches. Both the fat-tree and the stacked net‐
work architectures scale out by adding switches. Prior to modular switches, scaling a
switch vertically simply meant replacing it with a larger variant with a higher port
capacity—a disruptive and costly option.

Modular switches introduced the idea of an expandable chassis that can be populated
with multiple switch modules. Since a modular switch can function when only
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partially populated with modules, network capacity can be added by installing addi‐
tional modules, so long as the chassis has space.

In many ways, a modular switch can be thought of as a scaled-up version of a single
switch; thus it can be used in a variety of architectures. For example, a modular
switch is well suited for use as the core switch of a fat tree or as the central switch in a
single-switch architecture. The latter case is known as an end-of-row architecture,
since the modular switch is literally deployed at the physical end of a datacenter row,
connected to servers from the many racks in the row.

Modular switches, such as Cisco 7000, are often deployed in pairs in order to ensure
resiliency in the architecture they are used in.

Spine-leaf networks
For true cluster-level scalability, a network architecture that can grow beyond the
confines of any single switch—even a monstrous modular behemoth—is essential.

When we looked at the architecture of a fat-tree network, we saw that the scalability
was ultimately limited by the capacity of the core switch at the root of the tree. As
long as the oversubscription at the leaf and intermediate switches is maintained at a
reasonable level, we can keep scaling out the fat tree by adding additional switches
until the core switch has no capacity left.

This limit can be raised by scaling up the core switch to a larger model (or adding a
module to a modular switch), but Figure 4-13 shows an interesting alternative
approach, which is to just add another root switch.

Figure 4-13. A spine-leaf network

Since there isn’t a single root switch, this isn’t a hierarchical network. In topology
terms, the design is known as a partial mesh—partial since leaf switches only connect
to core switches and core switches only connect to leaf switches.
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The core switches function as the backbone of the network and are termed spine
switches, giving us the name spine leaf.

Scalability.    The most important benefit of the spine-leaf architecture is linear scala‐
bility: if more capacity is required, we can grow the network by adding spine and leaf
switches, scaling out rather than scaling up. This finally allows the network to scale
horizontally, just like the cluster software it supports.

Since every spine switch connects to every leaf switch, the scalability limit is deter‐
mined by the number of ports available at a single spine switch. If a spine switch has
32 ports, each at 40 Gb/s, and each leaf switch needs 160 Gb/s in order to maintain a
reasonable oversubscription ratio, we can have at most 8 leaf switches.

North-South vs. East-West Traffic Patterns
The network scalability provided by the spine-leaf architecture is particularly suitable
for handling the bandwidth requirements of modern data platforms because the
dominant traffic pattern observed is server-server. This within-network traffic
between cluster servers (often generated by shuffles or replication) is also known as
East-West traffic since the flows are mostly between pairs of servers at the same height
within the network hierarchy.

In contrast, traditional client-server traffic is carried via external networks and travels
in via a core network, transiting down through the spine and leaf layers. This type of
flow is often known as North-South traffic. Keep in mind that for a platform such as
HDFS, client-server traffic is more likely to be East-West than North-South due to
the highly parallel activity generated on-cluster by platforms such as Spark.

Resilient spine-leaf networks.    When making networks resilient, the primary technique
has been to use redundant switches and MC-LAG. Until now, this has been required
for all switches in an architecture, since any switch without a redundant partner
would become a SPOF.

With the spine-leaf architecture, this is no longer the case. By definition, a spine-leaf
network already has multiple spine switches, so the spine layer is already resilient by
design. The leaf layer can be made resilient by replacing each leaf switch with a switch
pair, as shown in Figure 4-14. Both of these switches then connect to the spine layer
for data, as well as each other for state management.
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Figure 4-14. A resilient spine-leaf network

Implementation.    Since a spine-leaf architecture contains loops, the implementation
option of putting all devices into the same broadcast domain is no longer valid.
Broadcast frames would simply flow around the loops, creating a broadcast storm, at
least until the Spanning Tree Protocol (STP) disabled some links.

The option to have a subnet (broadcast domain) per leaf switch remains, and is a
scalable solution since broadcast traffic would then be constrained to the leaf
switches. This implementation option again requires network administrators to man‐
age routing, however, which can be error-prone.

An interesting alternative implementation option is to deploy a spine-leaf network
using a network fabric rather than using routing at the IP layer.

Network Fabrics
Layer 2 offers compelling features, such as zero configuration and high switching per‐
formance, but the lack of frame routing impacts scalability and the lack of time-to-
live leads to broadcast storms. Layer 3 mitigates these by adding routing and time-to-
live at the IP packet level, but this still means that larger networks can only be built
out of multiple interconnected Layer 2 networks.

Network vendors and standards bodies have been developing hybrid Layer 2/3 archi‐
tectures for some time, resulting in two main competing standards: Transparent
Interconnection of Lots of Links (TRILL) and Shortest Path Bridging (SPB). Both of
these technologies (and their proprietary variants, such as Cisco FabricPath) combine
the benefits of Layers 2 and 3.

TRILL works by providing a completely new Layer 2 protocol that encapsulates regu‐
lar Layer 2 Ethernet traffic. TRILL frames include a time-to-live field as well as source
and destination switch identifiers. Switch addresses are automatically assigned and
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the switch routing tables are automatically maintained, enabling frames to be routed
with zero switch configuration.

Servers still use standard Ethernet frames when sending data, but these are then
transformed into TRILL frames by the fabric switches when entering the TRILL net‐
work. The frames are transmitted along an optimal path to the destination switch and
converted back to a standard Ethernet frame, before finally being passed to the desti‐
nation device. The use of TRILL is entirely transparent.

Although Hadoop doesn’t directly benefit from a flat Layer 2 network, the opera‐
tional simplicity of the approach can be compelling for many organizations.

Network Integration
A cluster is a significant investment that requires extensive networking, so it makes 
sense to consider the architecture of a cluster network in isolation. However, once the
network architecture of the cluster is settled, the next task is to define how that clus‐
ter will connect to the world.

There are a number of possibilities for integrating a cluster into a wider network.
This section describes the options available and outlines their pros and cons.

Reusing an Existing Network
The first approach—only really possible for small clusters—is to add the cluster to a
preexisting subnet. This is the simplest approach, since it requires the least change to
existing infrastructure. Figure 4-15 shows how, at a logical level, this integration path
is trivial, since we’re only adding new cluster servers.

Figure 4-15. Logical view of an integration with an existing network

From a physical perspective, this could be implemented by reusing existing switches,
but unless all nodes would be located on the same switch, this could easily lead to
oversubscription issues. Many networks are designed more for access than through‐
put.
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A better implementation plan is to introduce additional switches that are dedicated
to the cluster, as shown in Figure 4-16. This is better in terms of isolation and perfor‐
mance, since internal cluster traffic can remain on the switch rather than transiting
via an existing network.

Figure 4-16. Physical view of possible integrations with an existing network

Creating an Additional Network
The alternative approach is to create additional subnets to host the new cluster. This
requires that existing network infrastructure be modified, in terms of both physical
connectivity and configuration. Figure 4-17 shows how, from a logical perspective,
the architecture is still straightforward—we add the cluster subnet and connect to the
main network.

Figure 4-17. Logical view of integration using an additional network
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From a security perspective, this approach is preferable since the additional isolation
keeps broadcast traffic away from the main network. By replacing the router with a
firewall, we can entirely segregate the cluster network and tightly control which
servers and services are visible from the main network.

Edge-connected networks
Edge nodes are typically cluster servers that are put in place to provide access to clus‐
ter services, offering SSH access, hosting web UIs, or providing JDBC endpoints to
upstream middleware systems. They form the boundary, or edge, of the software
services provided by a cluster.

Figure 4-18 shows how, rather than connecting a cluster through a router or firewall,
the edge nodes could provide external network connectivity to the cluster.

Figure 4-18. Logical view of integration using an edge node

When connected in this manner, the edge nodes literally form the physical edges of
the cluster, acting as the gateway through which all communication is performed.
The downside of this approach is that the edge nodes are multihomed, which, in gen‐
eral, isn’t recommended.

Upstream Connectivity
The need for performance and resiliency are significant drivers of network architec‐
ture within a cluster, but the same is true (though to a lesser extent) of upstream con‐
nectivity. In many clusters, the bandwidth requirements for ingest and reporting are
modest in comparison to internal traffic, except in one circumstance—replication to
another cluster.
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Although almost all cluster services are designed for high availability, there is always
the possibility that an entire datacenter could suffer a catastrophic failure. Multiple
racks and power distribution units can help mitigate some SPOFs, but the fact
remains that a single datacenter will always exist in a single location—mitigation that
requires the use of multiple sites, which means replicating data between them.

Cluster services often provide software tools to accomplish data replication between
geographic sites. In the case of Hadoop, a tool called distributed copy (DistCp) can be
used to copy data between HDFS instances. Since HDFS can store an immense
amount of data, DistCp was designed to copy data in parallel. As a result, it can drive
significant network load. Apache HBase and Apache Kafka offer similar tooling to
replicate data to alternative installations.

Network Design Considerations
This section outlines network design recommendations and considerations based on
reference architectures, known best practices, and the experiences of the authors. The
intent is to provide some implementation guidelines to help ensure a successful
deployment.

Layer 1 Recommendations
The following recommendations concern aspects of Layer 1, known as the physical
layer. This is where the rubber meets the road, bridging the gap between the logical
world of software and the physical world of electronics and transmission systems.

Use dedicated switches
Although it may be possible to use existing network infrastructure for a new
cluster, we recommend deploying dedicated switches and uplinks for Hadoop
where possible. This has several benefits, including isolation and security, cluster
growth capacity, and stronger guarantees that traffic from Hadoop and Spark
won’t saturate existing network links.

Consider a cluster as an appliance
This is related to the previous point, but it is helpful to think of a cluster as a
whole, rather than as a collection of servers to be added to your network.

When organizations purchase a cluster as an appliance, installation becomes a
relatively straightforward matter of supplying space, network connectivity, cool‐
ing, and power—the internal connectivity usually isn’t a concern. Architecting
and building your own cluster means you necessarily need to be concerned with
internal details, but the appliance mindset—thinking of the cluster as a single
thing—is still appropriate.
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Manage oversubscription
The performance of any cluster network is entirely driven by the level of over‐
subscription at the switches. Cluster software, such as Hadoop and Spark, can
drive a network to capacity, so the network should be designed to minimize
oversubscription. Cluster software performs best when oversubscription is kept
to around 3:1 or better.

Consider InfiniBand carefully
Hadoop clusters can be deployed using InfiniBand (IB) as the Layer 1 technol‐
ogy, but this is uncommon outside of Hadoop appliances.

At the time of this writing, InfiniBand isn’t supported natively by services such as
Hadoop and Spark. Features such as remote direct memory access (RDMA) are
thus left unused, making the use of IP over InfiniBand (IPoIB) essential. As a
consequence, the performance of InfiniBand is significantly reduced, making the
higher speeds of InfiniBand less relevant.

InfiniBand also introduces a secondary network interface to cluster servers, mak‐
ing them multihomed. As discussed in “Layer 3 Recommendations” on page 135,
this should be avoided. Finally, the relative scarcity of InfiniBand skills in the
market and the cost in comparison to Ethernet make the technology more diffi‐
cult to adopt and maintain.

Use high-speed cables
Clusters are commonly cabled using copper cables. These are available in a num‐
ber of standards, known as categories, which specify the maximum cable length
and maximum speed at which a cable can be used.

Since the cost increase between cable types is negligible when compared to
servers and switches, it makes sense to choose the highest-rated cable possible. At
the time of this writing, the recommendation is to use Category 7a cable, which
offers speeds of up to 40 Gb/s with a maximum distance of 100 meters (for solid
core cables; 55 meters for stranded).

Fiber optic cables offer superior performance in terms of bandwidth and distance
compared to copper, but at increased cost. They can be used to cable servers, but
they are more often used for the longer-distance links that connect switches in
different racks. At this time, the recommendation is to use OM3 optical cabling
or better, which allows speeds up to 100 Gb/s.

Use high-speed networking
The days of connecting cluster servers at 1 Gb/s are long gone. Nowadays, almost
all clusters should connect servers using 10 Gb/s or better. For larger clusters that
use multiple switches, 40 Gb/s should be considered the minimum speed for the
links that interconnect switches. Even with 40 Gb/s speeds, link aggregation is
likely to be required to maintain an acceptable degree of oversubscription.
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Consider hardware placement
We recommend racking servers in predictable locations, such as always placing
master nodes at the top of the rack or racking servers in ascending name/IP
order. This strategy can help to reduce the likelihood that a server is misidenti‐
fied during cluster maintenance activities. Better yet, use labels and keep docu‐
mentation up to date.

Ensure that racks are colocated when considering stacked networks, since the
stacking cables are short. Remember that server network cables may need to be
routed between racks in this case.

Ensure that racks are located no more than 100 meters apart when deploying
optical cabling.

Don’t connect clusters to the internet
Use cases that require a cluster to be directly addressable on the public internet
are rare. Since they often contain valuable, sensitive information, most clusters
should be deployed on secured internal networks, away from prying eyes. Good
information security policy says to minimize the attack surface of any system,
and clusters such as Hadoop are no exception.

When absolutely required, internet-facing clusters should be deployed using fire‐
walls and secured using Kerberos, Transport Layer Security (TLS), and
encryption.

Layer 2 Recommendations
The following recommendations concern aspects of Layer 2, known as the data link
layer, which is responsible for sending and receiving frames between devices on a
local network. Each frame includes the physical hardware addresses of the source and
destination, along with a few other fields.

Avoid oversized layer 2 networks
Although IP addresses are entirely determined by the network configuration,
MAC addresses are effectively random (except for the vendor prefix). In order to
determine the MAC address associated with an IP address, the Address Resolu‐
tion Protocol (ARP) is used, performing address discovery by broadcasting an
address request to all servers in the same broadcast domain.

Using broadcasts for address discovery means that Layer 2 networks have a scala‐
bility limitation. A practical general rule is that a single broadcast domain
shouldn’t host more than approximately 500 servers.

Minimize VLAN usage
Virtual LANs were originally designed to make the link deactivation performed
by the Spanning Tree Protocol less expensive, by allowing switches and links to
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simultaneously carry multiple independent LANs, each of which has a unique
spanning tree. The intention was to reduce the impact of link deactivation by
allowing a physical link to be deactivated in one VLAN while still remaining
active in others.

In practice, VLANs are almost never used solely to limit the impact of STP; the
isolating nature of VLANs is often much more useful in managing service visibil‐
ity, increasing security by restricting broadcast scope.

VLANs are not required for cluster networks—physical LANs are perfectly suffi‐
cient, since in most cases a cluster has dedicated switches anyway. If VLANs are
deployed, their use should be minimized to, at most, a single VLAN per cluster
or a single VLAN per rack for clusters built using Layer 3 routing. Use of multi‐
ple VLANs per server is multihoming, which is generally not recommended.

Consider jumbo frames
Networks can be configured to send larger frames (known as jumbo frames) by
increasing the maximum transmission unit (MTU) from 1,500 to 9,000 bytes.
This increases the efficiency of large transfers, since far fewer frames are needed
to send the same data. Cluster workloads such as Hadoop and Spark are heavily
dependent on large transfers, so the efficiencies offered by jumbo frames make
them an obvious design choice where they are supported.

In practice, jumbo frames can be problematic because they need to be supported
by all participating switches and servers (including external services, such as
Active Directory). Otherwise, fragmentation can cause reliability issues.

Consider network resiliency
As mentioned previously, one approach to making a network resilient against
failure is to use Multi-Chassis Link Aggregation. This builds on the capabilities
of link aggregation (LAG) by allowing servers to connect to a pair of switches at
the same time, using only a single logical connection. That way, if one of the
links or switches were to fail, the network would continue to function.

In addition to their upstream connections, the redundant switches in the pair
need to be directly connected to each other. These links are proprietary (using
vendor-specific naming and implementations), meaning that switches from dif‐
ferent vendors (even different models from the same vendor) are incompatible.
The proprietary links vary as to whether they carry cluster traffic in addition to
the required switch control data.

Enterprise-class deployments will almost always have managed switches capable
of using LACP, so it makes good sense to use this capability wherever possible.
LACP automatically negotiates the aggregation settings between the server and a
switch, making this the recommended approach for most deployments.
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Layer 3 Recommendations
The following recommendations concern aspects of Layer 3, known as the network
layer. This layer interconnects multiple Layer 2 networks together by adding logical
addressing and routing capabilities.

Use dedicated subnets
We recommend isolating network traffic to at least a dedicated subnet (and
hence broadcast domain) per cluster. This is useful for managing broadcast traf‐
fic propagation and can also assist with cluster security (through network seg‐
mentation and use of firewalls). A subnet range of size /22 is generally sufficient
for this purpose since it provides 1,024 addresses—most clusters are smaller than
this.

For larger clusters not using fabric-based switching, a dedicated subnet per rack
will allow the switches to route traffic at Layer 3 instead of just switching frames.
This means that the cluster switches can be interconnected with multiple links
without the risk of issues caused by STP. A subnet range of size /26 is sufficient,
since it provides 64 addresses per rack—most racks will have fewer servers than
this.

Each cluster should be assigned a unique subnet within your overall network
allocation. This ensures that all pairs of servers can communicate, in the event
that data needs to be copied between clusters.

Allocate IP addresses statically
We strongly recommend allocating IP addresses statically to cluster servers dur‐
ing the OS build and configuration phase, rather than dynamically using DHCP
on every boot. Most cluster services expect IP addresses to remain static over
time. Additionally, services such as Spark and Hadoop are written in Java, where
the default behavior is to cache DNS entries forever when a security manager is
installed.

If DHCP is used, ensure that the IP address allocation is stable over time by using
a fixed mapping from MAC addresses to IP addresses—that way, whenever the
server boots, it always receives the same IP address, making the address effec‐
tively static.

Use private IP address ranges
In most cases, internal networks within an organization should be configured to
use IP addresses from the private IP address ranges. These ranges are specially
designated for use by internal networks—switches on the internet will drop any
packets to or from private addresses.

The multiple private IP ranges available can be divided into subnets. Table 4-2
shows the ranges.
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Table 4-2. Private IP address ranges
IP address range Number of IP addresses Description
10.0.0.0–10.255.255.255 16,777,216 Single Class A network

172.16.0.0–172.31.255.255 1,048,576 16 contiguous Class B networks

192.168.0.0–192.168.255.255 65,536 256 contiguous Class C networks

For clusters like Hadoop, we strongly recommend use of a private network.
When deploying a cluster, however, take care to ensure that a private network
range is only used once within an organization—two clusters that clash in terms
of IP addresses won’t be able to communicate.

Prefer DNS over /etc/hosts
Cluster servers are almost always accessed via hostnames rather than IP
addresses. Apart from being easier to remember, hostnames are specifically
required when using security technologies such as TLS and Kerberos. Resolving a
hostname into an IP address is done via either the Domain Name System (DNS)
or the local configuration file /etc/hosts.

The local configuration file (which allows for entries to be statically defined) does
have some advantages over DNS:

Precedence
Local entries take precedence over DNS, allowing administrators to override
specific entries.

Availability
As a network service, DNS is subject to service and network outages,
but /etc/hosts is always available.

Performance
DNS lookups require a minimum of a network round trip, but lookups via
the the local file are instantaneous.

Even with these advantages, we still strongly recommend using DNS. Changes
made in DNS are made once and are immediately available. Since /etc/hosts is a
local file that exists on all devices, any changes need to be made to all copies. At
the very least, this will require deployment automation to ensure correctness, but
if the cluster uses Kerberos changes will even need to be made on clients. At that
point, DNS becomes a far better option.

The availability and performance concerns of DNS lookups can be mitigated by
using services such as the Name Service Caching Daemon (NSCD).
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Finally, regardless of any other considerations, all clusters will interact with
external systems. DNS is therefore essential, both for inbound and outbound
traffic.

Provide forward and reverse DNS entries
In addition to using DNS for forward lookups that transform a hostname into an
IP address, reverse DNS entries that allow lookups to transform an IP address
into a hostname are also required.

In particular, reverse DNS entries are essential for Kerberos, which uses them to
verify the identity of the server to which a client is connecting.

Never resolve a hostname to 127.0.0.1
It is essential to ensure that every cluster server resolves its own hostname to a
routable IP address and never to the localhost IP address 127.0.0.1—a common
misconfiguration of the local /etc/hosts file.

This is an issue because many cluster services pass their IP address to remote sys‐
tems as part of normal RPC interactions. If the localhost address is passed, the
remote system will then incorrectly attempt to connect to itself later on.

Avoid IPv6
There are two types of IP address in use today: IPv4 and IPv6. IPv4 was designed
back in the 1970s, with addresses taking up 4 bytes. At that time, 4,294,967,296
addresses was considered to be enough for the foreseeable future, but rapid
growth of the internet throughout the 1990s led to the development of IPv6,
which increased the size of addresses to 16 bytes.

Adoption of IPv6 is still low—a report from 2014 indicates that only 3% of Goo‐
gle users use the site via IPv6. This is partly due to the amount of infrastructural
change required and the fact that workarounds, such as Network Address Trans‐
lation (NAT) and proxies, work well enough in many cases.

At the time of this writing, the authors have yet to see any customer network—
cluster or otherwise—running IPv6. The private network ranges provide well
over 16 million addresses, so IPv6 solves a problem that doesn’t exist within the
enterprise space.

If IPv6 becomes more widely adopted in the consumer internet, there may be a
drive to standardize enterprise networking to use the same stack. When that hap‐
pens, data platforms will take more notice of IPv6 and will be tested more regu‐
larly against it. For now, it makes more sense to avoid IPv6 entirely.

Avoid multihoming
Multihoming is the practice of connecting a server to multiple networks, gener‐
ally with the intention of making some or all network services accessible from
multiple subnets.
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When multihoming is implemented using a hostname-per-interface approach, a
single DNS server can be used to store the multiple hostname entries in a single
place. However, this approach doesn’t work well with Hadoop when secured
using Kerberos, since services can only be configured to use a single service prin‐
cipal name (SPN), and an SPN includes the fully qualified hostname of a service.

When multihoming is implemented using the hostname-per-server approach, a
single DNS server is no longer sufficient. The IP address required by a client now
depends on which network the client is located on. Solving this problem adds
significant complexity to network configuration, usually involving a combination
of both DNS and /etc/hosts. This approach also adds complexity when it comes to
Kerberos security, since it is essential that forward and reverse DNS lookups
match exactly in all access scenarios.

Multihoming is most frequently seen in edge nodes, as described in “Edge-
connected networks” on page 130, where edge services listen on multiple inter‐
faces for incoming requests. Multihomed cluster nodes should be avoided where
possible, for the following reasons:

• At the time of this writing, not all cluster services support multihoming.
• Multihoming isn’t widely deployed in the user community, so issues aren’t

found as quickly.
• Open source developers don’t often develop and test against multihomed

configurations.

Summary
In this chapter we discussed how cluster services such as Spark and HDFS use net‐
working, how they demand the highest levels of performance and availability, and
ultimately how those requirements drive the network architecture and integration
patterns needed.

Equipped with this knowledge, network and system architects should be in a good
position to ensure that the network design is robust enough to support a cluster
today, and flexible enough to continue to do so as a cluster grows.
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CHAPTER 5

Organizational Challenges

In this chapter, we cover organizational aspects of successful Hadoop integration. It
is written for decision makers who build the teams that will deal with big data use
cases and operations, or for people who influence these decisions. That said, this
chapter may also be of interest to a wider audience, including HR professionals. We
will highlight how Hadoop’s architecture results in organizational challenges when
building teams that run and use it, and we will give you guidelines on what you
require from your larger organization to overcome those challenges and ensure the
success of Hadoop.

Although it is mostly apparent to technical staff that shifting an organization to be
data-driven means a big paradigm change, Hadoop projects often end up being just
another piece of software to onboard, and human factors are omitted. Especially in
the case of Hadoop, that can be a mistake. Just sticking to the traditional concepts of
IT operations may not result in negative effects when deploying Hadoop at small
scale and the PoC level, but as you scale and take your clusters to production, prob‐
lems are almost guaranteed.

To address these appropriately, you should plan for a new team, one that is dedicated
to Hadoop operations. This team will not only combine many of the existing skills in
your organization but will also include disciplines that are not yet common in corpo‐
rate IT.

For this discussion we assume classic on-premises IT operations. As with any other
workload, your mileage will vary if you decide to run in the cloud. Where appropri‐
ate, we will call out the differences of running in the cloud.
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Who Runs It?
A very common challenge with adopting Hadoop is the way that its operation tech‐
nologically surpasses the classic disciplines in the IT organization. You end up with
two choices:

• Place the responsibility for big data on an existing operations department.
• Create a new team for big data.

We aim to show that the first option is not sustainable in the long term, given the way
that big data systems and Hadoop are structured.

The second option, that of building a big data team, should not imply that this team
will manage clusters and Hadoop technologies in complete autonomy, but rather that
it must assume end-to-end responsibility for them. This team will control certain lay‐
ers in the enterprise IT stack that were previously covered by other teams, such as
storage. It will also be responsible for new layers, like YARN or Spark or HBase oper‐
ations, in their entirety. On the other hand, it will need to rely on other teams, either
via a split operations model, as is mostly the case with Linux, or by change requests,
as is often the case with networks.

It is important to understand the reasoning behind this: Hadoop is a distributed soft‐
ware framework by design, and distributed systems cannot be sliced across clear
boundaries. The preexisting roles in IT are not easily applied in separation anymore
—for example, each node in a cluster provides both compute and storage resources.
Operations teams have to think about the individual nodes’ impact on the network in
the event of a large join or shuffle operations and have to take into account the physi‐
cal placement and partitioning of database tables. Data scientists and developers need
to seriously consider how Spark applications are distributed on these tables and parti‐
tioned datasets in order to write efficient distributed applications that stay within
SLAs. All participants should know how the query systems (such as Spark, HBase,
and Impala) function to a fair degree, and you should also have some experts who
can debug these systems and their interaction with the Linux operating system.
Equally, everyone should be familiar with the various file formats, such as Avro and
Parquet, that are important to achieve superior results.

Is It Infrastructure, Middleware, or an Application?
Hadoop cannot be categorized in the classic sense—it’s infrastructure, middleware,
and application. We could say it is a middleware software framework that provides a
distributed infrastructure layer for compute and storage, exceeding the scalability of
state-of-the-art infrastructure.
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Hadoop shifts a fair amount of infrastructure-level features into the middleware and
application domains and, in many aspects, requires application designers to pay
attention to the mechanisms on the infrastructure level to unleash its full feature set
and potential. Take, as a prime example, data replication in HDFS, which lifts the
durability guarantees from hardware failsafes into a Java-based software framework.

Another key aspect is that, despite being distributed systems, big data clusters are
monolithic. Hadoop services, for example, scale horizontally across many servers but
vertically integrate hardware, system-level software, and middleware infrastructure
across all these servers into a single system. This requires an understanding of the
cluster as a whole, rather than focusing on individual components.

Case Study: A Typical Business Intelligence Project
The type of organizational change that Hadoop drives is best described by an exam‐
ple. In the following, we compare the team setup of a business intelligence (BI) appli‐
cation on top of state-of-the-art data warehouse infrastructure against the proposed
team setup when implementing the same solution on Hadoop.

The comparison and technical description will be very high level so that we can focus
on the organizational factors. Typically, BI and data science organizations have natu‐
rally evolved on top of original use cases.

The Traditional Approach
Let us start with an overview of the traditional solution approach, as shown in
Figure 5-1. The data stored in data warehouses mostly originates from the core busi‐
ness use cases, which are sophisticated applications—in our example a web frontend
and business logic implemented in a middleware application server. The use cases
that run on the application server are each implemented by a team of developers.
This could be a webshop, a hotel booking system, or a message board, for example.

The BI solution is typically implemented by a separate development team. Conduct‐
ing analytical queries on the transactional system would likely impact overall system
performance. The query response times of the transactional database are therefore
typically optimized by regularly deleting finalized and expired transactions that are
no longer needed for the actual use case. The expired or completed transactions are
extracted and loaded into the data warehouse system. Optionally, transformations are
applied while the data transitions into the data warehouse, as indicated by the ETL
arrow.

As shown in Figure 5-1, the data warehouse is accessed via a server running a BI solu‐
tion, which implements web-based dashboards to graphically present aggregate
results of analytical queries. Some solutions also require separate client software to
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interface with the server. To provide scalability, it is common, although not neces‐
sary, that several servers host the data warehouse implementation.

Figure 5-1. Traditional reporting solution

Scaling state-of-the-art data warehouses has practical limits. Instal‐
lations with more than three or four servers are typically imple‐
mented as appliances, but solutions rarely scale beyond the double-
digit terabyte range. This is partly for technological reasons and
partly for economic reasons and is one of the drivers for organiza‐
tions to consider Hadoop.

To drive up utilization of IT infrastructure, the majority of organizations use com‐
pute and storage virtualization. The BI server will most likely run in a virtual
machine (VM) that connects to a remote storage volume implemented on a storage
area network (SAN). This is frequently also true of data warehouse servers; however,
many warehouse solutions are built as bare-metal appliances to provide the perfor‐
mance advantages of local storage, just like storage systems in the Hadoop realm do.
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Typical Team Setup
Next, we break down the typical IT job roles shown in the traditional setup in
Figure 5-1. Although all of these roles are well known to the reader, we review them
here to set the stage for our revised team setup in the next section.

We require the following roles:

• Architect
• Analyst
• Software developer
• Systems engineer
• Administrator

The horizontal axis of Figure 5-2 shows how these individual job roles cover the spec‐
trum of required skills. The vertical axis provides a rough gauge of the required depth
of skill for a given role. As the figure indicates, there is a fair amount of overlap
among the roles. In the following sections, we look at each role individually and how
they relate to each other.

Figure 5-2. Skill sets and overlap among typical roles in a business intelligence stack
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Architect
The IT or enterprise architect is found in almost every corporation. Architects have a
very wide range of skills across all technologies involved in a given solution. They
take on technical coordination among the other roles involved, provide a blueprint
for the solution, and oversee the technical implementation. They also work closely
with project management, line management, and all other stakeholders as the techni‐
cal representatives of particular projects. Architects typically grow into their role
from an expert role in one of the other disciplines.

Analyst
The analyst usually has a sophisticated background in statistics or mathematics. Ana‐
lysts understand and apply the models centered around descriptive and predictive
analytics.

Although there are also business analysts, when we mention ana‐
lysts in this text, we are referring to data analysts.

Most analysts are able to process and explore data in statistical or scientific program‐
ming languages such as R or Python. For scalable productive BI reports, the analyst
uses a range of algorithms on multidimensional views on the data in tabular form
(also known as cubes) based on star or snowflake database schemas in the data ware‐
house. This achieves a high degree of abstraction for the analyst, who focuses on the
data algorithms that often have been optimized for cubes in the BI solution.

Software developer
Software developers not only write, build, and maintain code, but also are involved
with the continuous integration and operation of the underlying infrastructure. In
our example, a software developer would likely be involved in providing the presen‐
tation layer of the overall solution, producing dashboards according to the require‐
ments of the analyst team.

So as to avoid confusion with the term systems engineer (intro‐
duced in the text that follows), we do not use the term software
engineer.
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This may either be done via a custom-built solution or by leveraging BI software.
Depending on the organization, the same or an additional team of developers will
design the data model of the data warehouse.

Administrator
Administrators, also called operators in some organizations, are responsible for the
day-to-day process of keeping the infrastructure up and running, including updates,
incident resolution, and monitoring of the infrastructure and the applications created
by the developers and engineers. Administrators typically use configuration manage‐
ment and monitoring frameworks and often develop and maintain scripts or code to
support these systems and to increase the degree of automation.

Some solutions are implemented on top of appliances—in our case, a data warehouse
appliance. In this case, there is no need for Linux, storage, or virtualization adminis‐
trators; however, a highly specialized administrator would have to tend to the opera‐
tion of the appliance itself. The need for a virtualization administrator naturally
depends on whether virtualization is used.

Systems engineer
In addition to software engineering, the title engineer refers to job roles concerned
with defining operational standards and procedures for the various IT infrastructure
domains. These people may be called systems engineers, but even more often the spe‐
cific domains of infrastructure are used in the name of the role. For example, network
engineers design the address layout of a Layer 2 domain and its failover strategy for a
certain use case. Storage engineers define the type of storage and high-availability and
performance characteristics, as well as quotas for the given use case. Virtualization
engineers focus on VM provisioning and on meeting required SLAs on the compute
layer.

The systems engineer often has some software development skills, along with those of
an administrator. As such, in our example, multiple engineering and administration
roles would be involved in the full BI stack:

• Database engineer/administrator
• Linux engineer/administrator
• Server engineer/administrator
• Storage engineer/administrator
• Virtualization engineer/administrator
• Network engineer/administrator

Case Study: A Typical Business Intelligence Project | 145



In many organizations engineering and operations are not separate disciplines, and
the operational standards and design for a given solution are defined by the architect
at a high level, after which the administrator designs and implements the low-level
details. When an organization chooses to employ engineers, it is typically due to
heavy reliance on operational standards and procedures, such as within hosting or
outsourcing companies. Also, the use of offshore operations teams and the resulting
need to define the operational standards at a single place in the corporation—for
example, a center of competence—are strong drivers to employ systems engineers.

If you run in the cloud, basically there are no server, storage, or vir‐
tualization engineers or administrators, since that part of engineer‐
ing is mostly automated by the cloud platform. You are likely to
still have a team of Linux and database engineers and administra‐
tors.

Compartmentalization of IT
We went through the previous exercise to introduce the typical roles and to remind
ourselves of the strict separation of duties that many corporate IT environments have
adopted in the past, to make the delivery of complex IT stacks a true service for their
corporations.

The large number of roles and responsibilities involved can be challenging. The rea‐
son behind compartmentalization is that administrators and engineers are all respon‐
sible for a large number of different systems and can easily scale their work by the
operational standards and interfaces in the organization. This often results in the
organizational structure depicted in Figure 5-3.

Figure 5-3. Classic enterprise IT team organization

The end user or customer in this scenario is the analyst. Any changes required at any
layer are usually requested by one of the layers above it via a ticketing system. For
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example, a request by the analysts to add more tables to the data warehouse would be
brought to the database administrators, who may in turn request a new storage parti‐
tion from the Linux team, which then needs to ask the storage team to resize a SAN
volume.

As you can see in Figure 5-4, in order to run the data warehouse systems, server
administrators and engineers, Linux and virtualization professionals, and database
administrators must interact with each single system, creating a complex stack of
duties and responsibilities.

Figure 5-4. Team interactions in the traditional setup

Revised Team Setup for Hadoop in the Enterprise
Similarly, analyzing data at the scale provided by Hadoop requires the analyst to
understand how Hadoop, as a distributed system, works. Often, the only way to bring
the data into the format required to run an algorithm at scale is to craft an ETL pipe‐
line directly as a Spark job. Equally often, scaling algorithms and developing machine
learning applications require going beyond the capabilities of business intelligence
solutions and hand-tailoring big data applications in code. Coming full circle on
these additional capabilities, while maintaining the analyst’s solid understanding of
statistical methods, is what best characterizes the transition to the data scientist role.

On the operational side, we show that Hadoop requires knowledge of several engi‐
neering disciplines that we mentioned earlier, such as Linux and storage, in a single
role. The complexity and the velocity of evolution in the Hadoop ecosystem require a

Case Study: A Typical Business Intelligence Project | 147



tight coupling of the definition of operational procedures and actual operation.
Therefore, in most enterprise Hadoop deployments we have come across, the staff
operating the platform always work at the level of an engineer, as well. We refer to
the corresponding role as the big data engineer.

Big data architect
Let us now turn to how Hadoop technology changes requirements for successful
teaming within the organization. Figure 5-5 provides an overview of a revised setup
of roles, which we describe in detail in the following sections.

Figure 5-5. Skill sets and overlap in the example Hadoop team setup

Much like the architect in our original solution, the big data architect oversees the
overall solution on a technical level and performs stakeholder management. How‐
ever, the big data architect ideally also shows an extensive set of prior experience on
the Hadoop platform.

It is well worth mentioning that, since technical architects largely work as the media‐
tors between the technical teams and management, architects for Hadoop also repre‐
sent the paradigm change in IT organizations that we are describing in this chapter.
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1 See, for example, Berkeley’s Master of Information and Data Science program.

Since the big data architect role overlooks the complete skill spectrum of Hadoop, it
is certain that internal and external teams will turn to the architect with questions on
how to best build big data solutions and how to interface with the Hadoop team.

The architect is responsible for technical coordination and should have extensive
experience working with big data and Hadoop.

Data scientist
Although the term “data scientist” has been around for some time, the current surge
in its use in corporate IT reflects how much big data changes the complexity of data
management in IT. It also reflects a shift in academia, where data science has evolved
to become a fully qualified discipline at many renowned universities.1

Sometimes we see organizations that are largely indifferent to data science per se, or
that simply try to rebrand all existing analyst staff as data scientists. The data scien‐
tist, however, actually does more:

Statistics and classic BI
The data scientist depends on classic tools to present and productize the result of
his work, but before these tools can be used, a lot of exploration, cleansing, and
modeling is likely to be required on the Hadoop layer.

This is due to the massive increases of volume and variety of the data in the
Hadoop realm, It is also due to the fact that the data scientist gains an enormous
set of capabilities, via tools such as Spark, to evaluate the data at scale before it
transitions into its final form, for example, a denormalized relational model,
which previously was not an option.

Many BI vendors have made large technology investments to supply an equal
degree of abstraction for Hadoop datasets as for data cubes in relational ware‐
houses, but their ability to efficiently scale varies from use case to use case.
Another common challenge when transitioning analytics problems to the
Hadoop realm is that analysts need to master the various data formats that are
used in Hadoop, since, for example, the previously dominant model of cubing
data is almost never used in Hadoop. Data scientists typically also need extensive
experience with SQL as a tool to drill down into the datasets that they require to
build statistical models, via SparkSQL, Hive, or Impala.

Machine learning and deep learning
Simply speaking, machine learning is where the rubber of big data analytics hits
the road. While certainly a hyped term, machine learning goes beyond classic
statistics, with more advanced algorithms that predict an outcome by learning
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2 Michele Banko and Eric Brill, “Scaling to Very Very Large Corpora for Natural Language Disambiguation”,
Microsoft Research.

from the data—often without explicitly being programmed. The most advanced
methods in machine learning, referred to as deep learning, are able to automati‐
cally discover the relevant data features for learning, which essentially enables
use cases like computer vision, natural language processing, or fraud detection
for any corporation. Many machine learning algorithms (even fairly simple ones)
benefit from big data in an unproportional, even unreasonable way, an effect
which was described as early as 2001.2 As big data becomes readily available in
more and more organizations, machine learning becomes a defining movement
in the overall IT industry to take advantage of this effect. Competitors are setting
themselves apart by how well they embrace this advanced part of data-driven
decision-making.

Although we do not go into the details of machine learning in this book, its tech‐
niques are becoming essential for enterprises. Machine learning typically
requires a solid background in mathematics/statistics and algorithms. Computa‐
tionally, instead of the prepackaged, cube-based algorithms of statistical software
packages, data scientists rely on programming languages such as Python, Scala,
or R to implement and run machine learning models. Frameworks like Tensor‐
Flow, PyTorch, or DeepLearning4J enable support the data scientist to abstract
and build machine learning models or neural networks, regardless of the execu‐
tion environment. At scale, however, this requires in-depth knowledge of parallel
computational frameworks, such as Spark. Keras and TensorFlow, in turn, sup‐
port running on Spark but also leverage GPUs, for example, which are becoming
an increasingly important topic for Spark itself.

Coding
Whereas the typical analyst or statistician understands methods and models
mathematically, a good data scientist also has a solid background in parallel algo‐
rithms to build large-scale distributed applications around such models. As we
already mentioned, the data scientist is well versed in coding in third-generation
and functional programming languages, such as Scala, Java, and Python, in addi‐
tion to the domain-specific languages of the classic analytics world. In this func‐
tion, the data scientist collaborates with development departments to build fully
fledged distributed applications that can be productively deployed to Hadoop.
The work split could be that the development organization builds the ingest and
business logic of the application and maintains the build-and-deployment pro‐
cess, while the data scientist owns and tests the modules and routines that per‐
form the actual learning and modeling algorithms at scale.
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In order to apply state-of-the-art analytics methods to big data, organizations should
ensure that their analyst staff extend their skill sets into these domains and evolve
into what we refer to as data scientists. This requires some leeway for experimenta‐
tion but is certainly also a clear-cut directive to embrace distributed systems.

Many organizations that have gone through the initial Hadoop adoption cycle have
developed a firm conviction that their data is among their most important assets. The
data scientist is an extremely skilled role that unlocks this asset and is, in turn, one of
the most difficult roles to staff in an organization. Data scientists are also likely to be
among the most expensive roles to staff from the open market. When hiring for this
role we recommend extra scrutiny because of the current inflationary use, through‐
out the industry, of the term data scientist.

Big data engineer
Because Hadoop is a disruptive technology, operations teams will spend a fair
amount of time defining standards for it. The standards for Hadoop will constantly
evolve and grow as new projects and services are onboarded. Thus, administrators
will often face engineering work, and conversely, engineers will often find standardiz‐
ing and adopting Hadoop technology into fully industrialized procedures so short-
lived that they tend to also operate the platform. As a result, for Hadoop, we have
frequently seen operations and engineering merge into one role. Therefore, if possi‐
ble, you should make the corresponding role of the big data engineer official.

As far as the skill profile goes, you probably already know that there is simply nobody
within an enterprise IT storage team who can, for example, run and maintain an
HDFS instance or oversee a multitenant YARN scheduling environment without
profound knowledge of the Hadoop platform itself. To do so, the big data engineer
requires a versatile set of skills and needs to evolve it into the specifics of Hadoop.
The best way to demonstrate this is to break down these skills by the classic disci‐
plines, which we do in the following list. We also try to give a range of examples to
demonstrate why a particular area of skill is required:

Linux
The big data engineer needs to be able to assume full control over the servers,
their operating system, and their storage subsystem. Big data engineers regularly
perform low-level analysis on Linux. Tools such as strace or access to the /sys
and /proc filesystems may be required to debug problems with the various
Hadoop daemons. Other examples of the big data engineer’s Linux skills include
debugging with secondary services, such as DNS, the Network Time Protocol
(NTP), or the System Security Services Daemon (SSSD), which are essential for
Hadoop’s function (as we learned in Chapter 7 and will see again in Chapter 10).

These activities create a common point of friction: in most cases, it does not
make sense to have the Hadoop team assume full responsibility for Linux admin‐
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istration. Most Hadoop experts will neither display the interest nor have the time
to pursue all the challenging tasks required to keep Linux up and running
according to a corporation’s operational and security standards. Yet, as illustra‐
ted earlier, it is imperative that big data engineers have root-level access to each
Linux instance in the cluster. There is a plethora of additional administrative
tasks, from basic restart of Hadoop service roles across upgrades to storage man‐
agement and problem debugging, which require administrator-level access.
Working these tasks via Linux tickets would simply paralyze your Hadoop team.
This results in a split administrator model for Linux, as shown in Figure 5-7. This
needs to be negotiated with Linux operations.

Storage
With Hadoop, storage management, storage resilience, and durability logic that
used to be implemented in hardware moves into the software and middleware
layer. Physically, storage is implemented on local disks across many commodity
servers, which run on Linux. This requires that the big data engineer’s skill set
not only include storage and distributed applications but also an understanding
of the characteristics of the storage subsystem and server hardware, such as
RAID controllers and hard disks in the Hadoop nodes, as well as the network
layer that affects HDFS performance, as covered in Chapter 3.

Resource management
A significant part of the work performed by the big data engineer is concerned
with managing and separating the cluster’s resources among tenants and with
imposing a cluster-wide information architecture and security model. This
includes but is not limited to management of:

• Static and dynamic resource allocations such as Linux cgroups and YARN
queues

• Permissions and access control lists in HDFS, Kafka, or Apache Kudu
• Role-based access control via tools such as Apache Sentry or Apache Ranger
• Integration points with identity management and external security systems,

such as LDAP, Microsoft Active Directory, or Kerberos
Although every big data engineer should be knowledgeable about these areas, not
all of them will be focused on resource management and storage. They may also
be experts in higher-level query systems, databases, and application services of
big data and Hadoop systems. This may mark a natural boundary and an oppor‐
tunity for specialization in your team.

Applications
To fully unlock the huge throughput and performance advantages of massively
scalable clusters, the work of the big data engineer transcends into query and
application design itself, supporting software development teams. Today, “appli‐
cations” mostly refers to Spark applications, whether they are Spark batch jobs,
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Spark SQL, Spark Streaming, or Structured Streaming applications. Big data
engineers have expertise in Spark mechanisms for parallelization—i.e., transfor‐
mations such as map() or join()—and their ramifications for the partitioning
pattern of the data, as well as Spark’s internal resource management, to just name
a few examples. Additionally, big data engineers frequently install third-party
software packages, such as certain Python distributions, manually on cluster
hosts to support specific use cases.

SQL-based systems and databases
The big data engineer needs to understand how to design databases, tables, and
partitioning schemas in the various Hadoop database implementations that may
support their use cases. For SQL query systems such as Hive or Impala, best
practices recommend staffing the big data engineering team with database
administrators. For many organizations, it is therefore tempting to assign the
entire responsibility for Hadoop databases to existing database administration
teams. This often helps to partly fill a required skill gap for SQL-based systems
but typically does not help for systems such as HBase, Solr, or Kafka. It also
neglects the high degree to which Hadoop-based query systems are intertwined
with the platform itself. For example, to be able to properly design large tables for
complex queries in Impala or SparkSQL, detailed knowledge about HDFS and
the Parquet file format are required to optimize performance via proper parti‐
tioning and choice of split size in HDFS. Another example would be the choice of
compression type and ratio and Hadoop file formats to achieve best throughput
on predicate evaluation in SQL queries.

Other query systems
Maybe not initially, but eventually (and based on use cases in the business), big
data engineers also typically command at least one Hadoop service, such as Solr,
HBase, or Kafka, in addition to the base services. Nowadays it is also common to
find HBase, Kafka, or Solr talent on the open market.

Networks
Even though networking is not included in the big data engineer’s direct respon‐
sibilities, big data engineers often trace network communication via the Wire‐
shark tool to analyze problems with the various RPC communication threads we
discussed in Chapter 4. Even a simple call to the netstat command to identify a
blocked port on the firewall requires knowledge of the Linux network stack and
root-level privileges. As a follow-up, it is often necessary to engage directly with
the network team on the design of the network itself. Many times, Hadoop
requires changes to the production standard on the leaf level of the datacenter
network. The network department is the only one that can make sure that any of
those adaptions integrate well with the remainder of the datacenter network. The
big data engineer should seek a close liaison with the network engineering team,
working toward an optimized infrastructure, as introduced in Chapter 4.
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Apart from the open market, sources for staffing big data engineers may, for exam‐
ple, be database administrator teams or Linux operators with an affinity for software
development, or developers with an advanced knowledge of Linux. These professio‐
nals initially operate the base platform layer, but also eventually assist other business
units with application design. Additionally, software developers are often recruited
into big data engineering and then are predestined to support the business units in
application design and in maintaining and operating the application layer in the
cluster.

Solution Overview with Hadoop
Now that we have changed the roles and skill profiles to wield cluster technology, we
attempt a new solution design based on a Hadoop cluster.

Figure 5-6 shows how the proposed roles interact with the technical solution built on
top of Hadoop. As you can see, the number of roles that are involved in the solution
is now reduced from eight to six.

Figure 5-6. Solution overview with Hadoop

The data warehouse is now likely implemented with Impala or Hive, or potentially
with Spark SQL. In almost all cases, an existing BI solution would remain in place
and would be integrated with Hadoop via JDBC/ODBC. In some cases, BI solutions
also launch Spark queries themselves.

The Linux and server administrators conduct minimum system maintenance, such as
patch management, firmware upgrades, parts replacement, etc., and the big data
engineer handles all necessary system customization to run Hadoop on the nodes. In
our target solution, a storage and virtualization engineer is not required. As depicted,
the big data engineer drives storage engineering and administration by taking over
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responsibility for HDFS. The big data engineer also takes over the responsibility of
database administration on top of Hadoop and fulfills the classic role of database
administrator.

Data scientists design and use the BI solution but also spend much of their time
interfacing with the Hadoop cluster, to explore and curate the data and to develop
applications directly on Hadoop.

Just like in the original solution, a team of developers writes and maintains applica‐
tions on the BI server. The same team of developers (or, alternatively, a second team)
is responsible for implementing applications on top of the Hadoop cluster.

New Team Setup
How does this affect the typical IT organizational structure we reviewed in “The Tra‐
ditional Approach” on page 141? We are perfectly aware that staff reorganization
does not happen overnight and that one size does not fit all. But the best way to pro‐
vide prescriptive guidance is to use an example, so this section can be used as the
blueprint for a big data team.

In Figure 5-7, we illustrate that a new department for big data includes Hadoop
developers as well as big data engineers. Data scientists would likely remain in the BI
department but would closely collaborate on big data application development with
the big data department, as indicated via the dotted line. The big data engineering
team assumes full responsibility for Hadoop cluster management—especially for all
Hadoop query systems, such as Hive, Impala, HBase, or Solr—and for the underlying
storage layer. As outlined earlier, the big data engineers share responsibility for the
underlying servers with the Linux and server operations departments.

Figure 5-7. How big data typically impacts enterprise IT organizations
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Split Responsibilities
As we discussed, the changes we describe at certain points require a split in responsi‐
bility for certain technology components among the big data engineering and other
operations and engineering teams.

A common example is Linux administration. The the big data engineer might require
a specific version of a Java Development Kit (JDK), which is normally fixed as part of
the Linux team’s standardized rollout. You need to establish whether such a change
can be unilaterally performed by big data engineering or whether this needs to be
requested via service tickets. If you figure in many nodes from larger clusters and a
multitude of these integration points, this may well result in a large number of service
tickets, which may not always complete successfully. It’s imperative to establish the
right balance between self-sufficiency and standardization at exactly these points.

Another example is hardware component replacement, The server operations team
owns most of the process for replacing defective parts or entire servers. Although
many software services in Hadoop instantly kick off a process of self-healing after a
server or disk is impaired, the big data engineer depends on the server team to
recover full capacity. As opposed to virtualized environments, where virtual
machines may be automatically migrated to other hosts, you need to determine the
process, for example, for the replacement of a complete server. Does the server team
maintain a small stockpile of spare systems, or do they rely on service by the manu‐
facturer? If the model is that of external service, what is the service level in terms of
response time? After a server is replaced, who does the basic configuration, such as
storage-controller configuration, and how long will it take to deploy the server with
Linux?

When you run in the public cloud, as you will see in Chapter 16,
you can also choose PaaS/SaaS solutions, which reduce the foot‐
print of roles (as well as your flexibility and control over infrastruc‐
ture components).

Do I Need DevOps?
In a sense, the rise of the term DevOps mirrors the rise of corporate distributed com‐
puting. In some definitions DevOps signals a merging of the developer and operator
roles into one, often skipping any compartmentalization as described earlier. Others
simply define it as operators who automate as much as possible in code, which is cer‐
tainly beneficial in the world of distributed systems.

To a degree, the big data engineer falls into both definitions, and in a closely organ‐
ized group, even the data scientist may take the initiative on certain tasks around
deployment automation and platform performance optimization.
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For the most part, however, our experience is that a full implementation of DevOps
only occurs in companies whose entire business is centered around a few large-scale,
web-based services; classic enterprise IT as a service to the core business is too diver‐
sified to give up compartmentalization.

Hadoop does indeed encourage heavy consolidation and building the equivalent of a
large-scale internal service for data, also often referred to as the data lake.

To summarize, in our experience, it is best to start with a dedicated big data engineer‐
ing role that consolidates engineering and operations for Hadoop and maintains a
close liaison with development teams.

Do I Need a Center of Excellence/Competence?
Many organizations have a center of excellence (or center of competence) to establish
new technology internally and to enable quick movement on related projects. For
Hadoop, we have come across this setup often, and for the most part it is helpful.
Often, the center of excellence directly inherits the responsibility to operate Hadoop
environments. Alternatively, the center of excellence may be the bridgehead to off‐
shore Hadoop operation teams. You should think about how much such a center of
excellence would depend on existing processes and compartmentalization. If the new
team cannot act autonomously as described here, the excellence might be on paper
only. If you can, aim to staff a center of excellence with big data engineers, develop‐
ers, and optionally, data scientists.

Summary
Hadoop moves the policies for storage durability, high availability, multitenancy, and
many other infrastructural aspects into software, while the basic mechanisms it relies
on are implemented in commodity infrastructure. This requires Hadoop staff to
operate, maintain, patch, and debug many infrastructure layers at once.

In this chapter we introduced the role of the data scientist, implemented in many
organizations today. The data scientist represents the natural evolution of BI analyt‐
ics toward more sophisticated methods, such as machine learning and large, scalable
data curation and complex event processing.

We further introduced the role of the big data engineer, who is required to display a
very versatile skill set, in addition to expertise in several layers of hardware infra‐
structure and Hadoop software. The big data engineer partly consolidates responsi‐
bilities of other IT departments into a single role, gaining necessary autonomy over
distributed technology, which is operated monolithically. In practice, big data engi‐
neers depend on other functions, such as Linux and server operations, to perform
their work.
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Effectively, as you probably realize, the main audience for this book is big data engi‐
neers and big data architects. You may wonder whether the big data engineer’s
responsibility is not simply too much specialization for a typical IT job role, and you
would be right. Big data engineering is not yet a typical job role, and it is hard to staff
and to grow into.

As we pointed out, though, this does not mean that an organization will get away
with treating Hadoop as just another middleware application or database.

Today, there is no clear, de facto model that is the right way to run. What can be said
for certain is that Hadoop disrupts strict compartmentalization and requires engi‐
neers with a broad range of sophisticated skills.
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CHAPTER 6

Datacenter Considerations

Hadoop architects and engineers are not primarily concerned with the datacenter,
which offers rather mechanical and commoditized layers of enterprise IT. However,
some key features of Hadoop only work as advertised if they are met by the correct
layout of datacenter technology. You need to be aware of these effects when placing
Hadoop into an existing enterprise IT environment, which has typically been opti‐
mized for virtualized host environments and remote storage solutions over the
course of the last 10 years.

The content in this chapter, although not an exhaustive discussion on datacenters,
may well be of crucial importance for certain key architectural decisions related to
reliability and disaster tolerance.

We initially focus on some basic datacenter infrastructure concepts before we revisit
some of the ways in which Hadoop differs from other commodity infrastructure set‐
ups. We provide a section that addresses common issues with data ingest in the con‐
text of datacenters, and finally we highlight common pitfalls that emerge around
topics like multidatacenter disaster tolerance.

If you run Hadoop on a public cloud service, much of this chapter is not relevant to
your situation, but “Quorum spanning with three datacenters” on page 179 specifically
covers an important subject around cluster spanning that you should observe.

Why Does It Matter ?
Intuition tells us that the distributed nature of Hadoop is likely to have ramifications
for the datacenter. But how exactly is Hadoop different from other workloads on this
level? Two topics come to mind:
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Failure tolerance
For classical applications that rely on SAN storage, there often is the assumption
that they can be restarted on spare infrastructure in the case of error—either in
another zone of the same datacenter or in a different datacenter altogether. As a
result of the inertia of the vast amounts of data that it manages, Hadoop does not
offer the same flexibility. Fundamental assumptions in your organization about
failure tolerance may not hold in the case of Hadoop, and this needs to be reflec‐
ted in operational concepts for disaster recovery, maintenance, and datacenter-
level fire drills.

Performance and scalability
Anything upwards from a medium-sized Hadoop deployment will not fit in a
single rack, while most other applications in the datacenter run on a single
server. Hadoop allows for configuration of additional failover capabilities and
performance optimizations when deployed across multiple racks. However, as we
will see, the actual rack boundary may be different than the physical boundary, in
terms of power distribution, cooling, and networking. For networking perfor‐
mance, it is equally important to understand the actual rack boundaries.

Basic Datacenter Concepts
Datacenter design is not widely regarded as an academic discipline. Although much
research and many publications exist around distributed systems and high-
performance computing, there is very little literature around the subject of the data‐
center itself, and it is mostly excluded from academic research.

Strikingly, it is at the center of many research efforts of large-scale web content pro‐
viders such as Google1 and Facebook.2 These companies have an existential need to
deliver their services on huge distributed platforms. They are thus driven by a strong
incentive to treat a whole warehouse full of servers as a monolithic computing layer,
on which they strive to consolidate services and end users as much as technically pos‐
sible. (See, for example, the initial paper by Google on GFS.3)

This obviously differs a lot from the compartmentalized IT solutions found in many
enterprises. Physically, a Hadoop cluster is a collection of commodity servers. But as
we mentioned in Chapter 5, a Hadoop cluster should be regarded as a monolithic
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appliance since, despite its distributed nature, its components work in tightly coupled
concert. This is especially relevant for datacenter planning.

Apart from server housing and racking, the architecture of the datacenter affects
Hadoop through the following infrastructure layers:

• Networking
• Power distribution
• Cooling

Figure 6-1 shows an example layout for datacenter facilities that accommodates a
Hadoop cluster across multiple racks. We focus on the servers in Rack 1 and Rack 2.
The servers are built into standard 19-inch racks. For the sake of simplicity, the figure
only shows the top portion of the racks and the wiring of a single server on each rack;
i.e., servers R1Server1 and R2Server1.

Figure 6-1. Typical datacenter setup

As is common in most enterprise IT datacenters, the power and cooling infrastruc‐
ture is built redundantly along with the network layer. We investigate this infrastruc‐
ture in detail in the following sections.
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Your datacenter layout may look different, but the example serves to establish the
important concept of failure domains in each of the infrastructure layers. In “Rack
Awareness and Rack Failures” on page 165 we show why it is important to understand
all failure domains in your cluster, especially when the cluster only runs on a small
number of racks.

Cooling
Cooling in our example is conducted via an air circuit underneath a raised floor, as is
conventional for many datacenters. The raised floor is indicated via the strong gray
line beneath the rack component. The required airflow is delivered via so-called
Computer Room Air Conditioning units (CRAC units), which are located on top of
the raised floor. They absorb warm airflow, which is emitted by the servers. Each unit
typically connects to a secondary cooling cycle via a heat exchanger, which removes
the heat from the primary cycle. Then the CRAC unit delivers cold air to the datacen‐
ter floor under a slight amount of pressure, which causes it to emerge from the floor
on the cool side of the server racks. In this configuration, the plurality of CRAC units
contributes to the overall amount of cooling required.

Although one CRAC unit is closer to a given rack than others, there is no particular
local binding of a given unit to a rack. Rather, the overall budget of cooling should
allow for sufficient headroom to allow for downtime of one or more CRAC units for
maintenance or failure. Thus, in our example, cooling does not affect rack awareness
in any configurable way.

Alternative cooling infrastructure solutions exist:

• In-row cooling devices are placed directly between two racks and provide cooling
for the racks in their immediate proximity.

• In-rack cooling devices cool the heat that dissipates from a single rack only.

Both alternatives provide more efficiency than raised-floor cooling, especially when
they are operated as a closed hot aisle, where the hot sides of the server racks are
pushed against each other and the gap on the top is typically closed. Some designs—
for example, Google’s Hot Huts—turn the entire ceiling of a hot aisle into a cooling
device.

Because of the large amount of heat dissipation, these solutions often require a cool‐
ing medium. Bringing the coolant close to the rack drives a significant cost increase
in plumbing and is deemed a potential hazard by some datacenter architects.

The key takeaway from this discussion is that, depending on the technology that you
use, you bind the capacity of a cooling device to a set of racks. This set of racks
becomes your failure domain for cooling. Needless to say, all failure domains ought to
be cooled redundantly.
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Do you know which cooling technology is used in your datacenter
and what the operational experiences of the datacenter operators
are? A conversation about this may reveal important information
about the role that cooling should play in your failure domain
planning.

With raised-floor cooling, the device that yields cooling capacity is a CRAC unit. The
failure domain in this case is hard to pinpoint—it is surely not all racks but also
surely not a single rack. Redundancy is achieved by the plurality of all CRAC units.

Conversely, if you use in-row cooling, the failure domain is likely limited to just two
racks and redundancy for these two racks is achieved by just a pair of devices.

Power
In our example, each server is equipped with dual modular power supply units
(PSUs) to provide for redundancy. These are offered by all major server manufactur‐
ers. Each rack provides two power strips, an A side and a B side, and one PSU is con‐
nected to each.

The power strips redundantly run into the raised floor, where they in turn connect to
a power distribution unit (PDU). As implied by the name, the PDU distributes a large
power feed to a multitude of smaller circuits. Each circuit is protected by its own
breaker switch, so that any problems—for example, a short in a server or a power
supply—are contained within the circuit. In Figure 6-1, each breaker protects exactly
one rack, but in other cases several racks might be connected.

Since a PDU may fail as a whole, it should be implemented in redundant pairs, each
feeding the A and B side of a rack, as we show in Figure 6-1. Some PDU models,
however, directly group the A and B side redundantly into a single enclosure.

To provide uninterrupted service in the event of a loss in primary power distribution,
datacenters always use uninterruptible power supplies (UPSs), which are essentially
large collections of batteries that bridge the gap in power until secondary power dis‐
tribution sources, typically diesel engines, take over. The PDUs connect to the UPS,
which is usually also laid out redundantly into two independent systems for the A
side and the B side.

Depending on the datacenter’s architecture, the A side and the B side are independ‐
ent power feeds from the regional power grid, in which case the substations and the
primary switchgear that performs voltage conversions from high to medium voltages
are also implemented redundantly.

Because of the distinct breakers for Rack 1 and Rack 2 in Figure 6-1, it makes sense
from a high-availability and Hadoop rack-awareness standpoint to consider both
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racks as separate, but bear in mind that a failure of the entire PDU would affect both
racks.

The ideal case, from a redundancy standpoint, is that Rack 2 would
be connected to a separate pair of PDUs, which often cannot be
guaranteed. However, it may be possible for someone from the
datacenter team to put your master nodes on different PDU pairs.

Power distribution designs may differ in the usage of alternating or direct current
between the UPS layer and the PSU to optimize conversion loss and sometimes to
reduce the number of components in the final solution. Some designs, also actively
developed by Google, even integrate the UPS directly at the PSU level. However,
these sorts of optimizations are rarely found in enterprise IT, where company coloca‐
tion is common and standardization is thus important.

It should be noted that redundant power supplies are not strictly necessary for
Hadoop, if you can deal with rack failures. Some of the large-scale Web 2.0 content
providers reduce redundancy on the hardware layer, since most of the services we
have covered—especially HDFS—by design allow the loss of replicas. If you can fully
recover a failed rack, running with a single PSU can be an option, but read “Rack
Awareness and Rack Failures” on page 165 to fully understand the ramifications of
reducing server-level and rack-level redundancy.

Network
In our example, we show a fully redundant network layer—no matter which of the
components fails, all servers can still communicate with each other. Figure 6-1 shows
each server redundantly connected to a pair of top-of-rack (TOR) switches, one each
in Rack 1 and Rack 2, which implement the access layer, as introduced in “Resiliency”
on page 123. In our example, each server uses link aggregation technology, such as
LACP, to be able to compensate for a failure of one network connection. To also be
able to compensate for the loss of one of the switches each such aggregated link is
split across TOR-switch 1 and TOR-switch 2, which would both be in the same MC-
LAG group. Both TOR switches in our example directly feed into an aggregation layer
of the datacenter via two uplinks, to provide for the same level of redundancy as
between the servers and the TOR switches.

Although the process of cross-cabling racks, as shown in our exam‐
ple, is relatively complex and error-prone, it is still pursued in
many cases since it allows for the consolidation of more ports on
fewer switches. A redundant alternative is to have a pair of TOR
switches in each rack to compensate for switch failures.
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The goal of many network departments is to implement a single Layer 2 domain
across all switches and revert to Layer 3 routing only if really necessary. This is possi‐
ble via an Ethernet fabric, which we describe in more detail in “Network Fabrics” on
page 127. The access layer in our example uses MC-LAG for the hop of the servers to
the TOR switches, but often networking teams run a standard that requires the fabric
protocol to be on the access layer.

If you choose a link aggregation mode that round-robins packets on server ports A
and B, network traffic for Rack 1 and Rack 2 will actually be shared by all switches
equally and Hadoop rack awareness should group all servers in Rack 1 and Rack 2
into a single logical rack, which also becomes your failure domain.

In many cases, ports A and B are set up in a pure failover configuration, which is eas‐
ier in operations but also omits half of the maximum possible bandwidth. Consider‐
ing Hadoop’s dependence on swift east-west communication performance, it is best
to implement a round-robin policy, which can be achieved by using MC-LAGs for
each rack.

Rack Awareness and Rack Failures
Now that we know about failure domains for each layer, we can investigate how they
work together best with Hadoop rack awareness. Hadoop is aware of racks for two
reasons: performance and increased data durability.

Our discussion here focuses on the durability aspect. Rack failure is a severe event,
especially on small to medium-sized clusters. Hadoop has a range of built-in mecha‐
nisms that alleviate the failure of a whole rack in software, but they work best in big
environments with many racks and they sometimes do not work in small environ‐
ments. The obvious example of this is a single-rack cluster, but the guidelines pertain
to small multirack clusters as well.

For example, if you run on two racks and then lose one, your data is still available
(assuming correct distribution of cluster roles, as discussed in “Cluster Configura‐
tions and Node Types” on page 97), but degradation of the overall service is likely to
be so severe that many of your jobs will fail. As we learned in “Erasure Coding Versus
Replication” on page 71, without redundancy in power, cooling, and network, era‐
sure coding requires a minimum of nine racks to effectively protect against rack loss.
However, enterprises often begin their journey with just a single rack and then grow
to multiple racks within the first year, depending on the overall adoption process. If
there is a single point of failure in your datacenter infrastructure—the power,
cooling, or networking layer—a problem in one of those layers will very likely impact
multiple racks at once. Luckily, as we have just learned, the various redundancy
mechanisms that should be built into your infrastructure make it much less likely
that entire racks go down, and thus it’s also very unlikely that a single rack fails in
isolation.
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Let us look at a few possible scenarios. We have grouped them by the three infra‐
structure layers and different cases (see Table 6-1):

The good case
Where highly available infrastructure conveniently covers failures, even for small
clusters

The single point of failure (SPOF) case
Where high availability of the infrastructure is decreased and the cluster is too
small to properly compensate for the infrastructure error by software mecha‐
nisms

The case of bad luck
Where, despite highly available infrastructure, you suffer service disruption

Table 6-1. Good and bad failure scenarios

Good case SPOF Bad luck
Cooling One of your CRAC units fails, but

the other CRAC units, which ran
at slightly reduced capacity
before, compensate for the
missing peer by increasing their
airflow output.

Too many servers were put on the
raised floor, and you have no
headroom in the output of the
remaining CRAC units left to cover a
failing unit. Several racks, among
them both racks in your two-node
cluster, eventually exceed target
operating temperatures and their
servers shut down.

The coolant supply to your redundant
in-row cooling experiences a leak on
both feeds. Several racks cannot be
cooled without the cooling medium
and eventually exceed operating
temperature. (Regular inspections of
plumbing infrastructure helps to avoid
this.)

Power All component layers in power
distribution from the main feeds
to the PSU are laid out
redundantly. The A-side PDU
that feeds several racks in your
cluster fails. The B-side power
distribution continues to supply
the affected racks all the way to
the redundant PSUs in the
affected server.

You operate a three-rack cluster with
a single power supply per server,
effectively not connecting one side of
your power distribution. One power
supply suffers an electrical short,
which triggers the breaker switch on
the PDU and brings down all the
servers on that circuit. Two of those
servers were HDFS JournalNodes.

Your cluster consists of two racks. Both
racks are connected to the same pair
of PDUs, each on its own breaker
circuit. The A-side PDU fails and the
power strip on the B side of Rack 1
experiences a short. Rack 1 is down
and unfortunately held two
JournalNode instances, which puts
HDFS into read-only mode.

Network The switches in your cluster
need an urgent firmware
upgrade. The network team can
safely reboot one switch after
another for maintenance, since
the entire cluster network is
built redundantly by bonding
network connections into the
access layer.

All hosts in your two-rack cluster use
bonded network connections to
increase throughput but connect to a
single TOR switch. One TOR switch
fails and leaves half of the nodes
unavailable. The heavily reduced
compute capacity results in failing
Spark jobs and missed SLAs.

A cluster like the one shown in
Figure 6-1 experiences many frame
errors, and the network team sets out
to replace aggregation switch 1.
Instead of disconnecting the uplink of
TOR 1 to aggregation switch 1 after
shutting it down, its uplink to
aggregation switch 2 is accidentally
disconnected. This disconnects Rack 1
and Rack 2 from each other.
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The key takeaway for most enterprise adopters of Hadoop should be that hardware
redundancy mechanisms for power, cooling, and networking make up failure
domains that typically span multiple racks, which makes an isolated rack failure still
possible, but quite improbable in practice.

If you run without said redundancy mechanisms, the failure domain is the rack for
some failures, such as a single top-of rack switch, but you may be susceptible to much
more drastic failures spanning across multiple racks, such as a failing multi-rack
PDU.

That being said, it is always possible to simply be struck by bad luck or user error. It
is also noteworthy to point out a somewhat dated but still relevant research effort by
Google which suggests that failures of multiple servers within the same rack are more
highly correlated than simultaneous failures of the same number of servers across dif‐
ferent racks. The root cause of this observation is hard to pinpoint but may well be
related to manufacturing batches, especially if you purchase servers and components
in bulk, like the big web content providers.

To summarize, your goal should be to minimize the chances of rack failure by using
redundancy in cooling, network, and power distribution. If you intend to leverage
Hadoop rack awareness to increase the availability of your cluster, you should under‐
stand the failure domains for power distribution, networking, and cooling. As we
learned in “Erasure Coding Versus Replication” on page 71, rack failures become
even more severe events for HDFS durability with erasure coding, and you should
make every effort to avoid them.

Failure Domain Alignment
In addition to the failure domains and the ramifications of failures in the layers we’ve
discussed, the way that the failure domains of each layer align with other layers is also
important.

Figure 6-2 shows an example of failure domains that are not aligned. Racks 1 and 2
form a failure domain on the network level, while Rack 3 belongs to a different net‐
work failure domain. However, for power distribution, Rack 1 (and most likely other
racks not shown) is in a different failure domain than Rack 2, which shares its power
failure domain with Rack 3. When you assign a rack to R2Server1, for example, there
is no clear way to do this: from a networking perspective, you should set the rack
of R2Server1 to Network Failure Domain 1, like all servers in Rack 1. From a power
distribution perspective, however, you should set the rack to Power Failure Domain
2, like all servers in Rack 3.
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Figure 6-2. Failure domains in the datacenter

In order for Hadoop to take the best corrective measures as part of its rack-awareness
features, failure domains for all infrastructure layers should always align. If they do
not, typically the network failure domains are used as the leading parameter to
configure rack awareness, since their maintenance usually incurs more complexity
than power equipment and rack awareness also serves to improve network perfor‐
mance. However, your situation may be different. If your PDUs happen to be non‐
redundant internally, a PDU failure would catastrophically affect a large portion of
the cluster. It would be wiser to align rack awareness with power failure domains.

In summary, racks are the mechanical packaging of servers but can also be thought of
as groups of servers in a group of congruent failure domains. But in some cases, the
failure domains are not congruent, nor do they necessary align with rack boundaries.

Understanding your datacenter failure domains gives you a notion of how highly
available your Hadoop clusters really are.

Space and Racking Constraints
Often, during initial planning, one assumes that a rack in the datacenter can be com‐
pletely populated with servers. Due to constraints in available airflow or power
budget on PDUs, it may only be possible to fill fractions of whole racks, and this may
make it necessary to cross the rack boundary sooner than anticipated. The same may
apply to available network switch ports. In both cases, we recommend that you care‐
fully consider your options. You should not compromise by connecting into an over‐
subscribed fabric or spreading Hadoop nodes across multiple network segments.
Instead, revisit options to build a Hadoop-specific network and/or rack segment in
your datacenter.
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Ingest and Intercluster Connectivity
A common question regarding Hadoop and datacenters is, “How fast do I get stuff
into or out of my cluster?” This could be either from systems within the corporate
network or over WAN connections.

The demand to know this is often driven by use cases that depend on large-scale geo‐
dispersed data collections, but naturally it also informs the sizing of the recovery
point objective (RPO) and recovery time objective (RTO) parameters when building
cluster-to-cluster replication pipelines (see “Policies and Objectives” on page 378).

The answer is, “It depends—on a lot of factors.” In this section, we present the
specifics and propose how to deal with them.

Software
One group of factors that affect ingest and extraction speed are related to software:

Compression support
Regardless of whether your ingest is batch-oriented, as it is with DistCp or
Cloudera Backup and Disaster Recovery, or message-based, as with Flume or
Kafka, when transferring large amounts of data over long-distance links, use high
compression ratios wherever possible. Usually, when comparing the time and
cost used for compression and decompression compared to bandwidth and the
cost of increasing it accordingly, compression over WAN connections wins.
There may be an argument about the compression codec. Among the commonly
supported formats in Hadoop are Snappy, LZO, GZIP, and BZip2. BZip2
requires the most CPU resources but achieves the highest compression ratios.
GZIP achieves compression similar to BZip2 and is supported by Kafka com‐
pression, as are Snappy and LZ4. In the case of Kafka, the compression codec will
not become transparent in the downstream systems since it only pertains to
internal communication between consumers, producers, and brokers. Snappy,
LZO, and BZip2 are all splittable formats, enabling direct consumption by paral‐
lel computation in Hadoop after ingesting. GZIP content, on the other hand, is
not splittable and first has to be converted. Splittability is not relevant when your
ingest path is message-based; e.g., when using Kafka as an ingest mechanism.
Often, the choice of compression codec is mandated by the originating systems,
such as ETL tools, Change Data Capture (CDC) systems, or autonomous devices.
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Surprisingly for many, DistCp does not offer built-in compression
support. There is an argument about whether compression only for
transfers makes sense, given that Hadoop administrators/software
developers could always precompress the data. A global configura‐
tion flag may entail double compression due to inadvertently com‐
pressing twice. Work by the HDFS community to include
compression support into DistCp is not yet conclusive.

Parallelism
After ensuring you have sufficient bandwidth available in your hardware infra‐
structure and leveraging compression, you should try to optimize for transfer
parallelism. In some scenarios, single-stream TCP performance may not be suffi‐
cient to deal with the amount of data flowing into the cluster at high network
latency times—e.g., when data comes in via many-hop WAN connections. When
transferring between Hadoop clusters, you can take full advantage of parallelism
by distributing many instances of the software transferring and receiving data.

Configuration
Although we want to transfer data as quickly as possible, distributed systems like
Hadoop may easily consume all available bandwidth and negatively impact other
workloads. Hence, in many situations, the transfer rate must be throttled to a
known limit. DistCp supports this via the -bandwidth flag on a per-mapper
basis. At the time of this writing, Kafka does not support any form of throttling
or quota mechanism, although it is actively pursued by the Kafka community. As
a general rule, the scarcer bandwidth is, the more you should consider designing
a filtering mechanism into the application logic to avoid ingesting data or fields
known to be irrelevant. This is often a trivial change.

Hardware
Hardware factors such as the following also play a role:

Firewalls and load balancers
Some very common bottlenecks for big data applications are firewall and load
balancer appliances. This equipment is typically very expensive, and therefore
required resources are carefully calculated. It may actually be cost-prohibitive to
match required bandwidth. Although applications on small- to medium-cluster
implementations may not be impacted, their demands on the firewall and load-
balancing configurations may impact other solutions in the datacenter. Ulti‐
mately, these physical appliances cannot keep up with the traffic incurred by
large-cluster configurations. Even scaling these solutions to the largest configura‐
tions may impose a limitation on certain use cases. Depending on the exact
throughput requirements of external data sources, you may enable a separate
dedicated route at the WAN boundary for your Hadoop cluster, which is filtered
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by a different and less costly solution. Filtering may not be required at all in the
case of backup/disaster recovery replication use cases.

Network equipment
Due to oversubscription, the network itself almost always imposes bandwidth
limitations between the cluster and the rest of the corporate network, as dis‐
cussed in Chapter 4. To ensure bandwidth requirements for high-intensity ingest
use cases and cluster replication scenarios are met, there may be merit in—or
even the necessity of—routing this portion of Hadoop traffic to dedicated equip‐
ment instead of a highly oversubscribed fabric core layer. A typical planning
oversight is to assume the best case without chatty neighbors who use the same
core or access layers, which can result in significant impacts during bursts. Also,
if the ingest path requires a very large number of connections, take care to ensure
that access-layer switches do not trigger mitigation mechanisms for distributed
denial-of-service (DDos) attacks.

Replacements and Repair
Server replacements and repair are normally not at all the concern of the workload
owner, since they mostly are conveniently abstracted in a virtualized infrastructure
layer. For Hadoop, though, you should at least consider the following points:

Component replacement policy
The components in your cluster are expected to fail while the software itself per‐
forms recovery and continues in a degraded state. Since many servers run in par‐
allel, this may actually happen again before the original server has been
recovered, which is a rather uncommon situation for most enterprise IT organi‐
zations. Therefore, be sure you know whether your organization keeps a small
stockpile of disks for quick replacements or whether someone has to call the
hardware manufacturer. In the latter case, who places the call to the manufac‐
turer, and what is the agreed-upon service time? Ideally, you test the mean time
to recovery for a given component (failed disk, failed fan pack, or failed server) to
assess how these procedures affect SLAs on the Hadoop platform level.

Hardware life cycle
You may eventually have to scale your cluster. Are the same servers still available
in your company’s procurement basket, in the event that you have to scale a clus‐
ter before the end of its depreciation period? If at all possible, you should try to
order nodes of the same configuration and to avoid heterogeneous node types.

Operational Procedures
Often, end-to-end operational procedures for disaster recovery in the datacenter are
based on virtualized storage and compute infrastructure. An example of this is the
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complete loss of a datacenter site. In virtualized environments, mission-critical vir‐
tual machines are commonly live-migrated and rebooted from SANs in the alterna‐
tive sites, since their storage is synchronously replicated. This is also true of certain
maintenance tasks and even datacenter-wide fire drills.

For Hadoop, this is not possible. We cover this in more detail in “Cluster Spanning”
on page 173.

Typical Pitfalls
Now that you are familiar with the technical concepts at work in the datacenter and
how they affect Hadoop, let us review some typical pitfalls that you may encounter
when you fit into your existing datacenter.

Networking
Network infrastructure contains a few very common pitfalls:

Firewalls between cluster hosts
We have seen this attempted many times, and each time brought its own world
of pain. There is no other way to describe the amount of organizational strain,
the increase of operational risk, and the day-to-day inefficiencies that ensue
when traffic between Hadoop worker nodes is filtered. Considering that most
organizations run firewall changes through a ticketing system (sometimes requir‐
ing review by a board), the lack of automation to scale or replace nodes in the
firewall rule matrix, and the number of ports (sometimes transient port ranges)
that the individual services require, firewalling can be simply prohibitive for the
project as a whole. It is more common, however, to place an edge node in
another network zone and to filter the communication of the edge node with the
rest of the cluster, as introduced in Chapter 3. The monolith analogy really
applies to firewalling in the context of Hadoop—you would normally not restrict
all interprocess communication on a single server.

We should also note that intranode communication can indeed be
filtered via systems such as SELinux. Some organizations require it,
and it works for well-defined application stacks where Linux distri‐
bution–specific policy files exist in abundance. For Hadoop, how‐
ever, none of this has been standardized, nor has it seen full-
fledged support by any of the Hadoop distributors. This is due to
the manifold and ever-changing communication paths in the set of
distributed services at work in the cluster.
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Network oversubscription
Oversubscription of the network is not a bad thing per se, and is actually inevita‐
ble in most multirack designs. Often, however, the existing production standard
imposes oversubscription even for intra-rack traffic, since the assumption for the
majority of workloads, such as web services, is that most traffic is directly direc‐
ted at user sessions. Hadoop, however, introduces significant intra-rack traffic,
which is why we recommend always using true Layer 2 switches without any
oversubscription within the rack or the access-layer aggregation domain. See
Chapter 4 for concrete recommendations on oversubscription ratios.

Lack of network isolation
Hadoop-internal traffic is best run on its own Layer 2 network. Otherwise, other
workloads may be unnecessarily impaired. The monolith rule helps again here;
consider the Hadoop-internal network as the backplane of an appliance. A final
point to consider is that debugging problems related to Hadoop internode com‐
munication sometimes involves tracing network traffic, which is much harder
when Hadoop shares the network with other workloads.

Placing racks/nodes far apart
This relates closely to the previous point on network isolation. Often, to optimize
an existing datacenter footprint, or because of a shortage of rack space, Hadoop
nodes end up on separate and distant racks. This results in a heavy mixing of net‐
work traffic with other workloads and causes communication bottlenecks
between cluster nodes due to the oversubscription ratios between the network
layers that must be crossed. Hadoop nodes should be kept in one place, whenever
possible—again, resembling a monolith.

Cluster Spanning
Cluster spanning is a specific pitfall that we have come to realize should be mentioned
in the context of datacenters. It means placing part of the Hadoop cluster in one data‐
center and another part of the cluster in another datacenter, in an effort to achieve
disaster tolerance. We strongly discourage this practice, but we frequently run into
organizations that attempt this setup.

As noted, the driver behind cluster spanning is a desire to achieve true disaster toler‐
ance, as opposed to settling for more realistic disaster recovery objectives. Disaster
tolerance means that the operation of the cluster continues, despite the failure of a
datacenter, as if nothing happened.

There are ways to achieve this setup safely, but there are very specific conditions that
must be met. Operational experience is very rare in this environment.

To understand the technical issues with this practice, let us first break it down into
two fundamental cases:
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Spanning across two datacenters
This is the most common but least feasible case, as we see in “Quorum spanning
with two datacenters” on page 175.

Spanning across three datacenters
This is covered in “Quorum spanning with three datacenters” on page 179. It is
possible if all datacenter interconnects are extremely capable and reliable by
modern standards.

Before we cover those two cases, however, we turn to a few obvious and general
observations about spanning clusters.

Nonstandard use of rack awareness
If a Hadoop cluster is deployed across several datacenters, Hadoop itself does not
really have any awareness of it. This means that data replicas may all be placed into a
single datacenter, not yielding the intended benefit for disaster tolerance. In order to
create awareness for the different sites in HDFS, each datacenter is set up as its own
rack. The obvious drawback here is that you don’t have actual rack awareness any‐
more. This may not be harmful in small clusters, but it means the loss of a key feature
for larger environments.

Bandwidth impairment
The misuse of rack awareness leads to the next problem: the network link between
both datacenters.

The obvious drawback here is that the link between both datacenters is a bottleneck
for Hadoop. If the interconnect is run over WAN connections, it ranges between 10
Gbit/s for small datacenters and 100 Gbit/s for very large facilities. Bandwidth sizings
beyond this exist but are mostly cost-prohibitive.

Spanning a Hadoop cluster naturally also requires spanning the cluster network
across said WAN link.

For traditional applications, communication between both datacenters is ideally kept
at a minimum by placing groups of workloads that need to communicate internally
into one single datacenter.

To allow for easy virtual machine migrations, organizations often span Layer 2 net‐
works over the datacenters via a fabric, which we introduced in Chapter 4.

Conversely, assuming Hadoop is eligible to consume a certain fraction of this inter‐
connect, it will do so permanently with replication and shuffle traffic. For anything
beyond a small cluster, it is unlikely that the WAN connection, which now effectively
becomes the rack-interconnection, meets the common recommendations for inter-
rack oversubscription that we covered in Chapter 4.
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Hadoop will therefore likely put both the actual fabric technology and the configured
interconnect bandwidth to a massive test and, when the cluster grows beyond a cer‐
tain point, will be unable to function properly unless the interconnect is scaled. This,
in turn, is often not possible, which renders you unable to deliver on the fundamental
promise of scalability that Hadoop features.

Quorum spanning with two datacenters
If you can disregard arguments on bandwidth and scalability, we concede you have at
your command an impressive network infrastructure (or are a true daredevil—or
maybe both).

You must also be thinking about quorum services, which we introduced earlier and
discuss in more detail in “Quorums” on page 332. Quorum services in Hadoop are
needed to establish unambiguous coordination among the individual instances of
services such as HDFS, Solr, and HBase.

In this section, we demonstrate the challenges in spanning Hadoop quorum services
across two datacenters—problems that, in essence, make the whole concept of span‐
ning Hadoop clusters impractical.

Since quorum services always operate with an uneven number of participants, the
loss of one datacenter site may entail the loss of quorum—i.e., the larger number of
instances from a quorum service. In the two-datacenter case, organizations some‐
times try to deal with this by placing one instance of quorum services (e.g., HDFS
JournalNodes) on a virtual machine. The quorum VM uses a datacenter/datacenter-
replicated SAN volume to materialize all disk writes across both datacenter sites.

The intent of the quorum VM is that, in a event of catastrophic failure in one data‐
center, the VM is either located in or can be quickly rebooted in the surviving data‐
center, thereby maintaining quorum capabilities.

Figure 6-3 shows this process in a setup where a cluster spans across two datacenters.
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Figure 6-3. Pitfall: attempting cluster spanning with two datacenters

The intended migration of the quorum VM is indicated by a dotted line between the
quorum VM in its current location and a future location. Third-party virtualization
software offers automated reboots in case of disaster, but as we will see, this may lead
to the split-brain problem.

Rebooting the machine in case of disaster, either manually or auto‐
matically, is not necessarily a safe bet: you need to reserve enough
headroom in both CPU and RAM resources in the recovery data‐
center. Even if this is done, the emergency reboot of your specific
VM may not be included as part of a datacenter-wide fire drill. If
the reboot eventually succeeds, it may be too late. This could result
in hundreds or thousands of block requests in HDFS being turned
down while quorum was temporarily lost, resulting in application
failures.

The most important criterion is obviously that, when the reboot does happen, the
content of the storage volume in the surviving datacenter equals that of the original
storage volume in the failed datacenter.

In the world of SANs, this feature is referred to as synchronous replication. In terms
of the filesystem consistency operations we introduced in “Important System Calls”
on page 61, this means that any consistency operation, such as an fsync(), must not
return before the corresponding blocks are persisted on the local SAN volume as well
as on the distant SAN volume.
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Quorum services, such as ZooKeeper and JournalNodes, permanently perform
fsync() operations to persist successful transactions to disk. The long curved arrow
in Figure 6-3, which originates on the quorum VM and traverses both datacenters,
depicts the path of I/O that each successful change of HDFS data, such as an HDFS
block write, will trigger in the JournalNode quorum VM.

Naturally, synchronous replication introduces additional latency. Since quorum serv‐
ices, especially ZooKeeper and JournalNodes, are very latency-sensitive (values
beyond 20 ms are known to be an operational risk), there are practical limits in terms
of how far apart datacenters can be in this approach. This problem of synchronicity is
massively compounded by the bottleneck in available bandwidth.

But even if we omit latency, three difficult problems arise when synchronous replica‐
tion is used in conjunction with the JournalNode quorum:

Failed synchronous writes
What happens when Datacenter 2 fails during a large burst of changes to HDFS,
as shown in Figure 6-4? Just like JournalNode 1, the quorum VM (JournalNode
3) will try to invoke the fsync() call on all incoming requests by the NameNode
Quorum Journal Manager (QJM). To maintain a consistent state in both data‐
centers, these fsync() requests must not complete until also acknowledged by
Datacenter 2. This cannot happen, since Datacenter 2 is down. fsync() keeps
blocking until finally JournalNode 3 fails the outstanding requests and declares
itself as outOfSync. At this time, the cluster’s quorum is lost.

Blocked consistency operations for synchronous replication are
actually a typical challenge outside of the big data context, for
example, with relational databases.

In addition to lost quorum, you must now recover quorum from
the remaining JournalNodes, one of which is out of sync. Although
theoretically you can declare one of the remaining JournalNodes as
the source of truth and replace the other’s edit log on the file level,
either survivor may theoretically be behind some of the other’s
committed transactions. The process for successful recovery in this
instance is not defined, and you may simply have lost blocks.
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Figure 6-4. Loss of quorum: a synchronous journal edit is blocked when the backup site
does not respond

Hit by the CAP theorem
When synchronous writes fail, can you loosen the requirement of fsync() to
wait for the failed datacenter and continue operation in Datacenter 1, where you
still have quorum? Let us assume that you can be absolutely certain that Datacen‐
ter 2 has suffered an unrecoverable disaster and none of the Hadoop service
instances in this datacenter survived—and that, if you automatically detect this
programmatically, you might somehow be able to disable the synchronization of
fsync() to the other datacenter. Even then, you may still be much too late to
prevent JournalNode 3 from going into an outOfSync state. And really, there is
no good way to reliably detect that the other site is down. You could naively
determine Datacenter 2 to have failed if JournalNode 2 is no longer available on
the network. But what if you’re just dealing with a temporary glitch in network
connectivity, and in reality, Datacenter 2 is still operating? This glitch could
occur shortly before Datacenter 1 actually fatally fails and before the transactions
you allowed to only be stored in Datacenter 1 were replicated to Datacenter 2. In
this event, the rebooted quorum VM (JournalNode 3) is again out of sync. Here,
you will have effectively traded the availability of JournalNode 3 and the ability
to lose a network partition (Datacenter 2) for the consistency of JournalNode 3’s
state.
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When we operate the full quorum in a single datacenter, we do not
regard the network to be partitioned. It is safe to assume that the
Layer 2 network that the JournalNodes run in will either fail in its
entirety or be available for all. Note that loss of network communi‐
cation here is explicitly distinct from the crash of a JournalNode.
When rack awareness is used and JournalNodes are placed in dif‐
ferent racks, we may regard those racks as network partitions.
However, we would not expect operation to continue if the major‐
ity of partitions fail. This is the key to the cluster spanning discus‐
sion: spanning your cluster across datacenters is as good or bad as
spanning your cluster across racks, as far as failure tolerance goes.

Split-brain scenarios
Now let us consider the case where Datacenter 1 fails, while it hosts the quorum
VM. In order to continue operation, the quorum VM must be rebooted in Data‐
center 2, but who will do this quickly enough, in the middle of the night, to pre‐
vent important jobs from failing? Again, you would ideally use a nifty
mechanism that does this automatically, when you are certain that the other
datacenter has failed entirely. But again, you are unlikely to find a hard criterion
to establish this fact programmatically. If you automatically reboot the quorum
VM in Datacenter 2 while Datacenter 1 is merely disconnected (rather than stop‐
ped), you are effectively spawning a fourth instance of the JournalNode. In this
fourth instance, the standby NameNode, which we assume to reside in Datacen‐
ter 2, becomes active. This will effectively constitute a second instance of HDFS,
which will now begin to accept requests. If the mechanism used to declare Data‐
center 1 as faulty does so based only on the cessation of communications, there is
a chance that the HDFS instance in Datacenter 1 is also still operating. Both
instances may now deviate, and this could yield catastrophic consequences from
a data governance consistency perspective.

Quorum spanning with three datacenters
By now you have probably guessed that, if you cannot span a cluster across two data‐
centers, you can simply use a third datacenter to run the third quorum machine, as
we illustrate in Figure 6-5.
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Figure 6-5. Quorum spanning with three datacenters

This architecture relieves us of blocked consistency operations, problems with net‐
work partitions, and split-brain scenarios. But as we covered in “Bandwidth impair‐
ment” on page 174, the success of this setup depends on low-latency communication
between all datacenter sites. The setup almost always becomes bandwidth-prohibitive
for large clusters.

We just covered that the interconnects between datacenter sites in on-premises
enterprise IT are typically unfit to sustain stable operations, even in the three-
datacenter scenario. Also, after you chose this architecture you are mostly bound to
it, due to the inertia of big data, and it may be unable to scale beyond a given point.
Would you limit your growth capabilities in this way for any other IT system?

That said, we do not want to generalize lightly. You may well be the proud operator
of an infrastructure capable of spanning even a large Hadoop cluster. The one piece
of advice we offer here is a strong recommendation to test rigorously. You must be
certain that the latencies between your quorum services are not detrimental to HDFS
performance under stress scenarios.

Finally, quorum spanning with three datacenters is a very relevant case in hyperscale
public cloud services. As you’ll see in Chapter 16, public cloud providers offer
extremely capable network infrastructure between distinct datacenters in a given ser‐
vice region, also known as availability zones. Cloudera has recently updated its refer‐
ence architecture for AWS to explicitly cover best practices for spanning a cluster
across three availability zones.
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Alternative solutions
Despite the imponderables of disaster tolerance via cluster spanning, there are alter‐
natives. These center around disaster recovery, which allows recovery to normal
operation within a defined amount of time (the recovery time objective) to a defined
past state of the data (the recovery point objective). Relevant alternatives range from
third-party solutions to proprietary augmentation of tools in the Hadoop software
ecosystem by distributors of user-built custom solutions. We discuss these options in
detail in Chapter 13.

Summary
In this chapter, we looked at how big data clusters align with datacenter operations.

We determined that the concept of rack awareness in Hadoop requires a certain level
of scale to truly improve availability and to increase durability. This led us to high
availability of datacenter infrastructure, where we covered cooling, power, and net‐
works and their failure domains. We reconciled those failure domains with best prac‐
tices for rack awareness and moved on to more advice around space, ingest, and
intercluster connectivity.

We also explored some common concerns around operational procedures for repairs,
before we turned to typical pitfalls for big data clusters in datacenters. Most crucially,
we covered the pitfall of cluster spanning, where a cluster is installed across two or
more datacenters. Although we looked in detail at the reasons why a two-datacenter
deployment for cluster spanning is unfeasible, we also looked at the case of spanning
across three datacenters, which may become a feasible practice in on-premises situa‐
tions in the future and is slowly beginning to see adoption in the public cloud across
availability zones.
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PART II

Platform

In Part I, we covered the essentials of putting together an efficient and resilient physi‐
cal and organizational infrastructure for your clusters. Upon this solid foundation, 
we can now build comprehensive distributed software platforms that can cope with 
the rigors of large-scale data storage and processing inherent to the requirements and 
use cases of large enterprises.

In the following chapters, we explore the architectural aspects of modern data plat‐
forms, ranging from the basic operating system and supporting software to the provi‐
sioning of Hadoop and other distributed systems. Organizations require that these 
platforms fit into a preexisting ecosystem of users and applications, and enterprise 
standards demand that the deployments meet certain standards of security, availabil‐
ity, and disaster recovery. We cover these concerns in detail.

By the end of this section, our hope is that the reader—be they an architect, applica‐
tion developer, or cluster operator—will feel confident in how and, crucially, why 
clusters are put together. This understanding will be of immense value in building 
and operating new clusters and in designing and running applications that work in 
sympathy with distributed enterprise data platforms.





CHAPTER 7

Provisioning Clusters

This chapter discusses the provisioning and configuration of Hadoop cluster nodes.
If you are using a cloud environment, then Part III is the more suitable section to
read, as far as provisioning is concerned. In any event, the vast majority of Hadoop
nodes run on Linux, so the operating system (OS)–related topics in this chapter still
apply.

Operating Systems
The first task after acquiring physical hardware in the form of rack-mountable
servers (for example, a 19” rack server or blades) is to provision the OS. There are
many options, some dating back decades, which allow you to automate that process
considerably. Separate technologies are often used for each step of the process:

Server bootstrap
The initial phase of a machine provisioning process is to automatically assign it
an IP address and install the OS bootstrap executable. The most common tech‐
nology used for this is called Preboot Execution Environment (PXE), which was
introduced as part of the larger open industry standard Wired for Management
(WfM). The latter also included the familiar Wake-on-LAN (WoL) standard.
WfM was replaced by the Intelligent Platform Management Interface (IMPI) in
1998.
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The PXE Boot Process
The flow is as follows: when a machine starts, the PXE-enabled network interface
card (NIC) of the server sends out a DHCP request. The local DHCP server answers
that request, returning an IP address, subnet mask, gateway, and more. In addition,
and assuming the DHCP server is PXE-aware, it includes the location of the Trivial
FTP (TFTP) server that hosts the boot image (called pxelinux.0). The server receives
this information, downloads the boot image from the TFTP server, and executes the
image.

After the boot loader is running, it downloads a machine-specific configuration file
from the pxelinux.cfg directory on the TFTP server, trying to match the MAC address
or the IP address of the server with a provided configuration file. The address is first
checked in full; if there is no match, it is then partially matched by broadening the
address scope. The matching process makes it possible to provide configuration files
for a larger group of nodes; for example, all nodes that have an IP address starting
with “192.168.10.”.

Finally, after the configuration is loaded, the machine fetches an OS-specific installa‐
tion binary (often a minimal OS setup executed in memory only) and subsequently
executes it.

OS setup
After bootstrapping, the minimal installer does the rest of the work, contacting
the OS-specific configuration service. For Red Hat Linux, a common tool for this
task is Kickstart, which defines all of the parameters that should apply to the
installation of the OS on a particular machine. In other words, Kickstart is a tem‐
plate that mimics an interactive user entering the desired details while configur‐
ing the OS during the setup process. All of the choices are recorded in files and
handed to the installer, which automatically executes the installation.

OS configuration
Lastly, after the OS is operational, the node has to be configured for the specific
task to which it was assigned. Common choices of tools in this category include
Ansible, Chef, and Puppet. These software configuration management (SCM)
tools enable not only node configuration at provisioning time but also configura‐
tion during its full life cycle. This includes reconfiguring the OS for other tasks or
handling changes due to new application releases. “OS Configuration for
Hadoop” on page 188 provides an example of an Ansible playbook that configures
a cluster node for Hadoop services.

Note that there are tools available that further combine these three distinct provision‐
ing steps into one, including Red Hat Satellite (which is, in part, based on the open
source project Foreman). With these technologies and tools, you can fully automate
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the rollout of new server hardware, allowing you to build out a cluster as fast as you
can install and wire machines into racks.

