

101 Ready-to-Use
Excel® Macros

by Michael Alexander and John Walkenbach

101 Ready-to-Use Excel® Macros

Published by
John Wiley & Sons, Inc.
111 River Street
Hoboken, NJ 07030-5774
www.wiley.com

Copyright © 2012 by John Wiley & Sons, Inc., Hoboken, New Jersey

Published by John Wiley & Sons, Inc., Hoboken, New Jersey

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108
of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA
01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-
6008, or online at http://www.wiley.com/go/permissions.

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its
affiliates in the United States and other countries, and may not be used without written permission. Excel is a registered
trademark of Microsoft Corporation. All other trademarks are the property of their respective owners. John Wiley & Sons,
Inc. is not associated with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO REPRESENTATIONS OR
WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS WORK AND SPECIFI-
CALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR
PURPOSE. NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND
STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE UNDER-
STANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL SER-
VICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A COMPETENT PROFESSIONAL PERSON SHOULD
BE SOUGHT. NEITHER THE PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE
FACT THAT AN ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL
SOURCE OF FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE INFOR-
MATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS
SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR DISAPPEARED BETWEEN
WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services, please contact our Customer Care Department within the
U.S. at 877-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002.

For technical support, please visit www.wiley.com/techsupport.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with stan-
dard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to media such
as a CD or DVD that is not included in the version you purchased, you may download this material at http://booksupport.
wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number is available from the Publisher.

ISBN 978-1-118-28121-5 (pbk); 978-1-118-33068-5 (ebk); 978-1-118-33353-2 (ebk); 978-1-118-33466-9 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

http://www.wiley.com
http://www.wiley.com/go/permissions
http://www.wiley.com/techsupport
http://booksupport.wiley.com
http://www.wiley.com

About the Authors
Mike Alexander is a Microsoft Certified Application Developer (MCAD) and author of several books
on advanced business analysis with Microsoft Access and Excel. He has more than 15 years of experi-
ence consulting and developing Office solutions. Michael has been named a Microsoft MVP for his
ongoing contributions to the Excel community. In his spare time, he runs a free tutorial site, www.dat-
apigtechnologies.com, where he shares Excel and Access tips.

John Walkenbach is author of more than 50 spreadsheet books and lives in southern Arizona. Visit
his website at http://spreadsheetpage.com.

http://www.datapigtechnologies.com
http://spreadsheetpage.com

Dedication
To Mary

— Mike Alexander

Authors’ Acknowledgments
Our deepest thanks to the brilliant team of professionals who helped bring this book to fruition.

Publisher’s Acknowledgments
We’re proud of this book; please send us your comments at http://dummies.custhelp.com.
For other comments, please contact our Customer Care Department within the U.S. at 877-762-2974,
outside the U.S. at 317-572-3993, or fax 317-572-4002.

Some of the people who helped bring this book to market include the following:

Acquisitions and Editorial
Project Editor: Linda Morris

Senior Acquisitions Editor: Katie Feltman

Copy Editor: Linda Morris

Technical Editor: John Walkenbach

Editorial Manager: Jodi Jensen

Editorial Assistant: Leslie Saxman

Sr. Editorial Assistant: Cherie Case

Composition Services
Project Coordinator: Sheree Montgomery

Layout and Graphics: Carrie A. Cesavice,
Andrea Hornberger

Indexer: BIM Indexing & Proofreading Services

Publishing and Editorial for Technology Dummies
Richard Swadley, Vice President and Executive Group Publisher

Andy Cummings, Vice President and Publisher

Mary Bednarek, Executive Acquisitions Director

Mary C. Corder, Editorial Director

Publishing for Consumer Dummies
Kathleen Nebenhaus, Vice President and Executive Publisher

Composition Services
Debbie Stailey, Director of Composition Services

http://dummies.custhelp.com

vii

Contents at a Glance
Introduction . 1

Part I: Getting Started with Excel Macros ... 5

Part II: Working with Workbooks ... 37

Part III: Automating Worksheet Tasks with Macros 71

Part IV: Selecting and Modifying Ranges 103

Part V: Working with Data .. 137

Part VI: Working with PivotTables ... 187

Part VII: Manipulating Charts with Macros 233

Part VIII: E-Mailing from Excel .. 253

Part IX: Integrating Excel and Other Office Applications 273

Index . 302

viii

Table of Contents
Introduction . 1

Topics Covered . 1
What You Need to Know . 2
What You Need to Have . 2
How This Book Is Organized . 2

Part I: Getting Started with Excel Macros . 3
Part II: Working with Workbooks . 3
Part III: Automating Worksheet Tasks with Macros . 3
Part IV: Selecting and Modifying Ranges . 3
Part V: Working with Data . 3
Part VI: Working with PivotTables . 3
Part VII: Manipulating Charts with Macros . 3
Part VIII: E-Mailing from Excel . 4
Part IX: Integrating Excel and Other Office Applications . 4

Conventions in This Book . 4
What the icons mean . 4

About the Companion Website . 4

Part I: Getting Started with Excel Macros 5
Becoming Familiar with Macro Recording Basics . 7
Comparing Absolute and Relative Macro Recording . 11

Recording macros with absolute references . 11
Recording macros with relative references . 13

Looking at Other Macro Recording Concepts . 15
Macro-enabled file extensions . 15
Macro security in Excel 2010 . 16
Trusted locations . 16
Storing macros in your Personal Macro Workbook . 17
Assigning a macro to a button and other form controls . 17
Placing a macro on the Quick Access toolbar . 19

Working In the Visual Basic Editor . 19
Activating the VBE . 19
Understanding VBE components . 19

Working with the Project window . 21
Adding a new VBA module . 22
Removing a VBA module . 23

Working with a Code Window . 24
Minimizing and maximizing windows . 24
Getting VBA code into a module . 25

Customizing the VBA Environment . 27
The Editor tab . 27
The Editor Format tab . 29

ix

The General tab . 30
The Docking tab . 31

Discovering the Excel Object Model . 31
Understanding objects . 31
Understanding collections . 32
Understanding properties . 33
Understanding methods . 33

Taking a Brief Look at Variables . 34
About the Macros in This Book . 35

Getting the sample files . 35
Using the sample files . 35
Things to keep in mind . 36

Part II: Working with Workbooks ...37
Macro 1: Creating a New Workbook from Scratch . 39

How it works . 39
How to use it . 40

Macro 2: Saving a Workbook when a Particular Cell Is Changed . 41
How it works . 41
How to use it . 42

Macro 3: Saving a Workbook before Closing . 43
How it works . 43
How to use it . 44

Macro 4: Protect a Worksheet on Workbook Close . 46
How it works . 46
How to use it . 46

Macro 5: Unprotect a Worksheet on Workbook Open . 48
How it works . 48
How to use it . 48

Macro 6: Open a Workbook to a Specific Tab . 50
How it works . 50
How to use it . 50

Macro 7: Opening a Specific Workbook Defined by the User . 52
How it works . 52
How to use it . 53

Macro 8: Determine Whether a Workbook Is Already Open . 54
How it works . 54
How to use it . 56

Macro 9: Determine Whether a Workbook Exists in a Directory . 57
How it works . 57
How to use it . 58

Macro 10: Refresh All Data Connections in Workbook on Open . 59
How it works . 59
How to use it . 59

x

Macro 11: Close all Workbooks at Once . 61
How it works . 61
How to use it . 61

Macro 12: Open All Workbooks in a Directory . 63
How it works . 63
How to use it . 64

Macro 13: Print all Workbooks in a Directory . 65
How it works . 65
How to use it . 66

Macro 14: Preventing the Workbook from Closing until a Cell Is Populated . 67
How it works . 67
How to use it . 68

Macro 15: Create a Backup of a Current Workbook with Today’s Date . 69
How it works . 69
How to use it . 70

Part III: Automating Worksheet Tasks with Macros71
Macro 16: Add and Name a New Worksheet . 73

How it works . 73
How to use it . 74

Macro 17: Delete All but the Active Worksheet . 75
How it works . 75
How to use it . 76

Macro 18: Hide All but the Active Worksheet . 77
How it works . 77
How to use it . 78

Macro 19: Unhide All Worksheets in a Workbook . 79
How it works . 79
How to use it . 79

Macro 20: Moving Worksheets Around . 81
How it works . 81
How to use it . 81

Macro 21: Sort Worksheets by Name . 83
How it works . 83
How to use it . 84

Macro 22: Group Worksheets by Color . 85
How it works . 85
How to use it . 86

Macro 23: Copy a Worksheet to a New Workbook . 87
How it works . 87
How to use it . 87

Macro 24: Create a New Workbook for Each Worksheet . 88
How it works . 88
How to use it . 89

xi

Macro 25: Print Specified Worksheets . 90
How it works . 90
How to use it . 90

Macro 26: Protect All Worksheets . 92
How it works . 92
How to use it . 92

Macro 27: Unprotect All Worksheets . 94
How it works . 94
How to use it . 95

Macro 28: Create a Table of Contents for Your Worksheets . 96
How it works . 96
How to use it . 98

Macro 29: Zooming In and Out of a Worksheet with Double-Click . 99
How it works . 99
How to use it . 100

Macro 30: Highlight the Active Row and Column . 101
How it works . 101
How to use it . 102

Part IV: Selecting and Modifying Ranges 103
Macro 31: Selecting and Formatting a Range . 105

How it works . 105
How to use it . 107

Macro 32: Creating and Selecting Named Ranges . 108
How it works . 109
How to use it . 110

Macro 33: Enumerating Through a Range of Cells . 111
How it works . 111
How to use it . 112

Macro 34: Select and Format All Named Ranges . 113
How it works . 113
How to use it . 114

Macro 35: Inserting Blank Rows in a Range . 115
How it works . 115
How to use it . 116

Macro 36: Unhide All Rows and Columns . 117
How it works . 117
How to use it . 117

Macro 37: Deleting Blank Rows . 118
How it works . 118
How to use it . 119

Macro 38: Deleting Blank Columns . 120
How it works . 120
How to use it . 121

xii

Macro 39: Select and Format All Formulas in a Workbook . 122
How it works . 122
How to use it . 123

Macro 40: Find and Select the First Blank Row or Column . 125
How it works . 125
How to use it . 127

Macro 41: Apply Alternate Color Banding . 128
How it works . 128
How to use it . 129

Macro 42: Sort a Range on Double-Click . 130
How it works . 130
How to use it . 131

Macro 43: Limit Range Movement to a Particular Area . 132
How it works . 132
How to use it . 132

Macro 44: Dynamically Set the Print Area of a Worksheet . 134
How it works . 134
How to use it . 134

Part V: Working with Data .. 137
Macro 45: Copy and Paste a Range . 139

How it works . 139
How to use it . 140

Macro 46: Convert All Formulas in a Range to Values . 141
How it works . 141
How to use it . 142

Macro 47: Perform the Text to Columns Command on All Columns . 143
How it works . 144
How to use it . 146

Macro 48: Convert Trailing Minus Signs . 147
How it works . 147
How to use it . 149

Macro 49: Trim Spaces from All Cells in a Range . 150
How it works . 150
How to use it . 151

Macro 50: Truncate ZIP Codes to the Left Five . 152
How it works . 152
How to use it . 154

Macro 51: Padding Cells with Zeros . 155
How it works . 155
How to use it . 157

Macro 52: Replace Blanks Cells with a Value . 158
How it works . 158
How to use it . 160

xiii

Macro 53: Append Text to the Left or Right of Your Cells . 161
How it works . 161
How to use it . 162

Macro 54: Create a Super Data Cleanup Macro . 163
How it works . 163
How to use it . 165

Macro 55: Clean Up Non-Printing Characters . 166
How it works . 166
How to use it . 167

Macro 56: Highlight Duplicates in a Range of Data . 168
How it works . 168
How to use it . 169

Macro 57: Hide All Rows but Those Containing Duplicate Data . 170
How it works . 170
How to use it . 171

Macro 58: Selectively Hide AutoFilter Drop-down Arrows . 172
How it works . 173
How to use it . 174

Macro 59: Copy Filtered Rows to a New Workbook . 175
How it works . 175
How to use it . 176

Macro 60: Create a New Sheet for Each Item in an AutoFilter . 177
How it works . 177
How to use it . 182

Macro 61: Show Filtered Columns in the Status Bar . 183
How it works . 183
How to use it . 185

Part VI: Working with PivotTables 187
Macro 62: Create a Backwards-Compatible PivotTable . 189

How it works . 190
How to use it . 191

Macro 63: Refresh All PivotTables Workbook . 192
How it works . 192
How to use it . 193

Macro 64: Create a PivotTable Inventory Summary . 194
How it works . 194
How to use it . 196

Macro 65: Make All PivotTables Use the Same Pivot Cache . 197
How it works . 197
How to use it . 198

Macro 66: Hide All Subtotals in a PivotTable . 199
How it works . 199
How to use it . 201

xiv

Macro 67: Adjust All Pivot Data Field Titles . 202
How it works . 202
How to use it . 203

Macro 68: Set All Data Items to Sum . 204
How it works . 204
How to use it . 206

Macro 69: Apply Number Formatting for All Data Items . 207
How it works . 207
How to use it . 210

Macro 70: Sort All Fields in Alphabetical Order . 211
How it works . 211
How to use it . 212

Macro 71: Apply Custom Sort to Data Items . 213
How it works . 213
How to use it . 214

Macro 72: Apply PivotTable Restrictions . 215
How it works . 215
How to use it . 216

Macro 73: Apply Pivot Field Restrictions . 217
How it works . 217
How to use it . 218

Macro 74: Automatically Delete Pivot Table Drill-Down Sheets . 219
How it works . 219
How to use it . 221

Macro 75: Print Pivot Table for Each Report Filter Item . 223
How it works . 223
How to use it . 225

Macro 76: Create New Workbook for Each Report Filter Item . 226
How it works . 226
How to use it . 228

Macro 77: Transpose Entire Data Range with a PivotTable . 229
How it works . 230
How to use it . 231

Part VII: Manipulating Charts with Macros 233
Macro 78: Resize All Charts on a Worksheet . 235

How it works . 235
How to use it . 236

Macro 79: Align a Chart to a Specific Range . 237
How it works . 237
How to use it . 238

Macro 80: Create a Set of Disconnected Charts . 239
How it works . 239
How to use it . 240

xv

Macro 81: Print All Charts on a Worksheet . 241
How it works . 241
How to use it . 242

Macro 82: Label First and Last Chart Points . 243
How it works . 243
How to use it . 245

Macro 83: Color Chart Series to Match Source Cell Colors . 246
How it works . 246
How to use it . 249

Macro 84: Color Chart Data Points to Match Source Cell Colors . 250
How it works . 250
How to use it . 252

Part VIII: E-Mailing from Excel ... 253
Macro 85: Mailing the Active Workbook as an Attachment . 255

How it works . 255
How to use it . 257

Macro 86: Mailing a Specific Range as Attachment . 258
How it works . 258
How to use it . 259

Macro 87: Mailing a Single Sheet as an Attachment . 260
How it works . 260
How to use it . 261

Macro 88: Send Mail with a Link to Our Workbook . 262
How it works . 262
How to use it . 263

Macro 89: Mailing All E-Mail Addresses in Our Contact List . 264
How it works . 264
How to use it . 265

Macro 90: Saving All Attachments to a Folder . 266
How it works . 266
How to use it . 268

Macro 91: Saving Certain Attachments to a Folder . 269
How it works . 269
How to use it . 271

Part IX: Integrating Excel and Other Office Applications 273
Macro 92: Running an Access Query from Excel . 275

How it works . 275
How to use it . 277

Macro 93: Running an Access Macro from Excel . 278
How it works . 278
How to use it . 279

xvi

Macro 94: Opening an Access Report from Excel . 280
How it works . 280
How to use it . 281

Macro 95: Opening an Access Form from Excel . 282
How it works . 282
How to use it . 283

Macro 96: Compacting an Access Database from Excel . 284
How it works . 284
How to use it . 285

Macro 97: Sending Excel Data to a Word Document . 286
How it works . 286
How to use it . 288

Macro 98: Simulating Mail Merge with a Word Document . 289
How it works . 289
How to use it . 292

Macro 99: Sending Excel Data to a PowerPoint Presentation . 293
How it works . 293
How to use it . 295

Macro 100: Sending All Excel Charts to a PowerPoint Presentation . 296
How it works . 296
How to use it . 298

Macro 101: Convert a Workbook into a PowerPoint Presentation . 299
How it works . 299
How to use it . 301

Index .302

Introduction
In its broadest sense, an Excel macro is a sequence of instructions that automates some aspect of Excel
so that you can work more efficiently and with fewer errors. You may create a macro, for example, to
format and print your month-end sales report. After the macro is developed, you can then execute the
macro to perform many time-consuming procedures automatically.

Macros are written in VBA, which stands for Visual Basic for Applications. VBA is actually a programming
language developed by Microsoft, and is a tool used to develop programs that control Excel.

Excel programming terminology can be a bit confusing. For example, VBA is a programming language,
but it also serves as a macro language. What do you call something written in VBA and executed in
Excel? Is it a macro or is it a program? Excel’s Help system often refers to VBA procedures as macros, so
this is the terminology used in this book. But you can also call VBA code a program.

You’ll also see the term automate throughout this book. This term means that a series of steps are
completed automatically. For example, if you write a macro that adds color to some cells, prints the
worksheet, and then removes the color, you have automated those three steps.

People use Excel for thousands of different tasks. Here are just a few examples:

➤	 Keeping lists of things such as customer names and transactions

➤	 Budgeting and forecasting

➤	 Analyzing scientific data

➤	 Creating invoices and other forms

➤	 Developing charts from data

The list could go on and on. The point is simply that Excel is used for a wide variety of tasks, and
everyone reading this book has different needs and expectations regarding Excel. One thing virtually
every reader has in common is the need to automate some aspect of Excel. That is what VBA (and this
book) is all about.

Topics Covered
This book approaches the topic of Excel Macros with the recognition that programming with VBA
takes time and practice — time that you may not have right now. In fact, many analysts don’t have
the luxury of taking a few weeks off to become an expert on VBA. So Instead of the same general
overview of VBA topics, this book provides 101 of the most commonly used real-world Excel Macros.

Introduction2

Each segment of the book outlines a common problem that needs to be solved and provides the
actual Excel macro to solve the problem, along with detailed explanations of how the macro works
and where to use the macro.

What You Need to Know
In order to get the most out of this book, we assume you have a certain set of skills. The ideal candi-
date for this book has experience working with data in Excel, along with familiarity with the basic
concepts of data analysis such as working with tables, aggregating data, performing calculations,
and creating charts.

What You Need to Have
You will need the following in order to download and use the examples highlighted in this book.

➤	 A licensed copy of Excel 2007 or Excel 2010

➤	 An internet connection in order to download the sample files

How This Book Is Organized
The style of this book is in the format of the Tips and Tricks books, where each segment shows how
to perform a common task via Excel Macros. This lets you, our esteemed reader, use the book as a
handy reference for finding a macro that solves a common problem.

Each segment of the book follows this simple construct:

➤	 The problem

➤	 The macro solution

➤	 How it works

After reading each segment of this book, you should be able to

➤	 Immediately implement the required Excel macro

➤	 Understand how the given macro works

➤	 Reuse the given macro in other workbooks or in conjunction with other macros

The chapters of this book are grouped into nine main parts.

Introduction 3

Part I: Getting Started with Excel Macros
Part I serves as an introduction to Excel Macros and VBA in general. Here, you gain a concise summary
of how VBA works with Excel, giving you the basic foundation you need to work with the 101 macros in
this book.

Part II: Working with Workbooks
In Part II you discover how to reference Workbooks through VBA to do cool things like automatically
create new workbooks, prevent users from closing workbooks, automatically backing up workbooks,
and much more.

Part III: Automating Worksheet Tasks with Macros
Part III focuses on the automation tasks related to worksheets. Whether it is unhiding all sheets in a
workbook, or printing all sheets at the same time, many tasks can be automated to save time and
gain efficiencies. In this part we cover some of the more useful macros related to worksheets.

Part IV: Selecting and Modifying Ranges
When you’re attempting to automate your work through VBA, you’ll find that navigating your
spreadsheet remains an important part of the automation process. In many cases, you need to
dynamically navigate and manipulate Excel ranges, just as you would manually — only through VBA
code. Part IV provides some of the most commonly used macros in terms of navigating and working
with ranges.

Part V: Working with Data
Part V shows you some of the more useful macros you can use to dynamically transform the data in
your workbooks. The idea is that you can run several of these macros in a sequence that essentially
automates the scrubbing and shaping of your data.

Part VI: Working with PivotTables
Some PivotTable-related tasks are not easily handled with the macro recorder. This is where Part VI
focuses its attention. Here, we cover the most common scenarios where macros help you gain effi-
ciencies when working with PivotTables.

Part VII: Manipulating Charts with Macros
In Part VII you discover how VBA can help you save time and work with charts more efficiently. Here
you tackle aspects of charting that lend themselves to a bit of automation.

Introduction4

Part VIII: E-Mailing from Excel
In Part VIII you discover a few examples of how you can integrate Excel and Outlook. Here you see
examples of macros that send e-mails, send attachments, and pull files right out of Outlook.

Part IX: Integrating Excel and Other Office Applications
Excel data is often used in other Office applications: Microsoft Access, Microsoft Word, and Microsoft
PowerPoint. In Part IX we look at some of the useful macros you can implement to have Excel integrate
with some other Office applications.

Conventions in This Book
Menu commands in this book are separated by an arrow (➜). For example, File➜Open means go to
the File menu, click it, and select Open from the list that appears.

All code in this book appears in a monospaced font, as do methods, properties, values, and arguments.

Text the reader types appears in bold.

Placeholder text that should be replaced with information specific to your needs appears in italics.

What the icons mean

We use Tip icons to indicate a pointer you should file away for future reference. Tips
usually make your life easier.

The Note icon indicates you should pay special attention to this.

We use Caution icons to indicate things that can cause you trouble.

About the Companion Website
Each macro in this book has an associated sample file. These sample files let you see the macro in
action, as well as giving you the ability to review the code. The sample files can be downloaded from
this book’s companion website at www.wiley.com/go/101excelmacros.

http://www.wiley.com/go/101ExcelMacros

PART I
Getting Started
with Excel Macros
This Part is a primer on Excel macros, covering everything you need to know about Excel macros and
VBA to get started with the 101 macros throughout the rest of this book.

In This Part
Becoming Familiar with Macro Recording Basics . 7
Comparing Absolute and Relative Macro Recording .11

Recording macros with absolute references .11
Recording macros with relative references .13

Looking at Other Macro Recording Concepts .15
Macro-enabled file extensions .15
Macro security in Excel 2010 .16
Trusted locations .16
Storing macros in your Personal Macro Workbook 17
Assigning a macro to a button and other form controls 17
Placing a macro on the Quick Access toolbar .19

Working In the Visual Basic Editor .19
Activating the VBE .19
Understanding VBE components .19

Working with the Project window .21
Adding a new VBA module .22
Removing a VBA module .23

Working with a Code Window .24
Minimizing and maximizing windows .24
Getting VBA code into a module .25

Customizing the VBA Environment .27
The Editor tab .27
The Editor Format tab .29
The General tab .30
The Docking tab .31

Discovering the Excel Object Model .31
Understanding objects .31
Understanding collections .32
Understanding properties .33
Understanding methods .33

Taking a Brief Look at Variables .34
About the Macros in This Book .35

Getting the sample files .35
Using the sample files .35
Things to keep in mind .36

Getting Started with
Excel Macros
You need not be a power user to create and use simple VBA macros. Even casual users can simply
turn on Excel’s macro recorder.

Recording a macro is like programming a phone number into your cell phone. You first manually dial
and save a number. Then when you want, you can redial those numbers with the touch of a button.
Just as with numbers on a cell phone, you can record your actions in Excel while you
perform them. While you record, Excel gets busy in the background, translating your keystrokes and
mouse clicks to written VBA code. After you’ve recorded a macro, you can play back those actions
anytime you wish.

This Part serves as an introduction to Excel Macros and VBA in general. Here, we give you a
concise summary of how VBA works with Excel, giving you the basic foundation you need to work
with the 101 macros listed in this book.

Becoming Familiar with
Macro Recording Basics
To start recording your first macro, you need to first find the Macro Recorder, which is on the
Developer tab. Unfortunately, Excel comes out of the box with the Developer tab hidden — you may
not see it on your version of Excel at first. If you plan to work with VBA macros, you’ll want to make
sure that the Developer tab is visible. To display this tab

 1. Choose Office➜Excel Options.

 2. In the Excel Options dialog box, select Customize Ribbon.

 3. In the list box on the right, place a check mark next to Developer.

 4. Click OK to return to Excel.

Now that you have the Developer tab showing in the Excel Ribbon, you can start up the Macro
Recorder by selecting Record Macro from the Developer tab. This activates the Record Macro dialog
box, as shown in Figure 1-1.

Part I: Getting Started with Excel Macros8

Figure 1-1: The Record Macro dialog box.

Here are the four parts of the Record Macro dialog box:

➤	 Macro Name: This should be self-explanatory. Excel gives a default name to your macro,
such as Macro1, but you should give your macro a name more descriptive of what it actually
does. For example, you might name a macro that formats a generic table as FormatTable.

➤	 Shortcut Key: Every macro needs an event, or something to happen, for it to run. This event
can be a button press, a workbook opening, or in this case, a keystroke combination. When
you assign a shortcut key to your macro, entering that combination of keys triggers your
macro to run. This is an optional field.

➤	 Store Macro In: This Workbook is the default option. Storing your macro in This Workbook
simply means that the macro is stored along with the active Excel file. The next time you
open that particular workbook, the macro is available to run. Similarly, if you send the work-
book to another user, that user can run the macro as well (provided the macro security is
properly set by your user — more on that later in this Part, in the section titled “Looking at
Other Macro Recording Concepts”).

➤	 Description: This is an optional field, but it can come in handy if you have numerous macros
in a spreadsheet or if you need to give a user a more detailed description about what the
macro does.

With the Record Macro dialog box open, follow these steps to create a simple macro that enters your
name into a worksheet cell:

 1. Enter a new single-word name for the macro to replace the default Macro1 name. A good
name for this example is MyName.

 2. Assign this macro to the shortcut key Ctrl+Shift+N by entering uppercase N in the edit box
labeled Shortcut Key.

 3. Click OK to close the Record Macro dialog box and begin recording your actions.

Part I: Getting Started with Excel Macros 9

 4. Select any cell on your Excel spreadsheet, type your name into the selected cell, and then
press Enter.

 5. Choose Developer➜Code➜Stop Recording (or click the Stop Recording button in the
status bar).

Examining the macro
The macro was recorded in a new module named Module1. To view the code in this module, you
must activate the Visual Basic Editor. You can activate the VB Editor in either of two ways:

➤	 Press Alt+F11.

➤	 Choose Developer➜Code➜Visual Basic.

In the VB Editor, the Project window displays a list of all open workbooks and add-ins. This list is
displayed as a tree diagram, which you can expand or collapse. The code that you recorded previ-
ously is stored in Module1 in the current workbook. When you double-click Module1, the code in
the module appears in the Code window.

The macro should look something like this:

Sub MyName()
‘
‘ MyName Macro
‘
‘ Keyboard Shortcut: Ctrl+Shift+N
‘
 ActiveCell.FormulaR1C1 = “Michael Alexander”
End Sub

The macro recorded is a Sub procedure that is named MyName. The statements tell Excel what to do
when the macro is executed.

Notice that Excel inserted some comments at the top of the procedure. These comments are some of
the information that appeared in the Record Macro dialog box. These comment lines (which begin
with an apostrophe) aren’t really necessary, and deleting them has no effect on how the macro runs.
If you ignore the comments, you’ll see that this procedure has only one VBA statement:

ActiveCell.FormulaR1C1 = “Michael Alexander”

This single statement causes the name you typed while recording to be inserted into the active cell.

Part I: Getting Started with Excel Macros10

Testing the macro
Before you recorded this macro, you set an option that assigned the macro to the Ctrl+Shift+N
shortcut key combination. To test the macro, return to Excel by using either of the following
methods:

➤	 Press Alt+F11.

➤	 Click the View Microsoft Excel button on the VB Editor toolbar.

When Excel is active, activate a worksheet. (It can be in the workbook that contains the VBA module
or in any other workbook.) Select a cell and press Ctrl+Shift+N. The macro immediately enters your
name into the cell.

In the preceding example, notice that you selected the cell to be formatted before you
started recording your macro. This step is important. If you select a cell while the macro
recorder is turned on, the actual cell that you selected will be recorded into the macro.
In such a case, the macro would always format that particular cell, and it would not be a
general-purpose macro.

Editing the macro
After you record a macro, you can make changes to it (although you must know what you’re doing).
For example, assume that you want your name to be bold. You could re-record the macro, but this
modification is simple, so editing the code is more efficient. Press Alt+F11 to activate the VB Editor
window. Then activate Module1 and insert the following statement before the End Sub statement:

ActiveCell.Font.Bold = True

The edited macro appears as follows:

Sub MyName()
‘
‘ MyName Macro
‘
‘ Keyboard Shortcut: Ctrl+Shift+N
‘
 ActiveCell.Font.Bold = True
 ActiveCell.FormulaR1C1 = “Michael Alexander”
End Sub

Test this new macro, and you see that it performs as it should.

Part I: Getting Started with Excel Macros 11

Comparing Absolute and Relative
Macro Recording
Now that you’ve read about the basics of the Macro Recorder interface, it’s time to go deeper and
begin recording macros. The first thing you need to understand before you begin is that Excel has
two modes for recording — absolute reference and relative reference.

Recording macros with absolute references
Excel’s default recording mode is in absolute reference. As you may know, the term absolute reference
is often used in the context of cell references found in formulas. When a cell reference in a formula is
an absolute reference, it does not automatically adjust when the formula is pasted to a new location.

The best way to understand how this concept applies to macros is to try it out. Open the Chapter 1
Sample File.xlsx file and record a macro that counts the rows in the Branch list worksheet. (See
Figure 1-2.)

Figure 1-2: Your pre-totaled worksheet containing two tables.

The sample dataset used in this Part can be found on this book’s companion website.
See this book’s Introduction for more on the companion website.

Follow these steps to record the macro:

 1. Before recording, make sure cell A1 is selected.

 2. Select Record Macro from the Developer tab.

Part I: Getting Started with Excel Macros12

 3. Name the macro AddTotal.

 4. Choose This Workbook for the save location.

 5. Click OK to start recording.

 At this point, Excel is recording your actions. While Excel is recording, perform the following
steps:

 6. Select cell A16 and type Total in the cell.

 7. Select the first empty cell in Column D (D16) and type = COUNTA(D2:D15). This gives
a count of branch numbers at the bottom of column D. You need to use the COUNTA func-
tion because the branch numbers are stored as text.

 8. Click Stop Recording on the Developer tab to stop recording the macro.

The formatted worksheet should look something like the one in Figure 1-3.

Figure 1-3: Your post-totaled worksheet.

To see your macro in action, delete the total row you just added and play back your macro by follow-
ing these steps:

 1. Select Macros from the Developer tab.

 2. Find and select the AddTotal macro you just recorded.

 3. Click the Run button.

If all goes well, the macro plays back your actions to a T and gives your table a total. Now here’s the
thing. No matter how hard you try, you can’t make the AddTotal macro work on the second table.
Why? Because you recorded it as an absolute macro.

To understand what this means, examine the underlying code. To examine the code, select Macros
from the Developer tab to get the Macro dialog box you see in Figure 1-4.

Part I: Getting Started with Excel Macros 13

Figure 1-4: The Excel Macro dialog box.

Select the AddTotal macro and click the Edit button. This opens the Visual Basic Editor to show you
the code that was written when you recorded your macro:

Sub AddTotal()
 Range(“A16”).Select
 ActiveCell.FormulaR1C1 = “Total”
 Range(“D16”).Select
 ActiveCell.FormulaR1C1 = “=COUNTA(R[-14]C:R[-1]C)”
End Sub

Pay particular attention to lines two and four of the macro. When you asked Excel to select cell range
A16 and then D16, those cells are exactly what it selected. Because the macro was recorded in abso-
lute reference mode, Excel interpreted your range selection as absolute. In other words, if you select
cell A16, that cell is what Excel gives you. In the next section, you take a look at what the same macro
looks like when recorded in relative reference mode.

Recording macros with relative references
In the context of Excel macros, relative means relative to the currently active cell. So you should use
caution with your active cell choice — both when you record the relative reference macro and when
you run it.

First, make sure the Chapter 1 Sample File.xlsx file is open. (This file is available on this book’s com-
panion website.) Then, use the following steps to record a relative reference macro:

 1. Select the Use Relative References option from the Developer tab, as shown in Figure 1-5.

 2. Before recording, make sure cell A1 is selected.

Part I: Getting Started with Excel Macros14

 3. Select Record Macro from the Developer tab.

 4. Name the macro AddTotalRelative.

 5. Choose This Workbook for the save location.

 6. Click OK to start recording.

 7. Select cell A16 and type Total in the cell.

 8. Select the first empty cell in Column D (D16) and type = COUNTA(D2:D15).

 9. Click Stop Recording on the Developer tab to stop recording the macro.

Figure 1-5: Recording a macro with relative references.

At this point, you have recorded two macros. Take a moment to examine the code for your newly-
created macro.

Select Macros from the Developer tab to open the Macro dialog box. Here, choose the
AddTotalRelative macro and click Edit.

Again, this opens the Visual Basic Editor to show you the code that was written when you recorded
your macro. This time, your code looks something like the following:

Sub AddTotalRelative()
 ActiveCell.Offset(15, 0).Range(“A1”).Select
 ActiveCell.FormulaR1C1 = “Total”
 ActiveCell.Offset(0, 3).Range(“A1”).Select
 ActiveCell.FormulaR1C1 = “=COUNTA(R[-14]C:R[-1]C)”
End Sub

Notice that there are no references to any specific cell ranges at all (other than the starting point
"A1"). Let’s take a moment to take a quick look at what the relevant parts of this VBA code really
mean.

Notice that in line 2, Excel uses the Offset property of the active cell. This property tells the cursor
to move a certain number of cells up or down and a certain number of cells left or right.

The Offset property code tells Excel to move 15 rows down and 0 columns across from the active
cell (in this case, A1). There’s no need for Excel to explicitly select a cell as it did when recording an
absolute reference macro.

Part I: Getting Started with Excel Macros 15

To see this macro in action, delete the total row for both tables and do the following:

 1. Select cell A1.

 2. Select Macros from the Developer tab.

 3. Find and select the AddTotalRelative macro.

 4. Click the Run button.

 5. Now select cell F1.

 6. Select Macros from the Developer tab.

 7. Find and select the AddTotalRelative macro.

 8. Click the Run button.

Notice that this macro, unlike your previous macro, works on both sets of data. Because the macro
applies the totals relative to the currently active cell, the totals are applied correctly.

For this macro to work, you simply need to ensure that

➤	 You’ve selected the correct starting cell before running the macro.

➤	 The block of data has the same number of rows and columns as the data on which you
recorded the macro.

Hopefully, this simple example has given you a firm grasp of macro recording with both absolute and
relative references.

Looking at Other Macro Recording Concepts
At this point, you should feel comfortable recording your own Excel Macros. Now here are some of
the other important concepts you’ll need to keep in mind when working with macros.

Macro-enabled file extensions
Beginning with Excel 2007, Excel has a separate file extension for workbooks that contain macros.

You see, Excel 2010 workbooks have the standard file extension .xlsx. Files with the .xlsx extension
cannot contain macros. If your workbook contains macros and you then save that workbook as an .
xlsx file, your macros are removed automatically. Excel warns you that macro content will be disabled
when saving a workbook with macros as an .xlsx file.

If you want to retain the macros, you must save your file as an Excel Macro-Enabled Workbook. This
gives your file an .xlsm extension. The idea is that all workbooks with an .xlsx file extension are auto-
matically known to be safe, whereas you can recognize .xlsm files as a potential threat.

Part I: Getting Started with Excel Macros16

Macro security in Excel 2010
With the release of Office 2010, Microsoft introduced significant changes to its Office security model.
One of the most significant changes is the concept of trusted documents. Without getting into the
technical minutia, a trusted document is essentially a workbook you have deemed safe by enabling
macros.

If you open a workbook that contains macros in Excel 2010, you see a yellow bar message under the
Ribbon stating that macros (active content) have in effect, been disabled.

If you click Enable, it automatically becomes a trusted document. This means you no longer are
prompted to enable the content as long as you open that file on your computer. The basic idea is
that if you told Excel that you “trust” a particular workbook by enabling macros, it is highly likely that
you will enable macros each time you open it. Thus, Excel remembers that you’ve enabled macros
before and inhibits any further messages about macros for that workbook.

This is great news for you and your clients. After enabling your macros just one time, they won’t
be annoyed at the constant messages about macros, and you won’t have to worry that your
macro-enabled dashboard will fall flat because macros have been disabled.

Trusted locations
If the thought of any macro message coming up (even one time) unnerves you, you can set up a
trusted location for your files. A trusted location is a directory that is deemed a safe zone where only
trusted workbooks are placed. A trusted location allows you and your clients to run a macro-enabled
workbook with no security restrictions as long as the workbook is in that location.

To set up a trusted location, follow these steps:

 1. Select the Macro Security button on the Developer tab.

 This activates the Trust Center dialog box.

 2. Click the Trusted Locations button. This opens the Trusted Locations menu (see Figure 1-6),
which shows you all the directories that are considered trusted.

 3. Click the Add New Location button.

 4. Click Browse to find and specify the directory that will be considered a trusted location.

After you specify a trusted location, any Excel file that is opened from this location will have macros
automatically enabled.

Part I: Getting Started with Excel Macros 17

Figure 1-6: The Trusted Locations menu allows you to add directories that are considered trusted.

Storing macros in your Personal Macro Workbook
Most user-created macros are designed for use in a specific workbook, but you may want to use
some macros in all your work. You can store these general-purpose macros in the Personal Macro
Workbook so that they’re always available to you. The Personal Macro Workbook is loaded whenever
you start Excel. This file, named personal.xlsb, doesn’t exist until you record a macro using Personal
Macro Workbook as the destination.

The Personal Macro Workbook normally is in a hidden window to keep it out of
the way.

To record the macro in your Personal Macro Workbook, select the Personal Macro Workbook option
in the Record Macro dialog box before you start recording. This option is in the Store Macro In drop-
down list.

If you store macros in the Personal Macro Workbook, you don’t have to remember to open the
Personal Macro Workbook when you load a workbook that uses macros. When you want to exit,
Excel asks whether you want to save changes to the Personal Macro Workbook.

Assigning a macro to a button and other form controls
When you create macros, you may want to have a clear and easy way to run each macro. A basic
button can provide a simple but effective user interface.

Part I: Getting Started with Excel Macros18

As luck would have it, Excel offers a set of form controls designed specifically for creating user inter-
faces directly on spreadsheets. There are several different types of form controls, from buttons (the
most commonly used control) to scrollbars.

The idea behind using a form control is simple. You place a form control on a spreadsheet and then
assign a macro to it — that is, a macro you’ve already recorded. When a macro is assigned to the con-
trol, that macro is executed, or played, when the control is clicked.

Take a moment to create a button for the AddTotalRelative macro you created earlier. Here’s how:

 1. Click the Insert button under the Developer tab. (See Figure 1-7.)

 2. Select the Button Form Control from the drop-down list that appears.

 3. Click the location where you want to place your button. When you drop the button control
onto your spreadsheet, the Assign Macro dialog box, as shown in Figure 1-8, activates and
asks you to assign a macro to this button.

 4. Select the macro you want to assign to the button and then click OK.

Figure 1-7: You can find the form controls in the Developer tab.

Figure 1-8: Assign a macro to the newly-added button.

Part I: Getting Started with Excel Macros 19

At this point, you have a button that runs your macro when you click it! Keep in mind that all the con-
trols in the Form Controls group (shown in Figure 1-7) work in the same way as the command but-
ton, in that you assign a macro to run when the control is selected.

Placing a macro on the Quick Access toolbar
You can also assign a macro to a button in Excel’s Quick Access toolbar:

 1. Right-click your Quick Access toolbar and select Customize Quick Access Toolbar.

 2. Click the Quick Access Toolbar button on the left of the Excel Options dialog box.

 3. Select Macros from the drop-down list on the left.

 4. Select the macro you want to add and click the Add button.

 5. Change the icon by clicking the Modify button.

Working in the Visual Basic Editor
The Visual Basic Editor (VBE) is a separate application where you write and edit your VBA macros. You
can’t run the VBE separately; Excel must be running in order for the VBE to run.

Activating the VBE
The quickest way to activate the VBE is to press Alt+F11 when Excel is active. To return to Excel, press
Alt+F11 again.

You can also activate the VBE by using the Developer➜Code➜Visual Basic command.

Understanding VBE components
Figure 1-9 shows the VBE program with some of the key parts identified. Because so much is going
on in the VBE, I like to maximize the window to see as much as possible.

Form controls versus ActiveX controls
Notice the form controls and ActiveX controls in Figure 1-7. Although they look similar, they’re quite
different. Form controls are designed specifically for use on a spreadsheet, and ActiveX controls are
typically used on Excel user forms. As a general rule, you should always use form controls when work-
ing on a spreadsheet. Why? Form controls need less overhead, so they perform better, and configuring
form controls is far easier than configuring their ActiveX counterparts.

Part I: Getting Started with Excel Macros20

Chances are your VBE program window won’t look exactly like what you see in Figure 1-9. The VBE
contains several windows and is highly customizable. You can hide windows, rearrange windows,
dock windows, and so on.

Project

Toolbar

Menu bar Code window

Properties window Immediate window

Figure 1-9: The VBE with significant elements identified.

Menu bar
The VBE menu bar works just like every other menu bar you’ve encountered. It contains commands
that you use to do things with the various components in the VBE. You will also find that many of the
menu commands have shortcut keys associated with them.

The VBE also features shortcut menus. You can right-click virtually anything in the VBE and get a
shortcut menu of common commands.

Toolbar
The Standard toolbar, which is directly under the menu bar by default, is one of four VBE toolbars
available. You can customize the toolbars, move them around, display other toolbars, and so on. If

Part I: Getting Started with Excel Macros 21

you’re so inclined, use the View➜Toolbars command to work with VBE toolbars. Most people just
leave them as they are.

Project window
The Project window displays a tree diagram that shows every workbook currently open in Excel
(including add-ins and hidden workbooks). Double-click items to expand or contract them. We
discuss this window in more detail in the “Working with the Project Window” section later in
this Part.

If the Project window is not visible, press Ctrl+R or use the View➜Project Explorer command. To hide
the Project window, click the Close button in its title bar. Alternatively, right-click anywhere in the
Project window and select Hide from the shortcut menu.

Code window
A Code window contains VBA code. Every object in a project has an associated Code window. To
view an object’s Code window, double-click the object in the Project window. For example, to view
the Code window for the Sheet1 object, double-click Sheet1 in the Project window. Unless you’ve
added some VBA code, the Code window will be empty.

You find out more about Code windows later in this Part’s “Working with a Code Window” section.

Immediate window
The Immediate window may or may not be visible. If it isn’t visible, press Ctrl+G or use the View➜	

Immediate Window command. To close the Immediate window, click the Close button in its title bar
(or right-click anywhere in the Immediate window and select Hide from the shortcut menu).

The Immediate window is most useful for executing VBA statements directly and for debugging your
code. If you’re just starting out with VBA, this window won’t be all that useful, so feel free to hide it
and free up some screen space for other things.

Working with the Project window
When you’re working in the VBE, each Excel workbook and add-in that’s open is a project. You can
think of a project as a collection of objects arranged as an outline. You can expand a project by click-
ing the plus sign (+) at the left of the project’s name in the Project window. Contract a project by
clicking the minus sign (-) to the left of a project’s name. Or, you can double-click the items to expand
and contract them.

Figure 1-10 shows a Project window with two projects listed: a workbook named Book1 and a work-
book named Book2.

Part I: Getting Started with Excel Macros22

Figure 1-10: This Project window lists two projects. They are expanded to show their objects.

Every project expands to show at least one node called Microsoft Excel Objects. This node expands
to show an item for each sheet in the workbook (each sheet is considered an object), and another
object called ThisWorkbook (which represents the Workbook object). If the project has any VBA
modules, the project listing also shows a Modules node.

Adding a new VBA module
When you record a macro, Excel automatically inserts a VBA module to hold the recorded code. The
workbook that holds the module for the recorded macro depends on where you chose to store the
recorded macro, just before you started recording.

In general, a VBA module can hold three types of code:

➤	 Declarations: One or more information statements that you provide to VBA. For example,
you can declare the data type for variables you plan to use, or set some other module-wide
options.

➤	 Sub procedures: A set of programming instructions that performs some action. All recorded
macros will be Sub procedures.

➤	 Function procedures: A set of programming instructions that returns a single value (similar
in concept to a worksheet function, such as Sum).

Part I: Getting Started with Excel Macros 23

A single VBA module can store any number of Sub procedures, Function procedures, and declara-
tions. How you organize a VBA module is completely up to you. Some people prefer to keep all their
VBA code for an application in a single VBA module; others like to split up the code into several dif-
ferent modules. It’s a personal choice, just like arranging furniture.

Follow these steps to manually add a new VBA module to a project:

 1. Select the project’s name in the Project window.

 2. Choose Insert➜Module.

Or you can

 1. Right-click the project’s name.

 2. Choose Insert➜Module from the shortcut menu.

The new module is added to a Modules folder in the Project window (see Figure 1-11). Any modules
you create in a given workbook are placed in this Modules folder.

Figure 1-11: Code modules are visible in the Project window in a folder called Modules.

Removing a VBA module
You may want to remove a code module that is no longer needed. To do so, follow these steps:

 1. Select the module’s name in the Project window.

 2. Choose File➜Remove xxx, where xxx is the module name.

Part I: Getting Started with Excel Macros24

Or

 1. Right-click the module’s name.

 2. Choose Remove xxx from the shortcut menu.

Excel, always trying to keep you from doing something you’ll regret, asks if you want to
export the code in the module before you delete it. Almost always, you don’t. (If you do
want to export the module, see the next section, “Working with a Code Window.”)

You can remove VBA modules, but there is no way to remove the other code modules —
those for the Sheet objects or ThisWorkbook.

Working with a Code Window
As you become proficient with VBA, you spend lots of time working in Code windows. Macros that
you record are stored in a module, and you can type VBA code directly into a VBA module.

Minimizing and maximizing windows
Code windows are much like workbook windows in Excel. You can minimize them, maximize them,
resize them, hide them, rearrange them, and so on. Most people find it much easier to maximize the
Code window that they’re working on. Doing so lets you see more code and keeps you from getting
distracted.

To maximize a Code window, click the maximize button in its title bar (right next to the X). Or, just
double-click its title bar to maximize it. To restore a Code window to its original size, click the Restore
button. When a window is maximized, its title bar isn’t really visible, so you’ll find the Restore button
to the right of the Type a Question for Help box.

Sometimes, you may want to have two or more Code windows visible. For example, you may want to
compare the code in two modules or copy code from one module to another. You can arrange the
windows manually, or use the Window➜Tile Horizontally or Window➜Tile Vertically commands to
arrange them automatically.

You can quickly switch among code windows by pressing Ctrl+Tab. If you repeat that key combina-
tion, you keep cycling through all the open code windows. Pressing Ctrl+Shift+Tab cycles through
the windows in reverse order.

Minimizing a Code window gets it out of the way. You can also click the window’s Close button in a
Code window’s title bar to close the window completely. (Closing a window just hides it; you won’t
lose anything.) To open it again, just double-click the appropriate object in the Project window.
Working with these Code windows sounds more difficult than it really is.

Part I: Getting Started with Excel Macros 25

Getting VBA code into a module
Before you can do anything meaningful, you must have some VBA code in the VBA module. You can
get VBA code into a VBA module in three ways:

➤	 Use the Excel macro recorder to record your actions and convert them to VBA code

➤	 Enter the code directly

➤	 Copy the code from one module and paste it into another

You have discovered the excellent method for creating code by using the Excel Macro recorder.
However, not all tasks can be translated to VBA by recording a macro. You often have to enter your
code directly into the module. Entering code directly basically means either typing the code yourself
or copying and pasting code you have found somewhere else.

Entering and editing text in a VBA module works as you might expect. You can select, copy, cut,
paste, and do other things to the text.

A single line of VBA code can be as long as you like. However, you may want to use the line-
continuation character to break up lengthy lines of code. To continue a single line of code (also
known as a statement) from one line to the next, end the first line with a space followed by an
underscore (_). Then continue the statement on the next line. Here’s an example of a single state-
ment split into three lines:

Selection.Sort Key1:=Range(“A1”), _
 Order1:=xlAscending, Header:=xlGuess, _
 Orientation:=xlTopToBottom

This statement would perform exactly the same way if it were entered in a single line (with no line-
continuation characters). Notice that the second and third lines of this statement are indented.
Indenting is optional, but it helps clarify the fact that these lines are not separate statements.

The VBE has multiple levels of undo and redo. If you deleted a statement that you shouldn’t have, use
the Undo button on the toolbar (or press Ctrl+Z) until the statement appears again. After undoing,
you can use the Redo button to perform the changes you’ve undone.

Ready to enter some real, live code? Try the following steps:

 1. Create a new workbook in Excel.

 2. Press Alt+F11 to activate the VBE.

 3. Click the new workbook’s name in the Project window.

 4. Choose Insert➜Module to insert a VBA module into the project.

Part I: Getting Started with Excel Macros26

 5. Type the following code into the module:

Sub GuessName()
 Dim Msg as String
 Dim Ans As Long
 Msg = “Is your name “ & Application.UserName & “?”
 Ans = MsgBox(Msg, vbYesNo)
 If Ans = vbNo Then MsgBox “Oh, never mind.”
 If Ans = vbYes Then MsgBox “I must be clairvoyant!”
End Sub

 6. Make sure the cursor is located anywhere within the text you typed and press F5 to execute
the procedure.

F5 is a shortcut for the Run➜Run Sub/UserForm command.

When you enter the code listed in Step 5, you might notice that the VBE makes some adjustments to
the text you enter. For example, after you type the Sub statement, the VBE automatically inserts the
End Sub statement. And if you omit the space before or after an equal sign, the VBE inserts the
space for you. Also, the VBE changes the color and capitalization of some text. This is all perfectly nor-
mal. It’s just the VBE’s way of keeping things neat and readable.

If you followed the previous steps, you just created a VBA Sub procedure, also known as a macro.
When you press F5, Excel executes the code and follows the instructions. In other words, Excel evalu-
ates each statement and does what you told it to do. You can execute this macro any number of
times — although it tends to lose its appeal after a few dozen executions.

This simple macro uses the following concepts:

➤	 Defining a Sub procedure (the first line)

➤	 Declaring variables (the Dim statements)

➤	 Assigning values to variables (Msg and Ans)

➤	 Concatenating (joining) a string (using the & operator)

➤	 Using a built-in VBA function (MsgBox)

➤	 Using built-in VBA constants (vbYesNo, vbNo, and vbYes)

➤	 Using an If-Then construct (twice)

➤	 Ending a Sub procedure (the last line)

As we mentioned previously, you can copy and paste code into a VBA module. For example, a Sub or
Function procedure that you write for one project might also be useful in another project. Instead

Part I: Getting Started with Excel Macros 27

of wasting time reentering the code, you can activate the module and use the normal copy-and-
paste procedures (Ctrl+C to copy and Ctrl+V to paste). After pasting it into a VBA module, you can
modify the code as necessary.

Customizing the VBA Environment
If you’re serious about becoming an Excel programmer, you’ll spend a lot of time with VBA modules
on your screen. To help make things as comfortable as possible, the VBE provides quite a few cus-
tomization options.

When the VBE is active, choose Tools➜Options. You’ll see a dialog box with four tabs: Editor, Editor
Format, General, and Docking. Take a moment to explore some of the options found on each tab.

The Editor tab
Figure 1-12 shows the options accessed by clicking the Editor tab of the Options dialog box. Use the
option in the Editor tab to control how certain things work in the VBE.

Figure 1-12: The Editor tab in the Options dialog box.

The Auto Syntax Check option
The Auto Syntax Check setting determines whether the VBE pops up a dialog box if it discovers a
syntax error while you’re entering your VBA code. The dialog box tells roughly what the problem is.
If you don’t choose this setting, VBE flags syntax errors by displaying them in a different color from
the rest of the code, and you don’t have to deal with any dialog boxes popping up on your screen.

Part I: Getting Started with Excel Macros28

I usually keep this setting turned off because I think the dialog boxes are annoying and I
can usually figure out what’s wrong with a statement. Before I was a VBA veteran, I
found this setting quite helpful.

The Require Variable Declaration option
If the Require Variable Declaration option is set, VBE inserts the following statement at the beginning
of each new VBA module you insert:

Option Explicit

Changing this setting affects only new modules, not existing modules. If this statement appears in
your module, you must explicitly define each variable you use. Using a Dim statement is one way to
declare variables.

The Auto List Members option
If the Auto List Members option is set, VBE provides some help when you’re entering your VBA code.
It displays a list that would logically complete the statement you’re typing. This is one of the best fea-
tures of the VBE.

The Auto Quick Info option
If the Auto Quick Info option is selected, VBE displays information about functions and their arguments
as you type. This is similar to the way Excel lists the arguments for a function as you start typing a new
formula.

The Auto Data Tips option
If the Auto Data Tips option is set, VBE displays the value of the variable over which your cursor is
placed when you’re debugging code. This is turned on by default and often quite useful. You have
no reason to turn this option off.

The Auto Indent setting
The Auto Indent setting determines whether VBE automatically indents each new line of code the
same as the previous line. I’m big on using indentations in my code, so I keep this option on.

By the way, you should use the Tab key to indent your code, not the spacebar. Also, you
can use Shift+Tab to “unindent” a line of code. If you want to indent more than just one
line, select all lines you want to indent and then press the Tab key.

The VBE’s Edit toolbar (which is hidden by default) contains two useful buttons: Indent and Outdent.
These buttons let you quickly indent or “unindent” a block of code. Select the code and click one of
these buttons to change the block’s indenting.

Part I: Getting Started with Excel Macros 29

The Drag-and-Drop Text Editing option
The Drag-and-Drop Text Editing option, when enabled, lets you copy and move text by dragging and
dropping with your mouse. I keep this option turned on, but I never use it. I prefer to copy and move
by using the keyboard.

The Default to Full Module View option
The Default to Full Module View option sets the default state for new modules. (It doesn’t affect exist-
ing modules.) If set, procedures in the Code window appear as a single scrollable list. If this option is
turned off, you can see only one procedure at a time. I keep this option turned on.

The Procedure Separator option
When the Procedure Separator option is turned on, separator bars appear at the end of each proce-
dure in a Code window. I like the idea of separator bars, so I keep this option turned on.

The Editor Format tab
Figure 1-13 shows the Editor Format tab of the Options dialog box. With this tab, you can customize
the way the VBE looks.

Figure 1-13: Change the VBE’s looks with the Editor Format tab.

The Code Colors option
The Code Colors option lets you set the text color and background color displayed for various elements
of VBA code. This is largely a matter of personal preference. Personally, I find the default colors to be
just fine. But for a change of scenery, I occasionally play around with these settings.

Part I: Getting Started with Excel Macros30

The Font option
The Font option lets you select the font that’s used in your VBA modules. For best results, stick with a
fixed-width font such as Courier New. In a fixed-width font, all characters are exactly the same width.
This makes your code more readable because the characters are nicely aligned vertically and you can
easily distinguish multiple spaces (which is sometimes useful).

The Size setting
The Size setting specifies the point size of the font in the VBA modules. This setting is a matter of
personal preference determined by your video display resolution and how good your eyesight is.

The Margin Indicator Bar option
This option controls the display of the vertical margin indicator bar in your modules. You should keep
this turned on; otherwise, you won’t be able to see the helpful graphical indicators when you’re
debugging your code.

The General tab
Figure 1-14 shows the options available under the General tab in the Options dialog box. In almost
every case, the default settings are just fine.

The most important setting on the General tab is Error Trapping. We strongly suggest that you use the
Break on Unhandled Errors setting. This ensures Excel can identify errors as you type your code.

Figure 1-14: The General tab of the Options dialog box.

Part I: Getting Started with Excel Macros 31

The Docking tab
Figure 1-15 shows the Docking tab. These options determine how the various windows in the VBE
behave. When a window is docked, it is fixed in place along one of the edges of the VBE program
window. This makes it much easier to identify and locate a particular window. If you turn off all
docking, you have a big, confusing mess of windows. Generally, the default settings work fine.

Figure 1-15: The Docking tab of the Options dialog box.

Discovering the Excel Object Model
In Excel, you deal with workbooks, worksheets, and ranges on a daily basis. You likely think of each
of these “objects” as all part of Excel, not really separating them in your mind. However, Excel thinks
about these internally as all part of a hierarchical model called the Excel object model. The Excel object
model is a clearly defined set of objects that are structured according to the relationships between
them.

In this section, we give you a brief overview of the object model, as well as some of the other termi-
nology and concepts you will encounter in the upcoming 101 macros.

Understanding objects
In the real world, you can describe everything you see as an object. When you look at your house, it is
an object. Your house has rooms; those rooms are also separate objects. Those rooms may have closets.
Those closets are likewise objects. As you think about your house, the rooms, and the closets, you may
see a hierarchical relationship between them. Excel works in the same way.

Part I: Getting Started with Excel Macros32

In Excel, the Application object is the all-encompassing object — similar to your house. Inside
the Application object, Excel has a workbook. Inside a workbook is a worksheet. Inside that is a
range. These are all objects that live in a hierarchical structure.

To point to a specific object in VBA, you can traverse the object model. For example, to get to cell A1
on Sheet 1, you can enter this code:

Application.Activeworbook.Sheets(“Sheet1”).Range(“A1”).Select

In most cases, the object model hierarchy is understood, so you don’t have to type every level.
Entering this code also gets you to cell A1 because Excel infers that you mean the active workbook,
and the active sheet:

Range(“A1”).Select

Indeed, if you have you cursor already in cell A1, you can simply use the ActiveCell object,
negating the need to actually spell out the range.

Activecell.Select

Understanding collections
Many of Excel’s objects belong to collections. Your house sits within a neighborhood, for example,
which is a collection of houses called a neighborhood. Each neighborhood sits in a collection of
neighborhoods called a city. Excel considers collections to be objects themselves.

In each Workbook object, you have a collection of Worksheets. The Worksheets collection is an
object that you can call upon through VBA. Each worksheet in your workbook lives in the
Worksheets collection.

If you want to refer to a worksheet in the Worksheets collection, you can refer to it by its position
in the collection, as an index number starting with 1, or by its name, as quoted text. If you run these
two lines of code in a workbook that has only one worksheet called MySheet, they both do the same
thing:

Worksheets(1).Select
Worksheets(“MySheet”).Select

If you have two worksheets in the active workbook that have the names MySheet and YourSheet, in
that order, you can refer to the second worksheet by typing either of these statements:

Part I: Getting Started with Excel Macros 33

Worksheets(2).Select
Worksheets(“YourSheet”).Select

If you want to refer to a worksheet in a workbook called MySheet in a particular workbook that is not
active, you must qualify the worksheet reference and the workbook reference, as follows:

Workbooks(“MyData.xls”).Worksheets(“MySheet”).Select

Understanding properties
Properties are essentially the characteristics of an object. Your house has a color, a square footage, an
age, and so on. Some properties can be changed — like the color of your house. Other properties
can’t be changed — like the age of your house.

Likewise, an object in Excel like the Worksheet object has a sheet name property that can be
changed, and a Rows.Count row property that cannot.

You refer to the property of an object by referring to the object, and then the property. For instance,
you can change the name of your worksheet by changing its Name property.

In this example, you are renaming Sheet1 to MySheet:

Sheets(“Sheet1”).Name = “MySheet”

Some properties are read-only, which means that you can’t assign a value to them directly — for
instance, the Text property of cell. The Text property gives you the formatted appearance of value
in a cell, but you cannot overwrite or change it.

Understanding methods
Methods are the actions that can be performed against an object. It helps to think of methods as
verbs. You can paint your house, so in VBA, that translates to something like

house.paint

A simple example of an Excel method is the Select method of the Range object:

Range(“A1”).Select

Part I: Getting Started with Excel Macros34

Another is the Copy method of the Range object:

Range(“A1”).Copy

Some methods have parameters that can dictate how it is applied. For instance, the Paste method
can be used more effectively by explicitly defining the Destination parameter.

ActiveSheet.Paste Destination:=Range(“B1”)

Taking a Brief Look at Variables
Another concept you will see throughout the macros in this book is the concept of variables. We
need to dedicate a few words to this concept because it plays a big part in most of the macros you
will encounter here.

You can think of variables as memory containers that you can use in your procedures. There are
different types of variables, each tasked with holding a specific type of data.

Some of the common types of variables you will see in this book are

➤	 String: Holds textual data

➤	 Integer: Holds numeric data ranging from –32,768 to 32,767

➤	 Long: Holds numeric data ranging from –2,147,483,648 to 2,147,483,647

➤	 Double: Holds floating point numeric data

➤	 Variant: Holds any kind of data

➤	 Boolean: Holds binary data that returns True or False

➤	 Object: Holds an actual object from the Excel object model

The term used for creating a variable in a macro is declaring a variable. You do so by entering Dim
(an abbreviation for dimension), the name of your variable, and then the type. For instance:

Dim MyText as String
Dim MyNumber as Integer
Dim MyWorksheet as Worksheet

After you create your variable, you can fill it with data. Here are a few simple examples of how you
would create a variable and assign a value to it:

Part I: Getting Started with Excel Macros 35

Dim MyText as String
Mytext = Range(“A1”).Value

Dim MyNumber as Integer
MyNumber = Range(“B1”).Value * 25

Dim MyObject as Worksheet
Set MyWorksheet = Sheets(“Sheet1”)

The values you assign to your variables often come from data stored in your cells. However, the
values may also be information that you yourself create. It all depends on the task at hand. This
notion becomes clearer as you go through the macros in the book.

About the Macros in This Book
As we mention in the Introduction, the macros in this book are designed to get you up and running
with VBA in the quickest way possible. Each macro tackles a common task that benefits from automa-
tion. The idea here is learning through application. This book is designed so that you can implement
the macro, while getting a clear understanding of what the macro does and how it works.

Getting the sample files
Each macro in this book has an associated sample file. These sample files give you the ability to see
the macro working, as well as the ability to review the code. You can also use the sample files to copy
and paste the code into your environment (as opposed to typing each macro in from scratch). See
the “About the Companion Website” section in this book’s Introduction for complete instructions on
how to download the sample code.

Using the sample files
Each macro in this book has detailed instructions on where to copy and paste the code. You should
open the sample file associated with the macro, go to the Visual Basic Editor (by pressing Alt+F11),
and then copy the code. After you’ve copied the code, you can go to your workbook, go into the
Visual Basic Editor, and paste the code into the appropriate location.

Note that in some of the Macro examples in this book, you need to change some aspect of the macro
to suit your situation. For instance, Macro 12 in Part II demonstrates how to open all the Excel files in

Part I: Getting Started with Excel Macros36

a directory. In that example, we point to the C:\Temp\ directory. Before you use this particular
macro, you need to edit that portion of the macro to point to your target directory.

If a macro is not working for you, it’s probably because you need to change some component of the
macro. Pay special attention to Range addresses, directory names, and any other hard-coded names.
We built these hard-coded values into the macro for demonstration purposes; with the full intent
that you, the reader, would edit the macro to alter these hard-coded names to fit your scenario.

Things to keep in mind
Here are some final things to keep in mind while working with the macros in this book:

➤	 Macro-enabled file extensions: Remember that any file that contains a macro must have
the .xlsm file extenstion. See the section called “Macro-enabled file extensions” in this Part
for more details.

➤	 Macro security: Keep in mind that Excel will not run macros until they are Enabled. As you
implement these macros, it’s important to understand the steps that you and your custom-
ers will need to take to comply with Excel’s macro security measures. The section in this Part
called “Macro security in Excel 2010” highlights these steps.

➤	 You cannot undo macro actions: When working in Excel, you can often undo the actions
you have taken. This is because Excel keeps a log (called the undo stack) that records the last
100 actions you have taken. However, running a macro automatically destroys the undo
stack, clearing the log of the actions you have taken. You must keep this in mind as you start
writing and running your own macros. You cannot undo the action you take in a macro.

➤	 Where to go from here: As mentioned before, these macros were designed to get you started
with VBA. If you find a developing passion for Excel VBA, you may want to know where to get a
more detailed reference on Excel VBA in general. Allow us to recommend Excel 2010 Power
Programming with VBA by John Walkenbach (Wiley) as the next step in your learning. This
reference is a comprehensive guide to VBA, diving deeper into the Excel Object model.

PART II
Working with
Workbooks
This Part covers macros related to workbooks: opening them, closing them, protecting them, and
many other actions.

In This Part
Macro 1 Creating a New Workbook from Scratch ...39
Macro 2 Saving a Workbook when a Particular Cell Is Changed41
Macro 3 Saving a Workbook before Closing ..43
Macro 4 Protect a Worksheet on Workbook Close ..46
Macro 5 Unprotect a Worksheet on Workbook Open ..48
Macro 6 Open a Workbook to a Specific Tab ...50
Macro 7 Opening a Specific Workbook Defined by the User ..52
Macro 8 Determine Whether a Workbook Is Already Open ...54
Macro 9 Determine Whether a Workbook Exists in a Directory57
Macro 10 Refresh All Data Connections in Workbook on Open59
Macro 11 Close all Workbooks at Once ..61
Macro 12 Open All Workbooks in a Directory ..63
Macro 13 Print all Workbooks in a Directory ..65
Macro 14 Preventing the Workbook from Closing until a Cell Is Populated67
Macro 15 Create a Backup of a Current Workbook with Today’s Date69

39Macro 1: Creating a New Workbook from Scratch

A workbook is not just an Excel file; it’s also an object in Excel’s Object model (a programming hierar-
chy that exposes parts of Excel to VBA). This means that you can reference workbooks through VBA
to do cool things like automatically create new workbooks, prevent users from closing workbooks,
automatically back up workbooks, and much more. We start our list of 101 macros here with a list of
the most useful workbook macros.

If you’re brand-new to Excel VBA, we highly recommend that you first take a quick look
at Part I. There, you will find the basic foundation you’ll need to understand many of the
concepts found in the macros in this Part.

The code for this Part can be found on this book’s companion website. See this book’s
Introduction for more on the companion website.

Macro 1: Creating a New Workbook
from Scratch
You may sometimes want or need to create a new workbook in an automated way. For instance, you
may need to copy data from a table and paste it into a newly created workbook. The following macro
copies a range of cells from the active sheet and pastes the data into a new workbook.

How it works
This macro is relatively intuitive as you read through the lines of the code.

Sub Macro1()

‘Step 1 Copy the data
 Sheets(“Example 1”).Range(“B4:C15”).Copy

‘Step 2 Create a new workbook
 Workbooks.Add

‘Step 3 Paste the data
 ActiveSheet.Paste Destination:=Range(“A1”)

‘Step 4 Turn off application alerts
 Application.DisplayAlerts = False

‘Step 5 Save the newly created workbook
 ActiveWorkbook.SaveAs _
 Filename:=”C:\Temp\MyNewBook.xlsx”

40 Macro 1: Creating a New Workbook from Scratch

‘Step 6 Turn application alerts back on
 Application.DisplayAlerts = True

End Sub

Here’s how this macro works:

 1. In Step 1, we simply copy the data that ranges from cells B4 to C15.

 The thing to note here is that you are specifying both the sheet and the range by name. This
is a best practice when you are working with multiple workbooks open at one time.

 2. We are using the Add method of the Workbook object to create a new workbook. This is
equivalent to manually clicking File➜New➜Blank Document in the Excel Ribbon.

 3. In this step, you use the Paste method to send the data you copied to cell A1 of the new
workbook.

 Pay attention to the fact that the code refers to the ActiveSheet object. When you add a
workbook, the new workbook immediately gains focus, becoming the active workbook. This
is the same behavior you would see if you were to add a workbook manually.

 4. In Step 4 of the code, we set the DisplayAlerts method to False, effectively turning off
Excel’s warnings. We do this because in the next step of the code, we save the newly created
workbook. We may run this macro multiple times, in which case Excel attempts to save the
file multiple times.

 What happens when you try to save a workbook multiple times? That’s right — Excel warns
you that there is already a file out there with that name and then asks if you want to over-
write the previously existing file. Because your goal is to automate the creation of the new
workbook, you want to suppress that warning.

 5. In Step 5, we save the file by using the SaveAs method. Note that we are entering the full
path of the save location, including the final filename.

 6. Because we turned application alters off in Step 4, we need to turn them back on. If we don’t,
Excel continues to suppress all warnings for the life of the current session.

How to use it
To implement this macro, you can copy and paste it into a standard module:

 1. Activate the Visual Basic Editor by pressing ALT+F11.

 2. Right-click the project/workbook name in the Project window.

 3. Choose Insert➜Module.

 4. Type or paste the code in the newly created module. You will probably need to change the
sheet name, the range address, and the save location.

41Macro 2: Saving a Workbook When a Particular Cell Is Changed

Macro 2: Saving a Workbook When
a Particular Cell Is Changed
Sometimes, you may be working on data that is so sensitive that you’ll want to save every time a par-
ticular cell or range of cells is changed. This macro allows you to define the range of cells that, when
changed, forces the workbook to save.

How it works
The secret to this code is the Intersect method. Because we don’t want to save the worksheet
when any old cell changes, we use the Intersect method to determine if the target cell (the cell
that changed) intersects with the range we have specified to be the trigger range (C5:C16 in this
case).

The Intersect method returns one of two things: either a Range object that defines the intersec-
tion between the two given ranges, or nothing. So in essence, we need to throw the target cell
against the Intersect method to check for a value of Nothing. At that point, we can make the
decision whether to save the workbook.

Private Sub Worksheet_Change(ByVal Target As Range)

‘Step 1: Does the changed range intersect specified range?
 If Intersect(Target, Range(“C5:C16”)) Is Nothing Then

‘Step 2: If there is no intersection, exit procedure
 Exit Sub

‘Step 3: If there is an intersection, save the workbook
 Else
 ActiveWorkbook.Save

‘Close out the If statement
 End If

End Sub

 1. In Step 1, we are simply checking to see if the target cell (the cell that has changed) is in the
range specified by the Intersect method. A value of Nothing means the target cell falls
outside the range specified.