Handling Failures
For all of the automation to work, you require a server machine that supports the
aforementioned IPMI standard. Included in that is support for remote keyboard,
video, and mouse (KVM) connections, allowing an admin to connect to the server as
if they were in the same physical location. Example implementations of IPMI are
HP’s Integrated Lights-Out (iLO) and the Dell Remote Access Controller (DRAC);
both support KVM access.

Should an automated installation and an automated repair fail, the automation sys‐
tem of choice should raise an alarm to an operator, who can then investigate the
problem using the KVM connection. It is also common for IPMI implementations to
support the mounting of remote media, such as CD-ROMs and USB drives, which in
rare cases might be needed to supply hardware drivers or firmware updates. In prac‐
tice, the remote access and media features should fix most automated deployment
problems.

OS Choices
When it comes to Hadoop, the OS choices are limited to what is supported out of the
box by the distributions, unless you want to build your own. (See “Hadoop Deploy‐
ment” on page 202 for a discussion of this topic.) Broadly speaking, most distributions
support a mix of common Linux distributions, including Red Hat Enterprise Linux
(RHEL) and CentOS, Oracle Linux, SUSE Linux Enterprise Server (SLES), Debian,
and Ubuntu. Each vendor has a website that lists the supported OS types and ver‐
sions. Of note is the absence of Microsoft Windows and any Unix variant. This is
mainly due to what customers are requesting.

The vast majority of Hadoop clusters are set up on top of Linux
distributions. Deviating from that standard greatly reduces the
availability of support. There are scripts available in Hadoop that
allow for it to run on Windows machines, but there is minimal
commercial support for Hadoop on Windows, which is another
reason not to pursue that path.

For Linux, all of the components of the OS are hosted by the vendors in online repo‐
sitories. You typically install the OS kernel first, plus a list of initially selected pack‐
ages (containing applications and tools such as SSH or Java), after which you can
boot into the new system. Over time, you can add, update, or remove any part of the
OS, as required, again making use of the vendor’s repositories. The location where
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these repositories are hosted is a configuration setting, often defaulting to a load-
balancer server that routes the request to the nearest repository mirror. In essence,
repositories are simple, web-based services, which are backed by a web server process
and which host the packages with metadata files in a particular, well-defined layout.
The client on the OS is able to talk to any conforming service and to verify its authen‐
ticity using cryptographic signatures so that the service cannot be used to provide
malware or other compromised executables.

The choice you have, at this point, is to use a repository that is available on the inter‐
net or only in your local environment:

Online repository
If all the nodes in the cluster have sufficient internet connectivity, you usually
have little to prepare because all packages are downloaded from the vendor’s
online repository (or from one of the official signed mirrors).

Offline repository
In practice, though, especially in enterprise environments and highly regulated
industries (like banking or telecommunications), it is common for the Hadoop
infrastructure to be behind a firewall with limited or no internet access at all. In
that case, you first have to download all the packages and create a private mirror.
This entails setting up a web server on an accessible machine and making the
packages available through it.

In addition, you often have to tweak the metadata of the mirror to reflect the
local nature, for example by disabling security checks or by updating the reposi‐
tory with the necessary signatures yourself. Afterward, you can configure the
installation scripts to use the local mirror repository and install as if you had
direct internet access.

After you have decided which repository to use—whether online or local—the instal‐
lation is performed manually, or automated, as discussed earlier (using, for example,
Kickstart for Red Hat–based systems). After the installation is complete, you can
move on to configure the more dynamic OS settings, as explained in the next section.

OS Configuration for Hadoop
Running the Hadoop processes requires some configuration of the OS itself. For
example, it is known that the Hadoop DataNodes are dealing with file-level I/O, read‐
ing and writing Hadoop Distributed File System (HDFS) blocks. And YARN,
through the ResourceManager and the per–worker node NodeManagers, is spawning
Java tasks that count against the number of processes an application is allowed to
start. These limits are usually set to a conservative default, which may apply to a good
range of Linux use cases—but for Hadoop, these limits are too restrictive beyond a
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small test setup. This section highlights the common process limit and network set‐
tings to adjust, and why.

The following settings are commonly provided by Hadoop distri‐
bution vendors as part of a prerequisite checklist. Ask your vendor
of choice to provide the checklist. In addition, many of the vendor-
provided management tools have a built-in host inspection process,
which warns the administrator if an important low-level setting is
missing.

The recommended OS configuration steps are:

Adjust filesystem settings
Hadoop stores its data blocks using binary files, directly in the configured Linux
filesystem for the data volumes. Refer to “Filesystems” on page 69 for details, but
suffice it to say that the default volume settings are not perfect and should be
adjusted to gain more from your hardware. This includes disabling the access
time handling (HDFS does not use it) and reducing the reserved disk space for
administrative purposes. The former speeds up file operations, whereas the latter
increases the yield of available storage per physical disk.

Disabling the access time for a volume requires adding the noatime option to
the /etc/fstab configuration file for Linux. This includes setting nodirtime
implicitly, since it is also not needed. For example, here is how you can configure
this for a specific volume:

# Edit "/etc/fstab" and add "noatime" to
# disk mounts, e.g:
# ...
# /dev/sdb /data01 ext3 defaults,noatime 0
# ...

# Remount at runtime, required for each volume
$ mount -‐o remount /data01

You need to add the noatime option to all lines that represent volumes used as
Hadoop data drives.

Reducing the reserved disk space for the same drives containing only Hadoop
data is accomplished using the Linux-provided command-line tools:

# Set space during file system creation
$ mkfs.ext3 -m 0 /dev/sdb

# Or tune the filesystem afterwards
$ tune2fs -m 0 /dev/sdb
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1 See also Ovais Tariq’s Percona blog post for a discussion of its value, depending on the Linux kernel version.

Setting the value to 0 means no space for administrative tasks is kept at all. This
is all right for pure data disks that do not contain any root-owned files. Do not do
this for the drive that contains the OS files.

Increase process limits
The default numbers of allowed file handles and processes per application are
quite low and need to be increased to avoid having HDFS or YARN (and other
subsystems) run out of those low-level resources. In worst-case scenarios, run‐
ning out of these resources renders the cluster inoperable, or severely impacts its
performance.

Setting the limits is done per (technical) user account and must be persisted
across system restarts:

# Set file handles higher (default is 1024)
$ echo hdfs - nofile 32768 >> /etc/security/limits.conf
$ echo mapred - nofile 32768 >> /etc/security/limits.conf
$ echo hbase - nofile 32768 >> /etc/security/limits.conf

# Set process limits higher
$ echo hdfs - nproc 32768 >> /etc/security/limits.conf
$ echo mapred - nproc 32768 >> /etc/security/limits.conf
$ echo hbase - nproc 32768 >> /etc/security/limits.conf

Reduce swappiness
Since main memory is a finite resource in servers, the OS moves inactive mem‐
ory pages to disk as needed. This swapping of pages causes processes to seem‐
ingly slow down at random during their life cycle. This is not what is desired for
many Hadoop-related services, such as HDFS or HBase. The eagerness to swap,
referred to as swappiness, can be tuned to avoid it as much as possible. For exam‐
ple, from the OS command line:

# Ad hoc setting, works temporarily
$ echo 1 > /proc/sys/vm/swappiness

# Persist setting across restarts
$ echo "vm.swappiness = 1" >> /etc/sysctl.conf

See “The Linux Page Cache” on page 62 for more details on this topic.1

Enable time synchronization
Writing data to storage in a distributed system requires some form of synchroni‐
zation, and time is a common choice for that task. After a server is started, its
time may drift apart from other servers, based on the accuracy of the built-in
clock. As discussed in “Essentials” on page 343, you have to install a time mainte‐
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nance service, such as ntp or chrony, on each cluster node, which at configured
intervals updates the local time to that of an external, shared time service.

The commands to install and start the NTP service daemon for a Red Hat–based
system are:

$ yum install ntpd
$ systemctl enable ntpd
$ systemctl start ntpd

Enable advanced network settings
The very nature of Hadoop, being a big data platform, implies that you should
adjust the network I/O settings to gain the most performance. It is common to
enable jumbo frames (see “Measuring throughput” on page 223), which can
improve the network throughput by reducing intrinsic overhead.

On the command line, run the following command:

$ ip link set eth0 mtu 9000

This sets the frame size to the allowed maximum of 9,000 bytes. You should add
this to a bash script and use an automated system service (such as a systemd ser‐
vice unit) to have it run at system restarts.

We also advise that you disable IPv6 on Hadoop cluster machines. Generally
speaking, Hadoop nodes are in a separate VLAN inside a corporate network, and
in that environment, the number of available IP addresses is plentiful. There is
no need to enable IPv6, because package routing is handled on the LAN level,
and the overhead that comes with dual address handling can be avoided
altogether.

Here is an example of how to add the necessary setting to the system-wide
systctl.conf file:

$ echo "net.ipv6.conf.all.disable_ipv6 = 1" >> /etc/systctl.conf
$ echo "net.ipv6.conf.default.disable_ipv6 = 1" >> /etc/systctl.conf

Enable name service caching
Considering that Hadoop is an inherently distributed system that can span thou‐
sands of nodes, it may not come as a surprise that intracluster communication
requires some scaffolding that is responsible for establishing the network con‐
nection. Part of that process is resolving the IP addresses of other nodes using
their domain names; for example, node-0122.internal.foobar.com. Because
Hadoop’s batch framework, YARN, is scheduling tasks across many machines in
parallel, making domain name lookups a bursty operation (one that can overload
an underprovisioned DNS server—or at least cause noticeable latency spikes), we
recommend that you install the Name Service Cache Daemon (NSCD) to alleviate
the problem.
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For a Red Hat–, systemd-based Linux distribution, you can install and start the
caching daemon using the command line:

$ yum install nscd
$ systemctl enable nscd
$ systemctl start nscd

Take special care when combining NSCD with the System
Security Services Daemon (SSSD). Please refer to the official
Red Hat documentation.

Disable OS-level optimizations
We recommend that you disable Transparent Huge Pages (THP). This is an OS-
level feature that interferes with how Hadoop works. Disabling it helps to reduce
high CPU loads.

The following commands should be added to a system startup script such as /etc/
rc.local:

# Edit "/etc/rc.local" to contain these lines
echo never > /sys/kernel/mm/redhat_transparent_hugepage/defrag
echo never > /sys/kernel/mm/redhat_transparent_hugepage/enabled

In addition to the general OS settings for processes, network, and file systems, there
are also some system security adjustments that you should make:

Disable Security-Enhanced Linux (SELinux)
This and the next option can be safely disabled for the same reason: because IPv6
is not needed. All of the traffic is firewalled (which means that only allowed net‐
work nodes and ports are accessible) on a higher level, usually by means of
unroutable VLANs or firewall appliances on the LAN itself. This allows for sim‐
plification of per-host security, which includes disabling SELinux. Although
Hadoop is known to run under SELinux, it requires an incredibly high level of
expertise and configuration prowess. Therefore, vendors often recommend
avoiding any hassles that enabling this feature might entail.

Disable local firewalling
Dropping the host-level firewall goes hand in hand with the previous option.
Vendors recommend that you not set any iptables- or firewalld-related rule, and
prefer that you disable these services completely.

Explore other hardening options
There are more options you should look into when architecting the environment
for a Hadoop cluster, including the cluster node settings. One of those is mount‐
ing the local /tmp directory as a separate partition and with the noexec flag set.
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This improves the resilience of a node against malware that uses the world-
writable temporary directory to create a script or binary and execute it.

Another option is to issue OS-level user IDs outside of the privileged range,
which is commonly all IDs below 1000. Hadoop, and in particular YARN, has a
matching setting that allows the admin to specify a minimum user ID for sub‐
mitted processing jobs:

# Comma-separated list of users who cannot run applications
banned.users=
# Comma-separated list of allowed system users
allowed.system.users=
# Prevent other super users
min.user.id=1000

Setting min.user.id to a number just at or below the range of IDs assigned to
the interactive users and Hadoop technical accounts causes YARN to reject any
job that is below the specified number. This prevents system accounts from being
able to execute jobs and, for example, from abusing the spawned Java task pro‐
cess to issue malicious commands. The configuration properties shown also
include the additional settings to ban certain users from submitting jobs or to
allow specific system users to submit them.

Automated Configuration Example
All of these options can be provisioned using the mentioned configuration manage‐
ment approach. Here is an example of how this is done using an Ansible playbook,
which has built-in modules for most of the tasks. For some configuration files, the
necessary entries are simply added line by line:

...
# Disable host-level security features
- name: Create SELinux config file if it does not exist
file: path=/etc/selinux/config state=touch owner=root group=root

- name: Disable SE Linux
selinux: state=disabled

- name: Stop firewalld
service: name={{ item }} state=stopped enabled=no
with_items:
- firewalld

# Set process-level limits
- name: Set file limits
lineinfile: dest=/etc/security/limits.conf line="{{ item }}" \
state=present
with_items:
- '* - nofile 32768'
- '* - nproc 65535'
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- '* - memlock unlimited'

# Adjust OS-level settings
- name: Adjust values in sysctl.conf
sysctl: name={{ item.name }} value={{ item.value }} \
state={{ item.state }}
with_items:
- { name: 'vm.swappiness', value: '1', state: 'present' }
- { name: 'net.ipv6.conf.all.disable_ipv6', value: '1', \

state: 'present' }
- { name: 'net.ipv6.conf.default.disable_ipv6', value: '1', \

state: 'present' }
- name: Disable transparent huge page defragmentation
command: echo never > /sys/kernel/mm/transparent_hugepage/defrag

# Set network-level details
- name: Set hostname
hostname: name={{ inventory_hostname }}.{{ CLUSTER_DOMAIN }}

# Add shared environment details
- name: Add variables to /etc/environment
lineinfile: dest=/etc/environment line="{{ item }}" state=present
with_items:
- 'JAVA_HOME={{ JAVA_HOME }}'
- 'JAVA_LIBRARY_PATH=/usr/local/lib'
- 'HADOOP_HOME={{ HADOOP_HOME }}'
- 'HADOOP_CONF_DIR={{ HADOOP_CONFIG }}'

...

Service Databases
You might wonder why we are discussing databases, and, more specifically, relational
database management systems (RDBMSs). After all, this book is about Hadoop and
its associated set of open source projects, which are commonly bundled together in
the form of a Hadoop distribution (see “Hadoop Deployment” on page 202). The
Apache Hadoop project itself is a platform that offers affordable and scalable storage
in the form of a distributed filesystem, and is combined with a resource management
and scheduling framework that is subsequently used to analyze the stored data. All
other tasks, such as facilitating data ingest, running data pipelines that are built by
connecting many separate processing jobs, or implementing the processing logic in
some higher-level abstraction or domain-specific language (like SQL or Apache
Spark) run on top of that platform and services.

Looking at the many different projects that make up a Hadoop distribution, you can
imagine that there is a need to store settings, metadata, or state to ensure some level
of fault tolerance. After all, the aforementioned core Hadoop components are built to
sustain, for example, node failures and to be able to recover gracefully, so comple‐
mentary services should also be reliable.
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2 As of this writing, there is a proposal to split out the Hive Metastore into its own project. That has no bearing
on this chapter, because it just moves the need to persist data into another component.

In addition, the system has to collect vital machine and other operational data so that
later, you can report the workloads executed by varied users and groups and can pos‐
sibly provide a chargeback option. If you are using the management components
offered by the distributions, you also need to enable their provided machine metric
collection and rendering services, in the form of dashboards and ad hoc graphing.
That data, to some degree, needs to be stored as well, and should be made available to
internal and external consumers.

Many of the aforementioned sources of operational data need transactional features,
which are provided by the underlying data stores. For example, Apache Hive includes
a component called the Hive Metastore (HMS),2 which is responsible for storing and
maintaining all the SQL schemas defined by users and applications using the Hive
Query Language (HiveQL). Since modifying Hive schemas while running queries
need to access them is nontrivial, it is crucial to atomically and consistently update
schemas in an isolated and durable manner—which is exactly what the atomicity,
consistency, isolation, and durability (ACID) properties of database transactions
stand for.

You might ask yourself why you cannot use one of the storage systems that are
already included in your Hadoop distribution. There are (among others) two that
offer transactional qualities for random access clients: ZooKeeper and HBase. The
former is the central registry for many of the distributed frameworks, such as HDFS
and HBase. It is useful for smaller data, like the state of distributed processes, the
membership of nodes in a cluster, or leader elections, but it is not made for general-
purpose use akin to an RDBMS. In addition, ZooKeeper does not claim to be a data‐
base, nor does it have a native API that would lend itself to providing the more
general transactional requirements of the various tools discussed.

HBase, on the other hand, is suited to handling many of the transactional require‐
ments, given that it has random access and per-row ACID property compliancy. On
the other hand, it is not a trivial system to set up and does require significant resour‐
ces to reliably operate. Although HBase can scale to thousands of machines and peta‐
bytes of data, it is less optimized to run in a small environment, making the overall
barrier to entry considerable.

And, quite often, the IT department is already hosting an array of database systems
that are ready to be used by clients and applications—especially assuming that earlier
heavy data processing workloads have already been moved to Hadoop, freeing up
resources in the process. The requirements for the Hadoop tools that need transac‐
tional storage are often manageable, and using JDBC (or REST, among others) is an
easy option for connecting applications to the relational database services.
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3 Incubating, at the time of this writing.

Required Databases
Here are the Hadoop projects that require a database to operate a cluster, along with
a classification of how large these databases can become:

Hive Metastore
All of the user schemas created using the available Data Definition Language
(DDL) commands are stored in a relational database (including database names
and field types, among others) so that these can be accessed when clients run
SQL queries. Other information written concerns user permissions, table parti‐
tioning, table statistics, locks and compaction details, and more.

Sizing: Every table, column, and partition recorded for a user table requires stor‐
age, and this increases with the number of tables you manage in a cluster. In
large installations, there can be thousands of tables with hundreds or thousands
of partitions for each, driving the database requirements into the multiple-
gigabyte range.

Apache Oozie
The submitted workflow, coordinator, and bundle details are persisted in a rela‐
tional database. Also, the current state of a workflow is persisted so that the
Oozie server can be restarted, without losing track of pipelines that are running.

Sizing: The more jobs you execute through Oozie, the more storage you need to
allocate for the backing database. It also holds the history of jobs that were exe‐
cuted, and an administrator can extend or shorten the number of days being kept
in the database. Overall, in practice, the Oozie database is usually smaller in size
compared to the Hive database, but it still may need multiple gigabytes to hold all
of the information.

Even if you use another scheduler, for example Apache Airflow,3 a
database is almost certainly required to store its state. The require‐
ments should be about the same as what is described here.

Hue
This Apache-licensed project offers a user interface into Hadoop that can give
access to files in HDFS and data in HBase tables, and it can help create and exe‐
cute SQL queries. Like many user interfaces, Hue manages user accounts (to con‐
trol who is allowed to access which features) and requires a relational database to
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directly store local accounts. Optionally, it can also synchronize the user and
group names from a central directory, such as an LDAP server.

Sizing: Since only small amounts of data are recorded in the required database
system, the requirements for Hue are very moderate, and should be in the mega‐
byte range.

Apache Ranger/Apache Sentry
There are two competing projects in the Hadoop ecosystem that handle tag- or
role-based user authentication and audit logging. Both store their users, groups,
and associated rules and permissions in a database. All access to data and other
protected resources is recorded for posterity, such as audits performed by secu‐
rity personnel or automated processes (like security information and event man‐
agement [SIEM] tools).

Sizing: The user, group, and permission information is often comparatively small
and rather static in nature. The larger part is the audit log, which can be config‐
ured to hold only a certain number of entries. Also, that data can be exported to,
for instance, a central log collection framework, keeping the amount of data
stored in the transactional database system under control. The amount of data is
similar to what Oozie creates, ranging in the multiple gigabytes.

Apache Ambari/Cloudera Manager
These are both examples of cluster management tools that can be used to con‐
veniently operate one or more Hadoop clusters, with thousands of nodes per
cluster. They use one or more databases, called service databases, to record
operational data, such as user accounts, job execution details, system alerts and
health check results, usage reports, node metrics, and more.

Sizing: Both examples defer the most taxing data collection, which is of the node
metrics, to a more suitable storage system, like a LevelDB instance in Cloudera
Manager or, for Ambari (which uses Grafana as its dashboarding tool), InfluxDB
or HBase. The remaining data is again comparable to the previously mentioned
databases, for example Oozie, and ranges in the multiple gigabytes in practice.

Database Integration Options
There are several options for integrating the databases with the tools that need them,
including:

Test setup
First, a warning: this mode is only for testing and should never be used in a
proper environment, including the ones explained in Chapter 2. Figure 7-1
shows a possible cluster configuration, where many of the Hadoop tools are
using separate embedded databases, such as SQLite or Derby.
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Figure 7-1. Test mode setup

Using embedded databases for a test setup frees the user from any additional
dependencies and makes bootstrapping an environment faster. But those are
about the only benefits of using embedded databases. They typically do not scale
at all, have no special availability features, and cannot be shared across multiple
applications or users.

Production setup
For all proper cluster installations that are meant to stay around longer or that
should more closely mirror the setup found in the production environment, we
recommend setting up a database service that is shared by all of the applications.
Figure 7-2 shows this, with an external RDBMS acting as the transactional data
store for all Hadoop components.

No matter how the database service is implemented, the advantage is that all
metadata stored can be shared by many users. The drawback is that the setup is
more complex because it involves more resources.
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Figure 7-2. Production setup

When it comes to setting up production-like environments, there are additional
choices to be made. Figure 7-3 shows some of the possible scenarios described here:

Shared database mode
This is depicted in both Scenario 1 and Scenario 2 in the diagram. You can have
all Hadoop-related services share the same database, which would be either part
of the Hadoop cluster itself and managed by the Hadoop team, or be provided by
the existing IT department. The latter requires a close relationship with the IT
DBAs because they are responsible for many other database-related infrastruc‐
ture components and services, placing a burden on the IT department and its
resources. Without the access to the shared RDBMS, many Hadoop services stop
working immediately (or within a very short amount of time). In other words,
should the shared database fail, it must be repaired as soon as possible to keep
the impact to a minimum.

Separate database mode
A similar model is shown in Scenario 3, where each service in the Hadoop stack
is connected to its own RDBMS instance. The probability (assuming that the
database systems are not colocated on the same host) of more than one database
being inoperable at any given time is much lower than when using a single
RDBMS. Not shown here is that this mode can also be deployed as part of a
Hadoop cluster and can be managed by its team directly.
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Figure 7-3. Database setup scenarios

High-availability database mode
This leads us to Scenario 4, where the database is configured in high-availability
(HA) mode. This requires multiple RDBMS instances to replicate data between
them and to use a kind of load-balancing technique to make database failover
seamless. Not shown here is that this can be done with a shared or separate
RDBMSs and can be managed by the Hadoop team, in case the HA RDBMS
instances are deployed outside of the IT-managed resources.
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Deploying the service databases on an HA-enabled RDBMS is the recommended
way to keep any impact on resource availability to an absolute minimum. In
practice, the setup mode is the most prevalent one, and it mitigates the need for
having separate database systems, considerably reducing the operational
overhead.

See “Database HA” on page 341 for an in-depth discussion on the HA setup for ser‐
vice databases.

Hosted database mode
If your Hadoop installation is hosted—that is, deployed in a private or public
cloud infrastructure, providing infrastructure as a service (IaaS) and, optionally,
platform as a service (PaaS)–you might be able to defer all of the complexities to
the service provider. For example, Amazon Relational Database Service (Amazon
RDS) provides hosted RDBMSs that can be configured to run in a replicated,
HA-enabled mode. Following the same principles as with non-hosted setups, you
have the choice of not owning the infrastructure but paying for what you need on
a per-usage basis. See “Data availability” on page 492 for more information.

In summary, the recommended setup for any of your Hadoop environments is a
dedicated RDBMS instance (one per environment), which is managed by either the
Hadoop or the IT team. And, at the very least for the production environment, you
should use a setup that is HA-enabled. If possible, you should choose an HA setup for
all environments that cannot handle a database outage that exceeds the defined
recovery time objective (see “Policies and Objectives” on page 378 for details).

Database Considerations
Next, we need to discuss the question of which database system to use. There is a long
list of commercial and open source RDBMSs at your disposal, and many of them may
be available to you inside your infrastructure. The first filter to narrow down the
choices is what the Hadoop subsystems support out of the box, which often is a
recent version of Oracle, PostgreSQL, and/or MySQL.

Which vendor you choose, and whether you host the databases yourself or have them
hosted by an IaaS or PaaS provider, is not as important as ensuring that you secure
the setup with regard to access and reliability. We have seen various clusters with any
of the previously mentioned databases run for years without any problems—given
that the RDBMS was professionally configured and managed. Because some projects
may not support all of these databases, we also see setups where more than one of the
supported database types is in use. This spreads the load across multiple RDBMS
instances, while keeping the complexity lower than when setting up a separate data‐
base system for each Hadoop service (as previously discussed).
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An interesting challenge is the maintenance of the databases themselves. For exam‐
ple, newer versions of Hive or Hue may need to update their internal database sche‐
mas. Since the recommended way of dealing with Hadoop is having multiple
environments (see Chapter 2), you can stage the service database-related schema
updates first and then roll them out, as supported by each Hadoop subsystem. For
example, Oozie can be shut down briefly to update the software and database sche‐
mas, without interrupting data pipelines that are in flight.

Instead of manually dealing with these maintenance tasks, the Hadoop management
systems support the automated upgrade of components and their internal database
schemas. Therefore, you can simply press a button, wait, and see all of the systems
return to operational again.

Hadoop Deployment
This section discusses the details of installing Hadoop as part of a larger system
deployment. As discussed in Chapter 2, an organization often has multiple Hadoop
environments that need to be provisioned and subsequently maintained. It is a com‐
mon practice to set up all of these environments in the same, or a very similar, man‐
ner. In other words, what we discuss here applies to all Hadoop environments within
the same organization.

Hadoop Distributions
Similar to the development in other open source spaces, like the operating system
Linux, Hadoop went from providing just the raw, low-level bits and pieces for each
ecosystem project separately, to being supported by commercial companies that
package the components into coherent and tested distributions that can be much
more easily installed and maintained. Today, anyone who wants to set up a Hadoop
cluster has the following options:

Vanilla Apache
From the beginning, Hadoop, like many other open source projects, has come as
a set of source code repositories that contain the core components—that is, the
filesystem (HDFS) and resource management framework (YARN). But those two
components are often not enough to build fully functional data pipelines. You
also need a job scheduler and tools for ingress and egress, in addition to process‐
ing engines that offer abstractions, such as SQL or a programming language–
based domain-specific language (DSL). Each of these additional components typ‐
ically comes as a source code repository. Instead of having to deal directly with
the source code, you can download archives of releases of each subproject and
assemble them as needed. We discuss this in the next section.
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4 There used to be a larger number of vendors, including Intel, IBM, and Pivotal, but a consolidation has taken
place, in which Intel merged with Cloudera, and IBM and Pivotal with Hortonworks.

Using Vanilla Apache project resources gives you the most freedom, in terms of
defining what Hadoop is for your enterprise. This is akin to downloading the
Linux kernel sources and building your custom OS yourself—which, in practice,
not many companies do. Rather, they use one of the prepackaged solutions,
known as distributions, leading us to the next item on the list.

Vendor Hadoop distribution
Using a prepackaged, shrinkwrapped software bundle has many advantages: you
can rely on the selected components included to match, and you get free quality
assurance (QA) time. Any serious software vendor ensures that what they are
offering works on the supported platforms, which entail a range of hardware- or
OS-level choices. Conversely, this is also one of the limiting factors, since using
anything that is not supported leaves you without much help apart from internet
searches. Also, the list of included components is often rather fixed, which means
that you might not be able to get the latest processing engine as a supported tool,
nor might you be able to upgrade those tools to the newest releases without for‐
feiting the mentioned support.

Common examples of Hadoop distribution vendors are Cloudera, Hortonworks,
and MapR.4 Apart from the core Hadoop components of HDFS and YARN,
these distributions also include things like:

• Apache HBase
• Apache Hive
• Apache Kafka
• Apache Oozie
• Apache Pig
• Apache Spark
• Apache Sqoop
• Apache ZooKeeper

But even if two distributions include the same Hadoop ecosystem projects, they
might be at different version levels or might be packaged with varying numbers
of features. And selecting a distribution is not without long-term consequences,
because switching from one to another is a considerable task, both on a technical
and an organizational level.
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Supported or Support
When referring to supported platforms, we are talking about the infrastructure with
which a packaged Hadoop distribution was tested; for example, RHEL or CentOS,
Ubuntu, SUSE, and others for the OS. This reassures you that installation on such
platforms was tested and should work. And, because those choices greatly overlap for
not only Hadoop distributions but also other related software systems, such as
RDBMSs, you can find much supporting information about them online. There are
community-driven sites with a lot of free information available—if you know how to
find them.

This leads us to the other part, which is vendor support. Commonly with a commer‐
cial offering, a paid subscription gives you access to automated knowledge bases and
human support services. You can open a ticket, upload cluster details—which is sup‐
ported by the vendor’s cluster-management tooling—and expect an answer within a
reasonable amount of time. Since Hadoop is made available under the Apache Soft‐
ware License, all vendors offer their packaged Hadoop and related projects as free
software, as well.

One crucial difference is how much you get with the free version of the distribution
versus the licensed one. Is it just the vendor support services, or is it more features for
tools that are otherwise missing or restricted? No matter your choice, you can self-
support if you want or pay a fee for remote support, but you always have access to the
distributions beforehand to try them out. However, when you pay for a vendor distri‐
bution, any deviation from the provided packages is most likely no longer going to be
supported.

PaaS Hadoop
This option is also considered a Hadoop distribution, since hosted versions of
Hadoop often have their own name and release versioning. The difference is that
you cannot install the available distributions on your own hardware. Instead,
they are provisioned as part of a larger IaaS offering. This means that the cloud
services provider will not only provision the Hadoop software components, but
also the underlying OS, the virtual machines, networking, storage, and more.
(See Part III for an in-depth discussion.)

The advantages of a hosted distribution include the level of automation, the
available infrastructure services (such as Hadoop service database systems, moni‐
toring, alerting, elasticity, and reporting), and not having to own any of these
pieces. Obviously, though, like renting an apartment or leasing a car, you must
pay a premium for this service.
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Installation Choices
Before we look into the steps required to install a distribution, let’s extend what we
have previously discussed and explore the choices you have from which to install:

Sources
Use of the vanilla Hadoop source code to compile your own distribution is not
for the faint of heart. Although compiling alone is challenging, combining the
various ecosystem projects is even more so, because you cannot assume that the
newest version of each project will work with the others. Rather, you need to find
the best denominator of versions that work, and/or apply patches (which have
updates to the code base) from newer versions of a project to older ones to get
access to required features (referred to as backporting).

Another option is to compile the provided sources of a vendor-backed Hadoop
distribution. The sources for each release, including all patches that are applied
on top of it, are available online and can be used as a basis to compile your own
release.

What you end up with is a set of compiled binaries (usually in the form of tarball
archives, which are the compiled bits, like JARs in an optionally compressed .tar
file), but not much more. You still need to deploy and manage the binaries on
your Hadoop infrastructure. In practice, this variant of installing Hadoop is rare.

Binary releases
Continuing the previous discussion, you could also download the binaries
directly from the projects that offer them for each release. This makes applying
patches nearly impossible and leaves you in the same predicament—that is, you
still need to deploy everything and manage it all.

This applies to vendor-provided distributions, too, because they offer binary
archives for each of their releases, and you can deploy them within your clusters
manually—with the same caveats.

Dependent on your choice, you have the following options for rolling out the
software:

Software configuration management tool
The next step in automating the installation of the Hadoop binaries is often the
use of an SCM system, like Ansible, Puppet, or Chef. These allow the definition
of a target state for any managed machine in a cluster, in addition to the use of
SSH or agents to reach that state. This includes the installation of the binaries,
setting up the configuration for each, handling related services (for example, cre‐
ating the service databases), and more.

Although this sounds like a great addition to managing your own Hadoop distri‐
bution, it still leaves you without any commercial support or free QA time.
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Instead, it builds what could be described as technical debt—there is no one but
you to take care of updates and additions to the platform. This binds resources
and becomes a considerable cost factor over time.

Hadoop distribution installer
Here, you make use of what is provided by the vendors to guide you in installing
the Hadoop cluster. There are wizard-style helpers that check all of the depen‐
dencies and prerequisites on all cluster nodes and then push out the binary pack‐
ages during the deployment process.

Containerization
Although it is a hot topic in many areas of IT, using container frameworks, such as
Docker, is not without its challenges with regard to Hadoop. The common design for
applications inside a container is to have a rather small footprint, when it comes to
resources such as disk space. With HDFS, especially, you need access to the low-level
hard drives that hold the HDFS data blocks, and usually there are plenty of those
drives inside each node. Docker, for example, has the concept of volumes, which
allow you to mount storage space from the host filesystem into the container, but that
is not without its own challenges: there have been reports in the past in which these
mounted volumes were not as fast as native access.

Having said that, there are plenty of open source projects to help you to package
Hadoop into containers. None of the commercial distributions—which are the vast
majority of installations—have built-in native container support. In other words, you
can leave the beaten path if you want to. Just be aware that you will find little to no
support for your setup.

Using a well-rounded distribution makes the most sense, in practice. Going forward,
we are only going to talk about distributions for the reasons just discussed. The next
sections look more closely into how Hadoop distributions work and what the instal‐
lation process looks like.

Distribution Architecture
Distributions are more than just installers that move the binaries into place. As men‐
tioned, distributions also add tooling that helps to manage and maintain the cluster
after it is up and running. There is commonly a management application that handles
the state of the cluster, like node status and membership. Some distributions use a
closed-source management layer, whereas others rely on open source tools such as
Apache Ambari.
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Standardization Efforts
In 2015, a group of vendors, including Hortonworks and IBM, collaborated to create
the Open Data Platform initiative (ODPi) for Hadoop. The goal of the Linux Founda‐
tion Projects–hosted group is to define what is included in a Hadoop distribution and
how it is tested to prove compliance. The ODPi specifications define what a core
Hadoop platform includes, along with the version of Hadoop it supports, which com‐
ponents it must include (that is, HDFS, YARN, and MapReduce), and more.

The operations specification further details that an ODPi-compliant distribution
must provide a Hadoop management tool, and it goes on to define features of that
tool which map to Apache Ambari. Although not explicitly stated, the close tie to
Ambari makes it difficult (or even impossible) for those distributions that use a
closed-source, proprietary tool for cluster management to comply with the ODPi
rules.

The specs also define what a runtime environment must include to be compliant,
including the environment variables that must be set and the minimum version of
Java that is used. There is also a section that defines more optional features—those
that should be provided to be compatible with the ODPi specification. This helps to
make applications more agnostic when running against an ODPi-conforming
platform.

The ODPi released version 1.0 of its specification in 2016 and is working on a version
2.0, which adds Apache Hive as a prerequisite for all compliant distributions. It is of
note that neither Cloudera nor MapR uses Ambari for cluster management, and nei‐
ther is part of the ODPi.

The general architecture of Hadoop distributions with management tooling is shown
in Figure 7-4. The main components are the management tool itself, often installed
on one of the management nodes in a cluster or on an edge node for setups where
direct access to the Hadoop cluster nodes is not allowed, and the agent process on
each cluster node. The latter is used by the management tool to detect the state of the
node and the processes running on it.

The agents have a varying degree of built-in features. For example, some include pro‐
cess management, which can restart local applications and services as needed. Others
only report metrics about the host to the management tool or might help with instal‐
ling Hadoop-related binaries on each machine. Whichever features the agent pro‐
vides, it is necessary for the management tool to do its job and must be installed
before everything else. The next section discusses how this fits into an overall installa‐
tion process.
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Figure 7-4. Common Hadoop cluster management architecture

Installation Process
After provisioning the cluster nodes and the operating system as described in “Oper‐
ating Systems” on page 185, you can install the Hadoop platform itself. We refrain
from reiterating this process in detail and refer you to the installation guides that
come with each vendor-provided Hadoop distribution. These guides are usually
comprehensive and thorough, discussing various approaches for installing the plat‐
form. The first choice is how you want to access the Hadoop distribution binaries
and packages. You have the same online and offline choices as explained in “OS
Choices” on page 187).

Package Management Options
Depending on your selected distribution, you may have an interesting choice to make
here: how you want to install the binaries. Although some offer only the package
management tool that comes with the OS—for example, yum for Red Hat–based OSs
(using .rpm extensions), or apt for Debian-based ones (using .deb extensions)—there
are other distributions that have additional options. For example, Cloudera has its
own package format, called parcels, aside from the OS-native ones.

This begs the question, which option is better? Cloudera makes the case that the
native package management is too strict when it comes to managing Hadoop ver‐
sions. Keep in mind that, with the native package manager, you can only have one
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version of the software installed at any time. This makes upgrading the Hadoop plat‐
form more error-prone because all packages need to comply with the rules enforced
on the OS level, including dependencies.

On the other hand, parcels are separate from the OS and handled by Cloudera Man‐
ager, the management tool provided by Cloudera, without any interference from
other processes, packages, or rulesets. In fact, Cloudera Manager can install multiple
versions of Hadoop on the same machine and manages to switch between them
locally with little effort.

Whichever Hadoop distribution you choose, check what package formats it offers
and weigh the pros and cons of each.

The next major decision to make is how you want to install the management tool and
its agents on each machine of the cluster. Your choices include:

Manual installation
In this scenario, an administrator needs to set up the management tool on one or
more of the management nodes and set up its agent on all worker nodes. This
can be done in a couple of ways. You can use a terminal and command-line
interface (like bash), or you can use an SCM tool to deploy and configure the
necessary binaries.

Fully automated installation
The other option is to set up the management tool manually (or using an SCM
tool) but to then let the Hadoop management tool install the agents on all
machines in an automated manner. Some distributions offer a small install script
that downloads the management tool and installs it, making the initial step as
frictionless as possible.

After you have the main management software running, you need for the tool to
remotely access the nodes and to issue the necessary commands locally on each
machine. This is done through SSH, with either root or passwordless sudo cre‐
dentials.

The entire process is outlined in Figure 7-5.
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Figure 7-5. High-level flow of installing Hadoop

Summary
This chapter walked through the provisioning and configuration of Hadoop cluster
nodes, beginning with the operating system and data stores. We then discussed the
details of installing Hadoop itself, weighing the various distribution and installation
options.

After the cluster with all the Hadoop platform pieces is up and running, you can
move on to Chapter 8, which helps you to determine whether the setup is fully
functional.
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1 See Bianca Schroeder and Garth A. Gibson, “Disk Failures in the Real World”.

CHAPTER 8

Platform Validation

After your hardware has been racked and the software installed, it’s time to validate
the installation. You want to ensure that the cluster works within a reasonable,
expected range of performance and that all the components work well with each
other. Validation may include a variety of practices, such as:

Smoke testing
To detect bad hardware and platform misconfigurations. Any setup can have
disks that are dead on arrival, memory sticks that aren’t seated right, network
adapters that work intermittently, and more. Storage disks, in particular, tend to
fail according to the bathtub curve.1 You can use burn-in tests to “smoke” these
components out and replace them before demand on the system comes into play.

Baseline testing
To demonstrate or prove degraded performance. For this you need evidence, not
expectations. If you exercise your system at regular intervals while you configure
the hardware, the operating system, and the Hadoop components, you can corre‐
late recent changes to a change in system efficiency. You can identify regressions
(or progressions!) caused by new hardware or software upgrades simply by run‐
ning regular, repeatable tests for performance.

Stress testing
To ensure that your monitoring, alerting, day-to-day operations, and other triage
operations work as you expect. Rehearsing your recovery procedures and play‐
books before the system goes into service—without the pressure of production
demand or the clamor of angry tenants—is the best time to establish your
response practice.
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It is important that the first validation occurs before you add users
and applications. Once you run your applications and open them
to users, you have what amounts to, from a validation perspective,
a system in constant flux. With users, in particular, you introduce
not only more activity but also competing perspectives on what
constitutes good performance.

As an operator, you want to hand the platform over to users knowing that it is able to
perform correctly in its native state. You want confidence in your ability to help sepa‐
rate platform, application, and user errors—and your processes—to deal with plat‐
form issues and failures.

Performance is often a rather nebulous and subjective thing. It depends on the partic‐
ular cluster hardware, network topology, the planned use cases, user demand, and, of
course, the code. The key here is agreement. If the cluster operators and users share
one view of its expected services and performance goals, it’s much easier to avoid
changes that answer more to politics than consensus.

We approach validation in a bottom-up fashion. We start with disk and network tests
to confirm that each component operates within a reasonable range of performance.
Then we look at OS configuration to ensure that it is suitable for Hadoop—namely,
HDFS and YARN—and the other services in the ecosystem that we intend to use,
such as Impala, HBase, and Solr.

Testing Methodology
For their results to be taken seriously, our tests need to demonstrate some degree of
rigor. For us this means:

• Run each test at least three times, accepting the median value as valid.
• Ensure that every test is repeatable, and record all the testing parameters and the

results they generate.
• Use the same tools (compilation options, bit-orientation, software version, etc.)

on every machine.

Take care when comparing between clusters that are not made up
of the same network topology, hardware, operating environments,
and tools. Benchmarks on different clusters can sometimes be use‐
ful for comparisons, for example after a hardware upgrade or envi‐
ronmental change, but beware of spurious comparisons between
unrelated setups.
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Useful Tools
You’ll find a few specific tools invaluable when conducting platform validation tests.
A listing by category follows:

Configuration management software
You’ll need to run some of your tests across all the nodes in the cluster and to
coordinate them to handle distributed processing tasks. Tools such as Ansible,
Puppet, and Chef will make this work simpler and faster to execute. You should
also seek out a parallel command execution tool, such as Puppet MCollective or
Python Fabric, to address many nodes at once.

Monitoring software
You’ll also need a centralized monitoring solution to collect measurements on
diagnostic data on each node. A cluster manager, such as Cloudera Manager or
Apache Ambari, has this capability built in. You can also use more general-
purpose monitoring and visualization tools, such as InfluxDB and Grafana.

Hardware Validation
Hardware validation includes verifying the performance of the CPUs, disks, and
network.

CPU
Problems with a CPU are rare, thankfully. It’s equally rare that any direct tuning is
necessary. That said, running CPU-intensive tasks on new hardware will ensure that
you’re getting the performance you’ve paid for, and these tests can expose some hard‐
ware misconfigurations. As an example, we’ve used a CPU-intensive task to trace the
cause of a two-times performance difference—with otherwise identical machines—to
the power-saving mode setting in the BIOS.

Validation approaches
You have several options for benchmarking CPUs, but to start, here’s a simple but
surprisingly effective method. Make the CPU generate many random numbers, com‐
press the result, and dump it:

$ dd if=/dev/urandom bs=1M count=1000 | gzip - >/dev/null
1000+0 records in
1000+0 records out
1048576000 bytes transferred in 108.590273 secs (9656261 bytes/sec)

Here we generated a thousand 1 MB blocks of random numbers and used gzip
(which is computationally expensive) on the output. Dropping the results in the bit
bucket limits our I/O costs to the bare minimum. The throughput comes to 9.65 mil‐

Useful Tools | 213



lion bytes/sec, which we can take as acceptable for a casual, single-threaded test on
the machine at hand.

Now let’s test our capability at scale using several threads. If you have installed
Hadoop and Spark, you can run the following test to calculate pi using a thread count
that is appropriate to the worker node CPUs you have. We use eight threads in this
example:

$ spark-submit --master local[8] \
  --class org.apache.spark.examples.SparkPi \
  /opt/cloudera/parcels/CDH/lib/spark/lib/spark-examples.jar 10000
...
16/11/16 18:06:23 INFO Executor: Finished task 0.0 in stage 0.0 (TID 0)...
16/11/16 18:06:23 INFO TaskSetManager: Starting task 1.0 in stage 0.0 (...
16/11/16 18:06:23 INFO Executor: Running task 1.0 in stage 0.0 (TID 1)
16/11/16 18:06:23 INFO TaskSetManager: Finished task 0.0 in stage 0.0 (...
16/11/16 18:06:23 INFO Executor: Finished task 1.0 in stage 0.0 (TID 1)...
16/11/16 18:06:23 INFO TaskSetManager: Starting task 2.0 in stage 0.0 (...
16/11/16 18:06:23 INFO Executor: Running task 2.0 in stage 0.0 (TID 2)
16/11/16 18:06:23 INFO TaskSetManager: Finished task 1.0 in stage 0.0 (...
16/11/16 18:06:23 INFO Executor: Finished task 2.0 in stage 0.0 (TID 2)...
16/11/16 18:06:23 INFO TaskSetManager: Starting task 3.0 in stage 0.0 (...
16/11/16 18:06:23 INFO Executor: Running task 3.0 in stage 0.0 (TID 3)
16/11/16 18:06:23 INFO TaskSetManager: Finished task 2.0 in stage 0.0 (...
16/11/16 18:06:23 INFO Executor: Finished task 3.0 in stage 0.0 (TID 3)...
16/11/16 18:06:23 INFO TaskSetManager: Starting task 4.0 in stage 0.0 (...
...more...

The parameter given the SparkPi program (10000) specifies how many iterations
we’d like to approximate pi. A higher number calls for more computations and
results in an approximation with greater precision.

If you’re going all-out, consider a multipurpose benchmarking tool such as sysbench.
We use sysbench primarily to profile database servers, but it also contains tests for
CPU performance that are general enough for validation testing.

An example invocation of the tool using a test that calculates prime numbers using
multiple threads follows. The resulting runtimes for this test system are plotted in
Figure 8-1:

for n in 1 2 3; do
  for t in 1 2 4 8; do
    echo $n $t
    sysbench --num-threads=$t \

--test=cpu \
--cpu-max-prime=10000 run > sysbench_cpu_${t}_${n}.out

  done
done
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Figure 8-1. Runtimes for the sysbench CPU test—notice the diminishing returns of
extra threads as the system becomes saturated

You may not find sysbench in the standard repositories of your Linux distribution,
but it is a useful tool and worth your time to find and install. Table 8-1 lists some
sources.

Table 8-1. Obtaining sysbench

Distribution Repository
Red Hat Enterprise Linux 6 EPEL (yum install sysbench)

Red Hat Enterprise Linux 7 EPEL (yum install sysbench)

Debian/Ubuntu Core (apt-get install sysbench)

SLES openSUSE sysbench

Source code https://github.com/akopytov/sysbench
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2 With disk controllers, a general guideline of 10 bits to the byte is often used to account for the controller
overhead.

Disks
Recall from Chapter 3 that worker node disks are mounted individually, as we want
each device to read and write independently of the others. All disk I/O is directed to a
storage controller that supports disk connections through multiple physical channels.
We expect a transfer rate of at least 6 Gb/s, or 600 MiB/s, from each channel.2

Each disk model will cite some maximum data transfer rate for reading and writing
data. In practice, you should expect 100–150 MiB/s for sequential reads and writes
with spinning disks. For Hadoop, the usual aim is for the predominant disk access
pattern to be large sequential reads and writes, although the access pattern and mix of
reads to writes is largely dependent on the workload.

We will validate our platform accordingly, first establishing that every disk is healthy
and performs well for large sequential I/O. We also want to show that the controllers
have the bandwidth to support the disks operating at maximum rate. Once we’re sat‐
isfied this is so, we can then test different workloads to assess their read/write ratios
and how efficient they are. Finally, we can test application performance using
Hadoop components to find our peak performance. We also want to know how
many tasks we may run at one time without bogging the disks down and degrading
performance.

Sequential I/O performance

The dd tool we used earlier can also help us verify our top sequential transfer rates. dd
can copy raw bytes from one device to another, whether it is virtual (e.g., /dev/null),
logical (a filesystem), or physical (the disk volume itself), meaning you can test at any
layer. In this example, we write 1 GiB of zero-filled blocks to a file:

$ dd if=/dev/zero bs=1M count=1000 of=/data/01/ddtest conv=fdatasync
1000+0 records in
1000+0 records out
1048576000 bytes (1.0 GB) copied, 8.0458 s, 130 MB/s

In this instance, we see a transfer rate of 130 MiB/s, about the middle of our expected
range.

Be careful! If you name a physical device, dd will happily overwrite
whatever it holds. You can corrupt an entire filesystem by writing
to the device underneath it, possibly rendering all the files
unusable.
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3 See “Synchronized I/O” and “Direct I/O” in Chapter 2 of Linux System Programming, 2nd Edition, by Robert
Love (O’Reilly).

To read data from disk, we reverse the input and output devices:

$ dd if=/data/01/ddtest bs=1M of=/dev/null
1000+0 records in
1000+0 records out
1048576000 bytes (1.0 GB) copied, 7.39555 s, 142 MB/s

We expect disk reads to be faster than writes, as seen here, but there’s a catch. By
default, dd operations on filesystems will use the standard OS page caching mecha‐
nism provided by the Linux kernel. If the data you read has been cached in memory,
the observed transfer rates will be well beyond what disks can do. This boost is great
for applications, of course, but it can complicate your attempt to verify device perfor‐
mance.

Your system will tend to cache pages of frequently used data, so it’s not always the
case that all or even some of your test data will be available in memory. Fortunately,
dd supports settings to bypass the cache so we can know we’re observing actual disk
transfer rates. These flags are:

oflag=direct

Instructs the kernel to bypass I/O management, including the page cache, by
invoking the system O_DIRECT flag.

oflag=dsync

Waits on the physical write (i.e., fdatasync()) of each write system call. This set‐
ting invokes the O_DSYNC flag.

conv=fdatasync

Uses kernel I/O management, but forces a physical write to disk at the end of the
process by issuing a single final fdatasync() call.

The oflag=dsync setting is the most expensive since it calls fdatasync() for each
block of data.3 We don’t need to simulate synchronous I/O behavior for any work‐
load we care about, so we can ignore this option. To observe disk health and perfor‐
mance under heavy I/O load, use conv=fdatasync or oflag=direct.

Building Blocks
There is significant, and unfortunate, overloading of the term block in the data engi‐
neering space. At the lowest level, a Linux filesystem reads and writes data to disk in
blocks of (usually) 4 KiB (equal to the Linux memory page size).
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In the dd utility, blocks refer to the user-space buffer used for each write. There are
count calls made to the write() system call with a given block size (bs).

In Hadoop, a block refers to the unit of storage for HDFS. Files are composed of one
or more blocks, each of which is replicated between nodes. An HDFS block has a
maximum size of dfs.blocksize, often 128 MiB. The effective minimum size of an
HDFS block is the smallest amount of data that can be stored to a disk device, which
is equivalent to the Linux filesystem block size of 4 KiB.

Parquet files are divided up into groups of rows, occasionally called blocks. In Spark,
resilient distributed dataset (RDD) partitions are stored as blocks for replication and
storage. In HBase a block refers to the portion of an HFile that can be read and
cached in memory. And there’s more…

When using the term “block,” be sure to be clear which meaning is implied.

When reading data, we have two options to ensure we are reading from disk:

• Use the iflag=direct setting, which tells dd that it should instruct the kernel to
bypass (as much as possible) the OS’s I/O management, including the page
cache, and read directly from the device (the O_DIRECT flag again).

• Empty the page cache by calling echo 1 >/proc/sys/vm/drop_caches. This
ensures that there are no blocks from the file about to be read in memory; the
data must be physically read from the disk device.

In the spirit of not artificially bypassing the kernel’s I/O management and for simu‐
lating a cache miss, the latter should be preferred when doing performance testing,
although realistically, there should be very little difference between the two.

The other consideration is parallel sequential I/O to different devices. In the Hadoop
case, multiple processes will be reading and writing from and to disks, and we want
to ensure that our disk controller can support parallel access to all disks, ideally at the
maximum possible transfer rates.

To simulate parallel I/O, we can launch multiple simultaneous background dd pro‐
cesses, one for each disk. For example, if there are 12 disks mounted at /data/
01, /data/02, we can do parallel writes as follows:

$ for n in $(seq 1 12); do
> num=$(printf "%02d" $n)
> of="/data/${num}/ddtest"
> dd if=/dev/zero bs=1M count=1000 of=${of} conv=fdatasync 2>${of}.out &
> WAITPIDS="$WAITPIDS ${!}"
> done
$ wait $WAITPIDS
$ grep copied /data/??/ddtest.out
/data/01/ddtest.out:1048576000 bytes (1.0 GB) copied, 7.05083 s, 149 MB/s
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/data/02/ddtest.out:1048576000 bytes (1.0 GB) copied, 7.04237 s, 149 MB/s
/data/03/ddtest.out:1048576000 bytes (1.0 GB) copied, 7.01174 s, 150 MB/s
...truncated...
/data/11/ddtest.out:1048576000 bytes (1.0 GB) copied, 7.15214 s, 147 MB/s
/data/12/ddtest.out:1048576000 bytes (1.0 GB) copied, 6.9216 s, 151 MB/s

Using the data written in the previous step, we can then clear the cache and read in
parallel:

$ echo 1 >/proc/sys/vm/drop_caches
$ for n in $(seq 1 12); do
> num=$(printf "%02d" $n)
> if="/data/${num}/ddtest"
> dd of=/dev/null bs=1M if=${if} 2>${if}.in & WAITPIDS="${WAITPIDS} ${!}"
> done
$ wait $WAITPIDS
$ grep copied /data/??/ddtest.in
/data/01/ddtest.in:1048576000 bytes (1.0 GB) copied, 8.43961 s, 124 MB/s
/data/02/ddtest.in:1048576000 bytes (1.0 GB) copied, 8.54024 s, 123 MB/s
/data/03/ddtest.in:1048576000 bytes (1.0 GB) copied, 8.35292 s, 126 MB/s
...truncated...
/data/11/ddtest.in:1048576000 bytes (1.0 GB) copied, 8.67109 s, 121 MB/s
/data/12/ddtest.in:1048576000 bytes (1.0 GB) copied, 8.6997 s, 121 MB/s

Repeated at least three times on each node, these tests should highlight any immedi‐
ate issues with individual disk transfer speeds and controller bandwidth.

To test more complex workloads, we can use a tool called fio. With fio, we can sim‐
ulate a mixed workload of sequential and random reads and writes. We do not have
space to cover too many scenarios in this book, but here is an example configuration
file for a test that performs a 50:50 sequential read/write workload across 12 disks:

$ vim seq-rw.fio
[global]
rw=readwrite
size=1g
bs=1m
direct=1

[d1]
filename=/data/01/fiow

[d2]
filename=/data/02/fiow

[d3]
filename=/data/03/fiow

...etc...

[d12]
filename=/data/12/fiow

Hardware Validation | 219

https://github.com/axboe/fio


The test is launched as follows (output truncated for clarity):

$ fio seq-rw.fio | grep "runt="
read : io=544768KB, bw=48184KB/s, iops=47 , runt= 11306msec
write: io=503808KB, bw=44561KB/s, iops=43 , runt= 11306msec
read : io=520192KB, bw=47926KB/s, iops=46 , runt= 10854msec
write: io=528384KB, bw=48681KB/s, iops=47 , runt= 10854msec
read : io=535552KB, bw=49328KB/s, iops=48 , runt= 10857msec
write: io=513024KB, bw=47253KB/s, iops=46 , runt= 10857msec
read : io=527360KB, bw=49240KB/s, iops=48 , runt= 10710msec
write: io=521216KB, bw=48666KB/s, iops=47 , runt= 10710msec
read : io=515072KB, bw=47393KB/s, iops=46 , runt= 10868msec
write: io=533504KB, bw=49089KB/s, iops=47 , runt= 10868msec
read : io=524288KB, bw=48255KB/s, iops=47 , runt= 10865msec
write: io=524288KB, bw=48255KB/s, iops=47 , runt= 10865msec
read : io=548864KB, bw=48888KB/s, iops=47 , runt= 11227msec
write: io=499712KB, bw=44510KB/s, iops=43 , runt= 11227msec
read : io=519168KB, bw=47530KB/s, iops=46 , runt= 10923msec
write: io=529408KB, bw=48467KB/s, iops=47 , runt= 10923msec
read : io=537600KB, bw=50498KB/s, iops=49 , runt= 10646msec
write: io=510976KB, bw=47997KB/s, iops=46 , runt= 10646msec
read : io=513024KB, bw=48108KB/s, iops=46 , runt= 10664msec
write: io=535552KB, bw=50221KB/s, iops=49 , runt= 10664msec
read : io=535552KB, bw=49501KB/s, iops=48 , runt= 10819msec
write: io=513024KB, bw=47419KB/s, iops=46 , runt= 10819msec
read : io=546816KB, bw=51071KB/s, iops=49 , runt= 10707msec
write: io=501760KB, bw=46863KB/s, iops=45 , runt= 10707msec

There are a few interesting observations from this. First, for rotational disks, we
should expect a best case of around 100 IOPS per device, and we get pretty close to
that here (read + write). Second, we can see that an aggregate of 100 MiB/s I/O band‐
width (50 MiB/s each for read and write) per device is about the right ballpark. If our
tests deviate too far from this, it is cause for further investigation. Note that, based on
your understanding of your projected workload, you can configure fio as appropri‐
ate, potentially including random access elements.

Disk health
Modern disks include a self-reporting mechanism, called SMART, which can report
on some errors and provide indications of imminent disk failures. Disk health can be
reported via:

# smartctl -H /dev/sda
smartctl 5.43 2012-06-30 r3573 [x86_64-linux-2.6.32-431.5.1.el6.x86_64] \
  (local build)
Copyright (C) 2002-12 by Bruce Allen, http://smartmontools.sourceforge.net

SMART Health Status: OK

Note that while an OK output is not a guaranteed indication of continued disk health,
problems highlighted by the tool should not be ignored. Increased errors reported by
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4 Eduardo Pinheiro et al., “Failure Trends in a Large Disk Drive Population,” Proceedings of the 5th USENIX
Conference on File and Storage Technologies (FAST’07), February 2007.

the SMART monitoring tools have been shown to have some degree of correlation
with impending disk failures.4 Disks failing this health test should usually be immedi‐
ately replaced.

Network
Virtually all useful workloads on Hadoop clusters involve communication between
machines, whether it be shuffling data between operators during distributed queries,
routine heartbeats from a coordinator process to its children, the use of network-
based services such as DNS or Kerberos, data replication for resilience, or any num‐
ber of other operations. Networks, naturally, are at the heart of distributed systems. A
properly configured network is therefore essential to the smooth running of a
Hadoop cluster. Chapter 4 covered networking concepts in detail, including the
range of topologies available for connecting machines and switches together.

In order to validate the performance of your chosen topology, you need to test two
things: network latency and available network bandwidth. You need to benchmark
and validate these metrics, both between individual pairs of machines in the same
rack (i.e., connected to the same switch) and between pairs of machines in different
racks. Moreover, the throughput tests should be repeated with many pairs of
machines participating in the tests concurrently to get an idea of the performance of
the network under load.

Latency Versus Throughput
The latency of a network is the typical time taken to perform a single operation
between two machines on the network. Usually measured in milliseconds, network
latency typically refers to the time taken for a packet to traverse the network from
machine A to machine B and back again. It does not include the time taken to per‐
form the operation on the destination machine (e.g., the time taken from the issuing
of a query to the result being returned, which includes both network latency and the
time spent in the application itself). There are a number of factors that affect network
latency, primarily:

• The network distance or number of intervening network hops between machine
A and machine B

• The amount of traffic on the network
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Each intervening network device between two machines will naturally add some
small amount of latency (routing and switching is not free). Likewise, the physical
distance will also dictate the minimum possible latency between two machines.

While the latency indicates the time taken for an individual packet to make the trip
between two points, the throughput measures how much data can be sent or received
by each device on the network in a given slice of time.

Just like latency, network throughput can be affected by the bandwidth available to
each device traversed and by how busy the network is at a given time.

It should be noted that there are a wide variety of configurable parameters at every
point in the network (e.g., TCP/IP kernel parameters, switch configuration, etc.), and
it is beyond the scope of this book to go into detail on network tuning. However,
these tests can demonstrate whether the network is performing within expectations
under load.

Measuring latency

Latency between two points is most easily measured using the humble ping. This
simple program uses the ICMP protocol to send sequential echo request packets to a
remote IP address and measures the time it takes to receive a reply for each packet,
along with summary statistics. Running pings between pairs of machines connected
to the same network switch should result in latencies in the single-digit milliseconds
or lower. Pings between machines in different racks should be in the tens of milli‐
seconds or lower. Latencies longer than this should be investigated. Whatever the
absolute values, the key thing is that for comparable network distances (i.e., number
of network hops), the latencies should be roughly the same for all machines in the
cluster and deviations may indicate a problem; for example, if pings to machines in
one rack consistently have longer latencies when compared to different pairs of
machines in other racks.

ping is a very well-known program. An example invocation for four pings is as
follows:

$ ping -c 4 futura.local
PING futura.local (172.31.55.130) 56(84) bytes of data.
64 bytes from futura.local (172.31.55.130): icmp_seq=1 ttl=64 time=0.186 ms
64 bytes from futura.local (172.31.55.130): icmp_seq=2 ttl=64 time=0.207 ms
64 bytes from futura.local (172.31.55.130): icmp_seq=3 ttl=64 time=0.212 ms
64 bytes from futura.local (172.31.55.130): icmp_seq=4 ttl=64 time=0.212 ms

--- futura.local ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 3002ms
rtt min/avg/max/mdev = 0.186/0.204/0.212/0.014 ms
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Latency under load
Measuring the “quiescent” latency is important, but another characteristic that’s use‐
ful to know in a cluster is how latency increases (or not) under heavy network loads
—in particular, latency to the master nodes from other nodes in the cluster. Several
services in the Hadoop ecosystem rely on low-latency communications with master
processes for efficient operation, notably when interacting with the HDFS Name‐
Node and ZooKeeper services. When performing some of the more intensive load
tests outlined later in the chapter, a concurrent ping test from a gateway node (or any
node not participating in the load test) to the master node can reveal how much, if
any, latency suffers due to network load. As a general guideline, if the latency increa‐
ses into the seconds range, this indicates a problem that needs to be addressed.

Measuring throughput
Network throughput is measured in denominations of bits per second, with the most
common being megabits per second (Mbps) and gigabits per second (Gbps). Com‐
monly, in cluster-grade servers, an Ethernet network interface card (NIC) can com‐
municate at either 1 Gbps or 10 Gbps, although speeds of 40 or even 100 Gbps are
possible. Hadoop services are designed to minimize “global” network communica‐
tion as much as possible by using memory, disk, and network locality, so usually
NICs with speeds greater than 10 Gbps cannot be justified. As a general guideline,
when translating bits per second (bps) into bytes per second (B/s) we often allow 10
bits per byte to account for the various network overheads and for ease of calculation.
Under this rule, a 1 Gbps NIC can send and receive at a maximum rate of approxi‐
mately 100 MiB/s and a 10 Gbps NIC at approximately 1,000 MiB/s. The theoretical
maximum rates are approximately 119 MiB/s and 1192 MiB/s. It is rare for a NIC to
achieve these rates consistently in real scenarios, but we should be able to get close in
testing.

NICs can communicate in either half-duplex (either send or receive) or full-duplex
(send and receive concurrently) mode. Full duplex is by far the most common. A use‐
ful tool to check and modify NIC configuration is ethtool:

# ethtool eth0

Settings for eth0:
 Supported ports: [ ]
 Supported link modes:   10000baseT/Full
 Supported pause frame use: No
 Supports auto-negotiation: No
 Advertised link modes:  Not reported
 Advertised pause frame use: No
 Advertised auto-negotiation: No
 Speed: 10000Mb/s
 Duplex: Full
 Port: Other
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 PHYAD: 0
 Transceiver: Unknown!
 Auto-negotiation: off
 Current message level: 0x00000007 (7)

drv probe link
 Link detected: yes

Jumbo Frames
In TCP communication, each packet sent must be acknowledged by the sender, so it
follows that if we can pack our data into fewer, larger lumps, we can transfer that data
more efficiently. The Ethernet protocol defines a maximum size for any single unit of
communication (a frame), the maximum transmission unit (MTU), which is typically
1,500 bytes. In cluster networks with dedicated switches and machines where we are
free (or at least it is possible) to change network configurations, we can make use of
so-called jumbo frames with an MTU of 9,000. For large streaming transfers, as are
common in Hadoop workloads, this can improve network performance by a signifi‐
cant margin.

A word of warning, though: each network device must be configured with the same
frame size, or mysterious dropped packets and hard-to-diagnose issues may result.

A very useful tool in measuring network throughput between machines is iperf3,
which is available as a package in most Linux distributions. iperf3 has a lot of func‐
tionality and can test speeds across a number of protocols, but we will be using it to
simply test the speed of TCP communication between two machines. We will then
expand this pair-wise approach to include more and more machines to create a mesh
test of the network. iperf3 operates in a client-server model. To set up a test, we start
an instance listening on the target machine:

$ iperf3 -s -p 13000
-----------------------------------------------------------
Server listening on 13000
-----------------------------------------------------------

Then, on the source machine, we start the client and configure it to run a 10-second
speed test:

$ iperf3 -c futura.local -p 13000 -t 10
Connecting to host futura.local, port 13000
[  4] local 172.31.61.61 port 43780 connected to 172.31.55.130 port 13000
[ ID] Interval Transfer     Bandwidth Retr  Cwnd
[  4] 0.00-1.00   sec   240 MBytes  2.01 Gbits/sec    5   1.17 MBytes
[  4] 1.00-2.00   sec   119 MBytes   996 Mbits/sec    0   1.56 MBytes
[  4] 2.00-3.00   sec   119 MBytes   996 Mbits/sec    0   1.88 MBytes
...more output...
[  4] 8.00-9.00   sec   119 MBytes   996 Mbits/sec    1   1.70 MBytes
[  4] 9.00-10.00  sec   118 MBytes   986 Mbits/sec    0   1.98 MBytes
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5 Mathematically, 10 choose 2.

- - - - - - - - - - - - - - - - - - - - - - - - -
[ ID] Interval Transfer     Bandwidth Retr
[  4] 0.00-10.00  sec  1.28 GBytes  1.10 Gbits/sec    8 sender
[  4] 0.00-10.00  sec  1.27 GBytes  1.09 Gbits/sec receiver

iperf Done.

The tool reports the interval throughput (bandwidth) for each second in the test and
then reports the overall throughput for the entire test. Note that, although the server
also reports statistics about bandwidths and transfers, the iperf3 documentation
advises that only the client’s numbers are to be trusted. Most useful for our purposes
is an option to send a defined amount of data. Here we transfer 100 MiB:

$ iperf3 -c futura.local -p 13000 -n 104857600

Between any two machines, either intra-rack or inter-rack, in the absence of other
network loads it should be possible to achieve transfers at close to the maximum pos‐
sible rate for the NIC. Running repeated tests to establish this fact is an important
part of platform validation.

Testing all possible combinations of racks without some form of automation becomes
unwieldy for large clusters with many racks. For example, to test all unique pairs of a
10-rack cluster requires 45 pairwise tests.5 Therefore, we recommend that you use
your source code configuration management system to install iperf3 and create a
task to start a server process in daemonized mode on all nodes in the cluster, as
follows:

$ iperf3 -s -p 13000 -D -I /var/run/iperf3.pid

Further tests then only need to start off client processes to begin a test.

Throughput under load
The next round of tests is to perform transfers simultaneously to simulate network
load:

Intra-rack throughput
Beginning with all N nodes within a rack, we can set up some number P connec‐
tions between pairs, increasing P to add to the simulated load up to a maximum
of 2N connections, with each machine being both the source and target of a con‐
nection pair. As the load increases, we test the ability of the switch to support
increasing traffic from all machines. Top-of-rack switches should be capable of
supporting all nodes sending and receiving within the rack at maximum line rate
(hence our maximum of 2N). If this is not what is observed, it is time to investi‐
gate.
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6 For graph theory fans, it is now a complete directed graph.

To account for the different startup times for the tests, we can
make use of the -O s parameter to the client side of iperf3 to
ignore the first s seconds when calculating bandwidths.

Inter-rack throughput
Much as we did for intra-rack throughput testing, we can run tests of cross-rack
traffic by running simultaneous iperf3 speed tests for pairs of machines, but this
time where the pairs are in different racks. For R racks, in the first round, we set
up R pairs and measure the bandwidth achieved for simultaneous connections;
then for the next round we set up 2R pairs, and so on. An example testing plan
for five racks is shown in Figure 8-2. Here, in the first round, five connections are
made to the neighboring rack; in the next round another five connections are
made between Rack 1 and Rack 3, Rack 2 and Rack 4, and so on. Finally, in the
fourth round, each rack has both an inbound connection and an outbound con‐
nection to each other rack in the topology.6 We can simply repeat these rounds,
adding more and more connections, to test how the bandwidths hold up under
increasing traffic. Each new pair should be between previously unused nodes,
such that each machine only has a maximum of one inbound and one outbound
connection. This ensures, as far as possible, that we are measuring the maximum
bandwidth of the switches rather than that of the NIC.

Figure 8-2. Four example testing rounds for iperf3 inter-rack testing

As we increase the number of connections, we should expect initially to see the band‐
width of individual connections be maintained at some plateau level, and then, as we
begin to saturate the cross-rack connections, the bandwidths should begin to
decrease. If all the average bandwidths from each test are summed together, we
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should see a maximum level for cross-rack traffic where the links are saturated. This
is illustrated in Figure 8-3, where the dotted lines show the idealized saturation
inflection point. In reality, the effects will not be so tidy, but we should expect perfor‐
mance to drop off roughly at the point where the total bandwidth exceeds the over‐
subscription ratio we have designed for the network topology. Because Hadoop
services try to minimize cross-rack traffic, it is usual to allow some degree of oversub‐
scription. For example, with an oversubscription ratio of 4:1, in a cluster with 5 racks
and 20 machines per rack, we would expect the inflection point to occur where we
have 50 concurrent cross-rack connections (i.e., 25 connections in each direction, 5
per rack).

Figure 8-3. Idealized profiles for individual connection bandwidth and summed con‐
nection bandwidths, as number of concurrent cross-rack connections increases

By comparing the results of the tests with our understanding of the network topology
and what it should support in theory, we can validate that the network is performing
as expected, and if not, we can provide information for further investigation.

Hadoop Validation
Once the underlying platform is validated, we can validate the services installed on
the cluster, beginning with HDFS and YARN/MapReduce.

It can be useful to perform these platform benchmarks first
without security enabled. Kerberos, on-disk encryption, and SSL
can add layers of complexity that may mask or confuse investiga‐
tions into poor performance. Knowing the performance before and
after enabling security can also help you understand its perfor‐
mance impact.

HDFS Validation
HDFS is the basis for most other components in the Hadoop ecosystem, so it is
important to establish a baseline for its performance.
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Single writes and reads
The first test is simply to act as a single client to HDFS to write and read data. This is
an important check because it can reveal misconfigurations such as the use of an inef‐
ficient data transfer encryption algorithm. To perform this simple test, write a 1 GiB
file from a gateway node, as follows:

$ dd if=/dev/urandom bs=1M count=1000 | hdfs dfs -put - /tmp/hdfstest.out

HDFS should be able to write data at a rate of at least 35 MiB/s for this simple case.
The same file can be read back to time read performance:

$ time hdfs dfs -cat /tmp/hdfstest.out >/dev/null

We should be looking for read speeds of at least 70 MiB/s. Note that we eliminate any
I/O to local disks on the gateway node by using the special devices /dev/urandom
and /dev/null as input and output devices.

Distributed writes and reads
Although the individual read and write speeds for HDFS are less than we can achieve
with direct local disk accesses, HDFS is designed to support vast amounts of dis‐
tributed concurrent I/O. Hadoop ships with a built-in test for performing a
distributed HDFS I/O test, called TestDFSIO. This tool uses MapReduce as a conve‐
nient way to spawn many concurrent I/O tasks and can read, write, or append a con‐
figurable number of files of a specified size, optionally with compression (see
Chapter 1 for a MapReduce refresher). The tool proceeds by writing a control file for
each file with the filename and the file size. A mapper is created for each control file
input, and the requested I/O is performed from the mapper process. A single reducer
collects the statistics from each mapper and produces aggregate statistics at the end.

Here is an example invocation on Cloudera Distribution Hadoop (CDH) for writing
six 512 MiB files on a small test environment:

$ MRLIB=/opt/cloudera/parcels/CDH/lib/hadoop-mapreduce
$ yarn jar ${MRLIB}/hadoop-mapreduce/hadoop-mapreduce-client-jobclient.jar \
  TestDFSIO \
-D test.build.data=/user/ian/benchmark \
-write \
-resFile w18_128 \
-nrFiles 6 \
-size 512MB

17/01/03 19:51:22 INFO fs.TestDFSIO: TestDFSIO.1.7
17/01/03 19:51:22 INFO fs.TestDFSIO: nrFiles = 6
17/01/03 19:51:22 INFO fs.TestDFSIO: nrBytes (MB) = 512.0
17/01/03 19:51:22 INFO fs.TestDFSIO: bufferSize = 1000000
17/01/03 19:51:22 INFO fs.TestDFSIO: baseDir = /user/ian/benchmark
17/01/03 19:51:23 INFO fs.TestDFSIO: creating control file: \
    536870912 bytes, 6 files
17/01/03 19:51:23 INFO fs.TestDFSIO: created control files for: 6 files
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7 This might especially be the case if yarn.scheduler.fair.assignmultiple is enabled in the YARN
configuration.

...more output...
17/01/03 19:51:49 INFO fs.TestDFSIO: ----- TestDFSIO ----- : write
17/01/03 19:51:49 INFO fs.TestDFSIO:            Date & time: \
    Tue Jan 03 19:51:49 EST 2017
17/01/03 19:51:49 INFO fs.TestDFSIO:        Number of files: 6
17/01/03 19:51:49 INFO fs.TestDFSIO: Total MBytes processed: 3072.0
17/01/03 19:51:49 INFO fs.TestDFSIO:      Throughput mb/sec: \
    54.656086538803685
17/01/03 19:51:49 INFO fs.TestDFSIO: Average IO rate mb/sec: \
    54.66523742675781
17/01/03 19:51:49 INFO fs.TestDFSIO:  IO rate std deviation: \
    0.7159597238650328
17/01/03 19:51:49 INFO fs.TestDFSIO:     Test exec time sec: 26.296
17/01/03 19:51:49 INFO fs.TestDFSIO:

Note that, at the end of the run, the tool presents us with some statistics: throughput,
average, and standard deviation, all expressed in MiB/s. The throughput is the total
amount of data written by all mappers divided by the total time taken for all mappers,
whereas the average is the total of the rates reported by each mapper divided by the
number of mappers. Note that these are actually slightly different measures. When
combined with the standard deviation, the average is probably more useful in prac‐
tice. The standard deviation is calculated for the rates reported by the individual
mappers and tells us how much variation there was between tasks.

There are some things to note about TestDFSIO. First, because it uses MapReduce as
a means to distribute HDFS reads and writes, we are somewhat at the mercy of the
YARN scheduler as to how tasks are distributed across the cluster. During a write
test, this might mean that some nodes have a disproportionate write load, due to run‐
ning more mappers.7 To account for this, we can size the mapper container memory
to try and spread tasks across the cluster as evenly as possible. However, during a
read test, since TestDFSIO uses the control file as the input split and the actual input
file to read is specified in the control file, the mapper may not be reading the data
locally.

Before running the test, we need to think about how many files to read or write and
what size they should be. As with the networking tests, we can start small and steadily
increase the number of files to see how the I/O rate holds up under increasing load.
Although there are fewer files than the number of disks in the cluster, we should
expect to see I/O rates in excess of 50 MiB/s and small standard deviations, but as we
increase the number of tasks past the number of physical disks in the cluster, we will
start to see lower rates and potentially increased deviation as the tasks compete for
disk I/O.
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8 For the mappers to be spread most evenly, YARN’s yarn.scheduler.fair.assignmultiple configuration
parameter should be set to false.

As with the raw disk tests from before, be sure to drop the OS page
caches before running the read tests.

General Validation
One of the most useful tools in our platform validation toolbox is the TeraSort
benchmark. The primary purpose of TeraSort is to benchmark distributed systems by
sorting large amounts of data (archetypally 1 TiB) in as short a time as possible. The
Hadoop implementation has been used to win the Sort Benchmark a number of
times in the past. The Hadoop TeraSort suite consists of three phases:

TeraGen
This phase creates the input for the sort phase, consisting of a specified number
of 100-byte records with 10-byte keys and random values. It runs as a map-only
job, and each mapper writes a chunk of the records.

TeraSort
The data from the TeraGen phase is read from HDFS, globally sorted, and writ‐
ten back to HDFS.

TeraValidate
Each sorted output is read back, and the keys are checked to ensure that they are
in sorted order.

In terms of platform validation, the first two are the most useful and can be used as
proxies to test the performance and configuration of the cluster. We look at how in
the next couple of sections.

TeraGen
TeraGen can be a very useful platform validation tool, and it allows us to test both
disk and network performance. Before using it to test disk I/O we need to understand
a little of how this works in practice.

We know that each mapper in a TeraGen job independently writes a slice of the data
to HDFS. If we run the job with enough mappers, the YARN ResourceManager dis‐
tributes these tasks approximately evenly across all available NodeManagers, as they
heartbeat in looking for work.8
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We also know that an HDFS DataNode process, by default, uses a round-robin policy
when allocating a disk to a block write request. This means that, if we ensure that the
number of write threads is less than or equal to the number of disks in the cluster, we
should get close to one write thread per disk.

Of course, in practice, things aren’t always so neat. We may end up with some Node‐
Managers running slightly more tasks than others, and a small number of disks will
end up with more than one writer thread and some with none. But, over a few runs,
these effects should even out.

Disk-only tests.    For the first test, we want to test pure disk performance, so we set the
HDFS block replication to 1 such that mappers are writing to local disk only. This
allows us to eliminate network effects. The general form of a TeraGen invocation is:

$ yarn jar \
  /path/to/lib/hadoop-mapreduce/hadoop-mapreduce-examples.jar \
  teragen -Ddfs.replication=<REP> -Ddfs.blocksize=<BLOCKSIZE> \
-Dmapreduce.job.maps=<MAPS> <ROWS> <HDFS_OUTPUT_DIR>

The following is an example invocation on CDH to write 1 TiB on a cluster with 50
nodes, each with 12 disks (for a total of 600 mappers):

$ yarn jar \
  /opt/cloudera/parcels/CDH/lib/hadoop-mapreduce/hadoop-*-examples.jar \
  teragen -Ddfs.replication=1 -Ddfs.blocksize=536870912 \
-Dmapreduce.job.maps=600 11000000000 /user/ian/benchmarks/terasort-input

It’s worth noting that YARN needs enough resources to run all 600 mappers at once
—in this case, an allocation of at least 12 vcores per NodeManager. We also need to
allow headroom of at least one vcore for the ApplicationMaster container.

After the job is complete, we can analyze the results and check the performance. If we
configure the job such that the number of rows modulo the number of mappers is
zero, each mapper will write exactly the same amount of data. By analyzing both the
individual runtime for each mapper and the statistical spread of all mapper runtimes,
we can identify both slow disk write speeds and potential problem nodes. This is
illustrated in Figure 8-4. Note the peak around 65–70 MiB/s. A smaller peak at
around 35 MiB/s may indicate one or more bad disks. If the same node repeatedly
displays slow tasks, it should be further investigated.

Combined with platform monitoring showing disk I/O statistics, this is a nice way of
verifying disk write performance and identifying bad disks. You should hope to see at
least 70 MiB/s from each task. If you have time on your side, you can extend this test
by increasing the number of mappers to have two or three write tasks per disk to see
at what point the underlying disks saturate.
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Figure 8-4. An example distribution of task write speeds with replication at 1

Disk and network tests.    To test the effect the network has, and where it starts to
become a bottleneck, we can reduce the number of map tasks to one-third of the
number of disks in the cluster. We do this to account for three times replication and
maintain one writer thread per disk. Repeating the tests first with replication at 1 (for
a baseline) and then with the default replication of 3, allows us to see the effect of the
replication traffic on the network. It will always be slower when replication is
involved, but this initial test should not show too much degradation.

Due to the way HDFS places block replicas, approximately half of the induced net‐
work traffic will be cross-rack. Again, we can use the job statistics to analyze the indi‐
vidual map times and the standard deviation between all mappers to identify outliers
and potential problems.

To explore the limits of the network, increase the number of mappers and plot a dis‐
tribution of the resultant mapper write speeds. As the network and disk contention
effects come into play, we should see the mean write speed decrease and the standard
deviation increase, as the contention introduces more variation in the resources allo‐
cated to each task.

We can use these tests to validate the oversubscription ratio for cross-rack traffic. As
an example, if we assume a 10 Gbps NIC, an oversubscription ratio of 2.5:1, 10 nodes
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9 Maximum cross-rack traffic is 10 × 1000 / 2.5 = 4000 MB/s. Number of tasks is 4000 / 10 / 80 = 5 tasks.

per rack, 12 data disks per node, and an average write speed of 80 MiB/s, we should
start to see network contention with more than 5 tasks per node.9

TeraSort
The primary utility of terasort in platform validation is not to achieve the lowest run‐
time to sort 1 TiB (although this can be fun to do), but instead to lay down a marker
for cluster performance for a known workload which pushes the CPU, disks, and net‐
work. You can rerun TeraSort on a regular basis to ensure that cluster performance is
holding up and to rebenchmark the cluster when it is expanded. An example
TeraGen/Sort invocation follows:

$ yarn jar \
  /opt/cloudera/parcels/CDH/lib/hadoop-mapreduce/hadoop-*-examples.jar \
  terasort -Dyarn.app.mapreduce.am.resource.mb=4096 \
-Dyarn.app.mapreduce.am.command-opts=-Xmx4294967296 \
-Dmapreduce.job.reduces=2500 /user/ian/benchmarks/terasort-input \
/user/ian/benchmarks/terasort-output

We will not go into too much more detail here on running TeraSort benchmarks,
because they don’t really reflect a real-life workload. But here are a couple of general
pointers:

• Increase the default HDFS block size during TeraGen to 256 MiB or 512 MiB to
avoid too many map tasks in the TeraSort phase.

• Try to align the size of files written by TeraGen to the block size, to ensure full
files for mappers to read, by setting the number of rows accordingly. For exam‐
ple, if you are using 400 mappers with a block size of 256 MiB, you could specify
(400 × 256 × 1024 × 1024)/100 = 1073741824 rows, which would generate 100
GiB (remember that each row is 100 bytes).

• Set the number of reducers large enough to provide good parallelism for the final
sorting phase but small enough so they can all run at once.

• Do not waste time optimizing for TeraSort, because it does not represent a real-
life workload.

• Take care to delete the files produced by TeraGen and TeraSort, both to free up
space and to avoid sysadmin panics when blocks with a replication factor of one
go missing.
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10 Note that YCSB is also available as a parcel for Cloudera.

Validating Other Components
Other frameworks in the Hadoop ecosystem ship with their own benchmarking tools,
a few of which we will outline in this section. In addition, there are a few general per‐
formance evaluation tools or benchmarking suites for assessing data storage engines.
There is not enough space here to cover each in detail, but we provide some pointers
to what is available. To start with, a couple of general tools:

YCSB
Yahoo! Cloud Serving Benchmark (YCSB) is a benchmarking suite designed to
test the performance of various random access (as opposed to analytical ware‐
house) NoSQL data stores. It can apply a series of different core workloads com‐
prising different mixes of reads, writes, updates, deletes, and access patterns, such
as random access and range scans, and can be extended with custom workload
definitions. Currently, plug-ins exist for many serving systems, but most interest‐
ing for our purposes are the plug-ins for HBase, Solr, and Kudu. For full details
on YCSB and its operation, refer to the documentation.10

TPC-DS
The Transactions Processing Council (TPC) produces a number of benchmarks
for evaluating various relational database engines. The benchmarks cover a wide
range of functionality, and they are divided into a number of domains. Each
benchmark has a defined set of queries, and performance is assessed by their
runtimes. TPC-DS is a benchmark covering decision support workloads and is
focused on benchmarking analytical queries—workloads that process a large vol‐
ume of data in support of business decisions. Modified versions of TPC-DS are
regularly used to test query engines such as Impala, Hive, and Spark SQL.

Load Testing
In some cases, a custom load-testing tool is appropriate—for example, applying a
known query workload to Impala. There are a few open source tools around to
achieve this, but perhaps the most popular is Apache JMeter. Out of the box, it
has the ability to run load tests via HTTP, JDBC, JMS, and more and also can run
arbitrary shell scripts. Among the most commonly used example use cases are:

• Submitting a set of queries from a real workload concurrently to Impala via
JDBC

• Stress testing a SolrCloud deployment via HTTP requests
• Load testing APIs providing interfaces to Hadoop services, such as the

HBase REST server or a custom abstraction layer
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Specific benchmarking tools also exist for HBase and Impala:

HBase
In addition to using YCSB, HBase ships with two tools that can be used for run‐
ning benchmark tests: LoadTestingTool and PerformanceEvaluation. For
details and usage, see the “Performance Tuning” chapter of the upcoming HBase:
The Definitive Guide, by Lars George (O’Reilly).

Impala
As already mentioned, a version of the TPC-DS benchmark suite has been writ‐
ten for benchmarking Impala. The queries are slightly modified from the pub‐
lished benchmark suite, but as a means of laying down a marker for cluster
performance, it can prove useful.

The underlying data for TPC-DS is a data warehouse-style schema oriented
around a retail use case with a large fact table and supporting dimensional tables.
The actual volume of data is defined by a scale factor, which can be used to
increase the scale of the benchmark.

Operations Validation
Although the focus of this chapter has been on performance, we should not leave the
subject of platform validation without briefly talking about operational tests. An
essential part of validating an installation is confirming that all nodes can be rebooted
successfully and that their essential configuration parameters (such as swappiness)
persist across reboots. It’s also a great time to test out procedures for disk replace‐
ment in both master and worker nodes.

At the software level, ensure that database backups are being taken (and can be
restored) and that all layers of the software stack, including Hadoop and the sur‐
rounding services, can be restarted without issue. If you are integrating with enter‐
prise monitoring solutions, you should ensure that the alerting is functioning
correctly.

Summary
In this chapter, we outlined the tools and techniques that you can employ when vali‐
dating a Hadoop installation and its underlying hardware. We began by looking at
how to check that the cluster hardware is fit for purpose and how to flush out failing
components. We then examined the various tools for assessing the performance of
services within the Hadoop ecosystem and gave some pointers toward their usage.

As emphasized throughout, in addition to flushing out bad hardware and configura‐
tions, the real utility for these techniques is the ability to lay down a marker for per‐
formance of a particular cluster which can be used to assess ongoing performance.
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CHAPTER 9

Security

No cluster is an island—users and applications need to access APIs and services, and
data needs to flow in and out. In an enterprise context, it is essential that data is
stored, processed, and accessed securely. The aspects of security are usually broken
into four domains: authentication, authorization, auditing, and confidentiality. In
this chapter, we discuss how these four domains intersect with services running in
the cluster. Confidentiality controls are often important in protecting the network
exchanges of authentication and authorization mechanisms, so we start by looking at
in-flight encryption. We then cover authentication and authorization and finish with
a discussion of the available options for at-rest encryption.

There is plenty in the Hadoop documentation and general literature about Hadoop
and security, but, in the spirit of keeping this book as self-contained as possible, we
cover the essentials here. If you are already well versed in the area, feel free to skip to
the next chapter, in which we examine how to integrate the available security mecha‐
nisms into the wider enterprise context.

For more detailed coverage of all the concepts discussed in this
chapter, we strongly recommend that you read Hadoop Security by
Joey Echeverria and Ben Spivey (O’Reilly).

In-Flight Encryption
Hadoop clusters are big users of the network (see “How Services Use a Network” on
page 107), with both data and metadata regularly being transferred between dis‐
tributed components. In addition to ensuring that data cannot be snooped on while it
is in transit, we need to protect client-server interactions, such as RPC calls that
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might contain sensitive information (e.g., authentication credentials). In a truly
secure cluster, we need to protect all these exchanges using in-flight encryption.

Cluster services most commonly encrypt transfers by using Transport Layer Security
(TLS). Some services also support other mechanisms such as encryption provided via
the Quality-of-Protection (QoP) functionality in the Simple Authentication and
Security Layer (SASL) framework. Before summarizing how each cluster service
makes use of in-flight encryption, we look at both TLS and SASL.

TLS Encryption
The TLS protocol establishes the backbone of secure web communications by provid‐
ing a framework for encrypting data transfers. Despite its official deprecation, this
in-flight encryption is still often referred to as Secure Sockets Layer (SSL) communi‐
cation. Before a secure data communication is initiated, the TLS protocol allows cli‐
ents to guarantee the identity of a remote server and to agree on a mutual symmetric
encryption key through the use of public key cryptography.

In public key cryptography, each party in the communication has a key pair consist‐
ing of a public key (called a certificate) and a private key. As part of the initial hand‐
shake, server and client exchange messages securely by encrypting messages using
each other’s public keys. These messages can only be decrypted by the corresponding
private key. Because this form of asymmetric encryption is generally quite slow, it is
used only in the initial exchanges to agree on a mutually supported symmetric
encryption cipher and key.

With TLS, the client can ensure it is talking to the right server (and not to an
imposter masquerading as the server) by ensuring that the server’s public certificate
(which contains the server’s public key) has been signed by a mutually trusted certifi‐
cate authority (CA). Servers can likewise optionally check the identity of a client by
requiring it to present its own certificate, also signed by a mutually trusted CA.

To make use of TLS encryption, applications must therefore be supplied with both a
private key, which must be kept secret, and a public certificate, which can be widely
published. Most enterprises have their certificates signed by a public CA or run their
own internal public key infrastructure (PKI) deployment. We cover some of the
options for integrating Hadoop services with corporate TLS certificate management
tools in “Certificate Management” on page 304.

TLS and Java
Connecting Java clients to TLS-protected services requires the configuration of a
trust store. A trust store is a Java KeyStore (JKS) containing the certificates of one or
more CAs, which have signed the server certificates used by services. The built-in
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Java networking functionality requires that a full chain of trust be in place when set‐
ting up communication with TLS sockets.

In the absence of a common CA, the trust store can also contain
the public certificates of each service being accessed. We highly
recommend that you use intermediate or root CA certificates
wherever possible because this reduces the number of certificates
to manage in each trust store. We strongly discourage self-signed
certificates.

By default, the Java virtual machine will use a trust store found in the jre/lib/security/
cacerts file, relative to the Java installation location. If your certificates are signed by a
public CA, you probably do not need to take any further action because these certifi‐
cates are usually included in the default trust store. However, if you are using an
internal CA, you need to add the certificate to this file or override the location where
Java looks for the default trust store via system properties. For example, to use a trust
store at /opt/pki/jks/truststore the JVM would be invoked with:

java -Djavax.net.ssl.trustStore=/opt/pki/jks/truststore ...

Note that because a trust store should contain only public certificates, having a pub‐
licly known password should not be an issue, although the public certificates are
readable from a JKS file without one. However, to prevent tampering and to avoid
installation of bogus certificates, ensure that the trust store JKS file is only writable by
root or trusted users.

For server processes, private keys and server certificates can also be stored in an
encrypted JKS file. In contrast to trust stores, this file should be readable only by the
server process for which it is intended. Its location and protected passphrase can be
provided to the process at startup using the javax.net.ssl.keyStore and
javax.net.ssl.keyStorePassword system parameters.

Java provides a keytool utility for importing certificates and keys from various for‐
mats, which we cover in “Converting Certificates” on page 307.

TLS and non-Java processes
The specification of public and private keys varies from service to service, but non-
Java processes generally use either the base64-encoded Privacy-Enhanced Mail
(PEM) or binary PKCS #12 key file formats.

User programs such as curl or Python scripts generally pick up CA bundles (the
equivalent of trust stores) from the system’s default location for certificates, which
can vary for each flavor of Linux or can be directly configured with certificate
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locations. Common locations for public certificate bundles are /etc/ssl/certs, /etc/pki/
tls, and /etc/pki/ca-trust, but can vary by Linux distribution.

X.509
Certificates are most often structured according to a common format called X.509.
The format defines many standard fields, but for our purposes, the most important
are:

Subject name
This is the certificate owner’s identity. Usually, for server processes, this is the
fully qualified domain name (FQDN) of the server.

Issuer name
This is the unique identity of the CA that has signed and issued the certificate.

Validity
This defines the valid-from and valid-to dates of the certificate.

Subject alternative name
This is an X.509 extension field and is a list of alternative names by which the
certificate owner might be identified (for example, any DNS aliases). This field is
most useful when the certificate is being used as a wildcard certificate (DNS pat‐
terns are allowed here) or where the service is located behind a load balancer. If a
SAN is specified, the subject name is ignored, so the SAN should include the
FQDN as well as any other aliases.

Certificates can also be issued by CAs with specific purposes, or key usages. For TLS,
the server certificate key usage field needs to enable keyEncipherment and, if the
extended key usage field is present, needs to denote a TLS web server with id-kp-
serverAuth. This allows the certificate to be used to establish an encrypted key
exchange between client and server.

There are many more fields, but these are the important ones to understand when
creating certificates for services running on a Hadoop cluster.

SASL Quality of Protection
SASL is an abstraction API to allow networked protocols to use a generic security
API to transparently handle multiple authentication and data protection mecha‐
nisms. It supports many authentication mechanisms, including Kerberos. SASL is
widely used by RPC protocols across the Hadoop ecosystem, including for data trans‐
fer protection in HDFS and in the Thrift-based protocols in Hive and Impala.

Relevant to this section, SASL allows applications to define data protection in addi‐
tion to authentication. There are three QoP levels: auth (authentication only), auth-
int (authentication and integrity), and auth-conf (authentication, integrity, and
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confidentiality). Although supported by Kerberos, SASL QoP is not supported by all
SASL authentication mechanisms. For this reason, it is recommended to use SASL for
authentication (auth) but to provide confidentiality between client and server via TLS
where it is supported by the service. For some services though, protection of RPC
interactions is provided only by SASL.

Enabling in-Flight Encryption
The options for configuring in-flight encryption for data and RPC calls are summar‐
ized in Table 9-1. This summary table provides information on the specific parame‐
ters for each service, but the project documentation should be consulted for
additional information on how to specify keys and certificates.

Table 9-1. Summary table of in-flight encryption options for services

Service Encrypted traffic Notes
HDFS Data transfer encryption

to/from DataNodes
SASL-based encryption for data transferred between clients and
between DataNodes. Pluggable encryption ciphers via
dfs.encrypt.data.transfer.algorithm, but
AES/CTR/NoPadding is strongly recommended.

KMS TLS for KMS clients Configure hadoop.security.key.provider.path to use
an https URL.

Core Hadoop RPC encryption SASL-based QoP for RPC calls to Hadoop daemons, such as HDFS
NameNode and YARN ResourceManager, from clients. Choose pri
vacy for hadoop.rpc.protection in core-site.xml.

HBase RPC protection SASL-based QoP for RPC calls to HBase daemons. Choose privacy
for hbase.rpc.protection.

Kafka TLS for Kafka broker TLS protection for producer/consumer connections via SSL://
host:port or SASL_SSL://host:port entries in the listen
ers parameter. Inter-broker protection via
security.inter.broker.protocol=SSL.

Hive TLS for HiveServer2 API TLS protection for query sessions via hive.server2.use.SSL.

Impala Impala daemon client
connections and inter-
daemon traffic

TLS protection for query sessions via ssl_server_certifi
cate.

Solr HTTPS for Solr servers Various SOLR_SSL* environment variables and url
Scheme=https in ZooKeeper configuration.

Spark Encryption for RPC and
block transfer service

Controlled via spark.authenticate=true and spark.net
work.crypto.enabled=true or spark.authenti
cate.enableSaslEncryption=true in job configuration.

MapReduce Encrypted shuffle Controlled via mapreduce.shuffle.ssl.enabled in job
configuration or mapred-site.xml.

Kudu RPC encryption Encryption for data and RPC calls for external and internal Kudu
communication enabled via the --rpc-
encryption=required startup flag.

In-Flight Encryption | 241



Service Encrypted traffic Notes
Oozie HTTPS for Oozie servers Configure the Tomcat server to use HTTPS via oozie-setup.sh

prepare-war -secure (vendor distributions do this
automatically).

ZooKeeper TLS encryption for client
connections

For ZooKeeper 3.5.0+, SSL can be configured for a secure port via
zookeeper.serverCnxnFactory="org.apache.zoo
keeper.server.NettyServerCnxnFactory" and
secureClientPort=2281.

Hue HTTPS for Hue Enabled by specifying ssl_certificate and
ssl_private_key in hue.ini.

Authentication
The various storage, processing, metadata, and management services running on a
cluster use a variety of authentication mechanisms. The most widely used is Ker‐
beros, but some components also support Lightweight Directory Access Protocol–
based (LDAP) authentication or single sign-on (SSO) technologies via Security
Assertion Markup Language–compliant (SAML) providers. We cover the essentials
of Kerberos and LDAP authentication in the following sections. Because it is the most
common—and often least understood—we spend the most time on Kerberos.

Kerberos
In Hadoop, processes within frameworks such as HDFS need a way to authenticate
their own internal traffic and connections from remote clients, and most use Ker‐
beros for this purpose. Kerberos is a network authentication protocol designed to
address the challenge of strong and secure mutual authentication in distributed sys‐
tems, and to do so in an efficient and scalable way. The central idea behind the proto‐
col is that users and services authenticate themselves to a central authority and
receive a special time-limited ticket, which can be used to obtain further tickets for
specific services. These service tickets help to establish identity and trust between a
client and server.

Kerberos isn’t just used by Hadoop. Many other systems make use
of it to secure network interactions between users and services.
One notable example is Microsoft Active Directory (AD).

Principals
In the Kerberos protocol, users and services are each assigned a principal, which is a
unique identifier within a given realm with its own password, or key. A realm is a
grouping of principals within the same security environment and is overseen by a
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single authentication authority. (If you are familiar with LDAP—see “LDAP Authen‐
tication” on page 247—you can think of a realm as akin to an LDAP domain.)