 2. Step 2 forces the macro to stop and exit the procedure if there is no intersection between
the target cell and the specified range.

42 Macro 2: Saving a Workbook When a Particular Cell Is Changed

 3. If there is an intersection, Step 3 fires the Save method of the active workbook, overwriting
the previous version.

 4. In Step 4, we simply close out the If statement. Every time you instantiate an If…Then…
Else check, you must close it out with a corresponding End If.

How to use it
To implement this macro, you need to copy and paste it into the Worksheet_Change event code
window. Placing the macro here allows it to run each time you make any change to the sheet.

 1. Activate the Visual Basic Editor by pressing ALT+F11.

 2. In the Project window, find your project/workbook name and click the plus sign next to it in
order to see all the sheets.

 3. Click in the sheet from which you want to trigger the code.

 4. Select the Change event from the Event drop-down list (see Figure 2-1).

 5. Type or paste the code in the newly created module, changing the range address to suit your
needs.

Figure 2-1: Enter or Paste your code in the Worksheet_Change event code window.

43Macro 3: Saving a Workbook Before Closing

Macro 3: Saving a Workbook
Before Closing
This macro is an excellent way to protect users from inadvertently closing their file before saving. When
implemented, this macro ensures that Excel automatically saves before closing the workbook.

Excel normally warns users who are attempting to close an unsaved workbook, giving
them an option to save before closing. However, many users may blow past the
warning and inadvertently click No, telling Excel to close without saving. With this
macro, you are protecting against this by automatically saving before close.

How it works
This code is triggered by the workbook’s BeforeClose event. When you try to close the workbook,
this event fires, running the code within. The crux of the code is simple — it asks the user whether he
really wants to close the workbook (see Figure 2-2). The macro then evaluates whether the user
clicked OK or Cancel.

Figure 2-2: A message box activates when you attempt to close the workbook.

The evaluation is done with a Select Case statement. The Select Case statement is an alter-
native to the If…Then…Else statement, allowing you to perform condition checks in your macros.
The basic construct of a Select Case statement is simple.

Select Case <some expression to check>
Case Is = <some value>
 <do something>
Case Is=<some other value>
 <do something else>
Case Is=<some 3rd value>
 <do some 3rd thing>
End Select

44 Macro 3: Saving a Workbook Before Closing

With a Select Case statement, you can perform many conditional checks. In this case, we are
simply checking for OK or Cancel. Take a look at the code.

Private Sub Workbook_BeforeClose(Cancel As Boolean)

‘Step 1: Activate the message box and start the check
 Select Case MsgBox(“Save and close?”, vbOKCancel)

‘Step 2: Cancel button pressed, cancel the close
 Case Is = vbCancel
 Cancel = True

‘Step 3: OK button pressed, save the workbook and close
 Case Is = vbOK
 ActiveWorkbook.Save

‘Step 4: Close your Select Case statement
End Select

End Sub

 1. In Step 1, we activate the message box as the condition check for the Select Case state-
ment. Here, we use the vbOKCancel argument to ensure that the OK and Cancel buttons
are presented as choices.

 2. If the user clicked Cancel in the message box, the macro tells Excel to cancel the Workbook_
Close event. This is done by passing True to the Cancel Boolean.

 3. If the user clicked OK in the message box, Step 3 takes effect. Here, we tell Excel to save the
workbook. And because we did not set the Cancel Boolean to True, Excel continues with
the close.

 4. In Step 4, we simply close out the Select Case statement. Every time you instantiate a
Select Case, you must close it out with a corresponding End Select.

How to use it
To implement this macro, you need to copy and paste it into the Workbook_BeforeClose event
code window. Placing the macro there allows it to run each time you try to close the workbook.

 1. Activate the Visual Basic Editor by pressing ALT+F11 on your keyboard.

 2. In the Project window, find your project/workbook name and click the plus sign next to it in
order to see all the sheets.

45Macro 3: Saving a Workbook Before Closing

 3. Click ThisWorkbook.

 4. Select the BeforeClose event in the Event drop-down list (see Figure 2-3).

 5. Type or paste the code in the newly created module.

Figure 2-3: Type or paste your code in the Workbook_BeforeClose event code window.

46 Macro 4: Protect a Worksheet on Workbook Close

Macro 4: Protect a Worksheet
on Workbook Close
Sometimes you need to send your workbook out into the world with specific worksheets protected.
If you find that you’re constantly protecting and unprotecting sheets before distributing your work-
books, this macro can help you.

How it works
This code is triggered by the workbook’s BeforeClose event. When you try to close the workbook,
this event fires, running the code within. The macro automatically protects the specified sheet with
the given password, and then saves the workbook.

Private Sub Workbook_BeforeClose(Cancel As Boolean)

‘Step 1: Protect the sheet with a password
 Sheets(“Sheet1”).Protect Password:=”RED”

‘Step 2: Save the workbook
 ActiveWorkbook.Save

End Sub

 1. In Step 1, we are explicitly specifying which sheet we want to protect — Sheet1, in this case.
We are also providing the password argument, Password:=RED. This defines the password
needed to remove the protection.

 This password argument is completely optional. If you omit this altogether, the sheet will still
be protected, but you won’t need a password to unprotect it. Also, be aware that Excel pass-
words are case-sensitive, so you’ll want pay attention to the exact password and capitaliza-
tion that you are using.

 2. Step 2 tells Excel to save the workbook. If we don’t save the workbook, the sheet protection
we just applied won’t be in effect the next time the workbook is opened.

47Macro 4: Protect a Worksheet on Workbook Close

How to use it
To implement this macro, you need to copy and paste it into the Workbook_BeforeClose event
code window. Placing the macro here allows it to run each time you try to close the workbook.

 1. Activate the Visual Basic Editor by pressing ALT+F11.

 2. In the Project window, find your project/workbook name and click the plus sign next to it in
order to see all the sheets.

 3. Click ThisWorkbook.

 4. Select the BeforeClose event in the Event drop-down list (see Figure 2-4).

 5. Type or paste the code in the newly created module, modifying the sheet name (if necessary)
and the password. Note that you can protect additional sheets by adding additional state-
ments before the ActiveWorkbook.Save statement.

Figure 2-4: Type or paste your code in the Workbook_BeforeClose event code window.

48 Macro 5: Unprotect a Worksheet on Workbook Open

Macro 5: Unprotect a Worksheet
on Workbook Open
If you’ve distributed workbooks with protected sheets, you likely get the workbooks back with the
sheets still protected. Often, you need to unprotect the worksheets in a workbook before continuing
your work. If you find that you are continuously unprotecting worksheets, this macro may be just
the ticket.

How it works
This code is triggered by the workbook’s Open event. When you open a workbook, this event trig-
gers, running the code within. This macro automatically unprotects the specified sheet with the
given password when the workbook is opened.

Private Sub Workbook_Open()

‘Step 1: Protect the sheet with a password
 Sheets(“Sheet1”).Unprotect Password:=”RED”

End Sub

The macro explicitly names the sheet we want to unprotect — Sheet1, in this case. Then it passes the
password required to unprotect the sheet. Be aware that Excel passwords are case-sensitive, so pay
attention to the exact password and capitalization that you are using.

How to use it
To implement this macro, you need to copy and paste it into the Workbook_Open event code
window. Placing the macro here allows it to run each time the workbook opens.

 1. Activate the Visual Basic Editor by pressing ALT+F11.

 2. In the Project window, find your project/workbook name and click the plus sign next to it in
order to see all the sheets.

 3. Click ThisWorkbook.

49Macro 5: Unprotect a Worksheet on Workbook Open

 4. Select the Open event in the Event drop-down list (see Figure 2-5).

 5. Type or paste the code in the newly created module, modifying the sheet name (if necessary)
and the password. Note that you can unprotect additional sheets by adding additional
statements.

Figure 2-5: Type or paste your code in the Workbook_Open event code window.

50 Macro 6: Open a Workbook to a Specific Tab

Macro 6: Open a Workbook
to a Specific Tab
In some situations, it’s imperative that your workbook be started on a specific worksheet. With this
macro, if a user is working with your workbook, they can’t go astray because the workbook starts on
the exact worksheet it needs to.

How it works
This macro uses the workbook’s Open event to start the workbook on the specified sheet when the
workbook is opened.

Private Sub Workbook_Open()

‘Step 1: Select the specified sheet
 Sheets(“Sheet1”).Select

End Sub

The macro explicitly names the sheet the workbook should jump to when it’s opened.

How to use it
To implement this macro, you need to copy and paste it into the Workbook_Open event code win-
dow. Placing the macro here allows it to run each time the workbook opens.

 1. Activate the Visual Basic Editor by pressing ALT+F11 on your keyboard.

 2. In the Project window, find your project/workbook name and click the plus sign next to it in
order to see all the sheets.

 3. Click ThisWorkbook.

51Macro 6: Open a Workbook to a Specific Tab

 4. Select the Open event in the Event drop-down list (see Figure 2-6).

 5. Type or paste the code in the newly created module, changing the sheet name, if necessary.

Figure 2-6: Type or paste your code in the Workbook_Open event code window.

52 Macro 7: Opening a Specific Workbook Defined by the User

Macro 7: Opening a Specific Workbook
Defined by the User
Want to give yourself or your users a quick way to search for and open a file? This macro uses a sim-
ple technique that opens a friendly dialog box, allowing you to browse for and open the Excel file of
your choosing.

How it works
This macro opens the dialog box you see in Figure 2-7, allowing the user to browse for and open an
Excel file.

Figure 2-7: The Open dialog box activated by our macro.

Here’s how this macro works:

Sub Macro7()

‘Step 1: Define a string variable.
 Dim FName As Variant

‘Step 2: GetOpenFilename Method activates dialog box.
 FName = Application.GetOpenFilename(_
 FileFilter:=”Excel Workbooks,*.xl*”, _
 Title:=”Choose a Workbook to Open”, _
 MultiSelect:=False)

53Macro 7: Opening a Specific Workbook Defined by the User

‘Step 3: If a file was chosen, open it!
 If FName <> False Then
 Workbooks.Open Filename:=FName
 End If

End Sub

 1. The first thing this macro does is to declare a variant variable that holds the filename that the
user chooses. FName is the name of our variable.

 2. In Step 2, we use the GetOpenFilename method to call up a dialog box that allows us to
browse and select the file we need.

 The GetOpenFilename method supports a few customizable parameters. The FileFilter
parameter allows us to specify the type of file we are looking for. The Title parameter allows us
to change the title that appears at the top of the dialog box. The MultiSelect parameter
allows us to limit the selection to one file.

 3. If the user selects a file from the dialog box, the FName variable is filled with the name of the
file they have chosen. In Step 3, we check for an empty FName variable. If the variable is not
empty, we use the Open method of the Workbooks object to open the file.

How to use it
To implement this macro, you can copy and paste it into a standard module:

 1. Activate the Visual Basic Editor by pressing ALT+F11.

 2. Right-click the project/workbook name in the Project window.

 3. Choose Insert➜Module.

 4. Type or paste the code in the newly created module.

 5. Optionally, you can assign the macro to a button (see the section “Assigning a macro to a
button and other form controls” in Part I).

54 Macro 8: Determine Whether a Workbook Is Already Open

Macro 8: Determine Whether a
Workbook Is Already Open
The previous macro automatically opened a workbook based on the user’s selection. As we think
about automatically opening workbooks, you must consider what may happen if you attempt to
open a book that is already open. In the non-VBA world, Excel attempts to open the file again, with a
warning that any unsaved changes will be lost. In VBA, it’s a good idea to protect against such an
occurrence by checking if a given file is already open before trying to open it again.

How it works
The first thing to notice about this macro is that it is a function, not a sub procedure. As you will
see, making this macro a function enables us to pass any filename to it to test whether that file is
already open.

The gist of this code is simple. We are testing a given filename to see if it can be assigned to an object
variable. Only opened workbooks can be assigned to an object variable. When we try to assign a
closed workbook to the variable, an error occurs.

So if the given workbook can be assigned, the workbook is open; if an error occurs, the workbook is
closed.

Function FileIsOpenTest(TargetWorkbook As String) As Boolean

‘Step 1: Declare variables
 Dim TestBook As Workbook

‘Step 2: Tell Excel to Resume on Error
 On Error Resume Next

‘Step 3: Try to assign the target workbook to TestBook
 Set TestBook = Workbooks(TargetWorkbook)

‘Step 4: If no error occurred then Workbook is already open
 If Err.Number = 0 Then
 FileIsOpenTest = True
 Else
 FileIsOpenTest = False
 End If

End Function

55Macro 8: Determine Whether a Workbook Is Already Open

 1. The first thing the macro does is to declare a string variable that will hold the filename that
the user chooses. TestBook is the name of our string variable.

 2. In Step 2, we are telling Excel that there may be an error running this code. In the event of an
error, resume the code. Without this line, the code would simply stop when an error occurs.
Again, we are testing a given filename to see if it can be assigned to an object variable. So if
the given workbook can be assigned, it’s open; if an error occurs, it’s closed. We need to have
the code continue if an error occurs.

 3. In Step 3, we are attempting to assign the given workbook to the TestBook object variable.
The workbook we are trying to assign is itself a string variable called TargetWorkbook.
TargetWorkbook is passed to the function in the function declarations (see the first line of
the code). This structure eliminates the need to hard-code a workbook name, allowing us to
pass it as a variable instead.

 4. In Step 4, we simply check to see if an error occurred. If an error did not occur, the workbook
is open, so we set the FileIsOpenTest to True. If an error occurred, that means the
workbook is not open. In that case, we set the FileIsOpenTest to False.

Again, this is a function that can be used to evaluate any file you pass to it, via its
TargetWorkbook argument. That is the beauty of putting this macro into a function.

The following macro demonstrates how to implement this function. Here, we are using the
same macro you saw in the previous section, “Macro 7: Opening a Specific Workbook
Defined by the User,” but this time, we are calling the new FileIsOpenTest function to
make sure the user cannot open an already open file.

Sub Macro8()

‘Step 1: Define a string variable.
 Dim FName As Variant
 Dim FNFileOnly As String

‘Step 2: GetOpenFilename Method activates dialog box.
 FName = Application.GetOpenFilename(_
 FileFilter:=”Excel Workbooks,*.xl*”, _
 Title:=”Choose a Workbook to Open”, _
 MultiSelect:=False)

‘Step 3: Open the chosen file if not already opened.
 If FName <> False Then
 FNFileOnly = StrReverse(Left(StrReverse(FName), _
 InStr(StrReverse(FName), “\”) - 1))

continued

56 Macro 8: Determine Whether a Workbook Is Already Open

continued

 If FileIsOpenTest(FNFileOnly) = True Then
 MsgBox “The given file is already open”
 Else
 Workbooks.Open Filename:=FName

 End If
 End If

End Sub

How to use it
To implement this macro, you can copy and paste both pieces of code into a standard module:

 1. Activate the Visual Basic Editor by pressing ALT+F11 on your keyboard.

 2. Right-click the project/workbook name in the Project window.

 3. Choose Insert➜Module.

 4. Type or paste the code in the newly created module.

 5. Optionally, you can assign the macro to a button (see the section on “Assigning a macro to a
button and other form controls” in Part I).

57Macro 9: Determine Whether a Workbook Exists in a Directory

Macro 9: Determine Whether a
Workbook Exists in a Directory
You may have a process that manipulates a file somewhere on your PC. For example, you may need
to open an existing workbook to add new data to it on a daily basis. In these cases, you may need to
test to see whether the file you need to manipulate actually exists. This macro allows you to pass a
file path to evaluate whether the file is there.

How it works
The first thing to notice about this macro is that it is a function, not a sub procedure. Making this
macro a function enables us to pass any file path to it.

In this macro, we use the Dir function. The Dir function returns a string that represents the name of
the file that matches what you pass to it. This function can be used in lots of ways, but here, we are
using it to check if the file path we pass to it exists.

Function FileExists(FPath As String) As Boolean

‘Step 1: Declare your variables.
 Dim FName As String

‘Step 2: Use the Dir function to get the file name
 FName = Dir(FPath)

‘Step 3: If file exists, return True else False
 If FName <> “” Then FileExists = True _
 Else: FileExists = False

End Function

 1. Step 1 declares a string variable that holds the filename that returns from the Dir function.
FName is the name of the string variable.

 2. In Step 2, we attempt to set the FName variable. We do this by passing the FPath variable
to the Dir function. This FPath variable is passed via the function declarations (see the first
line of the code). This structure prevents us from having to hard-code a file path, passing it as
a variable instead.

 3. If the FName variable can’t be set, this means the path we passed does not exist. Thus
the FName variable is empty. Step 3 merely translates that result to a True or False
expression.

58 Macro 9: Determine Whether a Workbook Exists in a Directory

Again, this is a function that can be used to evaluate any file path you pass to it. That’s
the beauty of writing this macro as a function.

The following macro demonstrates how to use this function:

Sub Macro9)

 If FileExists(“C:\Temp\MyNewBook.xlsx”) = True Then
 MsgBox “File exists.”
 Else
 MsgBox “File does not exist.”
 End If

End Sub

How to use it
To implement this macro, you can copy and paste both pieces of code into a standard module:

 1. Activate the Visual Basic Editor by pressing ALT+F11 on your keyboard.

 2. Right-click the project/workbook name in the Project window.

 3. Choose Insert➜Module.

 4. Type or paste the code in the newly created module.

59Macro 10: Refresh All Data Connections in Workbook on Open

Macro 10: Refresh All Data Connections
in Workbook on Open
Your workbook may have connections to external data sources such as web queries, MSQuery
connections, PivotTable connections, and so on. In these cases, it may be helpful to refresh these
data connections automatically when the workbook is opened. This macro does the trick.

How it works
This macro is an easy one-liner that uses the RefreshAll method. This method refreshes all
the connections in a given workbook or worksheet. In this case, we are pointing it to the entire work-
book.

Private Sub Workbook_Open()

‘Step 1: Use the RefreshAll method
 Workbooks(ThisWorkbook.Name).RefreshAll

End Sub

The thing to note in this macro is that we are using the ThisWorkbook object. This object is an easy
and safe way for you to point to the current workbook. The difference between ThisWorkbook and
ActiveWorkbook is subtle but important. The ThisWorkbook object refers to the workbook that
the code is contained in. The ActiveWorkbook object refers to the workbook that is currently active.
They often return the same object, but if the workbook running the code is not the active workbook,
they return different objects. In this case, you don’t want to risk refreshing connections in other work-
books, so you use ThisWorkbook.

How to use it
To implement this macro, you need to copy and paste it into the Workbook_Open event code win-
dow. Placing the macro there allows it to run each time the workbook opens.

 1. Activate the Visual Basic Editor by pressing ALT+F11.

 2. In the Project window, find your project/workbook name and click the plus sign next to it in
order to see all the sheets.

 3. Click ThisWorkbook.

60 Macro 10: Refresh All Data Connections in Workbook on Open

 4. Select the Open event in the Event drop-down list (see Figure 2-8).

 5. Type or paste the code in the newly created module.

Figure 2-8: Enter or Paste your code in the Workbook_Open event code window.

61Macro 11: Close All Workbooks at Once

Macro 11: Close All Workbooks at Once
One of the more annoying things in Excel is closing many workbooks at once. For each workbook
you have opened, you need to activate the work, close it, and confirm save changes. There is no easy
way to close them all down at one time. This little macro takes care of that annoyance.

How it works
In this macro, the Workbooks collection loops through all the open workbooks. As the macro loops
through each workbook, it saves and closes them down.

Sub Macro11()

‘Step 1: Declare your variables
 Dim wb As Workbook

‘Step 2: Loop through workbooks, save and close
 For Each wb In Workbooks
 wb.Close SaveChanges:=True
 Next wb

End Sub

 1. Step 1 declares an object variable that represents a Workbook object. This allows us to
enumerate through all the open workbooks, capturing their names as we go.

 2. Step 2 simply loops through the open workbooks, saving and closing them. If you don’t
want to save them, change the SaveChanges argument from True to False.

How to use it
The best place to store this macro is in your Personal Macro Workbook. This way, the macro is always
available to you. The Personal Macro Workbook is loaded whenever you start Excel. In the VBE Project
window, it is named personal.xlsb.

 1. Activate the Visual Basic Editor by pressing ALT+F11 on your keyboard.

 2. Right-click personal.xlb in the Project window.

 3. Choose Insert➜Module.

 4. Type or paste the code in the newly created module.

62 Macro 11: Close All Workbooks at Once

If you don’t see personal.xlb in your project window, it doesn’t exist yet. You’ll have to record a
macro, using Personal Macro Workbook as the destination.

To record the macro in your Personal Macro Workbook, select the Personal Macro
Workbook option in the Record Macro dialog box before you start recording. This
option is in the Store Macro In drop-down box. Simply record a couple of cell
clicks and then stop recording. You can discard the recorded macro and replace it
with this one.

63Macro 12: Open All Workbooks in a Directory

Macro 12: Open All Workbooks
in a Directory
Here’s a scenario: You’ve written a cool macro that applies some automated processing to each work-
book you open. Now the problem is that you need to go into your directory, open each workbook,
run the macro, save it, close the workbook, and then open the next one. Opening each workbook in a
directory is typically a time-consuming manual process. This macro solves that problem.

How it works
In this macro, we use the Dir function. The Dir function returns a string that represents the name of
the file that matches what you pass to it.

In this code, we use the Dir function to enumerate through all the .xlsx files in a given directory,
capturing each file’s name. Then we open each file, run some code, and finally close the file after
saving.

Sub Macro12()

‘Step 1:Declare your variables
 Dim MyFiles As String

‘Step 2: Specify a target directory
 MyFiles = Dir(“C:\Temp*.xlsx”)
 Do While MyFiles <> “”

‘Step 3: Open Workbooks one by one
 Workbooks.Open “C:\Temp\” & MyFiles

 ‘run some code here
 MsgBox ActiveWorkbook.Name

 ActiveWorkbook.Close SaveChanges:=True

‘Step 4: Next File in the Directory
 MyFiles = Dir
 Loop

End Sub

64 Macro 12: Open All Workbooks in a Directory

 1. Step 1 declares the MyFiles string variable that will capture each filename that is in the
enumeration.

 2. In Step 2, the macro uses the Dir function to specify the directory and file type we are
looking for. Note that the code here is looking for *.xlsx. This means that only .xlsx files will
be looped through. If you are looking for .xls files, you need to change that (along with the
directory you need to search). This macro passes any filename it finds to the MyFiles string
variable.

 3. Step 3 opens the file, does some stuff (this is where you would put in any macro code to
perform the desired actions), and then we save and close the file. In this simple example,
we are calling a message box to show each filename as it opens.

 4. The last step of the macro loops back to find more files. If there are no more files, the
MyFiles variable will be blank. If that is the case, the loop and macro end.

How to use it
To implement this macro, you can copy and paste it into a standard module:

 1. Activate the Visual Basic Editor by pressing ALT+F11.

 2. Right-click the project/workbook name in the Project window.

 3. Choose Insert➜Module.

 4. Type or paste the code in the newly created module.

65Macro 13: Print All Workbooks in a Directory

Macro 13: Print All Workbooks
in a Directory
If you need to print from multiple workbooks in a directory, you can use this macro.

How it works
In this macro, we use the Dir function to return a string that represents the name of the file that
matches what you pass to it.

In this code, we use the Dir function to enumerate through all the .xlsx files in a given directory,
capturing each file’s name. Then we open each file, print, and close the file.

Sub Macro13()

‘Step 1:Declare your variables
 Dim MyFiles As String

‘Step 2: Specify a target directory
 MyFiles = Dir(“C:\Temp*.xlsx”)
 Do While MyFiles <> “”

‘Step 3: Open Workbooks one by one
 Workbooks.Open “C:\Temp\” & MyFiles
 ActiveWorkbook.Sheets(“Sheet1”).PrintOut Copies:=1
 ActiveWorkbook.Close SaveChanges:=False

‘Step 4: Next File in the Directory
 MyFiles = Dir
 Loop

End Sub

 1. Step 1 declares the MyFiles string variable that will capture each filename that is in the
enumeration.

 2. Step 2 uses the Dir function to specify the directory and file type we are looking for. Note
that the code here is looking for *.xlsx. This means that only .xlsx files will be looped
through. If you are looking for .xls files, you will need to specify that (along with the directory
you need to search). The macro passes any filename it finds to the MyFiles string variable.

 3. Step 3 opens the file and then prints out one copy of Sheet1. Needless to say, you will proba-
bly want to change which sheets to print. You can also change the number of copies to print.

 4. Step 4 loops back to find more files. If there are no more files, the MyFiles variable is blank.
If that is the case, the loop and macro end.

66 Macro 13: Print All Workbooks in a Directory

How to use it
To implement this macro, you can copy and paste it into a standard module:

 1. Activate the Visual Basic Editor by pressing ALT+F11.

 2. Right-click the project/workbook name in the Project window.

 3. Choose Insert➜Module.

 4. Type or paste the code in the newly created module, modifying the print statement as
needed.

67Macro 14: Preventing the Workbook from Closing Until a Cell Is Populated

Macro 14: Preventing the Workbook from
Closing Until a Cell Is Populated
There are times when you don’t want a user closing out a workbook without entering a specific piece
of data. In these situations, you want Excel to deny the user the ability to close the workbook until
the target cell is filled in. This is where this macro comes in.

How it works
This code is triggered by the workbook’s BeforeClose event. When you try to close the workbook,
this event fires, running the code within. This macro checks to see if the target cell (cell C7, in this
case) is empty. If it is empty, the close process is cancelled. If C7 is not empty, the workbook saves
and closes.

Private Sub Workbook_BeforeClose(Cancel As Boolean)

‘Step 1: Check to see if Cell C7 is blank
If Sheets(“Sheet1”).Range(“C7”).Value = “” Then

‘Step 2: Blank: cancel the Close and tell the user
 Cancel = True
 MsgBox “Cell C7 cannot be blank”

‘Step 3: Not Blank; Save and Close
Else
 ActiveWorkbook.Close SaveChanges:=True
End If

End Sub

 1. Step 1 checks to see whether C7 is blank.

 2. If it is blank, Step 2 takes effect, cancelling the close process. This is done by passing True to
the Cancel Boolean. Step 2 also activates a message box notifying the user of their stupidity
(well, it’s not quite that harsh, really).

 3. If cell C7 is not blank, the workbook saves and closes.

68 Macro 14: Preventing the Workbook from Closing Until a Cell Is Populated

How to use it
To implement this macro, you need to copy and paste it into the Workbook_BeforeClose event
code window. Placing the macro here allows it to run each time you try to close the
workbook.

 1. Activate the Visual Basic Editor by pressing ALT+F11.

 2. In the Project window, find your project/workbook name and click the plus sign next to it in
order to see all the sheets.

 3. Click ThisWorkbook.

 4. Select the BeforeClose event in the Event drop-down list (see Figure 2-9).

 5. Type or paste the code in the newly created module.

Figure 2-9: Type or paste your code in the Workbook_BeforeClose event code window.

69Macro 15: Create a Backup of a Current Workbook with Today’s Date

Macro 15: Create a Backup of a Current
Workbook with Today’s Date
We all know that making backups of your work is important. Now you can have a macro do it for you.
This simple macro saves your workbook to a new file with today’s date as part of the name.

How it works
The trick to this macro is piecing together the new filename. The new filename has three pieces: the
path, today’s date, and the original filename.

The path is captured by using the Path property of the ThisWorkbook object. Today’s date is
grabbed with the Date function.

You’ll notice that we are formatting the date (Format(Date, “mm-dd-yy”)). This is because by
default, the Date function returns mm/dd/yyyy. We use hyphens instead of forward slashes because
the forward slashes would cause the file save to fail. (Windows does not allow forward slashes in
filenames.)

The last piece of the new filename is the original filename. We use the Name property of the
ThisWorkbook object to capture that:

Sub Macro15()

‘Step 1: Save workbook with new filename
 ThisWorkbook.SaveCopyAs _
 Filename:=ThisWorkbook.Path & “\” & _
 Format(Date, “mm-dd-yy”) & “ “ & _
 ThisWorkbook.Name

End Sub

In the one and only step, the macro builds a new filename and uses the SaveCopyAs method to
save the file.

70 Macro 15: Create a Backup of a Current Workbook with Today’s Date

How to use it
To implement this macro, you can copy and paste it into a standard module:

 1. Activate the Visual Basic Editor by pressing ALT+F11.

 2. Right-click the project/workbook name in the Project window.

 3. Choose Insert➜Module.

 4. Type or paste the code in the newly created module.

PART III
Automating
Worksheet Tasks
with Macros
This Part addresses macros that work at the worksheet level. In this Part, you’ll find macros for
adding, deleting, and renaming worksheets, and much more.

In This Part
Macro 16 Add and Name a New Worksheet ..73
Macro 17 Delete All but the Active Worksheet ...75
Macro 18 Hide All but the Active Worksheet ...77
Macro 19 Unhide All Worksheets in a Workbook ...79
Macro 20 Moving Worksheets Around ...81
Macro 21 Sort Worksheets by Name ...83
Macro 22 Group Worksheets by Color ..85
Macro 23 Copy a Worksheet to a New Workbook ..87
Macro 24 Create a New Workbook for Each Worksheet ...88
Macro 25 Print Specified Worksheets ...90
Macro 26 Protect All Worksheets ...92
Macro 27 Unprotect All Worksheets ...94
Macro 28 Create a Table of Contents for Your Worksheets ...96
Macro 29 Zooming In and Out of a Worksheet with Double-Click99
Macro 30 Highlight the Active Row and Column .. 101

73Macro 16: Add and Name a New Worksheet

Excel analysts often need to automate tasks related to worksheets. Whether it is un-hiding all sheets
in a workbook, or printing all sheets at the same time, many tasks can be automated to save time and
gain efficiencies. In this Part, we cover some of the more useful macros related to worksheets.

If you’re brand-new to Excel VBA, we highly recommend you take a quick look at Part 1.
There we provide the basic foundation you’ll need to understand many of the concepts
found in the macros in this part.

You can find the code for this Part on this book’s companion website. See this book’s
Introduction for more on the companion website.

Macro 16: Add and Name a New Worksheet
We start off this chapter with one of the simplest worksheet-related automations you can apply with
a macro — adding and naming a new worksheet.

How it works
If you read through the lines of the code, you’ll see this macro is relatively intuitive.

Sub Macro16()

‘Step 1: Tell Excel what to do if Error
 On Error GoTo MyError

‘Step 2: Add a sheet and name it
 Sheets.Add
 ActiveSheet.Name = _
 WorksheetFunction.Text(Now(), “m-d-yyyy h_mm_ss am/pm”)
 Exit Sub

‘Step 3: If here, an error happened; tell the user
 MyError:
 MsgBox “There is already a sheet called that.”

End Sub

74 Macro 16: Add and Name a New Worksheet

Here’s how this macro works:

 1. You must anticipate that if you give the new sheet a name that already exists, an error
occurs. So in Step 1, the macro tells Excel to immediately skip to the line that says MyError
(in Step 3) if there is an error.

 2. Step 2 uses the Add method to add a new sheet. By default, the sheet is called Sheetxx,
where xx represents the number of the sheet. We give the sheet a new name by changing
the Name property of the ActiveSheet object. In this case, we are naming the worksheet
with the current date and time.

 As with workbooks, each time you add a new sheet via VBA, it automatically becomes the
active sheet. Finally, in Step 2, notice that the macro exits the procedure. It has to do this
so that it doesn’t accidentally go into Step 3 (which should come into play only if an error
occurs).

 3. Step 3 notifies the user that the sheet name already exists. Again, this step should only be
activated if an error occurs.

How to use it
To implement this macro, you can copy and paste it into a standard module:

 1. Activate the Visual Basic Editor by pressing ALT+F11.

 2. Right-click the project/workbook name in the Project window.

 3. Choose Insert➜Module.

 4. Type or paste the code in the newly created module.

75Macro 17: Delete All but the Active Worksheet

Macro 17: Delete All but the Active
Worksheet
At times, you may want to delete all but the active worksheet. In these situations, you can use this
macro.

How it works
This macro loops the worksheets and matches each worksheet name to the active sheet’s name. Each
time the macro loops, it deletes any unmatched worksheet. Note the use of the DisplayAlerts
method in Step 4. This effectively turns off Excel’s warnings so you don’t have to confirm each delete.

Sub Macro17()

‘Step 1: Declare your variables
 Dim ws As Worksheet

‘Step 2: Start looping through all worksheets
 For Each ws In ThisWorkbook.Worksheets

‘Step 3: Check each worksheet name
 If ws.Name <> ThisWorkbook.ActiveSheet.Name Then

‘Step 4: Turn off warnings and delete
 Application.DisplayAlerts = False
 ws.Delete
 Application.DisplayAlerts = True
 End If

‘Step 5: Loop to next worksheet
 Next ws

End Sub

 1. The macro first declares an object called ws. This creates a memory container for each work-
sheet it loops through.

 2. In Step 2, the macro begins to loop, telling Excel it will evaluate all worksheets in this workbook.
There is a difference between ThisWorkbook and ActiveWorkbook. The ThisWorkbook
object refers to the workbook that the code is contained in. The ActiveWorkbook object
refers to the workbook that is currently active. They often return the same object, but if the
workbook running the code is not the active workbook, they return different objects. In this
case, we don’t want to risk deleting sheets in other workbooks, so we use ThisWorkbook.

76 Macro 17: Delete All but the Active Worksheet

 3. In this step, the macro simply compares the active sheet name to the sheet that is currently
being looped.

 4. If the sheet names are different, the macro deletes the sheet. As mentioned before, we use
DisplayAlerts to suppress any confirmation checks from Excel.

 5. In Step 5, the macro loops back to get the next sheet. After all sheets are evaluated, the
macro ends.

How to use it
To implement this macro, you can copy and paste it into a standard module:

 1. Activate the Visual Basic Editor by pressing ALT+F11.

 2. Right-click the project/workbook name in the Project window.

 3. Choose Insert➜Module.

 4. Type or paste the code in the newly created module.

Note that when you use ThisWorkbook in a macro instead of ActiveWorkbook,
you can’t run the macro from the Personal Macro Workbook. This is because
ThisWorkbook refers to the Personal Macro Workbook, not the workbook to
which the macro should apply.

77Macro 18: Hide All but the Active Worksheet

Macro 18: Hide All but
the Active Worksheet
You may not want to delete all but the active sheet as we did in the last macro. Instead, a more
gentle option is to simply hide the sheets. Excel doesn’t let you hide all sheets in a workbook — at
least one has to be showing. However, you can hide all but the active sheet.

How it works
This macro loops the worksheets and matches each worksheet name to the active sheet’s name. Each
time the macro loops, it hides any unmatched worksheet.

Sub Macro18()

‘Step 1: Declare your variables
 Dim ws As Worksheet

‘Step 2: Start looping through all worksheets
 For Each ws In ThisWorkbook.Worksheets

‘Step 3: Check each worksheet name
 If ws.Name <> ThisWorkbook.ActiveSheet.Name Then

‘Step 4: Hide the sheet
 ws.Visible = xlSheetHidden
 End If

‘Step 5: Loop to next worksheet
 Next ws

End Sub

 1. Step 1 declares an object called ws. This creates a memory container for each worksheet the
macro loops through.

 2. Step 2 begins the looping, telling Excel to evaluate all worksheets in this workbook. There is
a difference between ThisWorkbook and ActiveWorkbook. The ThisWorkbook
object refers to the workbook that the code is contained in. The ActiveWorkbook object
refers to the workbook that is currently active. They often return the same object, but if the
workbook running the code is not the active workbook, they return different objects. In this
case, we don’t want to risk hiding sheets in other workbooks, so we use ThisWorkbook.