Principal names are text identifiers with a standard structure consisting of three com‐
ponents: primary/instance@REALM. In the Hadoop world, the primary component is
sometimes also called the short name of the principal and usually identifies the par‐
ticular user who owns the principal.

The optional instance component in the principal denotes the role the principal
owner is going to adopt in any Kerberos exchanges. For example, a user ian who is
acting as an administrator might have one principal, ian/admin@EXAMPLE.COM, which
is used for administrative tasks, and another principal, ian@EXAMPLE.COM, for other
types of exchange. Each of these examples is a different entity within Kerberos with
its own key.

Although each unique principal has a separate key, related principals can be logically
grouped together under a common primary, a concept that is used often in Hadoop
services. Principals representing real users do not often have an instance component,
but as we will see, most services will remove the instance component anyway when
processing the principal name.

A special kind of principal, called a service principal, places a fully qualified domain
name in the instance component to denote a particular instance of a role of a process
running on a specific host. For example, the principal hdfs/master1.sabon.com@
SABON.COM might refer to a specific process of an HDFS role running on mas
ter1.sabon.com. Another principal, hdfs/worker42.sabon.com@SABON.COM, repre‐
sents another HDFS process running on worker42.sabon.com. In this example, all
HDFS principals running on different hosts are logically grouped under the hdfs pri‐
mary, while each maintains its own unique identity and key.

The REALM component of the principal is mandatory but is generally assumed to be
the configured default realm if left off. Table 9-2 gives a few more examples.

Table 9-2. Kerberos principal types

Type General format Example
User primary@REALM ian@SABON.COM

User primary/instance@REALM ian/admin@SABON.COM

Service primary/fqdn@REALM yarn/master2.didot.com@SABON.COM

Although principals can be used on any host, service principals are designed to be
used by services running on a particular server. A client of the service can ensure that
it is operating from the instance location advertised in its principal through DNS
canonicalization and reverse hostname resolution. A service principal can also be
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used as the client in a Kerberos interaction; for example, when one HDFS DataNode
talks to a DataNode on a different host.

In Hadoop, a principal is created for each unique service user-host pair on which the
service runs. If the service runs multiple roles on the same host—for example, an
HDFS NameNode and JournalNode—these roles can share the same principal. Each
user wishing to access those services needs to have a user principal.

Accessing services
Let’s look at how Kerberos authentication works, by way of an example. In
Figure 9-1, we show a user (Alice) who is logged on to an edge node and who wishes
to run an HDFS directory listing. To do this, she needs to communicate with the
HDFS NameNode process running on a cluster node. To prove her identity to the
NameNode process, Alice first needs to obtain a valid service ticket via Kerberos.
There are two types of ticket in the Kerberos system. The first type is called a ticket-
granting ticket (TGT) and is obtained by a user for a particular principal in the realm
from a central service called the authentication server (AS). A user requests a TGT
from the AS, which returns it in a wrapper encrypted with the principal’s key, which
is known only to the AS and the user. The user decrypts the response using the key
and then checks the integrity of the payload. Only those with knowledge of the key
can decrypt the response and use the ticket inside for further interactions.

Figure 9-1. Kerberos authentication and service ticket retrieval process

In the example, both Alice and the HDFS NameNode process acquire TGTs for their
principals (1). Alice requests a TGT for alice@SABON.COM via the kinit command-
line program, which retrieves the ticket and prompts Alice for her key (password). It
uses this to decrypt the response locally on the client and then stores it in a secure
cache. The NameNode process obtains a TGT for hdfs/master1.cl1.sabon.com@
SABON.COM via Java’s Kerberos module.

With a valid TGT, a user can then obtain service tickets, which are tickets for a par‐
ticular service running on a specific node. These are obtained from a separate central‐
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ized service called the ticket-granting server (TGS). In our example, Alice requests a
service ticket for hdfs/master1.cl1.sabon.com@SABON.COM (2). The TGS encrypts
the responses in such as way that only the client can decrypt them. As part of the pro‐
cess, Alice confirms that she is talking with the right NameNode instance through
forward and reverse DNS lookups (3).

Included in the responses from the TGS is a payload encrypted with the service prin‐
cipal’s key. The client never decrypts this but instead presents it to the service as part
of its initial authentication request (4). The service—here, the HDFS NameNode—
decrypts the ticket using its own key and thereby verifies both that it is a valid ticket
and that the client is who they say they are (5). This is guaranteed because only an
authenticated client can have obtained a valid service ticket from the TGS. One par‐
ticular advantage of the protocol is that the service does not need to consult the TGS
at all to validate the service ticket presented by the user.

The Kerberos AS and TGS services together form a Kerberos Key Distribution Center
(KDC) and run on the same server. We cover the KDC integration patterns with
Hadoop in “Kerberos Integration” on page 296.

Both TGTs and service tickets are time-limited. Common lifetimes are 10 or 24
hours, but you can configure this. TGTs can be requested with a renewable flag, to
allow them to be renewed a maximum number of times before they ultimately expire.
The ticket lifetime and maximum renewable lifetime are defined by the KDC.

Responses from KDC servers can be encrypted using a range of
ciphers and integrity algorithms. We strongly recommend avoid‐
ing the use of ciphers that are known to be weak. See the documen‐
tation for details.

Keytabs
For long-running processes that need to maintain a TGT beyond the maximum
ticket renewal lifetime, the key for a principal can be placed into a file called a keytab.
Keytabs can contain keys for multiple principals, and each principal can have multi‐
ple entries with different encryption types. Keytabs are primarily used by services
running on cluster nodes, but they can also be used by long-running client applica‐
tions, such as web services or distributed applications where delegation tokens are
not supported (see “Delegation Tokens” on page 248). Note that the possession of a
keytab file allows the bearer to obtain TGTs for any of the principals within the file,
so they should be strongly protected and their usage kept to a minimum.
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Guard your keytab files carefully, using restrictive file permissions.
Anyone with access to the file can adopt the identity of the princi‐
pals it contains.

Kerberos over HTTP
Web-based services can also authenticate users with Kerberos via the HTTP Negoti‐
ate authentication scheme (see the next sidebar, “SPNEGO”). To use Kerberos-
protected web interfaces, users must present a valid ticket for the service. For
Windows users, this can work out of the box for services within the same login
domain as the user, since Microsoft Active Directory automatically obtains a TGT on
login, which can be used to obtain a service ticket. Microsoft Internet Explorer and
Google Chrome can use this ticket automatically and Mozilla Firefox can be easily
configured to do the same.

For Windows users who are not in a realm trusted by the cluster KDC, MIT Kerberos
provides an installable utility (MIT Kerberos for Windows) that allows users to
obtain new tickets alongside their default tickets for the cluster realm.

By convention, Kerberos-protected web interfaces identify themselves using princi‐
pals with HTTP as the primary (user) and a fully qualified hostname as the instance;
for example, HTTP/master3.didot.hadoop.com@HADOOP.COM. The hostname used in
the principal depends on where the interface is running and whether it is running
behind a load balancer. We discuss this detail further in “Load Balancing” on page 318.

SPNEGO
Under the hood, Kerberos authentication via the HTTP Negotiate scheme uses the
Generic Security Service API (GSSAPI) and the Simple and Protected GSSAPI Nego‐
tiation Mechanism (SPNEGO) frameworks.

The GSS API was designed to allow networked applications and protocols to make
use of different authentication mechanisms using a unified interface. In Hadoop, the
framework is used primarily to provide Kerberos authentication for web interfaces
through its built-in SPNEGO mechanism, as implemented by Java’s Java Authentica‐
tion and Authorization Service (JAAS) and Java Generic Security Service (JGSS)
libraries.

SPNEGO enables the negotiation of a mutually supported authentication mechanism
between client and server. It is used in the Negotiate scheme to allow Kerberos
authentication via HTTP.
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Cross-realm trusts
Very often, an enterprise has multiple realms and domains, either because of a desire
for separation of business functions or administrative responsibility, or even because
of company acquisitions. This can mean that a Hadoop cluster and its services have
principals in one realm, while principals for users wishing to access those services are
in another. Many times, different Hadoop clusters are in different realms. In these
cases, a trust must be established between the KDCs of the two clusters. This can be
either a one-way or a two-way trust. In a one-way trust, one cluster’s KDC trusts
users from the other realm, but not the other way around. In a two-way trust, both
KDCs trust users from each other’s realms. As part of the trust relationship, the KDC
will validate a TGT it receives with the KDC in the originating realm.

In Hadoop, in addition to setting up the trust between KDCs, we explicitly specify a
list of rules in the core configuration specifying how to interpret incoming principals
(see “Principals and Case Sensitivity” on page 254).

In Active Directory, a Kerberos realm maps to a domain (AD provides KDC and
LDAP services for the domain) and trust relationships can be set up between
domains. At a higher level, related domains are grouped into forests, which can also
have mutual trusts.

LDAP Authentication
LDAP defines a standard for interacting with directory servers. LDAP-compliant
directories are the enterprise standard for centralized administration of users, groups,
computers, and other networked resources. LDAP is a critical technology to under‐
stand when setting up enterprise Hadoop clusters, and we cover it in much more
depth in “LDAP Integration” on page 287. For now, we simply need to know that it can
be used by components to provide authentication.

Although LDAP supports a number of user authentication protocols (including Ker‐
beros via SASL), when we talk about LDAP authentication, we are usually referring to
authentication of users via username and password (simple bind). The process is
illustrated in Figure 9-2. A user wishing to use a service initiates a connection and
sends them credentials in the form of a username and password (1). The service then
forwards the supplied credentials to an LDAP server, which validates them against a
matching user in its directory (2). If the credentials are validated, the service consid‐
ers the user authenticated. To avoid having to repeat the process for each network
interaction, services such as web interfaces usually have the concept of a user session
and can optionally generate a separate secure authentication token (for example, a
cookie) and provide this to the user, who can use it in further interactions as proof of
identity (3).
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When services use LDAP for user authentication, they can choose to use either direct
bind or search bind. With direct bind, the application takes the credentials as supplied
by the user and attempts to authenticate (or bind, in LDAP terminology) to the
LDAP server directly as the user. If the attempt is successful, the user is authentica‐
ted.

Figure 9-2. LDAP authentication process

By contrast, with search bind, the application typically has its own LDAP user with
which it queries LDAP for the user attempting to log in. If found, the application
attempts to subsequently bind using the retrieved user’s distinguished name (DN)
and supplied password. Search bind is useful when the user’s unique LDAP bind
name cannot be immediately inferred from the username they entered at login. The
application can search LDAP for a different attribute of the user object and retrieve
the unique bind name.

Unlike Kerberos, LDAP authentication requires that the user supply their password
directly to the server. Since the credentials are sent over the network, steps must be
taken to protect the transport using in-flight encryption; for example, via TLS (more
on this in the next chapter). Note that this applies to both the connection between the
user and the service and the connection between the service and the LDAP server.

LDAP authentication is supported across a number of components in the Hadoop
ecosystem and is a good option for scenarios in which obtaining Kerberos tickets is
problematic or awkward; for example, for Windows users in a different realm or for a
business intelligence tool with little or no Kerberos functionality. LDAP authentica‐
tion is most commonly seen with user-facing services, such as Hue, Hive, and Impala,
as well as with notebooks like Cloudera Data Science Workbench and cluster man‐
agement tools like Apache Ambari and Cloudera Manager.

Delegation Tokens
When a distributed process—for example, a Spark job running on YARN—must
access data protected by Kerberos, we need a way for the remote components of the
process to authenticate themselves as if they are the user who submitted the job. One
way would be to ship the user’s credentials along with the job fragments, in the form
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of a keytab or other credentials file—but obviously this should be avoided. If a mali‐
cious actor were to obtain a keytab, they could masquerade as that user up until the
point that the breach is detected, which may not be for some time.

Another disadvantage is that each remote process on each node would have to
authenticate with the authentication service using the supplied credentials. In the
case of Kerberos, the processes would talk to the KDC to obtain a TGT, relevant ser‐
vice tickets, and so on. This might be all right if there were a small number of pro‐
cesses in each but when you start factoring in hundreds of jobs, each of them with
potentially tens to hundreds of remote processes, the load on the authentication ser‐
vice becomes nontrivial.

Delegation tokens are a sensible compromise between security and practicality. Serv‐
ices that support delegation tokens allow authenticated users to request a time-bound
token, which the bearer can use to access data and services as if they were the user to
whom the token was issued. The tokens are issued by the service itself, and each
token is requested with an initial lifetime for which it is valid (typically 24 hours),
after which it expires. If the requesting user would like the token to be renewed, they
can nominate another user (for example, the YARN user) who is authorized to renew
the token on their behalf. Tokens have an absolute maximum lifetime (often seven
days) defined by the service, beyond which they cannot be renewed.

Jobs that require continued access after the maximum lifetime of a token must
request a new one from the service. This can only be done using Kerberos TGT or
another primary authentication mechanism—you can’t use a token to get a new
token. Thus, any malicious actor who gains access to the token has a finite exploita‐
tion window and is limited to a single service.

Unlike a service ticket, delegation tokens are not usually limited to particular instance
of a service on a specific host, which means that a user can obtain a single token and
distribute components of their job to each of the remote hosts. While they may not
be limited to a particular host, however, tokens are often limited to a particular
purpose.

Tokens are used widely across the Hadoop stack and are supported by the majority of
services in the ecosystem. Most commonly, tokens are obtained automatically by
MapReduce or Spark jobs accessing HDFS, HBase, Solr, and Kafka, among others.

Impersonation
Core Hadoop provides a mechanism called impersonation, which lets a particular
user or service, authenticated with its own Kerberos TGT, act on behalf of another
user. This is also referred to as proxying (and sometimes, somewhat confusingly, as
delegation), and the user doing the impersonating is the proxy user.
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At first, impersonation might seem similar to delegation tokens, but there are some
important differences. The first is that there are no special service tokens involved in
impersonation. The underlying authentication mechanism between the client (the
proxy), which is usually itself a daemon process or service, and the server remains
Kerberos. In fact, impersonation can be used to obtain delegation tokens on behalf of
another user.

Also, the privileges granted to a proxy user are not limited in time or function.
Impersonation of other users can be limited by lists of groups, and hosts. This means
that we can say that the proxy user is allowed to perform impersonation of another
user if—and only if—the proxied user is contained in a specified list or is a member
of one of the configured groups. In the same way, impersonation can be limited to a
specific set of hosts. Both of these criteria are assessed at the remote end of the inter‐
action. So long as these conditions are met, a proxy user can impersonate a user at
any time and can perform any action the user is authorized to do. As such, the ability
to perform impersonation should be granted sparingly and only to trusted services.
The proxy user should, for all intents and purposes, be considered a superuser.

Impersonation allows a user-facing interface to push down the responsibility for
authorizing a user’s actions and data access to the underlying services, without hav‐
ing to expose those services directly to the user. It’s also useful for cases where Ker‐
beros authentication is not possible or for services that do not support delegation
tokens.

Among other services, Hue, Hive, and Oozie all use impersonation when interacting
with other services on behalf of a logged-in user. Services supporting impersonated
connections include HDFS, YARN, HBase, Oozie, Hive, and Impala.

If you’re examining Hadoop logs, delegation token authentication
is denoted as TOKEN and the authentication mechanism is DIGEST-
MD5. Impersonation is indicated in the logs by PROXY.

Authorization
After a user is successfully authenticated, the service needs to check whether that user
is authorized to perform the action or access the data specified in the request. 
Although each service in the Hadoop ecosystem has its own way of authorizing oper‐
ations and data, many have been integrated with a centralized authorization manage‐
ment and enforcement system such as Apache Sentry or Apache Ranger.

In Hadoop, we can apply authorization at the following scopes:
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Service level
Is the user allowed to access the service at all, even if they are authenticated? Is
the user a special privileged user? Is the user allowed to access a particular end‐
point or use this protocol or method?

Object level
Is the user allowed to perform the operation on a particular object (things like
databases, files, tables, topics, and columns) within the service?

Authorization can also be hierarchical, with permissions on higher-level objects, such
as databases, conferring the same permissions on objects lower in the hierarchy, such
as tables and views. Depending on the point in the hierarchy where it is being
applied, authorization can be considered coarse-grained or fine-grained. There isn’t a
well-defined boundary between the two, but an example of coarse-grained access
would be at the database level, whereas fine-grained access control would be at the
table or column level.

At all levels, user authorization is usually expressed in terms of permissions. A per‐
mission defines what is allowed on the object in question; for example, write access to
a file or consumer access to a topic. Permissions can either be applied directly to
users (user-based access control [UBAC]) or to roles (role-based access control
[RBAC]), to which users can be assigned. A third option is to decide what users are
allowed to do and see via attributes on the objects (attribute-based access control
[ABAC]); for example, by tagging a cell as SECRET or PUBLIC.

All three paradigms exist in services running in Hadoop clusters. Most common,
though, are UBAC and RBAC. For RBAC, we need a way of determining to which
roles a user belongs. Although a list of roles can be maintained for each user, the typi‐
cal way to map users to roles is through group membership. So, as a prerequisite to
making an authorization decision, a common pattern is for a service to check an
authenticated user’s group memberships.

Because managing access through groups is so common, as a preamble to examining
how authorization is managed in some common services we will first look at the pro‐
cess of group resolution. We then move on to look at some concepts that are shared
between services, such as superusers and centralized access control, before drilling
down into details about how each service manages authorization.

Group Resolution
Users and groups can exist as entities in numerous locations within an enterprise,
including as local definitions on a Linux server or in centralized locations, such as an
LDAP directory server. Generally, users and groups should be resolved and adminis‐
tered from a central location because this provides superior control, uniformity of
identity, and simpler administration. In enterprises, this invariably means using
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LDAP, very often as provided by Active Directory. We look at LDAP and how to
integrate it with Hadoop in more detail in “LDAP Integration” on page 287.

Hadoop provides a pluggable mechanism via the GroupMappingServiceProvider
interface for performing group lookups for an authenticated user identity. Apart
from core Hadoop, this API is used by many other projects in the wider ecosystem,
such as Sentry and HBase. Hadoop ships with the following options for mapping
groups:

Operating system lookup
The ShellBasedUnixGroupsMapping and JniBasedUnixGroupsMapping{With

Fallback} implementations delegate the process of performing group lookups
for a user to the OS, which in turn may retrieve information from a remote
source, like LDAP. For this to work properly, the OS needs to know about all the
possible identities of users (end users and service users), either defined locally or
in LDAP. Likewise, when referring to groups, the service needs to use the group
name as it appears to the OS, which isn’t necessarily always the same as the name
used in the remote directory. We cover the options in detail in “Linux Integra‐
tion” on page 292.

User and group resolution needs to be configured on every node in
the cluster, so, for simplicity, consistency, and performance, we
usually recommend delegating this task to the OS.

LDAP lookups
The LdapGroupsMapping implementation retrieves groups for a user identity
directly from an LDAP server. In contrast to the OS delegation techniques, this
approach relies on the in-process caching that Hadoop performs. Since this
method performs direct lookups, you can use the exact group names as they
appear in LDAP when defining authorization controls.

Multiple sources
The CompositeGroupsMapping implementation allows a combination of these
mapping implementations to be used. It is commonly used to resolve end users
from multiple domains within the same cluster.

Static definitions
Hadoop allows groups to be defined statically for named users in the core-
site.xml configuration file. This can be useful in the rare cases where you wish to
override the group memberships for users as they are resolved by the OS or
remote LDAP directory.
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You can use the hadoop groups command from any edge server to
determine of which groups Hadoop considers a user to be a mem‐
ber.

Superusers and Supergroups
For most services, there are certain users that are considered superusers and for
whom the normal authorization controls do not apply. These users are typically
identified by the primary (or short name) of the Kerberos service principals used by
the service itself. For example, for HDFS, the default superuser is hdfs, and HDFS
daemons usually use service principals like hdfs/h2.prod1.example.org@EXAM
PLE.ORG. By default, when extracting a username from a principal, Hadoop strips off
the instance and realm components, so a client using this example principal will be
resolved to the username hdfs and will therefore be conferred superuser rights.

Restricting superusers
Within a cluster, this is fine because the principals for the daemons are well protected
in keytabs on the filesystem. However, we need to consider services that are running
on hosts outside of the cluster but within the same Kerberos realm and that might be
managed by a different team or be running at a different security level. For example,
without additional controls, anyone with access to a keytab in a user acceptance test‐
ing (UAT) cluster could use these to act as an HDFS superuser in the production
cluster.

With default configurations, superuser privileges can be shared
across clusters in the same Kerberos realm. Be sure to limit super‐
user usage via one of the methods outlined in this section.

To guard against leaking superuser privileges in this way, we have the following
options:

Network firewall
We can use perimeter security to prevent network access from outside of the
cluster. For production clusters, perimeter firewalls should be strongly consid‐
ered in any case, but they add complexity for administrators and do not prevent
someone using a compromised keytab from a legitimate edge node of the cluster.
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Distinct Kerberos realms
Each cluster can have its own Kerberos realm, with cross-realm trusts established
only between those clusters managed by the same team and at the same security
level. We cover the options and trade-offs in “KDC Integration” on page 298.

Principal mapping rules
This approach employs the auth_to_local rules (see “Principals and Case Sensi‐
tivity” on page 254) to map any service account not originating from the local clus‐
ter to a benign user such as nobody.

This is easiest when the fully qualified hostnames of the cluster make the origin
obvious, such as h34.uat2.example.org versus h2.pr1.example.org. For example,
the following rules ensure that only service principals from the prod1 cluster are
mapped to a privileged short name. The order of the rules is important:

RULE:[2:$1/$2]([a-z]+/[a-z0-9]+\.pr1\.example\.org)s/([a-z0-9]+)\/.*/$1/g
RULE:[2:$1/$2](.*)s/.*/nobody/g
DEFAULT

If there is no such pattern, regular expressions can be constructed that match
only the hosts in the cluster, but this is unlikely to perform well for large clusters
and requires that services be restarted when nodes are added to and removed
from the cluster.

Principals for service accounts without an instance, such as kafka@EXAMPLE.ORG,
should also be restricted. We usually recommend that the Linux accounts used
for services be defined locally rather than in centralized systems such as Active
Directory, but in the rare cases where they are defined globally, we need to take
care to protect our clusters from rogue access. The following rule, which matches
principals without an instance component, can be used for this purpose (expand
the rule to include other services):

RULE:[1:$1]((hdfs|yarn|hbase))s/.*/nobody/g

Principals and Case Sensitivity
In Hadoop, Kerberos principals are case sensitive, so http/a.b.c.d is not the same as
HTTP/a.b.c.d. As a result, YARN expects to find a /user/N123456 directory on HDFS
if an N123456 principal is used to submit a job, and Hadoop will use N123456 to per‐
form group membership lookups for authorization. This can be in conflict with
LDAP directories, which generally provide case-insensitive lookups. Often, technolo‐
gies that map LDAP users and groups to Linux users and groups are also case insensi‐
tive and always return results in lowercase. This can cause issues for Hadoop, which
checks the ownership of files during shuffles and log aggregation. It considers files
owned in Linux by n123456 to not belong to principal N123456.
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A common way to overcome these difficulties is to make use of a feature called
auth_to_local mappings. These are rules that translate two- or three-part Kerberos
principals into a local identity (or short name) to be used by Hadoop services for
authorization. For example, for Hadoop, the following rule in core-site.xml translates
all incoming user principals to their lowercase counterparts:

RULE:[1:$1](.*)s/(.*)/$1/L

For this to take effect across the whole stack you may also need to modify /etc/
krb5.conf with an equivalent rule, but be aware that the rule syntax is slightly different
for each file. The equivalent MIT krb5.conf rule looks like this (truncated to fit on the
page):

RULE:[1:$1](.*)s/A/a/g s/B/b/g s/C/c/g ...snip... s/X/x/g s/Y/y/g s/Z/z/g

Finally, in services that might not use Kerberos for authentication, there may be con‐
figuration parameters to enforce lowercase user and group names. For example, Hue
has a force_username_lowercase property for several of its authentication backends.

Note that when adding principals using AES encryption types to a keytab, the princi‐
pal name must exactly match the case of the principal in the directory because the
case-sensitive principal name is used as a salt in the authentication exchange with the
KDC.

Custom principal names
Most services allow the short name that a service uses to be customized via con‐
figuration, so instead of the default hbase and sentry, we might use hbaseprd1
and sentryprd1. Because we can customize this per cluster, we have no risk of
leaking superusers across environments. Although this is a fairly elegant solu‐
tion, there are drawbacks. In the first instance, it requires a lot of additional con‐
figuration and extra understanding by the users of the cluster, who now need to
ensure that the code is configured to connect to services using non-default prin‐
cipals. Second, not every service supports this customization, so it may be an
incomplete solution. Furthermore, some utilities and scripts may make assump‐
tions about the principal names—in the worst case, hardcoding them to the
expected defaults. All of these things can be surmounted, but you should be pre‐
pared for a slightly bumpier road when using this solution.

Supergroups
Some services, such as HDFS, also allow special groups (so-called supergroups) to be
set up to give members superuser access. Although it might be convenient to use the
service accounts directly to perform administrative activities, administrators should
use the superuser approach to perform privileged actions as themselves, wherever
possible.
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Superuser tasks should always be performed as a user who has been
granted superuser access via roles or supergroup membership.
Avoid using the service principal directly for this because it is
much more difficult to audit. This is analogous to preferring sudo
to root access in Linux.

Some key superuser or supergroup configuration parameters for administrators are
listed in Table 9-3. For groups, these are all resolved by the mechanisms configured
in hadoop.security.group.mapping (see “Group Resolution” on page 251). Unless
stated, access control lists (ACLs) are configured as outlined in “Hadoop Access Con‐
trol Lists” on page 256.

Table 9-3. Superuser and supergroup configuration parameters for some key services

Service Parameter Description
HDFS dfs.permissions.superusergroup Group of superusers who can access all of HDFS.

YARN yarn.admin.acl ACL of YARN administrators who can perform
any action in YARN.

HBase hbase.superuser ACL of users and groups who are granted full
privileges. Instead of the Hadoop syntax for
ACLs, this is a single comma-separated list in
which group names are prefixed with the @
symbol; e.g.,
user1,@group1,@group2,user2.

Sentry sentry.service.admin.group List of users who can administer Sentry roles
and permissions.

Hive sentry.metastore.service.users List of users allowed to bypass Sentry
authorization in the Hive Metastore.

Hue is_superuser column in database User-level configuration setting within Hue’s
database.

Kudu --superuser-acl startup flag Comma-separated list of superusers.

Kafka super.users Comma-separated list of superusers.

ZooKeeper -Dzookeeper.DigestAuthentica
tionProvider.superDigest

Encrypted password with which a user can
become a superuser.

Hadoop Access Control Lists
For the uninitiated, the syntax for specifying ACLs in Hadoop configuration parame‐
ters can be a bit confusing. Basically, the syntax is a comma-separated list of users and
a comma-separated list of groups which are separated by a space (shown here as ␣):

user1,user2,user3␣group1,group2

If you don’t need to give ACL access to any groups, you can just specify the list of
users with no space after it. But if you just want to specify groups, you must prefix the
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1 See the “Service Level Authorization Guide” for further details.

list with a space character. For example, to permission the admins and auditors
groups, you would specify the ACL as:

␣admins,auditors

To allow all users, the ACL can be specified as *.

Hadoop Service Level Authorization
Service Level Authorization is an authorization feature available in the core Hadoop
libraries and used in HDFS, YARN, and MapReduce. The feature essentially allows us
to restrict access to services as a whole or to limit access to specific service functional‐
ity. It is an excellent way of limiting end user usage of supported services to just the
intended groups of users. Access is controlled through user and group ACLs, the
originating host, or both.

We can limit end user access to HDFS and YARN client protocols by configuring the
corresponding setting in the hadoop-policy.xml file for the service.1 The parameters to
configure are outlined in Table 9-4.

Table 9-4. Service Level Authorization settings for clients

Service Parameter in hadoop-policy.xml
HDFS security.client.protocol.acl

HDFS security.client.datanode.protocol.acl

MapReduce security.mrhs.client.protocol.acl

YARN security.applicationclient.protocol.acl

YARN security.job.client.protocol.acl

For example, to restrict access to HDFS to the saturn_users group, we would config‐
ure the following in hadoop-policy.xml:

<property>
  <name>security.client.protocol.acl</name>
  <value> saturn_users</value>
</property>
<property>
  <name>security.client.datanode.protocol.acl</name>
  <value> saturn_users</value>
</property>
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To limit administrative controls on services, such as the ability to perform manual
HA failovers or dynamically refresh security policies, we can configure the settings in
Table 9-5.

Table 9-5. Service Level Authorization settings for administrators

Service Parameter in hadoop-policy.xml
HDFS security.refresh.policy.protocol.acl

HDFS security.ha.service.protocol.acl

MapReduce security.mrhs.client.protocol.acl

YARN security.refresh.policy.protocol.acl

YARN security.ha.service.protocol.acl

YARN security.resourcemanager-administration.protocol.acl

Continuing our example, if we want to restrict administration tasks to the
saturn_admins group, we can specify:

<property>
  <name>security.refresh.policy.protocol.acl</name>
  <value> saturn_admins</value>
</property>
<property>
  <name>security.ha.service.protocol.acl</name>
  <value> saturn_admins</value>
</property>

By replacing the acl with hosts in the parameter names, a list of valid IP addresses
and hostnames from which the service can be accessed can also be supplied.

Having toured the higher-level authorization controls provided by superusers, super‐
groups, and Service Level Authorization, we now move on to examine user access
control to objects within the services.

Centralized Security Management
Having various security models for each service in the cluster, each with a slightly dif‐
ferent way of managing access control, can rapidly become unwieldy and repetitive,
not to mention confusing. The need for centralized security management led directly
to the creation of Apache Sentry and Apache Ranger.

Both projects use a plug-in architecture to provide authorization controls in each ser‐
vice, as illustrated in Figure 9-3, although the implementations and administration
modes are quite different.
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Figure 9-3. Centralized authorization architecture

A key advantage of a centralized role-based authorization system is that membership
of a single role can confer rights in many different services, each of which uses its
own model of authorization behind the scenes.

As an example, consider an application that loads data into some Hive tables on
HDFS and inserts documents into a Solr collection. A single Sentry role, say app_ro,
can be granted permissions to read the Hive tables, view the underlying files on
HDFS, and query the Solr collection. One or more groups can be assigned the role,
and any user who is a member of these groups will be able to run Hive, Impala, and
Solr queries against the defined objects. Similarly, roles with write or administrator
access to objects in different systems can be controlled centrally.

In the following sections, we point out where Sentry and Ranger offer integration
with the service and offer examples where appropriate for Sentry.

For further details on Ranger and Sentry and how they integrate with Hadoop clus‐
ters and the ecosystem, we recommend the following project and vendor documenta‐
tion sources:

• Apache Sentry project page
• Cloudera documentation on Apache Sentry
• Apache Ranger project page
• Hortonworks documentation on Apache Ranger
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2 If you’re unfamiliar with the Unix filesystem model, see “File system permissions: Traditional Unix permis‐
sions” on Wikipedia.

HDFS
As you would expect for a filesystem, HDFS implements the standard Unix approach
for setting permissions on files and directories according to the read (r), write (w)
and execute (x) model for user (owner), group, and other classes.2 The username
used by HDFS is the Kerberos short name of the connecting user.

Sometimes, though, there is not enough control in the traditional Unix model. For
example, in many cases, we need to grant access to a directory and its contents to
multiple groups, each with differing permissions. Linux extended the filesystem per‐
mission model with ACLs for such scenarios, and this approach has been mirrored in
HDFS. With ACLs, we can specify permissions on a file or directory for any number
of individual users and groups. This functionality is particularly important for pro‐
tecting Hive tables, where we want the permissions on the files themselves to match
the access roles specified in Sentry or Ranger.

With ACLs, we can also specify default permissions for new files and directories cre‐
ated under a directory. For example, to allow rwx rights to the app_admins group on
the /data/app_logs directory and its descendants, including new files and directories,
we can use the following command:

hdfs dfs -setfacl -R \
-m group:app_admins:rwx,default:group:app_admins:rwx \
/data/app_logs

When using default ACL specifications, you need to be mindful of
the default filesystem umask, which defines the traditional Unix
permissions to be used for new files and directories. The umask
specifies which rights should be removed for users, groups, and
others. In Hadoop 2.x, this setting takes precedence over default
ACLs and can therefore effectively mask the desired permissions.
By default, fs.permissions.umask-mode in core-site.xml is set to
022, which means the write permission is removed from all new
files and directories for groups and others, even if the default ACL
allows write access for named groups. Setting dfs.name

node.posix.acl.inheritance.enabled to true in hdfs-site.xml
corrects this behavior and is the default in Hadoop 3. Because it
maintains a constant overlay asserting permissions on relevant
directories, automatic HDFS permissions synchronization in Sen‐
try does not suffer from this issue.
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If enabled, Sentry will automatically and dynamically apply the correct HDFS ACLs
on a directory hierarchy, based on the current roles and permissions in effect for
Hive tables. ACLs can also be administered from the Hue security app.

Ranger provides an HDFS plug-in in which HDFS ACLs can be controlled via policy,
including by both grant and deny rules.

YARN
Users interact with YARN by submitting and killing jobs; viewing the web interfaces
for the ResourceManager, Scheduler, and ApplicationMaster; and retrieving the
application logs after the jobs have completed. Most of these activities are authorized
through permissions on the resource queue in which the job runs. However, there are
some higher-level controls for the service as a whole.

In YARN, containers are run on worker nodes using the ID of the user who submit‐
ted the job. The containers are run via the LinuxContainerExecutor, which provides
three parameters to give administrators control over which users can run containers.
The main aim of these parameters is to prevent privileged Linux and Hadoop users
from running jobs on the cluster where they might be able to do accidental or
malicious damage. In the container-executor.cfg configuration file for the LinuxCon
tainerExecutor on each worker node, we can set the following parameters:

min.user.id

In Linux, users with low numeric IDs (e.g., below 1000) are usually considered
special and those accounts are used to run essential system services. In particular,
the root user has an ID of 0. This parameter ensures that jobs are run by nonpri‐
vileged Linux users.

allowed.system.users

Sometimes, accounts with IDs below the specified minimum should be allowed.
This parameter provides a comma-separated list of such users. Common in this
list are hive and hbase.

banned.users

As an extra control, in case their system accounts have numeric IDs greater than
min.user.id, you may explicitly want to prevent some service user IDs from
running jobs. An example value here is hdfs,yarn,mapred,bin.

Although they are different implementations, the Fair Scheduler and Capacity Sched‐
uler have similar concepts for user authorization. Each resource queue has two ACLs,
one to control job submission and one to control queue administration. Any user or
group member in the submission ACL can submit jobs and control the life cycle of
jobs they’ve submitted. By contrast, members of the administration ACL for the
queue can manage any of the jobs in the queue. ACLs are applied hierarchically, so, if
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you can submit to or administer a parent queue, you can do the same on its children.
Since the default root queue ACLs are *, you want to modify these in a secure cluster.

If authentication for web interfaces is enabled, YARN also applies user authorization
for certain content. All authenticated users can view the ResourceManager and
Scheduler UIs and see what jobs are running, but job details and ApplicationMaster
UIs are limited to authorized users only. YARN applies the following rules when
deciding whether a user can access the job information and logs:

• Is the user requesting access the job owner (submitter)?
• Is the user in the ACL defining view access, called VIEW_ACL (app type–specific;

e.g., MapReduce, Spark)?
• Is the user a YARN ACL admin?
• Is the user in the admin ACL for the YARN pool to which the job was submitted?

For MapReduce, VIEW_ACL access can be conferred to a user via the
mapreduce.job.acl-view-job configuration parameter on the job. For Spark jobs,
use spark.ui.view.acls.

After the job is finished, and if log aggregation is enabled, the job logs are stored on
HDFS. At this stage, the logs can only be retrieved by the submitter (who owns the
files) and members of the relevant history group (by default, mapred for the Map‐
Reduce Job History Server and spark for the Spark History Server).

Ranger also provides centralized management of YARN queue access controls via
configurable policies.

ZooKeeper
The authorization scheme in ZooKeeper is based on ACLs applied to users who are
authenticated by various schemes. Permissions are granted on znodes to create child
nodes (c), read node content (r), write node content (w), delete the node (d), and
administer the permissions of the node (a). The schemes denote the authentication
mechanism for users. The important ones are world (basically anyone using Zoo‐
Keeper), digest (an MD5 hash of a username and password), and sasl (Kerberos
authentication). Authorization by group is not supported by any of the included
mechanisms.

HBase, Solr, and Kafka can be configured to lock down the znodes they use, to pre‐
vent accidental or malicious modification by other ZooKeeper users.
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Hive
Although Hive includes some rudimentary built-in authorization mechanisms, for
enterprise use cases the authorization should be provided by a plug-in providing inte‐
gration with Sentry or Ranger. Sentry can protect all aspects of user interaction with
Hive itself as well as the underlying data on HDFS (see “Centralized Security Man‐
agement” on page 258). We describe the Sentry functionality in the rest of this sec‐
tion. For more information about the Ranger integration, consult the relevant
documentation.

In the Sentry permissions model for Hive, users belong to groups, which are assigned
roles, which are granted privileges on named objects. The objects and the possible per‐
missions are outlined in Table 9-6. Permissions on parent objects confer the same
permission to child objects.

Table 9-6. Hive objects and permissions

Object Permissions Parent object Description

SERVER SELECT, INSERT,
ALL

None The SERVER object contains all objects. ALL permissions grants the
role the ability to do all operations.

DB SELECT, INSERT,
ALL

SERVER Permissions for the database and all objects it contains.

TABLE SELECT, INSERT,
ALL

DB Permissions for tables. Implies full access to columns.

VIEW SELECT DB Read permission on a view. Does not confer access to the underlying
tables.

COLUMN SELECT TABLE Read permission on a column in a table.

URI ALL SERVER Permission to interact with the location on the filesystem as part of
queries. Required for external tables, nondefault table locations, and
LOAD DATA operations.

For example, consider a user, alice, who is a member of an analysts group which has
been assigned the sales_ro role. If the sales_ro role is granted the SELECT permis‐
sion on the sales database, alice will be able to query every table defined in the
database.

As part of the query life cycle, the Sentry plug-in running in HiveServer2 queries the
Sentry server to ensure that the user has appropriate access to the objects referenced
in the query. Group membership—and therefore role assignments—for the user issu‐
ing queries is determined using the Hadoop groups mapping implementation on the
Sentry server.

The Hive Metastore (HMS) also has a Sentry plug-in, which ensures that DDL modi‐
fications are authorized by one or more Sentry role privileges. This protects the HMS
from modifications made outside of HiveServer2 but does not restrict read access for
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metadata. Read access can be restricted to the HMS by limiting the users it is allowed
to proxy, but this can hinder legitimate usage by Spark SQL jobs, which need access
to the HMS to read and update Hive table metadata, so this approach needs to be
applied with care.

When using Sentry, the impersonation feature of HiveServer2 is disabled and each
query runs in the cluster as the configured Hive principal. Thus, each HDFS location
associated with a Hive table should be readable and writable by the Hive user or
group.

If you are using the HDFS ACL synchronization feature, the required HDFS permis‐
sions (r-x for SELECT, -wx for INSERT, and rwx for ALL) on files are enforced automat‐
ically and maintained dynamically in response to changes in privilege grants on
databases and tables. In our example, the alice user would be given r-x permission to
files in tables in the sales database. Note that a grant on a URI object does not result
in corresponding permissions on the location in HDFS.

Impala
When it comes to user authorization, Impala has much the same model as Hive. The
Sentry integration within each Impala daemon caches roles and privileges such that
the Impala daemons can authorize queries very quickly without remote lookups. The
caches are refreshed on a regular basis to keep the privileges fresh.

Certain services, such as Impala and Kafka, cache Sentry privileges
for performance. Thus, it might take a little time for privilege
changes to take effect. In most cases, the privileges should be upda‐
ted within a few seconds.

HBase
HBase uses ACLs to authorize user operations at different scopes. The highest scope is
superuser, which we described earlier. Next, we have global, which allows the defined
access to all tables running in all namespaces. The scopes continue to narrow as we
move from namespace, to table, to column family. Finally, within memstores and
store files, individual cells can be further protected at the cell level, a feature which
makes use of cell tags. Authorization is enforced by a special coprocessor which runs
in each RegionServer.

At each scope, the following permissions can be granted: read (R), write (W), execute
(X: allow users to invoke coprocessor endpoints), create (C: allow creation and drop‐
ping of tables at the given scope), and admin (A: perform administration actions, like
splitting and merging regions).
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Permissions can be administered using grant and revoke commands within the
HBase shell or via the AccessControlClient API endpoint. Permissions can be gran‐
ted to users and to groups. (HBase uses the configured Hadoop group mapping
implementation.) As we saw for superuser control, groups can be specified by prefix‐
ing the name with @. To control permissions at a given scope, a user must themselves
have admin (A) permissions at the same scope or higher. As an example, the follow‐
ing commands set up permissions for a group of global admins, a group of applica‐
tion admins in a specific namespace, and the service account that runs the
application:

> grant '@global_admins', 'RWXCA'
> grant '@app_admins', 'RWXCA', '@appns'
> grant 'appuser1', 'RW', '@appns'

So far, we have looked at RBAC controls in HBase. However, HBase does include a
seldom-used feature called visibility labels that provides a mix of RBAC and ABAC
control on cells. In this mode, cells are tagged with Boolean expressions of labels,
like !developer or (pii|auditor) & europe. Users or groups are associated with
labels, and these are supplied and evaluated at scan time to determine whether the
cell should be returned with the results.

At the time of this writing, Sentry does not provide an HBase plug-in, but Ranger
includes an integration that allows HBase permissions to be managed centrally via
policies.

Solr
As well as its own rule-based plug-in, Solr integrates with both Sentry and Ranger to
provide centralized user authorization for documents stored in collections. Common
to all implementations is the ability to regulate read access and write access for a col‐
lection, and protect administration and configuration operations.

With Sentry, administrative actions on collections and configurations are protected
through QUERY (read), UPDATE (write), and * (both read and write) permissions on a
special admin collection. The same permissions can be applied to user collections. In a
similar way to Hive and Impala, Sentry allows a security administrator to apply these
privileges to members of a role, as conferred through group membership.

Sentry also allows for document-level access control in Solr through the use of
authorization tokens stored alongside each document. These tokens denote which
roles should have access to the document.

The rule-based authorization plug-in in Solr 5.3 and above provides authorization
controls on a wide range of API-based accesses, including the security, schema, con‐
figuration, core admin, and collection APIs. In this model, roles, permissions, and
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user-role mappings are defined in a security.json file, and roles are assigned directly
to users rather than groups. For further detail, see the Solr project documentation.

Apache Ranger also provides a plug-in to authorize user requests to Solr servers.

Kudu
At the time of this writing, Kudu does not natively provide fine-grained user access
control to tables and rows. Instead, users are granted or denied access at the service
level through a startup flag (--user-acl). However, for users who use Kudu primar‐
ily through Impala’s SQL interface, the Sentry integration provided by Impala can
provide fine-grained protection for reading and writing to individual Kudu tables. A
common configuration is to limit direct connection to Kudu to the Impala user and
to application service accounts and batch or ETL users who run Spark jobs. End users
must interact with Kudu through application interfaces, which can impose their own
authorization controls, or through Impala, which is protected by Sentry.

Oozie
Oozie implements a basic authorization model that applies the following rules:

• Users have read access to all jobs.
• Users have write access to their own jobs.
• Users have write access to jobs based on an ACL (list of users and groups).
• Users have read access to admin operations.
• Admin users have write access to all jobs.
• Admin users have write access to admin operations.

In addition, when submitting a workflow job, the configuration may contain the
oozie.job.acl property. If authorization is enabled, this property is treated as the
ACL for the job, and it can contain user and group IDs separated by commas. To
configure administrator groups, you can add to oozie-site.xml the setting oozie.ser
vice.AuthorizationService.admin.groups.

It’s important to remember that interaction with other Hadoop components in Oozie
actions is done using impersonation, such that each service applies authorization for
the user who submitted the Oozie workflow.

Hue
Hue maintains information about all users in its database. In a default installation, all
users are local and are added manually via a Hue administrator, also known as a
superuser. The superuser is a normal Hue user who is flagged as being a superuser in
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Hue’s database. Using the default authentication, backend users are authenticated
using encrypted passwords stored in Hue’s database.

However, Hue also supports other, more enterprise-friendly authentication mecha‐
nisms, including LDAP and SSO via SPNEGO or SAML. Hue can be configured to
automatically add new users to its local database and to create an HDFS user direc‐
tory when a user logs in via one of these other methods. A key point to note is that,
regardless of which authentication mechanism is chosen, Hue creates an entry for
each user in its local database and, if configured with details of an LDAP server, can
synchronize information about these users (such as their email address and group
memberships) from LDAP. To ease management of multiple users, Hue can import
users in bulk from an LDAP server for a given LDAP group.

For authorization purposes, Hue uses groups, which can be assigned one or more
permissions indicating which Hue functionality group members can access. For the
most part, these permissions simply define whether a given group has privileges to
launch one of Hue’s apps, for example the File Browser or the Impala Query Editor.
In some cases, permissions are more granular and can restrict particular functionality
within an app.

Superuser status cannot be conferred through group membership.
Individual users must be marked as superusers by an existing
superuser. The first user to log in to a new Hue installation is auto‐
matically made a superuser.

Just like users, groups are defined locally in Hue’s database but can also be imported
by name from an LDAP directory. When importing from LDAP, Hue creates a local
group with a matching name in its own database and optionally synchronizes the
LDAP group members, creating new Hue users where necessary. To prevent its user
information from going out of date, Hue can automatically refresh a user’s group
memberships each time they log in when using the LDAP authentication backend.
Alternatively, a superuser can trigger a manual resynchronization.

Hue is only able to automatically synchronize group information
for users logging in using the LDAP backend. This is a useful fea‐
ture, but be aware that it imposes a performance penalty at each
login because Hue has to do an additional round trip to the LDAP
server.

By default, all users are added to the default group when they are created. Therefore,
if you want to expose only a subset of Hue functionality, we generally recommend
reducing the permissions in the default group to the bare minimum, if you are auto‐
matically creating users when they first log in. Additional access can then be confer‐
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red and managed directly through LDAP group memberships, which are
synchronized by Hue.

Let’s take a concrete example. Imagine we have two groups of users defined in LDAP:

business_analysts
These are analysts who just need to issue ad hoc queries via Impala and Hive.

data_engineers
These are engineers who need to access HDFS and who compose and execute
Oozie workflows.

The first step is to remove all permissions from the default group. A Hue superuser
can then synchronize the two LDAP groups to Hue using the Add/Sync LDAP Group
functionality from the user administration page. This queries LDAP for the given
group and, if requested, imports all the group members as users into Hue. After Hue
is aware of the groups, we can set up the following permissions:

• business_analysts: beeswax.access, impala.access
• data_engineers: beeswax.access, filebrowser.access, impala.access, job
browser.access, oozie.access

Assuming automatic user creation is enabled for the LDAP backend, any user can log
in to Hue, but no functionality is available to them unless they are either a superuser
or a member of one of the two synchronized groups.

The login process for LDAP authentication and automatic user creation is illustrated
in Figure 9-4.

Figure 9-4. LDAP-based user authentication and authorization for Hue
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3 As an example of providing a custom authorization mechanism, see “Active Directory Group Based Authori‐
zation for Apache Kafka” by Sönke Liebau.

4 For full details, see KIP-11 - Authorization Interface.

Even if you are not using LDAP for authentication, user and group information can
still be retrieved from LDAP on demand. For this to work, the usernames used in
login requests need to match those retrieved from LDAP, so you may need to tweak
the attributes used by Hue for user and group lookups.

For more information about configuring Hue for authentication,
authorization, and confidentiality, see Hadoop Security by Joey
Echeverria and Ben Spivey (O’Reilly).

Kafka
The final service we consider for user authorization is Kafka, which provides a plug‐
gable authorization model.3 Kafka’s underlying ACL model allows permissions on a
resource to be granted to users and groups who are accessing brokers from given
hosts. The resources and privileges are outlined in Table 9-7.4

Table 9-7. Kafka’s privilege model

Resource Permission Description
Cluster DESCRIBE List all topics.

Cluster CLUSTER_ACTION Perform advanced cluster tasks, such as controlled shutdowns and
stopping replicas.

Topic READ Fetch messages from a topic from a consumer.

Topic WRITE Send messages to a topic from a producer.

Topic DELETE Delete a topic via the broker API.

Topic ALTER Alter topic configurations via the broker API.

Topic DESCRIBE Get various topic-level information, such as offset and consumer
metadata.

Consumergroup READ Do operations on consumer groups, such as offset requests, heartbeats,
and offset commits.

When writing, producers must have WRITE and DESCRIBE permissions on the topic to
which they are writing. If dynamic topic creation is enabled, the CREATE permission
can also be granted. When reading, consumers must have READ and DESCRIBE permis‐
sions on the topic and READ permission on the consumer group to join.
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Spark uses a special modified consumer group name for Kafka
consumers reading from executors. Administrators therefore need
to grant READ access to the spark-executor-<groupId> consumer
group in addition to groupId.

Out of the box, Kafka supports user authorization on read and write access to the
topics themselves, as well as their configuration, using ACLs stored in ZooKeeper.
Each broker keeps track of the configuration in ZooKeeper and authorizes incoming
user requests that have been validated by one of the supported authentication
mechanisms.

Centralized authorization control is also provided for Kafka by Sentry and by Ranger
—both projects implement the pluggable Authorizer interface. Both implementa‐
tions store the grants in a central database. Sentry provides a command-line tool,
kafka-sentry, that you can use to grant and revoke privileges to and from roles.

Apache Ranger also provides a plug-in to authorize user requests to Kafka.

Sentry
Naturally, you also need to ensure that only a limited set of users are authorized to
connect to and modify permissions and roles within Sentry itself.

Sentry restricts the users who can connect using the sentry.service.allow.connect
property in sentry-site.xml. This should be limited to service users, like hdfs, hive, and
solr, who only connect using their built-in Sentry plug-ins.

After it is connected, Sentry authorizes write access to permissions and roles to the
set of groups listed in the sentry.service.admin.group property in sentry-site.xml.
Plug-ins can connect on behalf of end users using impersonation. In this way, privi‐
leged groups for Sentry administration can be set up for end users.

At-Rest Encryption
The final topic we cover in this chapter concerns the other half of confidentiality: at-
rest encryption. Two primary reasons for encrypting data on disk are:

• To prevent accidental or malicious exposure to administrators or staff with direct
access to the servers or disks; for example, improperly disposed of or stolen disks

• To provide additional protections to prevent unauthorized or accidental access
to data by users and applications through otherwise legitimate means, such as
HDFS APIs

There are different types of data you might wish to encrypt, including:
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• Data in storage engines, such as HDFS, HBase, or Kudu
• Temporary outputs from transient processes, such as YARN container scratch

space or Impala disk spills
• Configurations and metadata, such as database login credentials
• Logs and audit records

Encryption isn’t free. There is always a performance overhead to
protecting data, so you should carefully assess which, if any, of the
encryption mechanisms you actually need. Don’t forget that these
are extra protections above and beyond those already provided by
authentication and authorization controls.

Depending on the type of data, where it is stored, and how it is accessed, you can
choose between two encryption mechanisms: application encryption and volume
encryption. With application encryption, the application itself stores the data in the
underlying storage mechanism in an encrypted form and performs the decryption
when the data is accessed. With this control, the application can apply encryption to
data selectively and can use different encryption keys for different clients.

Volume encryption applies encryption to data at a much lower level in the stack—
typically within the Linux I/O subsystem itself through a kernel module. Entire
mounted volumes are encrypted as a whole and are usually protected by a single key,
although more keys can sometimes be used. Processes with access to the volume can
access all of its data.

Generally, application-level encryption is preferable since it gives much more control
over which data is actually encrypted and with what key. Multitenancy is easily sup‐
ported since each tenant can be granted access to data protected by different sets of
encryption keys. Application-level encryption is mostly used to protect user data in
storage engines. We discuss HDFS TDE, the main provider of application-level
encryption in the Hadoop ecosystem in more detail in “HDFS Transparent Data
Encryption” on page 274.

Volume encryption products usually make use of mechanisms within the Linux ker‐
nel, such as dm-crypt, to provide file and volume encryption and to build key man‐
agement and storage around the technology. Some disk manufacturers also sell self-
encrypting drives that do the encryption right at the hardware layer. These drives are
generally only useful to protect against unauthorized direct physical access to disks.
Volume encryption can be used to provide coarse-grained protection for data in stor‐
age engines as well as encryption for logs and configuration files. We discuss one pro‐
vider of volume encryption in the next section.
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The options for encrypting each type of data at rest in a Hadoop cluster are shown in
Table 9-8. The generally recommended option is in bold. Note that all data can be
protected through volume encryption, but the service-specific options are recom‐
mended where possible. Note also that users of services are always free to preencrypt
the data stored in storage engines using their own mechanisms, but this might make
efficient querying and filtering more difficult.

It is essential that you or your enterprise assess the options and
choose the approach that makes the most sense for your given set
of circumstances and that is best supported by your vendor. We
cannot make universally applicable recommendations here.

Table 9-8. At-rest encryption options for Hadoop services and data

Data type Possible providers
HDFS data TDE, volume encryption

HBase data TDE, HBase encryption

Kudu data Volume encryption

Solr data TDE

Kafka data Volume encryption

Service logs Volume encryption

Configurations Volume encryption

Audits Volume encryption

Supporting database data Volume encryption

Flume channel data Volume encryption

Hive local scratch space Volume encryption or disable

MapReduce spills and shuffle data Service-specific configurations, volume encryption

Spark spills and shuffle data Service-specific configurations, volume encryption

Impala spills Service-specific configurations, volume encryption

Application and volume encryption alike both need a secure location to store encryp‐
tion keys. Within the Hadoop arena, two such providers are Cloudera Navigator Key
Trustee Server (KTS) and Apache Ranger Key Management Server (KMS). The first
is a general key storage solution and supports any client implementing the standard
key server (HTTP Keyserver Protocol [HKP]) API. KTS thus supports both volume
encryption and HDFS TDE. We briefly cover the integration of Cloudera KTS with
Navigator Encrypt in the following section, and we look at both Cloudera KTS and
Ranger KMS in relation to TDE.

An extra layer of key protection can be provided by hardware security modules
(HSMs), which are physical devices dedicated to the storage and protection of sensi‐
tive key material. Because they provide even more stringent physical access protec‐
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5 Navigator Encrypt also supports individual file encryption using eCryptfs, but Red Hat removed support for
this encryption mechanism in Red Hat Enterprise Linux 7 (RHEL 7) so it is not recommended.

tion, some enterprises mandate the use of HSMs to provide a root of trust for the
most sensitive keys. Both Cloudera KTS and Ranger KMS provide integrations with
the most common HSM providers.

HSMs are implemented as appliances within hardened enclosures that provide strin‐
gent security and enable additional enterprise features. For example, all HSM types
provide a way to cluster multiple enclosures as a single appliance for high availability.
Key material stored on the HSM (encryption zone keys, in the case of Hadoop) typi‐
cally never leaves the device in unencrypted form, but rather encrypted secrets are
sent to the HSM to encrypt or decrypt them on board the appliance. HSMs also guar‐
antee the production of high-quality key material and are often used with envelope
encryption, where the actual data keys are themselves encrypted on the HSM with
HSM-resident keys.

Volume Encryption with Cloudera Navigator Encrypt and Key Trustee
Server
As an example of full volume encryption, we look briefly at one implementation,
Cloudera Navigator Encrypt (NE). On each node where it is installed, NE runs as a
kernel module and protects entire volumes (physical block devices, logical volume
management [LVM] devices, and loop devices) with encryption keys using dm-crypt.5

Volume data is encrypted and decrypted using efficient symmetric-key block encryp‐
tion.

On initial installation, NE registers itself with the central key storage server, KTS. For
each volume under its control, various encryption keys are created and themselves
encrypted using a unique key for each node and persisted to the KTS—the server
itself retrieves and decrypts these keys at startup. After the volumes are mounted, no
further interaction with the KTS is required until a system restart.

The NE kernel module mounts volumes for which it is responsible, and it mediates
all system calls to read and write blocks to the volumes. The module authorizes access
to encrypted data using process ACLs, which include the exact binary signature and
command-line invocation of the accessing process. Data access is transparent to an
authorized process, and volumes are accessed through normal mount points which
look and feel like a standard Linux filesystem.

Communication between NE and KTS occurs over the standard HKP and should be
protected via TLS signed certificates. Encryption key material sent to the KTS is per‐
sisted in a managed PostgreSQL database. The KTS can be configured to provide
high-availability serving of keys through an active-passive architecture in which keys
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and configuration data are automatically replicated from the master to the passive
instance.

In case of failure of the master KTS instance, KTS clients (in this case, NE) automati‐
cally fail over to the passive instance. In this case, operation can mostly continue, but
further deposits—for example, the creation of new encryption keys—are not allowed
until the master instance is restored. In practice though, after a cluster has been
installed, new key deposits are rare because they occur only for new volumes (disks)
in NE or new encryption zones in TDE (discussed in the next section).

Volume encryption is most useful for protecting data that is not otherwise covered by
HDFS TDE or the temporary encryption capabilities within a service, such as logs,
supporting databases, or underlying Kudu files. Although it is theoretically possible
to run volume encryption and TDE together, you pay the price for double-encrypting
the data. Unless you have special security circumstances that call for double encryp‐
tion, avoid it where possible.

HDFS Transparent Data Encryption
In this section, we look briefly at HDFS TDE and how it can be combined with cryp‐
tographically strong key management and persistence solutions. The original design
document is an excellent source for more detailed information on how TDE works.
For in-depth coverage, we recommend that you review Chapter 9 of Hadoop Security.

Encrypting and decrypting files in encryption zones
In TDE, files to be protected are placed in encryption zones, which are nothing more
than HDFS directory hierarchies that have been assigned an encryption key. All
blocks of a file within the zone are protected by a data encryption key (DEK), which
itself is encrypted with the encryption zone key (EZK). The result is an encrypted data
encryption key (EDEK), which is stored in the NameNode’s file metadata. Because it
is encrypted, the EDEK is not readable by the NameNode or anyone querying the
metadata. The concept of storing the EDEKs with the file data (in this case, the meta‐
data) is more generally referred to as envelope encryption.

The EZK and the EDEK form a hierarchy of keys, where the higher-ranking key is
needed to use all lower-ranking keys. Key hierarchies make it possible to create many
keys and store them even in unsecure places as long as they are themselves encrypted
with a higher ranking. The highest level in the hierarchy is referred to as the master
key. In contrast to low-ranking keys, it is common for master keys to be stored on
HSMs. If a higher-ranking key is lost or deliberately revoked, it is no longer possible
to access any data encrypted with lower-ranking keys.
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EZKs are only ever accessed by the key management server (KMS) and never dis‐
tributed to the NameNode or to HDFS clients. Figure 9-5 illustrates the process for a
file read.

Figure 9-5. Anatomy of an encrypted file read

When a client (for example, an end user, query, or YARN container process) needs to
read an encrypted file, it requests the EDEK from the NameNode (1) and sends it to
the KMS (2), which, after verifying that the operation is authorized, decrypts it with
its EZK (3) and returns the plain DEK to the client (4). Naturally, the communication
with the KMS must be performed over a channel secured by TLS, to protect the con‐
tents of the DEK. The KMS caches the EZK for a short time, to optimize repeated
requests for files within the same encryption zone. The client then requests the file
blocks from the DataNodes (5), decrypts them locally (6), and performs the required
processing on the file (7).

When writing a new file, the NameNode requests a new EDEK for the zone and
attaches it to the file metadata. The client then uses the same procedure to obtain the
DEK as for the read path and uses it to encrypt the data. It’s important to re-
emphasize that the actual encryption and decryption of the data in the file is per‐
formed in-process by the client—neither the NameNode nor the DataNode ever sees
the unencrypted DEK or file data. When the client is reading data from HDFS, the
DataNode transmits the raw data in its encrypted form. Likewise, when it writes data
to a DataNode, the data is sent by the client in an encrypted stream.
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If in-flight data transfer encryption has been configured for HDFS,
this encrypts the already-encrypted stream to and from DataNo‐
des, but it’s still worth having to protect files that are not in an
encryption zone.

Clients interact with the KMS over HTTP (protected by TLS) via a REST protocol,
with endpoints for creating and retrieving keys and for generating and retrieving
EDEKs, among other tasks. Within the KMS, retrieval and persistence of keys is
abstracted via Hadoop’s KeyProvider API.

Authorizing key operations
The KMS protocol provides a set of APIs for authorizing users and groups to perform
various key operations on encryption zone keys and data encryption keys through a
set of fine-grained ACLs. These ACLs are defined in the kms-acls.xml configuration
file for the KMS. For the sake of brevity, we don’t go over all the possible key opera‐
tions and operation categories but outline the general authorization process.

Access is controlled at two levels. At the first level, controls are applied on operations
at the KMS service, without reference to the particular key involved. A user, which
can be an end user or a service user like HDFS, must be allowed to perform the
requested key operation (such as create key, generate encrypted key, or decrypt
encrypted key) and must not be in the corresponding blacklist ACL for the same
operation. User requests must be admitted by the ACLs at this level before they are
passed to the next level.

One of the main uses of the blacklist ACLs is to prevent HDFS
superuser access to encryption keys and thereby to properly restrict
access to sensitive data to just the encryption keys. Of course, for
this to be effective, there needs to be proper separation of duties
between the KMS administrators and the cluster administrators,
which can be difficult to achieve in practice.

The next level assesses whether the user should be allowed to perform the category of
operation on the specific key in question. The whole process is somewhat involved,
including blacklists and whitelists (terms used by the project itself) and default ACLs.
Essentially, if the user is in the key operation whitelist ACLs, they are authorized to
perform the operation. If not, the user is checked against the ACLs for the specific
key name, if they exist. If they do not exist, the user is checked against the default
ACLs for key operations.

Ultimately, the official documentation is the canonical resource, but as an aid to
understanding, the authorization flow is shown in Figure 9-6.
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Figure 9-6. Flowchart for KMS key operation authorization

Consult the official documentation to validate your ACL specifica‐
tions.

KMS implementations
Hadoop ships a default KMS implementation with a file-based Java KeyStore as the
key provider. However, a JKS typically does not meet the required standard for high-
quality key material and is not deemed secure enough to guarantee confidentiality. It
also does not provide high availability. Thus, vendors support additional KeyProvider
implementations that either meet the required standards for key material creation
and persistence directly, or facilitate the integration of certified appliances such as
HSMs.

Let’s briefly look at two vendor configurations for KMS and KeyProviders:

Cloudera Navigator Key Trustee Server
As we saw earlier with Navigator Encrypt, Cloudera provides a highly available
and hardened key storage implementation, KTS, that can also be used in
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conjunction with HDFS transparent encryption. Cloudera provides a custom
implementation of the Hadoop KMS, called Navigator Key Trustee KMS, with a
KeyProvider implementation that uses KTS to securely persist key material. The
Key Trustee KMS communicates with KTS over HTTPS.

Instances of Key Trustee KMS are stateless, so multiple instances can be
deployed to different nodes. Clients of KMS simply round-robin through the list
of KMS instances until a successful connection is made. Each individual instance
communicates with KTS using the same client credentials as the other KMS
instances, so has access to the same set of keys stored in KTS. Naturally, the Key
Trustee KMS supports communicating with a highly available active-passive KTS
pair.

KTS supports a variety of HSMs in highly available configurations via an addi‐
tional layer of software called Key HSM. Key HSM calls the HSM to encrypt
KTS’s own key entries. If Key HSM is used, the key material in KTS can only be
used when the HSM decrypts it, allowing additional security and a central revo‐
cation point. Key HSM also supports secure connectivity via TLS or Network
Trust Link (NTL) connections.

Hortonworks Ranger KMS
Similar to KTS, Ranger KMS provides an alternative to the plain JKS used in
Hadoop KMS. Unlike Cloudera’s solution, Ranger KMS relies on a third-party
external database to persist keys. It combines an alternative Hadoop KMS imple‐
mentation based on the original Hadoop KMS with a second component that
handles communication with the database. Ranger KMS uses a master key to
encrypt all other key deposits, and the master key is itself persisted in the data‐
base in encrypted form. The connection to the database can be secured by SSL.
Hortonworks provides an example of this on its website.

Ranger KMS supports high availability by deploying multiple instances, but you
need to ensure that the backing database is also highly available.

Ranger KMS also supports SafeNet Luna HSMs, which leverage a specific type of
JKS implementation by SafeNet, that locally interacts with the standard SafeNet
Luna client libraries. This also enables the use of multiple HSMs in a highly avail‐
able fashion, by configuring those client libraries accordingly. If HSMs are used,
the master key is persisted on the HSM, but it still needs to be materialized to the
KMS hosts to decrypt keys locally. Ranger KMS supports NTL and SSL connec‐
tions to Luna HSM via the SafeNet client libraries.

Encrypting Temporary Files
Applications running in YARN make use of scratch space on each worker node to
store temporary data. For example, both MapReduce and Spark store shuffle data on
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local disk. Spark also allows datasets to be cached to a local disk for the lifetime of the
application. Likewise, Impala automatically spills large join operations to disk under
memory pressure.

Each of these types of data may contain sensitive information that we would prefer to
have encrypted. One approach would be to apply full volume encryption to the local
disks on which the temporary files are stored. However, these disks are typically also
used for HDFS data storage, with encryption already covered by HDFS TDE—and, as
previously mentioned, we don’t want to pay the encryption overhead twice (once for
TDE and once for volume encryption).

However, most services offer solutions to encrypt their temporary outputs and the
options for each are shown in Table 9-9.

Table 9-9. Data encryption options for services that write temporary scratch data

Service Description
Impala -disk_spill_encryption startup flag.

Spark spark.io.encryption.enabled job configuration parameter.

MapReduce mapreduce.job.encrypted-intermediate-data job configuration parameter.

Hive Volume encryption of the disk on HiveServer2 configured for hive.exec.local.scratchdir, or turn off
local work. Note that disabling local work on HiveServer2 can have performance implications because it can
prevent autoconversion of map joins.

Summary
Security can be a complex topic, and doubtless you have many additional questions
about the material covered in this chapter. By necessity, the information presented
here is a condensed summary of the various security mechanisms employed by
projects that may be running on the cluster, but you should now feel confident about
how the various aspects of security are used in Hadoop and how they fit together.

It is essential that operators, architects, and developers have a solid grounding in
what security mechanisms are available in each component of the cluster. You should
not only study each of these sections closely to see how best to manage the security
controls in your deployments, but also refer ultimately to the vendor documentation
and the individual projects.

Armed with the necessary security background, we can now explore how to integrate
these security mechanisms with identity management providers.
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CHAPTER 10

Integration with
Identity Management Providers

In Chapter 9, we covered how cluster services provide authentication, authorization,
and confidentiality. These security mechanisms rely heavily on a common under‐
standing between clients, services, and operating systems of which users and groups
exist. Cluster architects need to be familiar with how cluster services use identity
services for authentication and authorization and what providers are available, in
order to decide how best to configure the clusters within the enterprise context. In
this chapter, we examine these interactions and outline some common integration
architectures.

Integration Areas
We need identity management providers in the following areas:

Kerberos
As we have seen, integration with a KDC is essential to secure authentication in
most Hadoop services. Every user wishing to use the cluster must have a princi‐
pal in one of the trusted realms, and ideally this principal maps to an existing
enterprise user account with the same password. Each server in the cluster must
be configured to allow users and servers to authenticate to a KDC.

User accounts and groups
Cluster services will use users and groups when making authentication and
authorization decisions and for execution. For example, YARN requires that
users exist on every node, to ensure security isolation between running jobs. We
therefore need a way of resolving enterprise user accounts on each cluster node,
and furthermore these need to correspond to the Kerberos principal name of the
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user who submitted the job. Authorization decisions are commonly made by
checking a user’s group memberships, and the username used is the one supplied
through authentication.

Certificate management
For in-flight encryption, we require some sort of TLS certificate management. In
an enterprise, this is usually managed by a central CA as part of a PKI deploy‐
ment. We need to ensure that our cluster service certificates are signed and
renewed by the CA. Using the enterprise CA makes for a smoother experience in
the browser because users do not have to click past dire warnings about connect‐
ing to sites with untrusted certificates.

In each of these areas, we need to set up integration at the application and at the OS
level.

Integration Scenarios
We covered the available authentication and authorization mechanisms in Chapter 9,
but it is helpful here to consider some example user interaction scenarios, to remind
ourselves why we need these different integrations in secure clusters. In particular,
notice how a single user identity is used at multiple stages in the process. For each
step in the scenarios, we highlight what areas of integration are needed. Note that, in
each scenario, we present a slightly simplified version of the interaction.

Scenario 1: Writing a File to HDFS
User Suresh writes a file to HDFS from a cluster edge node:

1. Suresh obtains a Kerberos TGT for his own principal, suresh@SABON.COM, from
the KDC, using kinit suresh (Kerberos integration in the OS).

2. Suresh uses the HDFS CLI to write a file on the local filesystem (/tmp/foo) to a
location on HDFS (/data/app/bar), using hdfs dfs -put /tmp/foo /data/app/
bar.

3. When executing the command, the HDFS CLI first talks to the HDFS Name‐
Node to find out which DataNodes to write the data to. To do this, the library
obtains a service ticket for the HDFS NameNode, using the Kerberos configura‐
tion on the edge node (Kerberos integration in the application).

4. The NameNode checks the service ticket presented by the client, using its own
Kerberos TGT (Kerberos integration in the application).

5. The NameNode retrieves the group memberships of the user suresh. Depending
on the group’s mapping provider (see “Group Resolution” on page 251), these
lookups will need to be performed either within the NameNode process or, as is
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normally recommended, at the OS level (user accounts and groups integration in
the application and/or OS).

6. The NameNode verifies whether Suresh is allowed to use HDFS, by checking the
username suresh and the resolved groups from step 5 against the service policy
ACLs (see “Hadoop Service Level Authorization” on page 257).

7. The NameNode checks and whether Suresh has write access to the /data/app
directory, using the username suresh and the resolved groups from step 5.

8. If authorized, the NameNode responds to the client with details of a DataNode
write pipeline and the necessary access tokens.

We can see that, even in this relatively simple operation, we need Kerberos integra‐
tion in both the OS and the application and resolution of users and groups by at least
the OS.

Scenario 2: Submitting a Hive Query
In this interaction, Sebastian submits a query to a Sentry-protected Hive instance
from Hue. Let’s examine the interaction and highlight the required integrations:

1. Sebastian uses his browser to access the Hue application, which is protected by
TLS encryption. The browser checks that the Hue server’s TLS server certificate
has been signed by an enterprise CA using its certificate trust chain (certificate
management).

2. Sebastian logs in to Hue using his LDAP username, seb12, and password (user
accounts and groups integration in the application).

3. Sebastian submits a Hive query in the Hue Query Editor. Hue uses Kerberos
authentication and impersonation to submit the query to HiveServer2 as itself
(hue/server2.sabon.com) on behalf of seb12. HiveServer2 also uses TLS encryp‐
tion, so Hue checks the HiveServer2 server certificate against its own certificate
trust chain (Kerberos integration in the application, certificate management).

4. Before HiveServer2 runs the query, it checks that seb12 is allowed access to the
objects in the query using its Sentry authorization plug-in. The plug-in contacts
the Sentry server, using Kerberos authentication to retrieve the list of roles for
seb12 (Kerberos integration in the application).

5. The Sentry server retrieves the group memberships of the user seb12 and returns
the roles to the plug-in on HiveServer2. Depending on the group’s chosen map‐
ping provider (see “Group Resolution” on page 251), LDAP lookups will need to
be performed either within the Sentry process or, as is normally recommended,
at the OS level (user accounts and groups integration in the application and OS).

Integration Scenarios | 283



6. HiveServer2 makes an authorization decision based on which roles seb12 is a
member of. If authorized, the query is run via YARN.

This scenario requires Kerberos, user, and group resolution and certificate manage‐
ment integration.

Scenario 3: Running a Spark Job
By now, the integration points should be becoming clear, but, as one final example,
we look at application user appusr4 kicking off a Spark job as part of an ETL task:

1. As part of its operation, the application maintains a Kerberos TGT via a regular
login from a keytab within the application (Kerberos integration in the applica‐
tion or OS).

2. The application submits a Spark job to the YARN ResourceManager using a Ker‐
beros service ticket, asks to run the job in the appusr queue, and specifies that
members of the appadmins group can view the job logs and UI via the
VIEW_ACL access control list (see “YARN” on page 261) (Kerberos integration
in the application).

3. The YARN ResourceManager retrieves the group memberships of the user
appusr4 and checks to see whether it is authorized to run jobs in the appusr
queue using the configured queue ACLs (user accounts and groups integration in
the application and OS).

4. If authorized, the YARN ResourceManager allocates resources on YARN Node‐
Managers and notifies the application user where it can run the Spark containers.

5. YARN NodeManagers start container processes for the Spark driver and execu‐
tors, which run on the worker nodes as the appusr4 OS user (user accounts and
groups integration in the application and OS).

6. An administrator, Amelia, checks the progress of the job via the ResourceMan‐
ager Web UI, which in our scenario requires Kerberos authentication and uses
TLS security. Her browser uses her Kerberos TGT from her Windows login ses‐
sion to authenticate as amelia11 to the UI. It also checks the server TLS certifi‐
cate against its trust store (application/OS Kerberos integration, certificate
management).

7. The ResourceManager retrieves the group memberships of user amelia11 and
checks to see whether she is authorized to view the job UI using the queue and
application view ACLs (user accounts and groups integration in the application
and OS).

This scenario is another example of requiring integration with the Kerberos KDC,
user and group resolution, and certificate management. Hopefully, these examples
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have shown why we need integration on multiple levels and on every node in the
cluster.

Integration Providers
Each integration area has a number of possible providers, and the job of the cluster
architect is to choose the providers that fit best within the given enterprise context.

Although we make general recommendations here, each enterprise
is different and we recognize there are valid reasons for not follow‐
ing the recommendations in a specific context. However, in our
experience, you will be much more successful if you adhere to these
common architectures.

Some commonly used providers for each integration area are:

Kerberos
• MIT Kerberos
• Heimdal Kerberos
• Microsoft Active Directory
• Red Hat Identity Management (IdM) or its open source equivalent, FreeIPA

Users and groups
• Local Linux users and groups
• LDAP-compliant directories:

— OpenLDAP
— AD
— IdM/FreeIPA

Certificate management
• Local and self-signed certificates using OpenSSL
• AD
• IdM/FreeIPA

A summary of providers and their capabilities is in Table 10-1.
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1 MIT Kerberos can be configured to use an OpenLDAP backend, although the setup is somewhat complex.

Table 10-1. Common centralized identity management providers and capabilities

Provider KDC LDAP Certificate management
AD Yes Yes Yes

RedHat IdM Yes Yes Yes

OpenLDAP No Yes No

MIT Kerberos Yes No No

OpenSSL No No Yes

For convenience, we usually want users and applications to be able to use existing
enterprise-wide user accounts. In addition to lowering the bar for users who want to
use the cluster, it makes the task of authorization and audit easier and makes the
whole experience of using and administering the cluster smoother.

AD and IdM are examples of centralized identity management systems, in which
users and groups are defined once and exposed through various interfaces and proto‐
cols, such as Kerberos and LDAP. Your enterprise almost certainly uses one of these
systems (probably AD), and we strongly encourage you to integrate with it.

There are alternatives to LDAP for centralized user and group
administration, but they are not particularly common in enterpri‐
ses. One approach is to use configuration management software,
like Puppet, to declaratively define users and groups, which are
then materialized by the software on each server on a regular or
on-demand basis.

There are two common ways to use the providers we just listed. In the first configura‐
tion, AD or IdM provides a KDC implementation, as well as user and group lookup
via LDAP. In the second setup, MIT or Heimdal Kerberos provides the KDC, and
OpenLDAP provides the user and groups integration. With the second configuration,
user accounts must be synchronized between the KDC and OpenLDAP servers.1 This
is handled automatically by both AD and IdM. The options are illustrated in
Figure 10-1. In the first configuration (a), a centralized system provides both KDC
and LDAP services and uses a unified model for users and groups. In option (b),
KDC and LDAP are provided by different services and the users are synced between
them, or manually created in both. There are also combinations of each approach,
which we cover in the following sections.
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Figure 10-1. Integration with identity management providers

We recommend integrating with a centralized identity manage‐
ment system, such as AD, which can provide Kerberos, LDAP, and
certificate management. Even if integrating with an enterprise AD
or IdM instance is not possible, we encourage you to set up a cen‐
tralized system for managing your own clusters, as a best practice.

Having covered the integration at a high level, we now look at each of the three inte‐
gration areas in greater detail, starting with LDAP, followed by Kerberos and TLS
certificate management.

LDAP Integration
We have just seen how we need to integrate with LDAP directories at both the appli‐
cation and the OS level. In this section, we introduce some important background
and features of LDAP directories and look at integrating them both within applica‐
tions and in Linux.

Background
LDAP is actually a common protocol definition for serving information from a direc‐
tory information service. The protocol itself doesn’t specify what kind of data should
be in a directory or how it should be laid out—it just allows a common way to query
objects in the directory. In an LDAP directory, each object has a distinguished name
(DN), which is a unique identifier in the directory. Objects can also have additional
attributes, which provide extra information. For example, if it is a user account,
attributes often include full names, email addresses, and a user password (stored in a
protected way). Queries and responses from the LDAP server are exchanged using
the LDAP Data Interchange Format (LDIF).
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In terms of integration with Hadoop clusters, relevant directory objects include:

An organization (or, in AD, a domain)
An organization has a DN that is a sequence of domain components (DCs); for
example dc=examplebank,dc=com. Users and groups are created within a domain
or organization.

A user
Users are represented differently in each directory but often have attributes, like
common name (cn) and POSIX user ID (uidNumber). The attributes used to cre‐
ate the DNs for users vary between schemas. In addition to representing end
users, application accounts, and computers, user objects are also used for techni‐
cal accounts for specific instances of services running on nodes in the cluster. AD
defines some special attributes for users:

• sAMAccountName: This is the user login name used in older versions of
Windows.

• userPrincipalName: The UPN is a unique username often of the form
user@domain for end users, service/fqdn@REALM for technical accounts, or
host/fqdn@REALM for computer accounts.

• servicePrincipalName: SPNs are principal names with which instances of a
service running on a computer can be identified. Multiple SPNs can be
assigned to a user object.

A group
User objects and other groups can be combined into groups. Common attributes
are cn and POSIX group ID (gidNumber). In Hadoop, groups are most often used
in conjunction with authorization to confer operational or data access rights to
users. Groups can have multiple member attributes, each of which specifies the
DN of a user in the group.

An organizational unit (OU)
This is a collection of related objects, like users, groups, and computers. An
example DN would be ou=risk,dc=examplebank,dc=com. OUs are often used as
containers for the technical accounts associated with instances of services run‐
ning on cluster nodes.

LDAP servers can be responsible for one or more domains or organizations. In AD,
the server responsible for a domain is called a domain controller. A trust relationship
can be set up between servers responsible for different but related domains. AD has
the notion of a forest, which is a grouping of related domains that trust each other.
When looking up an object in a particular domain, you usually need to query the
LDAP server or servers responsible for that domain.
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AD has a special LDAP endpoint, called the global catalog, which
allows user and group searches across domains within a forest,
without redirecting the client with a referral to the domain control‐
ler responsible for the domain. This is recommended for scenarios
where users need to be resolved from multiple domains within a
single cluster. The default global catalog port is 3268 for unencryp‐
ted connections and 3269 for connections protected through
LDAP over SSL (LDAPS).

Searching LDAP
You can easily query the contents of an LDAP directory using the ldapsearch
command-line tool, which is part of the OpenLDAP client utilities. Some directories
are set up to allow anonymous searches, but others require some sort of user authen‐
tication before issuing queries. The LDAPv3 protocol supports both simple (user‐
name and password) and SASL authentication mechanisms, including Kerberos. For
Hadoop cluster admins, it’s well worth getting acquainted with ldapsearch because
it’s a valuable debugging tool in enterprise deployments. For example, the following
command finds all instances of user accounts for the HDFS service in a given domain
in AD:

$ kinit ian@examplebank.com
$ ldapsearch -H ldaps://gblad.examplebank.com:3269 \
-b dc=risk,dc=examplebank,dc=com \
"(userPrincipalName=hdfs/*)"

For efficiency, and to reduce the load on the LDAP server, it’s best to limit the search
space when doing user and group lookups. In this example, the base DN (the -b
parameter) specifies where to start the search. The smaller the subtree the query has
to search, the quicker the response will be. Specifying the right base DN is important
when integrating with LDAP at any layer of the stack.

LDAP Security
One thing to be acutely aware of when using LDAP is the security of the connection.
By default, information is sent over the network in the clear, when using the plain
LDAP protocol. This is especially important to avoid when using simple authentica‐
tion in services (see “LDAP Authentication” on page 247). There are two mecha‐
nisms to keep the connection confidential, both of which establish a TLS-encrypted
session.

The first mechanism uses a special operation—STARTTLS—within the standard
LDAP protocol to apply encryption to a session running on the standard port (389,
by default) before sensitive data is exchanged. The second mechanism—LDAPS—
creates a TLS-encrypted connection to the server on a different port (636 by default)
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before any LDAP protocol messages are exchanged. These connections are denoted
through an explicit ldaps protocol. By default, both mechanisms require that the
server present a valid TLS certificate signed by a CA which can be verified using a
certificate trust store available to the client. AD only supports LDAPS connections.

Load Balancing
Very often, especially in corporate directory setups, a global load balancer is config‐
ured in front of directory servers to balance load and provide high availability. Ordi‐
narily, this is a good thing, but it is worth bearing in mind when using and
configuring distributed systems. When creating new users and groups, it might take
some minutes for them to propagate to all the servers behind the load balancer, so
not all nodes in the cluster will be able to resolve the new objects at exactly the same
time.

Application Integration
Many applications in a Hadoop cluster can query LDAP directly. In addition to serv‐
ing as a group mapping provider for the core Hadoop services, like HDFS and
YARN, LDAP servers can be used to authenticate end users who supply username
and password credentials over JDBC or ODBC connections. Similarly, other tools,
such as Hue and Cloudera Manager, also provide LDAP integration and use LDAP
group membership as part of the authorization process for logged-in users.

Since users are required to enter a username and password, it is essential that both
the client connection to the service and the connection from the service to the LDAP
server are encrypted, as shown in Figure 10-2. Most often, this is achieved using TLS
encryption, but other mechanisms, such as SASL QoP, are possible. Since these user
credentials are then sent over the network to the LDAP server for verification, either
STARTTLS or LDAPS must be used between the application and the LDAP server. In
the figure, we use a triangle to denote directory information services in line with con‐
vention. The padlocks on the interactions indicate where in-flight encryption should
be used.

As a best practice, for encrypted connections, you should ensure that the LDAP
server is legitimate by validating the server’s TLS certificate. In Java applications this
is mandatory, since for SSL/TLS connections Java requires the server’s public certifi‐
cate or the certificate of a CA to be in its configured trust store (see “TLS and Java”
on page 238).

290 | Chapter 10: Integration with Identity Management Providers



Figure 10-2. Integration with LDAP

For applications using the OpenLDAP client libraries (which can be used to query
any LDAP-compliant directory), such as Python or C++ applications, the server cer‐
tificate verification behavior is often controlled by the TLS_REQCERT configuration
parameter in /etc/openldap/ldap.conf. This can be set to:

never

Don’t request or validate the server certificate.

allow

Request and try to validate the certificate, but allow the connection if it is invalid.

try

Request the certificate and end the session immediately if it is invalid.

As we have seen, a common pattern with application integration is to authenticate
the user and then determine which groups it is in for authorization purposes. Unless
the directory supports anonymous searches, any application performing group look‐
ups needs to be configured with user credentials to bind (authenticate) to the LDAP
server and issue search requests.

Different applications have various syntaxes for specifying user and group lookup
patterns. When using AD, it is often enough to specify that the LDAP server con‐
forms to the AD schema, and the application can usually infer how to do the rest. In
other cases—for example, when querying an OpenLDAP server—where the schema
might differ from deployment to deployment, sometimes you must specify a replace‐
ment pattern to use. For example, with Impala, a user DN pattern can be constructed
using the #UID placeholder in the ldap_bind_pattern parameter:
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uid=#UID,ou=users,dc=examplebank,dc=com

If using LDAP authentication with Hive and requiring that a user have certain group
memberships, you can specify the group lookup pattern using the %s placeholder in
the following parameter, hive.server2.authentication.ldap.groupDNPattern:

cn=%s,ou=groups,dc=examplebank,dc=com

As another example, the following snippet defines how you might configure two
LDAP login domains for Hue—one for corporate users in AD and one for adminis‐
trators in FreeIPA. Notice how, for the first server, the user or group attributes are
not supplied, whereas for the IPA installation this is required. Note also how the base
DN is specified to reduce the search space:

[desktop]
 [[auth]]
 backend=desktop.auth.backend.LdapBackend
 [[ldap]]
  ldap_cert=/etc/hue/conf/cacerts.pem
  create_users_on_login=true
  [[[ldap_servers]]]
   [[[[CORP.EXAMPLEBANK.COM]]]]
   # AD server
   ldap_url=ldaps://gblad.examplebank.com:3269
   # AD does not need search bind - users are always user@nt_domain
   search_bind_authentication=false
   nt_domain=corp.examplebank.com
   # Bind details for user/group LDAP search/sync (not authentication)
   base_dn="ou=corp,dc=examplebank,dc=com"
   bind_dn="huesearch"
   bind_password="AwesomePassw0rd"

   [[[[HADOOP.ADMIN.EXAMPLEBANK.COM]]]]
   ldap_url=ldaps://ipa.hadoop.admin.examplebank.com:636
   search_bind_authentication=true
   base_dn="cn=accounts,dc=hadoop,dc=admin,dc=examplebank,dc=com"
   bind_dn="uid=huesearch,cn=users,cn=accounts,dc=...bank,dc=com"
   bind_password="AnotherGr8Password"
    [[[[[users]]]]]
    user_name_attr="uid"
    [[[[[groups]]]]]
    group_member_attr="member"

Refer to the documentation for each component to get full details of how to specify
lookup patterns and attribute names.

Linux Integration
We need a way to map users and groups from the corporate directories into users
and groups in Linux so that Hadoop services can make use of them to run processes
and to make authorization decisions. We don’t have the space to cover all the
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possible integration options for Linux, but there are plenty. The most popular open
source integrations are Winbind and the System Security Services Daemon (SSSD),
but proprietary offerings, such as Centrify, also exist and may be the preferred option
for enterprise environments. Let’s take a quick look at SSSD.

SSSD
Despite its name, SSSD is actually a group of daemons and libraries that manage
access to remote authentication services and other networked resources. It fits into
the Linux stack by providing interfaces into the Name Service Switch (NSS) and
Pluggable Authentication Modules (PAM) libraries, as a means of resolving users and
groups and providing authentication.

NSS maintains a few useful databases that the kernel consults when it needs informa‐
tion. For our purposes, the most interesting ones are the user database passwd and
the group database group. When you run commands like getent passwd ian, id
paul, or getent group risk_users, the program is issuing calls to the NSS API,
which in turn consults all the registered providers for the database. You can config‐
ure SSSD in /etc/nsswitch.conf as a provider for these databases.

SSSD can conflict with the Name Service Caching Daemon
(NSCD), if that is also running. NSCD’s primary responsibility is
to cache the results of DNS lookups, but it can also cache the
passwd and group databases, among others. It’s fine to have both
running as long as they don’t overlap in functionality, so disable
passwd, group, network, and services caching in /etc/nscd.conf.

From the operating system point of view, users and groups that SSSD retrieves from
remote directories look like and behave like local users. SSSD caches objects to pre‐
vent regular round trips to the remote directory and keeps the cache regularly
updated.

As an example integration, we demonstrate how to integrate an RHEL or CentOS 7
box with an AD server using the realmd library. First, we install the package prereq‐
uisites:

$ sudo yum -y install adcli authconfig sssd krb5-workstation \
  openldap-clients oddjob-mkhomedir

The simplest way to integrate a Linux server with AD is to join the server to the
domain, which means to register the server with the AD server and create a computer
account, if required. Using the adcli utility included with the realmd library, we can
run something like the following, which joins the server to the AD server at
adgbl.corp.example.com:
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$ sudo adcli join -S adgbl.corp.example.com -N $(hostname -s) \
  --stdin-password -D corp.example.com -R CORP.EXAMPLE.COM \
-v <<< ThisIsMyAdminPassword

...snip...
* Authenticated as user: Administrator@CORP.EXAMPLE.COM
* Looked up short domain name: CORP
* Using fully qualified name: ip-172-31-100-163.ec2.internal
* Using domain name: corp.example.com
* Using computer account name: ip-172-31-100-163
* Using domain realm: corp.example.com
* Enrolling computer name: ip-172-31-100-163
* Generated 120 character computer password
* Using keytab: FILE:/etc/krb5.keytab
* Computer account for ip-172-31-100-163$ does not exist
* Found well known computer container at: CN=Computers,...,DC=com
* Calculated computer account: CN=ip-172-31-100-163,CN=...,DC=com
* Created computer account: CN=ip-172-31-100-163,CN=...,DC=com

...snip...

Here we are implicitly using the default OU in AD for computer accounts for the
domain, but a custom OU can be specified if required.

To register a new computer account, we need an administrative
user for the OU. In the example command, we supply the adminis‐
trator’s password directly, but it’s also possible—and highly recom‐
mended—to precreate all the expected computer accounts ahead of
time as an administrator and to set up one-time passwords for each
host that can be used in the join command. This is the recom‐
mended approach when using automated host provisioning with
something like Ansible because it means that you do not need to
place the administrator’s password in configuration files.

After the machine has joined the domain, we can configure SSSD to resolve informa‐
tion from AD. To do this, we populate /etc/sssd/sssd.conf with something like the
following:

[sssd]
services = nss, pam
config_file_version = 2
domains = CORP.EXAMPLE.COM

[nss]
override_homedir = /home/%u
default_shell = /bin/bash

[domain/CORP.EXAMPLE.COM]
id_provider = ad
chpass_provider = ad
auth_provider = ad
access_provider = simple
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ad_server = adgbl.corp.example.com
ad_domain = corp.example.com
# Defaults for AD provider but worth noting
ldap_id_mapping = true
case_sensitive = false
enumerate = false
ignore_group_members = true

There are some important things to note here. The ad_server parameter can be a
comma-separated list of servers to provide automatic failover. Often, though, AD
administrators set up a global load balancer in front of AD servers anyway. Another
key parameter is enumerate, which specifies whether all objects should be obtained
and cached from the server in the background. We strongly recommend keeping this
to the default of false because it can significantly harm performance. We also rec‐
ommend keeping ignore_group_members as the default. This limits the scope of
group lookups to their existence, rather than also returning their full list of members.

By default, AD accounts do not include POSIX attributes such as numeric user or
group identifiers (UIDs or GIDs), so SSSD derives these automatically from the AD
account security identifier (objectSID). You can control this behavior using the
ldap_id_mapping parameter. If AD contains the POSIX attributes, you set this
parameter to false.

If you know that your users and groups will be limited to a specific subsection of the
directory, you can limit lookups using the ldap_group_search_base parameter. This
can give significant speedups for large directories.

We also need to configure the Kerberos client information so that the host can
resolve Kerberos principals from AD (more on this subject in “Kerberos Clients” on
page 296).

Finally, we need to configure NSS and PAM to use SSSD and to enable the SSSD
service:

$ sudo authconfig --enablesssd --enablesssdauth --enablemkhomedir --update
$ sudo systemctl enable sssd
$ sudo systemctl enable oddjobd
$ sudo systemctl start sssd
$ sudo systemctl start oddjobd

Now, when users log in or a process performs a user or group lookup (for example,
the Hadoop group mapping providers) SSSD queries one of the configured remote
directory servers for information and caches the results locally.

There is a lot more that can be done with SSSD. It has built-in support for transpar‐
ently querying AD forests and can support resolving objects from multiple domains.
And in addition to AD, SSSD can resolve users from other LDAP providers. For
example, you may have users being resolved from corporate AD and sysadmins from
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a local OpenLDAP deployment. For further information, see the SSSD documenta‐
tion.

Kerberos Integration
We covered Kerberos authentication in detail in “Kerberos” on page 242. Here we
explore the integration options for clients and some common KDC architectures.
Referring back to our providers, the KDC can be provided by a central identity pro‐
vider, like AD or IdM, or by standalone KDC implementations like MIT or Heimdal
Kerberos. Often, we want to set up trust relationships between KDCs to allow users
from other realms to use our clusters. Here we cover some of the common setups.

Kerberos Clients
Most often, Kerberos integration in Linux is provided by the open source MIT Ker‐
beros client libraries. These allow users to run kinit to obtain a TGT for a given
realm and subsequently to retrieve service tickets. In Oracle Java, Kerberos integra‐
tion is provided by classes in the sun.security.krb5 package. For non-Java pro‐
cesses, numerous libraries provide integration, but commonly the Cyrus SASL
package is used.

Kerberos can store tickets in a variety of cache types. Some of the
more recent versions of the Kerberos utilities default to using the
KEYRING type, which uses a secure memory location provided by
the OS. However, the Java Kerberos libraries, and thus Hadoop,
can only use the FILE cache type.

Each integration refers to a configuration file in a common format, which details
such things as the supported encryption types, ticket renewal settings, the available
realms and where their KDCs are located, and how to map domain names to realms.

By default, you can find this file at /etc/krb5.conf, but within a shell the actual file
used can be overridden using the KRB5_CONFIG environment variable. To locate the
krb5.conf file Java first looks at the value of the java.security.krb5.conf system
property, if set. It then checks for <java-home>/jre/lib/security/krb5.conf, and finally
for /etc/krb5.conf.

In addition, the realm and KDC locations can be overridden with values that super‐
sede those found in the configuration file with the java.security.krb5.realm and
java.security.krb5.kdc system properties.
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Isolating Ticket Caches
As a systems administration and development best practice, always ensure that you
and your applications operate within an isolated Kerberos security context. This is
especially important when using shared technical accounts. In scripts, before issuing
a kinit, set the KRB5CCNAME environment variable to a private location with a unique
name; for example, ~/mycache.GO3HulUh. (You can generate temporary unique file
locations using the mktemp command.) This credentials cache will be exclusive to the
process and won’t be affected by anyone else issuing new kinit or kdestroy com‐
mands. Always issue kdestroy when finished, to clean up the credentials cache.

Another option is to use the k5start wrapper program, which can provide isolation
and keep the ticket fresh.

Continuing the simple case from the previous section on LDAP integration, the rele‐
vant sections of the /etc/krb5.conf file might look like the following:

[libdefaults]
default_realm = CORP.EXAMPLE.COM
default_tgs_enctypes = aes256-cts-hmac-sha1-96... arcfour-hmac-md5
default_tkt_enctypes = aes256-cts-hmac-sha1-96... arcfour-hmac-md5
permitted_enctypes = aes256-cts-hmac-sha1-96... arcfour-hmac-md5
ticket_lifetime = 24h
renew_lifetime = 7d
forwardable = true
udp_preference_limit = 1

[realms]
CORP.EXAMPLE.COM = {
  kdc = adgbl.corp.example.com
  admin_server = adgbl.corp.example.com
}
OTHER.EXAMPLE.COM = {
  kdc = anotherkdc1.other.example.com
  kdc = anotherkdc2.other.example.com
}

[domain_realm]
  .corp.example.com = CORP.EXAMPLE.COM
  corp.example.com = CORP.EXAMPLE.COM
  .other.example.com = OTHER.EXAMPLE.COM
  other.example.com = OTHER.EXAMPLE.COM

Note that the encryption types should be restricted to remove the weaker types. To
get the most up-to-date list of secure encryption types, refer to the MIT documenta‐
tion. Your Java installation might need the Unlimited Strength Java Cryptography
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2 See JDK-8170157.

Extensions policy files, which allow the usage of 256-bit encryption types, although
this is no longer required for versions above 8u162 or for version 9.2

In an enterprise context, the Kerberos configuration file is often much more complex,
with several realms and domain mappings specified.

KDC Integration
When building secure clusters, you need to decide whether to build a standalone
KDC infrastructure or to connect your clusters to an existing setup, as provided by
AD/IdM. If you are building your own KDCs you will likely need to think about
establishing trusts between realms (see “Cross-realm trusts” on page 247). We review
and discuss the KDC integration architectures in the next few sections, after looking
at how to initiate cross-realm trusts.

We don’t have space here to discuss how to install and configure
your own KDCs. If you are starting from scratch, see these links for
installation instructions:

• MIT Kerberos
• AD

Setting up cross-realm trusts
A great source of information for setting up trusts between realms is the documenta‐
tion of data platform vendors, although you should also consult the documentation
of the KDC implementations when setting up trusts to ensure that the right encryp‐
tion types are used and that all the steps are current.

One-way trust between MIT KDC and AD.    In the following, we show how to set up a one-
way trust between an MIT KDC and an AD domain. Remember that a one-way trust
means that the (local) MIT KDC trusts users with principals in the (remote) AD
realm, but not the other way around.

On the AD server (here with the realm CORP.EXAMPLE.COM), have your AD admins
issue the following commands in cmd.exe or PowerShell to create the one-way trust
to the MIT KDC realm (SATURN.EXAMPLE.COM):

netdom trust SATURN.EXAMPLE.COM /Domain:CORP.EXAMPLE.COM
    /add /realm /passwordt:S3ns!t!vePass
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Next, configure the encryption types trust attribute for the trusting domain on the
AD server using compatible types between the AD and MIT KDC:

ksetup /SetEncTypeAttr SATURN.EXAMPLE.COM <space-separated encryption types>

If you are not sure which encryption types are supported by your AD, run ksetup /?.

On the MIT KDC and cluster hosts, ensure that the cluster realm is the default realm
in both /var/kerberos/krb5kdc/kdc.conf and /etc/krb5.conf on the KDC host. In addi‐
tion, /etc/krb5.conf on every cluster host needs to include information about the AD
realm (see “Kerberos Clients” on page 296).

Run the following to create the trust principal on the KDC host using the same pass‐
word as that used to create the trust in AD:

$ kadmin.local
$ kadmin:  addprinc -e <keysalt> krbtgt/SATURN.EXAMPLE.COM@CORP.EXAMPLE.COM

The encryption-salt (keysalt) list types should match the encryption types with which
AD issues tickets. The possible encryption and salt types can be found in the KDC
documentation.

Finally, you need to ensure Hadoop has knowledge of the AD realm and can convert
its principal names into short names. Add the following to the auth_to_local rules
in core-site.xml on all hosts:

<property>
  <name>hadoop.security.auth_to_local</name>
  <value>
    RULE:[1:$1@$0](^.*@CORP\.EXAMPLE\.COM$)s/^(.*)@CORP\.EXAMPLE\.COM$/$1/g
    RULE:[2:$1@$0](^.*@CORP\.EXAMPLE\.COM$)s/^(.*)@CORP\.EXAMPLE\.COM$/$1/g
    DEFAULT
  </value>
</property>

Cluster management software, such as Cloudera Manager, does this last stage auto‐
matically if supplied with a list of trusted realms.

One-way trusts between MIT KDCs.    The process of setting up a one-way cross-realm
trust between MIT KDCs is much simpler. In this case, you just need to create
matching trust principals in each KDC, with the general form krbtgt/TRUST
ING_REALM@TRUSTED_REALM. In the following, it is assumed the KDCs are configured
for the same encryption types.

On the local KDC and cluster hosts, ensure that the cluster realm is the default realm
in both /var/kerberos/krb5kdc/kdc.conf and /etc/krb5.conf on the KDC host. In addi‐
tion, /etc/krb5.conf on every cluster host needs to include information about the
remote KDC realm and its servers (see “Kerberos Clients” on page 296).
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On the local KDC host (SATURN.EXAMPLE.COM), run the following to create a trust
principal to the remote KDC (NEPTUNE.EXAMPLE.COM):

$ kadmin.local
$ addprinc krbtgt/SATURN.EXAMPLE.COM@NEPTUNE.EXAMPLE.COM

Run the exact same command on the remote KDC, using the same password. Just
like in the previous example, you need to configure Hadoop to include the realm
NEPTUNE.EXAMPLE.COM in the auth_to_local rules.

To set up a two-way trust, simply repeat the process in the reverse direction.

Let’s now review some KDC integration scenarios.

Local cluster KDC
In this architecture, each cluster has its own exclusive KDC setup. All principals, plus
the user and service, are created in the local KDC. A variation of the architecture
shares a KDC between clusters at the same security level; for example, PROD and DR
clusters.

Figure 10-3 shows a two-way cross-realm trust to the KDCs of another cluster
(NEPTUNE.EXAMPLE.COM). The two-way trust is denoted with a double line. High avail‐
ability of KDC instances is shown by the double box for each realm. In the figure, we
see that services running in cluster nodes obtain their Kerberos TGTs from the dedi‐
cated KDCs (1). Users from either realm wishing to use cluster services use the local
KDC to obtain service tickets (2), which they then present to the services (3).

Figure 10-3. Local KDC setup per cluster

Although this model gives maximum control to the cluster administrators, integra‐
tion with the wider enterprise is more difficult. All user administration must be man‐
aged by the cluster admins. This is easiest if you are using a local AD or IdM instance,
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which provides the local KDC and LDAP services. As mentioned previously, if using
standalone MIT KDC, user principals (and their passwords) must be synchronized
with a directory service and materialized on Linux using SSSD or similar. In the
worst case, users and groups are created locally on each server. Although such inte‐
grations are possible, they are nontrivial and error-prone.

Although creating local user accounts for end users is inefficient,
using local users and groups for the service accounts is common
practice and recommended. The set of service accounts and their
group memberships are static.

Integration with other clusters (for data transfer, for example) may involve the setup
of a complex web of one- and two-way trusts between local cluster realms. This setup
requires the administrators to populate krb5.conf with the correct realm and domain
information for all the realms in the trust network and to create the trust between the
KDCs themselves.

Note that Hadoop requires that its service principals be created in
the default Kerberos realm.

From an availability standpoint, cluster administrators must ensure that more than
one KDC instance is available for each cluster (the double boxes in Figure 10-3) and
that multiple endpoints are referenced in the client configuration (see “Identity man‐
agement providers” on page 344).

This option is best for isolated clusters and use cases that do not require wider inte‐
gration with the enterprise, or where such integration is impossible for technical or
security reasons.

Local cluster KDC and corporate user KDC
To avoid the drawbacks of user and group management, a hybrid architecture uses a
local KDC for cluster service principals and a centralized corporate KDC, such as AD
or IdM, for users.

As shown in Figure 10-4, services authenticate to their local KDC (1), whereas users
authenticate to the corporate KDC (2). Using their corporate TGT, the users obtain
service tickets from the cluster KDC (3) and use these to access cluster services (4).
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Figure 10-4. Local KDC setup per cluster with users in corporate directory

One advantage of this architecture is that user management can all be delegated to
the central directory. But there can still be challenges with user accounts. Principal
name collisions between realms need to be dealt with, and there is always the risk that
a cluster administrator could create a principal in the local KDC with the same short
name as a principal in the corporate KDC and thus be able to masquerade as that
user within the cluster. You can mitigate this with careful use of auth_to_local rules,
which limit the principal patterns that can be in the local KDC realm.

The architecture also requires that at least a one-way trust relationship is set up
between the local KDC and the corporate KDC. Although the risk to the corporate
KDC is small, getting agreement for such a trust is not always trivial.

This architecture shares many of the downsides of the first option. In addition to the
trust to the corporate KDC, trusts between realms of interacting clusters must also be
maintained.

Corporate KDC
The final option is to make direct use of a corporate KDC realm for service and for
user principals. The provider of centralized KDC functionality is invariably a unified
identity management product, like AD or IdM.

In Figure 10-5, services authenticate to the local realm in the forest (here,
EMEA.EXAMPLE.COM), which should be the default (1). In this example, a domain forest
or cross-domain trust exists between different regional directories. Users can be
authenticated by any of the realms in the forest but get their service tickets from the
local realm (2), which they present to cluster services (3).
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Figure 10-5. Cluster service and user principals are created directly in corporate direc‐
tories

In this model, a separate user account is created in the directory for each required
unique instance of a service principal. In the ideal case—since there can be tens to
hundreds of such users within a cluster—the directory administrators allow the clus‐
ter management software to create and manage these accounts automatically.

The best approach is to create a dedicated OU within the directory where these
accounts can be created (see “LDAP Integration” on page 287). This OU can either be
per cluster or for all clusters under management.

Use per-cluster OUs, because they provide superior isolation. With
this model, it is very clear which accounts belong to which clusters,
and this helps to avoid accidental deletion or other administration
errors. It also allows for effective security isolation between cluster
accounts, because the account that the cluster management server
uses can be restricted to managing only its own accounts.

A very common practice, even in the most restricted and regulated environments, is
for directory administrators to permit the cluster management software to administer
accounts—but only in the relevant OUs. The cluster management software, for exam‐
ple Cloudera Manager, will create the user accounts as required, as new services are
added or modified.

In cases where this is not possible, the next-best option is to script the creation of
user accounts within the directory, with the required service principal names. From
Linux, ldapmodify can be used to create accounts in the remote directory over a
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secure LDAP connection. For AD, PowerShell can also be used on the Windows
server itself.

Note that this approach imposes an extra burden on the directory administrator, who
must be in the loop every time user accounts need to be added, deleted, or updated.
These events are more regular than you might initially imagine—remember that each
individual instance of a service needs its own user account. A cluster of 100 worker
nodes running HDFS, YARN, and HBase needs at least 400 user accounts (HTTP/
fqdn, hdfs/fqdn, yarn/fqdn, and hbase/fqdn on each node), plus those required for
edge and master processes. Avoid manual account management, wherever possible.

Do not use manual account creation and maintenance for service
principals. Automation is essential.

Potential drawbacks of this KDC architecture are a loss of control over accounts and
principals and, consequently, a lack of flexibility and agility in operations. We have
also seen latency and performance issues for Kerberos or LDAP interactions to dis‐
tant (in terms of network) or misconfigured directory servers.

However, the advantages in maintenance are significant, since you do not need to
install and look after your own KDC infrastructure. Most importantly, users and
groups from the wider enterprise can be easily integrated with the cluster. Of the
three presented, this is usually the most recommended integration approach.

Certificate Management
In order to provide proper protection for in-flight data, in a secure cluster TLS
encryption should be configured in each service that supports it. Although it is possi‐
ble to generate and use your own certificates—so-called self-signed certificates—we
strongly recommend making use of the enterprise PKI infrastructure (if there is one)
and having certificates properly signed by a central CA. There are two main advan‐
tages to using a centralized corporate CA:

Improved trust
Usually, central CAs are well protected and form the root of trust within an
enterprise, so users of your cluster can feel assured that they are using a legiti‐
mate service.
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Easier management
If using self-signed certificates, you need to add each and every instance of a pub‐
lic certificate to all trust stores within the cluster. This can rapidly become
unwieldy and difficult to manage, especially when renewing or revoking existing
certificates.

If you cannot use a central CA, consider creating your own CA root certificate, which
can be used to sign server certificates, or purchasing an intermediate CA certificate.
Consolidated identity management services, such as AD or IdM, come with built-in
certificate-signing CA services. Although the advantage of enterprise-wide trust does
not exist, the ease of management should be compelling.

Self-signed certificates can be used for noncritical development or
proof-of-concept environments, but production environments
should have certificates signed by a trusted authority. Use signed
certificates in every circumstance, if possible.

In the following subsections, we look at the process of generating and having certifi‐
cates signed. We also see how to convert them into useful formats for Hadoop. We
present the commands in some detail because it is not always obvious how to do this,
and example commands can be extremely helpful. However, make sure that the com‐
mands are right for what you want to do and that they fit into your corporate security
policies.

Do not just copy and paste the examples here. Ensure that they are
valid for your situation, and consult the relevant documentation
for the correct commands. Be sure that sensitive files are properly
protected.

Signing Certificates
TLS certificates are composed of a private and a public key. In the ideal case, the pri‐
vate key should never leave the server it is intended for (although enterprises often
have centralized issuing services). The certificate signing process allows for this
through certificate signing requests (CSRs) and is illustrated in Figure 10-6. Here’s an
example of creating a private key:

$ openssl genrsa -out server.key 1024
Generating RSA private key, 1024 bit long modulus
...............................++++++
..++++++
e is 65537 (0x10001)
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Figure 10-6. The CSR signing process

Next, we create a CSR from the private key. In the CSR, we enter the information that
we want included in the public certificate. The most important attribute is the com‐
mon name, which should be the fully qualified hostname, but we can also add X.509
extensions, like subject alternative names. In this example, we are generating a CSR
for an Impala daemon operating behind a load balancer, ensuring that a SHA-2 cer‐
tificate is requested:

$ SAN="[SAN]\nsubjectAltName="
$ SAN="${SAN}DNS:impala.prd1.examplebank.com"
$ SAN="${SAN},DNS:w12.prd1.examplebank.com"
$ openssl req -new -sha256 \

-key server.key \
-subj "/C=US/O=Example Bank/CN=w12.prd1.examplebank.com" \
-extensions SAN
-reqexts SAN \
-config <(cat /etc/pki/tls/openssl.cnf <(printf ${SAN})) \
-out server.csr

To keep the CSR secure, you can set an optional challenge password, known only to
you and the CA. This CSR is then sent to the CA for signing, and the CA returns a
public certificate. Theoretically, you can automate this entire process, including the
signing and issuing of certificates.

For multiple services running on the same cluster node, it’s usually acceptable for all
of them to share a server certificate containing a private-public key pair. The excep‐
tion to this is when a service is operating behind a load balancer, for which the use of
subject alternative names might be required (see “Security considerations” on page
339).

After the certificate has been signed and has been returned (here, as server.pem), you
can verify that it is valid by using a command like the following:

$ openssl verify -CAfile /path/to/cacert.pem server.pem
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Converting Certificates
Depending on their implementation, cluster services require private and public TLS
certificates in different forms. Python and C++ applications most often use the X.509
format, usually encoded as base64 text in Privacy-Enhanced Mail (PEM) files, while
Java applications most often use the JKS format. Another common format is PKCS
#12, especially when CAs generate server certificates directly, rather than as a
response to CSRs. By contrast, CSRs are usually returned as PEM files. In this case,
the signed certificate needs to be combined with the certificate of the intermediate
CA that signed it, together with any other intermediate CA certificates, and then con‐
verted to JKS.

Finding the right tools and invocations to convert between these formats isn’t always
easy and usually involves some combination of the openssl and Java keytool utilit‐
ies. We do not have space to consider every scenario here, but as an example, let’s
assume that each server has been issued a certificate in PKCS #12 format, with the
fully qualified hostname as the certificate common name. We need to convert this
into PEM and JKS formats and place it in a central location accessible to all services.
First, let’s create and protect the central location:

$ sudo mkdir -p /opt/hadoop/security/private/{p12,x509,jks}
$ sudo chmod -R 751 /opt/hadoop/security/private
$ sudo cp /path/to/server.p12 /opt/hadoop/security/private/p12/server.p12
$ sudo chmod 400 /opt/hadoop/security/private/p12/*

Be sure that the directory and file permissions are such that the pri‐
vate keys are only readable to the intended processes.

Next, let’s convert to PEM format with three output variations. Check the PASS
PHRASE ARGUMENTS section in man openssl for the different options to supply
the password:

# Make sure passwords typed in the clear are not recorded for the session
$ set +o history
# Both private and public keys in one output file
$ sudo openssl pkcs12 -in /opt/hadoop/security/private/p12/server.p12 -clcerts \
-nodes -passin [PASSWORD] -out /opt/hadoop/security/private/x509/cert.pem

# Public key output only
$ sudo openssl pkcs12 -in /opt/hadoop/security/private/p12/server.p12 -clcerts \
-nodes -nokeys -passin [PASSWORD] \
-out /opt/hadoop/security/private/x509/cert.crt

# Private key output only
$ sudo openssl pkcs12 -in /opt/hadoop/security/private/p12/server.p12 -clcerts \
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-nodes -nocerts -passin [PASSWORD] \
-out /opt/hadoop/security/private/x509/cert.key

$ sudo chmod 400 /opt/hadoop/security/private/x509/*

In those commands, we removed the password with -nodes, but if you need to, you
can retain it. Next, let’s generate a JKS from the P12 certificate:

# Make sure passwords typed in the clear are not recorded for the session
$ set +o history
# Import the certificate
$ sudo keytool -importkeystore \
-srckeystore /opt/hadoop/security/private/p12/server.p12 \
-srcstoretype PKCS12 \
-destkeystore /opt/hadoop/security/private/jks/server.jks \
-srcstorepass [PASSWORD] -deststorepass [PASSWORD]

# Optionally change the password of the key in the keystore to match the store
$ sudo keytool -keypasswd -alias $(hostname -f) \
-keystore /opt/hadoop/security/private/jks/server.jks -new [PASSWORD] \
-storepass [PASSWORD] -keypass [PASSWORD]

Finally, let’s provide access to the files to a select set of users using Linux ACLs:

$ cat <<EOF > acls
> user:hdfs:r--
> user:yarn:r--
> user:mapred:r--
...more cluster users...
> EOF
$ setfacl -M acls /opt/hadoop/security/private/{jks,x509}/*

For clients to verify server certificates, world-readable trust stores must contain the
public certificate of the signing authority on every node in the cluster, including gate‐
ways. In this sense, a client is any process accessing a TLS-protected endpoint, so it
might be an end user process (like the hdfs CLI tool) or a long-lived process (like an
Impala daemon communicating with another Impala daemon). Again, these need to
be supplied in both PEM and JKS formats to ensure that all cluster processes can use
them.

Although there are some standard locations to find or place CA certificates, it’s usu‐
ally easier to place a single file containing all required certificates in a well-defined
location—for example, /etc/hadoop/security/public/ca.pem—for clients and cluster
processes to use. Be sure to put it in a different location than your private keys and to
protect the file from write access to prevent the insertion of bogus certificates.

Wildcard Certificates
For very large clusters, it can sometimes be impractical to obtain signed certificates
for each and every host. Furthermore, as you add hosts or add load balancers, you
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need to issue new certificates. If your enterprise does not support automated signing
of CSRs, this can be difficult.

If all your hosts are located within a dedicated cluster domain, such as
cluster1.example.com, one option can be to use wildcard certificates, which are
issued to a domain name pattern, such as *.cluster1.example.com. One certificate
can be used by all servers and services in the cluster. After it’s signed, the key and
public certificate need to be copied to every node in a secure way.

If you are using wildcard certificates, be sure to protect the private
key and ensure that it is not leaked outside of the cluster nodes.

Automation
When generating certificates for hundreds of nodes and services, we highly recom‐
mend automation.

This is obviously easiest when you control the full process, from key generation to
certificate signing. If you do not control the signing process, it is still worth automat‐
ing the process of generating CSRs and distributing the public certificates, after they
have been signed by the CA. Also, don’t forget that certificates expire and you need a
process to replace them. Certificate lifetimes of a year or less are common in
enterprises.

Some automation tools have been already been written for this that may fit your use
case. For example, Cloudera has an Auto-TLS mode for clusters deployed via
Cloudera Director.

Summary
Hopefully, this chapter has equipped you with much of the necessary understanding
to build solid clusters that can slot neatly into your enterprise. Hadoop clusters often
represent a sea change in the way that IT is deployed and managed within enterpri‐
ses, and consequently some new approaches to integration might be required. It’s
critical that the teams responsible for building, operating, and governing Hadoop
clusters and the wider enterprise IT teams remain flexible to new approaches and
requirements.

In this chapter, we covered the various ways of integrating enterprise systems into the
security controls of the cluster. We found that we need to integrate identity manage‐
ment at several layers of the stack at the OS and application levels, because it provides
authentication, authorization through groups, and certificate management for in-
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flight encryption. Because it is so important to the efficient operation of a cluster, you
should bring your enterprise identity management teams into the conversation as
early as possible. Initially, they might feel uneasy, but the information in this chapter
should help to relieve any fears about directly integrating clusters with identity man‐
agement systems.
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CHAPTER 11

Accessing and Interacting with Clusters

It is our job as architects to ensure that users can take full advantage of the data and
services hosted in the cluster. To do this, we need to guarantee that users (both
humans and applications) can access the cluster services in a safe and secure way. In
this chapter, we explore typical architectures for providing users access to cluster
services and data while applying the authentication and authorization controls we
encountered in Chapter 9.

First we look at the different ways in which a user might interact with the cluster, and
then we explore how we can enable these through our cluster architecture and sup‐
porting technologies, like proxies and load balancers. After we have established the
architecture, we take a look at user workbenches, such as Hue and Cloudera Data Sci‐
ence Workbench (CDSW). Finally, we look at the options for transferring files into
and out of the cluster.

Access Mechanisms
Each component in the cluster provides one or more access mechanisms through
which users can interact with it. These come in a few different varieties and should be
pretty familiar to most practitioners. Table 11-1, at the end of this section, summari‐
zes the access mechanisms supported by commonly used services.

Programmatic Access
Programmatic access mechanisms include the following:

APIs
Many of the components in a Hadoop cluster provide application programming
interface (API) libraries to be used by user code, which abstract away much of
the mechanics of using RPCs (see “Remote Procedure Calls (RPCs)” on page
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107), security negotiation, and data serialization. Most services are implemented
using Java, but some projects also provide API implementations in other lan‐
guages or use RPC protocol libraries that support multiple language bindings.

Some of the most common sources of error when deploying user
code to clusters are API versioning and dependency conflicts. Be
sure users compile applications using dependencies that match the
versions found on the target cluster. If the code has to run on dif‐
ferent versions, use a build tool to define different build profiles for
the different targets.

REST
Representational State Transfer (REST) APIs are a special kind of API in which
the interaction with a service is conducted through stateless calls to HTTP end‐
points. Unlike with JDBC, there is no persistent connection or server-side state;
each call to an endpoint should provide enough context to be operated on inde‐
pendently. We mention them here because certain Hadoop services offer REST
APIs, which can be convenient when combined with perimeter security or load
balancing. Projects with commonly used REST interfaces include HDFS, Oozie,
and Solr.

JDBC or ODBC
All the main SQL-on-Hadoop engines (Hive, Impala, and Presto) provide JDBC
or ODBC driver implementations, which allow them to be accessed in a
standards-compliant way from user code, SQL clients, and business intelligence
tools. Note that some features of the JDBC or ODBC specification may not be
implemented by all drivers. They should generally be treated as providing read-
only functionality. Although users may associate JDBC with transactions and
updates, we should remember that the SQL engines are firmly geared toward
analytic queries and ETL.

Command-Line Access
For convenience, many projects provide command-line interfaces (CLIs), which wrap
their published APIs. These are useful for ad hoc tasks and lightweight scripting.
Although some of the tools ship with Windows batch scripts, all the projects with
CLIs support execution via a Linux shell, and consequently, the most common way to
use them is to log in to a cluster edge node via SSH.

Web UIs
Most services run at least one web interface for administrators or end users. End
users commonly access the web interfaces of the YARN ResourceManager, Map‐
Reduce Job History Server, and Spark History Server. In addition, the Hue project
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offers a comprehensive user interface for many components in the stack, including
HDFS, Hive, Impala, Oozie, and Solr. Additional user-oriented or specialized web
UIs are also available, such as Jupyter Notebook, Apache Zeppelin, or Cloudera Data
Science Workbench for data scientists, as shown in Table 11-1.

Table 11-1. A summary of access mechanisms

Project Programmatic Command line Web UI
HDFS Java, REST (WebHDFS/HttpFS) hdfs NameNode and DataNode

YARN Java, REST (RM) yarn ResourceManager and
NodeManager

ZooKeeper Java/C++ zookeeper-client -

HBase Java, HBase REST/Thrift servera hbase shell Master and RegionServer

Hive Thrift, JDBC, ODBC beeline HiveServer2

Oozie Java, REST oozie Server via extension

Spark Java/Scala/Python, JDBC (via Thrift
server)

spark-shell, spark-
submit, pyspark

History Server

Impala JDBC, ODBC impala-shell Statestore, catalog server, daemon

Solr Java, REST solrctl Server

Kudu Java/C++/Python kudu admin utility Master and tablet server

Hue Python SDK - Hue Server
a Apache Phoenix provides a JDBC interface to Apache HBase.

Access Topologies
Now that you understand a little about how you can access cluster services, let’s look
at where to place user-facing services and where users should access services from.
For a cluster architect, there are multiple and often competing considerations at play
when laying out the service endpoints on the cluster nodes—ease of use, security, iso‐
lation, performance, high availability, and flexibility.

Recall from “Cluster Configurations and Node Types” on page 97 that there are sev‐
eral types of nodes in a typical cluster, which run different types of service roles: mas‐
ter, worker, and edge. A general cluster design principal is to limit user interaction
with master and worker nodes and to prefer access to services with endpoints run‐
ning on edge nodes. With secure clusters, this is often enforced with network fire‐
walls which only allow access to specific ports on edge nodes. Dual-homed edge
nodes that connect isolated cluster networks to the wider corporate network are also
common.
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Interaction Patterns
Different users and applications need to access services on each of these node types,
depending on how the service works. We can broadly define two patterns of interac‐
tion, which are illustrated in Figure 11-1:

Fan-out
In this pattern, a typical interaction would see a user application first communi‐
cate with a master or coordinator role to retrieve some sort of metadata and then
communicate directly with potentially many worker roles to retrieve or modify
data. For many services, such as HDFS or HBase, this interaction pattern is a
central tenet of their design, providing performance, resilience, and scalability.
The point is, with this pattern, the user needs access to potentially all the nodes
in the cluster. In addition, the correct client configuration files for the services
being accessed should be present on the node.

Single endpoint
A user interaction with the service is limited to connecting to a single physical or
logical service endpoint. This endpoint may then interact with other cluster
nodes on the user’s behalf. For example, both Oozie and Hive use this pattern. To
avoid SPOFs, this role is sometimes duplicated across different physical hosts
and load-balanced. In addition, some distributed services offer proxy roles to act
as a single type of endpoint and to avoid direct access to worker nodes (for exam‐
ple, HttpFS for HDFS).

Figure 11-1. Interaction patterns for users and cluster services

In response to the two different interaction patterns, we often see two types of edge
nodes being deployed in the cluster:

Configuration-only edge nodes
These edge nodes (also called gateways) have no cluster services running on 
them, but are primed by the cluster manager with the client configuration files
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necessary for users to use the services. Since the resource demands for
configuration-only edge nodes are usually light, they are often implemented as
virtual machines. Users can log in to configuration-only nodes and run applica‐
tions and CLI tools that use the fan-out (accessing cluster nodes) and single-
endpoint patterns.

Applications or tools running on machines outside of the cluster
but with the required network access (so-called unmanaged edge
nodes) will need to keep their configuration up to date manually.

In many cases, edge nodes host service roles with user-facing network endpoints.
Examples of such services include query endpoints such as HiveServer2, orchestra‐
tion services such as Oozie or Apache Airflow, user workbench tools like Hue or
Apache Zeppelin, and proxy roles such as the HBase REST and Thrift gateway
servers, and HttpFS. Edge nodes are also often used to run custom enterprise applica‐
tions which abstract away the details of interacting with the cluster behind custom
user-facing interfaces.

See Figure 11-2 for some edge node examples.

Figure 11-2. The two different edge nodes types support different usage patterns

It is often frowned upon to let users log in to edge nodes that are also hosting impor‐
tant edge services, such as Hive or Oozie, because this increases the risk of service
outages as a result of users doing silly or malicious things. There are also security
implications (see the following sections). If you can afford it, it’s usually safer to con‐
fine user logins to configuration-only edge nodes.

Of course, in real clusters, different node types might be combined with other node
types or might be entirely absent, for reasons of economy or efficiency. For example,
in small clusters, where their resource demands are light, edge services may be
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colocated on master and utility nodes. User application servers often double up as
configuration-only edge nodes.

Proxy Access
For security reasons, we usually don’t want to expose direct network access to cluster
nodes, but we still want to allow users to access certain limited functionality on those
nodes. For example, users and developers often need to access the YARN Resource‐
Manager Web UI to monitor jobs and to access their ApplicationMaster UIs.

One option is simply to open the relevant service ports on the affected hosts within
the firewall configuration. Another option is to mediate access via proxy servers.
There are a few different types of proxy servers.

HTTP proxies
As we saw in “Access Mechanisms” on page 311, most services provide web UIs for
users and administrators. There are a few commonly used proxy implementations,
which either operate as forward or reverse proxies. With forward proxies, the client
makes requests to remote hosts via the proxy, but is fully aware of the target host‐
name and port. With reverse proxies, the client accesses services using the hostname
of the proxy itself and has no knowledge of how the proxy fulfills the request or
where it forwards traffic to. Although reverse proxies provide the most insulation
from clients, they also require a lot of work to rewrite requests and response content
and therefore tend to be quite brittle.

Since the desire is usually not to hide the topology of the cluster from the client, but
merely to prevent direct access, a forward proxy is usually sufficient. In addition, for‐
ward proxies can simplify the management of TLS connections because the client can
verify the server certificate of the target machine. Access to the proxy can be restric‐
ted by requiring authentication credentials.

Some popular web proxy implementations are Squid, Apache HTTP Server (often
just called Apache), HAProxy, and NGINX. HTTP proxies are typically placed on an
edge service node in the cluster. One challenge when using web proxies in an enter‐
prise environment is determining which proxy to use for a given URL. Usually select‐
ing the right proxy is determined automatically via a Proxy Auto-Configuration
(PAC) file; consequently, you may need to have your proxy servers added to your
enterprise PAC file distribution.

SOCKS proxies
Not all traffic is HTTP—we also might wish to proxy other application-layer proto‐
cols, such as RPC exchanges. To support these use cases, we can use a SOCKS proxy.
SOCKS proxies act as forward proxies but operate at a lower level than application
protocols (such as HTTP) and can support both TCP and UDP connectivity.
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Those clients who are authorized to log in to an edge node via SSH can set up their
own SOCKS proxies via SSH tunneling. For example, using the following command
sets up a SOCKS5-compliant server running on port 4567 on the user’s local
machine:

$ ssh -ND 4567 user@edge1.cluster.example.com

This can be annoying, though, because the SSH connection must be maintained all
the while the proxy access is required. As an alternative, dedicated proxy server soft‐
ware can be deployed to a cluster edge node.

Service proxies
In contrast to web or SOCKS proxies, service proxies are more aware of the types of
interaction that take place between client and server and proxy-specific service func‐
tionality. Usually, proxies like these are used when the cluster architect wants to limit
user access only to the single-endpoint pattern or to provide connectivity for non-
Java clients or web-based business applications. The HBase REST server and HttpFS
server are examples of service proxies in so much as they expose specific APIs and act
as proxies to the underlying services, without requiring the user to talk to DataNodes
or RegionServers. A coordinator-only Impala daemon running on an edge node is
also an example of a service proxy.

Often, multiple instances of a proxy role are run on different edge nodes for redun‐
dancy and scaling purposes. On their own, these edge services can act as a bottleneck
to what, underneath, is a naturally distributed interaction pattern. Although more
convenient for limiting external access, it’s important to factor in the load that these
endpoints are expected to support and to scale horizontally across many edge nodes,
as appropriate. For example, Hue supports a wide range of interactions with cluster
services via its web interface but is usually limited to about 50–100 users logged in
and using it in earnest. Luckily, most proxy services are either completely stateless or
store their state centrally and so can be scaled very easily. For more information
about this, see Chapter 12.

Apache Knox is a more general-purpose service proxy for Hadoop and provides pro‐
grammatic proxying for many of the Hadoop components, which themselves expose
REST APIs. Knox acts as a unified REST application endpoint to these other services
and provides other services, such as user mapping and security services. Applications
wishing to use services proxied by Knox need to conform to the Knox APIs, but such
a setup can be a nice way to expose many cluster services to business applications and
can remove many of the headaches around deploying multiple endpoints that each
have differing security requirements and capabilities.

The different proxy types are shown in Figure 11-3. HTTP and SOCKS proxies (left)
provide access to Web UIs running on cluster nodes via edge nodes. Service proxies
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(right) provide a single endpoint for users and applications and implement a fan-out
pattern to service roles in the cluster. You can usually load-balance them.

Figure 11-3. Proxy types and user-cluster interactions

Load Balancing
Load balancing is an important component in user cluster access and is closely
related to the concept of proxying that we discussed in the previous section. How‐
ever, load balancing generally performs a function distinct from proxying, and in
fact, proxies and load balancers are commonly used together. Depending on the
implementation, load balancing allows users and applications to do the following:

• Access a service via a single logical endpoint.
• Ultimately connect to an instance that is running and healthy.
• Transparently open and maintain sessions with the service.
• Connect to a node that is not overwhelmed with users.
• Automatically switch between backend service providers in the event of failure.

Because it is most often used to provide resilience, we cover load balancing in much
more detail in the context of high availability in “Dedicated load balancers” on page
336. From the point of view of a user accessing a service, the presence of a load balancer
should be largely transparent.

Edge Node Interactions
With an understanding of the various components that make up an access topology,
we can define how they are employed by the various user-facing service components.
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HDFS

Command-line tools
Users must log in to an edge node with the correct client configuration. The tools
use a fan-out pattern to talk to both NameNode and DataNodes.

APIs
Applications requiring API access need to run on an edge node with access to
both the NameNode and DataNodes.

Web UIs
The NameNode and DataNodes run web interfaces with details about their cur‐
rent state. These are rarely exposed to end users, being mostly used for adminis‐
trative activities. If you have administrators who need to access these UIs from
outside a network perimeter, you can run an HTTP or SOCKS proxy on an edge
node.

Application proxies
HttpFS is a proxy service implementing the WebHDFS protocol, providing
single-endpoint access to an HDFS cluster for users running on noncluster
nodes. It typically runs on edge nodes to provide access to HDFS for users out‐
side of the cluster.

Load balancing
HttpFS is a stateless REST service, so it can easily be scaled and made resilient
using multiple instances and combined with a load balancer to retain a single
logical endpoint. Note that HTTP authentication tokens resulting from SPNEGO
exchanges stored in cookies by clients may mean that HttpFS instances are not
entirely stateless across connections.

YARN

Command-line tools
Users must log in to an edge node with the correct client configuration. The
YARN tools use a fan-out pattern to upload job resources to HDFS and a logical
single-endpoint pattern to submit jobs to the YARN ResourceManager.

APIs
Applications requiring API access need to run on an edge node with access to the
ResourceManager. The ResourceManager also hosts a REST API for gathering
information about the cluster state.

Web UIs
The ResourceManager runs a web interface which displays details about the cur‐
rently running jobs on the cluster and the state of the scheduler, and it acts as a
proxy to the UIs of ApplicationMasters running on NodeManagers. Although
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other tools can display information about a user’s jobs, it is extremely useful to
have this UI exposed to end users, especially developers and operators. You can
run an HTTP or SOCKS proxy on an edge node if you’re using a firewall to pro‐
tect cluster nodes.

MapReduce

Command-line tools
Users need to log in to an edge node which has the MapReduce client configura‐
tion and access to HDFS and the YARN ResourceManager.

Web UIs
The MapReduce History Server runs a web interface that shows historical details
about MapReduce jobs that have run on the cluster. This should be accessible to
users and to operators, so it should either run on an edge node or be exposed via
an HTTP or SOCKS proxy on an edge node, if using a firewall. The History
Server also hosts a REST API to allow programmatic retrieval of past job status.

Spark

Command-line tools
Users need to log in to an edge node which has the Spark client configuration
and access to HDFS and the YARN ResourceManager.

Web UIs
The Spark History Server runs a web interface that shows historical details about
Spark jobs that have run on the cluster. Job information is also accessible pro‐
grammatically via REST. The History Server should be accessible to users and to
operators, so should either run on an edge node or be exposed via an HTTP or
SOCKS proxy on an edge node, if using a firewall to protect cluster nodes.

Hive

Command-line tools
Users can connect to HiveServer2 using beeline, which does not require any cli‐
ent configuration. The tool can run on any node with network access to
HiveServer2.

APIs
JDBC and ODBC can be used from any node with network access to
HiveServer2.

Web UIs
HiveServer2 hosts a web interface with details of sessions and queries. Typically,
this would not be exposed to users, but it can be valuable to administrators and
operators.
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Application proxies
HiveServer2 acts a single endpoint to the Hive service and should run on one or
more edge nodes.

Load balancing
Although it is not stateless, multiple instances of HiveServer2 can be run on dif‐
ferent nodes and used with a load balancer (see “Hive” on page 358).

Impala

Command-line tools
The Impala shell tool can run on an edge node with access to the Impala dae‐
mons. If a load balancer or coordinator-only daemons are used, only access to
these hosts is required.

APIs
JDBC and ODBC can be used from any node with network access to the Impala
daemons or a load balancer or coordinator nodes.

Web UIs
Each Impala daemon, as well as the statestore and catalog server, hosts a web
interface with details of sessions and queries. Typically, these would not be
exposed to users, but they are valuable to administrators and operators, so a
proxy may be required.

Application proxies
Impala allows certain daemons to operate in coordinator-only mode and act as
proxies to the wider cluster. These can run on edge service nodes with sufficient
available resources.

Load balancing
Impala can employ load balancers to provide a single logical endpoint to users
outside of the cluster (see “Impala” on page 361).

HBase

Command-line tools
The HBase shell tool uses a fan-out pattern and needs to run on an edge node
with client configuration and access to all cluster nodes.

APIs
Programmatic access to HBase also uses a fan-out pattern and must be per‐
formed from a node with the correct client configuration and access to cluster
nodes.
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Web UIs
The Master and RegionServers each run web interfaces which are of most value
to administrators and operators. Developers can also sometimes require access,
so setting up an edge-node proxy can be useful.

Application proxies
HBase provides two single-endpoint proxies—the REST and Thrift servers—
which should run on edge nodes.

Load balancing
The REST and Thrift servers are stateless, so they can be scaled and placed
behind a load balancer for resilience and scaling. Note that HTTP authentication
tokens resulting from SPNEGO exchanges stored in cookies by clients may mean
that REST instances are not entirely stateless across connections.

Solr

Command-line tools
The Solr control utility uses a fan-out pattern and needs to run on an edge node
with client configuration and access to all cluster nodes.

APIs
Solr uses a REST API and can query any server in the SolrCloud deployment. 
Applications, therefore, need to run on edge nodes with cluster access.

Web UIs
The Solr servers each run a web interface, which is of most value to administra‐
tors and operators. Developers can also sometimes require access, so setting up
an edge-node proxy can be useful.

Load balancing
Solr servers can be placed behind a load balancer to provide a single logical query
endpoint to users outside of the cluster.

Oozie

Command-line tools
The Oozie CLI does not require client configuration and can be run from any
node with network access to an Oozie server. Because Oozie job definitions must
be on HDFS, typically HDFS access is also required.

APIs
Oozie servers expose a REST API. Similar to the CLI (which itself uses the REST
API), network access to an Oozie server is the only requirement. Oozie is typi‐
cally used by developers who can log in to an edge node, so it’s not an absolute
requirement to run it on service edge nodes, although that is common.
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Load balancing
Oozie servers are stateless, storing persistent information in a database, so they
can naturally be placed behind a load balancer, after which users only require
access to the load-balancer host. For more details, see “Oozie” on page 370.

Kudu

Command-line tools
Although Kudu ships with a command-line tool, it is generally only of use to
administrators.

APIs
Kudu interactions use the fan-out pattern, so programmatic access needs to be
from an edge node with access to both masters and tablet servers.

Access Security
We covered the various possible authentication mechanisms, such as Kerberos,
LDAP, and impersonation, in “Authentication” on page 242, along with confidential‐
ity and privacy controls, such as SASL and TLS, in “In-Flight Encryption” on page
237. As a reference, the security options for some typical edge services are listed in
Table 11-2.

Table 11-2. Authentication and confidentiality configuration for edge-node services and
typical proxied web UIs

Project Edge component Authentication Impersonation Confidentiality
HDFS HttpFS Kerberos via SPNEGO, short-lived signed

cookies
Yes TLS

HDFS Web UIs Kerberos via SPNEGO No TLS

YARN Web UIs Kerberos via SPNEGO No TLS

MapReduce Web UI Kerberos via SPNEGO No TLS

Spark Web UI Configurable via javax.servlet filters No TLS

Impala Web UI Username/password access No TLS

Hive HiveServer2 Kerberos (GSSAPI), LDAP, delegation tokens Configurable SASL QoP, TLS

HBase REST server, Thrift gateway Kerberos (SPNEGO and GSSAPI) Yes TLS

HBase Web UIs Kerberos via SPNEGO No TLS

Solr Web UIs Kerberos via SPNEGO No TLS

Kudu Web UIs None No TLS

Oozie Oozie server Kerberos (SPNEGO), signed token Yes TLS

Hue Hue server Kerberos (SPNEGO), LDAP, SAML, internal DB,
signed cookies

Yes TLS
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SSH access to nodes running edge services should be heavily
restricted to prevent accidental or malicious interference with the
service daemons running on the nodes. In addition, if an edge ser‐
vice is designated as an authorized proxy service, able to perform
impersonation, it is critical that its keytab file is protected from
outside access because it potentially unlocks a lot of functionality.

If HTTP proxies are used, these can be secured independently via HTTP security
mechanisms.

Administration Gateways
Depending on how you decide to architect the network and security layers for your
clusters and which auditing policies are in place, you may need one or more edge
nodes to act as administration gateways. These nodes are typically used to mediate
SSH access to nodes within the cluster; administrators who want to log in to internal
cluster nodes must first pass through one of those hosts.

Admin gateways are sometimes implemented as jump servers or bastion hosts, which
are hardened boxes allowed to run only a restricted set of services. Jump servers typi‐
cally enable SSH forwarding to allow administrators to log in to cluster nodes from
their own machines. Bastion hosts might restrict access even further by forcing the
administrator to use special software that audits and records all privileged access to
cluster nodes.

Such setups are usually reserved only for the most secure of cluster deployments—
much of the time, an on-premises enterprise network is considered a trusted zone,
and policies dictate that hosts and services implement their own adequate security
arrangements for authentication, authorization, and network confidentiality. In
many enterprises, administrative login to the boxes is very often protected by central‐
ized privileged account management (PAM) software.

Workbenches
This section explores a few of the workbench tools that are available to facilitate user
interaction with cluster services.

Hue
Hue is a popular web-based UI for general Hadoop users. Among other things, it
allows users to interact with HDFS through its file browser, execute interactive SQL
queries against Impala and Hive, construct and execute Oozie workflows, and build
search dashboards over Solr indexes. Hue is often the sole interface that users have
for interacting with services and data on the cluster, so it’s important we ensure the
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experience is a good one. Users log in to the Hue web interface using one of the sup‐
ported authentication mechanisms and then interact with cluster services using Hue’s
UI applications.

Figure 11-4 shows how, in a secure cluster, Hue servers use impersonation when
interacting with cluster services. The Hue server itself maintains a Kerberos ticket
cache as a principal that has been granted proxy user privileges in each of the target
services. When a user logs in and is authenticated, Hue interacts with other services
on behalf of that user, using impersonation as described in “Impersonation” on page
249. After verifying that Hue’s principal is authorized to impersonate the user from
the Hue server host, the services then apply their own authorization processes to
determine whether the user is authorized to perform the requested operation.

Figure 11-4. Hue’s use of impersonation with Hadoop services

For resilience and performance, Hue servers can be run on multiple edge nodes with
a load balancer.

Notebooks
Hadoop clusters are increasingly used by data scientists for exploratory analysis and
model generation. These users typically want the ability to do such things as launch‐
ing Spark jobs and retrieving data from the cluster and operating on it in a local
Python or R context. Web-based applications such as JupyterHub, Apache Zeppelin,
and CDSW aim to support such users by providing a development environment in a
notebook suitable for programmatic interaction with the cluster.
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The applications typically live on dedicated edge nodes. In order to provide sufficient
computational resources for each user and to ensure security isolation, the best prac‐
tice is to run each user’s session in an isolated container. For example, CDSW uses
Docker containers and Kubernetes to spin up sessions on one or more dedicated edge
nodes. To support many users, multiple edge nodes can be added to the Kubernetes
cluster (see Figure 11-5). Master and worker nodes can run isolated containers within
a Kubernetes cluster. Each container runs with its own Kerberos security context, and
users can run different engines to interact with cluster services and launch computa‐
tions.

Figure 11-5. Example of CDSW access topology

Notebook applications typically support one or more enterprise authentication meth‐
ods for their users such as LDAP or SAML. Once authenticated to the notebook
application, users start a session (for example, a Jupyter kernel or a CDSW engine)
and then must somehow authenticate themselves to the cluster. In CDSW, each con‐
tainer has its own strictly controlled Kerberos security context, ensuring strict isola‐
tion between users. A ticket-granting ticket (TGT) is automatically obtained and
maintained for the container, using user-supplied credentials or a keytab.

Landing Zones
The term landing zone describes storage space, accessible from edge nodes, which
exists to exchange data between HDFS and other systems. Very often, enterprise inte‐
gration systems move batch data around via secure FTP, and because HDFS has no
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native Secure FTP (SFTP) server interface, the data needs to be placed in an inter‐
mediate location before being uploaded to HDFS. Landing zones can reside on local
disks on the edge nodes, on shared network filesystems (NFSs), or on storage area
networks (SANs).

After the data is in the landing zone, there are several options for loading it into
HDFS or other services:

CLI
The simplest method is simply to use the hdfs command-line tool to upload the
file into HDFS. This is best suited for ad hoc data transfers. General users can
also use the File Browser app in Hue to upload files to HDFS.

NFS gateway
The HDFS NFS gateway presents a POSIX-like filesystem interface which can be
mounted in Linux. Files in the landing zone can be written to and read from
HDFS by copying them to the NFS gateway mount point. One drawback of the
NFS gateway is that it does not enforce Kerberos security on the Linux side,
effectively opening up HDFS to general access. This can make it unsuitable for
use in many secure clusters, unless the access to the edge nodes with NFS gate‐
way roles is restricted. In addition, it is not suitable for large-scale concurrent
transfers. As a result, it’s best to avoid this option.

WebHDFS
HDFS implements a REST API for reading and writing data. Clients interact
with the HDFS NameNode or the HttpFS server, each of which implement the
same WebHDFS API. The NameNode redirects the client to the WebHDFS
interface on a DataNode to perform actual data transfer. WebHDFS can be used
to transfer files from any remote location, provided the client has Kerberos
authentication. Using HttpFS as the provider of WebHDFS functionality is pre‐
ferred because it can run at the edge of the cluster.

Flume
For record-oriented data, a Flume agent running on the edge node can watch a
given directory using the spooling directory source. This reads the source file
record by record and transfers the records to a Flume sink. Because it has to
parse the file record by record, this approach is usually much slower than a direct
transfer, but it has the advantage that small files can be eliminated by Flume’s
HDFS sink.

Although not accessed directly by end users, it should be noted that
streaming ingestion services, such as Flume and Kafka, are also
typically hosted on dedicated nodes that are often edge nodes of
the cluster.
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With landing zones, one challenge is to detect new files that have arrived to be uploa‐
ded and to subsequently transfer them to HDFS in a reliable way. We touched on one
option when we mentioned Flume’s spooling directory source, which very carefully
tracks the state of files to be ingested. Another approach within the Hadoop ecosys‐
tem is to use a periodic Oozie workflow with a remote SSH action that logs into the
edge node and uses one of the previously mentioned methods to transfer the files. We
don’t really recommend this, because it requires storing SSH login credentials within
the workflow.

In practice, it’s much better to use one of the dedicated ingestion frameworks, such as
Apache NiFi or StreamSets, which have a number of built-in operators to transfer the
data to the cluster in a reliable way.

We strongly recommend using an integration framework such as
Apache NiFi or StreamSets, because they support a wide range of
reliable ingestion and enterprise integration patterns.

Summary
Understanding the options for granting users and applications access to the cluster is
a critical piece in putting together a solid cluster architecture that will satisfy those
users’ demands and requirements. In this chapter, we covered the many ways in
which a user or application may interact with the cluster, and we outlined the choices
you have as an architect for technologies that support each type of interaction.

A general rule is that end users should never get direct access to cluster services but
should instead be granted mediated access through external tools, proxies, or user
interfaces, such as Hue. For application developers (or power users) who need a dis‐
tributed access pattern for performance, wider access can and should be granted, but
with restrictions on where the application can run and who has access to the
machines on which it is running.

In the pursuit of protecting your critical services on production clusters, we generally
recommend, if you can afford it, preventing end users from logging in to the same
machines as running cluster edge services. In smaller clusters, the master nodes can
often double up as edge nodes. Often, configuration-only nodes are implemented as
smaller virtual machines.

We finished off the chapter by looking at user-facing interfaces, such as Hue and data
science notebooks, and how they interact with the rest of the cluster. Finally, we
looked at how users can get files into and out of the cluster and briefly explored the
options for landing zones. The best results for these scenarios are likely to come from
the use of a dedicated tool for automated file ingest.
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CHAPTER 12

High Availability

A key part of the enterprise architecture of critical services is planning for failure at
all levels of the stack. The assumption of this chapter is that users and operators both
want services to be as available as possible. But how do we achieve that? What hap‐
pens if a server hosting some critical service goes down? What if an entire rack with
several cluster machines loses power? What about a power distribution unit serving
several racks? What if there are transient problems that degrade node performance?
Having a plan to handle such scenarios—and regularly testing that plan—is of para‐
mount importance.

The good news is that most of the components in a Hadoop cluster are built from the
ground up with failure in mind and have built-in mechanisms for dealing with failure
of individual components. In fact, the central design principle behind Hadoop is to
build a reliable system from individually unreliable components.

If architected correctly, a single Hadoop cluster will prove incredibly resilient to fail‐
ure. In this chapter, we cover how core Hadoop services and other projects in the
ecosystem can be set up for high availability (HA) within a single cluster. We focus
only on the higher-level concepts in this chapter; some of the lower-level aspects
related to physical infrastructure, such as dual-power supplies and redundant
cabling, are covered in “Basic Datacenter Concepts” on page 160. In Chapter 13 we
discuss some of the aspects of backup and replication between clusters running in
different datacenters.

We begin this chapter with some definitions of HA concepts and then follow them
with some of the critical building blocks of an HA architecture. With these in place,
we then move on to discussing how to configure individual services for HA.
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High Availability Defined
The phrase high availability is hugely overloaded and represents a very broad topic.
Indeed, entire textbooks have been written on the subject. For the most part, when
we talk about HA, we are seeking to avoid single points of failure (SPOFs) in our
architectures. In large part, SPOFs have been eliminated in Hadoop deployments. But
before we look at how the various projects have achieved this, let’s enumerate some
of the dimensions of HA that we should consider when designing our architectures.

Lateral/Service HA
The most obvious aspect we think of when considering HA is that when taken indi‐
vidually, the services themselves need to be configured and deployed across multiple
nodes to be resilient to failure of their individual components. We need to under‐
stand how to achieve that for each service we deploy and—if that turns out to be
impossible—how to minimize impact and downtime for the service.

Some services—for example, stateless web services—can support HA by simply
adding more instances. Others, which need to provide strong write consistency and
ordering guarantees, use an active-passive architecture in which only a single server
accepts writes. In the latter case, when the active server fails, we need to initiate a
failover and promote the passive server to active status. Many services provide a way
to do this, and the failover can happen in a matter of seconds. Other services, how‐
ever, require manual intervention. For manual intervention, the outage is more likely
measured in minutes.

Vertical/Systemic HA
When thinking about HA, we need to recognize that it is required at all levels of our
architectures. It is no good to make use of a highly available and resilient storage
layer, such as HDFS, if we host our critical business application on a single server.
Likewise, we have not achieved full HA if we deploy some of our services in HA
mode but do not, in turn, configure services they depend on to be resilient and avail‐
able. The most obvious example of a service dependency is a relational database.

With HA, we need to consider the whole platform, top to bottom, and we must
ensure that each and every layer in the cluster is architected and configured to be
resistant to individual component failure. Although we only cover the cluster services
in this chapter, it is also important to deploy your applications that use these services
for HA.
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Measuring Availability
When designing our HA architectures, we need a way of expressing how available
our service needs to be and measuring how available it is in reality. A service-level
agreement (SLA) is an agreement between a service provider and a client about the
delivery of a service and defines one or more service-level objectives (SLOs). SLOs are
measurable objectives and can be expressed in a number of ways.

Percentages
The simplest way of defining an availability requirement is to express it as a percent‐
age value. Over a given time period, the percentage defines the maximum allowed
downtime for a service. A common way of expressing this is to state it as a number of
nines, which translates into a percentage availability requirement. For example, one
nine would mean 90% availability, three nines 99.9%, and five nines 99.999%. Over
the course of a 30-day month, these three examples represent a maximum downtime
of 259,200 seconds (3 days), 2,592 seconds (43 minutes, 12 seconds), and 25.92 sec‐
onds, respectively. The more nines there are in the requirement, the more available a
service needs to be.

Percentiles
Although a percentage defines in absolute terms the availability of the service, it is
abstracted away from the delivery of a useful service to the client and from the expe‐
rience the client has of the service. A service might technically be up but could be
responding very slowly. Thus, another common way to define an SLO is as the pro‐
portion of operations that are completed within a certain time.

For example, we could define that we want 95% of HBase lookups to complete within
50 milliseconds. This is known as a percentile measure. Percentile metrics can also be
used as a measure of overall service health; for example, measuring the time the 99th
percentile of YARN containers spend in the NEW state.

Operating for HA
Apart from getting the architecture right in the first place, which we cover in detail in
this chapter, there are two other essential components to achieving high availability
in practice.

Monitoring
Although most services can be configured to survive individual component failures,
there is always a risk of total system failure. Any production Hadoop cluster should
be closely monitored for health and performance. Organizations running production
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1 Netflix’s Chaos Monkey is a notable example; see “The Netflix Simian Army” on their Technology Blog,
medium.com.

infrastructure usually have enterprise monitoring and alerting solutions, and Hadoop
services should be integrated with these.

Enterprise-grade cluster managers, such as Cloudera Manager, provide monitoring
and alerting features and can also integrate with other solutions through standard
mechanisms, such as email and Simple Network Management Protocol (SNMP)
traps.

Playbooks and Postmortems
Monitoring and alerting is all well and good, but knowing what to do in the event of
failure is essential. Thorough familiarity with the services, how they are managed,
and how to diagnose the causes of failure is something all production Hadoop opera‐
tors need.

Each organization should define detailed playbooks for support personnel to follow
in the event of failure, and failure scenarios should be regularly simulated and tested,
ideally in real production environments. These playbooks should be clear and
detailed enough to be followed by support personnel, even at 1 a.m.

In addition to preparing beforehand, you should conduct in-depth, no-blame post‐
mortems after each significant failure event to identify how to prevent similar situa‐
tions in the future, how the architecture could be improved, and how to more quickly
solve the problem.

A great way to find holes in your HA architecture or operations procedures is to start
introducing failures on purpose.1

HA Building Blocks
Some foundational building blocks come up over and over again when building HA
architectures out of distributed systems, and it is worth spending a little time to
explore these. In the following sections, we cover quorums, load balancing, and data‐
base HA.

Quorums
During our excursion through HA, we often encounter the concept of a quorum.
When dealing with distributed systems, a common problem is how to ensure that
processes running on different machines agree on the value of something—and the

332 | Chapter 12: High Availability

http://bit.ly/2yukZU8


order of value changes—in the presence of faults and failures. This is the problem of
distributed consensus.

For example, in HDFS, many hundreds of processes may want to add, move, delete,
and change the permissions of filesystem objects essentially simultaneously. We need
the ordering of these changes, which are often being applied to the same objects, to
be well defined. As we will see, when configured for HA, HDFS uses a quorum to
ensure that, once accepted, the ordering of filesystem changes remains fixed, even
when a NameNode fails.

A lot has been written about how this can be achieved—you may have heard of algo‐
rithms such as Paxos, Raft, and ZooKeeper’s very own Zab. We do not go into detail
about how these algorithms work, but the enterprise architect should be familiar with
the basic concept.

If you are interested in this topic, we highly recommend Chapter 9,
“Consistency and Consensus”, from Martin Kleppmann’s Design‐
ing Data-Intensive Applications (O’Reilly).

In brief, to achieve consensus in distributed systems, we need a majority of machines
in a quorum to agree on a value for a parameter before it becomes persistent. To be
consistent, the majority need to agree on a strict sequence of value updates and to
serve up the values to readers in the order in which they are written. Each change in
the parameter sequence may result from many overlapping requests by distinct cli‐
ents running from different machines—the quorum has to make sense of this, using
one of the aforementioned consensus algorithms. Some machines outside of the
majority may be eventually consistent but still apply the changes in the agreed order,
even if they serve stale values for a short time.

The concept of a quorum majority is common to all these algorithms. What this boils
down to, in practice, is that a quorum should consist of an odd number of machines
and that the maximum number of node failures in a quorum of n nodes for it to
remain operational is floor((n - 1) / 2). Although quorums can have even numbers,
this does not increase the resiliency. For example, quorums of five and six nodes can
both tolerate only two node failures while maintaining a majority (three out of five,
or four out of six).

In Hadoop, achieving consensus between master services is key to enabling consis‐
tent writes and reads of metadata. Quorums are critical to services such as Zoo‐
Keeper, HDFS, and Kudu, and by extension, HBase and Solr. As we will see, other
services also count on ZooKeeper and its reliable consensus for distributed locking
and configuration storage.
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Load Balancing
A key requirement in any HA setup is the ability to seamlessly and automatically
switch between instances of a service running on different nodes. This is especially
important for services which have no built-in mechanism for providing HA or auto‐
matic failover. For the purposes of HA, we employ load balancing to:

• Connect to an instance that is running and healthy.
• Connect to a node that is not overwhelmed with users.
• Automatically switch between backend service providers in the event of failure.

Load-balancing implementations act as a proxy in front of a service and—depending
on the implementation and usage—address one or more of the noted requirements.
In the following sections, we cover three implementations of load balancing: DNS
round robin, virtual IPs, and dedicated load balancers.

DNS round robin
The easiest form of load balancing to achieve is DNS round robin. When clients con‐
nect to a network service, they first look up the IP address from the DNS server using
the service hostname. DNS servers can be configured to cycle through or return a
random entry from a list of configured IP addresses. The process is illustrated in
Figure 12-1, where clients query the DNS server for a service alias (svc-
lb.example.com) (1), the server responsds with one of the list of configured IPs (2),
and the client contacts the supplied IP (3). Each instance of the service also has its
own canonical hostname in DNS apart from the alias.

Although it is simple to configure, DNS round robin has a number of drawbacks.
First, the servers listed for a hostname are not typically monitored for health status
(though some implementations can detect so-called lame servers). DNS lookups are
usually cached for some amount of time on the client side and, if the instance at the
resolved IP has crashed, the client will continue to fail to connect until the cache
expires and a new address is returned. Caching can also occur in other peer DNS
servers. DNS round robin also does not actively take into account the current load on
a particular host in the list.

Because a secure client attempts to verify network identity through both forward and
reverse DNS lookups, Kerberos authentication can be problematic when the canoni‐
cal reverse lookup does not resolve to the alias name, as is typical for round-robin
aliases (see “Kerberos” on page 242). As a result, for production-grade HA solutions,
DNS round robin is not usually recommended.
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Figure 12-1. DNS round robin

A closely related concept is DNS aliasing using Canonical Name
(CNAME) records. Instead of referring to a list of IPs, a CNAME
record refers to another DNS hostname entry. Updating the alias
can be used to effect manual failover, but beware of caching of the
old entry in clients and on peer DNS servers.

Virtual IP
A virtual IP (VIP) or floating IP is an IP address that is shared by two or more
servers. In the sharing group, only one claims the IP at a time; thus, the servers oper‐
ate in a sort of active-passive mode. If the live server fails, one of the other servers
claims the IP.

In order for this to work properly, there needs to be way of ensuring that only one
server uses the IP at any given time and a way to decide which server that should be.
To do this, we require a quorum decision. For floating IPs, this is most commonly
provided by Linux clustering software. Clustering allows two or more servers to con‐
stantly monitor each other’s health and to enact automatic service migration under
failure. Common software packages that work together to provide this functionality
in Linux systems include Keepalived, Heartbeat, Pacemaker, and Corosync.
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Figure 12-2 shows a basic setup. A DNS entry for a single hostname points to an indi‐
vidual IP, the virtual IP. Clustering software using a separate network interface con‐
stantly monitors the health of the nodes in the cluster. Initially, the clustering
software has decided that S1 should listen with the floating IP. When that node (or
the service on the node) fails, the cluster migrates the IP, and thus client traffic, to
another node (S2).

Figure 12-2. A Linux cluster using virtual IPs

A virtual IP provided by clustering technology is a commonly used mechanism for
providing failover. It has the disadvantage that it is yet another complex piece of soft‐
ware to configure, manage, and monitor, and it can be tough to master for an opera‐
tor not already familiar with the technology. Virtual IPs can be combined with
software load balancing, as described in the following section.

Dedicated load balancers
A dedicated load balancer is software or hardware that acts as a proxy, accepts
incoming network requests on a port, and forwards them to one of a configured pool
of endpoints for that port.

A software load balancer implements this functionality in—unsurprisingly—software
and runs on a standard server. Commonly used projects for software load balancing
are HAProxy, NGINX, and Apache httpd.

A hardware load balancer is a dedicated network device that can typically support
many more concurrent sessions than a software load balancer. It also usually
provides much more functionality than a software load balancer, including security
and access enforcement and traffic control. Examples of hardware load balancers are
BIG-IP from F5 and Citrix ADC (formerly NetScaler). Load balancers tend to be
managed by network administrators rather than system administrators.

Unlike DNS round robin, load balancers route traffic in an intelligent way. They rou‐
tinely monitor the health of the members of the pool and exclude those that are not
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responding. Typical methods of monitoring include TCP open or HTTP requests.
They can also actively attempt to balance the traffic across the pool and typically pro‐
vide the ability to monitor flows (TCP sessions and HTTP sessions).

You have probably noticed that by employing a single load balancer, we have simply
pushed the SPOF to a higher level. To avoid this, multiple load balancers are often
deployed and clustered together with a single floating IP. For software load balancers,
you have to implement this yourself using one of the Linux clustering techniques we
mentioned. But for hardware load balancers, this is usually one of the supported
deployments and managed by the network team.

A single load balancer on its own is not enough to avoid a SPOF—
you must ensure that the load balancer is also highly available.

Session persistence.    In certain scenarios, it is important for a user to be directed to the
same backend server for repeated connections. As an example, for performance, each
Hue server maintains a local Thrift connection pool for Impala and Hive. Hue may
use a different connection from the pool each time it makes an RPC call to Impala or
Hive; for example, for query submission, tracking query progress, and fetching query
results. For this to work, Hue must communicate with the same Impala server each
time. Other services, such as HiveServer2, also maintain local sessions that can span
TCP connections. Redirecting a client to the same backend server across different
connections is referred to as session persistence.

For HTTP traffic, load balancers are often able to inspect packets for session cookies,
which can be used to route the client to the same server for the same login session.

For protocols that the balancer is not aware of (for example, a HiveServer2 Thrift ses‐
sion), the balancer can fall back to establishing session persistence at the transport
layer (TCP) by inspecting the source IP of packets and routing the same client to the
same server. This is known as source-IP session persistence.

Obviously, in either case, if the preferred backend server is unhealthy, the balancer
routes to an alternative endpoint and opens a new persistent session.

This ability to always connect a client with the same server is sometimes called sticky
sessions, or alternatively simple persistence. We use the term session persistence
because that is more common.

The three options for persistence are shown in Figure 12-3. In each scenario, three
different clients connect to a service S with three backend servers in the pool (S1–S3).
Clients a and b are connecting from the same server, while c connects from a differ‐
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ent server. Clients b and c both make a single connection to S, and client a makes two
separate connections.

Figure 12-3. Persistent or sticky sessions

In Scenario A, the load balancer is not configured for any session persistence. Each
new TCP session is routed to any one of the configured endpoints using the standard
balancing algorithm, taking into account server health and current load.

In Scenario B, the balancer applies source IP session persistence at the TCP layer, set‐
ting up persistence between the source IP and destination server. Different TCP con‐
nections from the same IP (here, a1, a2, and b1 from IP1) will be directed to the same
destination server.

In Scenario C, we imagine S is an HTTP server and the balancer is configured to per‐
sist sessions based on HTTP session identifiers and to look inside the packets for a
cookie pattern. Upon first connection, where no cookie is set, the connection is
routed to any of the destination servers. The load balancer checks the response for a
cookie, and a session is persisted. Subsequent connections with the cookie set are
routed to the same destination server. In this example, two separate services on IP1
are directed persistently, but this time to two different destination servers.

Obviously, session persistence can result in suboptimal balancing of actual load in
some scenarios. Consider the case in which you have a single application server that
is used by hundreds of users and that accesses cluster services through a load balancer
with source IP persistence. All connections from the application server will be direc‐
ted to the same backend server, switching only if that server fails. For those applica‐
tions that must use persistent load balancers (for example, Hue when it uses Hive and
Impala), multiple application servers (each with a different source IP) are recom‐
mended to spread the load on the backend service.
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Hardware versus software.    Your choice of hardware or software load balancers
depends on your environment and desire for control. Since hardware load balancers
are administered by network administrators, there is typically a greater turnaround
time for changes, and so you may feel that you have more control over software-
based solutions. Moreover, the devices are not guaranteed to have network locality to
the Hadoop cluster and services. One thing to watch out for is tromboning of requests
—a request for a local cluster service might be made from a cluster or edge node and
then disappear off into the core network to the load balancer, potentially several hops
away, only to be routed back to the cluster.

On the other hand, deploying a software balancer requires you to architect it for HA
with clustering and to ensure proper performance. It is yet another system to worry
about in an already complicated stack. A hardware load balancer will (or at least
should) be properly configured and monitored by network experts.

Your enterprise probably already has standards for using hardware
or software load balancers. Use these services, if they’re available.

Security considerations
When using cluster services configured for Kerberos security and on-wire SSL
encryption, there are some things to be aware of around load balancing:

Kerberos
Suppose that we have a Kerberos-protected service svc in the EXAMPLE.COM realm
that has instances running on the following nodes: svc-1.example.com and
svc-2.example.com (see “Kerberos” on page 242 for a reminder about Ker‐
beros). We want to balance across both instances of svc, so we set up a load bal‐
ancer behind an IP that resolves to the fully qualified domain name svc-
lb.example.com. We ensure that each instance has an entry for the load balancer
in its keytab. For svc-2.example.com, this is:

svc/svc-2.example.com@EXAMPLE.COM
svc/svc-lb.example.com@EXAMPLE.COM

A client accessing the svc service first obtains a service ticket for svc/svc-
lb.example.com@EXAMPLE.COM. The Kerberos client library double-checks that
the hostname-IP pairs agree when doing forward and reverse DNS lookups
against svc-lb.example.com. It then initiates a connection with the svc service
via svc-lb.example.com and presents the service ticket as part of the request.
The load balancer passes the request through to one of the servers, say
svc-2.example.com, unchanged (including the service ticket). The server on
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svc-2.example.com then validates the service ticket using the svc/svc-

lb.example.com@EXAMPLE.COM ticket it obtained using the principal in its keytab
file.

To take a more concrete example, when configured for HA, an Oozie server run‐
ning on gateway-svc-1.example.com with a load balancer at oozie-

lb.example.com would need entries for the following principals in its keytab:

HTTP/gateway-svc-1.example.com@EXAMPLE.COM
HTTP/oozie-lb.example.com@EXAMPLE.COM
oozie/gateway-svc-1.example.com@EXAMPLE.COM

Because the server can still be accessed directly, it needs an entry for each host‐
name. A client accessing the Oozie server obtains a service ticket for HTTP/
oozie-lb.example.com@EXAMPLE.COM and is transparently routed through the
load balancer to gateway-svc-1.example.com. The Oozie server is able to vali‐
date the service ticket because it has an entry for HTTP/oozie-

lb.example.com@EXAMPLE.COM in its keytab.

TLS
A similar concept holds for TLS certificates. Clients performing certificate valida‐
tion check whether the hostname they are using is in the server TLS certificate
(see “TLS Encryption” on page 238). If the load balancer passes TCP connections
through unmodified, we should ensure that both the hostname of the server run‐
ning the service and the hostname of the load balancer are also included in the
subject alternative name (SAN) field.

In our Oozie example, this means having both gateway-svc-1.example.com and
oozie-lb.example.com in the SAN field.

Some load balancers are TLS-aware and can run in TLS passthrough or TLS ter‐
mination modes. In the passthrough mode, the load balancer simply passes on
the packet to the server unchanged. With termination, the load balancer acts as
the TLS endpoint for the client, decrypts the data, and transparently opens up a
new TCP connection (again protected by TLS) to the destination server, relaying
the original packet contents.

With Hadoop it is more common to use passthrough mode, since this emulates
connections without a load balancer most closely, but this does require the
addition of SAN entries to all server certificates being used by services behind the
balancer.

TLS termination is a nice option because the alternative name need only be in the
balancer’s certificate. However, hardware load balancers are usually administered
by a different team within the enterprise, which can sometimes make organizing
proper TLS termination more difficult.
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Database HA
A number of services in the Hadoop ecosystem rely on relational database storage for
configuration and metadata (i.e., the Hive Metastore, Oozie, Hue, and more). As
described in “Vertical/Systemic HA” on page 330, no setup is truly HA unless all the
components on which the service is dependent are also HA, including relational
databases. This is important to note, since some of the ecosystem components will
default to using local databases, such as SQLite or Derby. All services should be con‐
figured to use an enterprise-grade database.

Achieving HA for databases is a broad and detailed topic, covering aspects such as
shared storage versus shared-nothing architectures, index sharding, and distributed
transactions, and we cannot do it justice in a short section here. Highly available
database architectures tend to be different for each vendor. For more in-depth cover‐
age, see texts such as MySQL High Availability by Charles Bell, Mats Kindahl, and
Lars Thalmann (O’Reilly); Oracle Essentials by Rick Greenwald, Robert Stackowiak,
and Jonathan Stern (O’Reilly); and the PostgreSQL documentation.

The next few sections give a high-level overview of some of the concepts involved in
database HA.

Clustering
Clustering software provides management and configuration for HA and distributed
database deployments. Databases are organized into clusters, in which each database
node is aware of the others and atomicity, consistency, isolation, and durability
(ACID) compliance is maintained for reads and writes either via single master/hot
standby or multimaster operation via sharding or distributed transactions. Examples
of clustered databases are Oracle RAC, MySQL Cluster, and Galera Cluster.

We recommend using production-grade clustering software since it manages all the
aspects of HA natively and is one fewer headache for the operator of the Hadoop
cluster, but be sure it is supported by your Hadoop platform vendor.

Although their use is recommended in principle, some features of
clustered databases may not be supported by some services. You
should verify compatibility with both the cluster management soft‐
ware and the components you plan to deploy.

Replication
With replication, a single active instance accepts transactions from clients and ships
these to passive instances, which apply them asynchronously. Typically, this is
achieved via either statement replication or log shipping/streaming. Statement repli‐
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cation simply applies the same logical SQL statement on all nodes, whereas log ship‐
ping is more granular.

Databases maintain a write-ahead log of transactions on disk—any operation is dura‐
bly written to disk before the actual data structures and indexes are modified. A sin‐
gle master database accepts transactions from clients, writes them to the log, and then
applies them to its data structures. Simultaneously, log entries can be shipped to peer
servers. The logs can either be shipped row by row (log streaming), or in larger seg‐
ments or chunks (log shipping). For keeping the passive instances in sync, the recom‐
mended approach is to use log streaming.

Passive instances can be configured for hot or warm standby. In hot standby mode,
the passive databases can be configured to serve reads and are continuously applying
the logs. These reads should be considered potentially out of date, or stale. If the
active server dies, then some sort of trigger is used to bring one of the passive instan‐
ces to active status and it immediately starts serving writes.

In warm standby, the passive servers do not serve read requests and, when told to
become active, must apply any transactions in the shipped logs that have not yet been
applied. Only then can they serve writes.

Standby setups can often be used with load balancers, so that clients talk to a single
endpoint. The load balancer should be set up to always direct connections to the
active server. Upon active server failure, the standby is brought up and the load bal‐
ancer endpoint is switched across.

Such a setup is illustrated in Figure 12-4. On the left, we have the initial state: connec‐
tions from database clients are routed via load balancing to the active server, which
replicates the log to the standby node. When the active server fails, the standby is
promoted to active status and the load balancing is switched across. Finally, when the
failed node is brought back online, the replication is established in reverse to restore
an active-standby setup.

Figure 12-4. Active-standby database replication and failover
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For this to work smoothly, the operational instructions need to be
very tightly defined and the failure scenarios should be gamed out
and well documented. Even then, it is likely that cluster services
using the database will need to be restarted after the switch.

Supported databases
Setting up databases for HA is usually undertaken by enterprise DBAs, and if possi‐
ble, we recommend that you make use of them for production Hadoop clusters.
There are some caveats, though. First, services in the Hadoop ecosystem generally
only support one or more versions of MySQL/MariaDB, PostgreSQL, and Oracle. Of
these options, MySQL and PostgreSQL are the most widely deployed. 

Also note that most Hadoop services have not been designed to cope well with load-
balanced master–master databases in which queries might be directed to more than
one backend database transparently. Almost all services will automatically reconnect
to a backup database in the event of a connection loss, though, so it is usually suffi‐
cient to have the database load balancer or DNS entry flip only in the event of pri‐
mary database server failure.

It is essential that you test your database HA architecture for fail‐
ure and failover scenarios to establish how each dependent service
reacts to your setup.

Ancillary Services
The following services are typically provided by the IT organization in an enterprise
setting, but it is worth knowing about them and how to configure a server to use
them in a reliable way.

Essentials
There are some essential services that are required for a Hadoop cluster to function
properly. The most basic of these are the Network Time Protocol and Domain Name
System:

NTP
From an HA perspective, each server should be configured with at least two pos‐
sible NTP synchronization sources. Often, network switches can act as NTP
servers. In such cases, it is common to specify the TOR switch pair as NTP sour‐
ces, which, in turn, synchronize to their aggregation switches, and so on.
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DNS
For reliable lookups, each server’s DNS resolver (usually configured in /etc/
resolv.conf) should be configured with multiple servers. DNS can also be used to
facilitate discovery of other network services, such as LDAP servers, through the
use of service (SRV) records, which in some cases, can be used as a substitute for
absolute hostnames in configuration files.

Identity management providers
These services are covered in much greater detail in Chapter 10, but there are a few
points to make with regard to HA:

LDAP
Although users and groups can be defined locally to a server, we highly recom‐
mend that user and group identities representing actual humans be defined in a
central repository and that Linux be configured to perform remote lookups. For
HA, either multiple LDAP servers should be listed in the client configuration
files or a load balancer should be used to direct traffic to available servers.

Kerberos
Multiple KDC servers can be defined in the client configuration (users and serv‐
ices are clients of Kerberos) for failover. If you are managing your own Kerberos
deployment, with MIT Kerberos, for example, ensure that multiple KDCs are
deployed. MIT Kerberos comes with a daemon process, kpropd, for synchroniz‐
ing principals between peer KDCs, but note that you will need to manually con‐
figure KDC master failover. The Kerberos client configuration allows multiple
KDC servers to be listed for each realm, but a load balancer can also be used.

If your enterprise uses centralized identity services such as Active Directory, we rec‐
ommend making use of them since they are usually already configured for HA.

General Considerations
When you are architecting a highly available Hadoop cluster for an enterprise system,
there are a number of general principles to observe. The following sections should be
reviewed in conjunction with the recommendations outlined in “Cluster Configura‐
tions and Node Types” on page 97.

Separation of Master and Worker Processes
Except in a noncritical development cluster (and even then, there are strong argu‐
ments for observing this principle), worker and master/coordinator roles should not
be colocated on the same physical machine. For example, an HDFS NameNode role
should not be colocated with an HDFS DataNode process. Master roles require guar‐
anteed resources—CPU, I/O, network—to function correctly and can be severely
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degraded by hungry worker processes. Master processes are critical to the operation
of the cluster and need to be responsive at all times to prevent them from becoming a
bottleneck.

Master processes often need to use disks exclusively (HDFS JournalNodes and Zoo‐
Keeper servers) for low-latency durable storage, meaning these disks would have to
be made unavailable for worker processes. Besides removing capacity, this also adds
unnecessary complexity to the cluster configuration. We should aim for homogene‐
ous service configurations for worker nodes.

It is worth noting that master servers, in all but the largest clusters, do not need the
large CPU, memory, and disk capacity that are required for worker nodes. These
roles simply need dedicated and guaranteed system resources.

Although it might feel like a reasonable cost-saving measure to colocate some roles, it
is usually a false economy and can result in major performance issues in busy clus‐
ters. It is, however, generally reasonable in small to mid-sized clusters (fewer than 50
nodes) to colocate master services with cluster monitoring and management services,
such as Cloudera Manager or Apache Ambari, running on utility nodes.

Separation of Identical Service Roles
Although it may seem obvious, the same role type for the same service should not be
placed on the same physical machine. For example, two Apache HBase Master pro‐
cesses should not be colocated on the same node. In practice, enterprise cluster man‐
agement tools, such as Cloudera Manager, do not allow such a configuration.

This principle is easily achievable in bare-metal installations in which we know where
all the physical hardware is, but in deployments in virtual environments, we need to
take care. As introduced in “Compute Virtualization” on page 412 and “High Availabil‐
ity” on page 486, in these cases, the anti-affinity rules of the hypervisor must be used to
ensure that master VMs are not placed on the same physical machines, thereby
avoiding coupling the failure modes of two related processes.

Master Servers in Separate Failure Domains
In the ideal case, each master machine should be in a rack separate from other master
servers and served by redundant TOR switches. In large enough installations, the
machines can also be served by different power distribution units and spine network
switches. This reduces as much as possible the risk of coupled failure modes of mas‐
ter roles and ensures the maximum chance of maintaining quorums for highly avail‐
able services. For more on this, refer to “Rack Awareness and Rack Failures” on page
165.

General Considerations | 345



Balanced Master Configurations
As much for your own sanity as for anything else, attempt to have a uniform configu‐
ration for master nodes; that is, as far as possible, run the same roles and services on
each master node. This simplifies things from both an operational and a deployment
standpoint. However, some services are not set up for more than two master instan‐
ces in HA configurations. For the rest, attempt to balance out the roles between the
masters such that each master has roughly the same expected load. Of course, with
automatic failover active roles from different services may end up running on the
same machine. In most cases, with monitoring and manual failover an administrator
can move the active role of one or more of the services if it becomes problematic.

Optimized Server Configurations
Before HA was generally available for the core Hadoop services, it was the received
wisdom to treat master nodes with great love and attention and to make them as
robust to failure as possible because they hosted the SPOFs in the cluster. Even with
HA support in most services, we would do well to maintain this approach. Critical
services have automatic failover, but this can take anywhere from a few seconds to
tens of seconds to occur, so we prefer to avoid it in the first place.

In contrast to worker nodes, where we require a JBOD (just a bunch of disks) presen‐
tation of data disks, for master roles we want to do as much as we can to keep a pro‐
cess alive. For those processes that write data to disk (for example, HDFS
NameNodes or ZooKeeper JournalNodes), one option is to make use of RAID 1 mir‐
ror pairs for each dedicated volume to allow these processes to survive a disk failure.

Because master metadata is replicated to other machines in HA configurations, we
are not mitigating against data loss here. We are merely increasing resilience. Note,
though, that performance of the RAID array may be adversely affected in the event of
a rebuild following a disk failure. This can take a few hours (depending on disk size),
so be sure to plan to replace the drive during a slow period, if possible. Also, RAID 1
writes are only as fast as the slowest disk in the pair, so monitoring of disk latencies is
key to identify degrading disks as soon as possible.

Other RAID configurations are not recommended for master
disks. Be sure to consider the trade-offs when using RAID 1 for
master disks.

For more on recommended master and worker server configurations, see “Master
Nodes” on page 98.
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For similar reasons, employ NIC bonding in at least the master nodes to keep the net‐
work connection to and from the rest of the cluster up and running (see “Network
Architectures” on page 114).

High Availability of Cluster Services
We now explore how to architect HA for services running in the cluster. For a
refresher of the technologies involved, see Chapter 1.

ZooKeeper
For resilience, multiple ZooKeeper instances can and should be deployed on different
master machines in an ensemble. Because it operates on majority consensus (see
“Quorums” on page 332), an odd number of servers is required.

Each server is identical in functionality, but one of the ensemble servers is elected as
the leader node and all other servers become followers. Clients can open connections
to any of the servers to perform reads and writes, but writes are forwarded from fol‐
lower servers to the leader to ensure a consistent order.

Each ZooKeeper server stores periodic snapshots of its in-memory state on disk and
maintains a transaction write-ahead log to ensure that the state can be rebuilt in the
event of failures and restarts.

ZooKeeper Ephemeral Nodes
ZooKeeper offers an extremely useful primitive that is used by many other services
when implementing automatic failover for HA. An ephemeral node is a znode
(without children), that is tied to the session of its creator. The ephemeral node is
removed when it is explicitly deleted by its creator or when the creator’s session ends,
either deliberately or through a crash and time-out.

Because ZooKeeper guarantees ordering of writes, ephemeral nodes can be used as a
distributed locking mechanism for master election. All nodes eligible to take on a
master role race to create the ephemeral node, with the winner becoming the master.
Nonmaster nodes can use a watcher to automatically poll the presence of the znode.
As soon as it disappears, the nonmaster nodes receive a notification of the change and
race once again to create the ephemeral node and elect a new leader.

Many use cases can be supported with ephemeral nodes. The interested reader is
referred to the documentation for some sample recipes. Additionally, Apache Cura‐
tor builds on ZooKeeper to provide higher-level abstractions for performing many
useful operations.
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Failover
Other than deploying an odd number of servers on different nodes, there are no spe‐
cial steps to make ZooKeeper itself HA—it is already so by design. The ZooKeeper
client API library ensures that sessions are automatically and transparently reestab‐
lished or moved to new servers after network issues or server failure. For this to work
properly, though, the client should be configured with the full ensemble of Zoo‐
Keeper servers when the session is constructed.

Deployment considerations
When deploying ZooKeeper, keep the following points in mind:

Deploy an odd number of servers
As described in “Quorums” on page 332, the maximum number of servers that
can be lost is floor (( n - 1) / 2).

Use enough servers
Use 3 servers for smaller clusters (up to 100 nodes) and 5 for larger clusters
(100+) that are running HBase and/or Solr, since the read load will be high. More
servers come at the cost of increased write latency, as the majority size is larger,
so do not make the quorum larger than required for your anticipated read load.

Dedicated disks
Although not strictly related to the overall HA of ZooKeeper, ensure that at least
the transaction log directory is on a dedicated disk, or RAID 1 array, with no
other processes writing to it. This ensures minimal latency for ZooKeeper writes
and avoids fsync storms, when multiple processes issue synchronous writes in
quick succession. ZooKeeper is a critical supporting service for HDFS, YARN,
Hive, HBase, Kafka, Solr, and more, so its efficient operation is paramount.

HDFS
HDFS is architected to ensure data resilience and availability. File blocks are replica‐
ted to multiple DataNodes, and when rack locations are known, HDFS ensures at
least one copy of a block is in a different rack from the other copies. So, apart from
locating them appropriately and configuring rack awareness, we do not need to con‐
sider DataNodes further for the purposes of HA.

In this section, we instead concentrate on configuring the master NameNode pro‐
cesses for HA. It is the NameNode’s responsibility to maintain the filesystem meta‐
data and the mapping between the raw block IDs and the file to which each belongs.
Any process that needs to read data from, write data to, or make metadata requests of
HDFS must communicate with the NameNode. As such, it is essential to all cluster
operations.
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2 Work is in progress to allow more than two NameNodes for resilience: see HDFS-6440.

For performance, the NameNode maintains the current state of the filesystem meta‐
data in memory, with all modifications to the metadata (transactions) being written
to a durable write-ahead log (called the edit log) on disk. Edit logs are rolled after a
certain number of transactions, and periodically the in-memory representation is
serialized to disk as a new filesystem image (fsimage) file. At this point, edit logs with
their entire contents in a serialized fsimage can be discarded. Naturally, in order to
prevent data corruption in the event of node failure, it is essential that both the
fsimage and edit logs reside on resilient storage or are otherwise made resilient
through distributed replication.

HA for HDFS allows two NameNode daemons to run on two separate hosts, one in
active mode and one hot standby. Both NameNodes constantly apply filesystem
modifications in memory, although only one NameNode accepts reads and writes
from clients.

DataNodes send periodic updates, called block reports, about all the blocks they are
serving to both NameNodes so that each has an up-to-date picture of files to block ID
to block replica location mappings. This is particularly important because in large
deployments the block reporting process can be lengthy, and it would hinder rapid
failover from standby to active mode if the NameNode had to build this mapping
from scratch.

In HA mode, instead of addressing the NameNode by hostname and port directly,
clients use a logical name service alias. The default HDFS client will try first one
NameNode and then the other in the logical pair. If the first NameNode does not
respond, or is in standby state, the client library transparently tries the other Name‐
Node. If the client was performing an operation at the time of the failure, the client
will automatically retry it. When writing data, file leases are requested by the client
library and durably logged in the edit log by the NameNode so a client can continue
to write to a file, even after a failover.

It is important to stress that the client does not require a load balancer to fail over
between NameNodes—it is all handled automatically by the HDFS client libraries.

HA configurations
There are two possible deployment configurations for HDFS HA. The first (Conven‐
tional Shared Storage mode) uses shared network-attached storage for the edits direc‐
tory, whereas the second (the Quorum Journal Manager, or QJM) uses a quorum of
distributed JournalNode processes to maintain consensus on the edits log. Both
modes allow two NameNode processes to be deployed—one active, one standby.2
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Although both are reasonable configurations, we highly recommend using the QJM
configuration for HDFS HA. The key reasons for this are:

• The QJM does not require NFS or SAN storage. If your organization does not
already have it off the shelf, setting up and maintaining a NAS or SAN system
can be painful—especially because it, too, must be made performant and, of
course, highly available. Fewer moving parts and external dependencies are a
good thing.

• The conventional shared storage mode requires the use of fencing methods to
ensure that only one NameNode is active and able to write to the shared edits
directory at a time. If both processes considered themselves the active Name‐
Node, concurrent writes to the edit log would corrupt the filesystem, ultimately
resulting in data loss. Although fencing is also useful for QJM deployments to
prevent stale reads, edit logs are protected from corruption from split-brain sce‐
narios by the quorum-based architecture.

For further information on the conventional storage mode, refer to the official
Hadoop documentation.

Manual failover
For maintenance, and in the event of active NameNode failure (if automatic failover
has not been configured), an administrative command (hdfs haadmin -failover)
can promote the standby NameNode to an active state—a so-called graceful failover. 
The failover process includes a step where one or more fencing procedures are exe‐
cuted to ensure that the formerly active NameNode is inactive or disabled. Although
the QJM configuration will not allow edit log corruption, the formerly active Name‐
Node may still serve stale reads. To complete the failover, the target NameNode
applies any edits it has not yet processed, and it requests that the JournalNodes use a
quorum decision to confirm it as the current active server.

Automatic failover
The HDFS HA mechanisms described thus far do not require automatic failover to
operate correctly, but for HA we require failover to occur as quickly as possible. A
monitoring daemon called the ZooKeeper Failover Controller (ZKFC) runs colocated
with each NameNode, monitoring its health. The daemon keeps a session open in
ZooKeeper and races the other ZKFC instance to obtain an ephemeral znode.

The NameNode with the local ZKFC process that has the lock becomes the active
NameNode. If the node or process holding the lock fails, the ephemeral znode expires
and the ZKFC on the other node obtains the lock. At this point, it executes a failover
to make its local NameNode the active node. Thus, a failover can be effected in just a
few seconds in the event of failure.
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Quorum Journal Manager mode
Figure 12-5 illustrates the HDFS HA architecture using the QJM mode and auto‐
matic failover. Three dedicated master nodes host a number of HDFS roles: NameN‐
odes, JournalNodes, and ZKFCs. ZooKeeper server roles are also located on these
nodes, although colocation is not an absolute requirement.

Figure 12-5. HDFS HA roles and interactions

As already described, the NameNode (NN) role maintains the filesystem metadata
and the mapping of files to their block replica locations on DataNodes. A NameNode
can run in two states—standby and active. The active NameNode writes edit logs to
the JournalNodes (JNs). In addition, the standby NameNode is responsible for pro‐
ducing periodic fsimage snapshots and uploading the new version to the active
NameNode.

Because blocks are unreadable without the fsimage, the snapshot‐
ting by the standby NameNode is not a substitute for a regular, off-
cluster backup of the fsimage.

The JournalNodes are responsible for writing filesystem modifications (transactions)
received from the current active NameNode to the edit log on durable storage.
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Consensus on edit log transactions is achieved by the QJM on the active NameNode
writing a transaction to all JournalNodes and awaiting a success response from a
majority of nodes. In a typical deployment, at least three JournalNodes on different
hosts are required, and this is the recommended number. Just like with ZooKeeper,
larger quorum sizes are supported for extra resilience (five, seven, and so on), but at
the cost of slower performance of edit log writes.

The ZKFCs maintain constant contact with their local NameNode process and ini‐
tiate an automatic failover of NameNodes if they determine that either the local pro‐
cess or the remote process has failed. ZKFC processes must be colocated with
NameNode processes.

QJM mode is fully described in the associated design document.

Security
Security concerns include the following:

Kerberos
Since both NameNode hosts are listed individually (albeit indirectly) in the client
configuration files, there is no need to merge multiple hostnames into keytab
files. Clients always talk directly to NameNodes after resolving the hostnames
from the logical name service.

Delegation tokens
Delegation tokens allow a user to provide distributed processes temporary access
to the NameNode, as if they were the user. Each delegation token is issued by the
NameNode with a specified validity period (by default, 24 hours). In order to
ensure that both NameNodes know about the delegation tokens, the active
NameNodes write the token as a transaction to the edit log. When the standby
NameNode becomes active, it consumes the edit log transactions that it has not
yet applied, including issued delegation tokens. Processes using existing delega‐
tion tokens can thus continue to use them transparently.

Deployment recommendations
Some recommendations for deploying and configuring HDFS HA include:

Three master nodes
The HDFS NameNodes and ZKFC daemons should be on two master nodes,
with the JournalNodes on all three masters. Avoid colocating processes with
worker nodes.
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Unique HDFS name service names
Ensure that each NameNode pair has a unique name service name for this clus‐
ter. in addition to promoting clarity for clients, this is especially important if you
wish to communicate with more than one cluster, e.g., for backup using DistCp.

Consider RAID 1 for metadata
If you can afford to dedicate a pair of disks to each JournalNode, consider setting
up a RAID 1 mirror pair for the write-ahead log for increased resiliency, but be
aware of the trade-offs around performance when disks fail.

Dedicated disks for JournalNodes
Each JournalNode process should write to a dedicated physical disk. The edit
logs are append-only write-ahead logs and are most performant when the disk is
not serving competing reads, writes, and fsync() requests. Although not a strict
requirement for HA, keeping the JournalNodes performant prevents them from
becoming a bottleneck.

YARN
As introduced in Chapter 1, YARN is the distributed process execution framework in
Hadoop. In terms of HA for the YARN service, we only need to consider the master
ResourceManager (RM) processes. A failure of an individual NodeManager is han‐
dled gracefully by design, and containers running on failed nodes are restarted auto‐
matically elsewhere in the cluster.

When YARN is not configured for master HA, the RM holds all information about
live NodeManagers, running containers, ApplicationMasters, and scheduling state
entirely in memory. Thus, the entire state is lost if the RM crashes or is restarted.
Upon RM restart, the NodeManagers automatically report their status via heartbeats,
but the containers that were queued or running at the time of the crash are killed.

To provide resilience to restarts, the RM can be configured to persist its state to dura‐
ble storage. With this in place, running applications can survive a ResourceManager
restart without having to be resubmitted.

For full HA, much as with HDFS, in YARN we can deploy multiple RMs. These run
in active or standby mode, and the RM state is maintained in a shared storage area.
Unlike in HDFS, it is possible to deploy more than one standby RM, although
deployment of two is typical.

The recommended configuration is to use ZooKeeper for persistent state storage,
since it allows for automatic failover. Using filesystem storage (including HDFS) and
local LevelDB storage are also options, but they do not allow for automatic failover or
fencing.
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When using ZooKeeper as the state store, the RM stores information about running
applications in a znode hierarchy, including information about current applications
and their execution attempts, delegation tokens, and shared secrets between Applica‐
tionMasters and the RM.

In an HA setup, clients interact with the active RM via a logical ID rather than talking
to the host directly. The underlying YARN client library goes about the task of trans‐
lating a particular logical ID into a hostname and then attempts to contact each RM
in turn until the active RM is found. Upon failover, this process repeats until the new
active RM is found and is managed transparently by the client library.

The setup is illustrated in Figure 12-6. ResourceManager roles run on master nodes—
one in active mode, the other in standby. NodeManagers heartbeat into the active
node, report container status, and accept new container requests. ApplicationMasters
running on the NodeManagers also provide status updates to the active node and
make resource requests. The active node stores state in ZooKeeper, while the standby
watches and reads. On failover the standby takes over; NodeManagers and Applica‐
tionMasters fail over via the retry proxy implementation, and they begin sending
heartbeats to the new active node.

Figure 12-6. YARN high availability

Manual failover
Failover can be configured to be manual or automatic. In manual mode, an operator
uses the yarn rmadmin utility to first demote the currently active RM to standby and
then promote the standby RM to active. There is no danger of state corruption here
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when using ZooKeeper for state storage because only one node can hold the ephem‐
eral znode as a lock.

You might be asking yourself why YARN uses only ZooKeeper for
HA, whereas HDFS maintains its own set of JournalNodes (ignor‐
ing the ZKFC). The answer is that ZooKeeper is designed for shar‐
ing small volume configuration and metadata among distributed
processes, whereas HDFS edit logs can become quite large between
filesystem checkpoints and can extend essentially without bound,
when a standby NameNode is not up and running to perform
snapshot creation.

Automatic failover
When configured for automatic failover, an embedded failover controller thread in
the RMs monitors the ephemeral znode in ZooKeeper. If the active RM crashes or
otherwise fails to keep its lock, the standby RMs race to acquire the fencing lock and
become the new active node.

Deployment recommendations
Some recommendations for deploying YARN for HA include:

Use the ZKRMStateStore for storing state
This both guards against split-brain corruption of state and enables automatic
failover.

Enable automatic failover
Automatic failover provides fast RM switching in the event of failure.

Unique service names
Choose a unique name for the logical ID for the ResourceManagers and ensure
that clients use the logical ID when submitting applications.

HBase
HBase consists of two daemon processes: the worker RegionServer and coordinator
HMaster. RegionServers are responsible for reading and writing the data stored in the
regions of tables. A region is hosted by a single RegionServer, which can host tens to
hundreds of regions from all tables. Clients directly access RegionServers when read‐
ing or updating data from regions.

The master service is responsible for the housekeeping of an HBase cluster. It tracks
the health of the RegionServers and performs operations to keep the regions and
tables balanced, through managing region assignments to RegionServers. It also facil‐
itates the splitting of a region when a RegionServer detects that it is getting too large.
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In addition, the HMaster coordinates administrative metadata operations from cli‐
ents, such as table creation, table configuration, and region merging and splitting.

The HMaster is not directly involved in reading or writing data. Instead, clients look
up the locations of table regions in ZooKeeper and, using that information, go
directly to the RegionServers on which they are hosted. An HBase cluster can still
serve data without a running HMaster, but no metadata operations will be possible.
Without active monitoring of RegionServer health, regions will eventually become
unbalanced and will not be assigned to other RegionServers in the event of a server
crash. The HMaster role is therefore essential to the running of a healthy cluster.

HMaster HA
HBase supports HA out of the box simply through the deployment of multiple
HMaster instances on different master nodes—no extra configuration is required.
The HMasters operate in an active-standby configuration, and ZooKeeper is used to
manage the election of the active instance. Although running two HMaster instances
is typical, HBase supports deploying more, if required.

Clients automatically discover the currently active master from ZooKeeper when they
wish to perform metadata operations, so there is no need for external load balancing
or round-robin requests between masters. There are no required changes in client
code to support HMaster HA; the underlying client library can automatically, and
transparently, retry RPC calls.

Region replication
In the event of a RegionServer crash, the HMaster arranges for other RegionServers
to host the regions that the downed server was hosting. This reassignment process
can take tens of seconds to complete. Both read and write request to the region will
fail in the period the region is offline, and as a result, request latencies can increase
dramatically.

To mitigate this and to provide scaling for reads, region replicas allow for an adminis‐
trator to specify that additional read-only (so-called secondary) copies of a region be
hosted by one or more RegionServers in addition to the original primary replica. As
currently implemented, region replicas provide HA for reads only. Writes to primary
replicas will still suffer a short delay while the region is reassigned away from a
crashed RegionServer.

Region replication is not transparent to clients. Clients have to make a conscious
decision to make use of stale replicas when reading and to accept the possibility of
reading from potentially out-of-date replicas. Users must consider the trade-offs of
using region replicas, but the feature can dramatically reduce the instance of high tail
latencies in read requests, with a design goal of allowing 99.99% of get requests to be
serviced in less than 10 ms.
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For more details on HMaster HA and region replication see HBase: The Definitive
Guide by Lars George (O’Reilly) and the HBase documentation.

Deployment considerations
HBase does not have many constraints when deploying in HA mode:

• RegionServers should always be deployed on worker nodes (colocated with
HDFS DataNodes), as a best practice.

• HMasters should be deployed on the master or utility nodes in the cluster and
not placed on worker nodes. At least two HMasters need to be deployed, and for
simplicity of configuration, you could consider placing an HMaster on all master
nodes. The process is light on resources, so it is acceptable to colocate with other
master processes.

KMS
We met the concept of the key management server (KMS) in “HDFS Transparent
Data Encryption” on page 274. Its primary purpose in the Hadoop ecosystem is to
support HDFS transparent encryption, but it is designed to support any service wish‐
ing to use encryption keys. Its operation in HA mode is essential to the smooth oper‐
ation of processes accessing encrypted data.

KMS implementations are required to provide a stateless REST API over HTTP.
Clearly, in order to support HA, we need to deploy multiple KMS instances. The first
approach here is simply to place load balancing in front of two or more instances.
Since interactions are stateless, any of the load-balancing methods will work.

A second supported approach is to deploy multiple instances and to specify each
hostname in the configuration used by clients. The KMS client libraries can be con‐
figured with a list of hostnames of the form:

kms://https@host1.example.com;host2.example.com:16000/kms

The client library will transparently and automatically try each configured server in
turn until it finds a functioning KMS server. Since this approach does not require a
load balancer, it is simpler and can be managed entirely by the cluster administrator;
it is therefore generally preferred. One drawback, though, is that client load is not
spread between instances. A sort of manual balancing can be achieved by varying the
order of the services in the client configuration files.

Deployment considerations
There are some things to bear in mind when deploying multiple KMS instances:
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• The backing keystore implementation must also be highly available and capable
of accepting requests for the same key material from multiple locations. This
rules out the Java KeyStore implementation, which is not recommended for pro‐
duction in any case. The principal Hadoop platform vendors provide
production-grade keystore implementations.

• KMS instances should be deployed on master or utility nodes not accessible to
end users. The KMS caches key material in memory for a short time so as to
avoid exposure to malicious processes.

• KMS supports delegation tokens; it should be configured to use the ZooKeeper-
based delegation token store so that each instance is aware of the issued tokens.

• If using a load balancer, the KMS Kerberos keytabs and TLS certificates need to
be configured with both the load-balancing hostname and the actual hostname
where the KMS is running (see “Security considerations” on page 339).