78 Macro 18: Hide All but the Active Worksheet

 3. In this step, the macro simply compares the active sheet name to the sheet that is currently
being looped.

 4. If the sheet names are different, the macro hides the sheet.

 5. In Step 5, we loop back to get the next sheet. After all of the sheets are evaluated, the macro
ends.

You’ll notice that we used xlSheetHidden in our macro. This applies the default hide state
you would normally get when you right-click a sheet and select Hide. In this default hide
state, a user can right-click on any tab and choose Unhide. This shows all the sheets that are
hidden. But there is another hide state that is more clandestine than the default. If you use
xlSheetVeryHidden to hide your sheets, users will not be able to see them at all — not even
if they right-click on any tab and choose Unhide. The only way to unhide a sheet hidden in this
manner is by using VBA.

How to use it
To implement this macro, you can copy and paste it into a standard module:

 1. Activate the Visual Basic Editor by pressing ALT+F11.

 2. Right-click the project/workbook name in the Project window.

 3. Choose Insert➜Module.

 4. Type or paste the code in the newly created module.

79Macro 19: Unhide All Worksheets in a Workbook

Macro 19: Unhide All Worksheets
in a Workbook
If you’ve ever had to unhide multiple sheets in Excel, you know what a pain it is. You need to click
four times for each sheet you want to unhide. Although that may not sound like a lot, try to unhide
ten or more sheets — it gets to be a pain fast. This macro makes easy work of that task.

How it works
This macro loops the worksheets and changes the visible state.

Sub Macro19()

‘Step 1: Declare your variables
 Dim ws As Worksheet

‘Step 2: Start looping through all worksheets
 For Each ws In ActiveWorkbook.Worksheets

‘Step 3: Loop to next worksheet
 ws.Visible = xlSheetVisible
 Next ws

End Sub

 1. Step 1 declares an object called ws. This creates a memory container for each worksheet the
macro loops through.

 2. In Step 2, the macro starts the looping, telling Excel to enumerate through all worksheets in
this workbook.

 3. Step 3 changes the visible state to xlSheetVisible. Then it loops back to get the next
worksheet.

How to use it
The best place to store this macro is in your Personal Macro Workbook. That way, the macro is always
available to you. The Personal Macro Workbook is loaded whenever you start Excel. In the VBE Project
window, it is named personal.xlsb.

 1. Activate the Visual Basic Editor by pressing ALT+F11.

 2. Right-click personal.xlb in the Project window.

80 Macro 19: Unhide All Worksheets in a Workbook

 3. Choose Insert➜Module.

 4. Type or paste the code in the newly created module.

If you don’t see personal.xlb in your project window, it means it doesn’t exist yet. You’ll have to
record a macro using Personal Macro Workbook as the destination.

To record the macro in your Personal Macro Workbook, select the Personal Macro Workbook option
in the Record Macro dialog box before you start recording. This option is in the Store Macro In
drop-down box. Simply record a couple of cell clicks and then stop recording. You can discard the
recorded macro and replace it with this one.

81Macro 20: Moving Worksheets Around

Macro 20: Moving Worksheets Around
We’ve all had to rearrange our spreadsheet so that some sheet came before or after other sheet. If
you find that you often have to do this, here is a macro that can help.

How it works
When you want to rearrange sheets, you use the Move method of either the Sheets object or the
ActiveSheet object. When using the Move method, you need to specify where to move the sheet
to. You can do this using the After argument, the Before argument, or both.

Sub Macro20()

‘Move the active sheet to the end
 ActiveSheet.Move After:=Worksheets(Worksheets.Count)

‘Move the active sheet to the beginning
 ActiveSheet.Move Before:=Worksheets(1)

‘Move Sheet 1 before Sheet 12
 Sheets(“Sheet1”).Move Before:=Sheets(“Sheet12”)

End Sub

This macro does three things. First, it moves the active sheet to the end. Nothing in VBA lets you point
to “the last sheet.” But you can find the maximum count of worksheets, and then use that number as
an index for the Worksheets object. This means that we can enter something like Worksheets(3)
to point to the third sheet in a workbook. Thus, you can use Worksheet(Worksheets.Count) to
point to the last sheet.

Next, this macro moves the active sheet to the beginning of the workbook. This one is simple; we use
Worksheets(1) to point to the first sheet in the workbook, and then move the active sheet before
that one.

Finally, the macro demonstrates that you can move sheets simply by calling them out by name. In
this example, we are moving Sheet1 before Sheet12.

How to use it
The best place to store this kind of a macro is in your Personal Macro Workbook. This way, the macro
is always available to you. The Personal Macro Workbook is loaded whenever you start Excel. In the
VBE Project window, it is named personal.xlsb.

 1. Activate the Visual Basic Editor by pressing ALT+F11.

 2. Right-click personal.xlb in the Project window.

82 Macro 20: Moving Worksheets Around

 3. Choose Insert➜Module.

 4. Type or paste the code in the newly created module.

If you don’t see personal.xlb in your project window, it means it doesn’t exist yet. You’ll have to
record a macro, using Personal Macro Workbook as the destination.

To record the macro in your Personal Macro Workbook, select the Personal Macro Workbook option
in the Record Macro dialog box before you start recording. This option is in the Store Macro In drop-
down list. Simply record a couple of cell clicks and then stop recording. You can discard the recorded
macro and replace it with this one.

83Macro 21: Sort Worksheets by Name

Macro 21: Sort Worksheets by Name
You may often need to sort worksheets alphabetically by name. You would think Excel would have a
native function to do this, but alas, it does not. If you don’t want to manually sort your spreadsheets
anymore, you can use this macro to do it for you.

How it works
This macro looks more complicated than it is. The activity in this macro is actually fairly simple. It
simply iterates through the sheets in the workbook, comparing the current sheet to the previous
one. If the name of the previous sheet is greater than the current sheet (alphabetically), the macro
moves the current sheet before it. By the time all the iterations are done, you’ve got a sorted
workbook!

Sub Macro21()

‘Step 1: Declare your Variables
 Dim CurrentSheetIndex As Integer
 Dim PrevSheetIndex As Integer

‘Step 2: Set the starting counts and start looping
 For CurrentSheetIndex = 1 To Sheets.Count
 For PrevSheetIndex = 1 To CurrentSheetIndex - 1

‘Step 3: Check Current Sheet against Previous Sheet
 If UCase(Sheets(PrevSheetIndex).Name) > _
 UCase(Sheets(CurrentSheetIndex).Name) Then

‘Step 4: If Move Current sheet Before Previous
 Sheets(CurrentSheetIndex).Move _
 Before:=Sheets(PrevSheetIndex)
 End If

‘Step 5 Loop back around to iterate again
 Next PrevSheetIndex
 Next CurrentSheetIndex

End Sub

Note that this technique is doing a text-based sort, so you may not get the results
you were expecting when working with number-based sheet names. For instance,
Sheet10 comes before Sheet2 because textually, 1 comes before 2. Excel doesn’t
do the numbers-based sorting that says 2 comes before 10.

84 Macro 21: Sort Worksheets by Name

 1. Step 1 declares two integer variables. The CurrentSheetIndex holds the index number
for the current sheet iteration, and the PrevSheetIndex variable holds the index number
for the previous sheet iteration.

 2. In Step 2, the macro starts iteration counts for both variables. Note that the count for the
PrevSheetIndex is one number behind the CurrentSheetIndex. After the counts are
set, we start looping.

 3. In Step 3, we check to see whether the name of the previous sheet is greater than that of the
current sheet.

 In this step, note the use of the UCase function. We use this to get both names in the same
uppercase state. This prevents sorting errors due to differing case states.

 4. Step 4 is reached only if the previous sheet name is greater than the current sheet name. In
this step, we use the Move method to move the current sheet before the previous sheet.

 5. In Step 5, we go back around to the start of the loop. Every iteration of the loop increments
both variables up one number until the last worksheet is touched. After all
iterations have been spent, the macro ends.

How to use it
The best place to store this macro is in your Personal Macro Workbook. This way, the macro is always
available to you. The Personal Macro Workbook is loaded whenever you start Excel. In the VBE Project
window, it is named personal.xlsb.

 1. Activate the Visual Basic Editor by pressing ALT+F11.

 2. Right-click personal.xlb in the Project window.

 3. Choose Insert➜Module.

 4. Type or paste the code in the newly created module.

If you don’t see personal.xlb in your project window, it means it doesn’t exist yet. You’ll have to
record a macro, using Personal Macro Workbook as the destination.

To record the macro in your Personal Macro Workbook, select the Personal Macro Workbook option
in the Record Macro dialog box before you start recording. This option is in the Store Macro In drop-
down list. Simply record a couple of cell clicks and then stop recording. You can discard the recorded
macro and replace it with this one.

85Macro 22: Group Worksheets by Color

Macro 22: Group Worksheets by Color
Many of us assign colors to our worksheet tabs. This allows for the visual confirmation that the data
in a certain tab is somehow related to another tab because both have the same color. This macro
groups worksheets based on their tab colors.

How it works
You may think it’s impossible to sort or group by color, but Excel offers a way. Excel assigns an index
number to every color. A light yellow color may have an index number of 36, whereas a maroon color
has the index number 42.

This macro iterates through the sheets in the workbook, comparing the tab color index of the current
sheet to that of the previous one. If the previous sheet has the same color index number as the
current sheet, the macro moves the current sheet before it. By the time all the iterations are done,
all of the sheets are grouped together based on their tab colors.

Sub Macro22()

‘Step 1: Declare your Variables
 Dim CurrentSheetIndex As Integer
 Dim PrevSheetIndex As Integer

‘Step 2: Set the starting counts and start looping
 For CurrentSheetIndex = 1 To Sheets.Count
 For PrevSheetIndex = 1 To CurrentSheetIndex - 1

‘Step 3: Check Current Sheet against Previous Sheet
 If Sheets(PrevSheetIndex).Tab.ColorIndex = _
 Sheets(CurrentSheetIndex).Tab.ColorIndex Then

‘Step 4: If Move Current sheet Before Previous
 Sheets(PrevSheetIndex).Move _
 Before:=Sheets(CurrentSheetIndex)
 End If

‘Step 5 Loop back around to iterate again
 Next PrevSheetIndex
 Next CurrentSheetIndex

End Sub

86 Macro 22: Group Worksheets by Color

 1. Step 1 declares two integer variables. The CurrentSheetIndex holds the index number
for the current sheet iteration, and the PrevSheetIndex variable holds the index number
for the previous sheet iteration.

 2. Step 2 starts iteration counts for both variables. Note that the count for the PrevSheetIndex
is one number behind the CurrentSheetIndex. After the counts are set, the macro starts
looping.

 3. In Step 3, the macro checks to see whether the color index of the previous sheet is the same
as that of the current sheet. Note the use of the Tab.ColorIndex property.

 4. Step 4 is reached only if the color index of the previous sheet is equal to the color index of
the current sheet. In this step, the macro uses the Move method to move the current sheet
before the previous sheet.

 5. In Step 5, the macro goes back around to the start of the loop. Every iteration of the loop
increments both variables up one number until the last worksheet is touched. After all of
the iterations have run, the macro ends.

How to use it
The best place to store this macro is in your Personal Macro Workbook. This way, the macro is always
available to you. The Personal Macro Workbook is loaded whenever you start Excel. In the VBE Project
window, it is named personal.xlsb.

 1. Activate the Visual Basic Editor by pressing ALT+F11.

 2. Right-click personal.xlb in the Project window.

 3. Choose Insert➜Module.

 4. Type or paste the code in the newly created module.

If you don’t see personal.xlb in your project window, it doesn’t exist yet. You’ll have to record a
macro, using Personal Macro Workbook as the destination.

To record the macro in your Personal Macro Workbook, select the Personal Macro Workbook option
in the Record Macro dialog box before you start recording. This option is in the Store Macro In drop-
down list. Simply record a couple of cell clicks and then stop recording. You can discard the recorded
macro and replace it with this one.

87Macro 23: Copy a Worksheet to a New Workbook

Macro 23: Copy a Worksheet
to a New Workbook
In Excel, you can manually copy an entire sheet to a new workbook by right-clicking the target sheet
and selecting the Move or Copy option. Unfortunately, if you try to record a macro while you do this,
the macro recorder fails to accurately write the code to reflect the task. So if you need to program-
matically copy an entire sheet to a brand new workbook, this macro delivers.

How it works
In this macro, the active sheet is first being copied. Then we use the Before parameter to send the
copy to a new workbook that is created on the fly. The copied sheet is positioned as the first sheet in
the new workbook.

The use of the ThisWorkbook object is important here. This ensures that the active sheet that is
being copied is from the workbook that the code is in, not the new workbook that is created.

Sub Macro23()

‘Copy sheet, and send to new workbook
 ThisWorkbook.ActiveSheet.Copy _
 Before:=Workbooks.Add.Worksheets(1)

End Sub

How to use it
To implement this macro, you can copy and paste it into a standard module:

 1. Activate the Visual Basic Editor by pressing ALT+F11.

 2. Right-click the project/workbook name in the Project window.

 3. Choose Insert➜Module.

 4. Type or paste the code in the newly created module.

88 Macro 24: Create a New Workbook for Each Worksheet

Macro 24: Create a New Workbook
for Each Worksheet
Many Excel analysts need to parse their workbooks into separate books per worksheet tab. In other
words, they need to create a new workbook for each of the worksheets in their existing workbook.
You can imagine what an ordeal this would be if you were to do it manually. The following macro
helps automate that task.

How it works
In this macro, you are looping the worksheets, copying each sheet, and then sending the copy to a
new workbook that is created on the fly. The thing to note here is that the newly created workbooks
are being saved in the same directory as your original workbook, with the same filename as the
copied sheet (wb.SaveAs ThisWorkbook.Path & “\” & ws.Name).

Sub Macro24()

‘Step 1: Declare all the variables.
 Dim ws As Worksheet
 Dim wb As Workbook

‘Step 2: Start the looping through sheets
 For Each ws In ThisWorkbook.Worksheets

‘Step 3: Create new workbook and save it.
 Set wb = Workbooks.Add
 wb.SaveAs ThisWorkbook.Path & “\” & ws.Name

‘Step 4: Copy the target sheet to the new workbook
 ws.Copy Before:=wb.Worksheets(1)
 wb.Close SaveChanges:=True

‘Step 5: Loop back around to the next worksheet
 Next ws

End Sub

Not all valid worksheet names translate to valid filenames. Windows has specific rules
that prevent you from naming files with certain characters. You cannot use these char-
acters when naming a file: backslash (\), forward slash (/), colon (:), asterisk (*), question
mark (?), pipe (|), double quote (“), greater than (>), and less than (<). The twist is that
you can use a few of these restricted characters in your sheet names; specifically, double
quote, pipe (|), greater than (>), and less than (<).

89Macro 24: Create a New Workbook for Each Worksheet

As you’re running this macro, naming the newly created files to match the sheet name
may cause an error. For instance, the macro throws an error when creating a new file
from a sheet called May| Revenue (because of the pipe character). To make a long story
short, avoid naming your worksheets with these restricted characters.

 1. Step 1 declares two object variables. The ws variable creates a memory container for each
worksheet the macro loops through. The wb variable creates the container for the new
workbooks we create.

 2. In Step 2, the macro starts looping through the sheets. The use of the ThisWorkbook
object ensures that the active sheet that is being copied is from the workbook the code
is in, not the new workbook that is created.

 3. In Step 3, we create the new workbook and save it. We save this new book in the same path
as the original workbook (ThisWorkbook). The filename is set to be the same name as the
currently active sheet.

 4. Step 4 copies the currently active sheet and uses the Before parameter to send it to
the new book as the first tab.

 5. Step 5 loops back to get the next sheet. After all of the sheets are evaluated, the
macro ends.

How to use it
To implement this macro, you can copy and paste it into a standard module:

 1. Activate the Visual Basic Editor by pressing ALT+F11.

 2. Right-click the project/workbook name in the Project window.

 3. Choose Insert➜Module.

 4. Type or paste the code in the newly created module.

90 Macro 25: Print Specified Worksheets

Macro 25: Print Specified Worksheets
If you want to print specific sheets manually in Excel, you need to hold down the CTRL key on the
keyboard, select the sheets you want to print, and then click Print. If you do this often enough, you
may consider using this very simple macro.

How it works
This one is easy. All we have to do is pass the sheets we want printed in an array as seen here in this
macro. Then we use the PrintOut method to trigger the print job. All the sheets you have entered
are printed in one go.

Sub Macro25()

‘Print Certain Sheets
 ActiveWorkbook.Sheets(_
 Array(“Sheet1”, “Sheet3”, “Sheet5”)).PrintOut Copies:=1

End Sub

Want to print all worksheets in a workbook? This one is even easier.

Sub Macro25()

‘Print All Sheets
 ActiveWorkbook.Worksheets.PrintOut Copies:=1

End Sub

How to use it
The best place to store this macro is in your Personal Macro Workbook. This way, the macro is always
available to you. The Personal Macro Workbook is loaded whenever you start Excel. In the VBE Project
window, it is named personal.xlsb.

 1. Activate the Visual Basic Editor by pressing ALT+F11.

 2. Right-click personal.xlb in the Project window.

91Macro 25: Print Specified Worksheets

 3. Choose Insert➜Module.

 4. Type or paste the code in the newly created module.

If you don’t see personal.xlb in your project window, it means it doesn’t exist yet. You’ll have to
record a macro using Personal Macro Workbook as the destination.

To record the macro in your Personal Macro Workbook, select the Personal Macro Workbook option
in the Record Macro dialog box before you start recording. This option is in the Store Macro In drop-
down list. Simply record a couple of cell clicks and then stop recording. You can discard the recorded
macro and replace it with this one.

92 Macro 26: Protect All Worksheets

Macro 26: Protect All Worksheets
Before you distribute your workbook, you may want to apply sheet protection to all of the sheets.
Instead of protecting each sheet manually, you can use this macro.

How it works
In this macro, you are looping the worksheets and simply applying protection with a password. The
Password argument defines the password needed to remove the protection. The Password argu-
ment is completely optional. If you omit it altogether, the sheet will still be protected; you just won’t
need to enter a password to unprotect it. Also, be aware that Excel passwords are case-sensitive, so
you’ll want to pay attention to the exact capitalization you are using.

Sub Macro26()

‘Step 1: Declare your variables
 Dim ws As Worksheet

‘Step 2: Start looping through all worksheets
 For Each ws In ActiveWorkbook.Worksheets

‘Step 3: Protect and loop to next worksheet
 ws.Protect Password:=”RED”
 Next ws

End Sub

 1. Step 1 declares an object called ws. This creates a memory container for each worksheet we
loop through.

 2. Step 2 starts the looping, telling Excel we want to enumerate through all worksheets in this
workbook.

 3. In Step 3, the macro applies protection with the given password, and then loops back to get
the worksheet.

How to use it
The best place to store this macro is in your Personal Macro Workbook. This way, the macro is always
available to you. The Personal Macro Workbook is loaded whenever you start Excel. In the VBE Project
window, it is named personal.xlsb.

93Macro 26: Protect All Worksheets

 1. Activate the Visual Basic Editor by pressing ALT+F11.

 2. Right-click personal.xlb in the Project window.

 3. Choose Insert➜Module.

 4. Type or paste the code in the newly created module.

If you don’t see personal.xlb in your project window, it doesn’t exist yet. You’ll have to record a macro
using Personal Macro Workbook as the destination.

To record the macro in your Personal Macro Workbook, select the Personal Macro Workbook option
in the Record Macro dialog box before you start recording. This option is in the Store Macro In drop-
down list. Simply record a couple of cell clicks and then stop recording. You can discard the recorded
macro and replace it with this one.

94 Macro 27: Unprotect All Worksheets

Macro 27: Unprotect All Worksheets
You may find yourself constantly having to unprotect multiple worksheets manually. The following
macro does the same thing programmatically.

How it works
This macro loops the worksheets and uses the Password argument to unprotect each sheet.

Sub Macro27()

‘Step 1: Declare your variables
 Dim ws As Worksheet

‘Step 2: Start looping through all worksheets
 For Each ws In ActiveWorkbook.Worksheets

‘Step 3: Loop to next worksheet
 ws.UnProtect Password:=”RED”
 Next ws

End Sub

 1. Step 1 declares an object called ws. This creates a memory container for each worksheet we
loop through.

 2. Step 2 starts the looping, telling Excel to enumerate through all worksheets in this workbook.

 3. Step 3 unprotects the active sheet, providing the password as needed, and then loops back
to get the worksheet.

Obviously, the assumption is that all the worksheets that need to be unprotected have the same
password. If this is not the case, you need to explicitly unprotect each sheet with its corresponding
password.

Sub Macro27b()

Sheets(“Sheet1”).UnProtect Password:=”RED”
Sheets(“Sheet2”).UnProtect Password:=”BLUE”
Sheets(“Sheet3”).UnProtect Password:=”YELLOW”
Sheets(“Sheet4”).UnProtect Password:=”GREEN”

End Sub

95Macro 27: Unprotect All Worksheets

How to use it
The best place to store this kind of a macro is in your Personal Macro Workbook. This way, the macro
is always available to you. The Personal Macro Workbook is loaded whenever you start Excel. In the
VBE Project window, it will be named personal.xlsb.

 1. Activate the Visual Basic Editor by pressing ALT+F11.

 2. Right-click personal.xlb in the Project window.

 3. Choose Insert➜Module.

 4. Type or paste the code in the newly created module.

If you don’t see personal.xlb in your project window, it means it doesn’t exist yet. You’ll have to
record a macro, using Personal Macro Workbook as the destination.

To record the macro in your Personal Macro Workbook, select the Personal Macro Workbook option
in the Record Macro dialog box before you start recording. This option is in the Store Macro In drop-
down list. Simply record a couple of cell clicks and then stop recording. You can discard the recorded
macro and replace it with this one.

96 Macro 28: Create a Table of Contents for Your Worksheets

Macro 28: Create a Table of Contents
for Your Worksheets
Outside of sorting worksheets, creating a table of contents for the worksheets in a workbook is the
most commonly requested Excel macro. The reason is probably not lost on you. We often have
to work with files that have more worksheet tabs than can easily be seen or navigated. A table of
contents definitely helps.

The following macro not only creates a list of worksheet names in the workbook, but it also ads
hyperlinks so that you can easily jump to a sheet with a simple click.

How it works
It’s easy to get intimidated when looking at this macro. There is a lot going on here. However, if you
step back and consider the few simple actions it does, it becomes a little less scary:

➤	 It removes any previous Table of Contents sheet

➤	 It creates a new Table of Contents sheet

➤	 It grabs the name of each worksheet and pastes it on the Table of Contents

➤	 It adds a hyperlink to each entry in the Table of Contents

That doesn’t sound so bad. Now look at the code:

Sub Macro28()

‘Step 1: Declare Variables
 Dim i As Long

‘Step 2: Delete Previous TOC if Exists
 On Error Resume Next
 Application.DisplayAlerts = False
 Sheets(“Table Of Contents”).Delete
 Application.DisplayAlerts = True
 On Error GoTo 0

‘Step 3: Add a new TOC sheet as the first sheet
 ThisWorkbook.Sheets.Add _
 Before:=ThisWorkbook.Worksheets(1)
 ActiveSheet.Name = “Table Of Contents”

97Macro 28: Create a Table of Contents for Your Worksheets

‘Step 4: Start the i Counter
 For i = 1 To Sheets.Count

‘Step 5: Select Next available row
 ActiveSheet.Cells(i, 1).Select

‘Step 6: Add Sheet Name and Hyperlink
 ActiveSheet.Hyperlinks.Add _
 Anchor:=ActiveSheet.Cells(i, 1), _
 Address:=””, _
 SubAddress:=”’” & Sheets(i).Name & “’!A1”, _
 TextToDisplay:=Sheets(i).Name

‘Step 7: Loop back increment i
 Next i

End Sub

 1. Step 1 declares an integer variable called i to serve as the counter as the macro iterates
through the sheets.

 Note that this macro is not looping through the sheets the way previous macros in this Part
did. In previous macros, we looped through the worksheets collection and selected each
worksheet there. In this procedure, we are using a counter (our i variable). The main reason
is because we not only have to keep track of the sheets, but we also have to manage to enter
each sheet name on a new row into a table of contents. The idea is that as the counter pro-
gresses through the sheets, it also serves to move the cursor down in the table of contents so
each new entry goes on a new row.

 2. Step 2 essentially attempts to delete any previous sheet called Table of Contents. Because
there may not be any Table of Contents sheet to delete, we have to start Step 2 with the On
Error Resume Next error handler. This tells Excel to continue the macro if an error is
encountered here. We then delete the Table of Contents sheet using the DisplayAlerts
method, which effectively turns off Excel’s warnings so we don’t have to confirm the deletion.
Finally, we reset the error handler to trap all errors again by entering On Error GoTo 0.

 3. In Step 3, we add a new sheet to the workbook using the Before argument to position the
new sheet as the first sheet. We then name the sheet Table of Contents. As we mentioned
previously in this Part, when you add a new worksheet, it automatically becomes the active
sheet. Because this new sheet has the focus throughout the procedure, any references to
ActiveSheet in this code refer to the Table of Contents sheet.

98 Macro 28: Create a Table of Contents for Your Worksheets

 4. Step 4 starts the i counter at 1 and ends it at the maximum count of all sheets in the work-
book. Again, instead of looping through the Worksheets collection like we’ve done in previ-
ous macros, we are simply using the i counter as an index number that we can pass to the
Sheets object. When the maximum number is reached, the macro ends.

 5. Step 5 selects the corresponding row in the Table of Contents sheet. That is to say, if the i
counter is on 1, it selects the first row in the Table of Contents sheet. If the i counter is at 2,
it selects the second row, and so on.

 We are able to do this using the Cells item. The Cells item provides an extremely handy
way of selecting ranges through code. It requires only relative row and column positions as
parameters. So Cells(1,1) translates to row 1, column 1 (or cell A1). Cells(5, 3)
translates to row 5, column 3 (or cell C5). The numeric parameters in the Cells item are
particularly handy when you want to loop through a series of rows or columns using an
incrementing index number.

 6. Step 6 uses the Hyperlinks.Add method to add the sheet name and hyperlinks to the
selected cell. This step feeds the Hyperlinks.Add method the parameters it needs to
build out the hyperlinks.

 7. The last step in the macro loops back to increment the i counter to the next count. When
the i counter reaches a number that equals the count of worksheets in the workbook, the
macro ends.

How to use it
To implement this macro, you can copy and paste it into a standard module:

 1. Activate the Visual Basic Editor by pressing ALT+F11.

 2. Right-click the project/workbook name in the Project window.

 3. Choose Insert➜Module.

 4. Type or paste the code in the newly created module.

99Macro 29: Zooming In and Out of a Worksheet with Double-Click

Macro 29: Zooming In and Out of
a Worksheet with Double-Click
Some spreadsheets are huge. Sometimes, we are forced to shrink the font size down so that we can
see a decent portion of the spreadsheet on the screen. If you find that you are constantly zooming in
and out of a spreadsheet, alternating between scanning large sections of data and reading specific
cells, here is a handy macro that will auto-zoom on double-click.

How it works
With this macro in place, you can double-click on a cell in the spreadsheet to zoom in 200 percent.
Double-click again and Excel zooms back to 100 percent. Obviously, you can change the values and
complexity in the code to fit your needs.

Private Sub Worksheet_BeforeDoubleClick(ByVal Target As Range, Cancel As
Boolean)

‘Check current Zoom state
‘Zoom to 100% if to at 100
‘Zoom 200% if currently at 100
 If ActiveWindow.Zoom <> 100 Then
 ActiveWindow.Zoom = 100
 Else
 ActiveWindow.Zoom = 200
 End If

End Sub

Note that the side effect of double-clicking a cell is that it goes into edit mode. You can
exit edit mode by pressing Esc on your keyboard. If you find it annoying to repeatedly
press Esc when triggering this macro, you can add this statement to the end of the
procedure:

Application.SendKeys (“{ESC}”)

This statement mimics you pressing Esc on your keyboard.

100 Macro 29: Zooming In and Out of a Worksheet with Double-Click

How to use it
To implement this macro, you need to copy and paste it into the Worksheet_BeforeDouble
Click event code window. Placing the macro there allows it to run each time you double-click on
the sheet.

 1. Activate the Visual Basic Editor by pressing ALT+F11.

 2. In the Project window, find your project/workbook name and click the plus sign next to it in
order to see all the sheets.

 3. Click on the sheet from which you want to trigger the code.

 4. Select the BeforeDoubleClick event from the Event drop-down list (see Figure 3-1).

 5. Type or paste the code in the newly created module.

Figure 3-1: Type or paste your code into the Worksheet_BeforeDoubleClick event code window.

101Macro 30: Highlight the Active Row and Column

Macro 30: Highlight the Active Row
and Column
When looking at a table of numbers, it would be nice if Excel automatically highlighted the row and
column you’re on (as demonstrated in Figure 3-2). This effect gives your eyes a lead line up and down
the column as well as left and right across the row.

Figure 3-2: A highlighted row and column makes it easy to track data horizontally and vertically.

The following macro enables the effect you see in Figure 3-2 with just a simple double-click. When
the macro is in place, Excel highlights the row and column for the cell that is active, greatly improv-
ing your ability to view and edit a large grid.

How it works
Take a look at how this macro works:

Private Sub Worksheet_BeforeDoubleClick(ByVal Target As Range, Cancel As
Boolean)

‘Step 1: Declare Variables
 Dim strRange As String

‘Step2: Build the range string
 strRange = Target.Cells.Address & “,” & _
 Target.Cells.EntireColumn.Address & “,” & _
 Target.Cells.EntireRow.Address

‘Step 3: Pass the range string to a Range
 Range(strRange).Select

End Sub

102 Macro 30: Highlight the Active Row and Column

 1. We first declare an object called strRange. This creates a memory container we can use to
build a range string.

 2. A range string is nothing more than the address for a range. “A1” is a range string that points
to cell A1. “A1:G5” is also a range string; this points to a range of cells encompassing cells A1
to G5. In Step 2, we are building a range string that encompasses the double-clicked cell (called
Target in this macro), the entire active row, and the entire active column. The Address
properties for these three ranges are captured and pieced together into the strRange
variable.

 3. In Step 3, we feed the strRange variable as the address for a Range.Select statement.
This is the line of the code that finally highlights the double-clicked selection.

How to use it
To implement this macro, you need to copy and paste it into the Worksheet_BeforeDouble
Click event code window. Placing the macro there allows it to run each time you double-click on
the sheet.

 1. Activate the Visual Basic Editor by pressing ALT+F11.

 2. In the Project window, find your project/workbook name and click the plus sign next to it in
order to see all the sheets.

 3. Click on the sheet from which you want to trigger the code.

 4. Select the BeforeDoubleClick event from the Event drop-down list (see Figure 3-3).

 5. Type or paste the code in the newly created module.

Figure 3-3: Type or paste your code into the Worksheet_BeforeDoubleClick event code window.

PART IV
Selecting and
Modifying Ranges
This Part is all about ranges: selecting them, modifying them, hiding them, and more.

In This Part
Macro 31 Selecting and Formatting a Range ... 105
Macro 32 Creating and Selecting Named Ranges .. 108
Macro 33 Enumerating Through a Range of Cells... 111
Macro 34 Select and Format All Named Ranges ... 113
Macro 35 Inserting Blank Rows in a Range .. 115
Macro 36 Unhide All Rows and Columns ... 117
Macro 37 Deleting Blank Rows .. 118
Macro 38 Deleting Blank Columns ... 120
Macro 39 Select and Format All Formulas in a Workbook ... 122
Macro 40 Find and Select the First Blank Row or Column ... 125
Macro 41 Apply Alternate Color Banding .. 128
Macro 42 Sort a Range on Double-Click .. 130
Macro 43 Limit Range Movement to a Particular Area.. 132
Macro 44 Dynamically Set the Print Area of a Worksheet .. 134

105Macro 31: Selecting and Formatting a Range

One of the most important things you do in Excel is navigating the worksheet. When you work with
Excel manually, you are constantly navigating to appropriate ranges, finding the last row, moving to
the last column, hiding and unhiding ranges, and so on. This all comes instinctively as part of doing
work in Excel.

When you attempt to automate your work through VBA, you’ll find that navigating your spreadsheet
remains an important part of the automation process. In many cases, you need to dynamically navigate
and manipulate Excel ranges, just as you would manually — only through VBA code. This chapter pro-
vides some of the most commonly used macros in terms of navigating and working with ranges.

The code for this Part can be found on this book’s companion website. See this book’s
Introduction for more on the companion website.

Macro 31: Selecting and
Formatting a Range
One of the basic things you need to do in VBA is to select a specific range to do something with it.
This simple macro selects the range D5:D16.

How it works
In this macro, you explicitly define the range to select by using the Range object.

Sub Macro31a()

Range(“D5:D16”).Select

End Sub

After the range of cells is selected, you can use any of the Range properties to manipulate the cells.
We’ve altered this macro so that the range is colored yellow, converted to number formatting, and
bold.

Sub Macro31a()

 Range(“D5:D16”).Select
 Selection.NumberFormat = “#,##0”
 Selection.Font.Bold = True
 Selection.Interior.ColorIndex = 36

End Sub

106 Macro 31: Selecting and Formatting a Range

You don’t have to memorize all the properties of the cell object in order to manipulate
them. You can simply record a macro, do your formatting, and then look at the code
that Excel has written. After you’ve seen what the correct syntax is, you can apply it as
needed. Many Excel programmers start learning VBA this way.

You notice that we refer to Selection many times in the previous sample code. To write more effi-
cient code, you can simply refer to the range, using the With…End With statement. This statement
tells Excel that any action you perform applies to the object to which you’ve pointed. Note that this
macro doesn’t actually select the range at all. This is a key point. In a macro, we can work with a range
without selecting it first.

Sub Macro31a()

 With Range(“D5:D16”)
 .NumberFormat = “#,##0”
 .Font.Bold = True
 .Interior.ColorIndex = 36
 End With

End Sub

Another way you can select a range is by using the Cells item of the Range object.

The Cells item gives us an extremely handy way of selecting ranges through code. It requires only
relative row and column positions as parameters. Cells(5, 4) translates to row 5, column 4 (or
Cell D5). Cells(16, 4) translates to row 16, column 4 (or cell D16).

If you want to select a range of cells, simply pass two items into the Range object. This macro performs
the same selection of range D5:D16:

Sub Macro31a()

Range(Cells(5, 4), Cells(16, 4)).Select

End Sub

Here is the full formatting code using the Cells item. Again, note that this macro doesn’t actually
select the range we are altering. We can work with a range without selecting it first.

107Macro 31: Selecting and Formatting a Range

Sub Macro31a()

 With Range(Cells(5, 4), Cells(16, 4))
 .NumberFormat = “#,##0”
 .Font.Bold = True
 .Interior.ColorIndex = 36
 End With

End Sub

How to use it
To implement this kind of a macro, you can copy and paste it into a standard module:

 1. Activate the Visual Basic Editor by pressing ALT+F11 on your keyboard.

 2. Right-click the project/workbook name in the Project window.

 3. Choose Insert➜Module.

 4. Type or paste the code into the code window.

108 Macro 32: Creating and Selecting Named Ranges

Macro 32: Creating and Selecting
Named Ranges
One of the more useful features in Excel is the ability to name your range (that is, to give your range a
user-friendly name, so that you can more easily identify and refer to it via VBA).