Hive
We introduced Hive in “Apache Hive” on page 14. When configuring HA for Hive,
we must consider both the Hive Metastore (HMS) and HiveServer2 (HS2) processes.

Metastore
Except for its support for delegation tokens, the HMS is entirely stateless; all meta‐
data is persisted in its underlying relational database. This makes configuring it for
HA relatively straightforward—there is no requirement to elect an active master or to
provide for failover between HMS instances.

To set up HA for the HMS, we can deploy multiple instances running on different
servers. With multiple instances, we must ensure that the underlying database is con‐
figured for HA (see “Database HA” on page 341) and that it can support concurrent
remote connections. To ensure that delegation tokens issued by one HMS server are
valid on other instances, knowledge of their existence should be persisted in a shared
location. This location can either be ZooKeeper (ZooKeeperTokenStore) or the data‐
base already used by the metastore (DBTokenStore).

Clients, including HS2 servers, should be configured with a list of Metastore URIs.
Connection attempts are made to each listed URI in turn, until a successful connec‐
tion is made. Therefore, there is no need to use a VIP or other load-balancing mecha‐
nism when setting up Metastore HA.

HiveServer2
Unlike the HMS, HS2 instances are stateful. Clients open sessions with a specific HS2
instance and submit queries, each of which may potentially spawn long-running
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3 The same argument could apply to clients of HBase and Solr, but these clients are typically applications run‐
ning on gateway or defined nodes. Hive clients may include applications, BI tools, and SQL workbenches
connecting from many nodes in the wider network, so they are more difficult to control.

YARN jobs. HS2 maintains state in memory about which sessions are currently open
and which queries are running for which session.

It is important to note that HS2 HA is quite limited. If an HS2 instance crashes, the
results of running queries will be lost and subsequent jobs in multistage queries will
not be run. If a query stage was running as a job in YARN the job will likely continue,
but any further stages will not be executed and any results will not be returned to the
client.

Broadly, we have three options if we want to provide HA for HS2. The first, simplest,
and most commonly used approach is to deploy multiple HS2 instances and to pro‐
vide the client with knowledge of the available servers. Implementing connection and
failover logic is left up to the client in this option.

The next approach is to employ a load balancer as a proxy in front of multiple HS2
instances. Although clients will need to reconnect in the event of instance failure,
they can use a single logical endpoint.

A final option is to make use of dynamic service discovery of HS2 servers. This pro‐
vides a way for clients to automatically discover a live HS2 server through ZooKeeper
lookups. This is a nice option, but for it to work, the ZooKeeper ensemble must be
accessible to the client, which may be operating outside of the cluster nodes.3 Some
operators may therefore prefer direct client access or a load balancer in order to limit
the exposure to critical services from outside the cluster.

HA architecture
Figure 12-7 illustrates the configuration options for Hive HA. An HA relational data‐
base setup provides the backend persistent storage for two HMS instances (deploying
more than two is possible). Both HMS servers are in the configuration of clients that
require direct access. HS2 instances A and B list HMS A first, whereas HS2 instances
C and D and the SparkSQL process place HMS B first. Notice that SparkSQL (and
other services, such as HCatalog) communicates directly with the HMS.
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Figure 12-7. Hive HA configuration for HMS and HS2; dotted lines indicate a fallback
configuration for clients

The image shows four HS2 instances, two each for two distinct tenant groups. The
three options for HS2 HA are shown. In both tenant groups, users can connect to an
HS2 instance via a dedicated load balancer (1). A client with knowledge of both
instances is also shown (2). The HS2 instances for tenant group 2 are configured to
register themselves in ZooKeeper, and users can connect directly using ZooKeeper
dynamic service discovery (3).

HS2 supports delegation tokens to allow processes to issue queries on behalf of
another user. Despite sessions being tied to a particular server, HS2 employs the same
delegation token store as the HMS. Thus, a delegation token issued to a user by one
HS2 instance will be honored by another, despite being issued as part of another ses‐
sion. This is a key enabler for tools such as Oozie, which rely on using delegation
tokens for successful interaction with HS2.

Deployment considerations
When deploying Hive for HA in production, here are some guidelines to remember:

Understand the Hive Metastore as a master process
HMS instances should be deployed on master nodes not accessible to end users.
For HA, two or more should be deployed in production environments. In
smaller clusters (fewer than 50 nodes), they can be colocated with other master
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daemons. For larger clusters, it might be necessary to host the HMS instances on
additional master nodes.

Use an HA database
To support Hive HA, the underlying database must itself be robust, be highly
available, and support concurrent queries.

Use a persistent token store
In order for delegation tokens to work seamlessly with HA configurations,
tokens should be accessible from each HMS or HS2 instance. Either the DBToken
Store or the ZooKeeperTokenStore should be used.

Configure keytabs and certificates for load balancing
If a load balancer is used, the HS2 keytab and TLS certificates should include
both the hostname of the HS2 instance and that of the load balancer.

Provide a load balancer with session persistence
Depending on how your users intend to interact with HS2, they might or might
not need source IP session persistence, given that query sessions are tied to a spe‐
cific instance of HS2. If users are using Hive within individual JDBC/ODBC con‐
nections, session persistence is probably not required. However, a load balancer
with source IP session persistence is mandatory for connections from Hue. A
best practice is to provide one load-balancer configuration on one port, which
enables session persistence for clients who require it (e.g., 10001), and another on
a different port (e.g., 10000) that does not implement session persistence. Both
load balancers would direct to a pool of HS2 instances listening on port 10000.

Provide separate HA setups for different tenants
Individual HiveServer2 instances have an upper limit on the number of sup‐
ported concurrent sessions and running queries that can be handled. Vendors
have developed empirical guidelines defining the limits. See, for example, the
Cloudera documentation.

Likewise, HMS instances can only realistically support into the tens of thousands
of partitions for tables before query planning performance becomes poor. Addi‐
tionally, it can sometimes be advantageous to configure different default Hive
query parameters for different tenants—for example, to separate and apply quo‐
tas to the scratch directories for Hive. A common pattern to overcome this is to
provide separate groups of HS2 instances for each tenant, with each setup in an
HA configuration.

Impala
As we saw in Chapter 1, Impala is a massively parallel processing engine designed for
efficiently processing SQL queries on structured data stored in distributed storage
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engines. To explain how to set Impala up to be as available as possible, we need to
briefly describe the different server processes in an Impala cluster.

Impala daemons
The daemon processes are the workhorses of an Impala deployment and should be
colocated with HDFS DataNode processes. These are the processes that execute query
fragments and that read and write data from and to the distributed filesystem. Cru‐
cially for our understanding, by default, any Impala daemon can act as a coordinator
—that is, accept client connections, parse a query, generate a distributed query plan,
act as the coordinating node for the plan, and finally return results to the client. Dae‐
mons, again by default, also act as executors and run fragments that are part of dis‐
tributed queries. Originally, each daemon served both coordinator and executor
roles, but subsequent releases have allowed a separation of these roles. Daemons can
now operate in three modes:

• Executor + coordinator (the default)
• Executor only
• Coordinator only

Each daemon that operates in a coordinator role maintains a cache of metadata,
called the catalog, detailing what databases, tables, and views exist; it also contains
information about where files and blocks are located in HDFS and which other dae‐
mons are available to execute fragments. The daemon uses this metadata to build dis‐
tributed query plans, optimizing for data locality when reading from HDFS.

The Impala cluster as a whole is resilient to daemon failure, and the failed daemon
will be removed from the set of available executors automatically within a few tens of
seconds. However, there can be an impact on running queries and client sessions.
Client sessions are tied to the TCP connection to the daemon—if the daemon crashes
or fails in some other way, or the connection is lost, the session and any running
queries are also lost. In addition, for a daemon failure, any queries from other coordi‐
nators that had fragments running on the daemon at the time of failure will also fail.
Most queries are short-lived, so the impact of daemon failure should be limited, but
as a best practice any application needs to bake in some retry logic to address such
situations.

Catalog server
The catalog server acts as the intermediary from Impala coordinator daemons to the
HMS. It fetches all metadata from the HMS and passes on requests to the HMS from
daemons running DDL queries. It also publishes updates to the catalog to all coordi‐
nator daemons via the statestore.
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The catalog server is not strictly critical to the continued functioning of the cluster. If
it fails, Impala daemons will continue to be able to serve read-only queries and cer‐
tain write queries, but DDL queries that add or remove Hive metadata—for example,
adding new tables or partitions to an existing table—will fail. As a result, we highly
recommend keeping it operational at all times. Although there is no built-in HA for
the catalog server, it is a soft-state process, so if the node on which it is deployed
becomes unavailable, it is safe to redeploy it on another node and restart the Impala
daemons as soon as possible.

Statestore
The sole purpose of the statestore process is to distribute information to registered
subscribers.Each Impala daemon heartbeats to the statestore and pulls updated infor‐
mation from subscribed topics. This information includes the catalog from the cata‐
log server as well as the active health status of other Impala daemons, which is used
for planning and distributing query fragments. If the statestore fails, the daemons use
the last version of the published data until it becomes available again. However, this
information will become stale over time, so to maintain service reliability and main‐
tainability, the statestore should be restarted or redeployed as soon as possible.

Without the statestore or catalog server running, the Impala cluster
becomes unstable over time, with stale metadata and out-of-date
information about daemon status. These services should be
returned to operation as soon as possible after a failure. Cloudera
Manager can be configured to automatically restart these services if
they crash.

Architecting for HA
Because of the lack of HA for both the statestore and the catalog server, a solid opera‐
tions playbook for bringing Impala back online in the event of their failure is recom‐
mended. If these services have to be migrated to another node, the entire cluster
needs to be restarted.

We highly recommend employing a load balancer in front of the coordinator dae‐
mons to balance query coordination load and to allow clients to connect to a live
coordinator using a single logical endpoint. Often, without a load balancer in place, a
client will always connect to a single daemon, which can result in imbalance in query
coordination load.

Impala daemons support two client protocols, and they listen on separate ports. The
Beeswax protocol (by default on port 21000) is used by the Impala shell CLI, while
the HiveServer2 protocol (by default on port 21050) is used by JDBC and ODBC con‐
nections (including Hue). Session persistence, although not mandatory for standard
clients, is required for connections from Hue, as just described. For this reason, it’s
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typical to have the load balancer expose three ports: one each for Beeswax (21000)
and HiveServer2 (21050) connections without session persistence, and one for Hive‐
Server2 connections (say, 21051) with persistence for Hue (and any other application
that uses connection pooling within a session). Both HiveServer2 load balancers for‐
ward to port 21050 using the same pool of backend daemons.

Clients connecting through a load balancer should send regular
TCP keepalive packets to ensure that the session remains open dur‐
ing longer queries. If running on Linux, this can be configured in
the kernel. Alternatively, or in addition, the load balancer should
be configured with an extended connection timeout.

In secure clusters configured with a load balancer, the Impala coordinators accept
only client connections using the load balancer’s hostname in the service principal.

Synchronous DDL
There is another caveat to be aware of when using a load balancer without session
persistence. In most cases, a coordinator’s catalog cache is populated by data propa‐
gated by the catalog server via the statestore. However, for efficiency, when a client
issues a DDL query (e.g., CREATE TABLE), the catalog server will directly push the
metadata back to the original requesting coordinator. If a client closes a connection
after issuing the DDL connection and immediately reopens a new connection, the
load balancer may direct it to a coordinator that is yet to be updated with the new
metadata by the statestore. Queries expecting the new metadata to be in place will
therefore fail. To avoid this, there is a session parameter, SYNC_DDL, which synchro‐
nously waits for full metadata propagation to all live daemons, but it comes at the
cost of performance.

A best practice architecture for availability and performance in large Impala deploy‐
ments is to limit the number of coordinator nodes to a small proportion of the overall
cluster. This can dramatically reduce the burden on the statestore when pushing out
metadata updates in large clusters, where catalogs can grow to multiple gigabytes. In
addition, if you have nodes available, coordinator-only roles can be placed on edge
service nodes, leaving the work of fragment execution almost entirely to executor-
only nodes.

Coordinators plan queries and still do results aggregation and final
computations, so you should provide the same amount of memory
on coordinator-only nodes as for a standard Impala daemon and
expect heavy CPU usage on these nodes.
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These options are illustrated in Figures 12-8 and 12-9. In option A, a subset of dae‐
mons play the role of both coordinator and executor. A load balancer distributes cli‐
ent sessions among the coordinators, and query fragments are run on all daemons,
including executors. In option B, load-balanced coordinator-only nodes are deployed
on edge nodes and query fragments are run only on executor-only daemons running
on worker nodes. In both options, the catalog is distributed to only coordinators.

Figure 12-8. Impala coordinators deployed on a subset of worker nodes (A)
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Figure 12-9. Impala coordinator-only daemons deployed on edge nodes (B)

Deployment considerations
Consider the following recommendations when deploying Impala for HA:

Use master nodes for supporting services
The catalog server and the statestore should be placed on master or utility nodes
so that they are not starved of resources by worker processes. In larger clusters,
they should be placed on dedicated master nodes.

Limit coordinator roles
To reduce the burden of metadata propagation, limit the proportion of daemons
with a coordinator role, leaving the majority to be executors only. The number of
coordinators depends largely on the anticipated query load, but each coordinator
can be expected to handle multiple tens of concurrent queries. Consider also
deploying coordinator-only daemons to edge service nodes. These daemons are
able to support many more concurrent queries, because their only role is coordi‐
nation.

Employ a load balancer
Use a load balancer across the coordinator daemons—one that is configured to
forward connections for both supported client protocols. Provide an additional
balancer for Hue with session persistence. Ensure that, for each balancer configu‐
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ration, the load balancer connection timeout is longer than both Impala’s idle
session and idle query timeouts.

Configure certificates for load balancing
If TLS is used for client connections, the TLS certificates should include both the
hostname of the coordinator daemon and that of the load balancer in the SAN
field.

Have an operations plan
Since the catalog server and the statestore do not yet directly support HA, we
highly recommend having a planned operations procedure in the event of their
failure. Though they are not essential to the immediate operation of Impala,
without them, a cluster’s stability and metadata currency will gradually degrade
over time. If their hosts are unavailable and they must be redeployed to new
nodes, note that the Impala daemons will need to be restarted and users should
be made aware of the outage.

Solr
Solr is a scalable indexing, analysis, and querying framework built on Apache Lucene.
We introduced Solr in Chapter 1, and here we cover what you need to know to archi‐
tect a Solr deployment for HA. In this section, we are strictly referring to SolrCloud
but, for simplicity, use the name Solr.

The distributed Solr architecture is built from the ground up to support HA. Solr
uses ZooKeeper for metadata and coordination and does not have a dedicated master
role. When a Solr server fails, the remaining servers coordinate via ZooKeeper to
bring up a new leader for each replica (if required) and to ensure that the requisite
number of replicas are available. The new leader replica starts off in recovery mode
and replays any missing transactions from the log. New follower replicas can do the
same or, if the lag is too great, request a full index replication from a more current
replica.

Note that each replica stores log and index data on HDFS sepa‐
rately, so you might consider reducing the default block replication
factor used by Solr if all collections are replicated. With threefold
HDFS block replication and two shard replicas, each block is being
stored six times in HDFS. Be careful when reducing HDFS replica‐
tion to one, though. In this case, you need to ensure that shard rep‐
licas reside on different racks, for resilience. With HDFS
replication, this is handled automatically for you.
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Each replica in the collection is a full-featured Solr core and can accept both queries
and updates. Nonleader replicas automatically forward updates to the leader, which
in turn handles each update and propagates it out to all replicas.

Any server in the SolrCloud can handle queries for any known collection and pro‐
vides native load balancing of reads over the replicas. Despite this, we highly recom‐
mend using the provided client CloudSolrServer class in the SolrJ library, if possible.
This can automatically discover the right endpoints for collections from ZooKeeper,
determine the list of shard leaders to which to direct updates, and provide built-in
load balancing of reads by randomly selecting a replica for queries. It is thus more
efficient than an HTTP load balancer, which has no built-in intelligence for Solr
when selecting endpoints to which to connect. If you are using a load balancer, it is
better to use the HttpSolrServer client.

Deployment considerations
Other than deploying multiple servers, minimal special configuration is required for
HA operation. Nonetheless, some recommendations hold:

Use multiple replicas
To provide read and write HA, configure each shard in a collection to have at
least two replicas. When creating a collection, ensure that the number of shards,
the number of replicas, and the maximum number of shards per node are config‐
ured to allow at least one server to fail and still have all replicas be live. For exam‐
ple, with 10 servers, a collection might be configured to have 8 shards, each with
2 replicas and a maximum of 2 shards per server. The total capacity of the cluster
at 2 shards per node is 20 replicas. Our example collection requires 16 replicas,
which allows for two server failures while keeping the collection fully opera‐
tional.

Place replicas on different racks
In addition to specifying the maximum number of replicas per node, Solr can
also apply sophisticated rules when placing shard replicas. These can be used to
ensure that replicas are distributed across the racks of your cluster. Of course,
Solr servers must also be intentionally deployed on different racks to enable this.

Use the CloudSolrServer client
Prefer the built-in SolrCloud client over an independent load balancer. Although
the latter can be made to work, the provided client interacts with Solr in a more
intelligent way when multiple shard replicas are configured. It also avoids the
need to specify multiple hostnames in the Kerberos keytabs. If security con‐
straints prevent direct access to worker nodes, consider using proxy applications
on edge nodes to query data from Solr.
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Kafka
Kafka is architected for HA out of the box and thankfully—apart from deploying
multiple broker instances—requires very little in the way of extra configuration for
HA. Kafka uses ZooKeeper to provide highly available metadata and coordination
services. Each broker server hosts multiple partitions for different topics, which are
deliberately distributed across brokers when they are created. Topic partitions have
multiple replicas for resilience and availability—three is typical.

For each partition, one replica is elected as the leader and exclusively serves reads and
writes for the partition to and from clients. The other replicas for the partition run on
other brokers and follow the updates to the log by subscribing to the leader.

One broker in the cluster acts as the controller and is responsible for detecting broker
failure and reassigning the replica leadership if a leader replica has gone offline. The
brokers use ZooKeeper to elect a controller among themselves. Thus, if the controller
itself crashes, one of the other brokers automatically takes over its duties.

If a broker fails, it is important to know that its partition replicas are not automati‐
cally assigned to the other brokers. An administrator must manually run a partition
reassignment process to bootstrap replicas on other brokers. Usually, this would only
be required if the broker is likely to be offline for a long period.

Clients should specify multiple broker endpoints when connecting to Kafka, but the
rest is handled automatically and transparently. Consumers and producers are auto‐
matically directed to the right brokers for the topics and partitions they are interested
in and are automatically rebalanced in the event of broker failure. There is thus no
requirement for a load balancer for clients.

Deployment considerations
The following factors should be considered when deploying Kafka for maximum
availability:

Deploy at least three brokers
A typical recommended resilience setting for topics in Kafka is to replicate each
partition three times and to ensure that at least two of these replicas acknowledge
writes. To support this configuration, we need at least three brokers.

Deploy across multiple racks
For full resilience, consider deploying Kafka brokers across multiple server racks.
From Kafka 0.10 and beyond, Kafka has the ability to specify a rack ID for a
broker, and partition replicas can be distributed to ensure that replicas are not all
in a single rack. In a cloud deployment, this can map to availability zones.
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Assess storage configuration for broker data disks
Although Kafka has tolerated broker disk failures since version 1.0, it might still
be worth considering the use of RAID 10 for broker data disks. RAID 10 can help
with distributing data more evenly across the disks through the RAID 0 striping
and therefore avoids the requirement to manually move partitions to achieve a
better balance. The nested RAID 1 level means that replicas are still available,
even after a disk failure. However, it results in the reduction of usable storage
space by half, which may be too costly when combined with threefold replica‐
tion. In addition, although the data is still available, rebuilding a RAID 1 array
can be costly, which might hurt performance. Kafka fully supports JBOD config‐
urations, so it is a reasonable choice for new clusters. In the end, it is a trade-off
among cost, performance, and risk.

Ensure dependencies are HA
Kafka relies on ZooKeeper for coordination purposes, so it is critical that it is
deployed on multiple nodes and is responsive. We often recommend using a
dedicated ZooKeeper ensemble. In small clusters, these can be colocated with
three or more of the Kafka broker nodes, but for larger deployments (tens of
brokers) they should be deployed on their own nodes.

In addition, where Sentry is used for Kafka authorization, it should also be con‐
figured for HA. Brokers cache permissions for a short while but require regular
connectivity with Sentry to keep their caches up to date.

Oozie
Oozie servers provide a REST API and store all state (apart from job logs) in an
underlying database. Oozie therefore does not require the maintenance of client ses‐
sions—each interaction with an Oozie server is a self-contained operation. When
running an asynchronous action via a MapReduce job on YARN, Oozie maintains
the state of the action in the database. On completion, the action issues a callback to
the Oozie server. In addition, each Oozie server runs a monitoring service to check
the status of actions and to respond appropriately if an action is found to be
complete.

Similarly, although they are executed on the server itself, Oozie maintains the state of
synchronous actions in the database. An in-memory locking service ensures that only
one thread at a time can update a workflow.

All of this makes the Oozie HA architecture relatively straightforward. The HA archi‐
tecture allows for two or more Oozie servers to operate in parallel with coordination
via ZooKeeper. ZooKeeper is used to coordinate locks on workflow actions and to
arrange for the exchange of workflow logs, which are stored locally to each Oozie
server. Upon an Oozie server failure, the other servers automatically take up the slack
and ensure that running jobs and their actions are monitored and progressed.
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In an HA configuration, the servers either should be placed behind a load balancer or
DNS round robin should be configured. Because each server can respond to any
request, clients can interact with any Oozie server completely transparently. Session
persistence is thus not required.

An Oozie HA setup is shown in Figure 12-10. In the diagram, users interact with
Oozie via a load balancer making self-contained requests using the REST API. Oozie
servers, keeping their state in an HA database, kick off workflows via launcher jobs
(MapReduce jobs) running in YARN. When complete, these jobs make a request to a
callback URL, also via the load balancer. Each Oozie server constantly monitors the
outcome of launcher jobs and can process their completion.

Figure 12-10. Oozie HA

Deployment considerations
Oozie HA is easy to configure, and there are relatively few considerations for the
enterprise architect to note:

Use master nodes
Although not a heavy resource user, Oozie suffers if you place it on extremely
busy nodes. For this reason, you can place Oozie servers on master nodes, utility
nodes, or edge nodes in the cluster but not on worker nodes.

Use an HA database
Oozie servers store most of their state in a database, which should itself be highly
available.
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Configure security for HA
Each Oozie server’s Kerberos keytab should contain entries for both the load bal‐
ancer DNS name and the actual hostname of the server. Similarly, if using SSL,
the certificates should contain both the DNS name and actual hostname as sub‐
ject alternative names.

Hue
Hue has long been the de facto web-based UI for Hadoop (although, more recently,
UI components have also been provided via Ambari Views). Hue allows users to
interact with HDFS, issue queries to Impala and Hive, construct Oozie workflows,
and build dashboards over Solr indexes, and provides a host of other functionality.

Hue is a web application, and therefore, the normal methods for scaling and provid‐
ing HA for such applications apply, with a couple of caveats. Hue stores most of its
runtime state in an underlying database, including user and group definitions, access
permissions, and running operations. This means the underlying database should be
shared between all instances of Hue, which in turn means the database should sup‐
port concurrent connections and should be configured for HA.

Currently Impala and Hive query sessions are tied to the Hue instance on which they
were created, so it is important that clients of Hue always interact with the same
server when running queries. This requirement means that we must apply session
persistence when using a load balancer with multiple Hue servers. Load-balancer ses‐
sions can be HTTP-aware if the load balancer supports it.

Currently, session persistence is required for both the Hue load
balancer and any load balancers for Hive and Impala that Hue
uses.

There is no concept of a master Hue server, so no failover needs to occur when a Hue
server crashes or becomes unavailable. Instead, a user can simply navigate to another
Hue server in the set, or the load balancer can automatically redirect traffic to a live
server. As long as the secret key used to generate session cookies is shared across
servers, a large amount of functionality continues undisturbed when a user moves
between servers—with the exception of Hive and Impala SQL queries.

If the deployment best practices are followed, each Hue server can support up to 100
concurrent users.4 If more users are expected, additional Hue servers are required to
support the load. For any multiuser scenario, use of an external database, such as
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Load Balancing of Hue in Cloudera Manager with Monitoring,” Hue, December 8, 2015.

MySQL or PostgreSQL, is mandatory rather than the single-user SQLite database that
Hue uses by default.

Deployment options
The general recommendations for Hue HA are as follows:

Use an independent load balancer
This is the simplest configuration for Hue HA. A hardware or software load-
balancer configuration is set up with source IP or HTTP session persistence
across all Hue nodes. This has the drawback of requiring extra hardware or soft‐
ware configurations and limits the flexibility for dynamically adding or moving
Hue servers.

Use Hue’s built-in load balancer tool
Hue also comes with a built-in load-balancing daemon.5 Although purely a soft‐
ware implementation, it has the nice feature of automatically integrating with
Cloudera Manager’s API to dynamically reconfigure HAProxy when Hue servers
are added or removed. This mode can also automatically be deployed via Clou‐
dera Manager. The drawback here is that the load balancer is hosted on a single
node and, therefore, becomes another SPOF. However, multiple load balancers
can be deployed in parallel on different nodes but with separate hostnames. One
nice feature of the native load balancer is its ability to serve static content such as
images, stylesheets, and JavaScript. This can markedly improve the performance
of Hue.

Use a hybrid
These two preceding options both have their respective advantages and disad‐
vantages. An optimal configuration might seek to combine both approaches to
take advantage of the strengths of each. An independent load balancer provides a
single hostname for the Hue HA deployment and directs traffic to multiple Hue
native load-balancer instances, which provide content caching and serving. It is
important to note that the independent load balancer still requires session persis‐
tence, as do the built-in load-balancer instances. Because the persistence can be
applied at the HTTP session level (Layer 7) rather than at the TCP session level
(Layer 4), the built-in balancers should still spread the load relatively equally
across all Hue servers.

Some additional guidance for deploying Hue HA follows:
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Configure security properly
It is important to be aware of all the possible hostnames through which a given
Hue server might be accessed. If using TLS encryption with Hue, each server
certificate needs all of the possible load-balancer hostnames, in addition to the
hostname on which the Hue server is running, as subject alternative names. Sim‐
ilarly, if using the SPNEGO authentication method, each server’s Kerberos key‐
tab requires HTTP principals for its own fully qualified hostname and for each of
the load-balancer hostnames.

Set up multitenancy
A common pattern is to provide different Hue instances for different tenants on
the cluster, to allow separate administration and usage. In this case, each tenant
needs its own separate Hue HA deployment. If the administration aspects can be
overcome, we recommend using a shared infrastructure with more Hue servers.

Configure apps for HA
Hue has a number of applications that interact with HA services, and these
should each be configured to use the HA mode. Cluster management tools such
as Cloudera Manager will configure most, if not all, of these properties for you.

For the file browser, we recommend configuring Hue to point to an HttpFS role,
because it otherwise needs to be configured to point directly at one of the
NameNodes. Of course, for maximum availability, that HttpFS role is ideally
behind a load balancer.

The Oozie application automatically configures some properties when creating
and submitting Oozie jobs. One of these refers to the active YARN Resource‐
Manager, and this should be configured to refer to the logical name of the YARN
ResourceManager HA setup (usually, yarnRM).

If using HA for HiveServer2, the Hive SQL editor application should be config‐
ured accordingly and should be pointed toward the HS2 load balancer.

Similarly, for Impala, ensure that Impala SQL editor application refers to the load
balancer, if one has been deployed.

Other Services
We cannot cover every service in the ecosystem, but other important services men‐
tioned elsewhere in this book can be deployed in HA configurations. For details, see
the following resources:

• Sentry
• Ranger
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Autoconfiguration
Cluster managers, such as Cloudera Manager and Ambari, often provide built-in wiz‐
ards for those services that require explicit configuration to enable HA. These can
also often be automated via APIs by configuration management software like
Ansible.

We highly recommended using these capabilities, since the configuration of HA for
some services can be intricate. For illustration, Cloudera Manager supplies auto-
configuration wizards for HDFS, YARN, Oozie, and Sentry.

For other services, such as Hive, Hue, and KMS, the addition of extra roles is enough
in itself to enable HA and to prompt the cluster manager to distribute the correct cli‐
ent configuration.

Summary
Architecting and configuring cluster services for HA can be a challenge, but the
information in this chapter should equip you for the task. A fully HA cluster requires
much thought and preparation at all layers of the stack. At the lowest level, as out‐
lined in “Rack Awareness and Rack Failures” on page 165, the cluster architect needs
to deploy the physical or virtual hardware with care to separate failure domains. At
the next layer up, we need to provide HA or to configure our machines to use HA for
supporting services such as Kerberos and LDAP.

A key supporting piece to many components is a relational database that can operate
in an HA or fast-failover fashion—we cannot recommend highly enough making this
an early part of deployment planning, because it is very difficult to add after the fact.

Similarly, many services can make use of load balancers as part of their HA strategy.
Investigating the options in your enterprise early will pay dividends. After you have
decided which load-balancer implementation to use, you should employ it for all the
services that require one, noting that some require session persistence, whereas some
can work without it.

With the physical infrastructure and supporting services in place, you can begin con‐
figuring cluster services for HA.

One thing we haven’t really touched upon in this chapter is the cost of providing HA
for all services. Providing full HA can potentially mean additional hardware and
expense, which you might not be able to justify for nonproduction clusters. You
should, therefore, establish how much downtime your cluster can tolerate outside of
maintenance windows. It might be that rapid reestablishment of services on failure is
sufficient and that a full-blown HA architecture is not warranted. Usually, though, it
makes sense to make your production clusters as available as possible, and that
means implementing the principles you find in this chapter.
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CHAPTER 13

Backup and Disaster Recovery

This chapter outlines the concerns around building a sound strategy for keeping data
within a Hadoop-based system safe and available such that, in case of data loss
through a user error (erroneously deleted data) or a disaster (such as loss of the entire
cluster), a restore can be initiated and completed. This restore leaves the cluster users
with some kind of reliable state so they can proceed with their business tasks.

Note that this is necessary, even with high availability (see Chapter 12) enabled,
because restoring data also applies to problems that do not arise from maintaining a
responsive service. Quite the contrary. Even with redundant components on every
level of the stack, losing metadata or data may cause a disruption that can only be
mitigated with the proper backup or disaster recovery strategy in place beforehand.

Context
Before we can look into the particular approaches, we first need to establish a context.

Many Distributed Systems
Hadoop is a complex system, comprising many open source projects that work in
conjunction to build a unique data processing platform. It is the foundation for many
large-scale installations across numerous industry verticals, storing and processing
from hundreds of terabytes to multiple petabytes of data. At any scale, there is the
need to keep the data safe, and the customary approach is to invest in some kind of
backup technology. The difficulties with this approach are manifold.

First, data at scale becomes inherently difficult to move, which should be abundantly
clear from the previous chapters. The inertia of data requires new approaches that
either do not move data at all or keep movement to a minimum.
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1 This should be covered by an organization’s information architecture (IA).

Second, traditional backup systems are tailored to specific, single-target systems, usu‐
ally with standardized access protocols, such as JDBC or network shares. Hadoop, in
many areas, does not conform to that.

A Hadoop cluster can include more than a dozen separate systems, with many stor‐
ing their state in some kind of persistency layer—usually a database or the operating
system’s filesystems (see Chapters 3 and 7 for details.) Some of these subsystems have
rudimentary support to also store their data on out-of-bounds services, such as NFS
mounts. This does not address backup or recovery properly, though it could be
employed as part of the overall backup architecture.

An additional complication is that even if a database is used by a particular system,
that database is usually pluggable, such that there are many different variants from
which to chose. Often, there is also an option to employ an embedded database, such
as Derby or SQLite, enabling some kind of quick-start mode. It should be noted that
this is never a good choice in a production system because these embedded databases
also are usually single-user systems that do not allow concurrent users. This violates
one of the core ideas of Hadoop. Further, they are not part of the overall monitoring
and are difficult to back up while in use.

Finally, there are systems used in combination with Hadoop that are not considered
part of the core stack (which varies with the distribution you choose) or of the actual
user applications running within the cluster. All of these make onboarding users or
applications for specific use cases a difficult process, unless a company-wide policy is
in place to define where data needs to be stored by every single user and application,
service, or other writing process.1

Policies and Objectives
The various components within the Hadoop ecosystem and bundled into the various
distributions all deal in some way with stored and processed data. Yet not all persist
data the same way, or with the same scope and retention policies. It is vital to dissect
the entire stack to identify what needs to be addressed during a backup and what can
be guaranteed, in terms of SLAs, with regard to scope, retention, and mean time to
recovery (MTTR). Usually, these are expressed as a recovery point objective (RPO) or
recovery time objective (RTO), often defined by the business continuity (BC) team:

• The RTO defines the maximum amount of time that a service may be unavailable
without a significant impact on the business operations.

• The RPO defines the maximum amount of time for which data may be lost (for
example, all transactions from the last two days). It does not directly define the
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amount of data that can be lost but rather the impact that the data loss has on the
business.

What About Active-Active?
A frequent topic when discussing backup and disaster recovery is the concept of
"active/active". It means that by some mechanism all data in multiple systems is
exactly the same at any given time. The goal, among others (refer to Chapter 2), may
be disaster tolerance, i.e. zero RTO and zero RPO. Fundamentally, an active/active
system must replicate any data mutation consistently across all systems before return‐
ing success to clients.

In practice, most systems struggle to achieve this during extreme peaks in request
rates or when network partitions occur and allow for eventual consistency amongst
the participating systems. The frequency and size of mutations in the big data realm
compound these problems to a point of impracticality, which we discussed in “Clus‐
ter Spanning” on page 173.

In addition, consider that replicating data before or after ingestion is not going to
protect you from user mistakes such as deleting data.

Setting certain RTO and RPO limits is the main driver in the choice of backup strate‐
gies (discussed in detail in the following sections); for example, requiring an RPO of
not more than one hour would preclude a backup once per day. On the other hand,
asking for a low RTO often precludes the construction of a new cluster from scratch
and instead requires an available warm or even hot standby cluster. This means that
the RPO and RTO often define the entire cluster architecture, since without the
proper assumptions, there is literally no way of automating a viable backup solution.

Failure Scenarios
The previous chapters have sufficiently introduced and discussed what a full-blown
(or partial) Hadoop system looks like. What we need to understand now are the
implications of failures to a cluster. Different scenarios have varying impact on the
availability of the system and on the data it provides.

Note that Chapter 12 discusses how to mitigate the possibility of failures, from an
operational point of view. With proper monitoring and alerting, many of the scenar‐
ios here can be avoided, yet certain types of failures can still occur.

Here is an overview of the more common sets of problems observed when operating
a Hadoop cluster:
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Detrimental node degradation
This is a special kind of partial failure of a node, which leaves it operational but
with severe limitations. Hadoop users jokingly refer to it as the “John Wayne
syndrome”: in a Western-style movie, the protagonist is shot many times but
refuses to go down. This scenario can create such a bottleneck within the overall
cluster that its impact is observed globally.

Examples are corrupt disks, faulty network interface cards (NICs), or software
bugs in Hadoop or in the underlying OS and its hardware drivers. The server
performs its duties, but with many internal retries and error corrections, so that
it appears, from the outside, to be very slow.

For simple, nondisruptive degradation of a node (see the next failure scenario),
the various core components of Hadoop are well suited to detect the problem
and to treat the server with care, eventually excluding it from the cluster (placing
it on the ignore list), if the problem persists. But with detrimental node degrada‐
tion, the detection may be delayed or altogether fooled, resulting in cluster per‐
formance at the level of the lowest denominator, which is the slowest server.

Partial node failure
A common issue, especially at scale, when operating Hadoop clusters is a partial
node failure, in which, for example, a single disk fails or a (hopefully) redundant
network card stops working. Ideally, these failures are tolerated (can be config‐
ured) and only lead to the partial degradation of the node’s performance. As
described earlier, the core systems in Hadoop (the resource scheduler and filesys‐
tem) are reasonably well equipped to handle such scenarios and to take the nec‐
essary actions—up to the mentioned ignore-listing of the node. Hadoop also
allows for a graceful recovery of the node, while adding it back to the cluster with
no interruption to service. Cluster management tools allow for the creation of
alarms and SNMP traps that can be sent to the operations team for timely action.

Node failure
Should an entire node fail, and assuming the cluster is designed and imple‐
mented with all aspects of HA in mind (see Chapter 12), all systems will keep on
working, though possibly with reduced capacity. Again, this failure scenario is
built into the Hadoop core frameworks (that is, YARN and HDFS) and is prop‐
erly handled.

Network partitioning
Here we experience issues in which parts of the cluster are separated by network
problems, such that the parts cannot further communicate with the others. This
scenario can lead to the previously mentioned split-brain problem, in which any
now separate and isolated part of the cluster has to make a decision about what
its state is. Can it still operate and serve user requests, or should it stop operating
and wait (or shut itself down), while not serving any more requests? This is

380 | Chapter 13: Backup and Disaster Recovery



further complicated by the fact that the split has to be detected and recognized in
the first place. There are situations in which servers continue to serve clients and
are not at all aware their state is now questionable. This is especially true of
requests that are in flight during the split, which might yield different outcomes
than expected by the client.

In Hadoop, usually all of the HA implementations (for HDFS, YARN, Oozie, and
HBase) are either based on stateless servers or backed by a cluster-central author‐
ity, namely a ZooKeeper quorum. They commonly comprise three or five servers
that form a majority, using a distributed consensus protocol (refer to “Zoo‐
Keeper” on page 347). With this approach, the cluster components can deter‐
mine their state because every client call has to eventually fall back to a majority
of servers. In a network split, one part (or more) has no majority of nodes, leav‐
ing one part as the active one. This is only part of handling the problem, though.
What about clients trying to send requests to servers? And what happens when
the split is healed?

Clients usually have a list of the ZooKeeper quorum entries and ask directly for
authoritative servers. Should the client have access to the surviving part, it can
still operate. But what if all clients switch to the remaining active part, which
might now be heavily degraded in performance? Could a production workload
(including, for example, SLA batch workloads and interactive queries) still oper‐
ate? This must be designed into the cluster architecture, or the outcome will be
unpredictable.

Datacenter failure
The final failure scenario is for entire clusters to fail, usually during a datacenter
outage. Here, only having mirrors or backups in remote locations provides for
any reasonable continuity. Replicating data is discussed in detail in “Replication”
on page 383 and “Data Replication” on page 388. Some tools, like HBase, have
built-in replication support (see “HBase” on page 355). Others need to have
devised an architecture covering the replication of data to other locations.

User failure
There is one more major type of failure to consider—user failure. There are two
reasons why humans might affect a Hadoop cluster: either accidentally or mali‐
ciously. Be it the new admin who is not aware what a certain command does—
and whether it is undoable—or the disgruntled employee with a red Swingline
stapler, they both can wreak havoc. Their actions might leave services incapacita‐
ted or might reduce the amount of data to zero.

This type of failure is more unpredictable than the others, in terms of its effects.
With enough intent a malicious user or administrator can do serious harm. The
risks posed by the former can be somewhat mitigated with the right security
measures (see Chapter 9), but a rogue administrator is a much more difficult
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problem. You need to consider having separate administrators for main and aux‐
iliary clusters so that already-backed-up data in another physical location is safe.

Table 13-1 summarizes the support of each scenario mapped to the more important
subsystems in a Hadoop cluster.

Table 13-1. Supported failure scenarios

Failure HDFS YARN HBase Oozie
Node degradation Partial Partial Partial Partial

Partial node failure Yes Yes Yes Yes

Node failure Yes Yes Yes Yes

Network partition Partial Partial Partial ?

Datacenter failure Optional Optional Optional Optional

User failure Partial Partial Partial Partial

Where appropriate, we refer to the failure scenarios throughout this chapter.

Suitable Data Sources
Some parts of the Hadoop stack do not fall at all into the usual category of a data
storage system. For example, Flume is used for message delivery purposes, building a
topology of agents that pass messages as an event flow from node to node. Like in a
message queue (MQ) system, the storage per node is limited and only meant to buffer
data as long as it takes to be sent along and acknowledged by the next agent. Flume
has a pluggable channel architecture, which comes with many implementations out
of the box. A common choice is the durable file channel, storing uncommitted data
local to the Flume agent until delivery is complete. In the event of a catastrophic node
failure, the data that was stored locally is likely to be lost.

One might be tempted to opt for the database-backed Flume channel implementation
instead, so that a highly available relational database management system (RDBMS)
can be used to maintain access to the data from a replacement node. This raises the
general question of how to best design a highly available system based on Hadoop,
because the topology and persistency method choices will most likely have an impact
on RTO and RPO. We address this in the following section.

Part of the onboarding procedure of users and applications is to identify which parts
of the Hadoop stack are in use and what they are each expected to deliver, in terms of
RTO and RPO. It might be acceptable to have a simplified—which might also imply
better-performing—cluster architecture, if the RPO allows for the loss of short-term
data. Each use case should be individually decided, and this requires very careful
planning and agreement between the various stakeholders because the wrong choices
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could be detrimental. Appendix A offers a sample onboarding checklist that you can
use as a starting point to define a more customized list, based on local specifications.

Strategies
There are also multiple ways to keep data safe, including replication, snapshots, and
backups. There are fundamental differences between these approaches, making their
use either prohibitive or, conversely, necessary to achieve a given RPO/RTO.

Replication
For low RPO/RTO requirements, or the fastest recovery option, a common approach
is to keep multiple copies of the data in a warm or hot standby system. This allows
applications to fail over quickly and to use the standby system to run additional pro‐
cessing jobs, which alleviates the pressure on the main system. Depending on the
Hadoop subsystem considered, there are vastly different replication implementations
—if they are supported out of the box at all.

In general, though, replication means sending all mutations from an originating sys‐
tem (leader) to one or more replica systems (followers). This also includes delete
operations, and in the case of erroneous data deletion, there is a likely scenario in
which permanent data loss is incurred.

On a file-based level, this can be compared with using the venerable rsync
command-line tool, which allows synchronization of directories with their contained
files, including across computer boundaries. The user faces a difficult decision—
either also synchronize file removals, or retain the deleted files in the backup loca‐
tion. The former makes using the copy easy because it reflects the state of the last tool
execution. But if you notice a removal after the tool is executed again, you have also
removed the file in the copy. If you choose to retain the deleted files, you end up with
a growing number of files, some of which are eventually outdated. This makes fail‐
over to the copy difficult, unless some sort of maintenance or cleanup process is in
place to restore the last known consistent state (which also meets the RPO).

Snapshots
Another technique for securing copies of data is to use snapshots. Several Hadoop
services, including HDFS and HBase, implement their own snapshot mechanisms.
HDFS snapshots allow for taking a quick metadata-only stock of all files contained in
a snapshot-enabled directory. It uses a copy-on-write approach in which all subse‐
quent modifications cause behind-the-scenes archiving of files contained in an active
snapshot. Access to the snapshot is provided by a special directory notation that
exposes the snapshot by name as a subdirectory of the original directory.
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Internally, all files either point to the unchanged live files or to archived files for any
modified or deleted file. In HDFS, the client can only append to existing files, with a
single writer process, at any point in time. This makes snapshotting more predictable
because files cannot be freely mutated. When a snapshot is performed, all blocks that
are complete are part of the snapshot. In other words, for a file that is still being writ‐
ten (for example, a web server log file), you are not able to snapshot the data in the
currently uncommitted last block. This amounts to whatever the HDFS block size is
set to, usually defaulting to 128 MB. See “Consistency” on page 386 for a discussion of
what this means for applications.

HBase works in a very similar way, taking a snapshot of a table as a metadata opera‐
tion and tagging all files belonging to the table on which the command operates.
Should files be deleted, for example due to a compaction, the same mechanism of
archiving and reference counting the underlying files takes place. A new snapshot
does not occupy any additional storage, but does accrue more storage space as
changes happen and additional files need to be retained. HBase snapshots do not use
HDFS snapshots, but their own internal feature implementation. This means that
HBase snapshots cannot be accessed directly through HDFS but need a special tool
that is provided by HBase. Also, HBase snapshots need to trigger a flush operation to
persist any pending mutations because they do not include the write-ahead logs. You
need to consider this carefully because it might negatively affect the cluster
performance.

In more general terms, snapshots allow for the freezing of some moment in time for
the data they operate on. They provide a versioning mechanism, and, with the appro‐
priate access tool, a consistent copy can be made. Snapshots are local to the storage
system and do not help with disaster recovery, which means a proper backup archi‐
tecture would include a copy of the snapshot to another system or cluster. Finally, not
all tools have support for built-in snapshots, so this only applies where available.

Backups
A backup is essentially a point in time–based copy of data, which is then copied to
another set of disks or servers as a safety measure. As mentioned, this could be used
in the event of erroneous deletion (or modification) of data, or a server failure.

For certain storage subsystems, such as HDFS, you can and should
apply the appropriate access control mechanisms. You do so by
using access control lists or employing tools like Apache Ranger or
Apache Sentry, which avoid the deletion of data in the first place.
For example, shared files in an HDFS directory named public
would be set to read-only for all users.
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For the former, it would be beneficial to have a short-circuit partial or full restore
mechanism, depending on the location of the copy. For true disaster recovery,
though, the copy should be versioned, retained as a configurable amount of copies,
and stored in one or multiple locations so that the data can always be restored, even if
the RTO is negatively affected.

Due to the complexity of Hadoop, there is no single solution that can provide a con‐
sistent backup across all the subsystems in the stack. A backup implementation can
span many systems and use many techniques, including replication and snapshots.
Based on the necessary RTO and RPO, the setup can vary a lot, so planning ahead of
time is crucial to guaranteeing SLAs later on.

Virtualization Tools
Snapshotting is also available on setups where the storage layer is not just a direct
connection to, for example, hard drives. Especially in virtualized environments, such
as cloud infrastructures, the storage layer is often more elaborate and contains abili‐
ties to snapshot the current data.

In practice, this may seem like an option to solve the backup problem, but the oppo‐
site is true: storage-level snapshots are only as good as their integration with the
higher-level tools. Using such snapshots is known to not work with HDFS data,
which is very likely to create corrupt snapshots as far as HDFS is concerned.

The same is true for databases that are not integrated so that they flush out in-
memory state before the snapshot takes place. In our experience, using low-level stor‐
age tools to facilitate backups is not a viable option.

Rack awareness and high availability
Hadoop—and specifically HDFS—has another feature, named rack awareness (see
“Rack Awareness and Rack Failures” on page 165), provided to set up cluster topolo‐
gies that allow for another frequently requested requirement for production-grade
systems—HA.

It is certainly vital to design a cluster topology with rack awareness in mind to
increase the availability of the data it is providing. It does not, though, replace an
end-to-end replication or backup strategy, because it only deals with a subset of pos‐
sible failure scenarios (see “Failure Scenarios” on page 379). More specifically, rack
awareness allows for some failure scenarios not to affect cluster operations. It does
not cover loss of data through user errors, such as accidental file deletion in HDFS,
dropping managed tables in Hive, or deleting tables in HBase. It also does not handle
more widespread outages, such as datacenter failures. Even network partitions/splits
pose a hazard because you might end up with an operational part of the cluster
(majority vote succeeds) but might not be able to access all the data.
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Data Types
The next question to ask is, what do you need to back up from a Hadoop-based clus‐
ter to avoid data loss (apart from the mentioned RPO)? There are databases holding
details such as state and schema, OS filesystems holding raw data, and operational
systems storing temporal data. The rest of this chapter addresses those sources, per
Hadoop subsystem, but it is worth first discussing what a backup should include.
There are distinct sets of data types that warrant deeper consideration to determine
their treatment:

Data
This is the user data persisted in the configured storage systems. Hadoop ecosys‐
tem projects usually store their user and generated data inside HDFS, which
means that it needs to be backed up somehow. With HDFS, a backup strategy
could pin the entry point to specific, named directories.

Metadata
There are parts of the processing system that need additional metadata, which
applies structure to the usually unstructured (as in, unknown schema) raw data.
One example is the shared Hive Metastore. It persist the user-defined schemas in
a database that holds the mapping of tables and columns to data files, giving
SQL-based access to the data itself.

Something else to consider is HBase table information, imposing a similar
schema to custom storage files underneath the HBase namespace or Cloudera
Manager and Apache Ambari data, such as cluster setup details and user
accounts.

Transient data
Finally, there is the aforementioned transient data, such as temporary job files or
Flume agent local data, like uncommitted records waiting for the upstream sys‐
tems to acknowledge reception. Often, the RPO allows for omitting this kind of
data from the backup. Designing the ingest system with downstream retention
and a replay mechanism can alleviate the problem, but this, too, requires careful
planning ahead of time.

Consistency
The last dimension to consider with regard to backup and disaster recovery within a
Hadoop-based system is the consistency of the data inside a backup. Even when using
HDFS snapshots to copy all raw files in a point-in-time version or when using trans‐
actional locking provided by the underlying databases for other parts of the system,
what is actually part of the backup is still questionable. When you have many concur‐
rent updates, like adding files to different directories in HDFS or data to different
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HBase tables, you cannot ensure a truly consistent view as far as the user or the appli‐
cation is concerned.

The solution to this is up to the client application, which should store transactional
information that allows for recovery from inconsistent application data. For example,
in the case of disaster recovery, it may happen that the restored data contains some
information from the latest pre-disaster modifications, but it is still partial (that is,
incomplete) concerning the application. The developer needs to somehow guard
against this and to ignore incomplete data, either by using provided mechanisms or
by devising a data schema that ensures safe operations.

HBase could use a master table that is updated atomically, storing the last committed
transaction, possibly with all of the included changes. Google Metastore and Percola‐
tor projects reference a transactional layer that enables optimistic, roll-forward trans‐
actions using tools such as schema design. Changes are staged and applied by the
current writer—or any subsequent writer—before applying its modifications, in the
case of the current writer being considered failed. Another possibility is a central
transaction state server, which keeps a timestamp that is used to flag all correlated
edits.

No matter how it is implemented, the reading application needs to support this
mechanism in order to smoothly restart on partial data. The other option is to man‐
ually clean up partial updates before restarting the applications, most likely substan‐
tially increasing the MTTR.

Validation
After a backup or restore has been completed, it is prudent to validate the result. This
is a complicated process within Hadoop due to the diverse nature of the systems
involved. The easiest is HDFS, where a cyclic redundancy check (CRC) (checksum)
operation compares the data in the source and target locations. An optimized version
could use hashing algorithms, like Merkle trees, to speed up comparisons on incre‐
mental copies. Other parts of the stack are more involved and have no native support
at all.

Another approach would be to provide validation rules that allow for automated
checks after a backup or restore. For databases, this could include a restore of the
SQL dump to a temporary database in the backup location and then specific SQL
queries to validate the content. For example, if the database has updates every
minute, the validation rule could check that the backup has updates up to a minute
before the copy was made. Or, if there is an expected growth in raw data size or num‐
ber of records, either the size of the SQL export file could be compared to the previ‐
ous one or the temporary database could be used to perform a count, subsequently
assessing the observed figures with respect to some user-defined thresholds.
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For a restore, the original application code should include validation tests to confirm
the integrity of the restored data, or another set of user-supplied rules should be used
to verify the data. No matter which approach you choose, both the backup and the
restore should include a verification step immediately after each is completed.

Summary
Summarizing the previous sections, we can postulate the following:

• Backups involve a combination of available techniques, or custom implementa‐
tions for systems that lack built-in support.

• Snapshots only provide local versioning, and their consistency guarantees are not
clear.

• Replication is not suitable as a backup, but it can help with business continuity.
• Consistency requirements must be handled on the client side.
• The RTO and RPO drive the cluster design and should be considered from the

very beginning.
• There is no complete backup solution, which means a custom implementation is

needed.

If you are interested in a commercial offering (such as WANdisco) we highly recom‐
mend that you conduct a comprehensive due diligence check based on the previously
discussed topics.

Data Replication
Because replication helps in setting up a warm or hot standby copy, it is useful to
understand more of the architectural implications of providing such support. There
are two fundamental approaches to replication:

• Outside of the cluster, using techniques to split up traffic and to reliably deliver
any modification to all configured locations

• Within the cluster, using built-in or custom jobs to replicate data between sepa‐
rate cluster instances or physically distributed clusters

Only a few systems (for example, HBase) have built-in support for replication. Some
other areas are covered by Cloudera Backup and Disaster Recovery (BDR) or Hor‐
tonworks Data Lifecycle Manager (DLM), which allow the synchronization of data
(HDFS) and metadata (Hive/Impala Metastore) across clusters using scheduled tasks.

For purely external traffic distribution, there are many more choices, starting with
instrumenting the generating systems to tee off the data. Another, more hybrid
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approach is to use managed services, such as Apache Kafka or Apache Flume, to cre‐
ate a data bus that is then listened to and consumed by multiple target clusters. We
discuss these separately next.

HBase
The built-in replication feature of HBase allows for fast shipping of all modifications
of a configured column family to a different cluster. With proper network design and
traffic shaping, this can be (and has been) done for years. The source and target can
be in different datacenters and of completely different configurations. It is vital, of
course, to have enough bandwidth between them to ensure a timely delivery. Should
the bandwidth not match the average write throughput, the replication can obviously
never catch up.

HBase also allows for complex replication scenarios, including master-follower and
master-master, with circular dependencies if required. Every edit has the unique clus‐
ter ID attached to it so that replication across more than two clusters can be detected
and properly handled.

Of course, since HBase is a low-latency system, its replication tries to be as timely as
possible, shipping mutations across the interconnect while applying them to the peer
systems. This means that HBase replication is good for syncing one or more hot
standby clusters for fast failover. It does not replace the need to back up data (see
“HBase” on page 396), however, because user failures, such as accidentally deleting
data, are also replicated.

Cluster Management Tools
Commercial options to cover HDFS data and the Hive Metastore are available as
Cloudera BDR and Hortonworks DLM, which support scheduled synchronization
tasks to keep current copies. This usually is not for low-latency use cases but for a
more coarse-grained schedule; for example, every hour.

For BDR and HDFS files, you also have the option to enable HDFS snapshots on the
synchronized directories, which triggers a short-term snapshot while the sync is in
progress. For DLM, this is a fixed requirement that cannot be changed. Using this
feature ensures that all current files are frozen inside the snapshot and can be copied
asynchronously without any impact on ongoing changes to the data in the source
directory.

BDR also has the option to schedule regular snapshots within HDFS and to retain a
configurable amount of them. It does not yet have the option to copy the snapshots
to a remote location, making a true backup architecture more difficult. Additionally,
BDR only operates in pull mode, meaning that the jobs run on the BDR server that
has the tasks scheduled.
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A restore is an ad hoc task on the cluster that needs it, essentially synchronizing the
data from the dedicated backup cluster (it could even be a shared one) back to the
cluster that needs the copy.

Kafka
A more recent hybrid idea is to use a managed service, namely Apache Kafka, to act
as a replication system, multiplexing data into one or more Hadoop clusters.
Figure 13-1 shows this with a single cluster, but the same can be done with more than
one Hadoop cluster as final consumers.

Figure 13-1. Ingesting data into multiple clusters using Kafka

The idea is to harmonize the data before it reaches Hadoop and then to send the mes‐
sages reliably to each storage backend. Every Hadoop cluster can ingest the data at its
own pace and can even recover from periods of unavailability (for example, for main‐
tenance). This is facilitated by the Kafka consumer architecture, storing independent
offsets into the buffered messages. This approach works particularly well for stream‐
ing use cases, in which data arrives in small units, usually referred to as messages,
events, or records. This can be extended to include other auxiliary systems, such as
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Flume, to route the events from loosely coupled systems to Kafka for datacenter-local
staging (harmonizing).

Non-Event-Related Use Cases
Other use cases—for example, those including raw HDFS data, such as log files being
delivered to an ingest layer—could still use Kafka to queue metadata about the inges‐
ted files and to initiate a subsequent asynchronous copy process. Currently, there is
no native implementation of such a replication mechanism supplied with Hadoop. It
would require a bespoke solution. “Case Study: Automating Backups with Oozie” on
page 398 discusses an example implementation using Oozie.

A word of caution: using cluster-external replication is not without its challenges.
Because each incoming data point is processed by each cluster separately, there may
be side effects that can result in different cluster states. For example, assuming that
data is merged from multiple sources (like insurance claims that are cross-checked
with weather data), it could be that the dependent data arrives at varying times, yield‐
ing different results from the processing jobs.

Summary
We can summarize the previous sections as follows:

• Replication is necessary for low-latency use cases and fast recovery.
• It is only one part of the overall backup and disaster recovery strategy, because it

does not handle versioning of data for point-in-time recovery.
• Only a few Hadoop systems have a replication feature, and they are significantly

different from one another.
• Some tools exist to cover replication for certain systems in Hadoop, including

Cloudera BDR and Hortonworks DLM (covering HDFS and the Hive Meta‐
store).

• There are architectural choices that can help reliably deliver streaming data to
one or more Hadoop systems.

Hadoop Cluster Backups
For every part of the Hadoop stack, there are decisions to be made about what is
backed up, at what times, and what the SLAs (RTO and RPO) are, among other
issues. The overall cluster architecture plays a vital role in what is and is not possible.
A few more general prerequisites are:
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• Full read access to all used RDBMSs is available (that is, database credentials).
• A technical user account is created that has access to all data in HDFS (files and

directories) and HBase (namespaces and tables) that are to be included in the
backup.

• HDFS snapshots are enabled for all directories that need to be backed up.

The caveats, as discussed throughout this chapter, include:

• Enabling snapshots takes care of file-level consistency, but may not sufficiently
address the application-layer consistency.

• Using replication allows for faster failover in the case of a disaster, but does not
replace a regular backup, allowing access to point-in-time versions of the cluster
state and its stored data.

Now let’s discuss the various subsystems of a common Hadoop cluster setup, starting
with the backing databases used to retain the metadata and state.

Heterogeneous Systems
Replicating data from one cluster to another poses two major challenges:

Versioning
It is likely that replication or copying of data for backups is happening between
clusters running different software versions. There are strategies in place for both
HDFS and HBase that allow for reading or writing data across heterogeneous
clusters.

For copying data between instances of HDFS, the HFTP filesystem implementa‐
tion provides read-only access using HTTP, as opposed to the default binary API
access. For example, copying from an older cluster and saving it into a new ver‐
sion, an administrator could run the following command on the newer cluster:

$ hadoop distcp -i hftp://sourceFS:50070/src \
  hdfs://destFS:50070/dest

The -i tells the command to ignore failures during the copy, so that the entire
copy process does not fail due to, for example, intermittent connectivity issues.

For HBase, you need to ensure that the client version is supported by the servers.
For replication, be sure that the used ZooKeeper clients can communicate with
the remote servers.

Security
Another critical issue is how each cluster is secured. It is common for Hadoop
clusters to use Kerberos (see Chapter 9) as their authentication mechanism. For
two or more clusters to exchange data requires that they can talk to each other.
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For Kerberos, it is also common to have remote clusters running in separate
realms, which means that some form of cross-realm trust needs to be established.
This has been solved, in practice, but is not an easy task and may require consid‐
erable time and resources to get right.

Additionally, after authentication comes authorization, trusted user accounts
that can be used to ingest or divulge the data. This might necessitate technical
user accounts with a broader set of privileges, and they need to be handled with
care.

The bottom line is that it is possible to replicate or copy data across clusters running
different versions, given the right circumstances and with enough effort. Should both
versions be incompatible due to, for instance, a breaking protocol change between
major versions, you are required to bring both (or all) of them into the same version
range to make communication possible.

Databases
As an example, the Cloudera CDH online documentation has detailed information
about which database to consider for a backup. Table 13-2 provides a summary.

Table 13-2. Overview of service databases and their expected sizes

Service name DB name Size
Cloudera Manager cms Small (< 100 MB)

Activity Monitor (MRv1) amon Large

Report Manager rman Medium

Hue hue Small

Hive Metastore (Beeswax) metastore Small

Sentry sentry Small

Oozie oozie Large

Cloudera Navigator Audit nav Large

Cloudera Navigator Metadata navms Small

There are two types of databases: those required by the common Hadoop compo‐
nents, and those required by the cluster management tools. Other distributions vary,
especially in the latter.

Obviously, these databases are only present if the accompanying Hadoop subsystem
is installed. For example, you only have access to the Oozie database if Oozie is
installed on the source cluster. The mentioned documentation also explains the pos‐
sible choices for backing up the databases, depending on the chosen RDBMS. For
MySQL, for example, you can use the supplied mysqldump command-line tool to
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export the entire database into a text file, enabling the restoration of the database by
executing the contained SQL statements (DDL and DML).

Only a proper production-ready database system (such as Oracle, MySQL, or Post‐
greSQL) can be relied upon to support consistent backups; the default embedded
database systems are for testing only and may not support this functionality.

Subsystems
The following sections itemize, for every Hadoop subsystem, what to consider with
regard to the backup process.

Cloudera Manager
Both Cloudera Manager and Navigator store details in various databases. These need
to be backed up to retain the cluster configuration, as well as statistics, metrics, and
metadata.

There are supported database system options, with a managed PostgreSQL instance
being the suggested choice during installation. You can also use existing and self-
managed systems, such as Oracle and MySQL. The choice should not cause differ‐
ences in the overall size of the data they will contain but will influence the tools used
to back up the data. The online documentation includes information on how to back
up the supported databases.

In addition to the main Cloudera Manager database just discussed, there is also an
option to extract the cluster setup using the REST-based Cloudera Manager API. The
API returns a JSON-based cluster descriptor, which also contains most of the neces‐
sary cluster details, including users, hosts, clusters, services, and more. It is an addi‐
tional measure to also back up the JSON descriptor, since it can be used to
reconstruct the cluster by importing it into a new set of machines. A simple script
using curl is sufficient to extract the descriptor and then save it to the backup HDFS
cluster by way of a dedicated target directory. The JSON file should include the API
version used to extract the descriptor—it is important to use the same API version
when importing it again.

Apache Ambari
Similar to Cloudera Manager but available as open source, Apache Ambari is a
cluster-management tool that enables administrators to perform various tasks in a
graphical user interface (GUI). Ambari uses a single database to store all its settings
and supports a number of common database systems.

The steps to back up the database are the same as discussed in the previous section.
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HDFS
The raw data files in HDFS can be copied to a backup location and possibly stored
with different properties, such as access mode, owner, compression type, and block
replication count. Any professional, production-grade cluster architecture implies the
existence of an information architecture that prescribes the layout of files within
HDFS. With the use of the access control provided by HDFS and/or Sentry or
Ranger, the layout defines how data is ingested, processed, and provided to consum‐
ers as part of data pipelines. The backup process should align with the IA and back
up the selected data files in such a way that they can be restored without much man‐
ual intervention. The append-only, single-writer nature of HDFS simplifies the pro‐
cess, but to ensure consistency across many files, HDFS snapshots should be used to
temporarily freeze the content of a directory. The backup process then reads the
snapshot instead of the live directory and copies the data to a safe place. This is often
implemented using the Hadoop-supplied DistCp (short for distributed copy) tool, or
a variation thereof.

In addition to the data, HDFS also has metadata stored by the NameNodes, including
the so-called fsimage file, along with any pending edits (see “HDFS” on page 348).
There is an API call and a matching command-line wrapper that allows for the
downloading of the image file from the active NameNode. It does not include the
recent edit logs, however, which means that up to one hour’s worth—which is the
default setting for HDFS—of changes will be missing. It is therefore questionable
whether to store this file at all, although in the case of a catastrophic failure and with
all other forms of backup also failing, it is a viable option to keep some state of the
cluster backed up for recovery, even if it is outdated.

Hive Metastore
Both Hive and Impala, which are vendor-provided SQL engines, share the same
metadata backend—the Hive Metastore. It is backed by a relational database, with
support for the common RDBMSs. The metadata includes the mapping of raw data
stored in HDFS, HBase, and other pluggable storage backends into a relational
model. It adds a schema to unstructured data, mapping values into columns with
associated data types.

Backing up the metadata database requires the same approach used for the service
databases discussed previously, including using the matching tools to extract a con‐
sistent copy of the entire database content. In addition, data could be replicated using
an HA setup, as explained in “Hive” on page 358, or mirrored by an external tool,
such as Cloudera BDR or Hortonworks DLM.
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HBase
Although all data behind HBase is stored in HDFS, it is not possible to use HDFS
snapshots to freeze its state, copy the data files, and subsequently restore it. There are
so many files and in-memory data structures in HBase that, under heavy load, it is
possible to snapshot an inconsistent state as far as HBase is concerned. Instead, a
proper backup solution must use the supplied HBase snapshot tools, which have
shipped with HBase since version 0.96/0.98. Snapshots allow freezing a consistent
state with regard to tables and HBase metadata, and should be applied during an
active backup process. The supplied tools enable snapshotting a table, exporting the
contained files, and copying them to a safe location. After the copy operation suc‐
ceeds, the snapshot can be deleted (or kept, if it is part of a more local recovery pol‐
icy).

In addition, HBase ships with a replication feature that can be used to keep all muta‐
tions synchronized (though with latencies) across multiple clusters—including out‐
side the boundaries of a datacenter. As previously discussed, replication is an
additional measure that can (and should) be added to guarantee low RPO and RTO
because a near real-time copy of the data is available on a standby cluster.

HBase also ships with the Export and Import tools, although both are less
production-grade and heavily depend on proper use. The former exports a table into
a file, but might do so while the table is being written to. This can cause inconsisten‐
cies in the backup, but it might work for idempotent updates, depending (again) on
the use case. In other words, neither approach is truly consistent if the application is
writing to more than one region, including multiple tables. A snapshot or export
might happen between related mutations, with partial updates being included in the
backup. The application must be able to handle this upon restoring data and resum‐
ing operations.

A final note: because HBase is frequently used in low-latency use cases, it may be pru‐
dent to perform backups in off-peak times, when the additional I/O to read the data
is not as crucial or may have no impact at all.

YARN
All the job execution state is persisted in the state store, which comes with various
implementations. It is either memory-, file-, or ZooKeeper-based, with the latter
being used in HA setups (see “YARN” on page 353). Since job execution and its state
are transient, storing the current information as part of a backup is usually nontrivial
or even not wanted. Instead, during cluster recovery, it is important to have some
means to restart the data pipelines on another system. This is done either using some
authoritative messaging system, such as an MQ system, or using a replicated event
log with Kafka. This is out of scope for our current discussion and is not addressed.
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Oozie
Just like the Hive Metastore, Oozie has a relational database state store, backed by the
common RDBMS choices seen earlier. The same rules apply: back up the database for
recovery, and/or replicate for low RTO using a standby system (see “Oozie” on page
370). But contrary to the HMS, Oozie’s state store also contains transient informa‐
tion, which includes where workflows are currently situated with regard to their
actions. Additionally, the store holds the workflow definitions and all the higher-level
information, such as coordinator and bundle details. It must be backed up to restore
the data pipelines created in Oozie, unless some other deployment process is in place
(for example, Chef, Ansible, or Puppet) to programmatically re-create the workflow
setup.

Oozie also needs HDFS files, which represent the actual workflow, coordinator, and
bundle definitions, any additional data and required library files, and more. You need
to back these up using the HDFS approach (DistCp), as described in “HDFS” on page
395.

Apache Sentry
CDH comes with a central role-based access control (RBAC) feature, provided by Sen‐
try, which establishes a single point of reference for all user activities. Its database-
backed store holds all the defined roles and rules that apply to many client
operations, across almost all Hadoop ecosystem tools. Like others, this database
needs to be backed up regularly for recovery, and it requires the common tools just
discussed.

Apache Ranger
Similar to Sentry, Ranger provides a central access control feature for Hadoop clus‐
ters. It uses an attribute-based access control (ABAC) approach to define policies.
Ranger uses one of the common database systems to store its data. You need to
ensure that its database is backed up on a regular basis, using the tools provided by
the chosen database system.

Hue
Some Hadoop distributions include Hue as a graphical user interface for Hadoop,
providing access for end users to HDFS, HBase, Oozie, and others. Its database stores
users and their credentials as well as user data, such as saved queries. All the earlier
remarks apply equally here—that is, the database is backed by a choice of RDBMSs,
and extracting the data is dependent on the supplied tools. An optional mirroring of
the database for HA is orthogonal to the backup efforts (see “Hue” on page 372).
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Case Study: Automating Backups with Oozie
In this section, we put the concepts from the preceding sections to practice and
present a framework in Oozie that performs the necessary backup and restore
operations.

Introduction
One approach in Hadoop to automate the entire backup process is to create Oozie
workflows—one for backup and one for restore. Each backup source is represented
by a generic workflow that can back up, for example, a database, and all parameters,
such as the URI, username, and password, are handed in at runtime. Figure 13-2
shows this in a simplified form (omitting all possible sources and the optional valida‐
tion steps).

Figure 13-2. Backup workflow using Oozie

The validation steps are part of the subworkflows and are triggered if a flag is set. All
generic workflows are combined into larger ones, with the configuration passed into
the subflows. The main workflows are then instrumented using coordinators to run
the backup (and restore, if needed) at fixed intervals. You can optionally configure
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subflows be configured to execute only at specific invocations of the workflow. This
allows for different backup schedules for each source.

Overall, triggering the backup process is possible based on time or larger workflow
events. Oozie supports multiple notions of scheduling workflows based on time,
including a Linux Cron-style syntax. This can be used to run the backup once per
hour or day. Alternatively, you could connect a backup run to the availability of cer‐
tain files in HDFS. Oozie provides file-based triggers that can monitor a directory
and start a workflow when a specific condition is met.

We first look at the various subflows and then combine them into the main backup
workflow.

Subflow: HDFS

This flow is able to copy a dataset from a source to a target location, similar to rsync,
though the capability here is more suitably provided by the distcp tool. It has
options to retain deleted files or to synchronize between the source and target loca‐
tions. Usually, the flow is invoked with a new, empty target directory, which makes
the synchronization option often negligible:

<?xml version="1.0" encoding="UTF-8"?>

<!--
  Note: Using approach described in
    http://www.helmutzechmann.com/2015/04/23/oozie-loops/
-->
<workflow-app xmlns="uri:oozie:workflow:0.5"
name="backupHDFSWF">
  <parameters>
    <property>

<name>counter</name>
<value>1</value>

    </property>
  </parameters>
  <global>
    <job-tracker>${jobTracker}</job-tracker>
    <name-node>${nameNode}</name-node>
    <configuration>

<property>
<name>mapred.job.queue.name</name>
<value>${queueName}</value>

</property>
<property>
<name>oozie.launcher.mapred.job.queue.name</name>
<value>${queueNameLauncher}</value>

</property>
    </configuration>
  </global>
  <start to="checkIfDone" />
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  <decision name="checkIfDone"> 
    <switch>

<case to="distCp">
${not empty wf:conf(concat("inclDirsHDFS_", counter))}

</case>
<default to="end" />

    </switch>
  </decision>
  <action name="distCp"> 
    <distcp xmlns="uri:oozie:distcp-action:0.2">

<prepare>
<mkdir path="${outputPath}/hdfs_${counter}"/>

</prepare>
<arg>-m</arg>
<arg>10</arg>
<arg>${wf:conf(concat("inclDirsHDFS_", counter))}
/*</arg>
<arg>${outputPath}/hdfs_${counter}</arg>

    </distcp>
    <ok to="loop" />
    <error to="failed" />
  </action>
  <action name="loop"> 
    <sub-workflow>

<app-path>${wf:appPath()}</app-path>
<propagate-configuration/>
<configuration>
<property>
<name>counter</name>
<value>${counter + 1}</value>

</property>
</configuration>

    </sub-workflow>
    <ok to="end" />
    <error to="failed" />
  </action>
  <kill name="failed">
    <message>HDFS backup script failed [error:

${wf:errorMessage(wf:lastErrorNode())}]
    </message>
  </kill>
  <end name="end" />
</workflow-app>

The workflow loops over a list of directories. The first action is to check whether
the loop is complete.

The actual distcp action copies one directory.

The loop action increments a counter that is used to enumerate over the list of
directories.
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Not deleting files can have a detrimental effect on the tools that use
them. For example, not deleting files in a Hive warehouse directory
can potentially corrupt the table it represents.

Subflow: HBase
As with HDFS, it is best for HBase tables to first apply a snapshot (the HBase native
variant, not the HDFS snapshot feature) and to then export the included files. At the
end, the snapshot can be dropped or it can be retained as part of an application-
driven recovery architecture. As explained in “HBase” on page 396, HBase does not
support cross-region (especially cross-table) consistent snapshots. Each table needs to
be treated separately and copied to a location in the backup directory. The HBase
backup workflow iterates over the given namespaces and/or tables (wildcards are
allowed), applies the snapshot, exports the files directly to the backup location, and
then removes the snapshot:

<?xml version="1.0" encoding="UTF-8"?>

<workflow-app xmlns="uri:oozie:workflow:0.5"
name="backupHBaseWF">
  <global>
    ...
  </global>
  <start to="runScript"/>
  <action name="runScript"> 
    <shell xmlns="uri:oozie:shell-action:0.3">

<prepare>
<mkdir path="${outputPath}"/>

</prepare>
<exec>hbaseBackup.sh</exec> 
<argument>host=${host}</argument>
<argument>port=${port}</argument>
<argument>user=${user}</argument>
<argument>password=${password}</argument>
<argument>outputPath=${outputPath}</argument>
<env-var>HADOOP_USER_NAME=${wf:user()}</env-var>
<file>bin/helper.sh#helper.sh</file>
<file>bin/hbaseBackup.sh#hbaseBackup.sh</file>

    </shell>
    <ok to="end"/>
    <error to="failed"/>
  </action>
  <kill name="failed">
    <message>HBase backup script failed
    [error: ${wf:errorMessage(wf:lastErrorNode())}]</message>
  </kill>
  <end name="end"/>
</workflow-app>
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The main workflow action is wrapped into an external script.

The HBase backup script does all the work in taking a snapshot and then export‐
ing it.

Subflow: Database
The database backup workflow has a simple decision node branching the execution
into subflows per database system. One implementation is the MySQL backup work‐
flow, which uses the MySQL tool mysqldump to extract a copy of the entire named
database in the form of SQL DDL and DML commands. This file is then piped into a
location in HDFS.

First, the generic database backup workflow:

<?xml version="1.0" encoding="UTF-8"?>

<workflow-app xmlns="uri:oozie:workflow:0.5" name="backupDBWF">
  <start to="selectDBWF"/>
  <decision name="selectDBWF">
    <switch> 

<case to="backupMySQLWF">${dbType eq "mysql"}</case>
<!-- Enable future support for other database systems here
<case to="backupPostgresWF">${jobType eq "postgres"}
</case>
<case to="backupOracleWF">${jobType eq "mysql"}</case>
-->
<default to="end"/>

    </switch>
  </decision>
  <action name="backupMySQLWF"> 
    <sub-workflow>

<app-path>backupWF/backupDBWF/backupMySQLWF</app-path>
<propagate-configuration/>

    </sub-workflow>
    <ok to="end"/>
    <error to="failed"/>
  </action>
  <kill name="failed">
    <message>Database backup failed
    [error: ${wf:errorMessage(wf:lastErrorNode())}]</message>
  </kill>
  <end name="end"/>
</workflow-app>

The switch routes the flow based on the configuration settings.

For MySQL, a special action is available that handles the backup specifics.
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The workflow configuration is mostly set by defaults so that an administrator has to
override only the necessary values (here, the database hostname):

#dbTypeHiveDB=mysql
dbHostHiveDB=muysql.foobar.com
#dbPortHiveDB=3306
#dbNameHiveDB=metastore
#dbUserHiveDB=hive
dbPasswordHiveDB=hivepw

And here’s the MySQL-specific workflow:

<?xml version="1.0" encoding="UTF-8"?>

<workflow-app xmlns="uri:oozie:workflow:0.5"
name="backupMySQLWF-${dbName}">
  <global>
    ...
  </global>
  <start to="runScript"/>
  <action name="runScript">
    <shell xmlns="uri:oozie:shell-action:0.2">

<prepare>
<mkdir path="${outputPath}"/>

</prepare>
<exec>mysqlBackup.sh</exec> 
<argument>dbHost=${dbHost}</argument>
<argument>dbPort=${dbPort}</argument>
<argument>dbName=${dbName}</argument>
<argument>dbUser=${dbUser}</argument>
<argument>dbPassword=${dbPassword}</argument>
<argument>outputPath=${outputPath}</argument>
<env-var>HADOOP_USER_NAME=${wf:user()}</env-var>
<file>bin/helper.sh#helper.sh</file>
<file>bin/mysqlBackup.sh#mysqlBackup.sh</file>

    </shell>
    <ok to="end"/>
    <error to="failed"/>
  </action>
  <kill name="failed">
    <message>MySQL backup script failed
    [error: ${wf:errorMessage(wf:lastErrorNode())}]</message>
  </kill>
  <end name="end"/>
</workflow-app>

Invoke the shell script that does the actual backup, while passing in all
parameters.

The shell script exports the SQL into HDFS:

#!/bin/bash
source ./helper.sh
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dbHost=$(getOptionVal dbHost "$*")
dbPort=$(getOptionVal dbPort "$*")
dbName=$(getOptionVal dbName "$*")
dbUser=$(getOptionVal dbUser "$*")
dbPass=$(getOptionVal dbPassword "$*")
bkpRoot=$(getOptionVal outputPath "$*")

output=${bkpRoot}/${dbName}
srvArgs="--host=${dbHost} --port=${dbPort}"
dbmArgs=" --user=${dbUser} --password=${dbPass}"

mysqldump ${srvArgs} ${dbmArgs} ${dbName} | \
hdfs dfs -put - ${output}

Backup workflow
The mentioned main backup workflow ties all of the preceding elements together. It
uses an XML-based properties file, named config-default.xml, which initializes the
various settings with sensible defaults (shown abbreviated):

<configuration>
  <!-- General Settings -->
  <property>
    <name>outputPath</name>
    <value>${backupPath}</value>
    <description>The default output location for the backup</description>
  </property>
  ...
  <!-- Hive Metastore Settings -->
  <property>
    <name>backupHiveDB</name>
    <value>true</value>
    <description>Backup Hive Metastore database</description>
  </property>
  <property>
    <name>dbTypeHiveDB</name>
    <value>mysql</value>
    <description>Default database type is MySQL</description>
  </property>
  <property>
    <name>dbPortHiveDB</name>
    <value>3306</value>
    <description>Default MySQL port</description>
  </property>
  <property>
    <name>dbNameHiveDB</name>
    <value>metastore</value>
    <description>Default database name for the schema database</description>
  </property>
  <property>
    <name>dbUserHiveDB</name>
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    <value>hive</value>
    <description>Default user owning the database</description>
  </property>
  <property>
    <name>dbPasswordHiveDB</name>
    <value>hive</value>
    <description>Default (weak) password for database user</description>
  </property>
  ...
  <!-- HDFS Data Settings -->
  <property>
    <name>backupHDFS</name>
    <value>true</value>
    <description>Back up HDFS data</description>
  </property>

  <!-- HBase Data Settings -->
  <property>
    <name>backupHBase</name>
    <value>true</value>
    <description>Back up HBase data</description>
  </property>
</configuration>

This includes Boolean flags defining what is included in a backup. Each of these flags
may trigger a database, HDFS, or HBase backup set up with the default values, while
overriding any of them with runtime settings. For example, a concrete properties file
overrides all node settings with those pertaining to an actual Hadoop cluster.

After the workflow starts, it simply branches out in many parallel actions, imple‐
mented as subworkflows. These handle the aforementioned subworkflow implemen‐
tations, specialized with, for example, database-specific settings. All the backup data
is stored in one timestamped HDFS directory on the backup cluster executing the
workflow. Each type of subflow further has its own subdirectory, storing its data in
the form that is native to the task. For databases, this means that a database dump file
containing SQL statements is stored, whereas for HDFS, the raw files are copied.
Should any of the processing fail, the workflow aborts and reports the error. In the
event that all subflows succeed, the main workflow also succeeds and exits with a pos‐
itive return code.

Restore
A backup is only as good and useful as its use in the recovery of an unhealthy cluster.
As with the failure scenarios, restoring metadata and raw data is a matter of the
objective, and that can vary a lot. For example, if some data is lost due to user error,
even the HDFS trash feature might be sufficient to recover it. But for more wide‐
spread problems, such as a total cluster failure, a restoration of the entire state at one
point in time is needed. Based on the RTO, there are different scenarios possible:
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Full rebuild
This scenario requires the cluster to be rebuilt, although the RTO may vary if the
hardware and software configuration is already in cold or warm standby. If the
entire cluster needs hardware and software provisioning, the RTO will be days, if
not weeks. If there is hardware but it needs to be configured, using an automated
deployment process should restore services, including the backed-up data, within
days, if not hours.

One option to avoid the cost of having a cold standby cluster sitting around is the
use of a public cloud offering such as Amazon Web Services (AWS). This allows
for quick provisioning of a cluster of likely shared machines, which are then con‐
figured similarly to the lost local cluster. Obviously, the real difficulty here is to
move the data during a recovery process, but this can be avoided by, for example,
using Amazon S3 for backup data or having the cloud provider offer a high-
bandwidth interconnect that allows you to copy the backup data when needed.

Partial rebuild
A partial rebuild is not about the failure of nodes, which is covered as part of the
normal Hadoop cluster operations. Instead, it means that some data needs to be
restored from backups. This can occur in hours, if not minutes, depending on the
size of the data to be restored and how automated the process is.

Failover
In the case of RTOs of less than an hour or that border on real time, only a mir‐
rored, replicated hot standby is viable. This requires one or more clusters of the
same size (in terms of storage and processing resources) to be available at all
times, with all data being replicated across in near real time.

All of the discussed caveats apply, including the observation that a true active-
active setup with strict consistency guarantees is very difficult to achieve (and
often is impossible to implement due to the cost of such an architecture).

The exercise of building an Oozie workflow that restores the data based on a set of
configuration parameters is left to you. You can follow the same idea as presented in
the previous section—that is, have one main workflow that is initialized with default
values, and a separate subworkflow for each type of source that handles the specifics
of the implementation.

Summary
This chapter raised a lot of questions and was able to give you only a limited set of
tools with which to work to implement your own backup and disaster recovery strat‐
egy. Whatever you do, it will be bespoke as a whole, with possibly some help from
specific scripts or software packages to make your journey easier. We would have
loved to present you with a list of available backup solutions and to score them on
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some neutral scale so that you can pick what you need. Alas, there is no such one-
size-fits-all solution because Hadoop is a diverse ecosystem that, depending on the
chosen distribution, varies in its requirements with regard to data and metadata.

You are left with the task of carefully assessing your risk and then choosing the best
approach to keep you safe from losing data. Define your RTO and RPO, and then use
the presented ideas, such as building an Oozie-based workflow, to back up your
important data on a regular basis. Also ensure that you include validation in your
design, or you may still lose more data than expected in the case of a problem, if the
backed-up data cannot be restored.

Finally, educate users to build their applications and pipelines with some level of
resilience to failures. All users should know what could happen when the infrastruc‐
ture experiences an unexpected hiccup. As long as everyone agrees, you can set
expectations and ensure that fingers will not be unnecessarily pointed—especially not
in your direction.
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PART III

Taking Hadoop to the Cloud

In the previous chapters, we studied how to build Hadoop clusters that meet enter‐
prise requirements; we now turn our attention to achieving the same in the cloud. 
Cloud technology enables the entire stack of information technology to be consumed 
as fully programmable and automated services. For example, storage, networking, 
and servers become infrastructure as a service (IaaS), and platform-level software 
such as database deployments or access management software becomes platform as a 
service (PaaS). The high degree of programmability and automation allows almost 
complete self-service for the customer to control and customize each layer, from IaaS 
to PaaS.

Before large-scale public cloud computing became part of the mainstream in IT, vir‐
tualization for Hadoop was mostly considered an antipattern. This was in large part 
due to Hadoop’s distributed nature and its extensive reliance on local disks on each 
server for efficient operation. Running Hadoop on clouds thus often boils down to 
one question: can I store all my data in the cloud and process it efficiently? The 
answer is yes.

Public cloud providers operate at such scale (often called hyperscale), that Hadoop 
environments and their high demand for I/O throughput can be accommodated at 
reasonable prices. In the meantime, Hadoop distributors have also acted on the sig‐
nificant opportunity of Hadoop in the cloud: they have massively invested in easing 
deployment (increasing performance and efficiency) as well as flexible cluster life 
cycle models (which support starting, growing, shrinking, and stopping on demand, 
without affecting the availability of data).



This provides compelling motivation for enterprises to move Hadoop clusters to
cloud environments based on operational efficiency, and it has thus become a cer‐
tainty that the cloud does not stop at Hadoop.

And so, to enable a solid understanding of the technologies that clouds are built on
and the caveats when pairing them with distributed systems like Hadoop, we cover
the following content in the remainder of the book:

• Chapter 14 introduces the technological building blocks that make up clouds,
and fosters an understanding of how they are leveraged to address Hadoop
specifics.

• In Chapters 15 and 16, we provide an overview of how to build big data clusters
in private cloud environments and with public cloud providers.

• We provide detail around automation of big data clusters in the cloud as well as
how to run them securely in Chapters 17 and 18, respectively.



CHAPTER 14

Basics of Virtualization for Hadoop

In this chapter, we assess virtualization technologies on a basic level. Although vir‐
tualized IT infrastructure scales well when stacking individual small to medium-sized
applications, scaling virtual compute clusters and distributed systems requires special
attention.

We begin with compute virtualization, which means running virtual machines (VMs)
in a hypervisor, such as KVM or VMware. This is the most basic and well-defined
building block in virtualized infrastructure. (In addition to virtualization on hypervi‐
sors, containerization is an emerging and relevant technology for enterprises; we
cover it in Chapter 15.)

Even more important to our discussion of Hadoop in the cloud is the subject of stor‐
age virtualization, which we look at next. This means abstracting storage devices into
containers that are centrally hosted in remote storage arrays based on storage area
network (SAN) or object storage technology.

The third layer of virtualization to consider is network virtualization, also referred to
as Software Defined Networks (SDN). As we will see, your choice of virtualization
mechanisms will drive the lifecycle model of your clusters in the cloud.

We will cover all of these subjects in this chapter.

Why Start So Basic?
Maybe you are wondering right now why you have to worry about this. After all, it’s
the cloud!

To be sure, the cloud makes running many applications much simpler, but architect‐
ing and running Hadoop requires extra thought and consideration. Hadoop, as a dis‐
tributed system with its own resilience features, is not always a natural fit with
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virtualization technology. To bring it there, you need to understand how cloud infra‐
structure affects your cluster’s performance, availability, and even the durability of
your data.

If you want to build a private cloud to be able to support Hadoop, you simply have to
know these things in order to even build a stable service.

When you run Hadoop in the public cloud, the very same technological concepts and
their imperfections are at work under the hood, but the provider’s hyperscale infra‐
structure allows you to make yourself less exposed to them.

If you are completely familiar with the underlying concepts and would prefer to jump
straight to solutions, you can skip ahead to Chapters 15 and 16. Otherwise, it is well
worth your time to take a step back and look at the actual problems that emerge when
virtualizing Hadoop.

Compute Virtualization
CPU and RAM are basically resources that virtualize well, with minimal performance
overhead when compared to bare metal, so we don’t have to give particular consider‐
ation to them as a resource, per se. What we do need to consider, though, is the
amount of each that we need to allocate to VMs for Hadoop and in what configura‐
tions.

Suppose we’re in a greenfield situation in which we have to build the cloud, so to
speak. The simple goal we have is to run Hadoop on a set of VMs, which in turn run
on physical hosts.

In clouds, a VM is typically referred to as an instance. In the
remainder of the book, we use these terms interchangeably.

As with any virtual compute environment, we have to consider the following basic
questions:

• How many VMs will be colocated on a physical host?
• How will the VMs holding the cluster nodes be distributed across physical hosts?

The answer to the first of these questions depends on the intended use case. Although
Hadoop tolerates very small node configurations, the amount of RAM and CPU allo‐
cated to an instance ultimately defines which use cases can be implemented on the
virtual cluster. Consider the high-end 2U worker node from “Server Form Factors”
on page 91. If we wish to host three equally sized VMs on it, a hypervisor will allot
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less than 80 GB to a worker node. If, for example, our users intend to perform effi‐
cient joins between large tables, they may struggle to do so with smaller memory allo‐
cations. Often, however, the performance requirements for virtual Hadoop
environments are more relaxed than on bare-metal infrastructure. At the other
extreme, we have come across environments in which the complete hypervisor is
dedicated to a single instance.

Virtual Machine Distribution
The second question about the distribution of VMs for a Hadoop environment is
more involved. The provisioning mechanism of your virtualization software may
colocate several master roles or worker roles from the same cluster on the same phys‐
ical host in such a way that the failure of that host may disrupt the operation of the
whole cluster!

Consider the scenario outlined in Figure 14-1, on the left. In this example, two virtual
Hadoop clusters (dark gray, light gray) are deployed across five physical hosts. Here’s
what would happen in the event of a failure of one of these:

• If physical host 1 were to fail, the entire cluster1 would be without a NameNode
and thus would stop functioning.

Figure 14-1. VM placement

• If physical host 4 were to fail, cluster2 would lose its HDFS quorum majority and
would not allow any writes.

• If physical host 2 were to fail, some blocks on that host might be missing until it
was fully recovered. This is because there is a high likelihood that there are some
blocks in HFDS with all three replicas on DataNodes1–3. From the NameNode’s
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point of view, this is perfectly legitimate, since it is not aware of the VM topol‐
ogy. The same applies to physical host 5 for cluster2.

• The only host in this example whose failure would not cause the failure of an
entire virtual cluster is physical host 3.

Virtualization experts often claim that the loss of a physical host can be easily toler‐
ated because the failed VMs can be automatically respawned on another hypervisor,
but this is not guaranteed to work in the case of Hadoop. There are a few reasons for
this:

• If you use local storage, you cannot migrate, because the to-be-migrated storage
is not available due to the loss of the physical host.

• Migrating three Hadoop nodes might mean the need to provision a large amount
of RAM. In the previous example, the equivalent of one physical host would have
to be kept spare to tolerate the failure of another, which is not very economical.

The problem of bad placement can sometimes be exacerbated by
features of your cloud solution. For example, AWS provides
optional placement groups which attempt to collocate VMs as
closely as possible, to optimize network bandwidth.

Consider alternatively the setup on the right in Figure 14-1, where the distribution of
VMs across physical hosts ensures that a failure of any one node will not bring down
any of the virtual clusters.

Anti-Affinity Groups
For large clusters on a big collection of physical hosts, it can be a daunting task to
juggle many VMs and their placement, which is why virtualization software often
contains features to define rules for mutual anti-affinity among a group of VMs. This
ensures that no two VMs of a given anti-affinity group are placed on the same physi‐
cal host. The correct placement of VMs from Figure 14-1 could have been achieved
via the four anti-affinity groups in Table 14-1.

Table 14-1. Example anti-affinity group definitions for two virtual clusters

Anti-affinity group Members
Cluster1 master roles NameNode1+JournalNode1, NameNode2+JournalNode2, JournalNode3

Cluster1 worker roles DataNode1, DataNode2, DataNode3, DataNode4, DataNode5

Cluster2 master roles NameNode1+JournalNode1, NameNode2+JournalNode2, JournalNode3

Cluster2 worker roles DataNode1, DataNode2, DataNode3, DataNode4

414 | Chapter 14: Basics of Virtualization for Hadoop



For example, VMware supports the creation of anti-affinity groups as part of its Dis‐
tributed Resource Scheduler (DRS). OpenStack, which we discuss in detail in “Open‐
Stack” on page 435, features the Sahara plug-in, which automates anti-affinity rules as
part of cluster role definitions.

Alternatively, in contrast to providing anti-affinity purely at a host level, VMware
offers an approach in which HDFS becomes aware of the hypervisor topology and
can provide anti-affinity at the HDFS level. We cover this in “VMware and Pivotal
Cloud Foundry” on page 441.

Achieving strong anti-affinity is often not possible. As we see in Chapter 16, there is
limited support for this with public cloud providers. But the hyperscale characteris‐
tics in public clouds typically offer acceptable durability characteristics and give us
ways to work around this, via backups.

If you are implementing a private cloud, it is basically up to you to find a solution to
this problem. We show you what is possible today in Chapter 15.

Storage Virtualization
Similar to the storage stack in a bare-metal Hadoop cluster, virtual storage for
Hadoop is typically more complex to deal with than virtual compute. Virtualization
of storage may be performed by the hypervisor on locally attached disks, but it also
frequently relates to remotely attached storage.

As we did earlier, let us imagine what we would have to consider if we were to build a
storage solution for virtual Hadoop clusters ourselves.

The paradigm of remotely attached storage has been prevalent and heavily invested
in by companies for nearly two decades. As Chapter 4 showed, many state-of-the-art
datacenter networks are designed for north-south traffic, and oversubscription of
ports is common. In that case, the same design naturally applies to the storage
network.

Although the data path in Hadoop clusters can often deal with higher latencies, it suf‐
fers in overall performance if parallel storage throughput is not high. Hadoop may
put such a strain on remotely attached storage and its network that it literally brings
other workloads in the virtualization platform to a halt.

For virtual Hadoop clusters, we therefore have two feasible options:

• Local storage, which is attached to a server via SAS or SATA and directly virtual‐
ized by the hypervisor

• Highly scalable remotely attached storage, such as a SAN or object storage, with
high parallel throughput
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Let’s look at each of these two options in turn.

Virtualizing Local Storage
When building virtual Hadoop clusters with local storage, we can safely assume that
new hardware will be used because preexisting virtualization infrastructure typically
does not contain enough local storage devices to implement HDFS in a useful
manner.

With that assumption in mind, let’s pick a 2U server with 24 disks, such as the one
we introduced in “Server Form Factors” on page 91.

One way to virtualize its local disks is to merge them entirely into a storage pool, as
shown in Figure 14-2 on the left. From this storage pool, logical volumes are
exported. These are then presented as disks to the VMs. In practice, merging the
disks into a storage pool means some form of Redundant Array of Independent
Disks, which brings back all the disadvantages we discussed in “RAID?” on page 82.

Figure 14-2. Options for virtualizing local storage

With some hypervisors, it’s possible to export whole disks directly to the hypervisor,
as shown in Figure 14-2 on the right. This might seem clumsy because it means that
after a tenant uses these disks, their spare capacity is not available for other tenants.
But even in the alternative case of using a logical volume in between, you ultimately
need to rigidly assign the size of logical volumes to VMs. Any new tenant signifi‐
cantly reduces the capacity and available bandwidth for other tenants, whereas the
previous approach arbitrates both via the hypervisor’s storage pool.
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RAID and Storage Pools
As we covered in “RAID?” on page 82, RAID on Hadoop can lead you down a slip‐
pery slope.

On the other hand, in virtual environments, RAID can allow a single tenant to take
advantage of the full bandwidth of all disks. In the storage pool example in
Figure 14-2, for instance, the DataNode on cluster1 would benefit greatly in terms of
storage throughput if cluster2 were currently idle and cluster3 not yet provisioned. By
contrast, in the disk passthrough example, cluster1 will always be limited to a
throughput of three disks, regardless of the state of the other clusters.

An additional incentive could be to reduce the replication in Hadoop storage systems
because of the increased durability of RAID. But who understands the exact ramifica‐
tions of interspersing RAID 10/RAID 6/RAID 5 with two replicas? How is the collab‐
oration between the Hadoop team and the server team? Also, losing a RAID array
means completely losing a full replica for all virtual clusters at once.

In many on-premises scenarios, virtualized local storage may be the only option to
virtualize Hadoop. But it makes storage for your tenants more complex and also sta‐
tionary, or sticky, as we discuss in “Cluster Life Cycle Models” on page 425.

SANs
Another way to provide your clusters with disk devices is to use SANs. In simple
terms, SANs send Small Computer Systems Interface (SCSI) disk blocks over a net‐
work between a client and a central storage array. The client is presented a disk,
which appears to be local.

SAN solutions can more generally be referred to as remote block
storage; however, the definition of SAN comprises a specific set of
storage protocols, and hence not all remote block storage solutions
are automatically SANs.

SANs are most commonly implemented with Fibre Channel or iSCSI. You can see
how both technologies differ in Figure 14-3.

Fibre Channel is the most common network technology used in the enterprise con‐
text to implement SANs. It uses the Fibre Channel Protocol (FCP) to transport SCSI
storage commands and data blocks. Fibre Channel networks are mostly implemented
on optical fiber technology. Multiple topologies are supported, but the most common
by far is a fabric in which the plurality of all Fibre Channel switches act like a single
big switch, providing a global namespace of ports.
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Figure 14-3. Two alternative SAN technologies: Fibre Channel and iSCSI

Servers that use Fibre Channel interface with the fabric via a host bus adapter (HBA).
As far as Linux is concerned, an HBA is a storage controller that implements SCSI
disks. The target at the other end of the fabric is likely a logical disk in a RAID array
on a large enterprise storage system, as shown in Figure 14-3, which attaches a large
number of disk enclosures to a few head nodes. Any such logical disk is addressable
within the fabric via a worldwide port number (WWPN).

The fabric can be set up in a highly available fashion, such that the same WWPN can
be reached via two completely redundant paths. Any such logical connection or set of
these connections can be completely isolated in the fabric via a concept called zoning.
The target storage system is responsible for isolating the logical storage volumes from
each other, and it provides them as WWPNs in their corresponding zones.
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iSCSI encapsulates SCSI command data blocks over IP networks. It uses TCP as the
transport layer. The client system implements an initiator, which accesses remote tar‐
gets. These targets hold the data and typically are a RAID array in an enterprise stor‐
age system.

In Linux, as shown in Figure 14-3, the iSCSI initiator is implemented as a set of ker‐
nel modules. The iSCSI target can also be operated on a remote Linux system, but in
the enterprise context it’s usually implemented on an enterprise storage system.
Because TCP/IP is used, the actual route that SCSI traffic takes to travel from initiator
to target is determined by the specifics of the given IP network.