Here are the steps you would perform to create a named range manually.

 1. Select the range you wish to name.

 2. Go to the Formulas tab in the Ribbon and choose the Define Name command (see
Figure 4-1).

 3. Give the chosen range a user-friendly name in the New Name dialog box, as shown in Figure
4-2.

When you click OK, your range is named. To confirm this, you can go to the Formula tab and select the
Name Manager command. This activates the Name Manager dialog box (see Figure 4-3), where you can
see all the applied named ranges.

Figure 4-1: Click the Define Name command to name a chosen range.

109Macro 32: Creating and Selecting Named Ranges

Figure 4-2: Give your range a name.

Figure 4-3: The Name Manager dialog box lists all the applied named ranges.

Creating a named range via VBA is much less involved. You can directly define the Name property of
the Range object:

Sub Macro32a()

Range(“D6:D17”).Name = “MyData”

End Sub

Admittedly, you’d be hard pressed to find a situation where you would need to automate the
creation of named ranges. The real efficiency comes in manipulating them via VBA.

How it works
You simply pass the name of the range through the Range object. This allows you to select the
range:

110 Macro 32: Creating and Selecting Named Ranges

Sub Macro32b()

Range(“MyData”).Select

End Sub

As with normal ranges, you can refer to the range using the With…End With statement. This state-
ment tells Excel that any action you perform applies to the object to which you’ve pointed. This not
only prevents you from having to repeat syntax, but it also allows for the easy addition of actions by
simply adding them between the With and End With statements.

Sub Macro32a()

 With Range(“MyData”)
 .NumberFormat = “#,##0”
 .Font.Bold = True
 .Interior.ColorIndex = 36
 End With

End Sub

How to use it
To implement this kind of a macro, you can copy and paste it into a standard module:

 1. Activate the Visual Basic Editor by pressing ALT+F11.

 2. Right-click the project/workbook name in the Project window.

 3. Choose Insert➜Module.

 4. Type or paste the code.

111Macro 33: Enumerating Through a Range of Cells

Macro 33: Enumerating Through
a Range of Cells
One must-have VBA skill is the ability to enumerate (or loop) through a range. If you do any serious
macro work in Excel, you will soon encounter the need to go through a range of cells one by one and
perform some action.

This basic macro shows you a simple way to enumerate through a range.

How it works
In this macro, we are essentially using two Range object variables. One of the variables captures the
scope of data we are working with, whereas the other is used to hold each individual cell as we go
through the range. Then we use the For Each statement to activate or bring each cell in the target
range into focus:

Sub Macro33()

‘Step1: Declare your variables.
 Dim MyRange As Range
 Dim MyCell As Range

‘Step 2: Define the target Range.
 Set MyRange = Range(“D6:D17”)

‘Step 3: Start looping through the range.
 For Each MyCell In MyRange

‘Step 4: Do something with each cell.

 If MyCell.Value > 3000 Then
 MyCell.Font.Bold = True
 End If

‘Step 5: Get the next cell in the range
 Next MyCell

End Sub

 1. The macro first declares two Range object variables. One, called MyRange, holds the entire
target range. The other, called MyCell, holds each cell in the range as the macro enumer-
ates through them one by one.

112 Macro 33: Enumerating Through a Range of Cells

 2. In Step 2, we fill the MyRange variable with the target range. In this example, we are using
Range(“D6:D17”). If your target range is a named range, you could simply enter its
name — Range(“MyNamedRange”).

 3. In this step, the macro starts looping through each cell in the target range, activating each
cell as it goes through.

 4. After a cell is activated, you would do something with it. That “something” really depends
on the task at hand. You may want to delete rows when the active cell has a certain value,
or you may want to insert a row between each active cell. In this example, the macro is
changing the font to Bold for any cell that has a value greater than 3,000.

 5. In Step 5, the macro loops back to get the next cell. After all cells in the target range are
activated, the macro ends.

How to use it
To implement this macro, you can copy and paste it into a standard module:

 1. Activate the Visual Basic Editor by pressing ALT+F11 on your keyboard.

 2. Right-click the project/workbook name in the Project window.

 3. Choose Insert➜Module.

 4. Type or paste the code.

113Macro 34: Select and Format All Named Ranges

Macro 34: Select and Format
All Named Ranges
If you spend your time auditing other people’s worksheets, you’ll know that Excel users love their
named ranges. It’s not uncommon to encounter spreadsheets where dozens of cells and ranges are
given individual names. This makes auditing a spreadsheet an extremely muddy experience. It some-
times helps to know where the named ranges are. Here is a macro you can use to color all of the
named ranges in a workbook yellow.

How it works
In this macro, we are looping through the Names collection of the active workbook to capture each
named range. When a named range is captured, we color the range.

Sub Macro34()

‘Step 1: Declare your variables.
 Dim RangeName As Name
 Dim HighlightRange As Range

‘Step 2: Tell Excel to Continue if Error.
 On Error Resume Next

‘Step 3: Loop through each Named Range.
 For Each RangeName In ActiveWorkbook.Names

‘Step 4: Capture the RefersToRange
 Set HighlightRange = RangeName.RefersToRange

‘Step 5: Color the Range
 HighlightRange.Interior.ColorIndex = 36

‘Step 6: Loop back around to get the next range
 Next RangeName

End Sub

 1. We first declare two object variables. The first variable called RangeName holds each named
range as the macro enumerates through the Names collection. The second variable called
HighlightRange captures the range to which RangeName is referring.

114 Macro 34: Select and Format All Named Ranges

 2. Technically, an Excel user can assign a “name” to things that are not actually a range (such as
constants or formulas). So with that in mind, we have to anticipate that Excel will throw an
error if the RefersToRange property of the named range does not represent a range
address. In this step, we tell Excel to ignore any error that is thrown and continue to the next
line of code. This ensures that the code doesn’t abruptly stop due to a bad range address.

 3. In this step, the macro starts looping through each name in the active workbooks Names
collection.

 4. After a named range is activated, the macro captures the address in our HighlightRange
object variable. This exposes all the properties we can use to format the range.

 5. In Step 5, we assign a color to the cells in the captured range.

 6. Finally, we loop back to get the next named range. The macro ends after we have
enumerated through all of the names.

How to use it
The best place to store this macro is in your Personal Macro Workbook. This way, the macro is always
available to you. The Personal Macro Workbook is loaded whenever you start Excel. In the VBE Project
window, it will be named personal.xlb.

 1. Activate the Visual Basic Editor by pressing ALT+F11.

 2. Right-click personal.xlb in the Project window.

 3. Choose Insert➜Module.

 4. Type or paste the code.

If you don’t see personal.xlb in your project window, it doesn’t exist yet. You’ll have to record a
macro, using Personal Macro Workbook as the destination.

To record the macro in your Personal Macro Workbook, select the Personal Macro Workbook option
in the Record Macro dialog box before you start recording. This option is in the Store Macro In
drop-down list. Simply record a couple of cell clicks and then stop recording. You can discard the
recorded macro and replace it with this one.

115Macro 35: Inserting Blank Rows in a Range

Macro 35: Inserting Blank Rows in a Range
Occasionally, you may need to dynamically insert rows into your dataset. Although blank rows are
generally bothersome, in some situations, the final formatted version of your report requires them to
separate data. The macro in this section adds blank rows into a range.

How it works
This macro performs a reverse loop through the chosen range using a counter. It starts at the last row
of the range inserting two blank rows, and then moves to the previous row in the range. It keeps
doing that same insert for every loop, each time incrementing the counter to the previous row.

Sub Macro35()

‘Step1: Declare your variables.
 Dim MyRange As Range
 Dim iCounter As Long

‘Step 2: Define the target Range.
 Set MyRange = Range(“C6:D17”)

‘Step 3: Start reverse looping through the range.
 For iCounter = MyRange.Rows.Count To 2 Step -1

‘Step 4: Insert two blank rows.
 MyRange.Rows(iCounter).EntireRow.Insert
 MyRange.Rows(iCounter).EntireRow.Insert

‘Step 5: Increment the counter down
 Next iCounter

End Sub

 1. We first declare two variables. The first variable is an object variable called MyRange. This is
an object variable that defines the target range. The other variable is a Long Integer
variable called iCounter. This variable serves as an incremental counter.

 2. In Step 2, the macro fills the MyRange variable with the target range. In this example, we are
using Range(“C6:D17”). If your target range is a named range, you could simply enter its
name — Range(“MyNamedRange”).

116 Macro 35: Inserting Blank Rows in a Range

 3. In this step, the macro sets the parameters for the incremental counter to start at the max
count for the range (MyRange.Rows.Count) and end at 2 (the second row of the chosen
range). Note that we are using the Step-1 qualifier. Because we specify Step -1, Excel
knows we are going to increment the counter backwards, moving back one increment on
each iteration. In all, Step 3 tells Excel to start at the last row of the chosen range, moving
backward until it gets to the second row of the range.

 4. When working with a range, you can explicitly call out a specific row in the range by passing a
row index number to the Rows collection of the range. For instance, Range(“D6:D17”).
Rows(5) points to the fifth row in the range D6:D17.

 In Step 4, the macro uses the iCounter variable as an index number for the Rows collec-
tion of MyRange. This helps pinpoint which exact row the macro is working with in the cur-
rent loop. The macro then uses the EntireRow.Insert method to insert a new blank
row. Because we want two blank rows, we do this twice.

 5. In Step 5, the macro loops back to increment the counter down.

How to use it
To implement this macro, you can copy and paste it into a standard module:

 1. Activate the Visual Basic Editor by pressing ALT+F11.

 2. Right-click the project/workbook name in the Project window.

 3. Choose Insert➜Module.

 4. Type or paste the code.

117Macro 36: Unhide All Rows and Columns

Macro 36: Unhide All Rows and Columns
When you are auditing a spreadsheet that you did not create, you often want to ensure you’re get-
ting a full view of what is exactly in the spreadsheet. To do so, you need to ensure that no columns
and rows are hidden. This simple macro automatically unhides all rows and columns for you.

How it works
In this macro, we call on the Columns collection and the Rows collection of the worksheet. Each
collection has properties that dictate where their objects are hidden or visible. Running this macro
unhides every column in the Columns collection and every row in the Rows collection.

Sub Macro36()

Columns.EntireColumn.Hidden = False
Rows.EntireRow.Hidden = False

End Sub

How to use it
The best place to store this macro is in your Personal Macro Workbook. This way, the macro is always
available to you. The Personal Macro Workbook is loaded whenever you start Excel. In the VBE Project
window, it is named personal.xlb.

 1. Activate the Visual Basic Editor by pressing ALT+F11.

 2. Right-click personal.xlb in the Project window.

 3. Choose Insert➜Module.

 4. Type or paste the code.

If you don’t see personal.xlb in your project window, it means it doesn’t exist yet. You’ll have to
record a macro, using Personal Macro Workbook as the destination.

To record the macro in your Personal Macro Workbook, select the Personal Macro Workbook option
in the Record Macro dialog box before you start recording. This option is in the Store Macro In
drop-down list. Simply record a couple of cell clicks and then stop recording. You can discard the
recorded macro and replace it with this one.

118 Macro 37: Deleting Blank Rows

Macro 37: Deleting Blank Rows
Work with Excel long enough, and you’ll find out that blank rows can often cause havoc on many
levels. They can cause problems with formulas, introduce risk when copying and pasting, and some-
times cause strange behaviors in PivotTables. If you find that you are manually searching out and
deleting blank rows in your data sets, this macro can help automate that task.

How it works
In this macro, we are using the UsedRange property of the Activesheet object to define the
range we are working with. The UsedRange property gives us a range that encompasses the cells
that have been used to enter data. We then establish a counter that starts at the last row of the used
range to check if the entire row is empty. If the entire row is indeed empty, we remove the row. We
keep doing that same delete for every loop, each time incrementing the counter to the previous row.

Sub Macro37()

‘Step1: Declare your variables.
 Dim MyRange As Range
 Dim iCounter As Long

‘Step 2: Define the target Range.
 Set MyRange = ActiveSheet.UsedRange

‘Step 3: Start reverse looping through the range.
 For iCounter = MyRange.Rows.Count To 1 Step -1

‘Step 4: If entire row is empty then delete it.
 If Application.CountA(Rows(iCounter).EntireRow) = 0 Then
 Rows(iCounter).Delete
 End If

‘Step 5: Increment the counter down
 Next iCounter

End Sub

 1. The macro first declares two variables. The first variable is an Object variable called
MyRange. This is an object variable that defines our target range. The other variable
is a Long Integer variable called iCounter. This variable serves as an incremental
counter.

119Macro 37: Deleting Blank Rows

 2. In Step 2, the macro fills the MyRange variable with the UsedRange property of the
ActiveSheet object. The UsedRange property gives us a range that encompasses the
cells that have been used to enter data. Note that if we wanted to specify an actual range or
a named range, we could simply enter its name — Range(“MyNamedRange”).

 3. In this step, the macro sets the parameters for the incremental counter to start at the max
count for the range (MyRange.Rows.Count) and end at 1 (the first row of the chosen
range). Note that we are using the Step-1 qualifier. Because we specify Step -1, Excel
knows we are going to increment the counter backwards, moving back one increment on
each iteration. In all, Step 3 tells Excel to start at the last row of the chosen range, moving
backward until it gets to the first row of the range.

 4. When working with a range, you can explicitly call out a specific row in the range by passing
a row index number to the Rows collection of the range. For instance,
Range(“D6:D17”).Rows(5) points to the fifth row in the range D6:D17.

 In Step 4, the macro uses the iCounter variable as an index number for the Rows collection
of MyRange. This helps pinpoint which exact row we are working with in the current loop.
The macro checks to see whether the cells in that row are empty. If they are, the macro
deletes the entire row.

 5. In Step 5, the macro loops back to increment the counter down.

How to use it
The best place to store this macro is in your Personal Macro Workbook. This way, the macro is always
available to you. The Personal Macro Workbook is loaded whenever you start Excel. In the VBE Project
window, it is named personal.xlb.

 1. Activate the Visual Basic Editor by pressing ALT+F11.

 2. Right-click personal.xlb in the Project window.

 3. Choose Insert➜Module.

 4. Type or paste the code.

If you don’t see personal.xlb in your project window, it means it doesn’t exist yet. You’ll have to
record a macro, using Personal Macro Workbook as the destination.

To record the macro in your Personal Macro Workbook, select the Personal Macro Workbook option
in the Record Macro dialog box before you start recording. This option is in the Store Macro In
drop-down list. Simply record a couple of cell clicks and then stop recording. You can discard the
recorded macro and replace it with this one.

120 Macro 38: Deleting Blank Columns

Macro 38: Deleting Blank Columns
Just as with blank rows, blank columns also have the potential of causing unforeseen errors. If you
find that you are manually searching out and deleting blank columns in your data sets, this macro
can automate that task.

How it works
In this macro, we are using the UsedRange property of the ActiveSheet object to define the
range we are working with. The UsedRange property gives us a range that encompasses the cells
that have been used to enter data. We then establish a counter that starts at the last column of the
used range, checking if the entire column is empty. If the entire column is indeed empty, we remove
the column. We keep doing that same delete for every loop, each time incrementing the counter to
the previous column.

Sub Macro38()

‘Step1: Declare your variables.
 Dim MyRange As Range
 Dim iCounter As Long

‘Step 2: Define the target Range.
 Set MyRange = ActiveSheet.UsedRange

‘Step 3: Start reverse looping through the range.
 For iCounter = MyRange.Columns.Count To 1 Step -1

‘Step 4: If entire column is empty then delete it.
 If Application.CountA(Columns(iCounter).EntireColumn) = 0 Then
 Columns(iCounter).Delete
 End If

‘Step 5: Increment the counter down
 Next iCounter

End Sub

 1. Step 1 first declares two variables. The first variable is an object variable called MyRange.
This is an Object variable that defines the target range. The other variable is a Long
Integer variable called iCounter. This variable serves as an incremental counter.

121Macro 38: Deleting Blank Columns

 2. Step 2 fills the MyRange variable with the UsedRange property of the ActiveSheet
object. The UsedRange property gives us a range that encompasses the cells that have
been used to enter data. Note that if we wanted to specify an actual range or a named range,
we could simply enter its name — Range(“MyNamedRange”).

 3. In this step, the macro sets the parameters for our incremental counter to start at the max
count for the range (MyRange.Columns.Count) and end at 1 (the first row of the chosen
range). Note that we are using the Step-1 qualifier. Because we specify Step -1, Excel
knows we are going to increment the counter backwards; moving back one increment on
each iteration. In all, Step 3 tells Excel that we want to start at the last column of the chosen
range, moving backward until we get to the first column of the range.

 4. When working with a range, you can explicitly call out a specific column in the range by
passing a column index number to the Columns collection of the range. For instance,
Range(“A1:D17”).Columns(2) points to the second column in the range (column B).

 In Step 4, the macro uses the iCounter variable as an index number for the Columns
collection of MyRange. This helps pinpoint exactly which column we are working with in
the current loop. The macro checks to see whether all the cells in that column are empty. If
they are, the macro deletes the entire column.

 5. In Step 5, the macro loops back to increment the counter down.

How to use it
The best place to store this macro is in your Personal Macro Workbook. This way, the macro is always
available to you. The Personal Macro Workbook is loaded whenever you start Excel. In the VBE Project
window, it is named personal.xlb.

 1. Activate the Visual Basic Editor by pressing ALT+F11.

 2. Right-click personal.xlb in the Project window.

 3. Choose Insert➜Module.

 4. Type or paste the code.

If you don’t see personal.xlb in your project window, it doesn’t exist yet. You’ll have to record a
macro, using Personal Macro Workbook as the destination.

To record the macro in your Personal Macro Workbook, select the Personal Macro Workbook option
in the Record Macro dialog box before you start recording. This option is in the Store Macro In
drop-down box. Simply record a couple of cell clicks and then stop recording. You can discard the
recorded macro and replace it with this one.

122 Macro 39: Select and Format All Formulas in a Workbook

Macro 39: Select and Format All
Formulas in a Workbook
When auditing an Excel workbook, it’s paramount to have a firm grasp of all the formulas in each
sheet. This means finding all the formulas, which can be an arduous task if done manually. However,
Excel provides us with a slick way of finding and tagging all the formulas on a worksheet. The macro
in this section exploits this functionality to dynamically find all cells that contain formulas.

How it works
Excel has a set of predefined “special cells” that you can select by using the Go To Special dialog box.
To select special cells manually, go to the Home tab on the Ribbon and select Go To Special. This
brings up the Go To Special dialog box shown in Figure 4-4. Here, you can select a set of cells based
on a few defining attributes. One of those defining attributes is formulas. Selecting the Formulas
option effectively selects all cells that contain formulas.

Figure 4-4: The Go To Special dialog box.

This macro programmatically does the same thing for the entire workbook at the same time. Here,
we are using the SpecialCells method of the Cells collection. The SpecialCells method
requires type parameter that represents the type of special cell. In this case, we are using xlCell-
TypeFormulas.

In short, we are referring to a special range that consists only of cells that contain formulas. We refer
to this special range using the With…End With statement. This statement tells Excel that any
action you perform applies only to the range to which you’ve pointed. Here, we are coloring the inte-
rior of the cells in the chosen range.

123Macro 39: Select and Format All Formulas in a Workbook

Sub Macro39()

‘Step 1: Declare your Variables
 Dim ws As Worksheet

‘Step 2: Avoid Error if no formulas are found
 On Error Resume Next

‘Step 3: Start looping through worksheets
 For Each ws In ActiveWorkbook.Worksheets

‘Step 4: Select cells and highlight them
 With ws.Cells.SpecialCells(xlCellTypeFormulas)
 .Interior.ColorIndex = 36
 End With

‘Step 5: Get next worksheet
 Next ws

End Sub

 1. Step 1 declares an object called ws. This creates a memory container for each worksheet the
macro loops through.

 2. If the spreadsheet contains no formulas, Excel throws an error. To avoid the error, we tell
Excel to continue with the macro if an error is triggered.

 3. Step 3 begins the looping, telling Excel to evaluate all worksheets in the active workbook.

 4. In this Step, the macro selects all cells containing formulas, and then formats them.

 5. In Step 5, we loop back to get the next sheet. After all of the sheets are evaluated, the macro
ends.

How to use it
The best place to store this macro is in your Personal Macro Workbook. This way, the macro is always
available. The Personal Macro Workbook is loaded whenever you start Excel. In the VBE Project win-
dow, it’s named personal.xlb.

 1. Activate the Visual Basic Editor by pressing ALT+F11.

 2. Right-click personal.xlb in the Project window.

 3. Choose Insert➜Module.

 4. Type or paste the code.

124 Macro 39: Select and Format All Formulas in a Workbook

If you don’t see personal.xlb in your project window, it doesn’t exist yet. You’ll have to record a
macro, using Personal Macro Workbook as the destination.

To record the macro in your Personal Macro Workbook, select the Personal Macro Workbook option
in the Record Macro dialog box before you start recording. This option is in the Store Macro In
drop-down list. Simply record a couple of cell clicks and then stop recording. You can discard the
recorded macro and replace it with this one.

125Macro 40: Find and Select the First Blank Row or Column

Macro 40: Find and Select the
First Blank Row or Column
You may often run across scenarios where you have to append rows or columns to an existing data
set. When you need to append rows, you will need to be able to find the last used row and then
move down to the next empty cell. Likewise, in situations where you need to append columns, you
need to be able to find the last used column and then move over the next empty cell. The macros in
this section allow you to dynamically find and select the first blank row or column. They are meant to
be used in conjunction with other macros. After all, these macros simply find and select the first
blank row or column.

How it works
These macros both use the Cells item and the Offset property as key navigation tools.

The Cells item belongs to the Range object. It gives us an extremely handy way of selecting ranges
through code. It requires only relative row and column positions as parameters. Cells(5,4) trans-
lates to row 5, column 4 (or Cell D5). Cells(16, 4) translates to row 16, column 4 (or cell D16).

In addition to passing hard numbers to the Cells item, you can also pass expressions.

Cells(Rows.Count, 1) is the same as selecting the last row in the spreadsheet and the first col-
umn in the spreadsheet. In Excel 2010, that essentially translates to cell A1048576.

Cells(1, Columns.Count) is the same as selecting the first row in the spreadsheet and the last
column in the spreadsheet. In Excel 2010, that translates to cell XFD1.

Combining the Cells statement with the End property allows you to jump to the last used row or
column. This statement is equivalent to going to cell A1048576 and pressing Ctrl+Shift+Up Arrow on
the keyboard. When you run this, Excel automatically jumps to the last used row in column A.

Cells(Rows.Count, 1).End(xlUp).Select

Running this statement is equivalent to going to cell XFD1 and pressing Ctrl+Shift+Left Arrow on the
keyboard. This gets you to the last used column in row 1.

Cells(1, Columns.Count).End(xlToLeft).Select

When you get to the last used row or column, you can use the Offset property to move down or
over to the next blank row or column.

The Offset property uses a row and column index to specify a changing base point.

126 Macro 40: Find and Select the First Blank Row or Column

For example, this statement selects cell A2 because the row index in the offset is moving the row
base point by one:

Range(“A1”).Offset(1, 0).Select

This statement selects cell C4 because the row and column indexes move the base point by three
rows and two columns:

Range(“A1”).Offset(3, 2).Select

Pulling all these concepts together, we can create a macro that selects the first blank row or column.

This macro selects the first blank row.

Sub Macro40a()

‘Step 1: Declare Your Variables.
 Dim LastRow As Long

‘Step 2: Capture the last used row number.
 LastRow = Cells(Rows.Count, 1).End(xlUp).Row

‘Step 3: Select the next row down
 Cells(LastRow, 1).Offset(1, 0).Select

End Sub

 1. Step 1 first declares a Long Integer variable called LastRow to hold the row number of
the last used row.

 2. In Step 2, we capture the last used row by starting at the very last row in the worksheet and
using the End property to jump up to the first non-empty cell (the equivalent of going to cell
A1048576 and pressing Ctrl+Shift+Up Arrow on the keyboard).

 3. In this step, we use the Offset property to move down one row and select the first blank
cell in column A.

127Macro 40: Find and Select the First Blank Row or Column

This macro selects the first blank column:

Sub Macro40b()

‘Step 1: Declare Your Variables.
 Dim LastColumn As Long

‘Step 2: Capture the last used column number.
 LastColumn = Cells(5, Columns.Count).End(xlToLeft).Column

‘Step 3: Select the next column over
 Cells(5, LastColumn).Offset(0, 1).Select

End Sub

 1. We first declare a Long Integer variable called LastColumn to hold the column num-
ber of the last used column.

 2. In Step 2, we capture the last used column by starting at the very last column in the work-
sheet and using the End property to jump up to the first non-empty column (the equivalent
of going to cell XFD5 and pressing Ctrl+Shift+Left Arrow on the keyboard).

 3. In this step, we use the Offset property to move over one column and select the first blank
column in row 5.

How to use it
You can implement these macros by pasting them into a standard module:

 1. Activate the Visual Basic Editor by pressing ALT+F11.

 2. Right-click the project/workbook name in the Project window.

 3. Choose Insert➜Module.

 4. Type or paste the code.

128 Macro 41: Apply Alternate Color Banding

Macro 41: Apply Alternate Color Banding
Color banding is an effect where each row of a data set is colored in alternating shades (see Figure
4-5). You would typically apply alternating row colors to reports you distribute to people who need
to review each row of data. Color banding makes the data a little easier to read. This macro allows
you to automatically apply alternating colors to each row in the selected range.

Figure 4-5: Color banding helps make your data sets easier to read.

How it works
In this macro, we are essentially using two Range object variables. One of the variables captures the
scope of data we are working with, whereas the other is used to hold each individual cell as we go
through the range. Then we use the For Each statement to activate or bring each cell in the target
range into focus. When each row is in focus, we use the Offset property to evaluate the color index of
the previous row. If the color index is white, we apply the alternate green color index.

Sub Macro41()

‘Step1: Declare your variables.
 Dim MyRange As Range
 Dim MyRow As Range

‘Step 2: Define the target Range.
 Set MyRange = Selection

‘Step 3: Start looping through the range.
 For Each MyRow In MyRange.Rows

‘Step 4: Check if the row is an even number.
 If MyRow.Row Mod 2 = 0 Then

‘Step 5: Apply appropriate alternate color.
 MyRow.Interior.ColorIndex = 35
 Else

129Macro 41: Apply Alternate Color Banding

 MyRow.Interior.ColorIndex = 2
 End If

‘Step 6: Loop back to get next row.
 Next MyRow

End Sub

 1. We first declare two Range object variables. One, called MyRange, holds the entire target
range. The other, called MyCell, holds each cell in the range as the macro enumerates
through them one by one.

 2. Step 2 fills the MyRange variable with the target range. In this example, we are using the
selected range — the range that was selected on the spreadsheet. You can easily set the
MyRange variable to a specific range such as Range(“A1:Z100”). Also, if your target
range is a named range, you could simply enter its name: Range(“MyNamedRange”).

 3. In this step, the macro starts through each cell in the target range, activating each cell as it
goes through.

 4. When a cell is activated, we determine if the current row is an even row number.

 5. If the row number is indeed even, the macro uses the alternate green color index 35. If not, it
uses the color index 2.

 6. In Step 6, the macro loops back to get the next cell. After all of the cells in the target range
are activated, the macro ends.

How to use it
The best place to store this macro is in your Personal Macro Workbook. This way, the macro is always
available to you. The Personal Macro Workbook is loaded whenever you start Excel. In the VBE Project
window, it will be named personal.xlb.

 1. Activate the Visual Basic Editor by pressing ALT+F11.

 2. Right-click personal.xlb in the Project window.

 3. Choose Insert➜Module.

 4. Type or paste the code.

If you don’t see personal.xlb in your project window, it doesn’t exist yet. You’ll have to record a
macro, using Personal Macro Workbook as the destination.

To record the macro in your Personal Macro Workbook, select the Personal Macro Workbook option
in the Record Macro dialog box before you start recording. This option is in the Store Macro In
drop-down list. Simply record a couple of cell clicks and then stop recording. You can discard the
recorded macro and replace it with this one.

130 Macro 42: Sort a Range on Double-Click

Macro 42: Sort a Range on Double-Click
When you distribute your Excel reports to your customers, it’s often nice to add a few bells and whistles.
One of the easier enhancements to apply is the ability to sort when a column header is double-clicked.
Although this may sound complicated, it’s relatively easy with this macro.

How it works
In this macro, we first find the last non-empty row (using the concepts outlined in this chapter under
“Macro 40: Find and Select the First Blank Row or Column”). We then use that row number to define
the target range of rows we need to sort. Using the Sort method, we sort the target rows by the col-
umn we doubled-clicked.

Double-clicking will put Excel in Edit mode, which you can cancel by pressing Esc.

Private Sub Worksheet_BeforeDoubleClick(ByVal Target As Range, Cancel As
Boolean)

‘Step 1: Declare your Variables
 Dim LastRow As Long

‘Step 2: Find last non-empty row
 LastRow = Cells(Rows.Count, 1).End(xlUp).Row

‘Step 3: Sort ascending on double-clicked column
 Rows(“6:” & LastRow).Sort _
 Key1:=Cells(6, ActiveCell.Column), _
 Order1:=xlAscending

End Sub

 1. We first declare a Long Integer variable called LastRow to hold the row number of the
last non-empty row.

 2. In Step 2, we capture the last non-empty row by starting at the very last row in the worksheet
and using the End property to jump up to the first non-empty cell (equivalent of going to
cell A1048576 and pressing Ctrl+Shift+Up Arrow on the keyboard).

131Macro 42: Sort a Range on Double-Click

 Note that you need to change the column number in this cell to one that is appropriate for
your data set. That is to say, if your table starts on Column J, you would need to change the
statement in Step 2 to Cells(Rows.Count, 10).End(xlUp).Row because column J
is the tenth column in the worksheet.

 3. In this step, we define the total row range for our data. Keep in mind that the range of
rows has to start with the first row of data (excluding headers) and end with the last non-
empty row. In this case, our data set starts on row 6. So we use the Sort method on
Rows(“6:” & LastRow). The Key argument here tells Excel which range to sort on.

 Again, you will want to ensure the range you use here starts with the first row of data
(excluding the headers).

How to use it
To implement this macro, you need to copy and paste it into the Worksheet_BeforeDouble
Click event code window. Placing the macro there allows it to run each time you double-click on
the sheet.

 1. Activate the Visual Basic Editor by pressing ALT+F11.

 2. In the Project window, find your project/workbook name and click the plus sign next to it in
order to see all the sheets.

 3. Click on the sheet from which you want to trigger the code.

 4. Select the BeforeDoubleClick event from the Event drop-down list (see Figure 4-6).

 5. Type or paste the code.

Figure 4-6: Type or paste your code in the Worksheet BeforeDoubleClick event code window.

132 Macro 43: Limit Range Movement to a Particular Area

Macro 43: Limit Range Movement
to a Particular Area
Excel gives you the ability to limit the range of cells that a user can scroll through. The macro we
demonstrate here is something you can easily implement today.

How it works
Excel’s ScrollArea property allows you to set the scroll area for a particular worksheet. For
instance, this statement sets the scroll area on Sheet1 so the user cannot activate any cells outside
of A1:M17.

Sheets(“Sheet1”).ScrollArea = “A1:M17”

Because this setting is not saved with a workbook, you’ll have to reset it each time the workbook is
opened. You can accomplish this by implementing this statement in the Workbook_Open event:

Private Sub Worksheet_Open()
Sheets(“Sheet1”).ScrollArea = “A1:M17”End Sub

If for some reason you need to clear the scroll area limits, you can remove the restriction with this
statement:

ActiveSheet.ScrollArea = “”

How to use it
To implement this macro, you need to copy and paste it into the Workbook_Open event code win-
dow. Placing the macro here allows it to run each time the workbook opens.

 1. Activate the Visual Basic Editor by pressing ALT+F11.

 2. In the Project window, find your project/workbook name and click the plus sign next to it in
order to see all the sheets.

133Macro 43: Limit Range Movement to a Particular Area

 3. Click ThisWorkbook.

 4. Select the Open event in the Event drop-down list (see Figure 4-7).

 5. Type or paste the code.

Figure 4-7: Type or paste your code in the Workbook Open event code window.

134 Macro 44: Dynamically Set the Print Area of a Worksheet

Macro 44: Dynamically Set the
Print Area of a Worksheet
In certain situations, you may find yourself constantly adding data to your spreadsheets. When you
do, you may have to constantly resize the print area of the worksheet to encapsulate any new data
that you’ve added. Why keep doing this manually when you can implement a macro to dynamically
adjust the print area to capture any new data you’ve added?

How it works
In this simple macro, we use the PrintArea property to define the range of cells that will be
included when printing. As you can see, we are simply feeding the PrintArea property with the
address of the UsedRange property. The UsedRange property gives us a range that encompasses
the cells that have been used to enter data.

To keep this dynamic, we implement the code in the worksheet’s Change event:

Private Sub Worksheet_Change(ByVal Target As Range)
ActiveSheet.PageSetup.PrintArea = ActiveSheet.UsedRange.Address
End Sub

How to use it
To implement this macro, you need to copy and paste it into the Worksheet_Change event code
window. Placing the macro here allows it to run each time you double-click on the sheet.

 1. Activate the Visual Basic Editor by pressing ALT+F11.

 2. In the Project window, find your project/workbook name and click the plus sign next to it in
order to see all the sheets.

 3. Click on the sheet in which you want to trigger the code.

 4. Select the Change event from the Event drop-down list (see Figure 4-8).

 5. Type or paste the code.

135Macro 44: Dynamically Set the Print Area of a Worksheet

Figure 4-8: Type or paste your code in the Worksheet_Change event code window.

136 Part IV: Selecting and Modifying Ranges

PART V
Working with Data
This Part is all about managing data: cleaning it up, formatting it, and more.

In This Part
Macro 45 Copy and Paste a Range ... 139
Macro 46 Convert All Formulas in a Range to Values... 141
Macro 47 Perform the Text to Columns Command on All Columns 143
Macro 48 Convert Trailing Minus Signs ... 147
Macro 49 Trim Spaces from All Cells in a Range .. 150
Macro 50 Truncate ZIP Codes to the Left Five .. 152
Macro 51 Padding Cells with Zeros .. 155
Macro 52 Replace Blanks Cells with a Value .. 158
Macro 53 Append Text to the Left or Right of Your Cells .. 161
Macro 54 Create a Super Data Cleanup Macro .. 163
Macro 55 Clean Up Non-Printing Characters .. 166
Macro 56 Highlight Duplicates in a Range of Data ... 168
Macro 57 Hide All Rows but Those Containing Duplicate Data 170
Macro 58 Selectively Hide AutoFilter Drop-down Arrows ... 172
Macro 59 Copy Filtered Rows to a New Workbook ... 175
Macro 60 Create a New Sheet for Each Item in an AutoFilter ... 177
Macro 61 Show Filtered Columns in the Status Bar .. 183

139Macro 45: Copy and Paste a Range

When working with information in Excel, you often have to transform the data in some way.
Transforming it generally means cleaning, standardizing, or shaping data in ways that are appropri-
ate for your work. This can mean anything from cleaning out extra spaces, to padding numbers with
zeros, to filtering data for certain criteria.

The macros in this Part shows you some of the more useful macros you can use to dynamically trans-
form the data in your workbooks. If you like, you can combine these macros into one,
running each piece of code in a sequence that essentially automates the scrubbing and shaping of
your data.

The code for this Part can be found on this book’s companion website. See this book’s
Introduction for more on the companion website.

Macro 45: Copy and Paste a Range
One of the basic data manipulation skills you’ll need to learn is copying and pasting a range of data.
It’s fairly easy to do this manually. Luckily, it’s just as easy to copy and paste via VBA.

How it works
In this macro, we use the Copy method of the Range object to copy data from D6:D17 and paste to
L6:L17. Note the use of the Destination argument. This argument tells Excel where to paste the
data.

Sub Macro45a()

Sheets(“Sheet1”).Range(“D6:D17”).Copy _
Destination:=Sheets(“Sheet1”).Range(“L6:L17”)

End Sub

When working with your spreadsheet, you likely often have to copy formulas and paste them as
values. To do this in a macro, you can use the PasteSpecial method. In this example, we copy the
formulas F6:F17 to M6:M17. Notice that we are not only pasting as values using xlPasteValues,
but we are also using xlPasteFormats to apply the formatting from the copied range.

Sub Macro45b()

Sheets(“Sheet1”).Range(“F6:F17”).Copy
Sheets(“Sheet1”).Range(“M6:M17”).PasteSpecial xlPasteValues
Sheets(“Sheet1”).Range(“M6:M17”).PasteSpecial xlPasteFormats

End Sub

140 Macro 45: Copy and Paste a Range

Keep in mind that the ranges specified here are for demonstration purposes. Alter the
ranges to suit the data in your worksheet.

How to use it
To implement this macro, you can copy and paste it into a standard module:

 1. Activate the Visual Basic Editor by pressing ALT+F11 on your keyboard.

 2. Right-click the project/workbook name in the Project window.

 3. Choose Insert➜Module.

 4. Type or paste the code.

141Macro 46: Convert All Formulas in a Range to Values

Macro 46: Convert All Formulas
in a Range to Values
In some situations, you may want to apply formulas in a certain workbook, but you don’t necessarily
want to keep or distribute the formulas with your workbook. In these situations, you may want to
convert all the formulas in a given range to values.

How it works
In this macro, we essentially use two Range object variables. One of the variables captures the scope
of data we are working with, whereas the other is used to hold each individual cell as we go through
the range. Then we use the For Each statement to activate or bring each cell in the target range
into focus. Every time a cell is activated, we check to see whether the cell contains a formula. If it
does, we replace the formula with the value that is shown in the cell.

Sub Macro46()

‘Step 1: Declare your variables
 Dim MyRange As Range
 Dim MyCell As Range

‘Step 2: Save the Workbook before changing cells?
 Select Case MsgBox(“Can’t Undo this action. “ & _
 “Save Workbook First?”, vbYesNoCancel)
 Case Is = vbYes
 ThisWorkbook.Save

 Case Is = vbCancel
 Exit Sub
 End Select

‘Step 3: Define the target Range.
 Set MyRange = Selection

‘Step 4: Start looping through the range.
 For Each MyCell In MyRange

‘Step 5: If cell has formula, set to the value shown.
 If MyCell.HasFormula Then
 MyCell.Formula = MyCell.Value
 End If

142 Macro 46: Convert All Formulas in a Range to Values

‘Step 6: Get the next cell in the range
 Next MyCell
End Sub

 1. Step 1 declares two Range object variables, one called MyRange to hold the entire target
range, and the other called MyCell to hold each cell in the range as we enumerate through
them one by one.

 2. When you run a macro, it destroys the undo stack. This means you can’t undo the changes a
macro makes. Because we are actually changing data, we need to give ourselves the option of
saving the workbook before running the macro. This is what Step 2 does.

 Here, we call up a message box that asks if we want to save the workbook first. It then gives
us three choices: Yes, No, and Cancel. Clicking Yes saves the workbook and continues with
the macro. Clicking Cancel exits the procedure without running the macro. Clicking No runs
the macro without saving the workbook.

 3. Step 3 fills the MyRange variable with the target range. In this example, we use the selected
range — the range that was selected on the spreadsheet. You can easily set the MyRange
variable to a specific range such as Range(“A1:Z100”). Also, if your target range is a
named range, you can simply enter its name: Range(“MyNamedRange”).

 4. This step starts looping through each cell in the target range, activating each cell as it goes
through.

 5. After a cell is activated, the macro uses the HasFormula property to check whether the cell
contains a formula. If it does, we set the cell to equal the value that is shown in the cell. This
effectively replaces the formula with a hard-coded value.

 6. Step 6 loops back to get the next cell. After all cells in the target range are activated, the
macro ends.

How to use it
To implement this macro, you can copy and paste it into a standard module:

 1. Activate the Visual Basic Editor by pressing ALT+F11 on your keyboard.

 2. Right-click the project/workbook name in the Project window.

 3. Choose Insert➜Module.

 4. Type or paste the code.

143Macro 47: Perform the Text to Columns Command on All Columns

Macro 47: Perform the Text to Columns
Command on All Columns
When you import data from other sources, you may sometimes wind up with cells where the number
values are formatted as text. You typically recognize this problem because no matter what you do,
you can’t format the numbers in these cells to numeric, currency, or percentage formats. You may
also see a smart tag on the cells (see Figure 5-1) that tells you the cell is formatted as text.

Figure 5-1: Imported numbers are sometimes formatted as text.

It’s easy enough to fix this manually by clicking on the Text to Columns command on the Data tab
(Figure 5-2). This opens the Text to Columns dialog box shown in Figure 5-3. There is no need to go
through all the steps in this Wizard; simply click the Finish button to apply the fix.

Figure 5-2: Click on the Text to Columns command.

144 Macro 47: Perform the Text to Columns Command on All Columns

Figure 5-3: Clicking finish on the Text to Columns dialog box corrects incorrectly formatted numbers.

Again, this is a fairly simple action. The problem, however, is that Excel doesn’t let you perform the
Text to Columns fix on multiple columns. You have to apply this fix one column at a time. This can be
a real nuisance if you’ve got this issue in many columns.

Here is where a simple macro can help you save your sanity.

How it works
In this macro, we use two Range object variables to go through our target range, leveraging the
For Each statement to activate each cell in the target range. Every time a cell is activated, we simply
reset the value of the cell. This in effect does the same thing as the Text to Columns command.

Sub Macro47()

‘Step 1: Declare your variables
 Dim MyRange As Range
 Dim MyCell As Range

‘Step 2: Save the Workbook before changing cells?
 Select Case MsgBox(“Can’t Undo this action. “ & _
 “Save Workbook First?”, vbYesNoCancel)
 Case Is = vbYes

145Macro 47: Perform the Text to Columns Command on All Columns

 ThisWorkbook.Save

 Case Is = vbCancel
 Exit Sub
 End Select

‘Step 3: Define the target Range.
 Set MyRange = Selection

‘Step 4: Start looping through the range.
 For Each MyCell In MyRange

‘Step 5: Reset the cell value.
 If Not IsEmpty(MyCell) Then
 MyCell.Value = MyCell.Value
 End If

‘Step 6: Get the next cell in the range
 Next MyCell

End Sub

 1. Step 1 declares two Range object variables, one called MyRange to hold the entire target
range, and the other called MyCell to hold each cell in the range as the macro enumerates
through them one by one.

 2. When you run a macro, it destroys the undo stack. This means you can’t undo the changes a
macro makes. Because the macro is actually changing data, we need to give ourselves the
option of saving the workbook before running the macro. This is what Step 2 does. Here, we
call up a message box that asks if we want to save the workbook first. It gives us three
choices: Yes, No, and Cancel. Clicking Yes saves the workbook and continues with the macro.
Clicking Cancel exits the procedure without running the macro. Clicking No runs the macro
without saving the workbook.

 3. Step 3 fills the MyRange variable with the target range. In this example, we are using the
selected range — the range that was selected on the spreadsheet. You can easily set the
MyRange variable to a specific range such as Range(“A1:Z100”). Also, if your target
range is a named range, you can simply enter its name: Range(“MyNamedRange”).

146 Macro 47: Perform the Text to Columns Command on All Columns

 4. Step 4 starts looping through each cell in the target range, activating each cell as we go
through.

 5. After a cell is activated, the macro uses the IsEmpty function to make sure the cell is not
empty. We do this to save a little on performance by skipping the cell if there is nothing in it.
We then simply reset the cell to its own value. This removes any formatting mismatch.

 6. Step 6 loops back to get the next cell. After all cells in the target range are activated, the
macro ends.

How to use it
To implement this macro, you can copy and paste it into a standard module:

 1. Activate the Visual Basic Editor by pressing ALT+F11 on your keyboard.

 2. Right-click the project/workbook name in the Project window.

 3. Choose Insert➜Module.

 4. Type or paste the code.

147Macro 48: Convert Trailing Minus Signs

Macro 48: Convert Trailing Minus Signs
Legacy and mainframe systems are notorious for outputting trailing minus signs. In other words,
instead of a number like -142, some systems output 142-. This obviously wreaks havoc on your
spreadsheet — especially if you need to perform mathematic operations on the data. This nifty
macro goes through a target range and fixes all the negative minus signs so that they show up in
front of the number instead of at the end.

How it works
In this macro, we use two Range object variables to go through our target range, leveraging the
For Each statement to activate each cell in the target range. Every time a cell is activated, we con-
vert the value of the cell into a Double numeric data type by using the Cdbl function. The Double
data type forces any negative signs to show at the front of the number.

Sub Macro48()

‘Step 1: Declare your variables
 Dim MyRange As Range
 Dim MyCell As Range

‘Step 2: Save the Workbook before changing cells?
 Select Case MsgBox(“Can’t Undo this action. “ & _
 “Save Workbook First?”, vbYesNoCancel)
 Case Is = vbYes
 ThisWorkbook.Save

 Case Is = vbCancel
 Exit Sub
 End Select

‘Step 3: Define the target Range.
 Set MyRange = Selection

‘Step 4: Start looping through the range.
 For Each MyCell In MyRange

‘Step 5: Convert the value to a Double.
 If IsNumeric(MyCell) Then
 MyCell = CDbl(MyCell)
 End If

148 Macro 48: Convert Trailing Minus Signs

‘Step 6: Get the next cell in the range
 Next MyCell

End Sub

 1. Step 1 declares two Range object variables, one called MyRange to hold the entire target
range, and the other called MyCell to hold each cell in the range as we enumerate through
them one by one.

 2. When you run a macro, it destroys the undo stack. This means you can’t undo the changes a
macro makes. Because we are actually changing data, we need to give ourselves the option
of saving the workbook before running the macro. This is what Step 2 does. Here, we call up
a message box that asks if we want to save the workbook first. It then gives us three choices:
Yes, No, and Cancel. Clicking Yes saves the workbook and continues with the macro. Clicking
Cancel exits the procedure without running the macro. Clicking No runs the macro without
saving the workbook.

 3. Step 3 fills the MyRange variable with the target range. In this example, we are using the
selected range — the range that was selected on the spreadsheet. You can easily set the
MyRange variable to a specific range such as Range(“A1:Z100”). Also, if your target
range is a named range, you can simply enter its name — Range(“MyNamedRange”).

 4. Step 4 starts looping through each cell in the target range, activating each cell as it goes
through.

 5. After a cell is activated, Step 5 uses the IsNumeric function to check to see if the value can
be evaluated as a number. This is to ensure we don’t affect textual fields. We then pass the
cell’s value through the Cdbl function. This effectively converts the value to the Double
numeric data type, forcing the minus sign to the front.

 6. Step 6 loops back to get the next cell. After all cells in the target range are activated, the
macro ends.

Because we define the target range as the current selection, you want to be sure to
select the area where your data exists before running this code. In other words, you
wouldn’t want to select the entire worksheet. Otherwise, every empty cell in the spread-
sheet would be filled with a zero. Of course, you can ensure this is never a problem by
explicitly defining the target range, such as Set MyRange = Range(“A1:Z100”).

149Macro 48: Convert Trailing Minus Signs

How to use it
To implement this macro, you can copy and paste it into a standard module:

 1. Activate the Visual Basic Editor by pressing ALT+F11.

 2. Right-click the project/workbook name in the Project window.

 3. Choose Insert➜Module.

 4. Type or paste the code.

150 Macro 49: Trim Spaces from All Cells in a Range

Macro 49: Trim Spaces from
All Cells in a Range
A frequent problem when you import dates from other sources is leading or trailing spaces. That is,
the values that are imported have spaces at the beginning or end of the cell. This obviously makes it
difficult to do things like VLOOKUP or sorting. Here is a macro that makes it easy to search for and
remove extra spaces in your cells.

How it works
In this macro, we enumerate through a target range, passing each cell in that range through the
Trim function.

Sub Macro49()

‘Step 1:Declare your variables
 Dim MyRange As Range
 Dim MyCell As Range

‘Step 2: Save the Workbook before changing cells?
 Select Case MsgBox(“Can’t Undo this action. “ & _
 “Save Workbook First?”, vbYesNoCancel)
 Case Is = vbYes
 ThisWorkbook.Save

 Case Is = vbCancel
 Exit Sub
 End Select

‘Step 3: Define the target Range.
 Set MyRange = Selection

‘Step 4: Start looping through the range.
 For Each MyCell In MyRange

‘Step 5: Trim the Spaces.
 If Not IsEmpty(MyCell) Then
 MyCell = Trim(MyCell)
 End If

151Macro 49: Trim Spaces from All Cells in a Range

‘Step 6: Get the next cell in the range
 Next MyCell

End Sub

 1. Step 1 declares two Range object variables, one called MyRange to hold the entire target
range, and the other called MyCell to hold each cell in the range as the macro enumerates
through them one by one.

 2. When you run a macro, it destroys the undo stack. You can’t undo the changes a macro
makes. Because we are actually changing data, we need to give ourselves the option of sav-
ing the workbook before running the macro. Step 2 does this. Here, we call up a message
box that asks if we want to save the workbook first. It then gives us three choices: Yes, No,
and Cancel. Clicking Yes saves the workbook and continues with the macro. Clicking Cancel
exits the procedure without running the macro. Clicking No runs the macro without saving
the workbook.

 3. Step 3 fills the MyRange variable with the target range. In this example, we are using the
selected range — the range that was selected on the spreadsheet. You can easily set the
MyRange variable to a specific range such as Range(“A1:Z100”). Also, if your target
range is a named range, you can simply enter its name — Range(“MyNamedRange”).

 4. Step 4 starts looping through each cell in the target range, activating each cell as we go
through.

 5. After a cell is activated, the macro uses the IsEmpty function to make sure the cell is not
empty. We do this to save a little on performance by skipping the cell if there is nothing in it.
We then pass the value of that cell to the Trim function. The Trim function is a native Excel
function that removes leading and trailing spaces.

 6. Step 6 loops back to get the next cell. After all cells in the target range are activated, the
macro ends.

How to use it
To implement this macro, you can copy and paste it into a standard module:

 1. Activate the Visual Basic Editor by pressing ALT+F11.

 2. Right-click the project/workbook name in the Project window.

 3. Choose Insert➜Module.

 4. Type or paste the code.

152 Macro 50: Truncate ZIP Codes to the Left Five

Macro 50: Truncate ZIP Codes
to the Left Five
U.S. ZIP codes come in either 5 or 10 digits. Some systems output a 10-digit ZIP code, which, for the
purposes of a lot of Excel analysis, is too many. A common data standardization task is to truncate ZIP
codes to the left five digits. Many of us use formulas to do this, but if you are constantly cleaning up
your ZIP codes, the macro outlined in this section can help automate that task.

It’s important to note that although this macro solves a specific problem, the concept of truncating
data remains useful for many other types of data cleanup activities.

How it works
This macro uses the Left function to extract the left five characters of each ZIP code in the given range.

Sub Macro50()

‘Step 1: Declare your variables
 Dim MyRange As Range
 Dim MyCell As Range

‘Step 2: Save the Workbook before changing cells?
 Select Case MsgBox(“Can’t Undo this action. “ & _
 “Save Workbook First?”, vbYesNoCancel)
 Case Is = vbYes
 ThisWorkbook.Save

 Case Is = vbCancel
 Exit Sub
 End Select

‘Step 3: Define the target Range.
 Set MyRange = Selection

‘Step 4: Start looping through the range.
 For Each MyCell In MyRange

‘Step 5: Extract out the left 5 characters.
 If Not IsEmpty(MyCell) Then
 MyCell = Left(MyCell, 5)
 End If

‘Step 6: Get the next cell in the range

153Macro 50: Truncate ZIP Codes to the Left Five

 Next MyCell

End Sub

 1. Step 1 declares two Range object variables, one called MyRange to hold the entire target
range, and the other called MyCell to hold each cell in the range as the macro enumerates
through them one by one.

 2. When you run a macro, it destroys the undo stack. This means you can’t undo the changes a
macro makes. Because we are actually changing data, we need to give ourselves the option
of saving the workbook before running the macro. This is what Step 2 does. Here, we call up
a message box that asks if we want to save the workbook first. It gives us three choices: Yes,
No, and Cancel. Clicking Yes saves the workbook and continues with the macro. Clicking
Cancel exits the procedure without running the macro. Clicking No runs the macro without
saving the workbook.

 3. Step 3 fills the MyRange variable with the target range. In this example, we are using the
selected range — the range that was selected on the spreadsheet. You can easily set the
MyRange variable to a specific range such as Range(“A1:Z100”). Also, if your target
range is a named range, you can simply enter its name: Range(“MyNamedRange”).

 4. Step 4 starts looping through each cell in the target range, activating each cell.

 5. After a cell is activated, Step 5 uses the IsEmpty function to make sure the cell is not empty.
We do this to save a little on performance by skipping the cell if there is nothing in it. We
then pass the cell’s value through Left function. The Left function allows you to extract
out the nth left-most characters in a string. In this scenario, we need the left five characters in
order to truncate the ZIP code to five digits.

 6. Step 6 loops back to get the next cell. After all of the cells in the target range are activated,
the macro ends.

As you may have guessed, you can also use the Right function to extract out the nth
right-most characters in a string. As an example, it’s not uncommon to work with prod-
uct numbers where the first few characters hold a particular attribute or meaning,
whereas the last few characters point to the actual product (as in 100-4567). You can
extract out the actual product by using Right(Product_Number, 4).

Because we define the target range as the current selection, be sure to select the area
where your data exists before running this code. In other words, you wouldn’t want to
select cells that don’t conform to the logic you placed in this macro. Otherwise, every
cell you select is truncated, whether you mean it to be or not. Of course, you can ensure
this is never a problem by explicitly defining the target range, such as Set MyRange =
Range(“A1:Z100”).

154 Macro 50: Truncate ZIP Codes to the Left Five

How to use it
To implement this macro, you can copy and paste it into a standard module:

 1. Activate the Visual Basic Editor by pressing ALT+F11.

 2. Right-click project/workbook name in the Project window.

 3. Choose Insert➜Module.

 4. Type or paste the code into the newly created module.

155Macro 51: Padding Cells with Zeros

Macro 51: Padding Cells with Zeros
Many systems require unique identifiers (such as customer number, order number, or product num-
ber) to have a fixed character length. For instance, you frequently see customer numbers that look
like this: 00000045478. This concept of taking a unique identifier and forcing it to have a fixed length
is typically referred to as padding. The number is padded with zeros to achieve the prerequisite char-
acter length.

It’s a pain to do this manually in Excel. However, with a macro, padding numbers with zeros is
a breeze.

Some Excel gurus are quick to point out that you can apply a custom number format to
pad numbers with zeros by going to the Format Cells dialog box, selecting Custom on
the Number tab, and entering 0000000000 as the custom format.

The problem with this solution is that the padding is cosmetic only. A quick glance at
the formula bar reveals that the data actually remains numeric without the padding (it
does not become textual). So if you copy and paste the data into another platform or
non-Excel table, you lose the cosmetic padding.

How it works
Say that all your customer numbers need to be 10 characters long. So for each customer number,
you need to pad the number with enough zeros to get it to 10 characters. This macro does
just that.

As you review this macro, keep in mind that you need to change the padding logic in Step 5 to match
your situation.

Sub Macro51()

‘Step 1: Declare your variables
 Dim MyRange As Range
 Dim MyCell As Range

‘Step 2: Save the Workbook before changing cells?
 Select Case MsgBox(“Can’t Undo this action. “ & _
 “Save Workbook First?”, vbYesNoCancel)
 Case Is = vbYes
 ThisWorkbook.Save

 Case Is = vbCancel
 Exit Sub
 End Select

156 Macro 51: Padding Cells with Zeros

‘Step 3: Define the target Range.
 Set MyRange = Selection

‘Step 4: Start looping through the range.
 For Each MyCell In MyRange

‘Step 5: Pad with ten zeros then take the right 10
 If Not IsEmpty(MyCell) Then

 MyCell.NumberFormat = “@”
 MyCell = “0000000000” & MyCell
 MyCell = Right(MyCell, 10)

 End If

‘Step 6: Get the next cell in the range
 Next MyCell

End Sub

 1. Step 1 declares two Range object variables, one called MyRange to hold the entire target
range, and the other called MyCell to hold each cell in the range as the macro enumerates
through them one by one.

 2. When you run a macro, it destroys the undo stack, meaning that you can’t undo the changes
a macro makes. Because we are actually changing data, we need to give ourselves the option
of saving the workbook before running the macro. This is what Step 2 does. Here, we call up
a message box that asks if we want to save the workbook first. It then gives us three choices:
Yes, No, and Cancel. Clicking Yes saves the workbook and continues with the macro. Clicking
Cancel exits the procedure without running the macro. Clicking No runs the macro without
saving the workbook.

 3. Step 3 fills the MyRange variable with the target range. In this example, we use the selected
range — the range that was selected on the spreadsheet. You can easily set the MyRange
variable to a specific range such as Range(“A1:Z100”). Also, if your target range is a
named range, you can simply enter its name: Range(“MyNamedRange”).

 4. Step 4 starts looping through each cell in the target range, activating each cell.

157Macro 51: Padding Cells with Zeros

 5. After a cell is activated, Step 5 uses the IsEmpty function to make sure the cell is not empty.
We do this to save a little on performance by skipping the cell if there is nothing in it.

 The macro then ensures that the cell is formatted as text. This is because a cell formatted as a
number cannot have leading zeros — Excel would automatically remove them. On the next
line, we use the NumberFormat property to specify that the format is @. This symbol indi-
cates text formatting.

 Next, the macro concatenates the cell value with 10 zeros. We do this simply by explicitly
entering 10 zeros in the code, and then using the ampersand (&) to combine them with the
cell value.

 Finally, Step 5 uses the Right function to extract out the 10 right-most characters. This
effectively gives us the cell value, padded with enough zeros to make 10 characters.

 6. Step 6 loops back to get the next cell. After all cells in the target range are activated, the
macro ends.

How to use it
To implement this macro, you can copy and paste it into a standard module:

 1. Activate the Visual Basic Editor by pressing ALT+F11 on your keyboard.

 2. Right-click the project/workbook name in the Project window.

 3. Choose Insert➜Module.

 4. Type or paste the code.

158 Macro 52: Replace Blanks Cells with a Value

Macro 52: Replace Blanks Cells
with a Value
In some analyses, blank cells can cause of all kinds of trouble. They can cause sorting issues, they can
prevent proper auto filling, they can cause your pivot tables to apply the Count function instead of
the Sum function, and so on.

Blanks aren’t always bad, but if they are causing you trouble, this is a macro you can use to quickly
replace the blanks in a given range with a value that indicates a blank cell.

How it works
This macro enumerates through the cells in the given range, and then uses the Len function to
check the length of the value in the active cell. Blank cells have a character length of 0. If the length is
indeed 0, the macro enters a 0 in the cell, effectively replacing the blanks.

Sub Macro52()

‘Step 1: Declare your variables
 Dim MyRange As Range
 Dim MyCell As Range

‘Step 2: Save the Workbook before changing cells?
 Select Case MsgBox(“Can’t Undo this action. “ & _
 “Save Workbook First?”, vbYesNoCancel)
 Case Is = vbYes
 ThisWorkbook.Save

 Case Is = vbCancel
 Exit Sub
 End Select

‘Step 3: Define the target Range.
 Set MyRange = Selection

‘Step 4: Start looping through the range.
 For Each MyCell In MyRange

‘Step 5: Ensure the cell has Text formatting.
 If Len(MyCell.Value) = 0 Then
 MyCell = 0

159Macro 52: Replace Blanks Cells with a Value

 End If

‘Step 6: Get the next cell in the range
 Next MyCell

End Sub

 1. We first declare two Range object variables, one called MyRange to hold the entire target
range, and the other called MyCell to hold each cell in the range as the macro enumerates
through them one by one.

 2. When you run a macro, it destroys the undo stack. This means you can’t undo the changes a
macro makes. Because we are actually changing data, we need to give ourselves the option
of saving the workbook before running the macro. This is what Step 2 does. Here, we call up
a message box that asks if we want to save the workbook first. It then gives us three choices:
Yes, No, and Cancel. Clicking Yes saves the workbook and continues with the macro. Clicking
Cancel exits the procedure without running the macro. Clicking No runs the macro without
saving the workbook.

 3. Step 3 fills the MyRange variable with the target range. In this example, we are using the
selected range — the range that was selected on the spreadsheet. You can easily set the
MyRange variable to a specific range such as Range(“A1:Z100”). Also, if your target
range is a named range, you can simply enter its name: Range(“MyNamedRange”).

 4. Step 4 starts looping through each cell in the target range, activating each cell.

 5. After a cell is activated, we use the IsEmpty function to make sure the cell is not empty. We
do this to save a little on performance by skipping the cell if there is nothing in it. We then
use the Len function, which is a standard Excel function that returns a number correspond-
ing to the length of the string being evaluated. If the cell is blank, the length will be 0, at
which point, the macro replaces the blank with a 0. You could obviously replace the blank
with any value you’d like (N/A, TBD, No Data, and so on).

 6. Step 6 loops back to get the next cell. After all cells in the target range are activated, the
macro ends.

Because we define the target range as the current selection, you want to be sure to
select the area where your data exists before running this code. That is to say, you
wouldn’t want to select the entire worksheet. Otherwise, every empty cell in the spread-
sheet would be filled with a zero. Of course, you can ensure this is never a problem by
explicitly defining a range, such as Set MyRange = Range(“A1:Z100”).

160 Macro 52: Replace Blanks Cells with a Value

How to use it
To implement this macro, you can copy and paste it into a standard module:

 1. Activate the Visual Basic Editor by pressing ALT+F11.

 2. Right-click the project/workbook name in the Project window.

 3. Choose Insert➜Module.

 4. Type or paste the code.

161Macro 53: Append Text to the Left or Right of Your Cells

Macro 53: Append Text to the
Left or Right of Your Cells
Every so often, you may come upon a situation where you need to attach data to the beginning or
end of the cells in a range. For instance, you may need to add an area code to a set of phone num-
bers. This macro demonstrates how you can automate the data standardization tasks that require
appending data to values.

How it works
This macro uses two Range object variables to go through the target range, leveraging the For
Each statement to activate each cell in the target range. Every time a cell is activated, the macro
attaches an area code to the beginning of the cell value.

Sub Macro53()

‘Step 1: Declare your variables
 Dim MyRange As Range
 Dim MyCell As Range

‘Step 2: Save the Workbook before changing cells?
 Select Case MsgBox(“Can’t Undo this action. “ & _
 “Save Workbook First?”, vbYesNoCancel)
 Case Is = vbYes
 ThisWorkbook.Save

 Case Is = vbCancel
 Exit Sub
 End Select

‘Step 3: Define the target Range.
 Set MyRange = Selection

‘Step 4: Start looping through the range.
 For Each MyCell In MyRange

‘Step 5: Ensure the cell has Text formatting.
 If Not IsEmpty(MyCell) Then

162 Macro 53: Append Text to the Left or Right of Your Cells

 MyCell = “(972) “ & MyCell
 End If

‘Step 6: Get the next cell in the range
 Next MyCell

End Sub

 1. Step 1 declares two Range object variables, one called MyRange to hold the entire target
range, and the other called MyCell to hold each cell in the range as we enumerate through
them one by one.

 2. When you run a macro, it destroys the undo stack. This means you can’t undo the changes a
macro makes. Because we are actually changing data, we need to give ourselves the option
of saving the workbook before running the macro. This is what Step 2 does. Here, we call up
a message box that asks if we want to save the workbook first. It then gives us three choices:
Yes, No, and Cancel. Clicking Yes saves the workbook and continues with the macro. Clicking
Cancel exits the procedure without running the macro. Clicking No runs the macro without
saving the workbook.

 3. Step 3 fills the MyRange variable with the target range. In this example, we are using the
selected range — the range that was selected on the spreadsheet. You can easily set the
MyRange variable to a specific range such as Range(“A1:Z100”). Also, if your target
range is a named range, you can simply enter its name: Range(“MyNamedRange”).

 4. Step 4 starts looping through each cell in the target range, activating each cell as we go
through.

 5. After a cell is activated, we use the ampersand (&) to combine an area code with the cell
value. If you need to append text to the end of the cell value, you would simply place the
ampersand and the text at the end. For instance, MyCell = MyCell & “Added Text”.

 6. Step 6 loops back to get the next cell. After all cells in the target range are activated, the
macro ends.

How to use it
To implement this macro, you can copy and paste it into a standard module:

 1. Activate the Visual Basic Editor by pressing ALT+F11.

 2. Right-click the project/workbook name in the Project window.

 3. Choose Insert➜Module.

 4. Type or paste the code.

163Macro 54: Create a Super Data Cleanup Macro

Macro 54: Create a Super Data Cleanup
Macro
As we mentioned at the beginning of this Part, you can combine the macros we have covered thus
far into a super data cleanup macro. This allows you to clean and standardize your data in one fell
swoop, saving loads of time and headaches.

How it works
In this macro, we combine several of the data transformation macros we have covered into one. Note
that we only need to declare the two Range object variables one time. With each action, we point
these variables to different ranges. Although you have to alter the ranges and the tasks in this macro,
it gives you a good idea of how to start an all-purpose data cleanup procedure that suits your needs.

Sub Macro54()

‘Step 1: Declare your variables
 Dim MyRange As Range
 Dim MyCell As Range

‘Step 2: Save the Workbook before changing cells?
 Select Case MsgBox(“Can’t Undo this action. “ & _
 “Save Workbook First?”, vbYesNoCancel)
 Case Is = vbYes
 ThisWorkbook.Save

 Case Is = vbCancel
 Exit Sub
 End Select

‘Step 3: Perform Text to Columns
 Set MyRange = Range(“F6:I17”)
 For Each MyCell In MyRange
 If Not IsEmpty(MyCell) Then
 MyCell.Value = MyCell.Value
 End If
 Next MyCell

‘Step 4: Pad Customer Numbers with zeros
 Set MyRange = Range(“B6:B17”)
 For Each MyCell In MyRange

164 Macro 54: Create a Super Data Cleanup Macro

 If Not IsEmpty(MyCell) Then
 MyCell.NumberFormat = “@”
 MyCell = “0000000000” & MyCell
 MyCell = Right(MyCell, 10)
 End If
 Next MyCell

‘Step 5: Truncate Postal Codes to 5 digits
 Set MyRange = Range(“C6:C17”)
 For Each MyCell In MyRange
 If Not IsEmpty(MyCell) Then
 MyCell = Left(MyCell, 5)
 End If
 Next MyCell

‘Step 6: Add Area code to Phone Numbers
 Set MyRange = Range(“D6:D17”)
 For Each MyCell In MyRange
 If Not IsEmpty(MyCell) Then
 MyCell = “(972) “ & MyCell
 End If
 Next MyCell

‘Step 7: Trim Spaces from Product Numbers
 Set MyRange = Range(“E6:E17”)
 For Each MyCell In MyRange
 If Not IsEmpty(MyCell) Then
 MyCell = Trim(MyCell)
 End If
 Next MyCell

‘Step 8: Replace Blanks with zeros
 Set MyRange = Range(“F6:I17”)
 For Each MyCell In MyRange
 If Len(MyCell.Value) = 0 Then
 MyCell = 0
 End If
 Next MyCell

End Sub

165Macro 54: Create a Super Data Cleanup Macro

How to use it
To implement this kind of a macro, you can copy and paste it into a standard module:

 1. Activate the Visual Basic Editor by pressing ALT+F11 on your keyboard.

 2. Right-click the project/workbook name in the Project window.

 3. Choose Insert➜Module.

 4. Type or paste the code.

166 Macro 55: Clean Up Non-Printing Characters

Macro 55: Clean Up Non-Printing Characters
Sometimes you have non-printing characters in your data such as line feeds, carriage returns, and
non-breaking spaces. These characters often need to be removed before you can use the data for
serious analysis.

Now, anyone who has worked with Excel for more than a month knows about the Find and Replace
functionality. You may have even recorded a macro while performing a Find and Replace (a recorded
macro is an excellent way to automate your find and replace procedures). So your initial reaction may
be to simply find and replace these characters. The problem is that these non-printing characters are
for the most part invisible and thus difficult to clean up with the normal Find and Replace routines.
The easiest way to clean them up is through VBA.

If you find yourself struggling with those pesky invisible characters, use this general purpose macro
to find and remove all the non-printing characters.

How it works
This macro is a relatively simple Find and Replace routine. We are using the Replace method, tell-
ing Excel what to find and what to replace it with. This is similar to the syntax you would see when
recording a macro while manually performing a Find and Replace.

The difference is that instead of hard-coding the text to find, this macro uses character codes to spec-
ify our search text. Every character has an underlying ASCII code, similar to a serial number. For
instance, the lowercase letter a has an ASCII code of 97. The lower case letter c has an ASCII code
of 99. Likewise, invisible characters also have a code:

The line feed character code is 10.

The carriage return character code is 13.

The non-breaking space character code is 160.

This macro utilizes the Replace method, passing each character’s ASCII code as the search item.
Each character code is then replaced with an empty string:

Sub Macro55()

‘Step 1: Remove Line Feeds
 ActiveSheet.UsedRange.Replace What:=Chr(10), Replacement:=””

‘Step 2: Remove Carriage Returns
 ActiveSheet.UsedRange.Replace What:=Chr(13), Replacement:=””

‘Step 3: Remove Non-Breaking Spaces
 ActiveSheet.UsedRange.Replace What:=Chr(160), Replacement:=””

End Sub

167Macro 55: Clean Up Non-Printing Characters

 1. Step 1 looks for and removes the Line Feed character. The code for this character is 10. We
can identify the code 10 character by passing id through the Chr function. After Chr(10)
is identified as the search item, this step then passes an empty string to the Replacement
argument.

 Note the use of ActiveSheet.UsedRange. This essentially tells Excel to look in all the
cells that have had data entered into them. You can replace the UsedRange object with an
actual range if needed.

 2. Step 2 finds and removes the carriage return character.

 3. Step 3 finds and removes the non-breaking spaces character.

The characters covered in this macro are only a few of many non-printing characters.
However, these are the ones you most commonly run into. If you work with others, you
can simply add a new line of code, specifying the appropriate character code. Type ASCII
code listing into any search engine to see a list of the codes for various characters.