As with Fibre Channel fabrics, it is possible to attach iSCSI targets in a highly avail‐
able fashion by configuring redundant network access paths on the client. In Linux,
for example, this is achieved by the multipath daemon.

For performance, we strongly discourage implementing iSCSI networks over multi‐
hop routes as well as running any non-iSCSI traffic on them.

In the enterprise IT context, Fibre Channel is the dominant technology for SANs.
Compared to iSCSI, however, Fibre Channel equipment is expensive, and because its
application domain is specific to enterprise storage, it has so far not been subject to
massive commoditization and it is not reusable beyond the storage realm.

So how do SANs apply to Hadoop?

Purists exclaim that SANs don’t apply to Hadoop at all, but a growing group of
experts argue that part of Hadoop’s journey into enterprise computing is to make it
fit in with the world of virtual storage.

As we will see in Chapter 16, public cloud providers excel at massively scaling remote
block storage and they provide proper isolation and quality-of-service (QoS) policies
and mechanisms. The economies of scale in public clouds have simply made SANs
for Hadoop a reality.

Hadoop on SANs in on-premises environments, on the other hand, is not easy. The
economical and technological strain it produces is often not at all justified, especially
for large clusters. If you’re thinking about it, plan on 5 to 30 worker nodes, unless you
have built a dedicated high-parallel-throughput SAN infrastructure. Consider the fol‐
lowing:

• In on-premises enterprise IT departments, iSCSI or Fibre Channel implementa‐
tions often heavily oversubscribe the transport-level bandwidth, both on the net‐
work level and on the target enterprise storage system.
This is due to the fact that only a fraction of the attached systems are reading and
writing at any given instant. Oversubscribed SANs work well to provide high
input/output operations per second and low latency because each of the many
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1 “Cloudera Enterprise Storage Device Acceptance Criteria Guide”, Cloudera Inc., June 11, 2018.

systems either accesses only relatively small amounts of storage at a given
moment or serves client systems on the other end of the LAN, WAN, or World
Wide Web.

• In Hadoop, all nodes regularly access large regions of storage sequentially in par‐
allel. But they also talk to each other over the network (often the same network
used for iSCSI) to shuffle join partitions, replicate data blocks, exchange results,
heartbeat their health status, and more.
The difference becomes evident in Figure 14-3, in which many systems access a
large SAN array. The total storage bandwidth is limited by the combined theoret‐
ical throughput of the head nodes that directly connect to the SAN fabric, while
it distributes internally to storage enclosures that hold the physical disks.
As illustrated, this bandwidth is also shared with a potentially unknown and,
more importantly, heterogeneous and therefore unpredictable set of workloads.
Conversely, consider a rack with Hadoop nodes that use local storage, where a
set of 12 disks are certainly more likely to be able to provide a sustained 1 GB/s of
sequential storage throughput.

All that being said, Hadoop vendors nowadays provide guidance to safely deploy on
remote block storage. For example, Cloudera has recently published a document1 that
provides detailed information about how to determine whether your SAN storage
can sustain the planned workload.

Another fundamental aspect to consider is that, by default, SAN implementations
apply error correction codes or other redundancy mechanisms, whereas HDFS uses
its own replication mechanism for redundancy. We frequently witness a desire to
drive down the cost of the expensive SAN technology by trading HDFS replicas for
SAN-bound redundancy schemes. But in practice, the ramifications of mixing the
durability mechanisms of HDFS and the underlying SAN infrastructure are not well
understood.

It is critical to remember that a DataNode not only provides block storage, but also
offers the only mechanism through which that block can be accessed. Say, for exam‐
ple, that, since you have SAN-level data redundancy, you wish to reduce the number
of block replicas in HDFS from three to one. As a result, you reduce the available
access paths to these blocks to just one node—the single DataNode that is configured
to access the corresponding SAN volume. If the VM running said DataNode becomes
unavailable, the NameNode reports its blocks as missing and no process can read the
data, even though it is redundantly stored in the SAN.
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To summarize, remote block storage services are becoming a reality for Hadoop,
especially in public clouds, as we’ll see in Chapter 16. SANs can be used to implement
suspendable clusters, as described in “Cluster Life Cycle Models” on page 425. How‐
ever, with on-premises installations, the cost/performance trade-off makes a SAN
uneconomical for Hadoop in general, and it is often only viable for small clusters,
such as development environments. In addition, the side effects of running on SANs
are often not considered properly, even when small-scale implementations are pur‐
sued.

Object Storage and Network-Attached Storage
Object storage is an umbrella term that, in the context of the cloud, is often used to
describe all scalable storage offerings that are not block-based. For Hadoop in the
cloud, object storage can serve not only as a backup storage layer but also as the
source of truth for all data, as we will see in the coming chapters. Some object storage
systems offer connectors that map their own APIs into Hadoop-compatible filesys‐
tems, making it possible to use them directly via processing services such as Spark,
Hive, or Impala.

Network-attached storage (NAS), a storage solution from the pre-cloud era, is closely
related to object storage.

Network-attached storage
Similar to a SAN, NAS is attached to servers via some kind of network transport,
most likely TCP/IP networking. In contrast to a SAN, NAS does not export a block
device to clients, but instead exports a mountable filesystem interface such as Server
Message Block (SMB) or Network File System (NFS).

In layman’s terms, NAS is a mounted network share and a SAN is a
disk. The OS interacts with a SAN disk at the SCSI/ATA block
layer, giving it full control over partitioning, the filesystem, and
more. In contrast, a NAS solution requires a given network filesys‐
tem to be used for access.

To be entirely clear, a shared filesystem on NFS or SMB should never be used as an
HDFS DataNode directory. Even though both of these filesystems terminate at the
POSIX layer, as illustrated in Figure 14-4, it is not safe to run Hadoop storage systems
such as HDFS, Kafka, or Kudu on NAS. All Hadoop storage systems expect a genuine
block device to be able to guarantee the semantics of consistency operations when
committing data to the storage layer.
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Figure 14-4. Simplified illustration of object storage and NAS via NFS and SMB
protocols

An equally important and basic problem is that a state-of-the-art NAS filer would be
completely overwhelmed by the amount of throughput that even a medium-sized
Hadoop cluster generates, as mentioned in the previous section and shown in
Figure 14-3.

NAS does have value, however, when used as a backup storage or ingest layer for
Hadoop. This is common in on-premises environments and in public clouds. For
example, Amazon offers NFS mounts via its Elastic File System, and Microsoft pro‐
vides SMB storage via Azure Files.
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Object storage
Object storage, rather than being one single technology, is instead a concept that has
many implementations. These range from products such as Ceph distributed by
independent software vendors, as we’ll see in Chapter 15, to large-scale public cloud
services such as Amazon S3 and Microsoft Azure Data Lake Storage, which we cover
in Chapter 16.

Object storage APIs are generally simpler than the traditional filesystem APIs offered
by NAS and SAN technologies. Typically they use HTTP as their transport mecha‐
nism, as illustrated in Figure 14-4. Although object storage APIs can be viewed as less
expressive than the POSIX standard, they have the distinct advantage that any user-
space application can access them directly, even via internet connections, without the
support of any filesystem drivers on the client side.

Thus, object storage implementations can provide massively scalable, reliable, and
highly performant storage for Hadoop clusters, and a range of them are supported
directly in Hadoop, as we’ll see in Chapters 15 and 16. This is achieved via the provi‐
sion of a Hadoop-compatible filesystem, which lets Hadoop services such as Spark,
Hive, and others use the object storage layer in a distributed fashion, just like HDFS.

However, object storage systems differ significantly from one another in their APIs,
both syntactically and semantically. For example, as we cover in “Cloud Providers”
on page 455, some of them are strongly consistent whereas others are eventually
consistent.

Network Virtualization
Network virtualization is also commonly referred to as software-defined networking
(SDN). In this section, we provide basic information on SDN when using it in a vir‐
tualized Hadoop platform. Conceptually, and for the purpose of our discussion, net‐
work virtualization is the same as compute and storage virtualization: virtual
networks are run on top of a physical network and, as far as the tenants are con‐
cerned, act exactly like physical networks.

SDN gives us two important benefits:

• Automatic configuration and provisioning of networks from a central software
entity, known as the control plane

• Isolation of tenant network traffic throughout virtual and physical network devi‐
ces on the data plane, which transports the actual network payload

SDN can be implemented entirely in software or via integration of compatible physi‐
cal hardware:
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Software-only
This approach uses network tunnels that overlay the existing and often heteroge‐
neous hardware infrastructure with virtual switches and routers that use tunnel‐
ing protocols such as VXLAN or Generic Routing Encapsulation (GRE).
Consequently, these networks are also called software overlay networks. Interfac‐
ing with physical network equipment occurs on Open Systems Interconnection
(OSI) layers 3 to 7 and is typically performed by a virtual bridge device.

Mixed
This approach combines the use of software and compatible hardware to imple‐
ment virtual networks. The control plane, used for the creation and configura‐
tion of virtual networks, remains in software, whereas the data plane spans a mix
of virtual and physical switches and routers. The participating hardware devices
understand configuration protocols such as OpenFlow or VXLAN, on the con‐
trol plane and implement the virtual networks on the physical layer accordingly.
In contrast to software overlay networks, these hardware devices also provide
physical isolation of traffic. As an example, consider an SDN-capable switch that
receives configuration and data via OpenFlow and internally translates the vir‐
tual flows into VLAN IDs.

Why Is SDN Important?
Having a basic grasp on SDN for Hadoop is important for three reasons:

• If you are building a Hadoop service on a private cloud, that cloud may use SDN
already as a means to strongly isolate tenants. If you run Hadoop on on-premises
SDN, such as on an existing private cloud solution, you should carefully scruti‐
nize it in terms of overall available bandwidth and scalability.

• SDN can slow down your cluster’s performance. Virtual networks can impose an
overhead and a performance penalty, especially at the endpoints, where they
transition back into regular networks.
A typical example of such an endpoint might be a storage appliance that does not
directly support your choice of SDN technology and thus requires routing or
bridging from the SDN layer into physical networks. Often, the appropriate net‐
work equipment that can bridge between virtualized networks and the storage
network may be a significant cost factor and is thus too sparsely allocated to sup‐
port Hadoop traffic.

• Implementing SDN is not easy. Its presence is a good indicator of how well a
cloud solution is automated. If your underlying private cloud infrastructure does
not leverage SDN, tenants might not be isolated on the network level, or manual
configuration might still be required to provision tenants in such a way.
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2 Peng Qin et al., “Bandwidth-Aware Scheduling with SDN in Hadoop: A New Trend for Big Data”, March
2014.

• Although completely transparent, SDN is omnipresent in the public cloud. Bear‐
ing this in mind help us to understand what is going on when the discussion
turns to general aspects of service isolation and security in the cloud provider’s
backbone.

Although hyperscale public clouds depend on SDN through and through, and its
benefits are obvious and enticing for on-premises environments as well, current
implementations often prove to be too complex for enterprises to justify transitioning
all network operations to SDN. For both software-only and mixed SDN, a range of
open and proprietary implementation options exist. These need to be chosen from
and integrated into overall operations in IT organizations. Often, the move to private
cloud technology marks the initial adoption of some form of SDN in enterprises.

If you are reading this chapter because you need to bring Hadoop to an existing pri‐
vate cloud, requirements about network isolation and automation surely already
exist. If tenants require strict isolation (say, if you were hosting Pepsi Cola and Coca
Cola), you can achieve this via manual definitions of VLANs, but this is not sustaina‐
ble when tenants come and go and expect self-service automation.

The marketplace and technology space of SDN as a whole is not easy to grasp and
exceeds what we are able to cover in this book.

Hadoop itself makes no SDN-specific demands other than what we learned in Chap‐
ter 4, which is essentially lots of east-west traffic across many ports. But ideally, you
would be able to leverage the quality-of-service (QoS) features that many of the SDN
standards offer to shield other traffic from being affected by Hadoop.

There is also some academic work around leveraging bandwidth control capability
for task scheduling in Hadoop or Hadoop-like systems.2

Cluster Life Cycle Models
At this point, we are well aware of the capabilities of virtual infrastructure. Compared
to bare-metal clusters, we can use virtual infrastructure to leverage different life cycle
models for Hadoop clusters.

An equally important term in this context is the source of truth for your data. In clas‐
sic on-premises Hadoop installations, the storage systems, such as HDFS, Kafka, or
Kudu, run on local disks and implement the source of truth for an organization. This
conforms to a regular long-lived life cycle of a Hadoop deployment.
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In the cloud, and especially in public clouds, it is equally common that organizations
choose object storage as the source of truth and Hadoop systems merely work on
copies of this data or enrich the object storage layer with their analytic results. This
enables purely project- or campaign-driven clusters, which are suitable for short-
lived, or transient life cycle models.

The duration of a cluster (i.e., transient versus long-lived clusters) is only one way to
look at cluster life cycles, and notions of what is transient and what time span quali‐
fies as long-lived vastly differ from one organization to the next. But if we stick to
how the source of truth for a cluster is implemented, we get a more concise picture of
a cluster’s life cycle, as shown in Figure 14-5.

That leads us to the following models, all of which are relevant for both public and
private clouds:

Suspendable clusters
These use remote block storage and can be stopped and restarted later, as shown
on the left in Figure 14-5. When a suspendable cluster is bootstrapped, remote
disks are provisioned that remain available throughout the cluster’s life cycle (1).

When it is suspended or stopped, the underlying remote data disks and the disk
holding the OS are kept in the remote storage system. When it is restarted (1),
the remote disks are reattached. Finally, when the cluster is terminated (4), the
remote disks are deleted.

Optionally, suspendable clusters can be connected to an object storage layer, as
discussed in “Object storage” on page 423. A suspendable cluster can function as
transient or as long-lived. The source of truth may be implemented on the
remote block storage layer or on the object storage layer.

Sticky clusters
In some cases, it is necessary to use local disks as the source of truth in your vir‐
tual cluster. The data itself thus sticks to the resulting cluster, which is considered
a sticky cluster. As shown in the center of Figure 14-5, a sticky cluster is started
(1) and runs perpetually (2). When the cluster is terminated (3), the data
becomes permanently unavailable.

The most common reason for sticky clusters is that they are the only choice when
Hadoop is virtualized on-premises. We have often seen that object storage or
other secondary storage layers may still be available for those clusters as a source
of ingest and a target for partial export of results, but they cannot function as the
source of truth due to insufficient capacity or performance.

If the cluster uses storage pools, as discussed in “Virtualizing Local Storage” on
page 416, it is theoretically possible to suspend the VMs of a sticky cluster. How‐
ever, the storage that a suspended cluster consumes on the local disks puts a tight
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practical limit on this approach. Also, resuming a suspended cluster may not be
possible if all compute slots are occupied by other tenants, so you would merely
be able to offer to “park” a cluster’s data with a undefined path for tenants to
regain access to it.

Figure 14-5. Cluster life cycle models
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When you run a sticky cluster in a public cloud service, you should
do backups to object storage. As we see in “High Availability” on
page 486, you do not have control over storage anti-affinity in public
clouds.
When you run sticky clusters on-premises, you have more control
over durability, but only if you can guarantee strong anti-affinity
among data nodes and highly available master roles, as we intro‐
duced in “Anti-Affinity Groups” on page 414. You should also
think about ways to back up the most important parts of your data
or at least have a documented pipeline for reconstructing them
from source systems.

One-off clusters
These can take advantage of local storage as well, but in contrast to sticky clus‐
ters, they do not depend on it. The source of truth with one-off clusters resides in
an object storage system. As shown on the right in Figure 14-5, these clusters
typically are created (1) for a specific purpose and either import all the required
data from object storage before they commence their compute phase (2), or exe‐
cute that compute phase directly on object storage, while using local disks only
for intermediate results between job stages. Before they are terminated (4), they
export (3) all results—sometimes small, sometimes significant amounts—to the
secondary storage layer. If you take this concept to its boundaries, the cluster’s
life cycle is the same as one job, hence the name one-off.

Can I Run Only on Secondary Storage?
For most workloads, a local instance of HDFS is still required. You should check with
your distributor about which object storage solutions are supported in the public or
private cloud, respectively.

Let’s now turn to the aspect of duration in cluster life cycles. Clusters can be either
transient or long-lived:

Transient clusters
These have a short lifespan, but what does this mean, exactly? In a very agile
organization, short could mean anywhere between six hours and six days,
whereas in a large corporation it probably means somewhere between six weeks
and six months. Generally, a transient cluster can be categorized as campaign- or
initiative-driven. Examples of this include creating a 360-degree customer view
backing a marketing campaign or preparing a report for quarterly business
results. Many organizations, especially in the public cloud today, even start clus‐
ters on a per-job basis, rather than on a per-project basis. This is facilitated by
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SaaS offerings such as Cloudera Altus, Amazon Elastic MapReduce (EMR), or
Azure HDInsight, all of which we introduce in Chapter 16.

No matter what the notion of time is, running transient clusters always requires
an object storage layer to maintain the source of truth outside of the cluster. The
source of truth also includes metadata; for example, table definitions in Hive or
access control lists for HDFS. Many vendors provide solutions to manage this
metadata outside of the life cycle of a cluster; for example, Cloudera SDX or
AWS Glue Data Catalog.

Netflix is a good example of a large organization using object stor‐
age as the source of truth.

Long-lived clusters
Similar to the question of how long transient is, there is no universal notion of a
long life for big data environments. But there are certainly environments that
always have to be there, such as a reporting platform or the data layer of a web
service. Many such clusters today are built in a cloud context, and their numbers
are growing. They should be always on, and you do not want to reprovision such
a service in another one-off cluster.

Figure 14-6 takes a detailed look at how data life cycle and cluster duration are
related.

Suspendable clusters can be long-lived if they can be left running, or temporarily sus‐
pended. They can also be transient, when combined with a secondary storage layer.
This model sounds intriguing in comparison, but remote block storage is typically
the most costly option.

As indicated in the illustration, sticky clusters occupy assigned disk drives perma‐
nently, making it impractical to suspend them. They are thus long-running, to sus‐
tain the source of truth for the data. However, as also shown in Figure 14-6, this can
be alleviated by combining them with an object storage layer or another form of sec‐
ondary storage, even if only for data ingest and export.
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Figure 14-6. Cluster duration and life cycle

One-off clusters are the obvious candidate for transient clusters, but there is nothing
that keeps you from running such clusters for longer periods of time.

Moving Further on Cluster Life Cycle

The previous discussion focuses on which basic life cycle model
your cluster supports. There are further life cycle operations that
you should consider, namely growing and shrinking the cluster at
runtime. These advanced life cycle operations heavily depend on
your overall ability to automate Hadoop, which is, in turn, defined
by the Hadoop distribution and cloud infrastructure you choose
and the management tools you can use.
We go into more detail on automating the deployment and config‐
uration of virtual clusters in Chapter 17.

Summary
In this chapter, we covered the basics of virtual infrastructure and the challenges that
can arise when using it to build Hadoop clusters.
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We began by looking at compute virtualization and learned how VM distribution can
affect service availability and data durability in virtual Hadoop clusters.

We then examined how virtual storage can be used in Hadoop, considering locally
virtualized disks, remote block storage (aka SANs), and the various flavors of NAS
and object storage. We briefly covered how remote storage systems can pose chal‐
lenges with scalability and consistency when used for Hadoop. As we’ll see in more
detail in the next two chapters, this often requires enterprises to compromise between
cost and performance.

These compromises are reflected in the three possible data retention (or rather, clus‐
ter life cycle) models we introduced here—suspendable clusters, sticky clusters, and
one-off clusters—which define the way that users and applications can interact with
your big data platform.
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CHAPTER 15

Solutions for Private Clouds

This most important thing you need to know about private clouds is that no two pri‐
vate clouds are the same.

If you build a private cloud in an enterprise IT context, you need to choose a combi‐
nation of the following:

• A provisioning software framework, such as OpenStack, OpenShift, or Cloud
Foundry

• A hypervisor, such as VMware ESX, Xen, or KVM
• A block storage solution (depending on your environment, local disks or possi‐

bly a scalable SAN infrastructure from one of the well-known enterprise storage
manufacturers)

• Optionally, an object storage implementation
• Optionally, a software-defined networking (SDN) solution

Because the landscape of private clouds is so diverse, the number of possible imple‐
mentations is very large, and most of the components just discussed are typically
delivered by third-party vendors.

Designing your cloud to be able to run Hadoop makes everything a little bit more
interesting. Your storage system should support very high throughput rates, your
network should be very fast, and your provisioning logic should be smart enough to
distribute all cluster roles correctly on the right hosts.

This chapter provides a rundown of the key success factors of Hadoop on private
clouds, rather than offering extensive coverage of each available technology asset. For
this, we assume the vantage point of the cloud architect. If you are, instead, a user of
private clouds—for example, a developer of big data applications—this chapter can
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equally have merit for you in terms of defining what you can expect from private
clouds and Hadoop.

A private cloud is meant to consolidate, commoditize, and automate IT, and there‐
fore, Hadoop is most likely just one workload among many. You ought to be mindful
of existing requirements for the cloud platform, which typically define your latitude
to implement a Hadoop solution on top.

Throughout the rest of this chapter, we use the three following key criteria to assess
how a private cloud solution supports running Hadoop clusters:

Automation and integration
There is a large spectrum of automation in cloud services. For example, if net‐
work provisioning is largely managed by humans, it is debatable whether a plat‐
form fully qualifies as a cloud. For Hadoop, however, it is common practice that,
at least initially, humans fill in the gap of dealing with cluster specifics when pro‐
visioning cloud infrastructure.

On the other hand, if your platform is completely self-serviced, you need to
extend its automation capabilities to Hadoop and provide an appropriate multi‐
tenant user interface. Most enterprises do not develop this logic in-house; rather,
they rely on third-party solutions. Both the user interface and the actual provi‐
sioning logic need to be aware of the specifics of Hadoop—that is, they need to
understand the different services and their roles in the cluster, in terms of failure
characteristics, different node layouts for master and worker roles, performance,
scalability, and more, as we learned in Chapter 3.

Depending on your life cycle model, your implementation also might need to
provide a solution for anti-affinity, as discussed in “Virtual Machine Distribu‐
tion” on page 413 and “Anti-Affinity Groups” on page 414.

Finally, a crucial component in this approach is your choice of Hadoop distribu‐
tion and how your cloud automation layer integrates with it. If you are used to
managing your clusters with a tool such as Cloudera Manager or Apache
Ambari, you need to ensure that your automation layer installs the infrastructure
as well as the distribution’s management tool. You should also be sure that it is
then instructed to deploy the Hadoop software components by driving the corre‐
sponding vendor APIs in these management tools. We cover this in detail in
Chapter 17.

Life cycle and storage
You need to decide which life cycle and storage model your cloud technology can
support. Clouds with a remote storage layer require sufficient bandwidth, and an
existing cloud platform may not have had Hadoop’s bandwidth requirements in
mind. If you intend to run jobs directly on remote storage (for example, HDFS
on a third-party appliance, block devices on SAN, or Amazon S3–compatible
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object storage), this will create strain on network infrastructure and you will
almost certainly have to rely on some form of quality-of-service mechanism as
tenants scale.

Sticky clusters with local storage, on the other hand, rely on the provisioning
framework to provide strong anti-affinity.

Isolation
As we explored in Chapter 14, isolation of compute resources is possible via
state-of-the-art virtualization software, which can also provide strong isolation
for local storage resources. Remote storage solutions such as SANs and object
storage—if they are available to your private cloud solution at scale—equally pro‐
vide strong isolation between tenants, which also includes networks. If your pri‐
vate cloud supports internal parties only, you might not require network-level
isolation, but it will be expected if you externalize your cloud solutions to third
parties. If you pair network isolation with automation, you require a software-
defined networking solution, which still poses a challenge to many enterprise IT
organizations.

If you come to find that there is no easy way to run Hadoop on your preexisting
cloud platform, you might need to consider complementing it with different hard‐
ware, possibly a different storage layer or servers with local storage.

The following sections cover some of the most popular private cloud solutions used
in enterprises. We focus on how they cater to the points just itemized and the other
things they bring to the table to support Hadoop.

OpenStack
OpenStack might best be described as a modular cloud operating layer. You can use
it to build fully fledged clouds. Similar to an operating system, all components—espe‐
cially for compute, storage, and network virtualization—use a pluggable driver
model. Many third-party vendors contribute drivers for their own hardware or soft‐
ware solutions to become OpenStack-compatible; for example, SAN storage arrays,
SDN control planes and switches, and hypervisors. OpenStack is fully open source.
Commercial support, as with Linux and Hadoop, is provided by vendors such as Red
Hat or Mirantis. Some other vendors have created purely commercial forks of Open‐
Stack, where it functions as the foundation of integrated proprietary private cloud
offerings. Finally, there are a number of public cloud providers, such as RackSpace
and Deutsche Telekom, that implement their public cloud offerings with OpenStack.

Let’s assess OpenStack’s support of Hadoop clusters by means of our three aforemen‐
tioned key criteria.
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Automation and Integration
OpenStack includes the Sahara plug-in, which is intended to automate the provision‐
ing of Hadoop clusters. Sahara is fully integrated into the OpenStack Horizon UI,
which is a self-service portal for OpenStack users. If you’re interested, the Cloudera
Engineering Blog provides an introduction to how a Sahara-based deployment pro‐
cess looks and feels.

Sahara allows the definition of anti-affinity rules for Hadoop cluster roles during the
creation of clusters. It provides several provisioning plug-ins, including all for major
Hadoop distributions. If you choose a commercial distribution, the distribution’s
management and deployment tools, such as Ambari or Cloudera Manager, are used
for the installation of the cluster services.

Sahara also provides an Elastic Data Processing (EDP) facility to create Hadoop jobs
from the Sahara Horizon UI or a REST API. Similar to Amazon Elastic MapReduce
(EMR), which we cover in “Amazon Elastic MapReduce” on page 460, EDP requires a
data source, a job source, and a location output. EDP supports multiple job sources,
such as Hive scripts or plain JAR files. A variety of job input and output data sources,
such as HDFS, OpenStack Swift—which we introduce in the next section—and
OpenStack’s file share service, Manila, are supported. EDP can spontaneously launch
clusters to run a job.

Life Cycle and Storage
As we just noted, OpenStack Sahara actively embraces the concept of transient clus‐
ters via EDP—but it also supports provisioning on long-lived bare-metal servers via
the Ironic component, which can leverage raw local disks.

Apart from Ironic, OpenStack takes a twofold approach to persistent storage, similar
to most public cloud offerings. On one hand, the Cinder component provides a block
storage service to instances, whereas on the other hand, the Swift component imple‐
ments an object storage service.

Cinder supports the use of persistent local disks as well as SAN volumes and many
more technologies. Many third-party vendors are supported in Cinder and contrib‐
ute drivers correspondingly.

Swift is OpenStack’s object storage implementation; it’s built to leverage disks in a
collection of commodity servers, although a few commercial storage appliances, such
as EMC ECS, are available as a drop-in replacement. Swift can be accessed from
Hadoop by the Swift Hadoop client, which is an implementation of a Hadoop-
compatible filesystem.

OpenStack’s variety of storage options, in theory, support all of the life cycle models,
but in practice, you need to tread carefully:
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• Cinder can use local disks in commodity servers, but by default makes no guar‐
antees about their location in a set of servers. In the commodity server case, Cin‐
der manages a set of volumes created by Linux’s Local Volume Manager(LVM)
and corresponding iSCSI or Fibre Channel targets on all participating hosts.

• The hypervisor on a host, such as KVM, is then assigned such volumes according
to user requests to Cinder. The volumes can reside on its local host or on distant
hosts.

• You can instruct the affinity scheduler to place a Cinder volume local to the
instance, and Sahara can take advantage of this policy. You should ensure, how‐
ever, that your distribution of OpenStack includes these features and that you
indeed use them.

• It is also possible to provision Cinder on NFS, which we do not consider feasible
if you intend to offer HDFS as a durable storage solution, as we mentioned in
“Network-attached storage” on page 421.

• The Swift filesystem implementation in Hadoop is a backend for Sahara, but it
might not be officially be supported by distributors.

This results in the following options for life cycle models on OpenStack:

One-off clusters
These are generally possible in OpenStack via both Cinder volumes and Swift
storage. If you rely on Hadoop distributor support, though, we recommend that
you scrutinize coverage of these storage backends. Alternatives, such as integrat‐
ing Amazon S3–compliant storage into Sahara (see Chapter 16) are under devel‐
opment at the time of this writing.

Suspendable clusters
Suspendable clusters are feasible in OpenStack via a remote block storage layer,
but all caveats about bandwidth limitations and supportability by Hadoop dis‐
tributors apply. You need to present fully POSIX-compliant block storage devi‐
ces to your instances; this will typically imply some form of remote block storage,
such as SAN or Ceph, which we cover further later in this chapter.

Sticky clusters
These are difficult to implement with the currently available functions in Open‐
Stack. The required instance-level anti-affinity is possible in OpenStack but is not
fully integrated into Sahara. Instance-to-volume affinity is required as well,
because by default Cinder does not make any guarantees that a volume is located
on the same host. As we covered, host-local disks/volumes are passed to instan‐
ces via iSCSI, which may simply not be supported by distributors.

If Sahara is used, the model can effectively be chosen at cluster creation time by
selecting from the supported data sources.
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Isolation
OpenStack supports a variety of hypervisors via an abstraction layer in its Nova com‐
ponent. Hypervisors are treated like drivers and, although most OpenStack develop‐
ment is historically done on KVM, commercial hypervisors such as Microsoft Hyper-
V and VMware ESXi are seeing increasing support in the OpenStack community.
Because all of the supported hypervisors are considered state of the art, the level of
isolation on the compute portion of OpenStack-based clouds is deemed very strong.

As just mentioned, OpenStack provides pluggable support for a variety of storage
implementations. These range from local storage to state-of-the-art block storage on
SAN to object storage implementations like Ceph, which we briefly introduce in
“Object Storage for Private Clouds” on page 447.

Similarly, network virtualization in OpenStack is also pluggable, and multiple options
exist.

On a management level, OpenStack separates tenants by projects. Identities are man‐
aged and mapped to those projects in the Keystone service, similar to Identity and
Access Management (IAM) in AWS, which we cover in detail in Chapter 18.

Summary
It is beyond the scope of this book to discuss OpenStack in full depth. In summary, it
can be said that OpenStack provides the most flexible and holistic approach to build
clouds via an extensive range of third-party hardware and software components.

Its modularity also brings an enormous amount of complexity, though, which can
overwhelm many enterprise IT departments and which makes it very difficult to
directly compare given OpenStack implementations. One step to successfully wield
the complexity of OpenStack in the enterprise is to use an OpenStack distributor
such as Red Hat. Integration with enterprise Hadoop distributions and their automa‐
tion tools is continuously improving, as can be seen, for example, by the joint refer‐
ence architecture developed by Cloudera and Red Hat.

OpenShift
OpenShift is a container-based platform for accelerated application development and
deployment. It is available as open source software and is also commercially dis‐
tributed by Red Hat, Pivotal, and others. It combines Docker as an OS-level technol‐
ogy to create containers and Kubernetes for automated deployment, scaling, and
management of those containers.

In OpenShift, Docker leverages the resource isolation and abstraction features of the
Linux kernel to provide Linux containers. To applications, a Docker container looks
and feels like its own separate instance of Linux, although it is not a fully fledged vir‐
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tual machine. Docker containers are created from a base image and a stack of func‐
tionality can be added on top via new layers without the need to change the
underlying images.

Different containerized applications can then be conveniently scheduled onto the
same Linux instance without the need to start VMs. Kubernetes further takes advan‐
tage of these features by bundling containers into application pods. Pods are guaran‐
teed to run on the same Linux host, and they provide a means to group several
microservices into a single colocated service unit. Kubernetes allows you to easily
deploy and manage many pods as large-scale distributed applications across multiple
physical servers, which it refers to as nodes. The plurality of all nodes and pods form a
Kubernetes cluster.

OpenShift can significantly simplify the process of building applications and
platform-as-a-service environments. For many enterprises, OpenShift and Kuber‐
netes pave the way toward scalable microservices. They are actually used to build
public clouds as well, like Deutsche Telekom’s AppAgile service.

Let’s apply our three assessment criteria to see how OpenShift can support Hadoop
environments.

Automation
We are unaware of any specific OpenShift-provided user interface that would guide
you through Hadoop deployments, other than some community-based templates
that deploy the Apache distribution of Hadoop. We are also not aware of any efforts
to integrate with distributor automation tools. As you’ll see in the following sections,
OpenShift includes the ingredients to support and automate all of our life cycle mod‐
els. But there is no cohesive effort that we know of in the OpenShift or Kubernetes
universe that’s comparable to OpenStack Sahara and would interact with distributor
management tools to facilitate a deployment or to use anti-affinity rules according to
Hadoop cluster roles.

Life Cycle and Storage
OpenShift has a straightforward way of representing storage to pods as volumes and
supports a range of storage backends via volume plug-ins. Compared to standard
ephemeral container storage in OpenShift, volumes provide the advantage that their
content survives container crashes. But the life cycle of a standard volume is bound to
the life cycle of a pod; as soon as the pod ceases to exist, the volume vanishes.

Persistent volumes, on the other hand, allow volumes to have a life cycle entirely inde‐
pendent of pods and are conceptually the closest to remote block storage in Open‐
Shift.

Depending on the volume plug-in, persistent volumes can be shared across pods.
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Unlike in OpenStack, there is no framework-level integration of object storage solu‐
tions in OpenShift. And of the set of supported storage backends for PersistentVo‐
lumes, only the NFS backend is a candidate for a shared secondary storage layer for
Hadoop. The remaining storage plug-ins mostly qualify as block storage implementa‐
tions, some of which can also be shared among pods.

OpenShift also supports fine-grained anti-affinity policies and features a local vol‐
umes storage type that automatically optimizes the physical node placement of a
given pod to reside on the same host as the local volume for that node.

Anti-affinity rules in OpenShift can be either required or preferred.
Hadoop depends on strong anti-affinity to deliver on its durability
characteristics for storage. We therefore strongly recommend only
using required pod affinity rules for Hadoop deployments, since
preferred rules do not guarantee enforcement.

This renders the following life cycle options for OpenShift:

Sticky clusters
These are, in theory, possible via the aforementioned local volumes. There does
not seem to be widespread adoption of this approach in the industry at the
moment, however, and it has likely not seen extensive testing coverage.

Suspendable clusters
These should be possible when using persistent volumes, as long as the backing
storage is able to provide sufficient durability and performance. For most corpo‐
rations, this would likely be an enterprise-grade SAN solution, which, under the
assumption of sufficient bandwidth, would use the iSCSI or Fibre Channel vol‐
ume backends.

One-off clusters
One-off clusters are difficult to achieve due to the lack of support for object stor‐
age connectivity, which leaves us with limited abilities for the source of truth.
You can certainly ingest and export data via the supported NFS backend for per‐
sistent volumes, but Hadoop tools do not recognize such a volume as an imple‐
mentation of a Hadoop-compatible filesystem. This means that services such as
Spark or Impala are unable to read or write to it in parallel fashion.

Isolation
For many organizations, VMs provided by commercial hypervisor software are the
accepted standard for isolating virtual environments. OpenShift deliberately opts for
lightweight virtualization via containers. It uses a mandatory combination of Linux
namespaces, Security-Enhanced Linux (SELinux), and cgroups to achieve isolation
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on its compute layer. Red Hat offers detailed information on how these mechanisms
work together and how containers compare to VMs.

Kubernetes employs a holistic security concept that allows fine-grained authorization
via role-based access control (RBAC) for users and security context constraints
(SCCs) that constrain the actions that a given pod is allowed to perform on the host
OS.

A fundamental resource that is subject to authorization in Kubernetes is a name‐
space, which groups resources in a cluster and provides isolation of these resources.
OpenShift extends the namespace concept to projects to provide fully fledged group-
based multitenancy, which can also be integrated with multiple options for authenti‐
cation.

The Kubernetes security concept also includes support of SDN. By default, SDN is
used in Kubernetes to provide a scalable virtual network infrastructure to each pod.
Via the ovs-multitenant plug-in, this concept can be enhanced to enforce separa‐
tion of traffic on the project level.

It entirely depends on your organization as to whether the Linux kernel mechanisms
used by Docker are deemed sufficient to provide strong isolation guarantees.

Summary
The ease of containerized application pods combined with horizontal scalability
makes OpenShift intriguing for rapid development/deployment cycles and DevOps-
driven environments. The current focus of OpenShift is to excel in scalability and
provide orchestration for microservices. Hadoop is typically not a good fit for micro‐
services, but that being said, OpenShift comprises all the required mechanisms to
cloudify Hadoop.

What is essentially missing is a cohesive component that automates Hadoop deploy‐
ments and uses the existing affinity/anti-affinity mechanisms for Hadoop compute
and storage.

In addition, Hadoop distributor support for running frameworks such as Spark on
Docker and Kubernetes has not materialized yet, though it is likely to emerge soon. It
is likely that big data resource scheduling frameworks and Kubernetes will converge
in the future, but as of this writing, this is mere speculation.

VMware and Pivotal Cloud Foundry
Like OpenShift, Cloud Foundry is a PaaS offering. But in contrast to the container
approach chosen by OpenShift, Pivotal Cloud Foundry is based on VMware. Cloud
Foundry connects and combines many offerings from the EMC/Dell universe to
build private cloud IaaS and PaaS stacks.
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Even though we regularly see VMware hypervisors in virtualized on-premises
Hadoop environments, we are not aware of an end-to-end automation offering.
There is a plug-in available for Cloudera Director that automates the provisioning of
VMware-based infrastructure as a service, but the plug-in does not use the VMware
Distributed Resource Scheduler (DRS) to achieve anti-affinity.

VMware has also been the driving force behind the contributions around Hadoop
Virtual Extensions (HVE), which introduce hypervisor awareness in HDFS’s block
placement hierarchy. However, HVE in its approach is strictly limited to HDFS and
requires an external mechanism to reflect the topology of hypervisors in the virtual
cluster to the NameNodes.

Do It Yourself?
By now, it should be clear that setting up a complete private cloud system is a daunt‐
ing effort. In some cases that we have witnessed, even large enterprise IT organiza‐
tions that cater to hundreds of thousands of users fail to implement these platforms
in a sustainable way. When the goal is to cloudify Hadoop, the private cloud plat‐
forms we covered in the previous sections can really start paying off by offering self-
service capabilities for a large amount of unmanaged clusters—for the sake of
argument, let’s say more than 30.

Not every organization needs this, though. For many, it might well be sufficient to
offer capabilities that can spawn between 5 and 15 virtual Hadoop clusters within a
reasonable amount of time.

We all know that engineers (and we don’t exclude ourselves from that group) have a
desire to build their own great and elegant solutions. As we will see, the large hyper‐
scale clouds by Amazon, Microsoft, and Google are elegant in many respects, but
much of their greatness is achieved simply by economies of scale. Instead of trying to
handcraft a cloud, one option might be to lower the bar, in terms of automation, and
come up with a Hadoop Cloud–Lite.

Figure 15-1 shows an example of such a simplified solution. There are six physical
hosts (hosts 1–6) that accommodate three virtual Hadoop clusters (clusters A–C).
Each of the six hosts runs a state-of-the-art hypervisor, such as VMware, providing
three VMs on each host. In the example, we use SAN storage for master nodes (hosts
1 and 2) and local disks in the worker nodes (hosts 3–6). Other implementations
might use local disks for the master nodes as well, and in yet another configuration
you might use a SAN for the worker nodes, if your bandwidth is sufficient.

442 | Chapter 15: Solutions for Private Clouds

http://bit.ly/2BoQNeM
http://bit.ly/2z9nOKg
http://bit.ly/2z9nOKg


Figure 15-1. Simplified private cloud environment via preprovisioning
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To simplify the provisioning of Hadoop, all instances (A1–A6, B1–B6, C1–C6) are
preprovisioned when their physical environment is set up, giving us the following
advantages during Hadoop deployment:

• Most important, anti-affinity is manually taken care of.
• Networks and VLANs for each virtual cluster already exist.
• Each instance has an IP and hostname in DNS.
• Each instance has the required storage backends connected and ready for use.
• Access credentials are prepared.

In Figure 15-1, virtual cluster A and virtual cluster B are already provisioned and
running with Hadoop, whereas the VMs for cluster C are preprovisioned and dor‐
mant, while cluster C itself is not yet provisioned. The VMs can be preinstalled with
Linux, but are suspended.

A deployment of Hadoop for a tenant would entail the following steps:

1. A vacant preprovisioned virtual cluster is chosen.
2. The instances belonging to the cluster are started.
3. The cluster’s basic specification, comprising IPs, hostnames, and credentials, is

passed to a Hadoop-level automation layer that begins to install Hadoop services
(for example, Cloudera Director).

4. The requesting tenant receives the cluster’s basic specifications and login
credentials.

Automation
Although we essentially shortcut a lot of the difficult work on automated infrastruc‐
ture provisioning, the challenge is obviously still the automation of the Hadoop serv‐
ices themselves. The following options exist:

• Script the entire deployment of Hadoop yourself. Given the increasing complex‐
ity of the Hadoop stack, you might want to constrain the number of services that
are included in the deployment.

• Use management tools from a Hadoop distribution, such as Cloudera Manager
or Ambari, to automate the deployment. As a prerequisite, you must automate
the installation of the management tool itself. You would likely drive the tool via
any of the many supported APIs, such as Python for Cloudera Manager. As an
input it suffices to supply the hostnames of the instances.
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• Use a cloud orchestration tool such as Cloudera Director or Hortonworks
Cloudbreak. This option is theoretically feasible because these tools can generally
deploy on a bare-metal infrastructure or preprovisioned VMs via a specific bring
your own node plug-in. But these configurations are not officially tested by either
provider and might not have the ability to persistently keep track of the state of a
particular cluster.

A drawback with regard to automation when using preprovisioning is that it is diffi‐
cult to programmatically scale the virtual Hadoop clusters. On the infrastructure
level, you can preprovision additional IPs and keep extra headroom in the size of
your VLAN. Obviously, scalability becomes less of a challenge when you can use
remote storage.

As a final note, if you need to sustain a self-service UI, it must select from the list of
available clusters and should feed all information about the virtual environment
(such as hostnames, IPs, and credentials) into the aforementioned automation work‐
flow.

Isolation
When you predeploy infrastructure and keep it dormant until usage, you can take
advantage of existing isolation mechanisms such as VLANs for the network or stor‐
age pool reservations on remote block storage systems or secondary storage layers,
which may be hard to automate in your organization. You can also predefine creden‐
tials and user identities—this is one of the trickiest parts of building a private cloud.

Life Cycle Model
All of the aforementioned life cycle models can theoretically be implemented when
preprovisioning virtual clusters:

One-off clusters
Implementing a transient cluster model in our example, like with any other solu‐
tion, requires a secondary storage layer. The rest is as simple as terminating the
VMs in the preprovisioned VLAN environment, while the VLAN, IPs, and host‐
names can be reused. If local storage is used, it is good practice to deliberately
wipe the local disk devices to ensure that data from prior tenants is no longer
readable. The secondary storage layer could be as simple as an NFS mount
shared by all instances in a cluster, or an implementation of supported Hadoop
object storage connectors. Bear in mind the constraints on object storage we cov‐
ered in “Cluster Life Cycle Models” on page 425. Whichever solution you choose,
the shared storage space needs to be preprovisioned on the backing storage sys‐
tem and the credentials need to be preconfigured in the instances.
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Suspendable clusters
In our example solution, suspendability would necessitate that the worker nodes
are also attached to a SAN. While this is theoretically possible, we have often seen
on-premises SAN infrastructures that could not sustain Hadoop traffic. It is
more feasible to implement the master roles on SAN storage, as they do not
require a bandwidth-heavy workload profile. In any environment that involves
SANs, especially in a production context, you need to carefully measure latencies
for master roles and throughput characteristics for worker roles. If you run
Hadoop with a distributor, which most enterprises do, it is also wise to seek clari‐
fication on supported configurations.

Sticky clusters
These can be easily set up in this environment by either dedicating the local disks
in the cluster directly via the hypervisor or predefining storage pools in the
hypervisor, as we introduced in “Virtualizing Local Storage” on page 416.

Summary
Some organizations are extremely agile and may finish a campaign based on Hadoop
and big data technology in just a few days. In the majority of enterprises, however, it
would be uncommon to see Hadoop tenants come and go with this frequency, as
project team assembly and dataset migration require internal communication and
approvals. In the latter case, we typically measure the lifetime of the Hadoop cluster
in months as opposed to days. Long-lived virtual clusters on local disks (which our
example shows), although the least cloud-like option, are an obvious match for this
kind of scenario, for several reasons:

• A project that needs Hadoop for a few months can have its own environment at
significantly improved turnaround times, compared to the setup of physical
hardware.

• The fiscal depreciation cycle for hardware in enterprises is typically between 36
and 48 months. Virtualizing the hardware opens this investment up to multiple
parties and helps to deal with concerns around budget.

• The possibility of setting up smaller, lightweight clusters encourages teams to fol‐
low the best practices of complementing their larger production clusters with
development and staging environments that can be accommodated by the pro‐
posed platform.

The notion of preprovisioning infrastructure works against the grain of cloud com‐
puting, but it can certainly also serve IT organizations by addressing pressing con‐
cerns around provisioning time of lightweight Hadoop environments. Preprovision
of infrastructure can help to establish a shorter project life cycle and to increase the
reusability of hardware.
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Object Storage for Private Clouds
So far we have focused on private cloud frameworks and their native support for stor‐
age options. This section offers brief information about options for providing object
storage or other types of additional storage to your virtual clusters.

EMC Isilon
Isilon is an enterprise storage solution by EMC. It provides a full implementation of
HDFS, which can be conveniently used as a remote HDFS instance. It is also possible
to use the Isilon HDFS implementation as a drop-in replacement for a local HDFS
instance by simply configuring the default Hadoop filesystem to point to the Isilon
instances.

As depicted in Figure 15-2, unlike most remote storage appliances, Isilon is built as a
distributed system of many storage nodes. These nodes communicate and distribute
storage blocks via a high-speed backend network.

Figure 15-2. Using Isilon with Hadoop
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Isilon supports multiple data protection methods—most importantly, various flavors
of erasure coding that provide improved storage efficiency. To the outside world,
each of the storage nodes is connected via a standard Ethernet frontend network and
provides several storage interfaces, such as NFS and HDFS.

In the HDFS case, the Hadoop services communicate with Isilon directly via the
HDFS client protocol. All Isilon nodes can be contacted by clients because they all
implement the API of both the HDFS NameNode and the DataNode.

To provide clients with a single NameNode in their configuration, while at the same
time distributing the load of client requests, it is standard practice to load-balance the
client connections. EMC provides this load-balancing service as a built-in part of the
Isilon offering.

You can use Isilon’s HDFS interface as a remote HDFS instance, which works for
YARN applications or Hive or Impala queries. You can also configure it as your clus‐
ter’s fs.defaultFS, so that all services access it transparently and by default.

Regardless of the access mode, when using Isilon data, locality is lost and you are
limited by the bandwidth and your proportional share of the overall network.

With Isilon, there is no use of the Linux page cache in your HDFS data path, which in
turn means that short-circuit and zero-copy reads are not available. This might be
perfectly sufficient for a range of use cases, such as background batch processing, hot
archives, or virtualized Hadoop environments, but it can be limiting for a range of
database queries that rely heavily on locality and on the benefits of caching hot
datasets.

You should also be mindful of the following additional limitations:

• HDFS encryption does not work.
• HDFS access control lists do not work on Isilon, because it implements its own

ACLs. ACLs are an important feature that enables many organizations to imple‐
ment an information architecture on their datasets.

However, it is an increasingly common pattern for Hadoop clusters in the cloud to
trade locality and performance for storage efficiency and modularity of compute and
storage. This is also reflected in the emergence of HDFS erasure coding, as intro‐
duced in “Erasure Coding Versus Replication” on page 71. As you might expect, we’ll
see more examples of this pattern in Chapter 16.

The main criterion to consider when using Hadoop with Isilon is the interconnecting
network. Although we have seen successful cases that connect medium-sized Hadoop
clusters with a large Isilon array via a completely nonblocking network architecture,
we have also seen Hadoop projects on Isilon that entirely fail to meet performance
expectations due to network oversubscription.
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With these caveats in mind, Isilon can offer a practical solution for private cloud
Hadoop storage.

Ceph
Ceph is an open source distributed storage system that, over the years, has continu‐
ously gained in popularity for private cloud use cases. It provides remote block stor‐
age, a distributed filesystem called the Ceph Filesystem (CephFS), and Swift- and
Amazon S3–compatible object storage.

At its core, Ceph is implemented as a distributed object store. It is typically imple‐
mented as a cluster of commodity servers. The majority of nodes offer local disks and
run the Ceph object storage daemon (OSD). An type of cluster node runs monitors,
which provide critically important cluster state and coordination for the OSD nodes.
Manager nodes provide further monitoring capabilities and interfaces to external
monitoring systems.

The most direct way to use Ceph is to communicate with the OSDs via the Reliable
Autonomic Distributed Object Store (RADOS) protocol. Ceph encapsulates the pro‐
tocol logic in the librados library, which is available in C, Python, and Java. As
shown in Figure 15-3, librados is used throughout the Ceph storage stack in several
intermediate layers that implement standard storage interfaces.

As shown in Figure 15-3, starting from the top, the following options exist to connect
Hadoop clients to Ceph:

• Object storage, via the Ceph RADOS Gateway
• A distributed filesystem interface called CephFS
• Remote block storage
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Figure 15-3. Hadoop access to Ceph

Object storage
Hadoop can use the S3A client, which we discuss in more detail in “AWS storage
options” on page 457, as well as the Swift client, which we introduced in “Life Cycle and
Storage” on page 436. The clients connect to Ceph’s RADOS Gateway, which runs on
a set of separate nodes in the Ceph cluster and maps the Amazon S3 and Swift proto‐
cols to librados calls. Authentication works the same as with Amazon S3 (access key
ID + secret; see “Amazon Simple Storage Service” on page 522). However, it is worth
checking whether your Hadoop distributor supports accessing a Ceph-based Amazon
S3 backend or a Ceph-based Swift implementation.
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CephFS
Ceph provides CephFS, a distributed network filesystem. It extends the cluster by a
set of metadata servers that maintain the shared filesystem’s directory structure and
all corresponding metainformation. CephFS clients use the cephfs Linux kernel
module to mount content from Ceph in a POSIX-compliant way, similar to NFS,
which we covered in “Network-attached storage” on page 421.

As we previously covered, however, we strongly advise against using a network file‐
system as the backing store for HDFS data volumes. Instead, there is a CephFS plug-
in that maps the HDFS API to Ceph and facilitates connections to the metadata
servers as well as the OSDs on the storage nodes. The plug-in is provided directly by
Ceph, after an initial effort to include it in the Hadoop codebase itself.

Hadoop clients need to enter the appropriate configuration data about the Ceph clus‐
ter in their core-site.xml and can then access Ceph via a special ceph:// URI scheme.
This configuration includes a shared secret to authenticate with the Ceph cluster,
which is similar, for example, to how authentication is achieved in Amazon S3, as
we’ll see in Chapter 18.

To summarize, the CephFS plug-in is structured very similarly to Amazon S3 and the
OpenStack Swift plug-in. Unlike those plug-ins, however, the CephFS plug-in is not
part of the mainline Hadoop project, and it has not yet seen widespread use.

Remote block storage
Ceph supports multiple techniques to export block devices to clients. Like disks in a
SAN, Hadoop can use these block devices for building an in-cluster HDFS instance.

Ceph remote block storage, which is officially called RADOS Block Device (RBD),
however, does not directly use any of the SAN protocols we covered in “SANs” on
page 417; rather, it uses librados as its transport layer.

There are three ways in which Ceph can expose block devices:

librbd

This is a user space library that is typically used in hypervisors to export Ceph
RBDs to virtual machines. As displayed in Figure 15-3, librbd uses librados
underneath to communicate directly with OSDs in the Ceph cluster and assem‐
bles objects onto disk which then are passed to the VMs in the format particular
to the hypervisor. librbd is integrated with OpenStack and can provide VMs as
well as standard block device volumes, which can, in turn, be used for worker
nodes.
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krbd

Alternatively, it is possible to mount RBDs directly in client systems via a kernel
module called krbd that encapsulates the logic to build block devices from OSD
objects as well as the librados communication. krbd is typically used for Ceph
RDBs on bare-metal servers or in container-based environments such as
Kubernetes.

iSCSI gateway
Finally, the Ceph cluster can act as an iSCSI target by running a set of iSCSI gate‐
ways, as shown in Figure 15-3. The client system simply uses the existing iSCSI
subsystem to provide SCSI disks locally and to act as an initiator toward the
Ceph gateways.

Summary
Ceph is a genuine option for providing a remote storage layer for Hadoop in private
clouds. Ceph also supports erasure coding, which can improve the storage efficiency
of your big data solution. It is increasingly being recognized by Hadoop distributors
as an asset to support private cloud scenarios. For example, Cloudera publishes a ref‐
erence architecture on using its distribution on OpenStack with Ceph remote block
storage.

Summary
The intent of this chapter was to make a little more sense of the subject of Hadoop in
private clouds, but we understand that it is not an easy feat. Although a number of
successful implementations exist here and there, the path to private clouds with
Hadoop is far from being fully paved.

Because most enterprises rely on a mix of technologies, such as commercial Hadoop
distributors, a private cloud software framework, and storage and compute virtualiza‐
tion technology, there is no single-source solution for Hadoop in the private cloud.

As a result, our overview of three approaches for cloudifying Hadoop via OpenStack,
OpenShift, and a lightweight, do-it-yourself variant of on-premises virtualization
called out shortcomings and peculiarities at the corresponding places. In our experi‐
ence the options presented here are, at the time of this writing, the most suitable from
a technological perspective, although we are fully aware of the multitude of alterna‐
tive solutions.
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CHAPTER 16

Solutions in the Public Cloud

Our discussion of public clouds is different from that of private clouds. In contrast to
private cloud Hadoop services, there are thousands of examples in which large organ‐
izations and enterprises are successfully running Hadoop in the public cloud.

In the coming chapters, we focus our discussion on the three largest public cloud
providers in the market:

• Amazon Web Services (AWS)
• Microsoft Azure
• Google Cloud Project (GCP)

This chapter looks at the portfolios of our three cloud providers through the lens of
Hadoop. We cover the key categories for each: instances, storage, and possible life
cycle models. Next, we offer advice on how to use the provider portfolios to imple‐
ment clusters and big data use cases.

Key Things to Know
Part of the value proposition for the cloud is that IT services become a black box that
you do not have to worry about. This also means that you do not know what is going
on inside the black box. For our intent of running Hadoop in a public cloud, this is
mostly good news (and some bad news at the same time). Here are some key things
to keep in mind:

Life cycle models
“Cluster Life Cycle Models” on page 425 explains that storage choices define the
life cycle options of virtual Hadoop clusters. In the public cloud, much attention
shifts toward transient life cycle models because they are much easier to
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implement. You should take care when implementing sticky clusters in the pub‐
lic cloud, since the instances that host local disks may be colocated on the same
physical host. We cover why this is the case in “Storage and Life Cycle Models”
on page 476.

Storage
As we have seen throughout the book, choosing the right storage infrastructure
often requires the most thought in your big data strategy. This remains true
when deploying in a public cloud, although the calculus is now slightly different,
for two key reasons:

• Economies of scale in public clouds actually open up the possibility of using
remote block storage—for example, storage area networks—as the backing
storage layer for HDFS at a reasonable (albeit still higher, compared to local
disks) cost.

• Object storage solutions in the public cloud allow for the decoupling of stor‐
age from compute resource in your clusters, enabling use case–specific and
transient cluster life cycles while maintaining a single, unified source of truth
across all clusters. For details on this subject, refer to “Sharing Metadata
Services” on page 509.

Storage offerings, in particular, are among the features where public cloud pro‐
viders differ significantly. A thorough introduction to each public cloud vendor’s
storage portfolio is provided in “AWS storage options” on page 457, “Azure storage
options” on page 463, and “Storage options” on page 469.

High availability (HA)
It is tempting to believe that public cloud services themselves automatically take
care of HA; but in the case of Hadoop and big data deployments, it is key to
understand the individual providers’ concepts of HA in detail to make informed
choices.

Another key thing to know in this context is that, for the most part, you have
limited control over where your virtual machines are started. As we saw in “Vir‐
tual Machine Distribution” on page 413, placement of VMs and anti-affinity can
be crucial to ensure HA and durability, especially if you rely on local disks in
your instances. Remote block storage decreases the aforementioned concern
around VM placement and multiple HDFS DataNodes being placed on the same
physical host, but you can still lose access to blocks if three DataNodes happen to
run on a single physical host. This is even more crucial for highly available mas‐
ter roles.

Public clouds also allow for a novel paradigm around HA: use object stores to
provide availability and durability of data and expect your computational clusters
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to be short-lived and to fail. We cover the HA implications of running Hadoop
in a public cloud environment in “High Availability” on page 486.

Automation
This may come as a bit of a shock to some classic enterprise IT organizations, but
public clouds allow you to treat all infrastructure as code. Deploying a purpose-
built cluster for your end-of-quarter reporting can become a fully scripted, auto‐
mated, and repeatable process. Chapter 17 gives a more thorough introduction to
the subject of automation of Hadoop in the cloud.

Security
In many organizations, the discussion around moving big data use cases to the
cloud is dominated by security concerns. Secure Hadoop services in public
clouds, even conforming to strict requirements, are perfectly possible. We dis‐
cuss this important subject in much more detail in Chapter 18, covering, for
example, how cloud identity and access management systems integrate with clas‐
sic on-premises identity management solutions, how to implement perimeter
security in public clouds, and what options you have around data encryption.

Cloud Providers
In this section, we take a look at the three biggest public cloud providers. Our focus
here is mainly on the compute and storage aspects required to appropriately size
Hadoop clusters. As we go through each cloud provider, we explore:

• Compute capabilities, with a look at each provider’s various instance types and
their features

• The structure and function of a provider’s storage portfolio
• Built-in Hadoop services

Service offerings around networking and DNS, however, also play an important role
when building clusters in public clouds. We cover them at a high level in “Network
Architecture” on page 482.

AWS
AWS, which is seen as the inventor of the public cloud business model, provides a
plethora of IaaS, PaaS, and SaaS offerings.

The AWS IaaS offering for compute virtualization is called Amazon Elastic Compute
Cloud (Amazon EC2). Within EC2, AWS provides remote block storage via Amazon
Elastic Block Store (EBS). AWS also offers object storage solutions, which we discuss.
Although a few instance types in EC2 provide locally attached disks, some of them
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exclusively implement block devices via EBS. As we explain, the compute and storage
offerings of AWS support nearly all of the life cycle models we have discussed.

AWS is currently available in 19 geographic locations, called regions. Each region is
further divided into availability zones, which provide a high-bandwidth/low-latency
subdivision of a region into distinct datacenters to offer improved failover character‐
istics for applications. AWS also provides a dedicated, isolated service for United
States government agencies, called AWS GovCloud (US). The services we discuss in
the following sections are available in all AWS regions.

AWS instance types
AWS offers a large number of instance types, grouped by five use case domains:

General-purpose instances
As the name implies, these instances serve the widest range of applications via a
balanced relationship of compute and memory. In the past, general-purpose
instances also featured local disks, but today they are available only with
remotely attached block storage; that is, EBS (which we discuss in the next sec‐
tion). The M4 and M5 instance types from this group are very popular for imple‐
menting worker nodes for suspendable clusters.

Compute-optimized instances
This group comprises the C4 and C5 instance types and emphasizes cores over
memory. C4 and C5 instances are popular for implementing compute-heavy
worker nodes, as shown in “Implementing Clusters” on page 471. Like the general-
purpose instances, they are now only available with EBS storage.

Storage-optimized instances
This group of instances uses local block devices, such as SCSI hard drives, solid-
state drives (SSDs), or NVM Express (NVMe) drives, to achieve better perfor‐
mance or, alternatively, better price characteristics for storage. It is possible to
attach up to 48 TB of local, transient, or ephemeral storage. These instances are
often used to implement sticky clusters or one-off clusters that need the speed of
local disks. As we describe in more detail in Table 16-6, the contents of those
disks are lost during a crash or following certain life cycle actions, such as termi‐
nate or stop.

Memory-optimized instances
For Hadoop, these instances can be relevant for implementing memory-intensive
use cases. We consider mostly the R4 series of instances in the following discus‐
sion. Although some instance types in this group also feature SSDs, their count is
too small to consider them for worker nodes in sticky cluster implementations.
This group also features the X1e instances that offer up to nearly 4 TB of
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memory. Although single instances in this group can have up to 128 vCPUs,
their count is small relative to the strong emphasis on RAM.

Accelerated-computing instances
This group features instances that offer graphics processing units (GPUs) as
accelerators. For big data, this addresses the fast-growing realm of use cases
around machine learning and deep learning.

All the instance classes, such as the M5 series, C5 series, and others in the aforemen‐
tioned groups, themselves contain multiple instance types of increasing capabilities.
Within each class, the nomenclature for the increase is typically large, xlarge, 2xlarge
… 16xlarge …, and so on.

AWS storage options
AWS offers a sophisticated portfolio for storing data at large or small scale. As shown
in Figure 16-1, the offering is organized by storage technologies.

Figure 16-1. AWS storage options

The available storage options are:

Elastic Block Storage
EBS is the AWS solution for remote block storage. In practical terms, you can
think of EBS as a gigantic SAN implementation. EBS provides raw block devices,
referred to as EBS volumes. Although an EBS volume is not a physically dedicated
SCSI disk, their performance characteristics make them suitable as the underly‐
ing storage for HDFS, when selected and configured in the correct way. AWS
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offers different volume types, as shown in Table 16-1, to address different
requirement profiles for latency and throughput.

Table 16-1. EBS volume types
EBS volume type Implementation Max. throughput Max. IOPS

sc1 HDD 250 MB/s 250

st1 HDD 500 MB/s 500

gp2 SSD 160 MB/s 10,000

io1 SSD 500 MB/s 32,000

gp2 and io1 are SSD volumes. gp2 volumes provide a general-purpose mix of
high input/output operations per second and fair bandwidth, while also striking
a balance between price and performance. io1 provides the highest throughput
and IOPS in the EBS portfolio. st1 and sc1 are hard disk drive (HDD) volumes.
st1 volumes are throughput-optimized, whereas sc1 volumes yield only half of
their performance and are considered cold storage.

EBS allows bursting throughput beyond the volume’s limit, based on a bucket of
burst credits. AWS provides detailed numbers on availability and fail rates for
EBS storage, which we summarize in Table 16-8.

When using EBS for Hadoop, we strongly recommend that you use at least gp2
volumes for master roles, such as HDFS JournalNodes or ZooKeeper, and at least
st1 volumes for worker roles, such as HDFS DataNodes or Kudu tablet servers.
A common mistake when building a Hadoop cluster on EBS is that the sum of
your mounted EBS volumes exceeds the total EBS bandwidth of the instance
types in your cluster.

Further on, we recommend using EBS-optimized instances, which offer dedica‐
ted network capacity for EBS; nonoptimized instances share their network band‐
width for all services. In addition, for master roles, we strongly recommend using
either EBS-optimized instances or instances that feature at least 10 Gb/s network
bandwidth. The rationale for the latter is that although under normal conditions
bandwidth and latency are independent, high bandwidth helps to sustain lower
latencies in times of congestion, which is of key importance for said master roles.

EBS storage offers the ability to scale HDFS storage independently from com‐
pute, by adding more volumes to existing nodes. However, if you are after true
elasticity, you might want to consider other, more natural cloud-native patterns,
such as dynamically scaling your cluster by adding and removing compute
instances and using object storage as the principal storage location.

In addition, EBS allows for snapshots of the S3 object storage, as a more durable
persistence layer. This can be a useful failsafe for master node disks. For HDFS
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DataNode disks, bear in mind that such a backup would contain content that is
not usable by systems other than Hadoop, and it may be better to perform your
backup via an Amazon S3 target.

Simple Storage Service
Amazon S3 is a massively scalable object storage service that defines its own pro‐
tocol and API for storing data. All entities of data in S3 are called objects, and all
objects are stored in buckets. Buckets provide a single flat namespace to organize
data and to provide isolation between tenants. S3 uses HTTP as the transport
protocol via RESTful PUT and GET methods and a SOAP interface.

Some operations in the S3 API are eventually consistent. This
means some clients may still see old data after other clients
have overwritten or deleted it. This could occur during a read
operation or when listing a directory’s contents. When talking
about this, you will often hear the terms read-after-write con‐
sistency and listing consistency for directory listings. While
other object store implementations provide both, S3 does not
provide either. However, the operations are still atomic, mean‐
ing that either the old or new data will be fetched, as appropri‐
ate, but clients do not see corrupt data.

Hadoop offers the hadoop-aws module to access S3. There are multiple clients
available in the module, but the preferred one is the S3A client. As listed in the
Hadoop documentation, other client libraries exist but are either unmaintained
or already deprecated.

Certain problems in Hadoop processing arise around S3 consistency in practice.
Consider, for example, when an automated process checks for the success of a
Spark job by checking for its output. It might fail to see a successful run, due to
eventual consistency. The best solution to this at the moment is S3Guard, which
tracks metadata changes via an additional database and manages to fix most of
the known problems.

Due to the nature of the S3 API, some calls remain unimple‐
mented; for example, the append method of S3AFileSystem.

Unlike EBS volumes, which appear simply as SCSI disks to your instance, S3 is
accessed remotely by the Hadoop services using the S3 API with a set of configu‐
rable credentials. We cover this aspect in detail in Chapter 18.
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For many organizations, S3 is a good choice for maintaining a single version of
truth for their data since it has the best durability of all AWS storage systems.
AWS provides a number of optimizations to achieve maximum efficiency and
performance on S3. In our experience, the effective limit on throughput to S3 is
in the clients; that is, the number of instances in your cluster as well as the net‐
work bandwidth and the number of requesting threads on those instances.

Instance (ephemeral) storage
EC2 also offers a set of instances that feature local disks, which AWS refers to as
instance stores or ephemeral storage. Table 16-2 shows examples of instances with
ephemeral disks that can be useful configurations for worker nodes.

Table 16-2. Examples of configuration for instance storage in AWS
Instance vCPU Memory Storage
d2.4xlarge 16 122 12 x 2 TB HDD

i3.8xlarge 32 244 4 x 1.9 TB NVMe SSD

Many newer-generation instance types have shifted to exclusively using EBS
storage, although they offered local storage in previous generations. A good
example of this is the M instance line. Although up to generation M3 these
instance types used to have one or two local disks, M4 was only EBS. Compared
to EBS, local disks provide a cost incentive, but they do not offer the ability to
scale storage independently from compute.

The content on ephemeral disks can be lost in its entirety when
instances are stopped or when they crash. Although ephemeral
disks can yield advantages in performance and provide an eco‐
nomic incentive, they have implications on your cluster’s life cycle
that you should fully understand prior to running HDFS on them.
See “Storage and Life Cycle Models” on page 476 for a detailed dis‐
cussion on this.

Amazon Elastic MapReduce
Amazon Elastic MapReduce (EMR) is a PaaS offering that is essentially a Hadoop dis‐
tribution on AWS. As an AWS customer, it lets you deploy Hadoop clusters, includ‐
ing the underlying infrastructure for Hadoop as well as Hadoop services themselves.

Among other services, EMR includes:

• MapReduce/YARN
• Hive, Tez
• HBase
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• Presto
• Spark

You can select from a set of preconfigured services or individually select the services
you require on the cluster.

You can use HDFS on instances with local disks as the storage layer, but EMR also
features the EMR File System (EMRFS), which is an implementation of the HDFS
API on top of S3. EMRFS offers functionality to provide read-after-write consistency,
called consistent view, which works similarly to S3Guard.

A common challenge that arises when working with transient life cycle models is that
of retaining the metadata that defines the structure of your actual datasets; for exam‐
ple, the content of your Hive Metastore or authorization information about your
datasets. EMR addresses this challenge via the AWS Glue Data Catalog, which can
persist metadata information for data stored in S3 beyond the EMR cluster lifetime.

Although the ecosystem of big data software assets in classic Hadoop distributions
such as Cloudera and Hortonworks is being expanded with, for example, Kafka and
Kudu, EMR might already offer an adequate portfolio for some orgs. It also provides
additional convenience as well as full integration into AWS. It is, however, by design
bound to the AWS context and does not permit sourcing of multiple cloud vendors.

Finally, you need to consider that when AWS incorporates fixes into EMR, they are
shipped to you in the form of a new virtual machine image, called an Amazon
Machine Image (AMI). To apply the new AMI, you need to terminate and relaunch
your cluster instances with the new AMI, which makes it difficult to maintain a long-
running sticky cluster.

Caveats and service limits
When you initially set up your AWS account, certain default per-region limits apply
to the majority of AWS services. Although public clouds are built for economies of
(hyper)scale, even AWS needs to plan for large resource requests. The service limits
also protect your organization from inadvertent infrastructure requests that could
consume your quarterly IT budget in a five-hour straw fire (this actually happens).
The limits are:

• 20 reserved instances per availability zone on EC2
• 300 TB of throughput-optimized HDDs (st1) on EBS per region
• 100 buckets per account for S3 object storage
• 5 virtual private clouds (VPCs) per region
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In order to build anything beyond a small Hadoop deployment, you need to submit a
corresponding request to extend the default boundaries of your account. It is worth
having at least a rough estimate of your initial resource requirements and keeping
tabs on your current and expected usage in order to get limit increase requests in
before they become a project bottleneck.

Microsoft Azure
Microsoft, which is at the center of many on-premises enterprise IT stacks, is now the
market challenger for public cloud services, with Microsoft Azure. Azure offers an
extensive product portfolio by leveraging many of Microsoft’s preexisting enterprise
software offerings for office collaboration and identity management, while comple‐
menting them with innovations in large-scale distributed web services. This makes
Azure attractive for big data use cases in the cloud.

Azure is currently available in 42 regions. Similar to the AWS GovCloud offering,
Azure is distinguished in the European market with an isolated German region,
which runs its own networking and is operated solely by German staff (referred to as
the data trustee), in order to abide by EU data protection regulations. Like AWS,
Azure regions are further subdivided into availability zones but additionally offer
fault domains and availability sets, which we cover in more detail in “High Availabil‐
ity” on page 486. Although Azure features a great number of regions, it should be noted
that certain instance types or products that are relevant to Hadoop, such as Azure
Data Lake Storage, are not available in some of them.

Azure instance types
Similar to AWS, Azure offers several classes of instance types:

General-purpose VMs
Azure offers this group of instances to address the majority of use cases. There
are as many as 10 different instance types within this group, some of which are
simply predecessors of the latest generation. For Hadoop, you should mainly
consider the DSv3-series and the Dv3-series because they provide adequate verti‐
cal scalability for, for example, worker nodes.
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Compute-optimized VMs
This group comprises the F-series instances and newer generations thereof.
These instances allow for building compute-heavy worker nodes, as shown in
“Implementing Clusters” on page 471. You should use only the Fsv2-series, because
it permits vertical scalability beyond 32 GB of memory, which is likely to be
required in a medium-sized cluster.

Memory-optimized VMs
Azure lists nine instance types in this group, including instances from the D-
series, which are also listed under the general-purpose category. The D-, DS-,
Dv2-, and DSv2-series instances are basically split into two groups.

The first group has a memory-to-vCPU ratio of 3.5 and is listed as general-
purpose, whereas the second group has a memory-to-vCPU ratio of 7 and is lis‐
ted as memory-optimized. The focus for memory-intensive big data use cases
should be on the Ev3- and Esv3-series as well as the G- and GS-series, which pro‐
vide superior vertical scalability and a memory-to-vCPU ratio of 7 and 14,
respectively. The G-series also features up to 6 TB of local temporary SSD storage
and is one of the few instances in the Azure portfolio that would allow for imple‐
menting sticky clusters.

Finally, there is the M-series, which is a potential but unlikely candidate for
Hadoop: the smallest instance starts out with 1 TB of RAM, which is typically
overkill for Hadoop worker nodes.

Storage-optimized VMs
Azure offers the Ls-series for I/O-intensive workloads. It comes with a memory-
to-compute ratio of 8, features up to 5.6 TB of local temporary SSD storage, and
significantly improves local storage throughput compared to, for example, the
G-series instances.

GPU-optimized VMs
Azure also offers as many as five different instance types that feature various
types of NVIDIA GPU accelerators. Depending on the instance, one to four
GPUs are attached.

Azure storage options
Azure has a comprehensive range of storage options, which are shown in Figure 16-2.
Several key Azure storage technologies are organized under an umbrella service
called Blob storage, which supports storage of binary data of all kinds.

In Azure, you can select from different storage accounts, such as GPv2, GPv1, or Blob
only. These determine the options of actual storage products that you have. GPv2 is
the successor of GPv1 and provides all of the latest storage types and features for
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Hadoop. In most cases, we recommended upgrading all GPv1 accounts to GPv2. In
addition, it is possible to have a Blob-only storage account, which limits your account
to block blobs, which we introduce in the following section.

Blob storage, or Windows Azure Storage Blobs (WASB), is used to provide several
types of object storage services as well as remote block storage (that is, SANs) used
for the SCSI disks in Azure VMs. Finally, and more recently, Azure has launched a
special kind of large-scale storage platform that specifically supports big data use 
cases, called Azure Data Lake.

Figure 16-2. Azure storage options

Let’s take a closer look at the Azure storage options:

Local temp storage
In Azure, every instance that is started in addition to the OS boot disk comes
with a temporary disk, simply called the temp drive. The device typically grows in
size and performance with larger instance types.

Because you get only a single device per instance, however, the function of a
DataNode would be severely affected if the drive were unavailable. It is, there‐
fore, normally not advisable to use the temp drive as backing storage for HDFS.
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Like ephemeral disks in AWS, Azure temp drives are volatile. See
Table 16-6 for a detailed look at this.

Azure Blob storage
Blob storage is one of the fundamental types of storage offered in Azure. As
shown in Figure 16-2, three different blob types exist. To make sense of them, it
may help to purely consider them as three different access patterns.

Block blobs provide a simple API to upload and commit objects (blocks) into the
blob. The API provides a flat namespace that stores blobs in containers, which
are equivalent to buckets in S3. Blocks can be inserted, overwritten, or deleted in
their entirety, each of which requires a dedicated atomic commit operation.
Block blobs are accessible from Hadoop as part of the WASB client.

Unlike block blobs, append blobs support appends, but they do not expose their
internal block IDs and do not support updates or deletes. They are currently not
used in any part of the Hadoop ecosystem.

Page blobs are small blobs organized into 512-byte pages. They are optimized for
random I/O, and writes are immediately committed to storage. WASB’s strong
consistency guarantees allow page blobs to be used to implement virtual block
devices such as disks in Azure. As we show in Table 16-8, WASB achieves very
high availability and data durability.

Blobs in Azure can be accessed via an object storage API, which is used in the
hadoop-azure storage module. Like the hadoop-aws module, hadoop-azure pro‐
vides an implementation of the Hadoop abstract FileSystem class, called
NativeAzureFileSystem, which maps Hadoop filesystem API calls to Azure Blob
API calls and is available under the wasb:// URI scheme.

NativeAzureFileSystem uses block blobs and page blobs internally. Block blobs
are used for the majority of accesses; for example, from Spark jobs or Hive quer‐
ies. However, block blobs only support a maximum of 50,000 append operations.
This is a problem for HBase, which frequently appends to its write-ahead log. To
circumvent this problem, the WASB client also supports writing to page blobs.
Like S3, WASB is an external service that requires client credentials in your
configuration.

Disk storage
As depicted in Figure 16-2, disk storage is one of the principal storage types in
Azure and provides remote block storage. All the disk types are based on virtual
hard disks (VHDs), which are, in turn, saved as page blobs.
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Unmanaged disks are VHDs that you provision separately from any compute
resource in your storage account. You can connect unmanaged disks to your
VMs, but they remain different entities with their own life cycles.

Managed disks are created in the background when you create VMs. They are
subdivided into volumes backed by HDDs, called standard disks, and volumes
backed by SSDs, called premium disks. Azure transparently manages the life cycle
of the disks and aligns their fault domains with the VMs they are connected to.
Microsoft publishes performance and scalability targets, which we summarize in
Table 16-3.

We show only the largest possible volume sizes, to demonstrate maximum limits.
Standard disks are sufficient, albeit not ideal, for worker node workloads, from a
throughput perspective. When implementing master roles, make sure not to
colocate multiple latency-sensitive services such as a ZooKeeper server and Jour‐
nalNodes on a single standard disk, but provision multiple devices to ensure suf‐
ficient IOPS.

It is possible to back up managed disks via the Azure Backup service, which is
Azure’s equivalent of EBS snapshots and can be very handy, for example, to back 
up your NameNode’s metadata.

Table 16-3. Azure managed disk types
Disk type Implementation Max. throughput Max. IOPS
Premium disk (P50) SSD 250 MB/s 7,500

Standard disk (S50) HDD 60 MB/s 500

Azure Data Lake Storage
Microsoft Azure Data Lake Store (ADLS) is an additional storage offering in
Azure that can be connected to Hadoop. ADLS is managed as a completely sepa‐
rate service and is optimized for analytics workloads with large concurrent access
and high throughput.

The ADLS API resembles the HDFS API much more than the other object stor‐
age interfaces we have discussed. For example, it provides a file and directory
structure and POSIX ACLs. ADLS offers read-after-write consistency. It is acces‐
sible for users by the adl:// URL scheme, based on an implementation of the
Hadoop FileSystem class, called AdlFileSystem in the Hadoop sources. It also
implements the full WebHDFS REST API via HTTPS.

We cover aspects of security when using ADLS in “Microsoft Azure” on page 529.

ADLS shows performance characteristics similar to those of HDFS with managed
disks, and publicly available data shows that the typical limit is client bandwidth
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rather than ADLS bandwidth. ADLS is supported as a persistent object storage
layer with most Hadoop distributions, such as Cloudera.

ADLS, which launched in 2016, is now strongly recommended for
Hadoop workloads over WASB. A good overview of the differences
between the two services is contained in the documentation.

HDInsight
Similar to AWS EMR, Microsoft Azure offers HDInsight, which packages several big
data open source projects into a managed service. Unlike AWS EMR, Azure does not
distribute the components itself but bases its offering on the Hortonworks Data Plat‐
form (HDP) distribution of Hadoop. The services offered are:

• Hadoop (MapReduce)
• Spark
• Kafka
• Interactive Query (Hive LLAP)
• HBase or Storm

HDInsight currently allows the selection of only one of the aforementioned cluster
types and does not support the combination of different services within a single clus‐
ter. It can use either HDFS with instance VHDs or ADLS as the primary storage
mechanism.

Like EMR, HDInsight provides cloud-native ease of use when creating Hadoop clus‐
ters but binds you to the service offering and cloud provider itself.

Caveats and service limits
One thing to bear in mind is that Azure currently does not support reverse DNS for
the internal IP addresses of VMs (not to be confused with a VM’s external IP address,
for which reverse DNS is available in Azure). Because your cluster’s components use
the internal IPs to communicate internally, you are required to manually set up a
DNS server, as shown in various examples on the web.

New Azure subscriptions are set up with relatively modest default limits (as low as,
for example, 20 cores per region), so you need to plan to increase the limits on the
various resources for your cluster deployments.
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Google Cloud Platform
After Amazon and Microsoft, Google is the third-largest provider in the public cloud
market. Google Cloud Platform (GCP) offers an extensive suite of cloud services, cur‐
rently in 18 regions. Regions in GCP have between two and four zones, which are in
isolated datacenter locations, much like with AWS and Azure.

Instance types
Google’s main offering for IaaS computing services is called Google Compute Engine
(GCE). GCE instances are categorized very simply by RAM and CPU. Different
regions may run different generations of processors to implement the various
instance types. GCP is differentiated in that it grants a sustained use discount, mean‐
ing that the hourly price for an instance decreases when it is continuously used. The
instance types are categorized as follows:

High-CPU machine types
As the name implies, these machines simply have a high ratio of vCPUs to mem‐
ory—the highest when compared to the AWS and Azure portfolios. The maxi‐
mum number of cores is 96, which is more than sufficient for most use cases we
have encountered.

Standard machine types
These are balanced instances that have a memory-to-vCPU ratio of 3.75 GB/core,
which is a good match for worker nodes.

High-memory machine types
Google’s high-mem instances feature a 2x higher memory-to-vCPU ratio than its
balanced instances. While they do not provide as strong a focus on memory as
some AWS or Azure instances, the high-mem instance class still should suffice
for memory-intensive Hadoop use cases.

GCP also offers custom machine types, with which you define your own ratio of
compute and CPU, within defined limits.

GCP’s instance portfolio is at the same time very simple but very flexible, because it
allows you to attach disks and GPUs to all instance types. This has big advantages for
implementation of cluster life cycle models: you can turn any cluster into a suspenda‐
ble cluster via persistent disks or local SSDs. Similarly, you can augment existing
worker nodes to support deep learning use cases by attaching a GPU.

In Figure 16-4, we show examples of how GCP instances map to various Hadoop use
cases.
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Storage options
Google offers a straightforward portfolio for storage in the cloud, as shown in
Figure 16-3. It consists of:

• Remote block storage, called persistent disks
• Options for high-performance local SSDs that can be requested for most instance

types
• An object store service, called Google Cloud Storage (GCS)

Figure 16-3. GCP storage options

Let’s take a closer look at the options:

Persistent disks
Google’s solution for remote block storage is persistent disks, which are organ‐
ized into standard persistent disks and SSD persistent disks. GCE can create per‐
sistent disks during instance creation, and you can create and connect disks to
existing instances later. Persistent disks be provisioned up to a total amount of 64
TB per instance. Google specifies IOPS per disk to scale linearly with the disk
size, but the practical limits are defined per instance rather than per device, as
shown in Table 16-4. Persistent disks also support snapshots.

Table 16-4. GCE disk types
Disk type Implementation Max. throughput (MB/s) Max. IOPS
Standard persistent
disks

HDD 180 read, 120 write (per instance) 3,000 read, 15,000 write (per
instance)

SSD persistent disks SSD 800 read, 400 write (per instance, if
more than 32 vCPUs)

40,000 read, 30,000 write (per
instance, if more than 32 vCPUs)
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Local SSDs
Google permits provisioning up to eight local SSD drives in any given instance,
except for the very small shared-core instances (which have no relevance for
Hadoop). Like instance storage in EC2, local SSDs are volatile and do not persist
data beyond the life cycle of the instance. Local SSDs have a fixed size of 375 GB,
and they are much faster than their remotely attached counterparts. They can be
attached via SCSI or NVMe, the latter of which increases IOPS and throughput
by a further 70% for reads and 30% for writes. Being able to attach these extra
devices to any instance type greatly increases flexibility. They allow you to tend
to requirements for very fast local I/O, but they also come at an increased cost
compared to HDDs. Hence, local SSDs may not be the right option if you try to
achieve better pricing by building a sticky cluster with local disks.

Google Cloud Storage
Google also features a massively scalable object storage implementation called
GCS, which organizes all data into a flat namespace consisting of buckets and
objects within them. It offers XML and JSON for API messages and uses
HTTP(S) as the transport protocol. As summarized in Table 16-8, GCS offers
very high durability and high availability of data, by storing data in multiple
regions. It provides atomic read-after-write consistency. Like the other cloud
storage implementations we’ve introduced, GCS is accessible by Hadoop via an
implementation of the abstract FileSystem class (GoogleHadoopFS) and using
the gs:// URL scheme in filesystem paths. The source code is freely available
under the Apache license, but GCS is currently not part of the Hadoop codebase
and is distributed by Google itself.

Cloud Dataproc
Cloud Dataproc is GCP’s PaaS offering for Hadoop and big data processing and
includes the following software components:

• Spark
• Hadoop
• Pig
• Hive

In addition, it contains connectors for Google BigQuery and GCS, which is fully sup‐
ported as a primary storage layer in Dataproc. The selection of components in Data‐
proc is somewhat limited and does not include any with streaming capabilities, such
as Flume or Kafka. For streaming use cases, Google alternatively offers Dataflow.
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Caveats and service limits
Just like with the other public cloud providers, quotas apply to your account on GCP.
However, Google does not specify default quotas. The quota mechanisms are instead
described separately and more generically for compute and storage.

Implementing Clusters
This section looks at examples of problems or use cases you might need to address in
Hadoop and points you to solutions in the portfolios of all three public cloud provid‐
ers we have covered here. These pointers are by no means exhaustive; sometimes an
alternative instance or a different storage implementation might suit you better.

Instances
You must now be asking, which instances should I choose? This is not an exact sci‐
ence and heavily depends on your use case.

The initial consideration is the ratio of memory to compute capabilities. You can
choose between compute-heavy, memory-heavy, and balanced instance classes, and
the cloud gives you the ability to bring up purpose-specific clusters per use case,
which over time yields a better total cost of ownership.

The second consideration is the size of the instances themselves. After you choose an
instance class, you select an instance size, which gives you control over vertical scala‐
bility (scale-up). As with on-premises servers, vertical scalability is a complementary
option to Hadoop’s true strength, which is horizontal scalability (scale-out). If your
workflow allows for transient clusters, you can change the instance size for new
incarnations of the same workload as well as the number of instances, depending on
data size and SLAs.

It is hard to come up with general rules on when to scale vertically rather than hori‐
zontally, but Figure 16-4 addresses both, to a fair degree. The chart categorizes com‐
mon big data use cases by plotting typical per-instance compute and memory
requirements for a production environment in the dark-coloured boxes (note that
these do not mark minimum requirements). Each arrow represents the relationship
between memory in gigabytes and the number of vCPUs. For example, for Impala as
a standalone use case, 8 GB of memory per CPU core (represented as 8x) is a reason‐
able recommendation. As another example, we consider 4x a balanced configuration.

The chart also shows instance types (for worker nodes only) from the three cloud
providers discussed here that provide a good match for the use cases in the illustra‐
tion. You may notice a resemblance to a similar illustration in “Workload Profiles”
on page 96, focused on on-premises deployments, where we plotted CPU and RAM
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on one axis against I/O capabilities on the other. In this illustration, we plot CPU
against RAM.

Figure 16-4. Cloud instances and typical big data workloads

The rationale for on-premises scenarios is to aim for a balance between compute and
RAM because it is difficult to foresee all the application scenarios that might occur
during the depreciation period of your hardware. In contrast, as a cloud user, you do
not need to concern yourself with rigid hardware configuration and its depreciation,
since you can adapt your requirements on a per–use case—or even per-job—level,
and as we have seen, storage and storage bandwidth exist as decoupled resources.
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Your experience might vary greatly, and the best way to select your instances is to
analyze whether you are CPU- or memory-bound via tools like Cloudera Manager or
Apache Ambari.

Let’s look briefly at the workload classes listed in Figure 16-4:

2–3 GB/vCPU
Certain machine learning workloads, such as classification and clustering algo‐
rithms and neural networks, are computationally intensive even for relatively
small datasets and would justify applying an instance in this range. Those work‐
loads are, however, also excellent candidates for running on GPU-enriched
instances. If you run an unspecified Spark workload, but your cluster is a stand‐
alone environment, the general recommendation is to configure slightly
compute-intensive or balanced instances. After a dataset in a Spark job is in
memory, the workload is generally CPU-bound. Generally, in this group, you
would not consider instances below 24 cores.

Classifying machine learning tasks, in general, is difficult because
there is typically a data preparation and possibly a model training
(build) phase involved prior to running the actual algorithm.

4–5 GB/vCPU
General batch workloads, ETL work, and Kafka generally fit into the balanced
workload trajectory. If you mix slightly compute-intensive services, such as
Spark, with a slightly memory-intensive service, such as HBase, in a single clus‐
ter, you should also deploy balanced instances. This category should be used for
clusters that can be implemented on small instances, and balanced instances are
also your best bet if you implement a one-size-fits-all cluster that combines many
resource-hungry services, such as Spark, HBase, Impala, and Search.

6–8 GB/vCPU
SQL engines such as Impala heavily rely on materialized aggregates or parti‐
tioned join operations in memory. Any SQL query can also be computationally
intensive, which is why nowadays we recommend at least 16 cores. What you
should avoid at all costs is a join operation spilling to disk.

If you use HBase for scans, it can quickly become CPU-bound; the
recommendation in this case would be to use Impala or Hive for
scan-heavy workloads.
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10–12 GB/vCPU
Although relatively uncommon, certain workloads require even more focus on
memory. Sometimes—and despite a general paradigm to denormalize datasets in
Hive or Impala—you need to run very large distributed joins. In this case,
addressing the problem with even more RAM might be necessary. Also, certain
machine learning algorithms, such as ensemble learning and support vector
machines, often train and run best with a disproportionate amount of memory.

Each of the major providers offers an instance portfolio that allows us to address
these big data use cases. While not an exhaustive list, Table 16-5 provides examples of
high-CPU, high-memory, and balanced instance classes for each provider. For each
instance class, we show the maximum amount of memory and number of CPU cores
in separate columns. We also list how many instance sizes are available in the given
class and what the ratio of memory to vCPUs is, just like we did earlier for the work‐
load classification.

Table 16-5. Cloud instance comparison

Instance
class type

Provider Instance class
name

Number of
instances in
class

Max. instance
memory

Max.
instance
CPUs

Memory/CPU ratio

High-CPU AWS C5 series 6 144 GB 72 2 GB/vCPU

Azure Fsv2-series 7 144 GB 72 2 GB/vCPU

GCP n1-highcpu 7 86.4 GB 96 0.9 GB/vCPU

Balanced AWS M5 series 6 384 GB 96 4 GB/vCPU

Azure Dv3-series 6 256 GB 64 4 GB/vCPU

GCP n1-standard 8 360 GB 96 3.75 GB/vCPU

High-mem AWS R4 series 6 488 GB 64 7.625 GB/vCPU

Azure G-series/GS-series 5 448 GB 32 14 GB/vCPU

Ev3-series 6 432 GB 64 6.75–8 GB/vCPU

GCP n1-highmem 7 624 GB 96 6.5 GB/vCPU

The table shows some very impressive maximum values for memory and vCPUs.
Large instance sizes are good but generally more expensive, and because Hadoop is a
scale-out platform, your goal should be to strike a sensible balance between scale-up
and scale-out. Our general recommendation is to initially establish the must-have
requirement for the dominant resource (that is, memory or CPU) for a single
instance and to then optimize your instance choice by the ratio of memory to CPU,
which we show in the last column.
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In general, consider that all of the mentioned cloud vendors regu‐
larly refresh their instances to include latest-generation technology
and that any discussion around instances is short-lived and exem‐
plary. The AWS EC2 M4 series was recently superseded by the M5
series, the Azure DSv2–series has been superseded by DSv3, and so
on. You should expect that every few months new instance types
will be introduced, typically with slightly changed specifications.

When it comes to comparing compute power between cloud vendors, you should at
minimum keep in mind the specifications of the underlying CPUs, such as core fre‐
quency and cache sizes, as well as the general time frames that the vendor uses. Some‐
times, new chips introduce new core features that the cloud vendor can take
advantage of in a newer generation of instances. An example of this is the adoption of
Intel’s SR-IOV capabilities, which significantly speed up throughput of external I/O
in virtualized systems, which is also what we look at in the paragraphs that follow
Table 16-5.

Monster Instances
Our evaluation in Table 16-5 actually does not include the high-end instances of
AWS and Azure. AWS offers very large instances with its X1e line that top out at 3.9
TB of memory with 128 cores per instance. Similarly, Azure provides up to 3.8 TB
and 128 cores with its M-series instances. GCP has a single instance called n1-
megamem-96 that has over 1.4 TB of memory. Although they can technically be used
to build Hadoop clusters, their specs exceed the requirements of most use cases, given
Hadoop’s ability to scale horizontally. Also, their ratio of memory to CPU is larger
than 30, which will not provide any value-add in most use cases.

In most practical decisions, however, it comes down to cores and memory.

CPU-heavy instances
Although AWS and Azure offer instances that provide a huge number of vCPUs, as
mentioned in “Monster Instances” on page 475, GCP scales to the highest vCPU
count (96) within the CPU-heavy class. The very high vCPU-to-memory ratio of the
n1-highcpu instance class is not a perfect match to the majority of Hadoop use cases,
though, as depicted in Figure 16-4.

Balanced instances
This group of instance classes supplies the workhorses of most cloud-based Hadoop
clusters. If you’re in doubt about how your use cases will perform or if you don’t
know whether your cluster is memory- or CPU-bound, choose a balanced instance
type. We can see in Table 16-5 that each vendor has an instance series that exactly fits
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our definition of balanced, which is roughly 4 GB/vCPU. On AWS, you can stick to
the M5 or M4 instances. On Azure, it is mostly the Dv3-series that fits the balanced
class. On GCP, choose n1-standard instances.

Memory-heavy instances
Azure provides two options in this category: the G-series that come with 14 GB/
vCPU and the Ev3-series with 6.75–8 GB/vCPU. The G-series (not to be confused
with GS-series) instances, however, feature local disks,so they might not be relevant
to the chosen life cycle model for your architecture.

In AWS, the most relevant instance type for high-memory Hadoop use cases is likely
the R4 series, with a memory/compute ratio of slightly higher than 7. AWS also has
the X1 series, with a memory/compute ratio of about 15 GB/vCPU, but its smallest
instance has more than 900 GB of memory, which is more than is necessary for a sin‐
gle instance given Hadoop’s scalable nature. Finally, there is the X1e series, which
starts with smaller instance sizes but has an even higher memory/compute ratio—
more than 30—rendering it unsuitable for most Hadoop use cases.

GCP can scale its n1-highmem instances up to a portfolio-wide maximum of 624 GB,
which addresses all but the most extreme high-memory use cases.

Instances summary
As we have seen, cloud providers take different approaches in the structure of their
instance portfolios, but each of them provides solutions to address typical big data
use cases. All providers permit significant vertical scalability, which some situations
might require. Also consider existing reference architectures for the individual cloud
providers from Hadoop distributors such as Cloudera.

Storage and Life Cycle Models
Building on the concepts we introduced in “Cluster Life Cycle Models” on page 425,
let us see how we can use the storage offerings of the three cloud providers we have
just covered to implement various life cycle models for Hadoop clusters.

Suspendable clusters
At the time of this writing, in our experience, the majority of Hadoop clusters
deployed in public clouds are built as suspendable clusters: EBS, Azure VHDs or
managed disks, or Google persistent disks are used to implement the cluster’s HDFS
instance. For enterprises beginning to explore Hadoop-based data platforms in the
cloud, remote block storage provides the most hassle-free and reliable path to suc‐
cess, even if it means sacrificing potential economic efficiencies. Most organizations
augment suspendable clusters with an object storage layer such as ADLS, S3, or GCS,
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which we also highly recommend, especially to increase durability of data via regular
backups.

If you attach more remote disks to an instance, bear in mind that
typically there is a per-instance limit of total available bandwidth
for remote block storage and network traffic. Make sure that your
network bandwidth does not become a bottleneck for HDFS block
traffic, replication, or node-to-node communication.

For clusters without SLAs, such as development clusters, it is common practice to
actually stop the clusters at the end of the workday (or an extended usage period) to
reduce cost. In that context, we also see clusters with remote block storage effectively
used as one-off clusters that go as soon as a job completes.

One-off clusters
In general, it is easier on public clouds to implement transient clusters as one-off
clusters. As we covered in “Cluster Life Cycle Models” on page 425, a pure one-off
cluster is entirely transient and gets its source of truth from an object storage layer.

It is an emerging model to use object storage to share data between many clusters
that are spontaneously booted. For this model to work properly, metadata (such as
the Hive Metastore and search collections) and authorization data (such as rules
stored in Apache Sentry) can no longer be bound to any specific cluster and its life
cycle but must also be saved in object storage or a tertiary layer, such as a database.
An example of a product that focuses on just that is Cloudera SDX, which we cover in
“Sharing Metadata Services” on page 509.

Here’s a breakdown of how the individual cloud providers handle this type of cluster:

AWS
AWS is well suited for one-off clusters with S3, but you need to work around the
consistency issues we covered earlier in this chapter when implementing multi‐
stage data pipelines that persist stages on S3 via tools like S3Guard. A good pub‐
lic example of this is S3mper, which Netflix created for this purpose. Also,
increasingly often, use case–specific one-off clusters complement the larger per‐
petual clusters; for example, in development or staging environments.

Azure
VHD-backed instances can be used for one-off models for which ADLS func‐
tions as the source of truth.

GCP
When using GCS as the secondary storage layer, you need to include it into your
Hadoop cluster by yourself. Because it is not part of Apache Hadoop, this code is
currently not supported by any of the Hadoop distributors.
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Sticky clusters
As we covered in “Cluster Life Cycle Models” on page 425, a sticky cluster uses local
disks to implement an HDFS instance that is the source of truth for your data. And,
as we saw in the previous sections, all three of the major cloud providers use local
disks in some form. The physical hosts of your instances, in that case, have local disks
that they export to your instances, as shown in Figure 14-2.

It is important that you regard these local storage volumes as volatile or ephemeral.
When an instance is stopped and restarted, it is very likely to reboot on a different
physical host. The cloud provider, in this case, has no practical way to migrate the
local disks with your instance. For Hadoop, this means that you rely on HDFS to re-
replicate the data that was previously on the instance’s ephemeral disks.

Events leading to a restart can be triggered by users, scheduled by the cloud provider
(e.g., scheduled events on AWS), or simply due to software or hardware failure.

Table 16-6 shows a range of possible events that may occur and how cloud providers
deal with locally attached disks in each case. As we saw in “Key Things to Know” on
page 453 and as we discuss in “Instance availability” on page 489, VM placement cannot
be fully controlled, and therefore all HDFS replicas or highly available master service
roles might appear on the same physical host. Because instances can be irrecoverably
lost at any time, there is a certain risk that a local HDFS instance will suffer a cata‐
strophic loss of DataNode disks.