How to use it
To implement this macro, you can copy and paste it into a standard module:

 1. Activate the Visual Basic Editor by pressing ALT+F11 on your keyboard.

 2. Right-click the project/workbook name in the Project window.

 3. Choose Insert➜Module.

 4. Type or paste the code.

168 Macro 56: Highlight Duplicates in a Range of Data

Macro 56: Highlight Duplicates
in a Range of Data
Ever wanted to expose the duplicate values in a range? The macro in this section does just that. There
are many manual ways to find and highlight duplicates — ways involving formulas, conditional for-
matting, sorting, and so on. However, all these manual methods take setup and some level of main-
tenance as the data changes. This macro simplifies the task, allowing you to find and highlight
duplicates in your data with a click of the mouse.

How it works
This macro enumerates through the cells in the target range, leveraging the For Each statement to
activate each cell one at a time. We then use the CountIf function to count the number of times
the value in the active cell occurs in the range selected. If that number is greater than one, we format
the cell yellow.

Sub Macro56()

‘Step 1: Declare your variables
 Dim MyRange As Range
 Dim MyCell As Range

‘Step 2: Define the target Range.
 Set MyRange = Selection

‘Step 3: Start looping through the range.
 For Each MyCell In MyRange

‘Step 4: Ensure the cell has Text formatting.
 If WorksheetFunction.CountIf(MyRange, MyCell.Value) > 1 Then
 MyCell.Interior.ColorIndex = 36
 End If

‘Step 5: Get the next cell in the range
 Next MyCell

End Sub

169Macro 56: Highlight Duplicates in a Range of Data

 1. Step 1 declares two Range object variables, one called MyRange to hold the entire target
range, and the other called MyCell to hold each cell in the range as the macro enumerates
through them one by one.

 2. Step 2 fills the MyRange variable with the target range. In this example, we are using the
selected range — the range that was selected on the spreadsheet. You can easily set the
MyRange variable to a specific range such as Range(“A1:Z100”). Also, if your target
range is a named range, you can simply enter its name: Range(“MyNamedRange”).

 3. Step 3 starts looping through each cell in the target range, activating each cell.

 4. The WorksheetFunction object provides a way for us to be able to run many of Excel’s
spreadsheet functions in VBA. Step 4 uses the WorksheetFunction object to run a
CountIf function in VBA.

 In this case, we are counting the number of times the active cell value (MyCell.Value) is
found in the given range (MyRange). If the CountIf expression evaluates to greater than 1,
the macro changes the interior color of the cell.

 5. Step 5 loops back to get the next cell. After all cells in the target range are activated, the
macro ends.

How to use it
To implement this macro, you can copy and paste it into a standard module:

 1. Activate the Visual Basic Editor by pressing ALT+F11 on your keyboard.

 2. Right-click the project/workbook name in the Project window.

 3. Choose Insert➜Module.

 4. Type or paste the code.

170 Macro 57: Hide All Rows but Those Containing Duplicate Data

Macro 57: Hide All Rows but Those
Containing Duplicate Data
With the previous macro, you can quickly find and highlight duplicates in your data. This in itself can
be quite useful. But if you have many records in your range, you may want to take the extra step of
hiding all the non-duplicate rows. Doing so exposes the duplicate values further because they will be
the only rows showing.

How it works
This macro enumerates through the cells in the target range, leveraging the For Each statement to
activate each cell one at a time. We then use the CountIf function to count the number of times
the value in the active cell occurs in the range selected. If that number is one, we hide the row in
which the active cell resides. If that number is greater than one, we format the cell yellow and leave
the row visible.

Sub Macro57()

‘Step 1: Declare your variables
 Dim MyRange As Range
 Dim MyCell As Range

‘Step 2: Define the target Range.
 Set MyRange = Selection

‘Step 3: Start looping through the range.
 For Each MyCell In MyRange

‘Step 4: Ensure the cell has Text formatting.
 If Not IsEmpty(MyCell) Then

 If WorksheetFunction.CountIf(MyRange, MyCell) > 1 Then
 MyCell.Interior.ColorIndex = 36
 MyCell.EntireRow.Hidden = False
 Else
 MyCell.EntireRow.Hidden = True
 End If

 End If

‘Step 5: Get the next cell in the range
 Next MyCell

End Sub

171Macro 57: Hide All Rows but Those Containing Duplicate Data

 1. Step 1 declares two Range object variables, one called MyRange to hold the entire target
range, and the other called MyCell to hold each cell in the range as we enumerate through
them one by one.

 2. Step 2 fills the MyRange variable with the target range. In this example, we are using the
selected range — the range that was selected on the spreadsheet. You can easily set the
MyRange variable to a specific range such as Range(“A1:Z100”). Also, if your target
range is a named range, you can simply enter its name: Range(“MyNamedRange”).

 3. Step 3 loops through each cell in the target range, activating each cell as we go through.

 4. We first use the IsEmpty function to make sure the cell is not empty. We do this so the
macro won’t automatically hide rows with no data in the target range.

 We then use the WorksheetFunction object to run a CountIf function in VBA. In this
particular scenario, we are counting the number of times the active cell value (MyCell.
Value) is found in the given range (MyRange).

 If the CountIf expression evaluates to greater than 1, we change the interior color of the cell
and set the EntireRow property to Hidden=False. This ensures the row is visible.

 If the CountIf expression does not evaluate to greater than 1, the macro jumps to the Else
argument. Here we set the EntireRow property to Hidden=True. This ensures the row is
not visible.

 5. Step 5 loops back to get the next cell. After all cells in the target range are activated, the
macro ends.

Because we define the target range as the current selection, you want to be sure to
select the area where your data exists before running this code. You wouldn’t want
to select an entire column or the entire worksheet. Otherwise, any cell that contains
data that is unique (not duplicated) triggers the hiding of the row. Alternatively, you
can explicitly define the target range to ensure this is never a problem — such as
Set MyRange = Range(“A1:Z100”).

How to use it
To implement this macro, you can copy and paste it into a standard module:

 1. Activate the Visual Basic Editor by pressing ALT+F11 on your keyboard.

 2. Right-click the project/workbook name in the Project window.

 3. Choose Insert➜Module.

 4. Type or paste the code.

172 Macro 58: Selectively Hide AutoFilter Drop-down Arrows

Macro 58: Selectively Hide AutoFilter
Drop-down Arrows
It goes without saying that the AutoFilter function in Excel is one of the most useful. Nothing else
allows for faster on-the-spot filtering and analysis. The only problem is that the standard AutoFilter
functionality applies drop-down arrows to every column in the chosen dataset (see Figure 5-4). This
is all right in most situations, but what if you want to prevent your users from using the AutoFilter
drop-down arrows on some of the columns in your data?

The good news is that with a little VBA, you can selectively hide AutoFilter drop-down arrows, as
shown in Figure 5-5.

Figure 5-4: The standard AutoFilter functionality adds drop-down arrows to all of the columns in your data.

Figure 5-5: With a little VBA, you can choose to hide certain AutoFilter drop-down arrows.

173Macro 58: Selectively Hide AutoFilter Drop-down Arrows

How it works
In VBA, we can use the AutoFilter object to turn on AutoFilters for a specific range. For instance:

Range(“B5:G5”).AutoFilter

After an AutoFilter is applied, we can manipulate each of the columns in the AutoFilter by pointing to
it. For example, you can perform some action on the third column in the AutoFilter, like this:

Range(“B5:G5”).AutoFilter Field:3

You can perform many actions on an AutoFilter field. In this scenario, we are interested in making the
drop-down arrow on field three invisible. For this, we can use the VisibleDropDown parameter.
Setting this parameter to False makes the drop-down arrow invisible.

Range(“B5:G5”).AutoFilter Field:3, VisibleDropDown:=False

Here is an example of a macro where we turn on AutoFilters, and then make only the first and last
drop-down arrows visible.

Sub Macro58()

With Range(“B5:G5”)
.AutoFilter
.AutoFilter Field:=1, VisibleDropDown:=True
.AutoFilter Field:=2, VisibleDropDown:=False
.AutoFilter Field:=3, VisibleDropDown:=False
.AutoFilter Field:=4, VisibleDropDown:=False
.AutoFilter Field:=5, VisibleDropDown:=False
.AutoFilter Field:=6, VisibleDropDown:=True
End With

End Sub

Not only are we pointing to a specific range, but we are also explicitly pointing to each
field. When implementing this type of a macro in your environment, alter the code to
suit your particular data set.

174 Macro 58: Selectively Hide AutoFilter Drop-down Arrows

How to use it
To implement this macro, you can copy and paste it into a standard module:

 1. Activate the Visual Basic Editor by pressing ALT+F11 on your keyboard.

 2. Right-click the project/workbook name in the Project window.

 3. Choose Insert➜Module.

 4. Type or paste the code.

175Macro 59: Copy Filtered Rows to a New Workbook

Macro 59: Copy Filtered Rows
to a New Workbook
Often, when you’re working with a set of data that is AutoFiltered, you want to extract the filtered
rows to a new workbook. Of course, you can manually copy the filtered rows, open a new workbook,
paste the rows, and then format the newly pasted data so that all the columns fit. But if you are doing
this frequently enough, you may want to have a macro to speed up the process.

How it works
This macro captures the AutoFilter range, opens a new workbook, then pastes the data.

Sub Macro59()

‘Step 1: Check for AutoFilter - Exit if none exists
 If ActiveSheet.AutoFilterMode = False Then
 Exit Sub
 End If

‘Step 2: Copy the Autofiltered Range to new workbook
 ActiveSheet.AutoFilter.Range.Copy
 Workbooks.Add.Worksheets(1).Paste

‘Step 3: Size the columns to fit
 Cells.EntireColumn.AutoFit

End Sub

 1. Step 1 uses the AutoFilterMode property to check whether the sheet even has
AutoFilters applied. If not, we exit the procedure.

 2. Each AutoFilter object has a Range property. This Range property obligingly returns
the rows to which the AutoFilter applies, meaning it returns only the rows that are shown in
the filtered data set. In Step 2, we use the Copy method to capture those rows, and then we
paste the rows to a new workbook. Note that we use Workbooks.Add.Worksheets(1).
This tells Excel to paste the data into the first sheet of the newly
created workbook.

 3. Step 3 simply tells Excel to size the column widths to autofit the data we just pasted.

176 Macro 59: Copy Filtered Rows to a New Workbook

How to use it
To implement this macro, you can copy and paste it into a standard module:

 1. Activate the Visual Basic Editor by pressing ALT+F11 on your keyboard.

 2. Right-click the project/workbook name in the Project window.

 3. Choose Insert➜Module.

 4. Type or paste the code.

177Macro 60: Create a New Sheet for Each Item in an AutoFilter

Macro 60: Create a New Sheet
for Each Item in an AutoFilter
One of the most common tasks an Excel user is confronted with is separating a data set into separate
sheets. For instance, if you have a set of data that has rows for the east, west, south, and north
regions of the U.S., you may be asked to create a new sheet for the east data, a new sheet for the
west data, a new sheet for the south, and one for the north. In these situations, you would normally
have to manually filter each region, and then copy and paste the data into new sheets. This can be
quite a painful exercise if you have to do it one time. If you have to perform this same exercise on an
ongoing basis? Well, let’s just say it can be difficult to come to work.

The good news is that you can use a macro to do the heavy lifting for you.

How it works
The basic premise of this macro is in itself simple. We start with a data set that contains an AutoFilter
(similar to the one shown in Figure 5-6).

Figure 5-6: Start with a data set that has an AutoFilter applied.

We point the macro to the field that is used to separate the data into separate sheets. In this case, we
need to create a separate sheet for each region. As you can see in Figure 5-6, the Region field is the
first field in the AutoFiltered data set.

The macro goes through this field, capturing the unique data items in this field (North, South, East,
West). Then one at a time, it uses each unique data item as the filter criteria on the AutoFilter, effec-
tively filtering the data for that item.

Each time a region is filtered, the macro copies the filtered range and pastes the data into a new
sheet. After the data is pasted, it names the sheet the same name as the filter criteria.

178 Macro 60: Create a New Sheet for Each Item in an AutoFilter

This macro is a little tough to look at first glance, so take the time to walk through each step
in detail.

Sub Macro60()

‘Step 1: Declare your Variables
 Dim MySheet As Worksheet
 Dim MyRange As Range
 Dim UList As Collection
 Dim UListValue As Variant
 Dim i As Long

‘Step 2: Set the Sheet that contains the AutoFilter
 Set MySheet = ActiveSheet

‘Step 3: If the sheet is not auto-filtered, then exit
 If MySheet.AutoFilterMode = False Then
 Exit Sub
 End If

‘Step 4: Specify the Column # that holds the data you want filtered
 Set MyRange = Range(MySheet.AutoFilter.Range.Columns(1).Address)

‘Step 5: Create a new Collection Object
 Set UList = New Collection

‘Step 6: Fill the Collection Object with Unique Values
 On Error Resume Next
 For i = 2 To MyRange.Rows.Count
 UList.Add MyRange.Cells(i, 1), CStr(MyRange.Cells(i, 1))
 Next i
 On Error GoTo 0

‘Step 7: Start looping in through the collection Values
 For Each UListValue In UList

‘Step 8: Delete any Sheets that may have been previously created
 On Error Resume Next
 Application.DisplayAlerts = False
 Sheets(CStr(UListValue)).Delete
 Application.DisplayAlerts = True
 On Error GoTo 0

179Macro 60: Create a New Sheet for Each Item in an AutoFilter

‘Step 9: Filter the AutoFilter to match the current Value
 MyRange.AutoFilter Field:=1, Criteria1:=UListValue

‘Step 10: Copy the AutoFiltered Range to new Sheet
 MySheet.AutoFilter.Range.Copy
 Worksheets.Add.Paste
 ActiveSheet.Name = Left(UListValue, 30)
 Cells.EntireColumn.AutoFit

‘Step 11: Loop back to get the next collection Value
 Next UListValue

‘Step 12: Go back to main Sheet and removed filters
 MySheet.AutoFilter.ShowAllData
 MySheet.Select

End Sub

 1. Step 1 starts the macro by declaring five variables. MySheet is a worksheet variable that is used
to identify the sheet in which the AutoFiltered data resides. MyRange is a range variable that
holds the range of our main filter field (the Region field in this scenario). UList is a Collection
object that helps us extract the unique items from our main filter field. UListValue holds the
individual unique items as we enumerate through them. Finally, the i variable serves as a simple
counter for our MyRange variable.

 2. Step 2 sets the MySheet variable to hold the sheet in which the AutoFilter resides. It’s
important to do this because we need to refer back to this sheet throughout the macro.
Here, we are assuming the macro will be fired from the sheet that holds the AutoFilter, so we
use ActiveSheet.

 You can also alter the macro to explicitly use a sheet name instead of ActiveSheet, like
Set MySheet = Sheets(“YourSheetName”). This is safer because you have no risk
of unintentionally firing the macro from the wrong sheet. But it essentially ensures that the
macro only works for the sheet you explicitly specified.

 3. Step 3 checks the AutoFilterMode property to see if the sheet even has AutoFilters
applied. If not, it exits the procedure.

 4. If the macro reaches Step 4, we have determined that there is indeed an AutoFilter applied in
MySheet.

180 Macro 60: Create a New Sheet for Each Item in an AutoFilter

 Now we need to capture the column number that holds the items that will be used to parse
our data set into separate sheets. As you can see, in Figure 5-6, the region column is the first
column in our AutoFilter range. So we set the MyRange field to Columns(1) of the
AutoFilter range. This is important! We eventually use the specified column to create a
unique list of items with which we parse our data. When you implement this macro in your
environment, you need to change the column number used to match the field you need to
parse.

 5. Step 5 initializes the UList Collection object. A Collection object is a container that
can hold an array of unique data items.

 In fact, a Collection object can only hold unique data. If you try to fill it with non-unique
data, it throws an error. Because of this, it makes for an excellent way to quickly find and
store a list of unique data items.

 We use the collection object to hold a unique list of items from our MyRange variable. In this
scenario, because our MyRange variable points to the Region column, the Collection
object eventually holds a unique list of regions (East, North, South, West).

 6. Step 6 fills the UList Collection object with the unique data items in MyRange.

 To do so, it uses the i variable to loop through the rows of the MyRange column. You’ll
notice that we start i at 2; this is because row 1 contains the header label (Region). We don’t
want to include the header label as one of the unique items in our collection object.

 On each loop, the macro tries to add the current cell to the UList collection. The syntax to
add an item to a collection is

CollectionName.Add ItemName, UniqueKeyIdentifier

 In this case, we are adding each cell in MyRange as both the item name and unique key
identifier. Because the UList collection throws an error if the data items are not unique, we
wrap the entire section in On Error Resume Next and On Error Goto 0. This
ensures that if duplicate items are added, the UList collection ignores them. At the end of
the loop, we have a unique list of all the data items in MyRange. Again, in this scenario, this
means we have a unique list of regions (East, North, South, West).

 7. Step 7 works exclusively with the UList collection. This collection holds the unique list of
items we use as both the filter criteria for our AutoFilter and the Sheet names for our newly
created sheets. The macro starts looping through the list with the UListValue variable.

 8. Each time we run this macro, a new sheet is added for each unique item in our target filter
field, with sheet names to match. If we run this macro more than one time, an error may be
thrown because we will be creating a sheet that already exists. To ensure this doesn’t hap-
pen, Step 8 deletes any sheet whose name matches the UListValue data item.

181Macro 60: Create a New Sheet for Each Item in an AutoFilter

 9. Step 9 uses the UListValue to filter the AutoFilter. We are dynamically passing the
UListValue as the Criteria for Field1:

 MyRange.AutoFilter Field:=1, Criteria1:=UListValue

 The field number here is very important! Because the Region field is the first field (see
Figure 5-6), we are specifying Field 1. When you implement this macro in your environment,
you need to change the field number to match the field you need to parse.

 10. Each AutoFilter object has a Range property. This Range property returns the rows to
which the AutoFilter applies, meaning it returns only the rows that are shown in the filtered
data set. Step 10 uses the Copy method to capture the newly filtered rows and paste the
rows to a new sheet. The macro then names the sheet to match UListValue.

 Note that we are wrapping UListValue in the Left function. Specifically, we are telling
Excel to limit the name of the sheet to the left 31 characters in the UListValue. We do this
because the limit for sheet names is 31 characters. Anything longer than 31 characters
throws an error.

 11. Step 11 loops back to get the next value from the UList collection.

 12. The macro ends by jumping to the original AutoFiltered data and clearing all filters.

You may be wondering how to create a new workbook for each item in an AutoFilter.

This is a relatively easy change. Simply replace the code in Step 10 with this code.

‘Step 10: Copy the AutoFiltered Range to new Workbook
 ActiveSheet.AutoFilter.Range.Copy
 Workbooks.Add.Worksheets(1).Paste

 Cells.EntireColumn.AutoFit

 ActiveWorkbook.SaveAs _
 Filename:=”C:\Temp\” & CStr(UListValue) & “.xlsx”

 ActiveWorkbook.Close

Pay special attention to the fact that the path in this code is hard-coded to save in the
C:Temp folder. If you like, you can change this to suit your needs.

182 Macro 60: Create a New Sheet for Each Item in an AutoFilter

How to use it
To implement this macro, you can copy and paste it into a standard module:

 1. Activate the Visual Basic Editor by pressing ALT+F11 on your keyboard.

 2. Right-click the project/workbook name in the Project window.

 3. Choose Insert➜Module.

 4. Type or paste the code.

183Macro 61: Show Filtered Columns in the Status Bar

Macro 61: Show Filtered Columns
in the Status Bar
When you have a large table with many columns that are AutoFiltered, it is sometimes hard to tell
which columns are filtered and which aren’t. Of course, you could scroll through the columns, peer-
ing at each AutoFilter drop-down list for the telltale icon indicating the column is filtered, but that
can get old quickly.

This macro helps by specifically listing all the columns that are filtered in the status bar. The status
bar is the bar (seen here in Figure 5-7) that runs across the bottom of the Excel window.

Status bar

Figure 5-7: This macro lists all filtered columns in the status bar.

How it works
This macro loops through the fields in our AutoFiltered data set. As we loop, we check to see if each
field is actually filtered. If so, we capture the field name in a text string. After looping through all the
fields, we pass the final string to the StatusBar property.

Sub Macro61()

‘Step 1: Declare your Variables
 Dim AF As AutoFilter
 Dim TargetField As String
 Dim strOutput As String
 Dim i As Integer

‘Step 2: Check if AutoFilter exists - If not Exit
 If ActiveSheet.AutoFilterMode = False Then

184 Macro 61: Show Filtered Columns in the Status Bar

 Application.StatusBar = False
 Exit Sub

 End If

‘Step 3: Set AutoFilter and start looping
 Set AF = ActiveSheet.AutoFilter
 For i = 1 To AF.Filters.Count

‘Step 4: Capture filtered field names
 If AF.Filters(i).On Then
 TargetField = AF.Range.Cells(1, i).Value
 strOutput = strOutput & “ | “ & TargetField
 End If
 Next

‘Step 5: Display the filters if there are any
 If strOutput = “” Then
 Application.StatusBar = False
 Else
 Application.StatusBar = “DATA IS FILTERED ON “ & strOutput
 End If

End Sub

 1. Step 1 declares four variables. AF is an AutoFilter variable that is used to manipulate the
AutoFilter object. TargetField is a string variable we use to hold the field names of any
field that is actually filtered. strOutput is the string variable we use to build out the final
text that goes into the status bar. Finally, the i variable serves as a simple counter, allowing
us to iterate through the fields in our AutoFilter.

 2. Step 2 checks the AutoFilterMode property to see if sheet even has AutoFilters applied.
If not, we set the StatusBar property to False. This has the effect of clearing the status
bar, releasing control back to Excel. We then exit the procedure.

 3. Step 3 sets the AF variable to the AutoFilter on the active sheet. We then set our counter to
count from 1 to the maximum number of columns in the AutoFiltered range. The AutoFilter
object keeps track of its columns with index numbers. Column 1 is index 1; column 2 is index
2, and so on. The idea is that we can loop through each column in the AutoFilter by using the
i variable as the index number.

 4. Step 4 checks the status of AF.Filters object for each (i) – i being the index number
of the column we are evaluating. If the AutoFilter for that column is filtered in any way, the
status for that column is On.

185Macro 61: Show Filtered Columns in the Status Bar

 If the filter for the column is indeed on, we capture the name of the field in the TargetField
variable. We actually get the name of the field by referencing the Range of our AF AutoFilter
object. With this range, we can use the Cells item to pinpoint the field name. Cells(1,1)
captures the value in row one, column one. Cells(1,2) captures the value in row one,
column two, and so on.

 As you can see in Step 4, we have hard-coded the row to 1 and used the i variable to indi-
cate the column index. This means that as the macro iterates through the columns, it always
captures the value in row one as the TargetField name (row one is where the field name
is likely to be).

 After we have the TargetField name, we can pass that information a simple string con-
tainer (strOutput in our case). strOutput simply keeps all the target field names we find
and concatenates them into a readable text string.

 5. Step 5 first checks to make sure that there is something in the strOutput string. If
strOutput is empty, it means the macro found no columns in our AutoFilter that were
filtered. In this case, Step 5 simply sets the StatusBar property to False, releasing
control back to Excel.

 If strOutput is not empty, Step 5 sets the StatusBar property to equal some helper text
along with our strOutput string.

How to use it
You ideally want this macro to run each time a field is filtered. However, Excel does not have an
OnAutoFilter event. The closest thing to that is the Worksheet_Calculate event. That being
said, AutoFilters in themselves don’t actually calculate anything, so you need to enter a “volatile”
function on the sheet that contains your AutoFiltered data. A volatile function is one that forces a
recalculation when any change is made on the worksheet.

In the sample files that come with this book, notice that we use the =Now() function. The Now func-
tion is a volatile function that returns a date and time. With this on the sheet, the worksheet is sure to
recalculate each time the AutoFilter is changed.

Place the Now function anywhere on your sheet (by typing =Now() in any cell). Then copy and paste
the macro into the Worksheet_Calculate event code window:

 1. Activate the Visual Basic Editor by pressing ALT+F11 on your keyboard.

 2. In the Project window, find your project/workbook name and click the plus sign next to it in
order to see all the sheets.

 3. Click on the sheet from which you want to trigger the code.

 4. Select the Calculate event from the Event drop-down list (see Figure 5-8).

 5. Type or paste the code.

186 Macro 61: Show Filtered Columns in the Status Bar

Figure 5-8: Type or paste your code in the Worksheet_Calculate event code window.

In order to make the code run as smoothly as possible, consider adding these two pieces of code
under the worksheet calculate event:

Private Sub Worksheet_Deactivate()
Application.StatusBar = False
End Sub

Private Sub Worksheet_Activate()
Call Worksheet_Calculate
End Sub

Also, add this piece of code in the workbook BeforeClose event:

Private Sub Workbook_BeforeClose(Cancel As Boolean)
Application.StatusBar = False
End Sub

The Worksheet_Deactivate event clears the status bar when you move to another sheet or
workbook. This avoids confusion as you move between sheets.

The Worksheet_Activate event fires the macro in Worksheet_Calculate. This brings back
the Status Bar indicators when you navigate back to the filtered sheet.

The Workbook_BeforeClose event clears the status bar when you close the workbook. This
avoids confusion as you move between workbooks.

PART VI
Working with
PivotTables
This Part gives you the lowdown on PivotTables: sorting them, formatting them, hiding data,
and more.

In This Part
Macro 62 Create a Backwards-Compatible PivotTable.. 189
Macro 63 Refresh All PivotTables Workbook ... 192
Macro 64 Create a PivotTable Inventory Summary .. 194
Macro 65 Make All PivotTables Use the Same Pivot Cache ... 197
Macro 66 Hide All Subtotals in a PivotTable .. 199
Macro 67 Adjust All Pivot Data Field Titles .. 202
Macro 68 Set All Data Items to Sum ... 204
Macro 69 Apply Number Formatting for All Data Items ... 207
Macro 70 Sort All Fields in Alphabetical Order .. 211
Macro 71 Apply Custom Sort to Data Items .. 213
Macro 72 Apply PivotTable Restrictions ... 215
Macro 73 Apply Pivot Field Restrictions ... 217
Macro 74 Automatically Delete Pivot Table Drill-Down Sheets 219
Macro 75 Print Pivot Table for Each Report Filter Item .. 223
Macro 76 Create New Workbook for Each Report Filter Item ... 226
Macro 77 Transpose Entire Data Range with a PivotTable ... 229

189Macro 62: Create a Backwards-Compatible PivotTable

Excel offers a fairly robust object model for PivotTables. You can use the macro recorder to create a
macro that does just about anything with a PivotTable, and the macro gets you 90 percent of the
way to automation. For instance, you can record a macro that builds a PivotTable, and that macro
records your steps and duplicates your tasks with relatively high fidelity. So if you find yourself
needing to automate tasks like filtering out the top 10 items or grouping data items, you can reliably
turn to the macro recorder to help write the VBA needed.

That being said, certain PivotTable-related tasks are not easily solved with the macro recorder. This is
what this Part focuses on. Here, we cover the most common scenarios where macros help you gain
efficiencies when working with PivotTables.

The code for this Part can be found on this book’s companion website. See this book’s
Introduction for more on the companion website.

Macro 62: Create a Backwards-Compatible
PivotTable
If you are still using Excel 2003, you may know about the compatibility headaches that come with
PivotTables between Excel 2003 and later versions. As you can imagine, the extraordinary increases
in PivotTable limitations lead to some serious compatibility questions. For instance, later versions of
Excel PivotTables can have more than 16,384 column fields and more than 1,000,000 unique data
items. Excel 2003 can have only 256 column fields and 32,500 unique data items.

To solve these compatibility issues, Microsoft has initiated the concept of Compatibility mode.
Compatibility mode is a state that Excel automatically enters when opening an xls file. When Excel is
in Compatibility mode, it artificially takes on the limitations of Excel 2003. This means while you are
working with an xls file, you cannot exceed any of the Excel 2003 PivotTable limitations, allowing you
(as a user of Excel 2007 or 2010) to create PivotTables that work with Excel 2003.

If you are not in Compatibility mode (meaning you are working with an xlsx or xlsm file) and you
create a PivotTable, the PivotTable object turns into a hard table when opened in Excel 2003. That is
to say, PivotTables that are created in xlsx or xlsm files are destroyed when opened in Excel 2003.

To avoid this fiasco manually, Excel 2007 and 2010 users must go through these steps:

 1. Create a blank workbook.

 2. Save the file as an xls file.

 3. Close the file.

 4. Open it up again.

 5. Start creating the PivotTable.

This is enough to drive you up the wall if you’ve got to do this every day.

190 Macro 62: Create a Backwards-Compatible PivotTable

An alternative is to use a macro that automatically starts a PivotTable in Table in the Excel 2003 ver-
sion — even if you are not in Compatibility mode!

How it works
If you record a macro while creating a PivotTable in Excel 2007 or Excel 2010, the macro recorder gen-
erates the code to create your PivotTable. This code has several arguments in it. One of the arguments
is the Version property. As the name implies, the Version property specifies the version of Excel
the PivotTable was created in. The nifty thing is that you can change the Version in the code to
force Excel to create a PivotTable that will work with Excel 2003.

Here is a listing of the different versions you can specify:

➤	 xlPivotTableVersion2000 - Excel 2000

➤	 xlPivotTableVersion10 - Excel 2002

➤	 xlPivotTableVersion11 - Excel 2003

➤	 xlPivotTableVersion12 - Excel 2007

➤	 xlPivotTableVersion14 - Excel 2010

Here is an example of a macro that starts a PivotTable using Range(“A3:N86”) on Sheet1 as the
source data.

Note that we changed the Version and DefaultVersion properties to xlPivotTable
Version11. This ensures that the PivotTable starts off as one that will work in Excel 2003.

No need to save your workbook as an .xls file first or to be in Compatibility mode. You can use a sim-
ple macro like this (just change the source data range) to create a PivotTable that will automatically
work with Excel 2003.

Sub Macro62()

Dim SourceRange As Range
Set SourceRange = Sheets(“Sheet1”).Range(“A3:N86”)

ActiveWorkbook.PivotCaches.Create(_
SourceType:=xlDatabase, _
SourceData:=SourceRange, _
Version:=xlPivotTableVersion11).CreatePivotTable _
TableDestination:=””, _
TableName:=””, _
DefaultVersion:=xlPivotTableVersion11

End Sub

191Macro 62: Create a Backwards-Compatible PivotTable

Keep in mind that creating a PivotTable in the Excel 2003 version will essentially force
the PivotTable to take on the limits of Excel 2003. This means any new PivotTable limit
increases or PivotTable features added in Excel 2007 or Excel 2010 will not be available
in your 2003 version PivotTable.

How to use it
To implement this macro, you can copy and paste it into a standard module:

 1. Activate the Visual Basic Editor by pressing ALT+F11.

 2. Right-click the project/workbook name in the Project window.

 3. Choose Insert➜Module.

 4. Type or paste the code.

192 Macro 63: Refresh All PivotTables Workbook

Macro 63: Refresh All PivotTables
Workbook
It’s not uncommon to have multiple PivotTables in the same workbook. Many times, these PivotTables
link to data that changes, requiring a refresh of the PivotTables. If you find that you need to refresh your
PivotTables en masse, you can use this macro to refresh all PivotTables on demand.

How it works
It’s important to know that each PivotTable object is a child of the worksheet it sits in. The macro
has to first loop through the worksheets in a workbook first, and then loop through the PivotTables in
each worksheet. This macro does just that — loops through the worksheets, and then loops through
the PivotTables. On each loop, the macro refreshes the PivotTable.

Sub Macro63()

‘Step 1: Declare your Variables
 Dim ws As Worksheet
 Dim pt As PivotTable

‘Step 2: Loop through each sheet in workbook
 For Each ws In ThisWorkbook.Worksheets

‘Step 3: Loop through each PivotTable
 For Each pt In ws.PivotTables
 pt.RefreshTable
 Next pt
 Next ws

End Sub

 1. Step 1 first declares an object called ws. This creates a memory container for each worksheet
we loop through. It also declares an object called pt, which holds each PivotTable the macro
loops through.

 2. Step 2 starts the looping, telling Excel we want to evaluate all worksheets in this workbook.
Notice we are using ThisWorkbook instead of ActiveWorkbook. The ThisWorkbook
object refers to the workbook that the code is contained in. The ActiveWorkbook object
refers to the workbook that is currently active. They often return the same object, but if the
workbook running the code is not the active workbook, they return different objects. In
this case, we don’t want to risk refreshing PivotTables in other workbooks, so we use
ThisWorkbook.

193Macro 63: Refresh All PivotTables Workbook

 3. Step 3 loops through all the PivotTables in each worksheet, and then triggers the
RefreshTable method. After all PivotTables have been refreshed, the macro moves
to the next sheet. After all sheets have been evaluated, the macro ends.

As an alternative method for refreshing all PivotTables in the workbook, you can use
ThisWorkbook.RefreshAll. This refreshes all the PivotTables in the workbook.
However, it also refreshes all query tables. So if you have data tables that are connected
to an external source or the web, these will be affected by the RefreshAll method. If
this is not a concern, you can simply enter ThisWorkbook.RefreshAll into a standard
module.

How to use it
To implement this macro, you can copy and paste it into a standard module:

 1. Activate the Visual Basic Editor by pressing ALT+F11.

 2. Right-click the project/workbook name in the Project window.

 3. Choose Insert➜Module.

 4. Type or paste the code.

194 Macro 64: Create a PivotTable Inventory Summary

Macro 64: Create a PivotTable
Inventory Summary
When your workbook contains multiple PivotTables, it’s often helpful to have an inventory summary
(similar to the one shown here in Figure 6-1) that outlines basic details about the PivotTables. With
this type of summary, you can quickly see important information like the location of each PivotTable,
the location of each PivotTable’s source data, and the pivot cache index each PivotTable is using.

Figure 6-1: A PivotTable inventory summary.

The following macro outputs such a summary.

How it works
When you create a PivotTable object variable, you expose all of a PivotTable’s properties — prop-
erties like its name, location, cache index, and so on. In this macro, we loop through each PivotTable
in the workbook and extract specific properties into a new worksheet.

Because each PivotTable object is a child of the worksheet it sits in, we have to first loop through
the worksheets in a workbook first, and then loop through the PivotTables in each worksheet.

Take a moment to walk through the steps of this macro in detail.

Sub Macro64()

‘Step 1: Declare your Variables
 Dim ws As Worksheet
 Dim pt As PivotTable
 Dim MyCell As Range

‘Step 2: Add a new sheet with column headers
 Worksheets.Add
 Range(“A1:F1”) = Array(“Pivot Name”, “Worksheet”, _
 “Location”, “Cache Index”, _
 “Source Data Location”, _
 “Row Count”)

195Macro 64: Create a PivotTable Inventory Summary

‘Step 3: Start Cursor at Cell A2 setting the anchor here
 Set MyCell = ActiveSheet.Range(“A2”)

‘Step 4: Loop through each sheet in workbook
 For Each ws In Worksheets

‘Step 5: Loop through each PivotTable
 For Each pt In ws.PivotTables
 MyCell.Offset(0, 0) = pt.Name
 MyCell.Offset(0, 1) = pt.Parent.Name
 MyRange.Offset(0, 2) = pt.TableRange2.Address
 MyRange.Offset(0, 3) = pt.CacheIndex
 MyRange.Offset(0, 4) = Application.ConvertFormula _
 (pt.PivotCache.SourceData, xlR1C1, xlA1)
 MyRange.Offset(0, 5) = pt.PivotCache.RecordCount

‘Step 6: Move Cursor down one row and set a new anchor
 Set MyRange = MyRange.Offset(1, 0)

‘Step 7: Work through all PivotTables and worksheets
 Next pt
 Next ws

‘Step 8: Size columns to fit
 ActiveSheet.Cells.EntireColumn.AutoFit

End Sub

 1. Step 1 declares an object called ws. This creates a memory container for each worksheet we
loop through. We then declare an object called pt, which holds each PivotTable we loop
through. Finally, we create a range variable called MyCell. This variable acts as our cursor as
we fill in the inventory summary.