Table 16-6. Ramifications of instance-level events on local storage

Provider Host restart Permanent
host failure

Instance
migration

Instance
terminate

Instance
stop/
shutdown

Instance
restart

Disk
failure

AWS Data preserved Data lost Data lost Data lost Data lost Data
preserved

Data lost

Azure Data lost Data lost Data lost Data lost Data lost Data lost Data lost

GCP Preservation
attempted

Preservation
attempted

Preservation
attempted

Data lost Data lost Data
preserved

Data lost

In our experience, enterprises that are new to the cloud typically do not consider
ephemeral disks as the basis for their initial deployments , and instead initially use
remote block storage. That being said, some organizations have enough experience to
implement long-running, sticky Hadoop clusters in public clouds and to use them as
the source of truth for their data on those clusters.

If you consider using local storage in your public cloud Hadoop cluster, we highly
recommend that you read “Instance availability” on page 489, in which we describe sev‐
eral ways to deal with these issues and to achieve higher availability and durability for
sticky clusters.
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Let’s finish this section with a quick analysis of how individual cloud providers stack
up with regard to sticky clusters:

AWS
AWS provides the most options around local storage capabilities. Clusters from
instances with ephemeral disks thus might provide an incentive from a cost per‐
spective because they do not require additional EBS volumes. Instance types in
question are the D2 line: for example, the d2.4xlarge instance type with 16
vCPUs, 122 GB memory, and 24 TB raw storage in 12 hard drives. Alternatively,
you can consider the H1 line, with less storage; for example, 8 TB raw storage
across 4 HDDs with 32 vCPUs and 128 GB memory in the h1.8xlarge.

Azure
The maximum capacity of local storage in an instance is 6 TB, when using the G5
instance. This instance, however, boasts 448 GB of memory and 32 cores, which
is typically too much to tend to just 6 TB of raw disk space in a Hadoop cluster.
In addition, local disk capability and throughput are limited to a single tempo‐
rary drive in Azure, and data is lost even just due to a reboot, as we have shown.
Hence, sticky clusters are theoretically possible in Azure but not typically built in
practice.

GCP
As we have covered, GCP can attach up to 8 SSDs to any instance type, for up to
a total of 3 TB per instance. This is a fairly modest amount of storage for an
HDFS DataNode, but since you can control the instance sizes, you may poten‐
tially be able to strike a good balance with modest instances as well. If you
require large instances for your use case, however, 3 TB might not be enough
local storage per instance to proceed with the approach. There is also no option
to use HDDs, which might provide a better price point for bandwidth-oriented
workloads.
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Storage compatibility
The features and functionality of the cloud storage systems we’ve discussed are
important, but for most enterprises, it is equally important how they interoperate
with their Hadoop distribution of choice. Table 16-7 provides an overview of which
storage systems can be used—and how—in a given distribution.

Table 16-7. Hadoop distribution interoperability with cloud storage solutions

Cloudera CDH Hortonworks HDP Amazon EMR HDInsight GCP Dataproc
AWS S3 Yes Yes Yes, but take care

in the choice of
client libraries

N/A N/A

AWS EBS Yes Yes, standard
Cloudbreak image
(miniviable-aws) for
AWS uses EBS

Yes, but
ephemeral

N/A N/A

Azure
managed disks
(VHD)

Yes Yes N/A Only for Apache
Kafka, otherwise
WASB

N/A

Azure ADLS Supported for Spark,
Hive, MapReduce 2, and
HBase; not supported as
a default filesystem

Yes, but blob-based
default filesystem
HDFS also required

N/A Yes N/A

WASB Only for backup Yes N/A Only with
general-purpose
storage account
and standard
storage tier

N/A

Google
persistent
disks

Yes Yes N/A N/A Yes

Google Cloud
Storage

Recommended as
backup layer, but the
connector code is not
supported

Yes N/A N/A Yes

Storage and life cycle summary
At the end of this section, we recapitulate what we have learned about the storage
offerings of each provider and we propose an initial approach to life cycle models
that you might pursue:

AWS
Provides a holistic storage portfolio with remote block storage (EBS) and several
options for local disks, but Hadoop use cases need to circumvent the issues on
eventual consistency with S3.
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Azure
Provides even more storage options, but is slightly more complex, with Blob
storage and virtual hard disks on the one hand and ADLS on the other. However,
it does not use local disks much in its instance portfolio.

GCP
Offers the most flexibility because of its ability to combine a configurable
amount of local disks with remote block storage (persistent disks).

Table 16-8 lists all the offerings, including availability and durability values as speci‐
fied by the cloud providers. It also summarizes available storage classes and API
capabilities.

Table 16-8. Summary of cloud storage solutions

Solution Availability Durability Storage classes API consistency
Amazon S3 99.5–99.9%

(depends on
storage class)

99.999999999% (11N) Standard-Infrequent
Access (IA), One Zone-IA,
Glacier

Eventually consistent
(can be improved with
S3Guard or EMRFS)

Amazon EBS 99.999% 0.1–0.2% annual fail rate
per volume

sc1, st1, gp2, io1 Fully consistent (POSIX/
SCSI)

Azure Blob
storage

99–99.99% 11N–16N Hot, cool, archive Strongly consistent

Azure Data Lake
Storage

99.9% ADLS is implemented as
locally redundant storage
(LRS, 11N)

Single Strongly consistent

Azure managed
disks

99.999% LRS (11N) Standard/Premium Fully consistent (POSIX/
SCSI)

Google persistent
disks

No data Three replicas HDD/SSD Fully consistent (POSIX/
SCSI)

Google Cloud
Storage

99.99–99.9% 11N multi_regional, regional,
nearline, coldline

Strongly consistent

In summary, all three providers offer options for storage that support the life cycle
models we have discussed, in either a long-running or transient context.

The availability of economical remote block storage, in our experience, enables a safe
default to get started with Hadoop in public clouds. However, you should fundamen‐
tally decide whether you want your source of truth to be on object storage or on other
media.

If you begin with only remote or local block storage, you can introduce a backing
object store at any point. Implementing the source of truth on object storage enables
you to run a mix of one-off and long-running clusters, independent of whether the
clusters themselves use local disks or remote block storage. As you can see in
Table 16-8, object stores also generally have higher durability.
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Building transient, use case–specific, or even one-off clusters backed by a shared
object storage layer is a quickly emerging pattern for big data environments in the
cloud and a typical progression from long-running clusters.

Network Architecture
Now that you know the relevant instance types and storage solutions for your cluster,
we cover how to embed it into your provider’s larger network and security infrastruc‐
ture. Because there is a lot of commonality across the cloud providers we have cov‐
ered, we provide the information in the form of a unified deployment blueprint,
while calling out provider specifics where appropriate. Our blueprint is shown in
Figure 16-5.

Figure 16-5. Typical deployment pattern for Hadoop
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A fundamental concept is the VPC instance in which your cluster will reside. A VPC
is the technical construct used by all cloud providers in which you build a cloud ser‐
vice. They fundamentally isolate your cloud services from other tenants. Although
virtual private clouds go by this name in AWS and GCP, they are called virtual net‐
works or VNets in Microsoft Azure. GCP permits spanning a VPC across multiple
geographical regions, whereas in AWS and Azure they are limited to a single region.
AWS and Azure do, however, allow VPCs to span availability zones.

A VPC can be segmented into different networks, or subnets. You can use subnets to
create public and private segments of your VPC. For example, it is usually recom‐
mended to place a Hadoop cluster in a private subnet and use an additional public
subnet to facilitate inbound and outbound traffic to your Hadoop services.

A subnet is considered private when it does not have any routes to an internet gate‐
way, whereas a subnet is public when it has such a route. The internet gateway is a
separate infrastructure service that bridges connections from the internet to the pub‐
lic subnet and vice versa. Depending on the cloud provider, it may have to be explic‐
itly set up and configured.

Like with physical infrastructure, traffic between subnets is controlled via routes.
Cloud providers try to offer convenience by automating routing as much as possible
when you create instances and connect them to other cloud services. All the provid‐
ers we’ve discussed allow you to change routes, add routes, and add new route tables
via VPC-specific router instances. For example, at the center of the illustration, we
can see our Hadoop cluster placed in a private subnet, which shields the cluster from
direct internet connections, whereas necessary connections from the public are set up
via explicit routes.

All traffic between subnets is also subject to firewalls in public clouds. This is yet
another service that you need to explicitly configure. We provide a detailed discus‐
sion of cloud firewalls and perimeter controls in “Perimeter Controls and Firewall‐
ing” on page 549.

If you intend to offer frontend services, such as web applications that rely on data
stored in Hadoop, we recommend placing them in a separate public subnet, which is
shown to the left of the public subnet in Figure 16-5. Optionally, you can create other
public or private subnets, as required, to segment additional components of your
overall solution.

Although all frontend services most likely require direct access to certain hosts in the
cluster via corresponding routes, direct users, such as developers or analysts, should
access the cluster via dedicated edge hosts. This is a best practice for on-premises
deployments, as well (see “Edge Nodes” on page 101).

If instances in the private subnet require the ability to access external services (for
example, for software updates), this can be securely achieved by a dedicated Network
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Address Translation gateway, allowing services in a private subnet to connect to the
internet. (Services on the internet cannot initiate connections over the NAT gate‐
way.) In our blueprint, the NAT gateway is placed in the public subnet. It is either an
integrated services offering or has to be implemented explicitly on a dedicated
instance.

Some organizations, however, do not expose their cloud-based Hadoop cluster exter‐
nally and only access it internally. In both cases, you typically connect your internal
company network to the cloud solution via a VPN gateway. Inbound traffic from the
company network could originate from internal frontend services or directly from
clients. For more details about the use of VPNs when integrating your cloud-based
cluster into your corporate network, refer to “Perimeter Controls and Firewalling” on
page 549.

If you need to bridge two VPCs—for example, two projects, each with its own cluster
—that intend to share services and data, this can typically be done via peering, which
connects multiple VPCs with each other without setting up routing or gateways. The
peered VPCs appear as one and are automatically and internally routed via the cloud
provider’s backbone connections. The peering concept is called VPC peering on AWS
and GCP, whereas on Azure it is referred to as virtual network peering.

Some solutions make use of other cloud offerings, such as managed relational data‐
bases. These can be connected without explicit routing if the cloud provider supports
endpoints at the VPC boundary, which allows a simple connection to other services
of the cloud provider. This feature is called VPC endpoints in GCP and AWS virtual
network service endpoints in Azure.

Additionally, if you need to connect from clients outside of your internal company
network, or if you do not yet have VPN connectivity to your cloud provider, it is pos‐
sible to securely facilitate external access to cluster hosts via a bastion instance in the
public subnet. Bastion hosts add a server as a level of indirection when accessing
internal servers from a public network. The bastion instance can be used to transpar‐
ently and securely forward outside connections to a configurable set of internal serv‐
ices without exposing the internal service endpoints. This is useful, for example, in
combination with SSH agent forwarding to access your Hadoop instances via SSH
from the internet.

An architecture like this guarantees good modularization and perimeter security
without sacrificing functionality or compromising usability. It is achievable with the
cloud providers that we cover here, although, by necessity, we simplify the details to
provide a high-level overview. We give a more detailed account and concrete exam‐
ples of how to configure your perimeter controls in “Perimeter Controls and Fire‐
walling” on page 549.
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In general, we highly recommend familiarizing yourself with the essentials of cloud
security, which we cover Chapter 18.

Beyond building a good perimeter architecture, you should turn your attention to
network throughput. Unlike in on-premises scenarios, you only need to consider the
specifications of the instance’s network capabilities, since the overall implementation
of the cluster network is conveniently hidden.

Maximum throughput is not only important to ensure that the network is not a bot‐
tleneck on individual instances for I/O when scaling them vertically, but also is sig‐
nificant for replication speed as you scale your cluster horizontally. The information
that the providers specify around this subject is vague in some places, but we summa‐
rize what you should know in Table 16-9.

Table 16-9. Network performance specifications by cloud provider

Provider Scalability Maximum Specifications Dedicated bandwidth
for remote block
storage?

AWS Throughput scales with
instance; details depend on
instance type

25 Gbps Priority ( for example, high
or moderate) or concrete
Gpbs

Yes (default or optional,
depending on instance)

Azure Throughput scales with
instance; details depend on
instance type

Up to 30 Gbps for
egress; ingress not
limited directly

Concrete Gbps Yes (with premium
disks)

GCP Throughput scales equally
with all instances

Capped at 16 Gbps Concrete Gbps via formula:
2 Gbps/vCPU

No

In more detail:

AWS
AWS provides information about network throughput per instance type in its
online documentation. Latest-generation instances (for example, M5 or C5)
specify exact throughput numbers. For older instance generations (for example,
M4 or C4), lower-end instances are often flagged simply as moderate (e.g.,
m4.large) or high throughput, whereas the larger instances (e.g., m4.16xlarge) are
typically specified with concrete throughput numbers as well.

Key to network performance on AWS is the Elastic Network Adapter, which
takes advantage of hardware optimizations in the host and is enabled in most
latest-generation instances. It can also be enabled for some older-generation
instances.

Azure
Like AWS, Azure structures information on network throughput per instance
type. Exact throughput numbers are listed for all instance types. One thing to be
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mindful of is that Azure does not provide reverse DNS for internal IPs, which is
required for Hadoop. Microsoft provides information on how you can achieve
this manually.

GCP
In GCP, egress bandwidth is specified equally for all instances via a simple rule of
2 Gbps per vCPU. This bandwidth is capped, however, at 16 Gbps for any
instance, and the available bandwidth includes write operations to persistent
disks. On large instances that also need to perform lots of shuffle operations in
big data use cases and disk I/O simultaneously, this could lead to a bottleneck.
Unlike egress, there is no specified limit for ingress traffic.

We have not nearly covered all topics regarding networking in the cloud in this sec‐
tion. All cloud providers offer an enormous amount of control over VPC environ‐
ments that will most likely enable you to implement and integrate any Hadoop use
case. The physical implementation of public cloud networks remains, to a large
degree, a black box to us, and most users want to keep it that way.

If you require further information about the configuration of networking with differ‐
ent cloud providers, we recommend studying the guides and how-tos offered by the
public cloud providers:

• Amazon VPC User Guide for AWS
• VNet Plan and Design Guide for Microsoft Azure
• Virtual Private Cloud documentation for GCP

High Availability
Cloud environments offer huge flexibility in the way resources can be provisioned
and deployed. Many managed services, such as Amazon Relational Database Service
(Amazon RDS), are highly available out of the box, but when it comes to deploying
Hadoop clusters in the cloud we still need to think carefully about how to build
robust architectures. For long-lived clusters, many of the concerns that hold for on-
premises datacenter deployments are equally applicable in a cloud context. We have
already covered some aspects of HA in the preceding sections and chapters, but in
this section, we focus on and reiterate some of these concerns. We begin with the
availability of the VMs themselves, followed by data, network, and service availability.
Before all that, though, we discuss further why we actually need to consider availabil‐
ity at all.

The requirement for HA
You may be asking yourself, why do I need to consider HA at all? Isn’t the cloud
meant to take care of all this stuff for me? The answer to these questions is, as always,
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it depends. As we have seen, cloud vendors do offer managed Hadoop-like offerings:
Amazon has EMR, Google has Dataflow, and Cloudera has Altus. For these environ‐
ments, we largely need to focus only on deploying and running our applications, be
they batch analytics in Spark or streaming processes in Apache Flink. But for sticky
clusters, we are building fully fledged, long-lived clusters where availability must be
provided.

There is another aspect to this, as well. As we have already discussed in “Cluster Life
Cycle Models” on page 425, some clusters will be one-offs, spun up for some transi‐
ent processing and then destroyed. In these scenarios, providing a fully fledged HA
deployment is probably not worth the effort.

Some automated deployment solutions, such as Cloudera Director, provide all the
necessary API hooks to automatically set up most aspects of Hadoop HA so that the
incremental effort may not be too onerous. The implied focus in this section is on
sticky, long-lived clusters, where such considerations are more important.

Compute availability
Most cloud providers do not talk in detail about how they build and operate their
clouds. We can make inferences about the possible use of software-defined network‐
ing, massive storage arrays, live VM migration, and more, but the actual tools and
techniques provide competitive advantage and are thus closely guarded secrets. The
safest source of information when considering availability is the public documenta‐
tion of each of the “big three” providers, but what do we need to consider about the
availability guarantees of VMs that we provision?

Resource Locations
In general, in the cloud, each resource (disk, storage bucket, network interface, and
compute instance, among other things) is defined with a given locality. It is impor‐
tant to know which locality a given resource you are using has—only then can you
understand the implications for availability. There are basically four localities to
consider:

Instance
Some resources are only visible (and durable) within the scope of a single
instance. An example of this is ephemeral instance storage.

Zone
Although each cloud provider has a slightly different nomenclature, they each
define the notion of a zone, which roughly equates to a datacenter in on-
premises terminology. Each zone has, for example, low-latency and high-
bandwidth network connections. Zones are an important concept in availability
terms because they often define a unit of resources that might all fail together
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(similar to a datacenter outage). Resources such as VPCs or networked block
storage are often zone-local.

Regions
Groups of zones with geographic proximity (and thus low-latency network links
between them) are grouped into regions. Usually, zones within a region are set
up such that they cannot fail together. In the context of Hadoop, this means that
for disaster recovery for long-lived clusters, you need to consider deploying dis‐
tinct clusters in different zones—or even in different regions.

Global
The highest level of resource locality is global. These resources exist across all
regions and zones and can be treated as permanently available. An example of
these kinds of resources is user accounts. Note that some resources are regional
in scope but might be accessible globally; for example, an S3 bucket.

Cluster availability.    As discussed in “Resource Locations” on page 487, instances are
deployed in zones, and in general, the only availability guarantees are between zones. 
That is, the provider makes guarantees that a failure in one zone will not affect other
zones in the same region but usually does not guarantee the availability of instances
within a zone. The general advice for architecting highly available applications in the
cloud is to run instances in two or more zones. Although this is sound advice for a
typical service-oriented architecture, for Hadoop clusters the picture is more
complicated.

You might be tempted to conclude that the natural solution to all this is simply to
span a single cluster across two or more availability zones, but this comes with addi‐
tional considerations (see “Quorum spanning with three datacenters” on page 179 for
a general discussion from a datacenter perspective). The first consideration is the vol‐
ume of network traffic: as part of normal operation and computation, large amounts
of data are routinely transferred between nodes. Although a region might comprise
multiple zones connected by low-latency links, the links are probably not able to pro‐
vide the same bandwidth that is available between nodes within the same zone, and
certainly not within a placement group, which could lead to performance degrada‐
tion. Some of that can be mitigated using hierarchical rack locations, but the options
are rather limited here. For the most network-intensive use cases, deploying clusters
this way might not be viable, but you should perform rigorous testing to determine
what is viable for your use case.

The second challenge is that of maintaining availability of master services. Simply
having nodes spread across two zones is not enough for a cluster to remain opera‐
tional with HA; as we saw in “Cluster Spanning” on page 173, we have to maintain a
quorum for master processes, such as ZooKeeper and HDFS JournalNodes. Since, by
definition, a quorum requires an odd number of nodes to maintain consistency, with
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two zones we have a 50% chance of the cluster staying up in the event of a zone fail‐
ure. To have the best chance of maintaining quorum, master services must be
deployed across three zones. If you choose to do this, ensure that the chosen zones
support the low latency required for master services, and rigorously test your
workloads.

Spanning over three zones might not always be possible, as some
regions might not have three zones to choose from.

Spanning a cluster over three zones is a valid deployment pattern for some well-
chosen and well-tested use cases, but it still remains far more common to deploy
clusters within a single zone.

In the latter case, you can employ the traditional on-premises approach to providing
cross-region availability by simply deploying multiple clusters in more than one
region and backing up or synchronizing data between them. You can, of course, use
the same methods that are available in on-premises deployments (as covered in
Chapter 13), but public clouds offer an even better way to share data: object storage
layers can ensure that data is globally available and cloud services typically manage
the mechanics of replication for you, providing an eventually consistent backup.

Ensuring that your ingest paths and consumer services can use cross-region clusters
is up to you to architect, just as it is in on-premises deployments. These considera‐
tions are directly tied to the use case and are usually the domain of application archi‐
tects—it’s rare for a platform architect to be able to provide a generic solution that
supports the active-active or active-passive georesilient requirements of all applica‐
tions, even in the cloud.

Instance availability.    We touched upon this aspect already, in “Sticky clusters” on
page 478. When deploying into a virtualized environment, we need to consider the
possibility of the failure of a physical server affecting multiple instances at the same
time. To prevent issues emerging from concurrent failure, we want to avoid instances
running certain roles on the same physical host. Although the probability of two
instances being colocated might be considered slight at cloud scales, it cannot be dis‐
counted. If you are taking advantage of features such as AWS placement groups for
high-performance networking, the probability of colocation may increase.
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Placement Groups
Some public clouds offer additional control over where instances are deployed. For
example, AWS provides placement groups, which can either spread instances across
physical hardware and zones, or group them together into a cluster for high-
performance networking between instances.

You need to consider what your requirements are when using placement groups. In
the spread grouping case, instances could end up in different availability zones, which
is probably not what you want for Hadoop. In the cluster grouping case, the cluster
grouping will increase the probability of instances ending up on the same host, which
means you need to give additional thought to data availability.

Each cloud provider provides a different mechanism to address this issue, and we
look at some of the options next. Before we do, though, we should remind ourselves
of the two primary reasons why we want to avoid colocation wherever possible:

Data colocation
It is theoretically possible (although unlikely) that all three copies of an HDFS
block end up on the same physical host. Since we are often not given information
about the physical location of nodes, we cannot use rack locality to address this
issue: we do not know where the racks are or what instances are in them. In this
case—when using local instance storage—if we lose the physical host, we lose the
data (see Table 16-6).

In addition to data disks, ensure that OS disks are placed on persis‐
tent storage, such as EBS on AWS or persistent disks on GCP, to
allow rapid restarting of instances in the event of physical host
failure.

Master colocation
It is also possible that two or more instances that are part of a quorum for a mas‐
ter process are physically colocated such that the failure of a node destroys the
quorum. Unexpected failures of instances are rare, but they do happen.

AWS spot instances, although economical, can be retired without
warning. Do not use spot instances for master instances.

So, what can be done to address the colocation issues? There are a number of options,
for better or worse:
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Use large instance types
The largest instance types are highly ikely to map to different physical hots, sim‐
ply because it is not possible to fit two such instances on the same host. This
gives us an indirect, but rather blunt (and by no means guaranteed) mechanism
of achieving physical isolation of master roles. The use of the larger types often
allows us to take advantage of other features, too, like enhanced networking.
Confirm with the provider the instance-to-host mapping before relying on this
approach.

Use different instances types for the same role
Although this is perhaps inelegant, it is probable—but not guaranteed—that dif‐
ferent instance types will be provisioned on different physical hosts.

Use dedicated hosts
AWS supports a purchase model based on dedicated hosts. When using this
option, you have much more control over which instances are deployed on
which physical hosts.

Use failure domains
Azure is unique in providing availability sets, which define both failure and
update domains for instances. The idea is that instances deployed in the same
availability set are not subject to the same failures of physical hardware or
updates and restarts of hypervisors. By default, three failure domains and five
update domains are provided, which should be enough to maintain a quorum of
master roles in the event of a hardware failure. As such, use of availability sets
should be regarded as a best practice for instances with master roles in Azure.

Planning for Maintenance
For long-running clusters, it is important to consider what action to take in the event
of upcoming instance maintenance. For example, AWS notifies users of upcoming
instance downtime through its events console. It is therefore important to have a
migration plan in place, should one of these events affect three or more worker nodes
(if using local instance storage for HDFS with threefold replication) or a majority of
master nodes.

Azure users should take advantage of availability sets to avoid such correlated down‐
time events.

At the time of this writing, GCP does not appear to offer any controls over instance
placement or to give notice of instance downtime, but it does make use of live migra‐
tion to ensure that instances do not go down during maintenance.
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Data availability
This aspect of availability was covered in detail earlier in this chapter, and we refer
you to Table 16-8 for a summary of how cloud storage choices have a bearing on data
availability.

The instance type defines how likely it is that replicas of an HDFS block end up on
the same physical host. When using instance-local storage and to ensure full data
availability in the face of physical host failure, architects can use the same tactics to
effect anti-affinity that we saw earlier. In addition, the more DataNode instances you
deploy, the smaller the overall chance of block colocation is—but this should not be
relied upon for guaranteeing availability. For mission-critical datasets, consider
increasing the replication factor if using instance-local storage.

Alternatively, data loss can be guarded against by using network-attached storage
(such as EBS volumes) as instance disks or by using object storage as the source of
truth or the backup location—or both.

Network availability
The last resource to consider is the network. This is actually the resource we need to
worry about least. Since we are in a fully virtualized environment, we can defer much
of the concern about redundant NICs, switches, and network topologies to the cloud
provider. To be sure, there are optimizations we can arrange for, such as using place‐
ment groups to place instances together and using virtualization extensions to get the
best performance from our virtual NICs, but in general we do not need to concern
ourselves further. Part of the big attraction of cloud computing is that you get an
excellent network.

Service availability
Finally, since we are concerning ourselves primarily with long-lived clusters, it is
worth spending some time talking about how a cloud setting changes the way we set
up a Hadoop cluster for HA.

The short answer to this is that almost all of the considerations for Hadoop service
HA still apply: we still require the standard setup for HA described in Chapter 12 for
HDFS, YARN, and other services. We still need database HA too, and should con‐
sider exposing client-facing services through load balancers.

Databases.    For services that use relational databases, such as the Hive Metastore, you
need to ensure that the database is highly available. One approach is to run MySQL
or Oracle on multiple instances and to configure them for HA just like you would in
an on-premises environment.
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Another approach, and one well worth considering, is to use a managed service offer‐
ing from the cloud provider. Although it comes at an additional cost, a managed ser‐
vice like Amazon RDS or Google’s Cloud SQL has significant advantages. Typically,
such services do the hard work of providing HA, regular backups, security, and per‐
formance monitoring for you.

Ultimately, the choice depends on a number of factors, such as available budget and
how comfortable your organization is configuring and running highly available
databases.

Load balancers.    Services that make use of load balancing have some slightly different
options when running in the cloud. You can still use software load balancers (and
DNS round robin), much as we did for on-premises deployments (see “Load Balanc‐
ing” on page 334). Instead of hardware load balancers, however, most cloud vendors
offer load-balancing services. For example, AWS has Elastic Load Balancing (ELB)
for routing traffic to different instances and, when combined with its DNS service
Route 53, automatic redirection between different load balancers.

One advantage of these services is that they have HA and scaling built in, so you
don’t need to deploy multiple instances yourself. However, they often do not have the
full capabilities of hardware load balancers. For example, unlike Google’s Network
Load Balancing, as of the time of this writing, AWS ELB does not offer session affin‐
ity based on TCP flows, which rules it out for a number of use cases in Hadoop clus‐
ters. It is important to understand the limitations and capabilities of load-balancing
services.

If you have advanced requirements, a third option to consider is virtualized load bal‐
ancers, such as F5 Virtual Edition. These will probably provide the highest level of
configurability and functionality but obviously come at an additional software cost.

Summary
There are differences among the providers, but not to the degree that it would impact
the planning of any use case we have come across. The main message is that there are
lots of choices on the infrastructure level, which is a good thing.

After scrutinizing and comparing instance portfolios with a focus on Hadoop, you
now know a fair amount about how to build the core of your big data environment;
that is, the cluster itself.

You saw some integration points on a very high level in “Network Architecture” on
page 482, but you need more to come full circle on enterprise requirements in the
cloud. In the next chapters, we consider security and automation. Note that these
chapters do not cover any more ground on private clouds.
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CHAPTER 17

Automated Provisioning

One of the main attractions of using an IaaS platform is the prospect of fast, fully
automated and repeatable cluster provisioning, entirely driven by configuration—an
approach often referred to as infrastructure as code. In this chapter, we look at what
we need to do to automate the process of deploying clusters, both long-lived and
transient, and at some of the special considerations to take into account when operat‐
ing in the cloud, such as integrating with security, shared metadata services, and
growing and shrinking clusters.

Long-Lived Clusters
For the purposes of this discussion, long-lived cluster deployments are those with a life
cycle that is governed outside of a specific workload or transient use case (see also
“Cluster Life Cycle Models” on page 425). They may be used for multiple workloads,
tenants, and use cases. Although their tenure can vary, typically such clusters have
lifetimes measured in weeks to months rather than days. Standing up a cluster like
this normally entails a few phases, as shown in Figure 17-1.

Figure 17-1. The five provisioning phases for long-lived clusters

Before examining each of the phases, we first cover the configuration and templating
that should drive any automation solution.
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Although this chapter focuses on cloud deployments, the general
automation principles can—and should—also be used for on-
premises deployments.

Configuration and Templating
Ideally, the input configuration files should completely describe the cluster and its
requirements in a declarative format. The configuration should include details such
as how many instances to provision and of what type; how to lay out the Hadoop
daemons across these instances, how to configure them for this specific cluster, and
in what order they should be deployed; how the cluster integrates with the wider
environment; and more.

As we’ll see in the following section, the separate phases need to be driven by differ‐
ent forms of input configuration or scripts. The key to making the definition of these
many configurations tractable—and to making deploying clusters repeatable—is to
abstract out all the complex configuration inputs into templates with placeholders for
deployment-specific values. This concept should be familiar to anyone who has used
a configuration management service, such as Puppet, Ansible, or Chef.

To illustrate the concept, consider Figure 17-2. The operator who is running the
automated install defines everything unique to the particular cluster in a single con‐
figuration file. For example, the configuration file might specify the following:

• The cluster name
• The number of instances and instance types
• How many volumes the instances should have
• Which authentication identities and authorization groups to enable
• The hostname of an Active Directory server
• The software components to deploy
• The network security groups to apply

After the input configuration is defined, the automation process applies it to all of the
templates. In turn, these interpolated templates are applied to the provisioning pha‐
ses. The end result—if all has gone to plan—is a fully deployed and configured clus‐
ter, ready for use.
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Figure 17-2. Configuration and templating as inputs for automated cluster provision‐
ing

A good way of creating the templates is to fully deploy and config‐
ure, by hand, a cluster that can act as a reference for the type that
you want to deploy. The configuration and script templates can be
extracted from this cluster and the cluster-specific elements (like
hostnames and passwords) replaced by template variables.

In the following section, we assume that the input configuration for the cluster has
been defined. The interpolation of templates is implicit in the description of what
needs to happen in each phase. With that in mind, let’s look at each of the phases in
turn.

Deployment Phases
This section explores the five deployment phases outlined in Figure 17-1 in more
detail, from environment configuration to post-install tasks.

Environment configuration
Some cluster configurations require certain prerequisites to be in place before they
can be deployed. This is not a fixed list and depends on what is actually being
deployed, but they include things like:

• MIT Kerberos KDC/Active Directory Server
• Bind server (if using custom DNS)
• IAM identities, roles, and policies
• Network security groups and firewall rules
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• TLS certificate generation
• LDAP organizational unit creation
• One-time temporary passwords for joining a server to a domain
• Cloud storage resources
• Load balancer provisioning
• Database server provisioning and schema creation

These prerequisites are sometimes one-off requirements that can be reused across
cluster deployments (hence the zero-numbering for this phase and dotted outline in
Figure 17-1).

Instance provisioning
Assuming we have all prerequisites in place, the first phase is to obtain the instances
on which the cluster will run. Typically, in this phase, the input configuration would
define the following:

• Required instance type and number of instances for each of the machine classes
(master, worker, edge, utility, and others)

• Instance image(s)—off-the-shelf or custom
• Disk configuration for each machine class—ephemeral versus network
• Network configuration—whether the instances have public IPs

Although we don’t cover it here, this phase can easily be implemented using tools like
Terraform and Packer or by modules in Ansible and Puppet, among others.

Instance configuration
After an instance becomes available, there is usually some customization and extra
configuration that needs to be performed. In this phase, all OS-level configuration
and best practices should be ensured. For example, if using a cloud-supplied image, it
is likely we will need to do some or all of the following:

• Linux kernel parameter tuning
• Linux file configuration; for example, /etc/krb5.conf, /etc/sysconfig/networking
• Local user and group provisioning
• Access control setup; for example, SSH-authorized key definitions
• Disk formatting, filesystem creation
• Setup of required directory structures and permissions
• Software installation
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• Joining to a centralized directory; for example, via SSSD or Centrify
• TLS certificate generation and/or retrieval and installation

There is often an overlap between Phases 1 and 2, and some tasks
could be baked into a predefined custom OS image with all cus‐
tomization and prerequisite software installed. Using custom
images speeds up provisioning but comes at the cost of more up-
front work to build the images. If the desire is to be able to deploy
clusters in as short a time as possible, then this extra effort may be
worthwhile. Take a look at technologies like Packer to automate
the process of image creation.

Instances provisioned in Phase 1 can typically move straight into Phase 2 without
waiting for other instances to be ready, since there are usually no dependencies
between instances at this stage. The only caveat might be where some utility instances
(e.g., databases and NTP, KDC, and LDAP services) that need to be in place before
running some of the instance configuration scripts are being deployed as part of the
pipeline. Often, these dependencies are deployed as part of Phase 0.

Cluster installation and configuration
By this stage of the pipeline, we should have all instances provisioned, configured,
and ready for Hadoop installation. Some of the supporting software for managing
Hadoop clusters may already be installed (for example, Cloudera Manager or
Ambari). During this phase, the cluster software is installed and the various services
and roles are provisioned—for example:

• Cloudera Manager/Apache Ambari (if not installed)
• Core Hadoop (HDFS, YARN)
• Spark
• HBase

As well as installing the software, this phase should configure services for things like
authentication, authorization, high availability, and resource management. The result
should be a fully functioning Hadoop cluster with all services configured to the rele‐
vant best practices.

The preferred approach to deploying cluster services is to use the API of one of the
cluster managers. For example, Cloudera Manager deploys, configures, and starts a
full cluster using a supplied template, and Ambari has a similar functionality based
on blueprints.
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This is usually the most expensive stage, and using custom images for each of the
node types with software preinstalled can make a big difference. For example, Clou‐
dera Manager supports the placement of parcels in a well-known location ahead of
time, which can significantly reduce the provisioning time because cluster software
does not need to be distributed to remote hosts.

Post-install tasks
The final phase is to perform any required last tasks on the cluster. These will depend
largely on the intended use cases but could include such things as:

• Applying final network security rules and/or security groups
• Bootstrapping HDFS directories
• Creating Hive databases and tables (if not using shared metadata services)
• Creating Sentry roles
• Configuring YARN or Impala dynamic resource pools
• Smoke testing

The feature that most of these tasks will have in common is the requirement for a
fully operational cluster. The output of this final phase should be a cluster that is
ready to be used by the intended consumers.

After the cluster is ready, one last task might be to register it as a resource with a ser‐
vice discovery directory, for example Consul or Eureka, so that it can start to be used
by users or processes.

Vendor Solutions
Some Hadoop vendors provide tools for streamlining deployments on public cloud
services. It would be impossible to cover each of the vendors’ offerings in detail, so we
look at just one tool here: Cloudera Director. The general architecture, deployment,
and integration process for this tool applies to all similar software.

Full disclosure: the author of this section is a Cloudera employee
and is writing about the software with which he is most familiar.
Although we focus on Cloudera Director here, we strongly encour‐
age you to look at the similar offerings from other vendors, such as
Hortonworks Cloudbreak or MapR Orbit, and to evaluate which is
most appropriate for your use case.
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Cloudera Director
As of late 2017, Cloudera Director can be used to provision clusters running Clou‐
dera Distribution, including Apache Hadoop (Cloudera Distribution Hadoop
[CDH]), on each of the three major public clouds (Amazon Web Services, Google
Cloud Platform, and Microsoft Azure). Director advertises the following key features
relevant to our discussion on automated provisioning:

• Automated provisioning of Cloudera Manager and CDH clusters and supporting
databases

• Deployment of secure, Kerberos-enabled clusters (with a preexisting KDC)
• Deployment of highly available services
• Scaling clusters: expansion and contraction of clusters by adding and removing

worker nodes
• Ongoing management: master instance migration

Cloudera Director has two components: a command-line client and a server, as
shown in Figure 17-3. The server provides a UI interface as well as an API, and is
backed by a database. The command-line client can do simple installations directly
against the cloud APIs or, for more complex deployments, the command-line inter‐
face can be used to interact with the server via its API.

Figure 17-3. Architecture of Cloudera Director

Deployments requiring anything more than the basic CDH config‐
uration should use the server API directly via the provided API
libraries in Python and Java or via the CLI with a configuration file
describing the deployment.

With respect to the generic deployment phases outlined in Figure 17-1, Cloudera
Director covers all of Phases 1–3 and many of the tasks in Phase 4. Some of the rele‐
vant sections from a configuration file are highlighted in Figure 17-4.
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Figure 17-4. How software like Cloudera Director fits into the provisioning phases

Consult the documentation, samples, and SDK for Cloudera Direc‐
tor installations for specifics about the configuration file syntax
and the API.

Although many of the tasks that you may want to automate as post-install tasks can
be done via post-creation scripts or recipes, some tasks are best executed outside of
the vendor tool. As an example, consider the configuration of cloud network security
rules for the cluster instances. If this is managed in a tool like Puppet, is much easier
to modify and reapply the rules without the task being tied to the provisioning pro‐
cess. A similar argument applies to the one-off prerequisite tasks. Both of these types
of tasks are more suited to an external configuration management tool.

Ongoing management
If you choose to use a vendor tool, you should be aware of the available functionality
for ongoing management of long-lived clusters. Some operations might be supported
directly by the tool, whereas others might require custom automation.

For example, adding and removing instances and migrating roles can be done within
Cloudera Director, but other operations, such as major version cluster upgrades,
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must be done outside of Director. You can find a list of management responsibilities
in the documentation.

One-Click Deployments
Each cloud provider maintains a marketplace of products where users can deploy or
purchase images preconfigured for software stacks. Cluster deployments of the popu‐
lar Hadoop distributions are available in some or all of the marketplaces, such as
Cloudera on Azure or MapR Converged Community Edition.

Although convenient for exploration purposes or proof-of-concept clusters, these
products are generally not suitable for production deployments because they offer
limited scope for customization beforehand. Instead, they should be considered as
reference implementations.

One option is to use the marketplaces to get started with supporting services and then
use them to deploy fully configured and integrated clusters. For example, in the
Azure Marketplace, the Cloudera Director product deploys the Director Server, a
MySQL database, and a DNS server to provide forward and reverse IP lookups for
instances in your Azure Virtual Network.

Homegrown Automation
Naturally, you are not compelled to use any of the vendor offerings to do automated
deployments to the cloud. Each cloud vendor has a rich set of APIs for provisioning
nodes and services. In the same way, the Hadoop vendors also maintain APIs to their
cluster managers that enable provisioning and configuration of clusters, and you can
use these via tasks in an automation system such as Puppet or Chef. As we’ll see in
the following sections, for full automation, some degree of integration with these
tools is required.

However, use caution if you’re going down the fully customized deployment route.
Vendors spend a lot of engineering time and effort developing and testing their solu‐
tions against the major cloud providers—almost certainly more time and effort than
an individual enterprise can devote to the same task. You should make an objective
assessment as to how much effort it is worth spending to reinvent the wheel here.
What’s more, vendors offer support for their solutions.

Hooking Into a Provisioning Life Cycle
As we have just shown, vendor solutions can automate a lot of the process, but there
are certain tasks at either end that can only be automated with the aid of either cus‐
tom scripts or a configuration management system (CMS).

Typically, the vendor solutions have APIs which can be called from those tools. In
this model, the CMS runs everything in Phase 0 and then creates a configuration
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using its templating capabilities with which it can kick off the vendor tool deploy‐
ment. This is treated as a black-box task and covers Phases 1–3 or 1–4 of the process.
Finally, the CMS resumes control. This is illustrated in Figure 17-5, with a summary
of the kinds of tasks that can be done in each phase.

Figure 17-5. Combining a CMS and a vendor tool to perform end-to-end automation

If you’re using a CMS to run the entire process, it makes sense to move some of the
post-install tasks out of the scripts or recipes used by the vendor tool and into distinct
CMS tasks. The configuration and repeatable execution of these tasks are probably
better managed in the CMS, especially if they are being used for ongoing mainte‐
nance of the cluster. Abstract actions, like HDFS directory creation or Hive database
creation, can be composed into useful utilities for onboarding new applications or
new use cases to the cluster. A CMS allows for this using a declarative configuration
describing the prerequisites of the application.

Scaling Up and Down
One thing you want from any automation solution is the ability to expand and con‐
tract clusters as demand varies. This doesn’t necessarily mean a full migration to the
transient cluster model. Sometimes, it is desirable to have a core set of nodes around
all the time to service “normal” workloads and to have the ability to surge the number
of compute-only nodes in times of peak demand. These extra workers often don’t
need the full suite of roles. For example, they might only need YARN NodeManagers
in order to run Spark containers.

If scaling clusters up and down is something you plan to do often, you should con‐
sider automating the process or using a solution that has scaling capabilities, such as
Cloudera Director. Automation helps reduce the burden and avoid human error. The
phases to automate when scaling a cluster up could include:
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1. Provision and customize new instances, including such tasks as:
a. OS configuration
b. Cluster manager software installation
c. Kerberos integration
d. TLS deployment
e. Adding to network security groups (if not part of provisioning process)

2. Add new hosts to the cluster manager (if using one).
3. Deploy and configure service roles to the new instances, and refresh master roles

if required.
4. Perform any data balancing required (for example, if the new nodes have HDFS

DataNodes).

Think carefully about whether to deploy HDFS DataNodes to the new instances,
especially if the expansion is going to be a short-lived compute burst. The pain of
remote reads is probably outweighed by the greater pain of the potentially slow pro‐
cess of graceful decommissioning on contraction (see “Shrinking HDFS” on page 506).
If you’re using object storage for most data, it’s almost certainly not required to
deploy DataNodes, and a decent general principle is simply to only expand HDFS
and never shrink it.

If you find you need to shrink the cluster, the required stages look something like
this:

1. Back up critical data to object storage.
2. Decommission instances in batches (remove roles from master list, replicate

data, and more).
3. Delete hosts from cluster manager.
4. Delete instances.
5. Restore any data from object storage as required.
6. Perform any final service and data rebalancing.

Just as we saw for deploying new clusters, end-to-end automation here needs a com‐
bination of a CMS, custom scripts, and vendor tools.

Long-Lived Clusters | 505



Shrinking HDFS
Take extra care when deploying short-lived HDFS DataNodes to grow and shrink the
cluster. As a best practice, use rack locality hints to ensure that at least one copy of the
data on these nodes is stored on the core set of cluster nodes.

If you’re removing HDFS DataNodes, be sure to do so in sensibly sized batches to
prevent replication storms (and potential data loss, if rack locality has not been cor‐
rectly configured). An alternative strategy is to simply either use object storage exclu‐
sively or to back up and restore any data from object storage before and after
shrinking the cluster.

All of these steps can be automated via cloud and cluster manager APIs. If you are
using a vendor solution to provision clusters and it supports growing and shrinking,
you do not need to automate many of them, because they are handled for you. Be
sure to check what functionality the vendor tool supports.

Our general advice is simply to avoid having to shrink HDFS altogether.

Deploying with Security
Special consideration needs to be given to automating a secure cluster installation.
There is typically a raft of supporting services and potentially complex events to do it
correctly.

Integrating with a Kerberos KDC
As discussed in Chapter 9, the backbone of any secure Hadoop cluster deployment is
Kerberos, so if you need to provision a secure cluster, you need a KDC. You must
either tell all of your instances to talk to an existing KDC, or deploy and configure
your own. We talked about the trade-offs in “Kerberos Integration” on page 296.

Remember that, in a secure Hadoop cluster, one requirement is that every cluster
user can be resolved by the OS. Therefore, as part of your flow, you need to automate
some sort of integration with an identity service, like Active Directory or OpenLDAP.
We explore these options in “Identity Provider Options for Hadoop” on page 515.

If you decide you need to deploy a new KDC server for the cluster, this falls under
Phase 1 (see Figure 17-1) and is best performed by your CMS. For example, you
could use Ansible to spin up an instance in AWS, install MIT KDC and OpenLDAP
servers, and configure SSSD on every instance to resolve users and groups via LDAP.
The configuration of each host happens in Phases 2–4. If you prefer an integrated
identity service, you can deploy FreeIPA or Active Directory and automatically have
your instances join a domain using something like realmd or Centrify.
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With the right combination of scripts and configuration, it is perfectly possible to
fully automate provisioning a Kerberos-secured cluster. It is also worth mentioning
that there is often direct support for configuring Hadoop to use security in provision‐
ing tools like Cloudera Director.

TLS
If you have a requirement for wire encryption on your cluster, you need to configure
TLS for your services and to deploy server certificates to all your nodes. Automating
TLS can be a challenge because it requires a bit of back and forth between servers.
Essentially, there are three options for deploying TLS certificates:

Signed by a root or intermediate certificate authority (CA)
If you want to have your server certificates signed by a trusted CA, you have to
generate certificate signing requests from your server certificates and submit
them to the CA. After the CA has processed the CSRs, the signed public certifi‐
cates need to be deployed back to the servers.

Self-sign your certificates using your own CA
The sequence of steps is the same as those in the previous option, but in this case
you have full control of the CA and can automate the CSR signing and distribu‐
tion process.

Use server certificates
The final option is to not sign any of your certificates but to collect all of the indi‐
vidual public certificates for each instance into a single trust file and spread it
around the cluster.

Obviously, one of the first two options is preferable. In the ideal case, a private certifi‐
cate never leaves the system for which it was generated. Instead, the CSR is sent to the
signing authority and the signed certificate is returned. Some enterprises provide an
automatic signed certificate generation service with a one-time download of the pri‐
vate certificate. Usually, though, in a cloud context, the second option (self-signing)
is more common.

If you’re shipping private keys around, be sure to protect them
with restrictive file permissions, strong network security rules,
secure transport, and a strong passphrase.

Again, it might be possible to use a vendor solution to automate much of this.
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Transient Clusters
For a transient workload, it rarely makes sense to create a long-running cluster with
all the integration hooks an enterprise supports. Developers and business teams often
want the flexibility to run their jobs without requiring enterprise IT to build them a
cluster. To service this demand, the likes of Amazon, Google, and Microsoft—in
addition to cloud-neutral vendors like Cloudera or Qubole—have developed job-
oriented frameworks which abstract away the business of spinning up and configur‐
ing clusters.

Instead of thinking about the cluster, users submit a workload, such as a sequence of
Hive queries or Spark jobs, and the framework automatically provisions a cluster and
runs the job. Naturally, for this all to work, the input and output data to and from
these jobs needs to be sourced from a location independent of the cluster that runs
the job. Luckily, cloud object storage offerings such as Amazon S3 and Microsoft
ADLS provide the perfect location for such data.

Cloud-provider networks are specially architected and optimized
to make the access to data in object or cloud storage efficient and
resilient. This makes the separation of compute and storage viable
for analytical workloads. Reproducing this in a private cloud set‐
ting is an undertaking not to be taken lightly, but tools like Open‐
Stack, with its Swift object storage component, are opening this up
as a possibility.

The typical flow of a transient workload is shown in Figure 17-6 and proceeds as fol‐
lows: (1) a user submits a workload to the API of the workload automation tool; (2)
the framework uses the cloud APIs to spin up an entire cluster for the workload; (3)
after the cluster is up and running, the tool submits the jobs in the workload; (4) each
job accesses remote cloud storage for its input and output; and (5) finally, the auto‐
mation tool tears down the cluster.

This is relevant to the chapter because these services offer automation of cluster pro‐
visioning out of the box and expose APIs to allow job submission automation. You
need to assess whether deploying long-lived clusters or running transient clusters is
the right choice for your customers.
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Figure 17-6. Submitting a workload to a transient workload automation tool

Unfortunately, covering each of the services in detail is beyond the remit of this chap‐
ter, but here are some starting links for further information:

• Amazon Elastic MapReduce
• Google Cloud Dataproc
• Microsoft Azure Batch
• Cloudera Altus
• Qubole Data Service

Sharing Metadata Services
In on-premises deployments it is common for different clusters to make use of shared
supporting infrastructure services, such as Active Directory, DNS, NTP, and others.
By contrast, metadata services such as the Hive Metastore or Sentry are rarely shared
and are deployed separately for each cluster. Typically, the data that the services
relate to is contained within the cluster itself. But with the growing trend toward the
separation of compute and storage comes an increased desire to share metadata
about data stored in remote object storage between different compute clusters.

The use of shared services like Hive Metastore is a relatively new development but is
quickly gaining traction and is an essential requirement when using a shared storage
layer. Without a centralized metadata service, there is a real risk of competing and
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overlapping operations from different clusters (such as table partition additions and
deletions or INSERT OVERWRITE queries) rendering the data inconsistent, corrupted,
or both. To be clear, this is still an unsolved problem even within a single cluster, in
which processes running in Hive, Spark, and Impala can all manipulate and modify
the same data without regard to one another—but the problem is potentially exacer‐
bated in the cloud, where the potential for overlap is extended to multiple clusters.

Projects such as Netflix’s Iceberg are attempting to address the
issue of inconsistency that results from simultaneous and compet‐
ing modification of tabular data.

As of this writing, users of Amazon EMR can use the Glue Data Catalog, Horton‐
works has published its plans for shared service with the DataPlane Service, and
Cloudera users can deploy shared Hive Metastore and Sentry services via the Shared
Data Experience functionality.

From an automation point of view, whether using long-lived or transient clusters,
this simply means that it is best to automatically configure clusters to point at these
shared services rather than deploying new versions of these same tools for each
cluster.

Summary
In this chapter, we looked at the major considerations when automating cluster
deployments in the cloud with respect to persistent and transient workloads. The
cloud offers the exciting prospect of managing, operating, and evolving your Hadoop
infrastructure entirely through code.

We presented a model for thinking about the general stages of deployment and con‐
figuration automation, and we encourage you to adapt this to your own require‐
ments. The recommended approach involves a mixture of CMS and vendor-supplied
automation tools, like Cloudera Director, but if you can reduce your deployment
specifications to a handful of declarative configuration files, you can track these
through source control and can be truly flexible in the way you manage your cloud
infrastructure. We also explored the automation of transient workloads, in which the
cluster and infrastructure are entirely abstracted away from the user.

Given the right tooling and approach, deploying fully configured and secured clusters
in the cloud is well within your grasp.
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CHAPTER 18

Security in the Cloud

At this point, the path to securing an on-premises cluster is well-trodden. As covered
in Chapter 9, vendor distributions of Hadoop contain a full suite of products and fea‐
tures providing authentication, authorization, auditing, and encryption. In this chap‐
ter, we explore how operating in a public cloud should change your approach to
security. It is impossible to cover all aspects of cloud security in a single chapter, but
we aim to provide you with enough information to feel comfortable about architect‐
ing Hadoop-based solutions. We begin by briefly outlining the risks and threat model
for running in the cloud. Following that, we dive into the specifics for Hadoop secu‐
rity, including identity management, securing object storage, encryption, and net‐
work security.

To keep our discussion focused, we mostly deal with unmanaged clusters using the
sticky or suspendable deployment patterns (see “Cluster Life Cycle Models” on page
425), rather than managed PaaS offerings such as Amazon Elastic MapReduce (Ama‐
zon EMR) or Google Dataproc. For additional information, review the documenta‐
tion of the providers themselves. As a general reference, we also highly recommend
Moving Hadoop to the Cloud (O’Reilly) by Bill Havanki.

Assessing the Risk
As an enterprise architect, you might be asking yourself what security you need in the
cloud. There are a few ways to answer this question, depending on the level of risk
your enterprise is willing to adopt. The right questions to ask are really about what
the risks are and how you mitigate those risks. No system is perfectly secure (includ‐
ing your own datacenters), and the public cloud is no different. But there are reason‐
able steps you can take when designing a cloud deployment that reduce the risks to
levels equivalent to, or even lower than, those in your own on-premises environ‐
ments. Finally, there are many aspects to security, and your risk profile or cloud
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1 See, for example, the Venom vulnerability and CVE advisories for Xen, QEMU, and KVM.

usage patterns might require the configuration of some aspects of security but not
others.

Many organizations are wary of storing and processing their data on public clouds.
For some this may be for legal or policy reasons—for example, the European Union’s
General Data Protection Regulation (GDPR) legislation has strict regulations—while
for others it might be that they are simply not confident they can guarantee their data
is safe from exposure through accident, misconfiguration, or deliberate hacking. Not
knowing the physical location of your data can be disconcerting, as can be the
thought of processes from a different user account running on the same physical
host, even from a separate virtual machine. Of course, public cloud vendors point out
that many of these concerns are unfounded. Cloud providers take great pains to
ensure a secure operating environment for their tenants, and when correctly config‐
ured for security, these venues should certainly be regarded as safe and secure places
to store and process your data.

From a physical point of view, public cloud datacenters are probably more secure
than most enterprise datacenters (see, for example, Google’s approach). In hardware
and software, hypervisor implementations are, by this stage, very mature and the risk
of exposure through exploits of security bugs (through so-called VM escapes) is,
thankfully, extremely low. When such exploits are detected,1 the providers move fast
to address them. For example, they were very quick to address the recent Meltdown
and Spectre attacks. In fact, a Google employee was among the first to discover and
report the vulnerabilities. The cloud vendors put a lot of effort into making sure their
offerings are as secure as they can be.

Security and isolation between tenants is at the very heart of how cloud compute
offerings are designed. As we saw in “Network Architecture” on page 482, at the net‐
work level, each tenant is placed inside a completely isolated software-defined virtual
network, which is accessible to only its own instances (hence the private in virtual
private cloud). As we demonstrate in the following sections, by default, the access to
these networks is strictly locked down and you must explicitly allow certain inbound
and outbound traffic, according to your requirements. Likewise, instance and remote
block storage are completely isolated to your instances.

By default, the cloud-provided instance images are set up with remote login access
limited to a user-defined set of SSH key pairs unique to your project. Access to cloud
services and APIs, such as object storage or managed databases, is mediated through
users in a sophisticated Identity and Access Management (IAM) process, and
programmatic access is provided using access tokens that can be time-bound (more
on this later in the chapter).
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Ultimately, though, it is up to an enterprise’s risk team to make the assessment of the
risk of storing data and running processes in the public cloud. As with any good
security architecture, we should begin by building a risk model, which outlines the
possible risks and their mitigations.

Risk Model
In this section we look at some of the security risks that may exist when deploying in
the public cloud. It is assumed that a common mitigation for each of the risks is con‐
figuring the Hadoop software with strong authentication, authorization, and audit‐
ing. In addition, some datasets will require at-rest and in-flight encryption.

Every deployment has its own risk profile, and just as you do when
deploying on-premises clusters on your own infrastructure, you
should compile a comprehensive threat model of your own for
your intended usage before building out a security architecture.

Environmental Risks
Environmental risks are those associated with physical access to datacenters, servers,
and hardware. Some of these risks include:

Malicious administrators
Just as in on-premises datacenters, certain personnel in cloud datacenters have
direct physical access to machines and hardware and often have privileged access
to servers. Although it is unlikely, it is possible that these personnel might be
motivated to hostile actions, either through their own malicious intent, for finan‐
cial gain, or because they are susceptible to criminal or outside pressure. These
admins might have:

• Root access to servers or hypervisors
• Access to the physical network to tap and monitor traffic
• Access to physical storage media, such as locally attached disks, used disks,

or storage arrays

Malicious tenants
Fellow users of the cloud service might also be a threat. Hackers looking for ways
to effect a VM escape might seek to take advantage of known or unknown bugs
in the virtualization software. (Typically, such attacks target the virtualized
device drivers. See, for example, the Venom attack.) Such exploits seek to access
the hypervisor software and, therefore, any other VM running on the same phys‐
ical machine. It also gives them some degree of general access to the network as
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(at least subnet-local) traffic can be promiscuously sniffed by the NICs on the
server.

Criminal access
Another possibility is that criminals might have effected access to the cloud
infrastructure—servers, network, and other hardware—either physically or virtu‐
ally. Alternatively, such actors might be monitoring the network links from the
datacenter to the wider internet.

Platform vulnerabilities
No human-made system is without flaws, and there might be bugs or security
flaws in the cloud architecture, software, and user interfaces used to administer
cloud service deployments. Because clouds introduce more software complexity,
the chances of such bugs are theoretically higher, although as already mentioned,
it should be noted that cloud providers are extremely vigilant in hunting out such
vulnerabilities and patching them as soon as they are discovered.

Mitigation
The common risk to all of these is exposure of data through unauthorized access to
the cloud substrate or services. By definition, exploits of environmental risks would
be nonspecific and opportunistic in nature, with attackers casting a wide net rather
than looking for a specific tenant or dataset.

Some of this risk is naturally mitigated by the tight isolation provided by a VPC, but a
common additional mitigation is to employ both at-rest and in-flight encryption to
protect your data. There are many options to consider when employing encryption,
and we cover this in detail later in the chapter.

Deployment Risks
Deployment risks include the following:

Human error
Either through accidental misconfiguration or incomplete understanding of the
security settings for a cloud service, access might be opened to systems by an
enterprise’s own administrators or users. Such accesses include:

Network access
VPC settings, VPNs, internet gateways, firewalls, security groups

Data access
Security settings on local or object storage
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System access
Ability to log in to the boxes via SSH or web-based console via accidentally
exposed credentials or lax controls

A typical case could be criminals using compromised credentials to use com‐
putational resources for their own purposes, such as bitcoin mining.

Application design
Often, real-world cloud deployments include some sort of application or inter‐
mediary API layer that accesses cluster services and data. To prevent accidental
exposure to data and systems, these applications and APIs need to be carefully
designed such that their authentication and authorization controls are at least as
strong than those on the cluster. It is no good to effectively secure your cluster
only to leave doors open elsewhere.

Mitigation
The first mitigation for much of this is to provide adequate training for the system
administrators who are responsible for the deployments. The next is to define solid
procedures. For example, you might specify that, for production deployments, service
configurations should be validated by at least two people before rollout. In addition,
application designs can and should be reviewed by your internal security teams and,
at least for the most secure applications, penetration tested.

You can also minimize deployment risk in general by adopting a principle of least
exposure for your systems—for example, by preferring to deploy clusters within pri‐
vate subnets and by employing solid perimeter controls.

The impact of credential compromise can be limited through the use of multifactor
authentication and a regular policy of rotating API access tokens for cloud services.
In addition, for sticky and suspendable clusters, you need to configure most or all of
the same authentication and authorization controls for the Hadoop cluster services
that we covered in Chapter 9.

In the following sections, we cover the extra considerations for configuring secure
Hadoop clusters in cloud deployments, including identity management for authenti‐
cation and authorization, object storage security, encryption, and network security.

Identity Provider Options for Hadoop
When considering authentication and authorization, we limit our discussion to two
particular identity domains: identities for running and using Hadoop cluster services
and identities for using cloud storage.

Identity Provider Options for Hadoop | 515



Remember, we are not considering Hadoop PaaS offerings such as
Amazon EMR or Google Dataproc in this chapter.

As we saw in Chapter 9, for the majority of services in a Hadoop cluster, user authen‐
tication is provided through Kerberos—and by and large, this remains the case when
deploying in a public cloud. As we saw in Chapter 10, the principals used to identify
users and services in a Hadoop cluster need to be both defined in the Kerberos KDC
and resolvable as users capable of running Linux processes on each node in the
cluster.

You need to consider the following questions (and their follow-ups):

• Where should I run my ID service?
• Should it be on-premises and connected to cloud clusters by VPN, or should it be

run in the cloud?
• Can I use one of the managed services provided by AWS, Microsoft, or Google?
• Which identities (users and groups) should I use? Should I use the same identi‐

ties as in my on-premises infrastructure or a completely new set of identities for
the cloud?

Unfortunately, there is no one correct answer to all of these questions, because each
enterprise has its own standards and circumstances, but we discuss some possible
approaches here. Although we highlight three options, there are also numerous valid
combinations and hybrid approaches.

As with on-premises clusters, using a unified identity management service such as
Active Directory (AD) or Red Hat Identity Management (IdM) offers the easiest
route to satisfying authentication and authorization controls. Integrating the OS into
AD or IdM can be made part of the automated provisioning of VMs.

All major providers also offer secure ways to effectively extend your corporate net‐
work to cloud instances using VPNs. As previously noted, the security measures that
providers put in place are at least as rigorous as those in most on-premises datacen‐
ters. With that in mind, it is a reasonable option to reuse existing on-premises user
accounts and authorization groups with Hadoop clusters running on cloud instances.
This comes with the advantages of centralized account administration and conve‐
nience for end users, who do not need to use new account IDs and passwords. (Of
course, this kind of decision needs a proper risk assessment and sign-off from an
enterprise’s internal technical risk team.) Clearly, however, when no connectivity to
the enterprise network is possible, creating new users and groups in the cloud is
unavoidable. Let’s consider the options in more detail.
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Option A: Cloud-Only Self-Contained ID Services
The first option to consider is to treat each cluster as a self-contained authentication
environment, as shown in Figure 18-1. Each cluster has its own ID service for all
technical and user accounts and groups. Although we show each cluster running in a
separate subnet within the same VPC, this model could equally employ separate
VPCs per cluster.

Figure 18-1. Self-contained authentication for separate clusters

This option has the principal advantages of both simplicity and security isolation. It
is simple because, when deploying each cluster, an authentication service is deployed
on a VM in the same group of nodes. The ID service is dedicated to the cluster and
can share the same downtime and availability requirements as the cluster it is sup‐
porting. This also makes it simpler from an operational point of view. Any outages
affect only the cluster to which it is dedicated.

From a security isolation point of view, this approach means that any security com‐
promises are potentially limited to a single cluster and that breaches can be very
easily locked down (although see the following discussion of cross-realm trusts). In
addition, because it is isolated, it is likely that administration rights to create, modify,
and delete identities in the ID service can be delegated to the group running the clus‐
ter rather than being centrally controlled. For all intents and purposes, identities are
unique to the cloud and are managed separately in each cluster.

The major drawback of this option is that there is no reuse of identities, which makes
it problematic when you deploy more than one sticky or suspendable cluster. Users
who want to access cluster services need to be onboarded to each and every cluster
they use, with different management of passwords and group memberships. Manag‐
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ing many clusters in isolation like this could quickly become tedious and error-prone,
especially when group memberships must be added or revoked for authorization.

A further drawback is the requirement for cross-realm trusts between KDCs in differ‐
ent clusters, which is necessary when users or services from one cluster need to inter‐
act with services in another cluster. Putting trusts in place is not an issue—a one-way
trust is sufficient in many cases—but it is an additional administration burden and
reduces the isolation between clusters.

Finally, this option might not be applicable if corporate standards dictate a single,
centrally managed identity for users when accessing production systems.

In practice, this option is not generally recommended, except for clusters with the
most stringent security requirements. It can be useful, however, for one-off clusters
that bootstrap their own security setup automatically from scratch.

Option B: Cloud-Only Shared ID Services
Instead of deploying an ID service for each cluster, another approach is to share an
ID service between all of the deployed cloud clusters, as shown in Figure 18-2. This is
similar to the setup that most enterprises have on-premises, where clusters and serv‐
ices belong to a domain and, if required, different domains are clustered into forests
(to borrow AD terminology). In this model, though, identities and groups remain
unique to the cloud.

Figure 18-2. Shared ID services

The main advantage of such an approach is that it makes managing authentication,
authorization, and interoperability for multiple clusters much easier. All identities
and groups can be centrally managed, while maintaining security isolation from on-
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premises identities. Moreover, managing and maintaining highly available identity
services should be cheaper since the same instances can be used by multiple clusters.

Some degree of isolation is lost when compared to Option A, such that a compro‐
mised identity could potentially be used on a number of clusters. However, this risk
can possibly be mitigated through other measures, such as perimeter controls, fire‐
walls, and Hadoop policies. We also lose some of the autonomy of each cluster for
maintenance, administration, and downtime.

Cloud-Managed ID Services
Cloud service providers also offer managed services for identity management, such as
hosted AD instances. These can be attractive since they take away the pain and bother
of setting up instances, installing and configuring, and generally worrying about con‐
cepts like availability.

Integrating these managed services with your clusters usually looks much like Option
B, although you could run a separate service for each cluster in the manner of Option
A. The same advantages and disadvantages apply. The major additional advantage of
using a managed identity provider is that it removes the need to do it yourself. One
disadvantage is that, as part of the convenience, you lose the ability to customize the
configuration of the identity service—which may or may not be a problem, depend‐
ing on what functionalities your Hadoop distribution requires.

Managed services can be an attractive option, but they might not provide all the fea‐
tures you need for security integration. For example, do they provide secure commu‐
nication via LDAPS? Can you integrate with them at the OS level? Find out which
requirements exist for your Hadoop distribution, and test run the integration in a
development environment.

Option C: On-Premises ID Services
As we mentioned, cloud networks can be made to be secure extensions of on-
premises networks through the use of VPN gateways. This opens up the possibility of
integrating cloud deployments with existing on-premises infrastructure and services,
such as AD. Almost all enterprises have centralized IT to manage these services, and
this again takes such concerns off the plate of the cloud cluster system administrators.
A key advantage is the ability to use existing identities on cloud clusters and to easily
extend current policies and trust relationships around authentication and authoriza‐
tion to the cloud.

There are a couple of disadvantages to this option, though. First, it requires that the
system administrators responsible for AD (or similar) agree to the approach. It usu‐
ally takes some convincing and demonstration of cloud security controls before they
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are willing to increase the potential attack surface of corporate infrastructure. Addi‐
tional security controls on cloud-deployed infrastructure might be requested as a
result, which could lead to loss of configuration agility for those administering the
cloud clusters.

Second, a large concern with this option is request latency for authentication and
authorization operations. Even with the use of dedicated direct connections to cloud
providers from corporate infrastructure, the latency of requests is dramatically
increased when compared to requests within the cloud network, and this usually
results in very poor performance.

To counter this last point, a best-practice architecture is to host a local mirror
instance of a directory (or relevant subset of it) within the cloud, as shown in
Figure 18-3. Identities and groups can be manually (or automatically) synced to the
cloud instance from the on-premises providers.

Figure 18-3. Mirrored on-premises ID services

The architecture addresses the two major concerns of security and performance. A
directory mirror (potentially managed by centralized IT) prevents direct access to on-
premises services from cluster nodes. Access to the on-premises directory can be fire‐
walled off to one or two fixed cloud IPs and limited to specific sync-based
functionality. On-premises services are implicitly protected from network risks such
as denial-of-service attacks. Furthermore, directory administrators retain full control
over the directory contents. Finally, the performance concerns are addressed by keep‐
ing all identity requests local to the cloud network and limiting VPN-based connec‐
tions to periodic batch synchronizations where latency is not a major concern.
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This final approach is recommended for most enterprises because it provides the
smoothest integration experience for users of clusters, whether they are in the cloud
or on-premises.

Object Storage Security and Hadoop
So far, our cloud deployment discussion has not introduced anything vastly different
from the security principles we apply for on-premises architectures. In the following
few sections, we briefly cover some unique authentication and authorization concepts
that come up when using services available only in the cloud.

There are many services offered by cloud vendors, ranging from processing engines
to key-value stores to file and block storage. A complete overview is well beyond the
scope of this chapter, so instead we focus purely on the security options around the
object storage services of the three cloud vendors. This section introduces some key
concepts. Encryption of object storage is covered in “Encryption for Data at Rest” on
page 533.

Identity and Access Management
Each vendor offers an IAM framework to enable fine-grained access control to the
various cloud resources and services. A top-level account within a cloud service can
create a number of subusers via IAM, to which different roles and permissions can be
applied. The top-level account, the root account, has full access to all data and services
that it is paying for, but access for IAM users can be more restricted.

In Linux systems administration, it is considered bad practice to perform operations
directly as the root user. Instead, it is best to work with regular users with group
memberships and sudo rights to run privileged tasks without the need to reveal the
root password. The same principle applies in a cloud context: permissions for cloud-
native services and resources (e.g., object storage, VM instances, networks, and more)
can be granted to IAM users and groups and access to the root account can be restric‐
ted. Resource usage can be audited and easily restricted or revoked, without the need
to compromise the root account credentials.

When granting permissions with IAM, we can use two approaches:

Role-based access control (RBAC)
Roles are granted to an IAM user or group of IAM users, and a set of permissions
(which can often also be grouped into policies) is applied to each role, specifying
what the users can and cannot do with the account’s resources at different scopes.
For example, an account-wide privilege might be added to allow a role to read
any data in cloud storage. Role access can also be applied at the resource level
scope, perhaps to allow write access to a particular storage bucket. Roles can also
be applied to nonuser objects such as VM instances or applications.
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User-based access control
In contrast to RBAC, we can also apply permissions on resources directly to par‐
ticular IAM users and groups—for example, using access control lists (ACLs) on
buckets and objects.

Both approaches can be used in combination, but, in general, user-based access con‐
trol is considered a less flexible approach than the RBAC approach because it
requires administrators and data owners to keep close track of which specific resour‐
ces have defined accesses for individual IAM users or groups. In contrast, roles can
easily have their permissions changed or be added to or removed from users in a sin‐
gle command. A common best practice is to use roles and permissions at both the
account and the resource level. For example, read access might be granted to a role
for all data in cloud storage while write access is controlled at a bucket level.

You can find out more about the IAM functionalities of the major cloud providers in
their respective documentation.

Amazon Simple Storage Service
Amazon S3, introduced in “AWS storage options” on page 457, is a popular way of
storing large amounts of arbitrary data at low cost. As we discussed in “Identity and
Access Management” on page 521, users can authenticate to S3 using the top-level
AWS account credentials or—much preferred—IAM user credentials. The specific
details of the different account and credentials types are covered in the AWS docu‐
mentation. Access to S3 is managed via secured REST API interactions using access
keys, which consist of an ID (think username) and a secret key.

In terms of authorization, buckets and objects are locked down to the creating user
by default. Additional access to data can be defined via both resource and user poli‐
cies:

Resource policies
These are policies or ACLs on the resources themselves (buckets and objects):

• Bucket policies are specified using JSON syntax. These define who can do
what to the bucket itself or objects in the bucket: for example GET, PUT,
DELETE, and LIST. You can find out more, and see a full list of permissions in
the Amazon S3 documentation. These policies can be very expressive and
can be applied to IAM users, groups, and roles. Because roles can be applied
to nonuser objects, such as instances or applications, this means that policies
can control access by end users, programmatic users and instances.

• ACLs can be applied to buckets and objects to define PUT/GET permissions
for specific AWS accounts and groups.
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User policies
This is a JSON policy defining an IAM user’s access to S3 buckets and objects.

Hadoop integration
Apache Hadoop has built-in integration for accessing data from S3, which is presen‐
ted as a Hadoop-compatible filesystem (with a few caveats about its adherence to
POSIX semantics and behavior). Buckets and objects are resolved using a URL syntax
with the form s3a://<bucket>/<dir>/<object> (the integration has gone through a
number of iterations, and previous s3:// and s3n:// schemes are now deprecated).
There are a number of methods of authenticating to the AWS API, as implemented
by a number of pluggable authentication providers, which we describe below.

Temporary security credentials.    These are obtained from the AWS Security Token Ser‐
vice using a persistent identity (either an AWS root account or an IAM user). Tem‐
porary credentials can be valid for periods from 15 minutes to a maximum of 36
hours (or 1 hour, if issued by an AWS root account) and consist of an access key ID,
a secret access key, and a session token. Here is an example of obtaining a token
using the AWS command-line tool (response edited for clarity and shortened with
ellipses):

$ aws sts get-session-token
{
  "Credentials": {
    "SecretAccessKey": "irjQmOQPW/tY3BGbJ...BTm2XI+Pm9dPxCK",
    "SessionToken": "FQoDYXdzEDoaDChdP8rP...Wa4ohLvszQU=",
    "Expiration": "2017-09-15T12:23:32Z",
    "AccessKeyId": "ASIAJXSCLG742QXSQNKQ"
  }
}

Such credentials can be supplied directly in Hadoop configuration variables or placed
in a Hadoop credentials provider file on HDFS and used by the org.apache.hadoop
.fs.s3a.TemporaryAWSCredentialsProvider authentication provider. Temporary
credentials are analogous to HDFS delegation tokens. Due to their expiration, they
are not suitable for long-lived applications, such as Spark Streaming jobs, or for long-
running services such as Impala or HBase.
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Hadoop Credentials Provider Files
Hadoop has a useful general-purpose mechanism for protecting sensitive credentials
in a file on HDFS. This mechanism is supported by a number of specific credentials
providers, such as those for S3 and ADLS. The Credentials Provider API provides a
command-line tool to write sensitive configuration values into a file with restrictive
permissions. For example:

$ hadoop credentials create fs.s3a.access.key \
-value "ADKJFJXSCFG832QXSQNKQ" \
-provider -provider \
jceks://hdfs@nameservice1/user/ian/s3.jceks

$ hadoop credentials create fs.s3a.secret.key \
-value "fskQmOQPW/tY3BGbJC/kEosJJBTm2XI+Pk5pPxCK" \
-provider -provider \
jceks://hdfs@nameservice1/user/ian/s3.jceks

$ CREDPROP=hadoop.security.credential.provider.path
$ JCEKS=jceks://hdfs@nameservice1/user/ian/s3.jceks
$ hdfs dfs -D ${CREDPROP}=${JCEKS} -ls s3a://bucket/and/path

You can reference this file via the hadoop.security.credential.provider.path
property and use it in jobs and applications. With the right permissions, sensitive cre‐
dentials do not need to be exposed in configuration files, although anyone with read
access to the file can read the values. Just as Kerberos keytab files need to be jealously
protected with file permissions, credentials files also need to be readable by only the
users whose credentials they contain. This approach is a best practice to protect indi‐
vidual credentials but is less useful when using a single set of credentials to grant
access to a wide user base.

Persistent credentials.    Either an AWS root user or an IAM user can provide an access
key and secret key in the core-site.xml Hadoop configuration file or in a Hadoop cre‐
dentials provider file on HDFS. This method is used by the org.apache.hadoop
.fs.s3a.SimpleAWSCredentialsProvider. Needless to say, this option should be
used with care because core-site.xml files may be widely readable.

Environment variables.    The com.amazonaws.auth.EnvironmentVariableCredentials
Provider gives access through some standard environment variables
(AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY, and, optionally, AWS_SESSION_TOKEN
if using temporary credentials). These environment variables need to be set for every
process accessing S3, including “worker” processes such as Spark executors or Map‐
Reduce mappers and reducers.

Instance roles.    Amazon EC2 instances can be assigned an IAM role, conferring them
rights to S3 buckets. If using the com.amazonaws.auth.InstanceProfileCredential
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sProvider, the credentials are dynamically obtained using the Instance Metadata Ser‐
vice, which is accessible only from the instance itself.

Anonymous access.    Finally, read-only access can be granted to anonymous users using
the org.apache.hadoop.fs.s3a.AnonymousAWSCredentialsProvider.

Multiple credential provider implementations can be used simultaneously by specify‐
ing a comma-separated list of class names in the fs.s3a.aws.credentials.provider
configuration property. These are evaluated in order. A credentials file can be used to
avoid placing credentials directly in configuration files, but for shared credentials this
is less advantageous. Some vendors provide additional mechanisms, such as the
Cloudera S3 Connector Service, to hide sensitive credentials from end users.

Further information
The source documentation is the most authoritative source for more information.
Useful pages include “Managing Access Permissions to Your Amazon S3 Resources”,
“Overview of Managing Access”, and “Guidelines for Using the Available Access Pol‐
icy Options”.

GCP Cloud Storage
Google provides object storage via its Cloud Storage service. Just like in S3, data is
organized into top-level containers, called buckets, with subdirectories and files.

Google also has an IAM story similar to that of AWS, in which a root account can
create users, groups, and service accounts. In GCP, these IAM identities are referred
to as members, which can be assigned roles, and roles can be assigned permissions.
Sets of permissions can be combined into policies. By default, the Cloud Storage APIs
and tools use OAuth 2.0 for authentication, with two means of access: user accounts
and service accounts (see the documentation). Google Cloud Storage also supports
HMAC-based authentication with developer keys, akin to Amazon S3 credentials.

Service accounts have a private key, which is used to make a direct request to authen‐
tication services for an access token. When operating in a user account authentica‐
tion flow, the end user must allow the application to access the data before an
appropriate access token is passed to the application. This access token is then used
to authenticate subsequent interactions with the Cloud Storage APIs. Tokens are
requested with specific OAuth scopes, which define the level of authorization access,
subject to the actual permissions set on resources or roles granted to members (as
defined by IAM policies or ACLs). There are five defined scopes relevant to Cloud
Storage scenarios:

read-only

Read user objects/list buckets
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read-write

Read/write user objects

full-control

Read/write user objects and set user IAM policies

cloud-platform.read-only

Read all user data across GCP services for this account

cloud-platform

Full privileges to GCP services for the user

Authorization for members can be administered on resources using IAM policies and
ACLs, which can be used independently or in combination:

IAM policies
Policies allow roles to be assigned one or more sets of permissions, such as stor
age.buckets.create, storage.buckets.delete, and storage.object.get.
There are built-in roles that can be applied via policies at the project level or at
the bucket level. Permissions granted through policies apply to all objects within
the bucket.

ACLs
When fine-grained access control on objects within buckets is required, users can
employ bucket or object ACLs, which specify permissions for a given scope
(where, in this case, the scope indicates who has been granted the permission).
Scopes can refer to member identities, such as a user or group, and to wider con‐
texts, such as projects, domains, and even all Google account holders. Valid per‐
missions (and the OAuth 2.0 scopes) are READER (same as read-only), WRITER
(read-write), and OWNER (full-control).

Depending on the interaction mechanism (code, command-line utility, etc.) and the
access location (GCP instances or outside GCP), there are different ways to specify
the private key or developer keys to use for the authentication flow, including
instance service accounts, environment variables, configuration files, and supplied
client libraries. We cover only the Hadoop-specific authentication scenarios here.
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Hadoop integration

Hadoop integration is provided by the bigdata-interop project maintained by Goo‐
gle. As yet, it is not part of the Apache Hadoop distribution. A prebuilt JAR can be
placed on the classpath of a Java process (including distributed processes running in
YARN containers), and authentication configuration is defined dynamically in the
Hadoop configuration or placed in core-site.xml. Google Cloud Storage is presented
as a Hadoop-compatible filesystem with URLs like gs://<bucketname>/path/to/data.

As already mentioned, there are two mechanisms for authenticating to GCP, service
accounts and user accounts, and we cover how to use both of these approaches in
Hadoop. In both cases, the GCP project ID must be specified in the Hadoop configu‐
ration; for example, via the core-site.xml file:

<property>
  <name>fs.gs.project.id</name>
  <value>ian-acme</value>
</property>

Service account.    Service accounts can be created within a GCP project using the IAM
interface. Credentials for a service account are either obtained implicitly from the
instance (if the instance was assigned the service account when it was created) or
explicitly by specifying the service account ID and credentials file in the Hadoop con‐
figuration. Upon creation of a service account, credentials can be downloaded for the
account in either JSON or PKCS12 (P12) format. To use a service account in
Hadoop, the P12 format is required. New credentials can also be issued to an existing
service account, if you need both JSON and P12 formats. Note that, when explicitly
setting the service account, you cannot place the credentials directly in the configura‐
tion files. Instead, a file location on the local disk must be specified.

Service account authentication is selected by setting the google.cloud.auth.ser
vice.account.enable property to true. Because this property defaults to true, it is
enough to simply read from a gs:// URL to use an implicit instance service account.
When using nondefault or noninstance credentials, two more properties must be
specified:

<property>
  <name>google.cloud.auth.service.account.email</name>
  <value>svc-test@ian-acme.iam.gserviceaccount.com</value>
</property>
<property>
  <name>google.cloud.auth.service.account.keyfile</name>
  <value>creds/ian-acme-35acea0addbe.p12</value>
</property>

Note that the keyfile resides on a local disk, so it should be either placed on each node
or (preferred) shipped with a job using MapReduce or Spark distributed cache mech‐
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anisms. As with all files that contain passwords (keytabs, SSH private key files, and
credentials files), the file contents should be protected with strict file permissions.

The service account (which is just another IAM member) can be granted access per‐
missions to buckets and objects using policies or ACLs.

User account.    When accessing user data (which might not be in the same GCP
account), a user account and credentials have to be specified via three configuration
parameters. This involves a two-phase authorization process—the OAuth 2.0
installed application authentication flow. In the first phase, a logged-in user creates
an OAuth client ID using the Google API console. The resultant client ID and secret
are placed into the Hadoop configuration, as shown here (IDs shortened with ellip‐
ses):

<property>
  <!-- Set to false to turn on client auth flow -->
  <name>google.cloud.auth.service.account.enable</name>
  <value>false</value>
</property>
<property>
  <name>google.cloud.auth.client.id</name>
  <value>17022934910...nfp.apps.googleusercontent.com</value>
</property>
<property>
  <name>google.cloud.auth.client.secret</name>
  <value>34Q_J86ZhkjhsgTRYDco2wR8XNz</value>
</property>

As part of the installed application workflow, the user has to issue a one-time author‐
ization to allow the application to access data on its behalf. In this case, with the pre‐
vious configuration in place, run (output edited for clarity):

$ hdfs dfs -ls gs://ian-testing/test-noaa/
17/09/25 15:20:24 INFO gcs.GoogleHadoopFileSystemBase:
  GHFS version: 1.6.0-hadoop2
Please open the following address in your browser:
  https://accounts.google.com/o/oauth2/auth?
  client_id=170229349103-fg7d9...p.apps.googleusercontent.com&
  redirect_uri=urn:ietf:wg:oauth:2.0:oob&response_type=code&
  scope=https://www.googleapis.com/auth/devstorage.full_control
Please enter code:

The user can open the URL (note the OAuth scope of full_control here), obtain the
code, and supply it to the command-line tool, which writes a JSON credentials file to
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2 Note that, at the time of this writing, the documentation in the project incorrectly lists this property as
google.cloud.auth.client.file.

~/.credentials/storage.json. This file can be copied (taking care with permissions) and
referenced via the following property:2

<property>
  <name>fs.gs.auth.client.file</name>
  <value>/home/ibuss/storage.json</value>
</property>

The obtained credentials file has an expiration lifetime, but it also has a refresh token
that the application can use to obtain a new access token.

Further information.    Much more detail can be found in the official documentation.
Some useful starting points include:

• Hadoop integration
• OAuth 2.0 flows
• IAM for cloud storage
• Authentication mechanisms

Microsoft Azure
As we introduced in “Azure storage options” on page 463, Azure offers virtual hard
disks (VHDs) for VM disk storage as well as the Azure Blob storage client and ADLS
as secondary storage layers.

Unlike Google and Amazon, Microsoft had the advantage of an existing mature iden‐
tity management service in AD, and Azure makes extensive use of this. Azure Storage
uses a cloud-based version of AD, which can also be integrated with existing on-
premises AD installations.

Authorization is managed through AD RBAC for storage account administration,
like creation of storage accounts and generation of keys (so-called management plane
authorization). Access control for data (data plane authorization) is handled slightly
differently in each storage offering, as discussed in the next few sections.

Disk storage
You can use Azure RBAC to assign three different roles on the management plane to
several users on a managed disk. Users can be owners, who manage everything
including access, contributors, who manage everything except access itself, or readers,
who can view anything but cannot make changes. Operations on the management
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plane include being able to copy the contents of the disk to another storage account.
Permissions on the data plane obviously depend simply on what the disk is attached
to.

Blob storage
An Azure Blob storage account has permanent access credentials, referred to as
access keys, which can be used for programmatic access to data stored in Blob stor‐
age. These access keys should be carefully protected because they grant full access to
your container and its contents.

In addition to permanent access keys, temporary access credentials can be issued in
the form of shared access signatures (SASs). These are URI parameters that include an
authentication token and that define which level of access has been granted on given
resources (such as storage accounts, containers, or blobs) and for how long. For
example:

?sv=2017-04-17
&ss=b&srt=sco&sp=rwdlac
&se=2017-09-26T00:12:14Z
&st=2017-09-25T16:12:14Z
&spr=https
&sig=FSvKMt62%2F23xo7od2VbLtm24AunhRPEs6gmJ3Du5%2FWc%3D

The SAS is signed by an access key, and the Blob storage service is able to validate a
SAS with a supplied signature and parameters using the same underlying key. If you
generate SASs with a similar template multiple times, you can save these as stored
access policies.

ADLS
ADLS uses Azure AD for authentication and authorization of account-level functions
and POSIX ACLs for data access control:

• RBAC roles can be assigned to users and groups in Azure AD and largely define
which management functions a user or group can perform, such as assigning
users to roles or creating roles. From a data access perspective, only the Owner
role has full unfettered access to all data within the Data Lake Store. All other
RBAC-defined roles are subject to POSIX ACLs.

• POSIX ACLs can be applied to resources in ADLS (root folder, subfolders, and
files). These ACLs should be extremely familiar to HDFS or Linux system admin‐
istrators as they follow the POSIX approach of owner, group, and other being
granted read, write, and/or execute access. Up to nine additional custom ACLs
can be added, and the documentation recommends making use of AD groups
when defining access on resources.
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3 Note that we tested the integration using Hadoop 3.

ADLS makes use of OAuth 2.0 access tokens in a similar way to Google Cloud Stor‐
age and provides for both service account and user account access:

Service account access
To enable service account access, Azure allows an administrator to create appli‐
cations in Azure AD and to assign these applications to the ADLS storage
account. Each application has a unique ID and can have one or more access keys
generated for it. In addition, an Azure account has a URL endpoint from which
OAuth 2.0 access tokens can be obtained using the application ID (referred to as
the client ID in the Hadoop integration) and the access key.

User account access
A user who wants to access data must log in and obtain a refresh token, which
can be used by an application to obtain OAuth 2.0 access tokens on behalf of the
user. The aforementioned URL token endpoint can be used to obtain refresh
tokens. The process is a standard OAuth 2.0 authorization flow.

Hadoop integration
Integration with Azure Blob storage and ADLS is built in as modules in Apache
Hadoop.

Azure Blob storage.    Although using ADLS is advised for Hadoop workloads, objects
stored in Blob storage can also be read via the hadoop-azure module.3

Blobs are referenced using URLs of the form wasb[s]://<container>@<storageac‐
count>.blob.core.windows.net/path/within/container. Although insecure access over
HTTP is possible, the TLS-secured wasbs:// scheme should be used.

Authenticated access to Blob storage is configured by providing one of the two access
keys for the storage account in the following property in core-site.xml (example val‐
ues formatted to fit on page):

<property>
  <name>
    fs.azure.account.key.mystorageact.blob.core.windows.net
  </name>
  <value>ZWNkODAyODk0OTE5...kUQ1oiUkFDstp3C2v4u9ELQ==</value>
</property>

This parameter can be placed in a credentials provider file to keep the shared secret
out of configuration files. (Note that this does not mean that only the right people
can read the value. Filesystem permissions need to be in place for that.)
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There is also a mechanism for making use of SASs by creating a REST service that
issues such tokens on demand. For further details, see the Hadoop documentation.

ADLS.    ADLS support is provided by the hadoop-azure-datalake module. Configu‐
ration properties are added to the core-site.xml file to define the authentication cre‐
dentials. For service accounts, we simply supply the following parameters (example
values again formatted to fit the page):

<property>
  <name>fs.adl.oauth2.access.token.provider.type</name>
  <value>ClientCredential</value>
</property>
<property>
  <name>fs.adl.oauth2.refresh.url</name>
  <value>https://login.microsoftonline.com/...</value>
</property>
<property>
  <name>fs.adl.oauth2.client.id</name>
  <value>c18781a0-286f-431c-a28f-c378db1cd444</value>
</property>
<property>
  <name>fs.adl.oauth2.credential</name>
  <value>ZDQwN...jOS/0/TNjLTgyYmMtYzEwNzU1NjE=</value>
</property>

For user accounts, a refresh token must first be obtained, as noted earlier. Armed
with this, we can configure core-site.xml as follows:

<property>
  <name>fs.adl.oauth2.access.token.provider.type</name>
  <value>ClientCredential</value>
</property>
<property>
  <name>fs.adl.oauth2.client.id</name>
  <value>c18781a0-286f-431c-a28f-c378db1cd444</value>
</property>
<property>
  <name>fs.adl.oauth2.refresh.token</name>
  <value>fdb8fdbecf1d03ce5e6125c067733c0d51de209c</value>
</property>

Again, Hadoop credentials files can be used to protect these parameters.

Further information
You can find additional reading and more information at the following links:

• Overview of security in ADLS
• AD authentication in ADLS
• Sample REST calls for OAuth 2.0 authentication flows
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• Azure Storage security guide
• Apache Hadoop Azure Blob Storage Support
• Apache Hadoop Azure Data Lake Support

Auditing
There are two aspects to auditing Hadoop clusters when running in the cloud. For
sticky and suspendable clusters, there is the traditional auditing functionality of the
frameworks and services running within the cluster—HDFS access, Hive and Impala
queries, HBase queries, and more.

Unlike in a typical on-premises cluster, in the cloud, users and applications on one-
off and sticky clusters often source their data from services running elsewhere in the
cloud. The most obvious and prevalent example is accessing data in object storage
(Amazon S3 and Google Cloud Storage, among others), but others include services
like Amazon AWS DynamoDB. For on-demand processing, such as that provided by
Cloudera Altus or EMR, there is auditing around the creation of on-demand clusters
and the running of workloads. Documenting the full audit capabilities of the cloud
providers is beyond the scope of this book, but here are some useful links to get you
started:

• Cloud Audit Logging
• Cloud Audit Logging with Google Cloud Storage
• AWS CloudTrail
• Amazon S3 Server Access Logging
• Azure logging and auditing

Encryption for Data at Rest
Encryption is a key criterion for many organizations to move to the cloud. On the
one hand, there are obvious attack vectors that encryption protects against, which we
decribe in “Environmental Risks” on page 513. However, many requirements for
encryption in the cloud stem from legal obligations.

Consider, for example, the following scenario. Under EU data protection law, indi‐
viduals may revoke consent to process their data at any time and may also demand
the physical deletion of the data. A regular delete operation often just unlinks data
from its metadata, with no deliberate action to overwrite or physically destroy the
data in question. Encryption provides an easy proof that data is indeed inaccessible,
even if unauthorized users were to gain access to the physical media. Depending on
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the granularity of encryption operations, it is also possible to destroy the key and
thereby ensure that the data is permanently inaccessible. This is an important consid‐
eration because the question of who is liable for ensuring deletion of user data often
cannot be answered in an easy way and is deemed a subject for future case law.

This is only one example of why establishing an encryption strategy may be among
the most important tasks in order to achieve clearance to run enterprise workloads in
the cloud, depending on your specific location and legal requirements.

Increasingly, as more mission-critical workloads are moved to the cloud, it is also
important to understand the amount of lock-in to a given platform such a choice
entails.

Requirements for Key Material
Typically, enterprises have very high standards for key material creation and persis‐
tence. On-premises encryption is typically taken care of by the local security team,
which simply has a trusted source of cryptographically strong key material. In the
cloud, the discussion is about whether the cloud provider can be trusted to achieve
the same standards, or it would assist you in proving the standards had been met
when liability is unclear.

Typical requirements for key material in encryption use cases include:

Confidentiality
The most obvious requirement is to guarantee that gaining access to the key
material is impossible. For example, HDFS Transparent Data Encryption (TDE),
which we covered in Chapter 9, uses a Java KeyStore (JKS) to persist keys by
default, which is simply based on a file. A plain file in the filesystem alongside the
main cluster provides too much of an attack vector for many organizations,
which is why Hadoop distributors supply alternative key stores, as already
covered.

High availability
The keys must never be inaccessible or even lost, because all of the encrypted
data would be inaccessible or even lost along with them.

High quality
The strength of cryptographic material depends, for example, on a true source of
random data to provide for sufficient entropy when keys are created.

Such requirements are regulated in much more detail by quality standards such as the
Federal Information Processing Standard (FIPS) or Payment Card Industry (PCI)
standard, among others. Meeting these standards often is a legal obligation for organ‐
izations, which are required to achieve certification of their products and services.
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Options for Encryption in the Cloud
Let’s begin with a high-level overview of the feasible options for encrypting your data
in the cloud. We will look at the options in more detail in the following sections of
this chapter.

Figure 18-4 illustrates three available options. Note that all the options use a hierar‐
chy of keys, in which lower-level keys are encrypted with higher-level keys and, ulti‐
mately, with a master key, as we introduced in “HDFS Transparent Data Encryption”
on page 274.

In all of the options, some of the low-level keys materialize in plain
text in the memory of the cloud provider’s compute infrastructure
for a limited amount of time.

Briefly, these options can be summarized as follows:

Option 1: On-premises key persistence
This option allows you to maintain your master keys in your own datacenter
within a key persistence layer such as Cloudera Key Trustee. The master keys are
kept only transiently in the HDFS Key Management Server (KMS) service.
Although it is the most rigid form of key management in the cloud, it is also by
far the most complex option. The encryption is conducted by HDFS client pro‐
grams on the HDFS block level, which also means that this method works only
for HDFS content and not for data in object storage implementations such as
Amazon S3 or ADLS. We consider the feasibility of this method in more detail in
“On-Premises Key Persistence” on page 537.

Option 2: In-cloud key persistence
In this option, the cloud provider creates and maintains all key material, includ‐
ing master keys, in a special key management solution, typically backed by a
hardware security module on the cloud provider’s premises. The encryption is
conducted at or below the storage volume level, depending on the cloud pro‐
vider’s implementation. The mechanics of this option are largely transparent to
Hadoop. This option is generally very convenient and not complex, but it
strongly depends on the individual cloud provider’s service, which we look at in
detail in “Encryption via the Cloud Provider” on page 537.
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Figure 18-4. High-level options for encryption in the cloud

Option 3: In-cloud key persistence with local key creation (BYOK)
This option is the same as Option 2, except that the master keys are created
locally and then imported into the cloud provider’s key management solution via
a secure channel. This concept is also commonly referred to as bring your own
key (BYOK), and we cover it in more detail in “BYOK” on page 540. As with
Option 2, this option will place your master keys on the cloud provider’s hard‐
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ware security module (HSM), but they originate from your own key manage‐
ment solution.

In our experience, these are the main possibilities. Theoretically, other approaches
could be pursued, but we do not feel that they would add value compared to what we
outline here. We can further summarize the options as follows:

Option 1
Keep master keys on your premises only, resulting in a complex split into a cloud
and an on-premises portion

Options 2 + 3
Take advantage of the cloud providers’ integrated key management solutions.

The following sections cover them in more depth, with a focus on the latter options.

On-Premises Key Persistence
When implementing on-premises key persistence, data is directly encrypted in
Hadoop via HDFS TDE, as described in Chapter 9. If you are already familiar with
HDFS TDE, you will understand Option 1.

However, you should carefully consider whether the number of deposit requests to
your key persistence layer might have a performance impact for your use cases, given
that the communication takes place over a VPN connection. The number of encryp‐
tion and decryption operations depends on the query system that accesses the under‐
lying HDFS infrastructure as well as user behavior and, most importantly, the
number of users and the size of your cluster.

Encryption via the Cloud Provider
In this section, we look at the details of in-cloud key persistence and how cloud ser‐
vice providers implement their solutions around this.

A central piece in this discussion is the concept of a key management service (KMS).
We introduce KMSs conceptually, as well as BYOK and server-side encryption. After
this, we look at the options you have with each of our three cloud providers.

Later, in “Encryption Feature and Interoperability Summary” on page 545, we provide
side-by-side comparisons of key management solutions combined with Hadoop
products.
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Are My Keys Secure?
For many organizations, this is the Gretchenfrage of moving critical data to the cloud.

Local law may be at odds with the legislation of the country in which the cloud pro‐
vider is incorporated. For services rendered in the EU, this complexity is compoun‐
ded by the recently introduced GDPR legislation, which regulates that service
providers in their relationship with end users are liable for certain operations on data
performed by subcontractors. These service providers, in turn, would be cloud pro‐
viders, in our discussion.

Because the services live by economies of scale, you should assume that your provider
will attempt to accommodate multiple tenants on the overall solution. Just like with
your own infrastructure, it would not be economical to purchase a separate HSM fleet
per use case. Therefore, the cloud provider requires administrative access to backing
HSMs in order to properly maintain the service.

AWS and Azure offer HSMs to persist the key material. Some designs, like Azure Key
Vault, partner with a third-party HSM provider, whereas AWS has moved over to
provide its own implementation of HSMs. All vendors state that key deposits cannot
be exported.

Requests by law enforcement to cloud providers to surrender certain data are com‐
mon and documented by both AWS and Azure, the latter of which lists regular law
enforcement requests separately from US national security orders. To our knowledge,
there is no precedent for what would happen if the surrender of key material was
demanded and it’s not clear whether the underlying KMSs would succeed at techno‐
logically preventing this.

Cloud Key Management Services
A key management service is conceptually similar to the KMS component in HDFS
TDE, but it manages encryption keys for all conceivable uses cases in the cloud.

A KMS persists master keys (MKs), which are used for envelope encryption, as we
introduced in “At-Rest Encryption” on page 270. Client applications can then
request, via an API, the encryption of lower-level keys with the MK. In the example
shown in Figure 18-5, the client application is a storage system that provides a stor‐
age volume, and the lower-level key is a volume key (VK).
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Figure 18-5. Transparent envelope encryption with a KMS

When the compute instance on the host requests data from the volume, the host
transparently retrieves the encrypted form of the VK from the volume itself and
sends it to the KMS for decryption. The host then transparently performs encryption
and decryption operations for the compute instance.

A KMS client can really be anything. It could also be software running in the com‐
pute instance, a user wanting to directly store a secret for an application, or, as in the
example, another cloud service that requires key management. AWS, for example,
uses AWS KMS to provide transparent encryption in the case of Amazon Elastic
Block Store (EBS) volume encryption. In this case, the service itself transparently
encrypts the data and automatically manages key creation and usage, and you still
have the option of explicitly controlling which keys are used.

When evaluating a KMS solution you should look for the following:

• Is it fully programmable via APIs? Which languages are supported?
• Does it fully integrate with the corresponding identity and authorization solu‐

tions of the cloud provider?
• Does it support a way to import keys? (We cover this in “BYOK” on page 540.)
• Can you rotate and revoke keys, and is data maybe even automatically reencryp‐

ted after a rotate?
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Server-side and client-side encryption
Server-side encryption (SSE) is mainly a syntactical marker, meaning that encryption
and key management are transparently integrated into a storage service. In Azure,
SSE is shorthand for Storage Service Encryption, but it signifies the exact same con‐
cept. Client-side encryption means, basically, you encrypt data yourself, and you can
typically still take advantage of a cloud provider’s key management infrastructure for
it.

In our description of at-rest encryption in the cloud, we focus on SSE. But you can
think of Hadoop transparent data encryption, which we covered in “On-Premises
Key Persistence” on page 537, as an example of client-side encryption that does its
own key management.

BYOK
Let us consider the following scenario: an organization requests a cloud provider to
prove the strength of cryptographic material that the provider creates. To do so for a
specific customer key, the cloud provider must examine it, which is typically not
desired by the customer. To get around this particular problem, the customer can
create the key itself and import it into the cloud provider’s key management solution.

This scenario is commonly also referred to as “bring your own key” and is supported
by both Azure and AWS. This was the third option (in-cloud key persistence with
local key creation) that we introduced in “Options for Encryption in the Cloud” on
page 535. In addition to the ability to prove the strength of the key, common drivers
for BYOK include the ability to retain an offline copy for disaster recovery purposes
and the ability to share key material between cloud and on-premises applications.

The import is typically constrained to master keys, which then can be used to create
(and encrypt) further application-specific keys. BYOK might require you to manually
reencrypt your data when you roll a master key. Some providers also explicitly sup‐
port control of imported key expiration and guarantee that your imported keys are
automatically deleted after expiration.

Encryption in AWS
You can achieve at-rest encryption in multiple ways on AWS. With the exception of
ephemeral instance storage, all storage services in AWS support built-in encryption,
where encryption keys are transparently managed by AWS. As introduced in “AWS
storage options” on page 457 for Hadoop, AWS EBS, S3, and ephemeral instance
storage are relevant storage options for direct use with Hadoop. With the exception
of instance storage, it is possible to provide data encryption without any Hadoop
involvement. In addition, Amazon offers a dedicated key management service, AWS
KMS, to go beyond the features of the built-in encryption alternatives. Let’s take a
closer look at the options.
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AWS KMS
This is the KMS service within AWS. It consolidates key management operations
for customers and integrates key management seamlessly with a variety of other
services. It is used internally by other AWS services, such as EBS. KMS comprises
user-facing hosts that implement the KMS API as well as a layer of hardened
hosts in the backend to which the KMS hosts delegate the actual cryptographic
operations, such as key generation, encryption, and decryption.

The hosts in the backend are a combination of hardware security appliances
(HSAs) and hardware security modules (HSMs). In previous versions of KMS,
AWS relied on SafeNet Luna appliances to implement the HSM layer, but it has
transitioned to a custom HSM design owned by AWS itself. Encryption and
decryption in AWS KMS only occur on HSAs and HSMs, which process key
material in volatile memory. The HSAs return their results via secured transport
to the KMS hosts in encrypted form. The KMS service automatically scales and is
highly available.

KMS refers to MKs as customer master keys (CMKs), which are at the top of the
key hierarchy. Authorized users can create customer data keys underneath a
CMK. When saved, CMKs are encrypted with a domain key. The domain key is
rotated daily. Accordingly, existing CMKs are reencrypted on a daily basis.
Applications can use the securely transferred plain-text version of the key to
encrypt, before disposing of it. The KMS-encrypted version of the key is stored in
the application’s metadata. The encrypted key can only be decrypted by invoking
the KMS service.

AWS KMS provides rich authentication and access control of customer requests,
including integration with AWS IAM. It also offers the ability to import master
keys via its API to implement BYOK patterns. An imported key can be locally
created and is then encrypted with a public key, which has been made available
by a preceding KMS API call. Imported master keys can be configured to expire
at a given point in time.

AWS KMS allows automatic rotation of master keys and can automatically re-
encrypt data in the background, if the corresponding master keys are created in
KMS. Imported master keys cannot be automatically rotated. A manual key rota‐
tion may require manual reencryption of your data; AWS provides a whitepaper
that contains further details.

Instance storage
As covered in “AWS storage options” on page 457, some instance types in AWS
EC2 have local disks outside of the EBS world, called instance storage. On those
instances, it necessary to fall back to client-side encryption, as outlined in the
AWS Security Blog, for example.
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EBS
EBS provides built-in encryption capabilities, for which it uses KMS to encrypt/
decrypt a VK and performs the encryption transparently in the hypervisor, as
shown in Figure 18-5. As implied by the name, the VK is specific to the EBS vol‐
ume which is encrypted. KMS is the only entity that can decrypt the VK using a
CMK. You can explicitly configure which CMK to use, including imported keys.
By default, when you do not configure a key, EBS uses an automatically created
key.

S3
S3 supports both client-side encryption and server-side encryption. SSE is
requested as part of the S3 REST API; for example, during a put request, SSE is
available in three modes:

• Keys managed directly by S3 (SSE-S3)
• Keys managed by AWS KMS, including BYOK (SSE-KMS)
• Keys supplied by the application (SSE-C); the key must be supplied via

HTTPs for each operation

Encryption in Microsoft Azure
Just like AWS, Microsoft Azure offers multiple ways to encrypt data at rest. As we
covered in “Azure storage options” on page 463, all storage offerings in Azure that
are relevant to Hadoop are either based on Blob storage or ADLS. Both of these offer‐
ings come with built-in, transparent encryption support and provide full integration
with Azure’s dedicated key management service, Azure Key Vault. The options are:

Key Vault
Similar to AWS KMS, Azure Key Vault is a KMS that can persist and supply
encryption keys to other services in Azure. Many of those services use it inter‐
nally and transparently to manage their encryption keys. Microsoft itself depends
on Key Vault and specifies high fault tolerance and corresponding availability
SLAs. Keys in Key Vault are not part of any hierarchy. They also cannot be
exported or modified after they have been provisioned.

Microsoft does not expose exact details of the hardware components in its docu‐
mentation. However, it optionally offers an HSM-based persistence layer in its
perimeter, similar to AWS KMS. For this, Key Vault uses third-party HSMs by
Thales.

Key Vault is most commonly used to transparently supply encryption keys for
Azure Blob storage SSE, but it also supports BYOK. It relies on a process
designed for the safe transport and import of customer key material, as described
in the Azure documentation. With a supported Thales HSM appliance, it is pos‐
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sible to create a key on-premises, which can then be securely imported by
encrypting it with a key encryption key (KEK) from Key Vault. The KEK is
asymmetric, and the private portion only exists on the Thales HSM in Key Vault.
Thales attests that neither the private portion of the KEK nor the imported key
will leave the HSM.

You can use multiple programming languages when accessing Key Vault, among
them Java, Node.js, and a REST API.

Key Vault also supports access control and integration with AD for identity man‐
agement. If vault-wide configuration actions are performed, RBAC from Azure
Portal or its REST API is used. For actual key operations, so-called key vault
access policies, which map privileges on keys to roles, are used.

In addition, Key Vault can automatically rotate keys and collect audit logs.

Azure Blob storage
Encryption on Azure Blob storage is simply called Storage Service Encryption
(SSE), and transparently uses Azure Key Vault. Keys in Key Vault are transpar‐
ently created after the customer enables encryption on the storage account level
in the Azure UI. Azure recently started to support an option for bringing your
own key when enabling SSE.

Managed disks and VHDs
Managed disks and VHDs can be encrypted by simply enabling SSE, as just
described, on the storage account level. Alternatively, it is possible to use Azure
Disk Encryption (ADE) to encrypt individual disks. ADE and SSE exist as side-
by-side alternatives.

Although SSE is performed within the storage service, ADE takes place in the
VM. Cryptographic operations are performed via dm-crypt in Linux VMs and via
BitLocker in Windows VMs. When enabled via the Azure UI or PowerShell com‐
mands, Azure can directly encrypt the underlying VHD and can configure the
use of those services accordingly in the operating system’s storage subsystem.

ADE is directly integrated with Key Vault. However, a given key vault needs to
be explicitly enabled for disk encryption, after which keys can be created for
ADE. Additionally, a key vault access policy and Azure AD permissions for ADE
need to be established. In summary, ADE can be thought of as client-side
encryption integrated at the operating system level. A full example of the neces‐
sary steps can be studied in Microsoft’s documentation.
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ADLS
ADLS supports fully transparent encryption. As opposed to Key Vault, ADLS
uses a hierarchy of keys to encrypt data via envelope encryption. Encryption in
ADLS is configured on the ADLS account level. A master encryption key (MEK)
in Azure Key Vault encrypts a data encryption key (DEK).

The MEK is only persisted on Key Vault and never leaves its perimeter. The DEK
is stored in ADLS, but only in encrypted form. The DEK can only be decrypted
in Azure Key Vault. The DEK exists in decrypted form only in memory (in the
cache). The MEK can be either an imported (customer-managed) key or an
Azure-managed key.

This choice of an imported key versus an Azure-managed key has to be made
when encryption for an ADLS account is enabled and cannot be changed later
on. An MEK can only be explicitly be revoked when it is a customer-managed
key.

The blocks themselves are encrypted by a block enryption key (BEK), which is
specifically generated for each block from the DEK and the block’s data itself.
The BEK is not saved, is only generated on demand, and is discarded after an
encryption or decryption operation.

Encryption in GCP
Google also offers a variety of ways to encrypt data at rest. Persistent disks in Google
Compute Engine and in Google Cloud Storage (GCS) are encrypted by default, and
Google transparently manages encryption keys. In addition, Google provides a KMS
called Cloud KMS that lets you control the process of creating and managing encryp‐
tion keys. The options are:

Cloud KMS
With Google Cloud KMS, you can generate encryption keys that protect your
data on persistent disks and GCS, and you can centrally manage those keys. The
keys in Cloud KMS are master keys (KEKs). They are used to encrypt the actual
DEKs on the storage services, as we introduced in Figure 18-5.

You can also centrally rotate and revoke keys. When you rotate a key, Cloud
KMS automatically knows whether to use an older version or the new version,
but it does not reencrypt data in the background. BYOK is not possible with
Cloud KMS, because it does not provide a way to import your own keys. How‐
ever, as we you’ll see later in this list, persistent disks and GCS allow you to spec‐
ify your own key when creating disks or objects.

Google does not provide many details around exactly how keys in Cloud KMS
are persisted, but it specifies that Cloud KMS does not use HSMs.
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Local SSDs
Local SSDs are always transparently encrypted with an ephemeral key generated
by Google. The key is only materialized within the context of the VM and is
bound to the life cycle of the disk. Local SSDs, however, cannot be encrypted
with customer-supplied keys and do not support integration with Cloud KMS.

Persistent disks
As mentioned earlier, persistent disks are encrypted by default. Google transpar‐
ently creates the required encryption keys when you create the disks for a VM
and automatically recovers them when resuming after a prior suspend operation.
Google also permits use of keys created in Cloud KMS to wrap the disk encryp‐
tion keys, which gives you a way to centrally manage disk encryption and helps
you to better separate duties.

When you create a persistent disk, you can also import your own key material,
which Google then uses to wrap its own key material that is used for actual disk
encryption. To protect your key during import, you can also wrap it with an RSA
public key that Google provides.

However, this happens outside of Cloud KMS and Google does not persist the
imported keys. This means that, when you use imported keys on a persistent disk
and you resume instances with such disks, you must provide the key as part of
the restart operation.

GCS
Similar to persistent disks, GCS always encrypts data on the server side before it
gets written to physical disks. Google transparently uses envelope encryption
with regularly rotated master keys.

In addition, GCS allows you to configure keys stored in Cloud KMS to be used as
master keys for GCS buckets or objects. This method of key management is
referred to as customer-managed keys.

Alternatively, and similarly to importing keys for persistent disks, you can also
supply your own key material for GCS, but such customer-supplied keys can nei‐
ther be imported into Cloud KMS nor are they persisted in any way. This means
that you must supply the key for each GCS API operation.

Encryption Feature and Interoperability Summary
We have established by now that encryption in the cloud for Hadoop leaves us with a
daunting number of configurations and ramifications to consider. In this section, we
recapitulate the facts with side-by-side listings of the technologies used in this chap‐
ter’s solutions.
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Table 18-1 shows how the various storage solutions of cloud providers integrate with
their key management solutions.

Table 18-1. Cloud storage solution integration with key management

Feature Integrated key
management by
provider?

Integrated with
provider’s KMS
solution?

BYOK via
provider’s KMS
solution?

BYOK standalone?

AWS EBS Yes, automatic KMS
interaction

Yes Yes No, EBS uses AWS KMS internally

AWS S3 Yes, standalone key
management by S3

Yes Yes Yes, key is provided for each
operation

Azure managed
disks

Yes, SSE by default Yes Yes No

Azure ADLS Yes Yes Yes, Key Vault +
customer managed
keys

Yes, Key Vault + service
managed keys

Azure Blob
storage

Yes Yes Yes Yes

Google persistent
disks

Yes No Yes Yes, key must be provided
whenever instance is started

GCS Yes Yes No Yes, key is provided for each
operation

Table 18-2 provides key facts on the BYOK solutions we studied in this chapter.

Table 18-2. Considerations for BYOK

Feature Confidential user key import? Colocation of keys
with other
tenants?

Protection against export of
imported master keys via API?

AWS KMS Yes, AWS Yes Yes (HSM is managed by AWS)

SSE-S3 No import, but key is provided via
HTTPS for each operation

Yes Yes, only stores customer key’s
HMAC for verification

Azure Key Vault Yes, Azure provides public key to
wrap secret

Yes Yes (HSM is managed by Azure)

Google Cloud KMS No Yes Yes

Cloudera Navigator KMS N/A No Yes

Hortonworks Ranger KMS N/A No Yes

Table 18-3 shows a more detailed comparison between various key management
solutions.
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Table 18-3. Enterprise integration features for key management solutions

Feature Hardware
implementation

Scalability Manual
management
overhead

Need to
manually
ensure HA

Key access
control

AWS KMS AWS custom design Automatic, 1,000
master keys per
account and
region]

Very low No (11 9s
durability)

Integrated (AWS
IAM)

SSE-S3 Unknown Automatic Very low No, integrated
into S3 base
functionality

Integrated via
regular S3 access
control

Azure Key Vault Thales nShield HSM
family

Automatic,
transactions/s
limits apply

Very low No Yes, integrated
with Azure AD

Google Cloud
KMS

No usage of HSMs Automatic,
account-specific
quotas apply

Very low No, SLAs apply Integrated with
Google Cloud
IAM

Cloudera
Navigator KMS

Software database,
Thales HSMs or SafeNet
(Gemalto) Luna/
KeySecure HSMs

Manual HSM and Hadoop
distribution
specific

Yes Hadoop KMS
ACLs

Hortonworks
Ranger KMS

Software database or
SafeNet Luna

Manual HSM and Hadoop
distribution
specific

Yes Hadoop KMS
ACLs

Recommendations and Summary for Cloud Encryption
We have covered a lot of ground in this section. When you move big data applica‐
tions to the cloud and you have a hard requirement for encryption, you should ini‐
tially understand the options we’ve presented and your own requirements for key
persistence:

On-premises key persistence
Although a price has to be paid in operational complexity, on-premises key per‐
sistence for Hadoop deployments in the cloud can fulfill the standards of confi‐
dentiality, high availability, and high quality of key material.

This is, to our knowledge, the only option that provides a practical way to avoid
persistence of key material off-premises, but you should seriously consider
whether you can maintain the complexity.

However, if you have an approved standard, fully educated security ops teams,
and key administrators for Hadoop based on KTS/KMS on-premises and if you
have the required approval and sign-offs by your security board, this might
actually be simpler than getting approvals for encrypting mission-critical data in
the cloud by an untested, internally unapproved methodology.
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This option is not practical if you intend to support a large number of transient
Hadoop clusters for spontaneous use cases in your organization.

In-cloud key persistence
If your requirements allow for persisting key material in the cloud, both Micro‐
soft Azure and AWS offer a rich and easy-to-use feature set around encrypting
data in all of their services. Google’s Cloud KMS currently does not provide a
way to bring your own key and does not provide HSMs.

But all in all, providers help to significantly ease the burden on your team of
dealing with a rather complex technology stack around encrypting data in dis‐
tributed systems. Also consider that you might not need full control over your
key material for each and every use case. Plus, it is always good practice to
encrypt, even if the data is not mission-critical.

In-cloud key persistence with local key creation
If you have specific requirements around key backups and the key creation pro‐
cess itself, those can easily be addressed by both providers we have covered that
implement BYOK. When there are mere cautions and no legal requirements
around in-cloud key persistence, BYOK can also help to reach middle ground by
working with the key expiration features that are offered by some of the provid‐
ers that we have discussed.

Encryption and safeguarding data for many use cases is one of the final pieces of the
puzzle required for pervasive enterprise adoption of data-intensive cloud use cases.
Although a detailed analysis of your requirements is most likely necessary, encrypt‐
ing big data in Hadoop is already possible today.

Encrypting Data in Flight in the Cloud
We covered encryption in flight for Hadoop and other services from the big data
realm in “In-Flight Encryption” on page 237. Unlike encryption at rest, encrypting
data for Hadoop in flight is not any different in the cloud than in an on-premises sce‐
nario. Still, you should review a few basic points when considering in-flight encryp‐
tion for Hadoop:

How does the cloud provider protect data in flight?
You must fundamentally decide whether the isolation mechanisms that the cloud
providers give you are enough or whether you must encrypt network communi‐
cation on top. All of the providers we’ve discussed give you a guarantee that traf‐
fic is completely isolated within the VPC boundaries via mechanisms like SDN
and strict perimeter security. Google, for example, gives a thorough explanation
of how perimeter security and automatic encryption in flight is used in GCP.
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Which cluster services should use encryption in flight?
As we covered in “How Services Use a Network” on page 107 and “In-Flight
Encryption” on page 237, there are many network communication flows within
big data clusters, but a fair amount of those—for example, shuffle traffic during a
Spark job—by design, never leave the local network. It may be sufficient in your
organization to protect only certain web UIs, such as the Spark History Server
web UI.

How can I manage certificates for services in the cloud?
If you do decide to implement encryption in flight for all or some services on
your big data clusters, the hard work boils down to certificate management, as
with any other application that you move to the cloud. Where the certificates are
created and how the chain of trust works heavily depends on your organization
and exceeds the scope of this book. To get started, you should try to determine
which of the following scenarios applies in your case:

• Your cluster’s certificates are issued by a single on-premises root CA.
• Your root CA could be based in the cloud. Examples include AWS Certifi‐

cate Manager or Azure AD.
• You are running an intermediate CA in the cloud that issues certificates for

your cluster which are signed by your on-premises root CA.

Perimeter Controls and Firewalling
As we saw in “Network Architecture” on page 482, all cloud providers offer network
virtualization and isolation between tenants, and instances are deployed into these
virtual networks. By default, access to the instances via the virtual networks is locked
down from outside access, and often nodes are not allocated a public IP at all. Access
to the instances is controlled by virtual network firewalls, internet gateways, and
security groups. Virtual networks can also be made to be extensions of an on-
premises network via VPN gateways without having to assign cloud instances exter‐
nal IP addresses.

The security around VPNs is beyond the scope of this book. For
more on this topic, see Network Security Assessment, 3rd Edition,
by Chris McNab (O’Reilly).

Understanding the various options is essential to any architect wishing to put
together secure Hadoop clusters in the cloud. Because each provider manages these
aspects slightly differently, in the following sections we provide a brief overview of
the perimeter controls for virtual networks and instances as they relate to Hadoop.
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But before diving into the details for each provider, let’s recap some of the recom‐
mended essentials of Hadoop cluster network security and enlighten our discussion
with an example. One of the recommended deployment setups (whether on-premises
or in the cloud) has network firewalls controlling outside access to all cluster nodes
(see Chapter 11). In general, the worker nodes should not be accessible from outside
of the perimeter—access by users should be mediated via edge services operating on
well-known ports, which can be exposed by a firewall to a range of source IPs. Ideally,
edge service nodes host services, such as HttpFS, HiveServer2, Hue, Impala load bal‐
ancers, the HBase REST server, and more, that obviate the requirement for users to
talk directly to worker nodes.

In some cases, though, applications running outside the cluster may need access to
worker nodes—for example, if they are using HBase or Kudu directly—but the list of
ports exposed to external clients should be limited. Between the cluster nodes, how‐
ever, we strongly recommend that all network communication be allowed to avoid
having to maintain a long (and potentially mutable) list of host-port rules.

There are valid reasons for deviating from this model, but we use it
as a base for the following discussion.

We use a common example setup for all three providers, as shown in Figure 18-6. In
the example, all cluster and application instances are deployed in the cloud inside a
virtual network, called bigdata, which is connected to an enterprise on-premises net‐
work via a VPN. The cluster master, worker, and edge nodes are placed in a dedica‐
ted subnet, futura.

Within the cloud, applications running on instances in the garamond subnet need to
use HBase and so need access to ports 2181 (ZooKeeper) and 60000 (HBase Master)
on the master nodes, and port 60020 (HBase RegionServer) on the workers.

From the enterprise network, we have developers who want to review the progress
and logs of YARN jobs (port 8080 on the masters and 8042 on the workers) and
business users who want to use Hue (8889), submit Hive queries (10000) and Impala
queries (21050), and run Oozie jobs (11443).

Note that these are just some of the possible ports that may need to be exposed. In a
real deployment you would likely need to configure more rules to allow job submis‐
sion, SSH access, and more, but this is enough for our example.
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Figure 18-6. Example scenario for configuring perimeter controls

There will inevitably be aspects of network security that we do not cover in this sec‐
tion, but treat it as a primer for your use case and refer to the official documentation
for definitive configuration specifics. For recommended network topologies and
security, a good additional reference is Chapters 4 and 14 of Moving Hadoop to the
Cloud by Bill Havanki.

GCP
In GCP, VPCs are global resources with regional subnets, which can span availability
zones. Network access control to instances is governed by firewall rules. All VPCs
have base rules disallowing any ingress and allowing any egress traffic to and from
any instance. The default VPC also comes with a set of default rules allowing all
internal traffic, all external ICMP (such as ping), and all incoming SSH traffic.
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Custom VPCs, which we assume we are using here, have no additional rules. Instan‐
ces get a private IP within the VPC subnet for the region and can also have an exter‐
nal IP configured, although in general it is recommended that clusters not have
public IPs assigned unless absolutely necessary. Unless using a VPN, any traffic from
outside the VPC must use the external IP of an instance.

Firewall rules can be defined for particular protocols, source and destination ports,
and source and destination IPs. In addition, sources and destinations can be specified
using network tags. This is a very useful feature that we employ in our sample use
case.

Example implementation
First, we want to allow all internal traffic between the cluster nodes, so all the instan‐
ces need to be tagged with a common cluster identifier. In our example, we tag all of
the cluster instances with a network tag of futura and create a firewall rule with the
following parameters:

name=>futura-all-internal, network=>bigdata, priority=>16384,
  direction=>ingress, action=>allow, targets=>tag=futura,
  source=>tag=futura, protocols=all

Next, we want to allow general access to Hue, Oozie, and HiveServer2 running on the
edge instances from any other instances within the VPC and from on-premises IPs
via the VPN gateway. We tag the edge instances with futura-edge and define the fol‐
lowing rule:

name=>futura-edge, network=>bigdata, priority=>8192,
  direction=>ingress, action=>allow, targets=>tag=futura-edge,
  source=>ip-ranges:10.34.0.0/16,
  secondary-source=>tag=bigdata,
  protocols=>tcp:8889;tcp:10000;tcp:11443

In addition, we want to allow developers to check the status and progress of their
YARN jobs running on the cluster for which access to both the YARN ResourceMan‐
ager and NodeManager UIs is required. In this example, we know that developers
require access from on-premises machines running on the VPN.

In general, it is preferable to set up a SOCKS proxy to allow web UI
access rather than to rely on firewall rules.

Let’s tag the worker machines with futura-worker and the master machines with
futura-master and define the following firewall rules:
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name=>futura-worker-dev, network=>bigdata, priority=>8192,
  direction=>ingress, action=>allow, targets=>tag=futura-worker,
  source=>ip-ranges:10.34.0.0/16, protocols=>tcp:8042

name=>futura-master-dev, network=>bigdata, priority=>8192,
  direction=>ingress, action=>allow, targets=>tag=futura-master,
  source=>ip-ranges:10.34.0.0/16, protocols=>tcp:8080

Finally, as in the example diagram (Figure 18-6), we want to allow an application
running in the same VPC to access HBase. For efficiency, the application needs
access to directly talk to the HBase RegionServers. The application server instances
are running with a known service account, garamond-app@bigdata-
proj.iam.gserviceaccount.com (an example of authorization based on instance creden‐
tials). Therefore, we create the following rules:

name=>futura-garamond-app-master, network=>bigdata,
  priority=>8192, direction=>ingress, action=>allow,
  source=>service-account=garamond-app@bigdata-...ceaccount.com,
  protocols=>tcp:2181,tcp:60000

name=>futura-garamond-app-worker, network=>bigdata,
  priority=>8192, direction=>ingress, action=>allow,
  source=>service-account=garamond-app@bigdata-...ceaccount.com,
  protocols=>tcp:60020

AWS
In AWS, VPCs are isolated networks and the basic building blocks of network secu‐
rity. A VPC can span an entire region and contain multiple subnets, each of which is
located in a single availability zone. VPCs have a completely isolated IP address
space, and subnets within the same VPC are composed of nonoverlapping slices of
that space. Provided they have nonoverlapping IP spaces, VPCs can also be peered
together. Like in GCP and Azure, instances in VPCs and subnets can route to the
internet via internet gateways and can optionally be assigned publicly accessible IPs,
in addition to the private IPs they are assigned by default.

From a network security standpoint, there are two features to consider. At a subnet
level there are network access control lists that allow firewall rules to be defined. At a
finer-grained level, instances are assigned to security groups, which apply more fire‐
wall rules at an instance level. Network ACLs are an optional feature, but instances
must belong to a security group. If none is assigned, the default security group is
used.

Network ACLs are fairly straightforward and control inbound and outbound IP flows
to subnets. Inbound and outbound connections can be filtered based on the source or
destination IP Classless Inter-Domain Routing (CIDR) range and destination port or
port range.
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Security groups are applied at the instance level, and up to five can be applied at one
time. Security group rules define allowed inbound and outbound connections from
IP ranges or other security groups to ports or port ranges. Unlike network ACLs,
security groups do not have deny rules. Because the rules are allow-based, there is an
implicit rule that denies any traffic not permitted by any of the active security groups.

Example implementation
The default security group for instances launched within a VPC allows all traffic
between instances that group and allows all outbound connections. However, to insu‐
late from changes to the default security group, it is preferable to create a new secu‐
rity group—futura-all, which in this example has the ID sg-61366512—for all
instances in the cluster. The following rule in the group allows all traffic between
cluster instances (you may also want to add SSH traffic from outside the VPC, if not
using a jump server):

Type=>All traffic, Protocol=>All, Port Range=>All,
  Source=>sg-61366512

After instance provisioning, additional security groups can be created and attached to
the instances. For the edge nodes, we want to allow access to ports 8889, 10000, and
11443 from anywhere in the same VPC and from the on-premises network attached
via a VPN gateway. Here, the VPC IP range is 10.11.0.0/16, so we define a security
group called futura-edge with the following rules:

Type=>Custom TCP Rule, Protocol=>TCP, Port=>11000,
  Source=>10.11.0.0/16
Type=>Custom TCP Rule, Protocol=>TCP, Port=>10000,
  Source=>10.11.0.0/16
Type=>Custom TCP Rule, Protocol=>TCP, Port=>8889,
  Source=>10.11.0.0/16
Type=>Custom TCP Rule, Protocol=>TCP, Port=>11000,
  Source=>10.34.0.0/16
Type=>Custom TCP Rule, Protocol=>TCP, Port=>10000,
  Source=>10.34.0.0/16
Type=>Custom TCP Rule, Protocol=>TCP, Port=>8889,
  Source=>10.34.0.0/16

In the AWS console (or via the API), you can attach additional security groups to an
instance, so each edge instance should be assigned both futura-all and futura-
edge. The rules are combined together into a single effective rules list.

For the master nodes, we need to allow access to ZooKeeper and the HBase Master
for the Garamond app, instances of which run in a different security group with the
ID sg-34624663. Also, on-premises developers need access to the YARN Resource‐
Manager web UI. The following rules for the new security group futura-master
define that behavior:
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4 As of late 2017, more advanced tagging functionality is in the works in the form of application security groups.

Type=>Custom TCP Rule, Protocol=>TCP, Port=>2181,
  Source=>sg-34624663, Description=>ZK access for Garamond
Type=>Custom TCP Rule, Protocol=>TCP, Port=>60000,
  Source=>sg-34624663, Description=>HBase Master for Garamond
Type=>Custom TCP Rule, Protocol=>TCP, Port=>8080,
  Source=>10.34.0.0/16, Description=>YARN RM access

Finally, on the workers, we require access to the HBase RegionServers for the Gara‐
mond app and access to the YARN NodeManager UIs for the developers on the on-
premises network. A futura-worker security group might look like the following:

Type=>Custom TCP Rule, Protocol=>TCP, Port=>60020,
  Source=>sg-34624663, Description=>HBase RS for Garamond
Type=>Custom TCP Rule, Protocol=>TCP, Port=>8042,
  Source=>10.34.0.0/16, Description=>YARN NM access

Azure
In Azure, a VPC is called a VNet and is tied to a particular Azure region. Each VNet
has a private, isolated IP range, and one or more subnets can be created that divide
the VNet IP range into nonoverlapping segments. Azure has the concept of network
security groups (NSGs), which consist of a set of firewall-like rules governing inbound
and outbound traffic to resources. An NSG can be applied to NICs attached to VMs
or subnets and, like a VNet, is tied to a specific region.

If no NSG is applied to a resource, implicitly all inbound and out‐
bound traffic is allowed—including from the internet. Mandatory
NSGs should be a best practice, as outlined in the Azure Network
Security Best Practices in the official documentation.

NSGs can filter traffic based on the standard 5-tuple of source and destination IP,
source and destination port, and protocol. In this sense, Azure is slightly less flexible
than AWS and GCP. To maintain some flexibility, increased usage of subnets may be
necessary to logically group instances for access control purposes. However, it is pos‐
sible to apply NSGs at the NIC level and at the subnet level. The rules are combined
into an effective set of rules with the subnet rules applied first and then the NIC rules.
In addition, sources for rules can be based on service tags, which represent Azure
services like Virtual Network or Storage.4

The default rules for an NSG are as follows. For ingress:

AllowVnetInBound

Allow all traffic from the same VNet.
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AllowAzureLoadBalancerInBound

Allow all traffic from Azure load balancers.

DenyAllInBound

Deny all other traffic.

And for egress:

AllowVnetOutBound

Allow all outgoing traffic to the same VNet.

AllowInternetOutBound

Allow all outgoing traffic to the internet.

DenyAllOutBound

Deny all other traffic.

Use case implementation
The main principle behind our example (again to stress that it is just an example of a
fairly well-locked-down cluster) is to deny all inbound access, allow all internal traf‐
fic, and allow traffic from external nodes to specific ports, depending on machine
type. The easiest way to achieve this is to have the cluster nodes (master, utility, edge,
and worker) in a dedicated and exclusive subnet and then to apply NSGs, at the NIC
level, to the various machine types.

Therefore, the following base rules should apply to each NSG we create (you’ll proba‐
bly also want to add a rule for SSH traffic to administer the boxes):

sourceip=>*, destinationip=>*, sourceport=>*,
  destport=>*, protocol=>any, action=>deny, priority=>4096
sourceip=>10.11.1.0/24, destinationip=>*, sourceport=>*,
  destport=>*, protocol=>any, action=>allow, priority=>4095

In our example, we have three classes of machine in our cluster—master, worker, and
edge—so we create three NSGs to control access to the machines. The choice here is
to not use a subnet-level NSG, because rules would need to be created in both NIC-
and subnet-level NSGs.

For our working example, we create a future-worker-nsg security group for the
worker machines and add the following rules (in addition to the common base rules)
for the various worker accesses:

sourceip=>10.34.0.0/16, destinationip=>*, sourceport=>*,
  destport=>8042, protocol=>tcp, action=>allow, priority=>4000
sourceip=>10.11.13.0/24, destinationip=>*, sourceport=>*,
  destport=>60020, protocol=>tcp, action=>allow, priority=>3999

This grants developer access to YARN NodeManager UIs running on port 8042 (the
on-premises developer machines are in the 10.34.0.0/16 subnet) and application
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access to HBase RegionServers running on port 60020 (where the application servers
are running in the 10.11.13.0/24 subnet).

For the master nodes, a future-master-nsg group would have the following rules:

sourceip=>10.34.0.0/16, destinationip=>*, sourceport=>*,
  destport=>8080, protocol=>tcp, action=>allow, priority=>4000
sourceip=>10.11.13.0/24, destinationip=>*, sourceport=>*,
  destport=>60000, protocol=>tcp, action=>allow, priority=>3999
sourceip=>10.11.13.0/24, destinationip=>*, sourceport=>*,
  destport=>2181, protocol=>tcp, action=>allow, priority=>3998

Finally, the edge nodes would have the following future-edge-nsg rules:

sourceip=>10.34.0.0/16, destinationip=>*, sourceport=>*,
  destport=>8889,10000,11443, protocol=>tcp,
  action=>allow, priority=>4000
servicetag=>VirtualNetwork, destinationip=>*, sourceport=>*,
  destport=>8889,10000,11443, protocol=>tcp,
  action=>allow, priority=>3999

Summary
We have covered a lot of ground in this chapter, touching on the essentials of authen‐
tication, authorization, auditing, and encryption when running Hadoop in the cloud.
Getting the correct security architecture can be hard, but with an understanding of
how the different components operate, it is perfectly possible to deploy clusters with
comprehensive security. We highly recommend using a peer-reviewed automation
process to ensure that security settings are properly applied and to minimize the
chance of human error.

As with any deployment, you should take time to assess which security features are
actually necessary to mitigate the assessed risk.
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APPENDIX A

Backup Onboarding Checklist

The following is an example of a checklist that can be used to onboard new backup
users (see Chapter 13). It focuses on the inherent needs of the user, but also the possi‐
ble options around the chosen data sources. It does not ask for replication at all,
which is a separate task.

The overall size of a backup is computed based on the size for each source × the num‐
ber of copies to keep (not taking delta backups into account for now).

Backup Onboarding Checklist
Name of Cluster:
   _____________________________________________________
Owner:
   _____________________________________________________

Backup
Overall Quota:
    _________________________ (e.g., 5 TB)
Schedule:

☐ Hourly ☐ Daily ☐ Weekly ☐ Monthly
☐ Custom: _____________________________________

Retention:
   _________________________ (e.g., 5 backups, or 3 years)
Location:
   _________________________ (storage details)
Target RTO:
   _________________________ (e.g., 1 day)
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Target RPO:
   _________________________ (e.g., 2 hours)

Services
Cloudera Manager
Backup CM database:

☐ Yes ☐ No
Database Type:

☐ MySQL ☐ PostgreSQL ☐ Oracle
☐ Other: ___________________________

Database Credentials:
   Provided? ☐ Yes ☐ No

☐ Other: _____________________________
Schedule:

☐ Hourly ☐ Daily ☐ Weekly ☐ Monthly
☐ Custom: _________________________

Retention:
   ___________________________________
Quota:
   ___________________________________ (e.g., 300 MB)
Target RTO:
   ___________________________________ (e.g., 1 day)
Target RPO:
   ___________________________________ (e.g., 2 hours)

Backup of database storing all Cloudera Manager information,
such as CM clusters, users, hosts, services, and management serv‐
ices. The CDH online documentation has more detailed informa‐
tion.

Backup CM API:
☐ Yes ☐ No

Host Name (with Port):
    ___________________________________
REST Endpoint:
    ___________________________________ (optional)
TLS: ☐ Yes ☐ No 
Credentials:
   Provided? ☐ Yes ☐ No 

☐ Other: _____________________________
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Schedule:
☐ Hourly ☐ Daily ☐ Weekly ☐ Monthly
☐ Custom: ___________________________

Retention:
   ___________________________________
Quota:
   ___________________________________ (e.g., 100 MB)

Calls CM REST API (default /cm/deployment) and saves returned
JSON structure, containing the current cluster configuration,
including clusters, users, host, services, etc.

HDFS
Backup HDFS Data:

☐ Yes ☐ No
Host Name (with Port):
   ___________________________________ 
Secure:

☐ Yes ☐ No
Realm:
   ___________________________________ (optional)
Principal/Username:
   ___________________________________
Credentials:
   Provided? ☐ Yes ☐ No 
   Other: ____________________________
Schedule:

☐ Hourly ☐ Daily ☐ Weekly ☐ Monthly
☐ Custom: ________________________

Retention:
   ___________________________________
Quota:
   ____________________________ (e.g., 50 TB)
Target RTO:
   ____________________________ (e.g., 1 day)
Target RPO:
   ____________________________ (e.g., 2 hours)
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Directories included in backup:

Path:
[1] _____________________________________________________

Freq: ______    Ret: ______    Qta: ______    Snap: ______
[2] _____________________________________________________

Freq: ______    Ret: ______    Qta: ______    Snap: ______
[3] _____________________________________________________

Freq: ______    Ret: ______    Qta: ______    Snap: ______

Legend:

• Path: Path to HDFS directory to be included in backup
• Frequency (Freq): The schedule when to backup up directory (e.g., 4 hrs)
• Retention (Ret): How long is the data retained (e.g., 5 copies, or 1 year)
• Quota (Qta): Maximum quota for backup storage needed (e.g., 1 TB)
• Snapshot (Snap): HDFS snapshots are enabled for location (e.g., Yes)

Each directory is backed up into the versioned target directory. If
snapshots are enabled—which is the recommendation—then one is
performed around the copy operation.

Save NameNode Metadata: ☐ Yes ☐ No

HDFS API (either the HDFS DFSAdmin with the -fetchImage
option, or the /getimage endpoint of the active NameNode) to
save the latest filesystem image (named fsimage; does not include
the recent edits). It is recommended to also configure a shared file‐
system (NFS mount, for example) to retain both image and edit
files in an out-of-band (outside the cluster, or failure group) loca‐
tion for faster recovery.

HBase
Backup HBase Data:

☐ Yes ☐ No
ZK Quorum (with Port):

1. _________________________________
2. _________________________________
3. _________________________________
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Secure:
☐ Yes ☐ No

Realm:
   ____________________________________ (optional)
Principal/Username:
   ____________________________________
Credentials:
   Provided? ☐ Yes ☐ No
   Other: _____________________________
Schedule:

☐ Hourly ☐ Daily ☐ Weekly ☐ Monthly
☐ Custom: _________________________

Retention:
   ____________________________________
Quota:
   ____________________________ (e.g., 50 TB)
Target RTO:
   ____________________________ (e.g., 1 day)
Target RPO:
   ____________________________ (e.g., 2 hours)

Tables (namespaces) included in backup:

Table:
[1] _____________________________________________________

Freq: ______    Ret: ______    Qta: ______    Snap: ______
[2] _____________________________________________________

Freq: ______    Ret: ______    Qta: ______    Snap: ______
[3] _____________________________________________________

Freq: ______    Ret: ______    Qta: ______    Snap: ______

Each table is backed up into the versioned target directory. If snap‐
shots are enabled—which is the recommendation—then one is per‐
formed around the copy operation.

Hive/Impala
Backup Schema Data:

☐ Yes ☐ No
Backup HDFS Data:

☐ Yes ☐ No
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Database Type:
☐ MySQL ☐ PostgreSQL ☐ Oracle
☐ Derby [NOT SUPPORTED]
☐ Other: ___________________________

Database Credentials:
   Provided? ☐ Yes ☐ No
   Other: _____________________________
Secure:

☐ Yes ☐ No
Realm:
   ____________________________________ (optional)
Principal/Username:
   ____________________________________
Credentials:
   Provided? ☐ Yes ☐ No
   Other: _____________________________
Schedule:

☐ Hourly ☐ Daily ☐ Weekly ☐ Monthly
☐ Custom: _________________________

Retention:
   ____________________________________
Quota:
   ____________________________ (e.g., 50 TB)

Warehouse directories included in backup:

Path:
[1] _____________________________________________________

Freq: ______    Ret: ______    Qta: ______    Snap: ______
[2] _____________________________________________________

Freq: ______    Ret: ______    Qta: ______    Snap: ______
[3] _____________________________________________________

Freq: ______    Ret: ______    Qta: ______    Snap: ______

Hive has both metadata, and raw HDFS data. The latter can be
included here, or alternatively it can be covered in the earlier
HDFS section.

Sqoop
Backup Sqoop database:

☐ Yes ☐ No
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Database Type:
☐ PostgreSQL ☐ Derby [NOT SUPPORTED]
☐ Other: ___________________________

Database Credentials:
   Provided? ☐ Yes ☐ No
   Other: _____________________________
Schedule:

☐ Hourly ☐ Daily ☐ Weekly ☐ Monthly
☐ Custom: _________________________

Retention:
   ____________________________________
Quota:
   ____________________________ (e.g., 300 MB)
Target RTO:
   ____________________________ (e.g., 1 day)
Target RPO:
   ____________________________ (e.g., 2 hours)

Oozie
Backup Oozie database:

☐ Yes ☐ No
Database Type:

☐ MySQL ☐ PostgreSQL ☐ Oracle
☐ Derby [NOT SUPPORTED]
☐ Other: ___________________________

Database Credentials:
   Provided? ☐ Yes ☐ No 
   Other: _____________________________
Schedule:

☐ Hourly ☐ Daily ☐ Weekly ☐ Monthly
☐ Custom: _________________________

Retention:
   ____________________________________
Quota:
   ____________________________ (e.g., 500 MB)
Target RTO:
   ____________________________ (e.g., 1 day)
Target RPO:
   ____________________________ (e.g., 2 hours)
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Hue
Backup Hue database:

☐ Yes ☐ No
Database Type:

☐ MySQL ☐ SQLite [NOT SUPPORTED]
☐ Other: ___________________________

Database Credentials:
   Provided? ☐ Yes ☐ No 
   Other: _____________________________
Schedule:

☐ Hourly ☐ Daily ☐ Weekly ☐ Monthly
☐ Custom: _________________________

Retention:
   ____________________________________
Quota:
   ____________________________ (e.g., 500 MB)
Target RTO:
   ____________________________ (e.g., 1 day)
Target RPO:
   ____________________________ (e.g., 2 hours)

Contains the Hue user details (name, role, etc.).

Sentry
Backup Sentry database:

☐ Yes ☐ No
Database Type:

☐ MySQL ☐ PostgreSQL ☐ Oracle
☐ MariaDB
☐ Other: ___________________________

Database Credentials:
   Provided? ☐ Yes ☐ No 
   Other: _____________________________
Schedule:

☐ Hourly ☐ Daily ☐ Weekly ☐ Monthly
☐ Custom: _________________________

Retention:
   ____________________________________
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Quota:
   ____________________________ (e.g., 500 MB)
Target RTO:
   ____________________________ (e.g., 1 day)
Target RPO:
   ____________________________ (e.g., 2 hours)
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user and group lookup pattern for LDAP,
291

active/active architecture, 379
active/passive architecture, 330
adcli utility, 293
Address Resolution Protocol (ARP), 133
ADLS (see Azure Data Lake Store)
administration gateways, 324
administration of Linux, split responsibilities

in, 156
administrators, 145

authorization for administrator groups in
Oozie, 266

Linux and server, in business intelligence
solution with Hadoop, 154

malicious, 513
service level authorization settings for, 258
split administrator model for Linux, 152
superuser or supergroup configuration for,

255
Advanced Vector Extensions, 49
AES New Instructions (AES-NI), 49
agent process on cluster nodes, 207
aggregations

aggregation layer in datacenters, 164
simple aggregation in MapReduce, 11
simple aggregation in Spark, 12

alerting, 332
Amazon Elastic Block Store (Amazon EBS)

built-in encryption capabilities, 542
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volume encryption, 539
Amazon Elastic Compute Cloud (Amazon

EC2), 455, 524
instance storage, 460, 541
service limits, 461

Amazon Elastic MapReduce (EMR), 428
Amazon Machine Image (AMI), 461
Amazon Relational Database Service (Amazon

RDS), 201
Amazon Simple Storage Service (Amazon S3),

35, 435, 450, 459, 508
Cloudera S3 Connector Service, 525
encryption, support for client-side and

server-side encryption, 542
object storage security, 522

Amazon Web Services (AWS), 453, 455-462
Amazon Elastic MapReduce (EMR), 460
anonymous AWS credential provider, 525
auditing capabilities, 533
caveats and service limits, 461
Certificate Manager, 549
Elastic MapReduce (EMR), 510
encryption in, 540
environment variable credentials provider,

524
identity and access management (IAM), 522
instance profile credentials provider, 525
instance types, 456

comparison with Azure and GCP, 475
high-end, 475
placement groups, 490

KMS (key management service), 539
load balancing with Elastic Load Balancer,

493
network architecture

information resources for, 486
network performance and Elastic Net‐

work Adapter, 485
network performance specifications, 485
SSH agent forwarding, 484
VPC endpoints, 484
VPC peering, 484
VPCs (virtual private clouds), 483

one-click deployments, 503
one-off cluster in AWS S3, 477
perimeter controls and firewalling, 553
provisioning long-lived clusters with Clou‐

dera Director, 501
Security Token Service, 523

sticky clusters, 479
storage options, 457
storage solutions summary, 480
storage solutions, interoperability with

Hadoop distributions, 480
Ambari, 197, 207

backing up, 394
AMD server processors, 49
analysts, 144, 147

data scientists vs., 149
analytical SQL engines, 14-18

Hive, 14
Impala, 16
other distributed query engines, 18

anonymous access, 525
anonymous memory regions, 63
Ansible Playbook, automated OS configuration

with, 193
anti-affinity groups (VMs), 414

definition by Sahara in OpenStack private
cloud, 436

in OpenShift private cloud, 440
Apache Ambari (see Ambari)
Apache Commons Crypto library, 49
Apache Flume (see Flume)
Apache HBase (see HBase)
Apache Hive Metastore (see Hive Metastore)
Apache HTTP Server (or Apache), 316
Apache httpd, 336
Apache Hue (see Hue)
Apache Impala (see Impala)
Apache JMeter, 234
Apache Knox, 317
Apache Lucene (see Lucene)
Apache Oozie (see Oozie)
Apache Ranger/Apache Sentry, 197 (see

Ranger; Sentry)
Apache Solr (see Solr)
Apache Spark (see Spark)
Apache Sqoop (see Sqoop)
Apache ZooKeeper (see ZooKeeper)
APIs

in HBase, 321
in HDFS, 319
in Hive, 320
in Impala, 321
in Kudu, 323
in YARN edge node interactions, 319
Oozie REST API, 322
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Solr REST API, 322
versioning and dependency conflicts, 312

append blobs (Azure), 465
append function, 78
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161
application encryption, 271
application integration (LDAP), 290
application proxies

in HBase, 322
in HDFS, 319
in Hive, 321
in Impala, 321

ApplicationMaster (AM), 7
ApplicationMaster UIs, 316
applications

application design in cloud deployments,
515

big data engineer’s knowledge of, 152
apt package manager, 208
architects, 144

big data, 148
at-rest encryption, 270-279

encrypting temporary files, 278
HDFS Transparent Data Encryption,

274-278
in the cloud, 533-548
options for Hadoop services and data, 272
volume encryption with Cloudera NE and

KTS, 273
attribute-based access control (ABAC), 251,

265, 397
auditing

collecting audit logs in Azure Key Vault,
543

of Hadoop clusters running in the cloud,
533

authentication, 242-250
cluster backups and, 393
delegation tokens, 248
for notebook applications, 326
impersonation, 249
in ZooKeeper, denoted by schemes, 262
Kerberos, 242
LDAP, 247

in Hue, 269
OAuth, 528

S3A client to Ceph RADOS Gateway, 450
self-contained, for separate cluster in the

cloud, 517
authentication server (AS), 244
authorization, 250-270

centralized security management, 258
cluster backups and, 393
group resolution, 251
Hadoop service level authorization, 257
HBase, 264
HDFS, 260
Hive, 263
Hue, 266
Impala, 264
in Azure storage accounts, 529
Kafka, 269
Kudu, 266
Oozie, 266
scopes in Hadoop, 250
Sentry, 270
Solr, 265
superusers and supergroups, 253-257

restricting superusers, 253
supergroups, 255

YARN, 261
ZooKeeper, 262

auth_to_local rules, 254, 255
converting AD principal names to short

names, 299
Auto-TLS mode, 309
automated provisioning in the cloud, 495-510

long-lived clusters, 495-507
configuration and templating, 496
deploying with security, 506-507
deployment phases, 497-500

sharing metadata services, 509
transient clusters, 508

automating backups with Oozie (case study)
(see Oozie)

automation and integration (private cloud),
434
automation in do it yourself solution, 444
in OpenShift, 439
in OpenStack Sahara, 436

automation in public cloud solutions, 455
availability, 329

(see also high availability)
measuring, 331

availability zones, 180
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AWS (see Amazon Web Services)
AWS Glue Data Catalog, 429, 461, 510
Azure, 453, 462-467

Active Directory (AD), 522, 549
ADLS (see Azure Data Lake Store)
auditing capabilities, 533
availability sets for instances, 491
caveats and service limits, 467
encryption in, 542

ADLS (Azure Data Lake Store), 544
Azure blob storage, 543
Key Vault, 542

HDInsight, 467
instance types, 462

comparison with AWS and GCP, 475
high-end, 475

network architecture
Azure Virtual Network or VNet, 483
information resources for, 486
network performance specifications, 485
virtual network peering, 484
virtual network service endpoints, 484

object storage security and Hadoop,
529-533
Hadoop integration, 531

one-click deployments, 503
one-off clusters, 477
perimeter controls and firewalling, 555
provisioning long-lived clusters with Clou‐

dera Director, 501
sticky clusters, 479
storage options, 463
storage solutions summary, 481
storage solutions, interoperability with

Hadoop distributions, 480
Azure Data Lake Store (ADLS), 35, 464, 466,

508
authorization, authentication, and access

control, 530
encryption in, 544
integration with Hadoop, 532

Azure Disk Encryption (ADE), 543
Azure Files, SMB storage, 422
Azure HDInsight, 428

B
backporting, 205

backups and disaster recovery, 377-407
Azure Backup service, 466
backups, 113
context, 377-388

consistency of data, 386
failure scenarios, 379-382
many distributed systems, 377
policies and objectives, 378
strategies, 383-385
suitable data sources, 382
types of data needing backup, 386
validation of data, 387

Hadoop cluster backups, 391-405
Apache Ambari, 394
Apache Ranger, 397
Apache Sentry, 397
automating backups in Oozie, case

study, 398-405
background and considerations, 391
Cloudera Manager, 394
databases, 393
HBase, 396
HDFS, 395
Hive Metastore, 395
Hue, 397
Oozie, 397
YARN, 396

replication of data, 388-391
restores, 405

balanced instances, 471, 475
bandwidth

for high-intensity ingest and cluster replica‐
tion, 171

impairment with cluster spanning, 174
banned users, 261
baseline testing, 211
bastion hosts, 324
bastion instance, 484
benchmarking

multipurpose tool for, 214
of CPUs, 213

big data
cloud instances and big data workloads, 474
importance of NUMA to, 53
technology primer, 1-27

big data architects, 148
big data engineers, 151, 157

DevOps responsibilities, 156
skill profile, 151
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bigdata-interop project (Google), 527
binary releases of Hadoop, 205
bind (LDAP), 248
BitLocker, 543
bits per second (bps), translating to bytes per

second (B/s), 223
blob storage (Azure), 464, 465, 530

encryption in, 543
in Hadoop, 465
integration with Hadoop, 531

block blobs (Azure), 465
block encryption key (BEK), 544
block I/O prioritization, Linux kernel cgroups

and, 37
block locality, 75

locality opitmization, 78
block reports, 349
blocks, 5

block size, 62
block-level filesystems, 69-71
different meanings of, 217
mlocked by the DataNode, 66
placement of, using replication, 75
replication of, 110

bring your own key (BYOK), 536, 540, 548
brokers (Kafka), 369
bucket policies (Amazon S3), 522
buckets

in Amazon S3, 459, 462
in Google Cloud Storage (GCS), 470

business continuity team, 378
business intelligence project case study,

141-157
center for excellence/competence in solu‐

tion with Hadoop, 157
DevOps and solution with Hadoop, 156
new team setup for solution with Hadoop,

155
solution overview with Hadoop, 154
split responsibilities in solution with

Hadoop, 156
traditional solution approach, 141-142
typical team setup, 143-146

C
C++, 16, 57, 313

Impala and Kudu implementations, 49

server certificate verification, 291
X.509 certificate format, 307

cabling
cross-cabling racks, 164
in stacked networks, 121
using high-speed cables in network Layer 1,

132
caches, 47

cache coherence, 47
disk cache, 87

enabled and disabled, throughput test‐
ing, 88

HDFS, implementation of, 62
Kerberos tickets stored in, 296
L3 cache size and core count, 55
Linux page cache, 62
Linux, access for filesystem I/O, 60
simulating a cache miss, 218
storage controller cache, 83

guidelines for, 84
read-ahead caching, 83
throughput testing, 89
write-back caching, 83

caching, 58
enabling name service caching, 191
HDFS, 66

cache administration commands, 67
instructing Linux to minimize, 63
of Sentry roles and permissions by services,

264
Canonical Name (CNAME) records (DNS),

335
CAP theorem, 178
catalog, 362
catalog server, 362
categories (cable), 132
center of excellence or competence, 157
centralized identity management systems, 286

high availability, 344
Centrify, 506
Ceph

CephFS, 451
CephFS plug-in mapping HDFS API to

Ceph, 451
RADOS Gateway, 450
remote block storage support, 451

certificate authorities (CAs), 238
CA bundles, 239
central corporate CA, benefits of, 304
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certificates signed by, in production envi‐
ronments, 305

in automated provisioning in the cloud, 507
location of CA certificates, 308
sending CSRs to, 306

certificate management, 304-309
automation in generating certificates, 309
centralized corporate CA, using, 304
converting certificates to different formats,

307
integration providers, 285
integration scenarios for, 282-285
need for identity management system inte‐

gration with, 282
signing certificates, 305
wildcard certificates, 308

certificate signing requests (CSRs), 305, 309
certificates, 238

configuring for load balancing in Impala,
367

deployment options for TLS certificates, 507
managing for services in the cloud, 549
TLS certificates and load balancing, 340
use in Oozie security, 372
X.509 format, 240

cgroups (container groups), 37
in Linux kernel, 37
in OpenShift private cloud, 441

checksumming (DataNode), 67
HBase and, 68

Cinder component (OpenStack), 436
client-server traffic pattern, 126
client-side encryption, 540

support by Amazon S3, 542
Cloud Dataproc (GCP), 470
cloud environments

automated cluster deployment in, 495-510
basics of virtualization for Hadoop, 411-431
Hadoop on public cloud service, 159
hosted databases, 201
implementing cluster growth, 42
IT roles and, 146
PaaS Hadoop, 204
private cloud solutions, 433-452
public cloud offering as alternative to cold

standby clusters, 406
public cloud solutions, 453-493
quorum spanning with three datacenters in

hyperscale public clouds, 180

security in, 511-557
Cloud Foundry, 441
cloud providers

auditing capabilities, 533
decoupled storage and compute, 35
encryption via, 537-545
in the public cloud, 455-471

Amazon Web Services (AWS), 455-462
Google Cloud Platform (GCP), 468-471
Microsoft Azure, 462-467

managed ID services, 519
request by law enforcement to surrender

data, 538
Cloud Serving Benchmark (YCSB), 234
Cloudera, 203

Auto-TLS mode for clusters deployed via
Cloudera Director, 309

guidance on deployment on remote block
storage, 420

on Azure, 503
package format for Hadoop distribution,

208
S3 Connector Service, 525
Shared Data Experience, 510
using Cloudera's distribution on OpenStack

with Ceph remote block storage, 452
Cloudera Altus, 428
Cloudera Backup and Disaster Recovery

(BDR), 388
Cloudera Data Science Workbench (CDSW),

313, 325
Cloudera Director, 445

in Azure Marketplace, 503
ongoing management of long-lived clusters,

503
plug-in automating provisioning of

VMWare-based IaaS, 442
provisioning long-lived clusters in the

cloud, 501
scaling capabilities, 504

Cloudera Manager, 197, 332
auto configurations for high availability, 375
automatic high availability and load balanc‐

ing for Hue, 373
Cloudera Navigator Encrypt and Key Trustee

Server (KTS), volume encryption with, 273
Cloudera Navigator Key Trustee Server (KTS),

272, 277
Cloudera SDX, 429
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CloudSolrServer client, 368
cluster life cycle, 36
cluster management software, 499

auto configurations for high availability, 375
combining with vendor solutions for auto‐

mated deployment, 503
monitoring and alerting capabilities, 332
permitting to administer user accounts, 303
using for data replication, 389

cluster spanning, 173-181
alternatives to for disaster tolerance, 181
bandwidth impairment caused by, 174
nonstandard use of rack awareness, 174
quorum spanning across three datacenters,

179
quorum spanning across two datacenters,

175
clustering software

for high-availability databases, 341
Linux, 335

clusters, 2, 31
access by workbenches to services, 324-326
access mechanisms, 311-313
access security, 323

administration gateways, 324
access through landing zones, 326
access topologies, 313-323

edge node interactions, 318-323
interaction patterns, 314
load balancing, 318
proxy access, 316-318

automated provisioning in the cloud,
495-510
long-lived clusters, 495-507
sharing metadata services, 509
transient clusters, 508

availability in public cloud solutions, 488
cluster configurations and node types,

97-104
edge nodes, 101
large cluster configurations, 103
master nodes, 98
medium cluster configurations, 102
small cluster configurations, 101
utility nodes, 100
worker nodes, 99

component replacement policy, 171
considering as an appliance, 131
data replication, 43

and workload isolation, 43
for software development, 43

growth of, 41-43
drivers of growth, 42
implementing, 42

implementing in public cloud solutions,
471-486

in databases, 341
Kubernetes, 439
life cycle in private cloud solutions, 435
life cycle models in virtual environments,

425-430
duration in cluster life cycles, 428
further operations on, 430

Linux cluster using virtual IPs, 336
master and worker machines, 2
multiple clusters, reasons for, 31-35

independent storage and compute, 35
legal separation, 34
resiliency, 31
software development, 32
workload isolation, 33

multitenancy, 35-37
not connecting to the internet, 133
provisioning

database considerations, 201
Hadoop deployment, 202-210
operating systems, 185-194
service databases, 194-201

sizing, 37-41
by ingest rate, 40
by storage, 38-40
by workload, 41

coarse-grained authorization, 251
coders, 77
collections (of documents in Solr), 22
command-line interfaces (CLIs)

access to clusters, 312
HBase shell tool, 321
in Cloudera Director, 501
in Hive edge node interactions, 320
in Impala edge node interactions, 321
in Kudu, 323
in Oozie, 322
in Solr, 322
in Spark edge node interactions, 320
in YARN edge node interactions, 319
interaction with HDFS, 319
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using hdfs tool to load data from landing
zones into HDFS, 327

commodity servers, 46-48
common name (cn), 288
compartmentalization of IT, 146
CompositeGroupsMapping, 252
compression support in datacenters, 169
computational frameworks (Hadoop ecosys‐

tem), 10-14
Apache Spark, 12
MapReduce, 11
references for, 14

compute and storage, 45-105
cluster configurations and node types,

97-104
commoditized storage meets the enterprise,

55-58
Java language and, 57
modularity of compute and storage, 57
replication vs. erasure coding, 57

computer architecture for Hadoop, 46-55
commodity servers, 46-48
CPU specifications, 54
nonuniform memory storage (NUMA),

50-54
RAM, 55
server CPUs and RAM, 48-50

decoupling of, 35
erasure coding vs. replication

comparison, summary of, 79
deciding when to use erasure coding, 80
locality optimization, 78
network performance, 76
read performance, 78

GCP quotas for, 471
Hadoop and the Linux storage stack, 58-71

block-level filesystems, 69
erasure coding vs. replication, 71-81
Linux page cache, 62
system calls, 61
user space in Linux, 58

low-level storage, 81-91
disk layer, 84-91
storage controllers, 81-84

server form factors, 91-96
comparison of, 94
guidelines for choosing, 95

virtualization, 142
workload profiles, 96

compute resources, availability in public cloud,
487

compute virtualization, 412-415
compute-heavy instances, 471
compute-optimized VMs (Azure), 463
computer room air conditioning units (CRAC

units), 162
confidentiality controls, 323
configuration management software, 213

(see also software configuration manage‐
ment (SCM) tools)

configuration-only edge nodes, 314
configurations

long-lived clusters in the cloud, 496
environment configuration, 497

operating systems, 186
operating systems for Hadoop, 188-193

automated configuration example, 193
consensus, 8, 114, 114

distributed, 333
consistency

blocked consistency operations for synchro‐
nous replication, 177

consistent view in EMRFS, 461
of data in backups, 386

container groups (see cgroups)
containerization, 411
containers, 7, 206

blob storage in Azure, 465
OpenShift container-based platform,

438-441
running in YARN, 261
running user notebook sessions in, 326

control plane, 3, 423
Conventional Shared Storage mode, 349
cooling (datacenters), 162

failure scenarios, 166
coordinator daemons (Impala), 362

limiting number of coordinator nodes, 364
copy-on-write, 383
cores, 49

core count per CPU in Hadoop, 54
corporate KDC

integration with cluster KDC, 301
using for service and user principals, 302

CPUs
commodity servers with more than two, 48
CPU density, 91
CPU-heavy cloud instances, 475
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server CPUs and RAM, 48
cores and threads in Hadoop, 49
role of x86 architecture, 48

specifications for Hadoop, 54
validating, 213

Credentials Provider API, 524
criminal access to cloud infrastructure, 514
cross-realm trusts, 247, 518

one-way trust between local cluster KDC
and corporate KDC, 302

setting up, 298-300
one-way trust between MIT KDC and

AD, 298
two-way trust between KDCs in different

clusters, 300
cubes, 144
custom machine types (GCP), 468
customer data keys, 541
customer master keys, 541
customer-managed keys, 545
customer-supplied keys, 545

D
daemons (Impala), 362

client protocols supported, 363
data

availability in public cloud solutions, 492
user data persisted in storage systems, 386

data analysts (see analysts)
data context, 35
Data Definition Language (DDL), 196

synchronous DDL queries in Impala, 364
data encryption key (DEK), 544
data lakes, 56, 466

(see also Azure Data Lake Store)
data link layer (Layer 2), 133
data plane, 3, 423
data plane authorization, 529
data replication (see replication)
data scientists, 147, 149, 157

skill sets, 149
data sources, 382
data transfers, 109-112

replication, 110
shuffles, 111

data types needing backup, 386
data warehouses, 141

in business intelligence solution with
Hadoop, 154

in traditional business intelligence project
approach, 141

scaling, 142
databases

availability in public cloud solutions, 492
backing up Hive Metastore, 395
backups, 393
benchmarks for evaluating relational data‐

base engines, 234
Cloudera Manager, supported options, 394
database backup in Oozie backup workflow,

402
deciding which database to use, 201
for Hadoop services, 194-201

integration options, 197
required databases, 196

high availability, 341-343
clustering software for, 341
replication, 341
supported databases, 343

managed relational databases from public
cloud providers, 484

Oozie storage of state in, 370
pluggable and embedded, 378

datacenters, 159-181
basic concepts, 160-168

cooling, 162
networks, 164
power, 163
rack awareness and rack failures, 165
typical datacenter setup, 161

cluster spanning, 173-181
bandwidth impairment with, 174
quorum spanning with three datacen‐

ters, 179
quorum spanning with two datacenters,

175
rack awareness and, 174

failure of, 381
Hadoop's difference from other workloads,

159
in the public cloud, security of, 512
ingest and intercluster connectivity, 169-171

hardware, 170
software, 169

replacements and repair, 171
operational procedures, 171

space and racking constraints, 168
typical pitfalls, 172
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DataNode, 5, 64
checksumming, opting out of, 67
failure during consistency operations, 88

Datasets, 12
dd tool, 88, 228

using to measure sequential I/O perfor‐
mance for disks, 216-219

Debian, 187
obtaining sysbench, 215
package management, 208

dedicated subnets, 135
dedicated switches, 131
deep learning, 150
default group, 267
delegation tokens, 249, 250, 352, 358, 523

persistent store for, in Hive high availability,
361

dependencies
high availability for Kafka dependencies,

370
in Hadoop stack, 3

deployment, 202-210
cloud deployment for Hadoop, 482
deploying HBase for high availability, 357
deploying HDFS for high availability, 352
deploying Hue for high availability, 373
deploying Impala for high availability, 366
deploying Kafka for high availability, 369
deploying KMS for high availability, 357
deploying Oozie for high efficiency, 371
deploying Solr for high availability, 368
deploying YARN for high availability, 355
deploying ZooKeeper for high availability,

348
deployment risks in the cloud, 514

mitigation, 515
Hadoop distribution architecture, 206-207
Hadoop distributions, 202-204
installation choices for Hadoop distribu‐

tions, 205-206
installation process for Hadoop platform,

208-210
of long-lived clusters in the cloud, 497-500

one-click deployment, 503
developer keys (GCP Cloud Storage), 525
developers, 144
development

data replication for software development,
43

multiple clusters for software development,
32
variations in cluster sizing, 33

DevOps, 156
digest scheme (ZooKeeper), 262
direct bind (LDAP), 248
disaster recovery, 32, 43, 181

(see also backups and disaster recovery)
operational procedures for, in datacenters,

171
disaster tolerance, cluster spanning used for,

173
disks

data encryption on, reasons for, 270
dedicated disks in ZooKeeper deployment,

348
disk and network tests with TeraGen, 232
disk layer storage, 84-91

characteristics of hard disk drive types,
85

disk cache, 87
disk sizes, 87
SAS, SATA, and Nearline SAS drives, 85

disk storage in Azure, 465, 529
disk-only tests with TeraGen, 231
failures of storage disks, 211
GCE disk types, 469
just a bunch of disks (JBOD), 82
master disks, using RAID 1, 346
mounted on Hadoop worker nodes, 60
RAID and Hadoop, 82
recommended layout for data disks on mas‐

ter nodes, 99
recommended layout for OS disks on mas‐

ter nodes, 98
SAN, 421
validating, 216-221

disk health, 220
sequential I/O performance, 216-220

distinguished name (DN), 287, 292
distributed consensus, 333
distributed copy (DistCp), 131, 395, 400

no compression support, 170
throttling transfer rate, support with -

bandwidth flag, 170
Distributed Resource Scheduler (DRS), 415
distributed services, 107
distributions, 203
dm-crypt, 543
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DNS, 343
aliasing, 335
preferring over /etc/hosts in network Layer

3, 136
providing forward and reverse entries, 137
reverse DNS in Azure, 486
round robin, 334

Docker, 206
in OpenShift, 438

domain key, 541
domains, 288

Active Directory, 247
LDAP, 243

configuring for Hue, 292
durability of data, 165
duration in cluster life cycles, 428
dynamic fields, 22

E
east-west traffic pattern, 110, 165

north-south pattern vs., 126
EC2 (see Amazon Elastic Compute Cloud)
echo request packets, 222
edge nodes, 101

access to services with endpoints on, 313
configuration-only, 314
interactions with, 318-323

in HDFS, 319
in Hive, 320
in Impala, 321
in Kudu, 323
in MapReduce, 320
in Oozie, 322
in Solr, 322
in Spark, 320
in YARN, 319

multihoming in, 138
notebook applications on, 326
service, 315

edge servers, 3
edge-connected networks, 130
edit logs (HDFS), 349
Elastic Block Storage (EBS) in AWS, 457, 460

using EBS in Hadoop, 458
Elastic Data Processing (EDP), provided by

Sahara, 436
Elastic Filesystem (Amazon), 422
Elastic Load Balancing (ELB) in AWS, 493
Elastic MapReduce (EMR), 460, 510

Elastic Network Adapter (AWS), 485
Elasticsearch, 21
EMR File System (EMRFS), 461
Encrypted Data Encryption Key (EDEK), 274
encryption

at-rest, 270-279
encrypting temporary files, 278
HDFS Transparent Data Encryption,

274-278
options for Hadoop services and data,

272
volume encryption with Cloudera NE

and KTS, 273
data at rest in the cloud, 533-548

encryption feature and interoperability
summary, 545-547

encryption via cloud providers, 537-545
key material requirements, 534
options for encryption in the cloud, 535
recommendations and summary, 547

data in flight in the cloud, 548
encrypted LDAP connections, 290
in one-way trust between MIT KDC and

AD, 299
in-flight, 237-242

enabling, 241
SASL quality of protection, 240
TLS encryption, 238

performance overhead from, 271
secure encryption types, 297

Encryption Zone Key (EZK), 274
encryption zones, 274
end-of-row architecture, 125
engineers, 145
enterprise search, 21
envelope encryption, 274
environment configuration, long-lived clusters

in the cloud, 497
environment variables

AWS credentials provider, 524
KRB5CCNAME, 297
KRB5_CONFIG, 296
ODPi, 207

environmental risks (cloud), 513
ephemeral nodes, 347
ephemeral storage, 456

in AWS EC2, 460
erasure coding

vs. replication, 57, 71-81
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comparison, summary of, 79
deciding when to use erasure coding, 80
locality optimization, 78
network performance, 76
read performance, 78
write performance, 77

/etc/fstab configuration file, noatime option,
189

/etc/hosts, preferring DNS over, 136
ethtool, 223
events, 390
executor daemons (Impala), 362
exploratory data analysis (EDA), 42
ext3 filesystem, 69
ext4 filesystem, 69
external tables, 10
extract, transform, and load (ETL) process, 141

F
failover

active/standby database replication and, 342
as restore option, 406
automatic failover in HDFS, 350
automatic failover in YARN, 355
automatic, for high availability, using

ephemeral nodes, 347
in active/passive architecture, 330
in ZooKeeper, 348
manual failover in HDFS, 350
manual failover in YARN, 354
multiple KDC servers defined for clients,

344
failure domains, 114, 162, 491

alignment for all infrastructure layers, 167
for cooling, 162
master servers in separate domains, 345

failure tolerance, 160
failures

failure scenarios supported in Hadoop clus‐
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high availability, 370

deployment considerations, 371
overview, 25

Open Data Platform initiative (ODPi) for
Hadoop, 207

open system call, 61
OpenLDAP, 506

providing user and group integration, 286
server certificate verification, 291

OpenShift, 438-441
openssl utility, 307
OpenStack, 435-438, 508

automation and integration, 436
isolation in, 438
life cycle and storage in, 436

life cycle model options, 437
operating systems, 185-194

bootstrapping, 185-187
handling failures, 187
OS configuration, 186
OS setup, 186
PXE boot process, 186

choices for Hadoop, 187

configuration for Hadoop, 188-193
automated example, 193

group lookups, 252
interaction with SAN disk at SCSI/ATA

block layer, 421
operations

operating for high availability, 331
monitoring, 331
playbooks and postmortems, 332

operations planning for Impala, 367
specification in ODPi, 207
validation of, 235

operators, 145
optimizations

disabling OS-level optimizations, 192
in AWS S3, 460

optimized instances (AWS), 456
EBS-optimized, 458

Oracle Java, 296
orchestration services, 315

for the cloud, 445
orchestration, batch ingestion and analytics

pipelines, 25
organizational challenges, 139-158

business intelligence project case study,
141-157
center of excellence/competence in solu‐

tion with Hadoop, 157
DevOps and solution with Hadoop, 156
new team setup for solution with

Hadoop, 155
solution overview with Hadoop, 154
split responsibilities in solution with

Hadoop, 156
traditional solution approach, 141-142

categorization of Hadoop as infrastructure,
middleware, or application, 140

deciding who runs Hadoop, 140
organizational unit (OU), 288

creating for corporate KDC, 303
organizations, 288
oversubscription (network), 117, 173

access switches in fat-tree network, 123
determining in stacked networks, 119
managing in Layer 1, 132
SANs, 419
validating rate for cross-rack traffic, 232
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package management options, 208
page blobs (Azure), 465
page cache (Linux), 62

dropping for running read tests in HDFS,
230

emptying, 218
paging, 63
parallelism (transfer), in datacenters, 170
parcels (Cloudera), 208
partial mesh topology, 125
partial rebuild, 406
partitioning

in Kafka, 24
in Kudu, 20
network, 380
partition reassignment in Kafka, 369

passthrough mode (TLS), 340
Paxos consensus algorithm, 333
Payment Card Industry (PCI) quality standard,

534
PCI Express, 54
PCI Express root complex, 48
peering, 484
percentages, measuring availability in, 331
percentiles, measuring availability in, 331
performance

ADLS (Azure Data Lake Storage), 467
agreement on shared goals for, 212
baseline testing, 211
network performance specifications by pub‐

lic cloud providers, 485
overhead of encryption, 271
scalability, 160
stacked networks, 119

perimeter controls and firewalling (cloud),
549-557
example scenario for configuring perimeter

controls, 550
in AWS, 553
in GCP, 551

permissions, 251, 521
(see also authorization)
for scopes in HBase, 264
in Amazon S3, 522
in GCP Cloud Storage, 526
in Hive, 263

persistence (session), 337
persistence layer, 58

persistent credentials, 524
persistent disks (GCP), 469

encryption of, 545
standard and SSD, 469

physical addresses, mapping virtual memory
addresses to, 52

physical layer (Layer 1), 131
ping, 222
Pivotal Cloud Foundry, 441
PKCS #12 certificate format, 307
PKCS #12 key file format, 239
platform as a service (PaaS), 201

Cloud Dataproc in GCP, 470
Hadoop, 204
OpenShift, 439

platform validation, 211-235
before adding users or applications, 212
Hadoop validation, 227-233

general validation, 230-233
HDFS, 227, 230

hardware, 213-227
CPUs, 213
disks, 216-221
network, 221-227

operations validation, 235
testing methodology, 212
useful tools for tests, 213
validating other components, 234-235

load testing, 234
specific tools for, 235
TPC-DS, 234
YCSB, 234

platform vulnerabilities (cloud), 514
playbooks, 332
pluggable authentication mechanism (PAM),

293
configuring to use SSSD, 295

pods (Kubernetes), 439
POSIX standards

ACLs in Azure Data Lake Store, 466, 530
NAS via NFS and SMB protocols and, 421
object storage vs. NAS and SAN filesystems,

423
SCSI and cloud storage solutions, 481
system call interface, 60-62
user and groups, numeric identifiers for,

295
users and groups, numeric identifiers for,

288
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post-install tasks, long-lived clusters in the
cloud, 500

PostgreSQL, 343, 394
postmortems, 332
power (datacenters), 163

failure domains, unaligned, 167
failure scenarios, 166

power distribution units (PDUs), 163
connecting stacked switches to, 121

Preboot Execution Environment (PXE), 185
predefinition of infrastructure in private cloud

solution, 442-446
predicate pushdown, 17
preferred anti-infinity rules in OpenShift, 440
premium disks, 466
prerequisites checklist, 189
principals (Kerberos), 242

case sensitivity in Hadoop, 254
for service accounts without an instance,

restricting, 254
privacy controls, 323
Privacy-Enhanced Mail (PEM), 239

converting certificate to PEM format, 307
private cloud, 433-452

automation and integration, 434
do it yourself solutions, 442-446
life cycle and storage, 434
object storage for, 447-452
OpenShift solutions, 438-441
OpenStack solutions, 435-438
SDN on, 425
VMWare and Pivotal Cloud Foundry solu‐

tions, 441
private key, 238

creating, 305
privileges

caching of Sentry privileges by services, 264
on resources in Kafka, 269

process limits, increasing in operating system
configuration, 190

production setup (database option), 198
programmatic access to clusters, 311
proof of concept (ingestion), 39
proxies

load balancers used with, 318
proxy access to cluster services, 316-318

HTTP proxies, 316
service proxies, 317
SOCKS proxies, 316

proxy types and user-cluster interactions,
318

proxy auto-configuration file (PAC file), 316
proxy roles, 314, 315

multiple instances running on different
edge nodes, 317

proxy servers, 316
proxy user, 249
proxying, 249
public cloud, 453-493

cloud providers, 455-471
Amazon Web Services (AWS), 455-462
Google Cloud Platform (GCP), 468-471
Microsoft Azure, 462-467

high availability, 486-493
implementing clusters, 471-486

choosing instances, 471
network architecture, 482-486
storage and life cycle models, 476-482

key information about, 453
running sticky cluster in, 428
SANs for Hadoop, 419
SDN on, 425
security concerns, 512
transient clusters on, 428

public key cryptography, 238
publish/subscribe architecture

in Kafka, 23
log-based, 23

Python, 14, 144, 150, 153, 313
librados library in Ceph, 449
Python Fabric, 213
Python for Cloudera Manager, 444
server certificate verification, 291
X.509 certificate format, 307

Q
quality of key material for encryption, 534
Quality of Protection (QoP), SASL, 240
query endpoints, 315
quorum, 114, 332

in ZooKeeper, 9
Quorum Journal Manager in HDFS, 349
quorum majority, 333
quorum spanning across three datacenters,

179
spanning quorum services across two data‐

centers, 175
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R
R language, 144, 150
rack awareness

and high availability, 385
eliminating with cluster spanning, 174

racking servers
in Layer 1, 133
space and racking constraints in datacen‐

ters, 168
racks

failure of, 75
inter-rack throughput, 226
intra-rack throughput, 225
placing far apart, 173
rack awareness and rack failures, 165
rack locality, 5
rack unit (U), 91
rack-mount form factors, 91

standard, comparison of, 94
RADOS Block Device (RBD), 451
Raft consensus algorithm, 333
RAID, 60, 416

and storage pools in virtual environments,
417

configuration for master disks, 346
Hadoop and, 82
RAID 10 for broker data disks in Kafka, 370
RAID-0 arrays, 84
RAID1 for HDFS metadata, 353
SCSI SYNCHRONIZE CACHE command,

not passed to disks, 90
raised-floor cooling, 162
RAM (random access memory), 47

in computer architecture for Hadoop, 55
range partitioning, 20
Ranger, 197, 374

backing up Apache Ranger, 397
centralized authorization control for Kafka,

270
centralized authorization with, 258
centralized management of YARN queue

access controls, 262
HDFS ACLs, controlling, 261
Key Management Server, 275, 278
Key Management Server (KMS), 272
using in HBase, 265

RDBMS (relational database management sys‐
tems), 194, 201

read system call, 61, 64

read-ahead caching, 83
reads

effects of disk and storage controller caches
on throughput, 89

HDFS client local to DataNode process or
remote client, 64

measuring speed of distributed reads in
HDFS, 228

measuring speed of single reads in HDFS,
228

performance, erasure coding vs. replication,
78

short-circuit and zero-copy reads, 65
realmd library, 293, 506
realms (Kerberos), 242

superuser privileges shared across clusters
in, 253

rebuilds
full, 406
partial, 406

records, 390
recovery, 377

(see also backups and disaster recovery)
erasure coding vs. replication, 78

recovery point objective (RPO), 181, 378
recovery time objective (RTO), 181, 201, 378
Red Hat

information on OpenShift container secu‐
rity, 441

installing and starting NTP service daemon,
191

Kickstart, 186
OpenShift distribution, 438
OpenStack distribution, 435, 438
package management, 208
Red Hat Enterprise Linux (RHEL), 187

eCryptfs support removed in RHEL 7,
273

obtaining sysbench, 215
Satellite, 186
systemd-based Linux, installing and starting

caching daemon, 192
Red Hat Identity Management (IdM), 285

providing KDC and user/group lookup via
LDAP, 286

reduce stage (MapReduce), 11
Redundant Array of Independent Disks (see

RAID)
refresh tokens, 531
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regions
in AWS, 456
in Azure, 462
in Google Cloud Platform (GCP), 468
in public cloud solutions, 488

RegionServers (HBase), 355
relational database management systems

(RDBMS), 194, 201
reliability, 114

enhancing via replication in distributed sys‐
tems, 110

jumbo frames and, 134
statestore and, 363

remote block storage, 417
Ceph support for, 451
EBS in AWS, 457
guidance on from Hadoop vendors, 420
in OpenStack Cinder, 436
in public cloud solutions, 454

remote direct memory access (RMDA), 132
remote procedure calls (RPCs), 107-109, 312

implementations and architectures, 108
latency, 109

and cluster services, 109
platform services and their RPCs, 108
process control, 108

remotely attached storage, 415
replacements and repair in datacenters, 171

operational procedures, 171
replicas, 5

in Kafka, 369
in Solr, 367

placement of, 368
replication, 43, 110, 383, 388-391

and database high-availability, 341
and workload isolation, 43
data replication between geographic sites,

130
erasure coding vs., 57, 71-81

comparison, summary of, 79
locality optimization, 78
network performance, 76
read performance, 78
write performance, 77

for software development, 43
in HBase, 389
outside of the cluster, 388
region replication in HBase, 356
replicating data between clusters, 392

synchronous, 176
using cluster management tools, 389
using Kafka, 390
vs. RAID in Hadoop cluster, 82
within the cluster, 388

required anti-infinity rules in OpenShift, 440
resilience

fat-tree networks, 123
Hadoop clusters, 329
making cluster networks resilient, 115
multiple clusters for, 31

sizing resilient clusters, 32
network Layer 2, 134
spine-leaf networks, 126
stacked networks, 118

resource contention, 33
resource management, 152
resource model, 37
resource policies (Amazon S3), 522
ResourceManager (YARN), 7

configuration for high availability, 353-355
resources

in Kafka, privileges on, 269
resource management in multitenant clus‐

ters, 37
REST, 312

Oozie REST API, 322, 370
REST API in HDFS, 327
REST server in HBase, 322
REST-based Cloudera Manager API, 394
Solr REST API, 322

restores, 405
(see also backups and disaster recovery)

reverse proxies, 316
risks

assessing in the cloud, 511-513
risk model in public cloud deployments, 513

deployment risks, 514, 514
environmental risks, 513
mitigation of risks, 514

role-based access control (RBAC), 251
centralized authorization system, 259
in Azure Data Lake Store, 530
in CDH, provided by Sentry, 397
in HBase, 264
in IAM frameworks, 521
in Key Vault, 543

roles, 251, 263
caching of Sentry roles by services, 264
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in GCP Cloud Storage, 526
root account, 521
root user, 239

in Linux, 261
rsync tool, 383
rule-based authorization plug-in (Solr), 265
runtime environment (ODPi), 207

S
S3 (see Amazon Simple Storage Service)
S3A client, 450, 459

anonymous AWS credentials provider, 525
S3Guard, 459
Sahara plug-in, 415

in OpenStack, 436
sticky clusters and, 437

SAN- and NAS-storage technology, 56
SANs (storage area networks), 142
SAS disk drives, 85
SASL quality of protection, 240
sasl scheme (ZooKeeper), 262
SATA disk drives, 85
Scala, 14, 57, 150, 313
scalability

performance, 160
scaling clusters up and down, automating in

cloud deployments, 504
scaling data warehouses, 142
scaling networks, 124
selecting instances for, 471
spine-leaf networks, 126

scaling, 1
schemas

Hive, 195
schema on read, 9
schemaless mode for Solr collections, 22
updating for service databases, 202

schemes (ZooKeeper), 262
scopes (HBase), 264
SCR (see short-circuit reads)
SCSI SYNCHRONIZE CACHE command, 90
SDN (see software-defined networking)
search bind (LDAP, 248
searches, 2, 18

in Solr, 21
secret keys for Amazon S3, 522
Secure Sockets Layer (SSL) (see Transport

Layer Security)
security, 237-279

access security for clusters, 323
at-rest encryption, 270-279

HDFS Transparent Data Encryption,
274-278

options for Hadoop services and data,
272

volume encryption with Cloudera NE
and KTS, 273

authentication, 242-250
delegation tokens, 248
impersonation, 249
Kerberos, 242
LDAP, 247

authorization, 250-270
centralized security management, 258
group resolution, 251
Hadoop service level authorization, 257
HBase, 264
HDFS, 260
Hive, 263
Hue, 266
Kafka, 269
Kudu, 266
Sentry, 270
Solr, 265
superusers and supergroups, 253-257
YARN, 261
ZooKeeper, 262

cluster security and backups, 392
configuring for high availability in Hue, 374
configuring for high availability in Oozie,

372
considerations when using load balancing,

339
disabling for platform benchmarks, 227
HDFS and high availability, 352
in cloud auto provisioning of clusters,

506-507
integrating with Kerberos KDC, 506
TLS, 507

in OpenShift containers, 441
in public cloud solutions, 455
in the cloud, 511-557

assessing the risk, 511-513
auditing, 533
encryption for data at rest, 533-548
identity provider options for Hadoop,

515-521
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object storage security and Hadoop,
521-533

perimeter controls and firewalling,
549-557

risk model, 513
in-flight encryption, 237-242

enabling, 241
SASL quality of protection, 240
TLS encryption, 238

internet-facing clusters, 133
LDAP, 289
operating system security adjustments, 192

Security Assertion Markup Language (SAML),
242, 267

security groups, 553
network security groups, 555

Security-Enhanced Linux (SELinux)
disabling, 192
in OpenShift private cloud, 441

seek system call, 61
segmentation fault (Linux), 52
self-signed certificates, 304, 507

use cases, 305
Sentry, 197, 374

applying HDFS ACLs, 261
authorization in, 270
backing up Apache Sentry, 397
centralized authorization control for Kafka,

270
centralized authorization with, 258
protecting all user interaction with Hive,

263
protection for reads/writes to Kudu tables

through Impala integration, 266
used for Kafka authorization, 370
using for Impala authorization, 264
using in Solr, 265

separate database mode, 199
server form factors, 91-96

comparison of, 94
configurations and price sampling, 94

guidelines for choosing, 95
Server Message (SMB) storage, 421
server-server traffic pattern, 126
server-side encryption (SSE), 540

support by Amazon S3, 542
servers

bootstrapping, 185
certificates, 507

commodity, 46-48
for ZooKeeper deployments, 348
optimized configurations, 346
server CPUs and RAM

cores and threads in Hadoop, 49
role of x86 architecture, 48

service accounts
access in Azure Data Lake Store, 531
in GCP Cloud Storage, 525, 527

service databases, 194-201
integration options, 197
required databases, 196

service edge nodes, 315
service level authorization, 251, 257
service principal name (SPN), 138
service principals (Kerberos), 243
service proxies, 317
service tags, 555
service tickets (Kerberos), 242
service-level agreements (SLAs), 33, 331, 378
service-level objectives (SLOs), 331
services

availability in public cloud solutions, 492
high availability, 330
resource contention between cluster serv‐

ices, 33
separation of identical service roles, 345

sessions, 247
session persistence, 337

for Hue, 372
in Impala, 363
load balancer with, 361

shared access signatures (SASs), 530
Shared Data Experience (SDX), 35
shared database mode, 199
shells (Linux), 312
short-circuit reads (HDFS), 37, 65

benefits of, 67
short-lived (or transient) life cycle, 426
Shortest Path Bridging (SPB), 127
shuffles, 111
Simple and Protected GSSAPI Negotiation

Mechanism (SPNEGO), 246, 267
Simple Network Management Protocol

(SNMP) traps, 332
Simple Storage Service (S3) (see Amazon Sim‐

ple Storage Service)
SimpleAWSCredentialsProvider, 524
simultaneous multithreading (SMT), 49
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single endpoint interaction pattern, 314
single points of failure (SPOFs), 114, 330

using a single load balancer, 337
single sign-on (SSO) technologies, 242

support by Hue, 267
single switch network architecture, 115

implementation, 116
small cluster configurations, 101
Small Computer Systems Interface (SCSI) disk

blocks, 417
iSCSI, 419

SMART, 220
smoke testing, 211
SMP (symmetric multiprocessing), 50
SMT (simultaneous multithreading), 49
snapshots, 383

in HBase, 396, 401
of Amazon S3 object storage, 458

SOCKS proxies, 316, 320
software

in datacenters, effects on ingest and extrac‐
tion speed, 169

load balancers, 336
software configuration management (SCM)

tools, 186
using in platform validation testing, 213
using to automate installation of Hadoop

binaries, 205
software developers, 144
software license efficiency, 91
software overlay networks, 424
software-defined networking (SDN), 423-425,

435
importance for Hadoop, 424
in OpenShift Kubernetes, 441

software-only SDN, 424
solid state drives (SSDs), 86

attaching to instances in GCP, 468
Azure managed disk types, 466
in AWS EBS volume types, 459
in AWS storage-optimized instances, 456
in Azure memory-optimized VMs, 463
local SSD encryption in GCP, 545
options for high-performance local SSDs in

GCP, 469, 470
Solr

authorization in, 265
edge node interactions with, 322
high availability, 367

deployment considerations, 368
overview, 21

SolrCloud, 22, 368
source code distributions (Hadoop), 205
source of truth (for data), 425

metadata, 429
source-IP session persistence, 337
Spanning Tree Protocol (STP), 127
Spark, 12

analytical SQL engine, 16
blocks, 218
edge node interactions with, 320
Kafka consumers reading from executors,

270
resources for further learning, 14
running a job, identity management inte‐

gration with, 284
Spark History Server, web UI, 312

spine switches, 126
spine-leaf networks, 125

deploying using network fabrics, 127
implementation, 127
resilient, 126
scalability, 126

split brain problem, 380
spooling directory source, 327
SQL

analytical SQL engines, 14-18
skills for big data engineers in SQL-based

systems and databases, 153
SQL-on-Hadoop engines, JDBC/ODBC driver

implementations, 312
Sqoop, 24
SSDs (see solid state drives)
SSH

access to cluster nodes, mediation by
administration gateways, 324

access to nodes running edge services, 324
cloud-provided instance image access, 512
setting up SOCKS proxy, 317
SSH agent forwarding in AWS, 484

SSL (Secure Sockets Layer) (see Transport
Layer Security)

stacked networks, 117
cabling considerations, 121
determining oversubscription in, 119
implementation, 121
performance, 119
resilience, 118
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standard disks, 466
standard machine types (GCP), 468
standby setups, 342
statestore

in Impala, 363
in YARN, 396

sticky clusters, 426
implementation in the public cloud, caution

with, 454
in do it yourself private cloud solution, 446
in OpenShift private cloud, 440
in OpenStack, 437
in public cloud solutions, 478
long-running, 429

sticky sessions, 337
storage

backups of storage subsystems, 384
big data engineer's knowledge of, 152
commoditized storage meets the enterprise,

55-58
Java language and, 57
modularity of compute and storage, 57
replication or erasure coding, 57

configuration for broker data disks in
Kafka, 370

Conventional Shared Storage Mode, 349
deciding storage model for private cloud,

434
in private cloud solutions

object storage, 447-452
OpenShift, 439
OpenStack, 436

in public cloud solutions, 454, 476
AWS storage options, 457
Azure storage options, 463
compatibility with Hadoop distribu‐

tions, 480
object storage, 508
options in Google Cloud Platform, 469
summary of, 480

independent storage and compute, 35
sizing clusters by, 38-40

HDFS, 38
Kafka, 39
Kudu, 39

storage and storage I/O density, 91
suspendable clusters and, 427
virtualization, 411, 415-423

network-attached storage (NAS), 421

object storage, 423
virtualizing local storage, 416

storage area networks (SANs), 142, 327, 411
application to Hadoop, 419
Hadoop on SAN in on-premises environ‐

ments, 419
in do it yourself private cloud solution, 442
providing disks to clusters, 417
synchronous replication, 176

storage blocks, 74, 74
storage controllers, 81

controller cache, 83
guidelines for, 84
read-ahead caching, 83
throughput tests with disk cache and, 89
write-back caching, 83

RAID, 82
storage engineers, 145
storage engines, 18-24

HBase, 18
Kafka, 23
Kudu, 20
Solr, 21

storage-optimized instances (AWS), 456
storage-optimized VMs (Azure), 463
stored access policies, 530
streaming

managing streaming data with Kafka, 23,
390

streaming ingestion services, 327
structured streaming with Spark, 13

stress testing, 211
stripes, 73
subnets

dedicated, 135
in virtual private clouds (VPCs), 483

supergroups, 255
superusers, 253

administrators as, 255
in Hue, 267
restricting, 253

supported platforms, 204
SUSE Linux Enterprise Server (SLES), 187
suspendable clusters, 426

in do it yourself private cloud solution, 446
in OpenShift private cloud, 440
in OpenStack, 437
in public cloud solutions, 476
long-lived, 429
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swap space, 63
swapping, 63

reducing swappiness in OS configuration,
190

Swift, 508
Ceph-based implementations, 450
in OpenStack object storage, 436

switches (network)
dedicated, 131
modular, 124
oversubscription, 117
single switch architecture, 115
stacking, 117
top-of-rack (TOR), 164

symmetric multiprocessing (SMP), 47, 50
synchronous DDL, 364
synchronous replication, 176
sysbench, 214
sysctl command, 63
systctl.conf file, disabling IPv6, 191
system access in cloud deployments, 515
system calls, 60-62

used by Hadoop storage on Linux, 61
system integration testing (SIT) clusters, 32
System Security Services Daemon (SSSD), 192,

293
configuring to resolve information from

AD, 294
systemd service unit, 191
systems engineers, 145

T
tarballs or tar files, 205
targets (iSCSI), 419
tasks, 11
TCP keepalive packets, 364
teams

classic enterprise IT team organization, 146
interactions in traditional setup, 147
new team setup in business intelligence sol‐

ution with Hadoop, 155
center of excellence or competence, 157
DevOps and, 156
split responsibilities, 156

revised team setup for Hadoop in the enter‐
prise, 148
big data architect, 148
big data engineer, 151
data scientist, 149

typical setup in traditional BI, 143
technical debt, 206
templating in automated provisioning of long-

lived clusters in the cloud, 496
temporary files, encrypting, 278
temporary security credentials, 523
temporary storage (Azure), 464
tenants

deploying Hadoop for, in do it yourself pri‐
vate cloud, 444

Hadoop on private cloud, 425
isolation of, in private cloud solutions, 435

OpenStack, 438
malicious, in cloud deployments, 513

TeraGen, 230-233
disk and network tests, 232
disk-only tests, 231

TeraSort
phases of Hadoop TeraSort suite, 230
running benchmarks, 233

termination mode (TLS), 340
TestDFSIO, 228
testing

data replication for, 43
in platform validation, 211
methodology, 212
test setup, using embedded databases for,

197
useful tools for platform validation, 213

TGS (see ticket-granting server)
TGT (see ticket-granting ticket)
threads (in Hadoop), 49
Thrift, 337

Thrift server in HBase, 322
throughput

measuring network throughput, 223
measuring network throughput under load,

225
network throughput in public cloud solu‐

tions, 485
network throughput vs. latency, 222

ticket-granting server (Kerberos), 245
ticket-granting ticket (Kerberos), 244
tickets (Kerberos), 242

isolating ticket caches, 297
time synchronization for servers, 190
TLS (see Transport Layer Security)
TLS_REQCERT configuration parameter

(OpenLDAP), 291
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/tmp directory, mounting in separate partition
with noexec flag set, 192

tokens
delegation tokens, 523
refresh tokens in ADLS, 531
Security Token Service in AWS, 523

top-of-rack (TOR) switches, 164
TPC-DS, 234
transactions (database), 195
transfer rate, throttling, 170
transformations, 141
transient clusters, 428

automated provisioning in the cloud, 508
in AWS EMR, 461

transient data, 386
transient life cycle (clusters), 426
Transparent Data Encryption (TDE) in HDFS,

274-278
authorizing key operations, 276
encrypting/decrypting files in encryption

zones, 274
KMS implementations, 277

Transparent Huge Pages (THP), disabling, 192
Transparent Interconnection of Lots of Links

(TRILL), 127
transport layer (TCP), session persistence at,

337
Transport Layer Security (TLS)

encrypted LDAP connection, 289
encryption, 238

TLS and Java, 238
TLS and non-Java processes, 239
X.509 certificates, 240

forward proxies simplifying management of
TLS connections, 316

in automated provisioning in the cloud, 507
TLS certificates, load balancing and, 340

tromboning of requests, 339
trust store, 238
trusts, 247

setting up cross-realm trusts, 298-300
tunneling protocols, 424
two-socket system, 47

U
Ubuntu, 187

obtaining sysbench, 215
umask, 260
uninterruptible power supplies (UPSs), 163

United States government, AWS GovCloud
(US), 456

Unix approach to protecting permissions, 260
unmanaged disks, 466
unmanaged edge nodes, 315
upstream connectivity, 130
user acceptance testing (UAT) clusters, 32
user accounts

access in Azure Data Lake Store, 531
GCP Cloud Storage, 525
in GCP Cloud Storage, 528

user IDs (OS-level), outside of privileged range,
192, 193, 261

user policies (Amazon S3), 523
user space (Linux), 58
user workbenches (see workbenches)
user-based access control (UBAC), 251

in IAM frameworks, 522
users and groups

access control lists (ACLs) for, 256
AD accounts not having POSIX attributes,

295
failures caused by users, 381
group resolution, 251
groups in LDAP, 288
integration providers, 285
LDAP authentication, 247
lookup patterns for various applications

integrated with LDAP, 291
mapping from LDAP to Linux, 292
need for identity management system inte‐

gration with, 281
resolution of, integration scenarios, 282-285
users in LDAP, 288

utility nodes, 100
hardware specifications for, 100

V
validation

of backups and restores, 387
of Hadoop platform, 211

(see also platform validation)
vanilla Apache Hadoop distribution, 202

compiling source code, 205
vcores (virtual cores), 7
vendor Hadoop distributions, 203

binary releases, 205
compiling provided source code, 205

vendor support, 204
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versioning
software versions and replication between

clusters, 392
using snapshots, 384

vertical scalability, 471
vertical/systemic high availability, 330
virtual filesystem (VFS), 60
virtual hard disks (VHDs), 465, 467
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