 2. Step 2 creates a new worksheet and adds column headings that range from A1 to F1. Note
that we can add column headings using a simple array that contains our header labels. This
new worksheet remains our active sheet from here on out.

 3. Just as you would manually place your cursor in a cell if you were to start typing data, Step 3
places the MyCell cursor in cell A2 of the active sheet. This is our anchor point, allowing us
to navigate from here.

 Throughout the macro, you see the use of the Offset property. The Offset property
allows us to move a cursor x number of rows and x number of columns from an anchor
point. For instance, Range(A2).Offset(0,1) would move the cursor one column

196 Macro 64: Create a PivotTable Inventory Summary

to the right. If we wanted to move the cursor one row down, we would enter Range(A2).
Offset(1, 0).

 In the macro, we navigate by using Offset on MyCell. For example, MyCell.
Offset(0,4) would move the cursor four columns to the right of the anchor cell.
After the cursor is in place, we can enter data.

 4. Step 4 starts the looping, telling Excel we want to evaluate all worksheets in this workbook.

 5. Step 5 loops through all the PivotTables in each worksheet. For each PivotTable it finds, it
extracts out the appropriate property and fills in the table based on the cursor position (see
Step 3).

 We are using six PivotTable properties: Name, Parent.Range, TableRange2.
Address, CacheIndex, PivotCache.SourceData, and PivotCache.
Recordcount.

 The Name property returns the name of the PivotTable.

 The Parent.Range property gives us the sheet where the PivotTable resides. The
TableRange2.Address property returns the range that the PivotTable object sits in.

 The CacheIndex property returns the index number of the pivot cache for the PivotTable.
A pivot cache is a memory container that stores all the data for a PivotTable. When you create
a new PivotTable, Excel takes a snapshot of the source data and creates a pivot cache. Each
time you refresh a PivotTable, Excel goes back to the source data and takes another snap-
shot, thereby refreshing the pivot cache. Each pivot cache has a SourceData property that
identifies the location of the data used to create the pivot cache. The PivotCache.
SourceData property tells us which range will be called upon when we refresh the
PivotTable. You can also pull out the record count of the source data by using the
PivotCache.Recordcount property.

 6. Each time the macro encounters a new PivotTable, it moves the MyCell cursor down a row,
effectively starting a new row for each PivotTable.

 7. Step 7 tells Excel to loop back around to iterate through all PivotTables and all worksheets.
After all PivotTables have been evaluated, we move to the next sheet. After all sheets have
been evaluated, the macro moves to the last step.

 8. Step 8 finishes off with a little formatting, sizing the columns to fit the data.

How to use it
To implement this macro, you can copy and paste it into a standard module:

 1. Activate the Visual Basic Editor by pressing ALT+F11.

 2. Right-click the project/workbook name in the Project window.

 3. Choose Insert➜Module.

 4. Type or paste the code.

197Macro 65: Make All PivotTables Use the Same Pivot Cache

Macro 65: Make All PivotTables
Use the Same Pivot Cache
If you work with PivotTables enough, you will undoubtedly find the need to analyze the same data-
set in multiple ways. In most cases, this process requires you to create separate PivotTables from the
same data source.

The problem is that each time you create a PivotTable, you are storing a snapshot of the data source
in a pivot cache. Every pivot cache that is created increases your memory usage and file size. The side
effect of this behavior is that your spreadsheet bloats with redundant data. Making your PivotTables
share the same cache prevents this.

Starting with Excel 2007, Microsoft built in an automatic pivot cache sharing algorithm
that recognizes when you are creating a PivotTable from the same source as an existing
PivotTable. This reduces the instances of creating superfluous pivot caches. However,
you can still inadvertently create multiple pivot caches if the number of rows or columns
captured from your source range is different for each of your PivotTables.

In addition to the reduction in file size, there are other benefits to sharing a pivot cache:

➤	 You can refresh one PivotTable and all others that share the pivot cache are refreshed also.

➤	 When you add a Calculated Field to one PivotTable, your newly created calculated field
shows up in the other PivotTables’ field list.

➤	 When you add a Calculated Item to one PivotTable, it shows up in the others as well.

➤	 Any grouping or ungrouping you perform affects all PivotTables sharing the same cache.

How it works
With the last macro, you are able to take an inventory of all your PivotTables. In that inventory sum-
mary, you can see the pivot cache index of each PivotTable (see Figure 6-1). Using this, you can deter-
mine which PivotTable contains the most appropriate pivot cache, and then force all others to share
the same cache.

In this example, we are forcing all PivotTables to the pivot cache used by PivotTable1 on the Units
Sold sheet.

Sub Macro65()

‘Step 1: Declare your Variables
 Dim ws As Worksheet

198 Macro 65: Make All PivotTables Use the Same Pivot Cache

 Dim pt As PivotTable

‘Step 2: Loop through each sheet in workbook
 For Each ws In ThisWorkbook.Worksheets

‘Step 3: Loop through each PivotTable
 For Each pt In ws.PivotTables

 pt.CacheIndex = _
 Sheets(“Units Sold”).PivotTables(“PivotTable1”).CacheIndex

 Next pt
 Next ws

End Sub

 1. Step 1 declares an object called ws. This creates a memory container for each worksheet we
loop through. We also declare an object called pt, which holds each PivotTable we loop
through.

 2. Step 2 starts the looping, telling Excel we want to evaluate all worksheets in this workbook.
Notice we are using ThisWorkbook instead of ActiveWorkbook. ThisWorkbook
object refers to the workbook that the code is contained in. ActiveWorkbook object refers
to the workbook that is currently active. They often return the same object, but if the work-
book running the code is not the active workbook, they return different objects. In this case,
we don’t want to risk affecting PivotTables in other workbooks, so we use ThisWorkbook.

 3. Step 3 loops through all the PivotTables in each worksheet, and then sets the CachIndex
to the same one used by PivotTable1 on the “Units Sold” sheet. After all PivotTables have
been refreshed, we move to the next sheet. After all sheets have been evaluated, the macro
ends.

How to use it
To implement this macro, you can copy and paste it into a standard module:

 1. Activate the Visual Basic Editor by pressing ALT+F11.

 2. Right-click the project/workbook name in the Project window.

 3. Choose Insert➜Module.

 4. Type or paste the code.

199Macro 66: Hide All Subtotals in a PivotTable

Macro 66: Hide All Subtotals in a PivotTable
When you create a PivotTable, Excel includes subtotals by default. This inevitably leads to a
PivotTable report that inundates the eyes with all kinds of numbers, making it difficult to analyze.
Figure 6-2 demonstrates this.

Figure 6-2: Subtotals can sometimes hinder analysis.

Manually removing Subtotals is easy enough; right-click the field headers and uncheck the Subtotal
option. But if you’re constantly hiding subtotals, you can save a little time by automating the process
with a simple macro.

You can manually hide all subtotals at once by going to the Ribbon and selecting
PivotTable Tools➜Design➜Layout➜Subtotals➜Do Not Show Subtotals. But again, if
you are building an automated process that routinely manipulates pivot tables without
manual intervention, you may prefer the macro option.

How it works
If you record a macro while hiding a Subtotal in a PivotTable, Excel produces code similar to this:

ActiveSheet.PivotTables(“Pvt1).PivotFields(“Region”).Subtotals =
Array(False, False, False, False, False, False, False, False, False,
False, False, False)

200 Macro 66: Hide All Subtotals in a PivotTable

That’s right; Excel passes an array with exactly 12 False settings. There are 12 instances of False
because there are twelve types of Subtotals — Sum, Avg, Count, Min, and Max, just to name a few.
So when you turn off Subtotals while recording a macro, Excel sets each of the possible Subtotal
types to False.

An alternative way of turning off Subtotals is to first set one of the 12 Subtotals to True. This auto-
matically forces the other 11 Subtotal types to False. We then set the same Subtotal to False,
effectively hiding all Subtotals. In this piece of code, we are setting the first Subtotal to True, and
then setting it to False. This removes the subtotal for Region.

With ActiveSheet.PivotTables(“Pvt1).PivotFields(“Region”)
.Subtotals(1) = True
.Subtotals(1) = False
End With

In our macro, we use this trick to turn off subtotals for every pivot field in the active PivotTable.

Sub Macro66()

‘Step 1: Declare your Variables
 Dim pt As PivotTable
 Dim pf As PivotField

‘Step 2: Point to the PivotTable in the active cell
 On Error Resume Next
 Set pt = ActiveSheet.PivotTables(ActiveCell.PivotTable.Name)

‘Step 3: Exit if active cell is not in a PivotTable
 If pt Is Nothing Then
 MsgBox “You must place your cursor inside of a PivotTable.”
 Exit Sub
 End If

‘Step 4: Loop through all pivot fields and remove totals
 For Each pf In pt.PivotFields
 pf.Subtotals(1) = True
 pf.Subtotals(1) = False
 Next pf

End Sub

201Macro 66: Hide All Subtotals in a PivotTable

 1. Step 1 declares two object variables. This macro uses pt as the memory container for the
PivotTable and uses pf as a memory container for the pivot fields. This allows us to loop
through all the pivot fields in the PivotTable.

 2. This macro is designed so that we infer the active PivotTable based on the active cell. That is
to say, the active cell must be inside a PivotTable for this macro to run. The assumption is
that when the cursor is inside a particular PivotTable, we want to perform the macro action
on that pivot.

 Step 2 sets the pt variable to the name of the PivotTable on which the active cell is found.
We do this by using the ActiveCell.PivotTable.Name property to get the name of
the target pivot.

 If the active cell is not inside of a PivotTable, an error is thrown. This is why the macro uses
the On Error Resume Next statement. This tells Excel to continue with the macro if
there is an error.

 3. Step 3 checks to whether the pt variable is filled with a PivotTable object. If the pt variable
is set to Nothing, the active cell was not on a PivotTable, thus no PivotTable could be
assigned to the variable. If this is the case, we tell the user in a message box, and then we exit
the procedure.

 4. If the macro reaches Step 4, it has successfully pointed to a PivotTable. We are ready to loop
to all the fields in the PivotTable. We use a For Each statement to iterate through each
pivot field. Each time a new pivot field is selected, we apply our Subtotal logic. After all the
fields have been evaluated, the macro ends.

How to use it
To implement this macro, you can copy and paste it into a standard module:

 1. Activate the Visual Basic Editor by pressing ALT+F11.

 2. Right-click the project/workbook name in the Project window.

 3. Choose Insert➜Module.

 4. Type or paste the code.

202 Macro 67: Adjust All Pivot Data Field Titles

Macro 67: Adjust All Pivot Data Field Titles
When you create a PivotTable, Excel tries to help you out by prefacing each data field header with Sum
of, Count of, or whichever operation you use. Often, this is not conducive to your reporting needs.
You want clean titles that match your data source as closely as possible. Although it’s true that you can
manually adjust the titles for you data fields (one at a time), this macro fixes them all in one go.

How it works
Ideally, the name of the each data item matches the field name from your source data set (the origi-
nal source data used to create the PivotTable). Unfortunately, PivotTables won’t allow you to name a
data field the exact name as the source data field. The workaround for this is to add a space to the
end of the field name. Excel considers the field name (with a space) to be different from the source
data field name, so it allows it. Cosmetically, the readers of your spreadsheet don’t notice the space
after the name.

This macro utilizes this workaround to rename your data fields. It loops through each data field in the
PivotTable, and then resets each header to match its respective field in the source data plus a space
character.

Sub Macro67()

‘Step 1: Declare your Variables
 Dim pt As PivotTable
 Dim pf As PivotField

‘Step 2: Point to the PivotTable in the active cell
 On Error Resume Next
 Set pt = ActiveSheet.PivotTables(ActiveCell.PivotTable.Name)

‘Step 3: Exit if active cell is not in a PivotTable
 If pt Is Nothing Then
 MsgBox “You must place your cursor inside of a PivotTable.”
 Exit Sub
 End If

‘Step 4: Loop through all pivot fields adjust titles
 For Each pf In pt.DataFields
 pf.Caption = pf.SourceName & Chr(160)
 Next pf

End Sub

203Macro 67: Adjust All Pivot Data Field Titles

 1. Step 1 declares two object variables. It uses pt as the memory container for our PivotTable
and pf as a memory container for the data fields. This allows the macro to loop through all
the data fields in the PivotTable.

 2. This macro is designed so that we infer the active PivotTable based on the active cell. In
other words, the active cell must be inside a PivotTable for this macro to run. We assume that
when the cursor is inside a particular PivotTable, we want to perform the macro action on
that pivot.

 Step 2 sets the pt variable to the name of the PivotTable on which the active cell is found.
We do this by using the ActiveCell.PivotTable.Name property to get the name of
the target pivot.

 If the active cell is not inside of a PivotTable, an error is thrown. This is why we use the On
Error Resume Next statement. This tells Excel to continue with the macro if there is an
error.

 3. In Step 3, we check to see if the pt variable is filled with a PivotTable object. If the pt vari-
able is set to Nothing, the active cell was not on a PivotTable, thus no PivotTable could be
assigned to the variable. If this is the case, we tell the user in a message box, and then we exit
the procedure.

 4. If the macro reaches Step 4, it has successfully pointed to a PivotTable. The macro uses a For
Each statement to iterate through each data field. Each time a new pivot field is selected,
the macro changes the field name by setting the Caption property to match the field’s
SourceName. The SourceName property returns the name of the matching field in the
original source data.

 To that name, the macro concatenates a non-breaking space character: Chr(160).

 Every character has an underlying ASCII code, similar to a serial number. For instance, the
lowercase letter a has an ASCII code of 97. The lowercase letter c has an ASCII code of 99.
Likewise, invisible characters such as the space have a code. You can use invisible characters
in your macro by passing their code through the CHR function.

 After the name has been changed, the macro moves to the next data field. After all the data
fields have been evaluated, the macro ends.

How to use it
To implement this macro, you can copy and paste it into a standard module:

 1. Activate the Visual Basic Editor by pressing ALT+F11.

 2. Right-click the project/workbook name in the Project window.

 3. Choose Insert➜Module.

 4. Type or paste the code.

204 Macro 68: Set All Data Items to Sum

Macro 68: Set All Data Items to Sum
When creating a PivotTable, Excel, by default, summarizes your data by either counting or summing
the items. The logic Excel uses to decide whether to sum or count the fields you add to your
PivotTable is fairly simple. If all of the cells in a column contain numeric data, Excel chooses to Sum.
If the field you are adding contains a blank or text, Excel chooses Count.

Although this seems to make sense, in many instances, a pivot field that should be summed legiti-
mately contains blanks. In these cases, we are forced to manually go in after Excel and change the
calculation type from Count back to Sum. That’s if we’re paying attention! It’s not uncommon to
miss the fact that a pivot field is being counted instead of summed up.

The macro in this section aims to help by automatically setting each data item’s calculation type
to Sum.

How it works
This macro loops through each data field in the PivotTable and changes the Function property to
xlSum. You can alter this macro to use any one of the calculation choices: xlCount,
xlAverage, xlMin, xlMax, and so on. When you go into the code window and type
pf.Function =, you see a drop-down list showing you all your choices (see Figure 6-3).

Figure 6-3: Excel helps out by showing you your enumeration choices.

Sub Macro68()

‘Step 1: Declare your Variables
 Dim pt As PivotTable
 Dim pf As PivotField

‘Step 2: Point to the PivotTable in the active cell
 On Error Resume Next
 Set pt = ActiveSheet.PivotTables(ActiveCell.PivotTable.Name)

205Macro 68: Set All Data Items to Sum

‘Step 3: Exit if active cell is not in a PivotTable
 If pt Is Nothing Then
 MsgBox “You must place your cursor inside of a PivotTable.”
 Exit Sub
 End If

‘Step 4: Loop through all pivot fields apply SUM
 For Each pf In pt.DataFields
 pf.Function = xlSum
 Next pf

End Sub

 1. Step 1 declares two object variables. It uses pt as the memory container for the PivotTable
and pf as a memory container for the data fields. This allows us to loop through all the data
fields in the PivotTable.

 2. This macro is designed so that we infer the active PivotTable based on the active cell. The
active cell must be inside a PivotTable for this macro to run. The assumption is that when the
cursor is inside a particular PivotTable, we want to perform the macro action on that pivot.

 Step 2 sets the pt variable to the name of the PivotTable on which the active cell is found.
We do this by using the ActiveCell.PivotTable.Name property to get the name of
the target pivot.

 If the active cell is not inside of a PivotTable, an error is thrown. This is why we use the On
Error Resume Next statement. This tells Excel to continue with the macro if there is an
error.

 3. Step 3 checks to see if the pt variable is filled with a PivotTable object. If the pt variable is
set to Nothing, the active cell was not on a PivotTable, thus no PivotTable could be
assigned to the variable. If this is the case, we tell the user in a message box, and then we exit
the procedure.

 4. If the macro has reached Step 4, it has successfully pointed to a PivotTable. It uses a
For Each statement to iterate through each data field. Each time a new pivot field is
selected, it alters the Function property to set the calculation used by the field. In this case,
we are setting all the data fields in the PivotTable to Sum.

 After the name has been changed, we move to the next data field. After all the data fields
have been evaluated, the macro ends.

206 Macro 68: Set All Data Items to Sum

How to use it
To implement this macro, you can copy and paste it into a standard module:

 1. Activate the Visual Basic Editor by pressing ALT+F11.

 2. Right-click the project/workbook name in the Project window.

 3. Choose Insert➜Module.

 4. Type or paste the code.

207Macro 69: Apply Number Formatting for All Data Items

Macro 69: Apply Number Formatting
for All Data Items
A PivotTable does not inherently store number formatting in its pivot cache. Formatting takes up
memory; so in order to be as lean as possible, the pivot cache only contains data. Unfortunately, this
results in the need to apply number formatting to every field you add to a PivotTable. This takes from
eight to ten clicks of the mouse for every data field you add. When you have PivotTables that contain
five or more data fields, you’re talking about more than 40 clicks of the mouse!

Ideally, a PivotTable should be able to look back at its source data and adopt the number formatting
from the fields there. The macro outlined in this section is designed to do just that. It recognizes the
number formatting in the PivotTable’s source data and applies the appropriate formatting to each
field automatically.

How it works
Before running this code, you want to make sure that

➤	 The source data for your PivotTable is accessible. The macro needs to see it in order to cap-
ture the correct number formatting.

➤	 The source data is appropriately formatted. Money fields are formatted as currency, value
fields are formatted as numbers, and so on.

This macro uses the PivotTable SourceData property to find the location of the source data. It then
loops through each column in the source, capturing the header name and the number format of the
first value under each column. After it has that information, the macro determines whether any of the
data fields match the evaluated column. If it finds a match, the number formatting is applied to that
data field.

Sub Macro69()

‘Step 1: Declare your Variables
 Dim pt As PivotTable
 Dim pf As PivotField
 Dim SrcRange As Range
 Dim strFormat As String
 Dim strLabel As String
 Dim i As Integer

‘Step 2: Point to the PivotTable in the activecell
 On Error Resume Next
 Set pt = ActiveSheet.PivotTables(ActiveCell.PivotTable.Name)

208 Macro 69: Apply Number Formatting for All Data Items

‘Step 3: Exit if active cell is not in a PivotTable
 If pt Is Nothing Then
 MsgBox “You must place your cursor inside of a PivotTable.”
 Exit Sub
 End If

‘Step 4: Capture the source range
 Set SrcRange = _
 Range(Application.ConvertFormula(pt.SourceData, xlR1C1, xlA1))

‘Step 5: Start looping through the columns in source range
 For i = 1 To SrcRange.Columns.Count

‘Step 6: Trap the source column name and number format
 strLabel = SrcRange.Cells(1, i).Value
 strFormat = SrcRange.Cells(2, i).NumberFormat

‘Step 7: Loop through the fields PivotTable data area
 For Each pf In pt.DataFields

‘Step 8: Check for match on SourceName then apply format
 If pf.SourceName = strLabel Then
 pf.NumberFormat = strFormat
 End If
 Next pf
 Next i

End Sub

 1. Step 1 declares six variables. It uses pt as the memory container for our PivotTable and pf as
a memory container for our data fields. The SrcRange variable holds the data range for the
source data. The strFormat and strLabel variables are both text string variables used to
hold the source column label and number formatting respectively. The i variable serves as a
counter, helping us enumerate through the columns of the source data range.

 2. The active cell must be inside a PivotTable for this macro to run. The assumption is that when
the cursor is inside a particular PivotTable, we want to perform the macro action on that
pivot.

 Step 2 sets the pt variable to the name of the PivotTable on which the active cell is found.
We do this by using the ActiveCell.PivotTable.Name property to get the name of
the target pivot.

209Macro 69: Apply Number Formatting for All Data Items

 If the active cell is not inside a PivotTable, an error is thrown. This is why the macro uses the
On Error Resume Next statement. This tells Excel to continue with the macro if there is
an error.

 3. Step 3 checks to see whether the pt variable is filled with a PivotTable object. If the pt vari-
able is set to Nothing, the active cell was not on a PivotTable, thus no PivotTable could be
assigned to the variable. If this is the case, we tell the user in a message box, and then we exit
the procedure.

 4. If the macro reaches Step 4, it has successfully pointed to a PivotTable. We immediately fill
our SrcRange object variable with the PivotTable’s source data range.

 All PivotTables have a SourceData property that points to the address of its source.
Unfortunately, the address is stored in the R1C1 reference style — like this: ‘Raw
Data’!R3C1:R59470C14. Range objects cannot use the R1C1 style, so we need the
address to be converted to ‘Raw Data’!A3:N59470.

 This is a simple enough fix. We simply pass the SourceData property through the
Application.ConvertFormula function. This handy function converts ranges to and
from the R1C1 reference style.

 5. After the range is captured, the macro starts looping through the columns in the source
range. In this case, we manage the looping by using the i integer as an index number for the
columns in the source range. We start the index number at 1 and end it at the maximum
number of rows in the source range.

 6. As the macro loops through the columns in the source range, we capture the column header
label and the column format.

 We do this with the aid of the Cells item. The Cells item gives us an extremely handy
way of selecting ranges through code. It requires only relative row and column positions as
parameters. Cells(1,1) translates to row 1, column 1 (or the header row of the first col-
umn). Cells(2, 1) translates to row 2, column 1 (or the first value in the first column).

 strLabel is filled by the header label taken from row 1 of the column that is selected.
strFormat is filled with the number formatting from row 2 of the column that is selected.

 7. At this point, the macro has connected with the PivotTable’s source data and captured the
first column name and number formatting for that column. Now it starts looping through the
data fields in the PivotTable.

 8. Step 8 simply compares each data field to see if its source matches the name in
strLabel. If it does, that means the number formatting captured in strFormat belongs
to that data field.

 9. After all data fields have been evaluated, the macro increments i to the next column in the
source range. After all columns have been evaluated, the macro ends.

210 Macro 69: Apply Number Formatting for All Data Items

How to use it
To implement this macro, you can copy and paste it into a standard module:

 1. Activate the Visual Basic Editor by pressing ALT+F11.

 2. Right-click project/workbook name in the Project window.

 3. Choose Insert➜Module.

 4. Type or paste the code.

211Macro 70: Sort All Fields in Alphabetical Order

Macro 70: Sort All Fields
in Alphabetical Order
If you frequently add data to your PivotTables, you may notice that new data doesn’t automatically
fall into the sort order of the existing pivot data. Instead, it gets tacked to the bottom of the existing
data. This means that your drop-down lists show all new data at the very bottom, whereas existing
data is sorted alphabetically.

How it works
This macro works to reset the sorting on all data fields, ensuring that any new data snaps into place.
The idea is to run it each time you refresh your PivotTable. In the code, we enumerate through each
data field in the PivotTable, sorting each one as we go.

Sub Macro70()

‘Step 1: Declare your Variables
 Dim pt As PivotTable
 Dim pf As PivotField

‘Step 2: Point to the PivotTable in the activecell
 On Error Resume Next
 Set pt = ActiveSheet.PivotTables(ActiveCell.PivotTable.Name)

‘Step 3: Exit if active cell is not in a PivotTable
 If pt Is Nothing Then
 MsgBox “You must place your cursor inside of a PivotTable.”
 Exit Sub
 End If

‘Step 4: Loop through all pivot fields and sort
 For Each pf In pt.PivotFields
 pf.AutoSort xlAscending, pf.Name
 Next pf

End Sub

 1. Step 1 declares two object variables, using pt as the memory container for the PivotTable
and using pf as a memory container for our data fields. This allows the macro to loop
through all the data fields in the PivotTable.

212 Macro 70: Sort All Fields in Alphabetical Order

 2. The active cell must be inside a PivotTable for this macro to run. The assumption is that when
the cursor is inside a particular PivotTable, we want to perform the macro action on that
pivot.

 In Step 2, we set the pt variable to the name of the PivotTable on which the active cell is
found. We do this by using the ActiveCell.PivotTable.Name property to get the
name of the target pivot.

 If the active cell is not inside of a PivotTable, an error is thrown. This is why we use the On
Error Resume Next statement. This tells Excel to continue with the macro if there is an
error.

 3. Step 3 checks to see whether the pt variable is filled with a PivotTable object. If the pt vari-
able is set to Nothing, the active cell was not on a PivotTable, thus no PivotTable could be
assigned to the variable. If this is the case, the macro puts up a message box to notify the
user, and then exits the procedure.

 4. Finally, we use a For Each statement to iterate through each pivot field. Each time a new
pivot field is selected, we use the AutoSort method to reset the automatic sorting rules for
the field. In this case, we are sorting all fields in ascending order. After all the data fields have
been evaluated, the macro ends.

How to use it
To implement this macro, you can copy and paste it into a standard module:

 1. Activate the Visual Basic Editor by pressing ALT+F11.

 2. Right-click the project/workbook name in the Project window.

 3. Choose Insert➜Module.

 4. Type or paste the code.

213Macro 71: Apply Custom Sort to Data Items

Macro 71: Apply Custom Sort to Data Items
On occasion, you may need to apply a custom sort to the data items in your PivotTable. For instance,
if you work for a company in California, your organization may want the West region to come before
the North and South. In these types of situations, neither the standard ascending nor descending
sort order will work.

How it works
You can automate the custom sorting of your fields by using the Position property of the
PivotItems object. With the Position property, you can assign a position number that specifies
the order in which you would like to see each pivot item.

In this example code, we first point to the Region pivot field in the Pvt1 PivotTable. Then we list
each item along with the position number indicating the customer sort order we need.

Sub Macro71()

With Sheets(“Sheet1”).PivotTables(“Pvt1”).PivotFields(“Region “)
 .PivotItems(“West”).Position = 1
 .PivotItems(“North”).Position = 2
 .PivotItems(“South”).Position = 3

End With

End Sub

The other solution is to set up a custom sort list. A custom sort list is a defined list that is
stored in your instance of Excel. To create a custom sort list, go to the Excel Options dia-
log box and choose Edit Custom Lists. Here, you can type West, North, and South in the
List Entries box and click Add. After setting up a custom list, Excel realizes that the
Region data items in your PivotTable match a custom list and sorts the field to match
your custom list.

As brilliant as this option is, custom lists do not travel with your workbook, so a macro
helps in cases where it’s impractical to expect your clients or team members to set up
their own custom sort lists.

214 Macro 71: Apply Custom Sort to Data Items

How to use it
You can implement this kind of a macro in a standard module:

 1. Activate the Visual Basic Editor by pressing ALT+F11.

 2. Right-click the project/workbook name in the Project window.

 3. Choose Insert➜Module.

 4. Type or paste the code.

215Macro 72: Apply PivotTable Restrictions

Macro 72: Apply PivotTable Restrictions
We often send PivotTables to clients, coworkers, managers, and other groups of people. In some cases,
we’d like to restrict the types of actions our users can take on the PivotTable reports we send them. The
macro outlined in this section demonstrates some of the protection settings available via VBA.

How it works
The PivotTable object exposes several properties that allow you (the developer) to restrict differ-
ent features and components of a PivotTable:

➤	 EnableWizard: Setting this property to False disables the PivotTable Tools context menu
that normally activates when clicking inside of a PivotTable. In Excel 2003, this setting dis-
ables the PivotTable and Pivot Chart Wizard.

➤	 EnableDrilldown: Setting this property to False prevents users from getting to detailed
data by double-clicking a data field.

➤	 EnableFieldList: Setting this property to False prevents users from activating the field list
or moving pivot fields around.

➤	 EnableFieldDialog: Setting this property to False disables the users’ ability to alter the
pivot field via the Value Field Settings dialog box.

➤	 PivotCache.EnableRefresh: Setting this property to False disables the ability to refresh
the PivotTable.

You can set any or all of these properties independently to either True or False. In this macro, we
apply all of the restrictions to the target PivotTable.

Sub Macro72()

‘Step 1: Declare your Variables
 Dim pt As PivotTable

‘Step 2: Point to the PivotTable in the activecell
 On Error Resume Next
 Set pt = ActiveSheet.PivotTables(ActiveCell.PivotTable.Name)

‘Step 3: Exit if active cell is not in a PivotTable
 If pt Is Nothing Then
 MsgBox “You must place your cursor inside of a PivotTable.”
 Exit Sub
 End If

216 Macro 72: Apply PivotTable Restrictions

‘Step 4: Apply PivotTable Restrictions
 With pt
 .EnableWizard = False
 .EnableDrilldown = False
 .EnableFieldList = False
 .EnableFieldDialog = False
 .PivotCache.EnableRefresh = False
 End With

End Sub

 1. Step 1 declares the pt PivotTable object variable that serves as the memory container for
our PivotTable.

 2. Step 2 sets the pt variable to the name of the PivotTable on which the active cell is found.
We do this by using the ActiveCell.PivotTable.Name property to get the name of
the target pivot.

 3. Step 3 checks to see if the pt variable is filled with a PivotTable object. If the pt variable is
set to Nothing, the active cell was not on a PivotTable, thus no PivotTable could be
assigned to the variable. If this is the case, the macro notifies the user in a message box, and
then we exit the procedure.

 4. In the last step of the macro, we are applying all PivotTable restrictions.

How to use it
You can implement this kind of a macro in a standard module:

 1. Activate the Visual Basic Editor by pressing ALT+F11.

 2. Right-click the project/workbook name in the Project window.

 3. Choose Insert➜Module.

 4. Type or paste the code.

217Macro 73: Apply Pivot Field Restrictions

Macro 73: Apply Pivot Field Restrictions
Like PivotTable restrictions, pivot field restrictions enable us to restrict the types of actions our users
can take on the pivot fields in a PivotTable. The macro outlined in this section demonstrates some of
the protection settings available via VBA.

How it works
The PivotField object exposes several properties that allow you (the developer) to restrict differ-
ent features and components of a PivotTable.

➤	 DragToPage: Setting this property to False prevents the users from dragging any pivot
field into the Report Filter area of the PivotTable.

➤	 DragToRow: Setting this property to False prevents the users from dragging any pivot
field into the Row area of the PivotTable.

➤	 DragToColumn: Setting this property to False prevents the users from dragging any pivot
field into the Column area of the PivotTable.

➤	 DragToData: Setting this property to False prevents the users from dragging any pivot
field into the Data area of the PivotTable.

➤	 DragToHide: Setting this property to False prevents the users from dragging pivot fields
off the PivotTable. It also prevents the use of the right-click menu to hide or remove pivot
fields.

➤	 EnableItemSelection: Setting this property to False disables the drop-down lists on each
pivot field.

You can set any or all of these properties independently to either True or False. In this macro, we
apply all of the restrictions to the target PivotTable.

Sub Macro73()

‘Step 1: Declare your Variables
 Dim pt As PivotTable
 Dim pf As PivotField

‘Step 2: Point to the PivotTable in the activecell
 On Error Resume Next
 Set pt = ActiveSheet.PivotTables(ActiveCell.PivotTable.Name)

‘Step 3: Exit if active cell is not in a PivotTable
 If pt Is Nothing Then
 MsgBox “You must place your cursor inside of a PivotTable.”

218 Macro 73: Apply Pivot Field Restrictions

 Exit Sub
 End If

‘Step 4: Apply Pivot Field Restrictions
 For Each pf In pt.PivotFields
 pf.EnableItemSelection = False
 pf.DragToPage = False
 pf.DragToRow = False
 pf.DragToColumn = False
 pf.DragToData = False
 pf.DragToHide = False
 Next pf

End Sub

 1. Step 1 declares two object variables, using pt as the memory container for our PivotTable
and pf as a memory container for our pivot fields. This allows us to loop through all the
pivot fields in the PivotTable.

 2. Set the pt variable to the name of the PivotTable on which the active cell is found. We do
this by using the ActiveCell.PivotTable.Name property to get the name of the tar-
get pivot.

 3. Step 3 checks to see whether the pt variable is filled with a PivotTable object. If the pt vari-
able is set to Nothing, the active cell was not on a PivotTable, thus no PivotTable could be
assigned to the variable. If this is the case, the macro notifies the user via a message box, and
then exits the procedure.

 4. Step 4 of the macro uses a For Each statement to iterate through each pivot field. Each
time a new pivot field is selected, we apply all of our pivot field restrictions.

How to use it
You can implement this kind of a macro in a standard module:

 1. Activate the Visual Basic Editor by pressing ALT+F11.

 2. Right-click the project/workbook name in the Project window.

 3. Choose Insert➜Module.

 4. Type or paste the code.

219Macro 74: Automatically Delete Pivot Table Drill-Down Sheets

Macro 74: Automatically Delete
Pivot Table Drill-Down Sheets
One of the coolest features of a PivotTable is that it gives you the ability to double-click on a number
and drill into the details. The details are output to a new sheet that you can review. In most cases,
you don’t want to keep these sheets. In fact, they often become a nuisance, forcing you to take the
time to clean them up by deleting them.

This is especially a problem when you distribute PivotTable reports to users who frequently drill into
details. There is no guarantee they will remember to clean up the drill-down sheets. Although these
sheets probably won’t cause issues, they can clutter up the workbook.

Here is a technique you can implement to have your workbook automatically remove these drill-
down sheets.

How it works
The basic premise of this macro is actually very simple. When the user clicks for details, outputting a
drill-down sheet, the macro simply renames the output sheet so that the first ten characters are
PivotDrill. Then before the workbook closes, the macro finds any sheet that starts with PivotDrill and
deletes it.

The implementation does get a bit tricky because you essentially have to have two pieces of code.
One piece goes in the Worksheet_BeforeDoubleClick event, whereas the other piece goes
into the Workbook_BeforeClose event.

Private Sub Worksheet_BeforeDoubleClick(ByVal Target As Range, Cancel As
Boolean)

‘Step 1: Declare your Variables
 Dim pt As String

‘Step 2: Exit if Double-Click did not occur on a PivotTable
 On Error Resume Next
 If IsEmpty(Target) And ActiveCell.PivotField.Name <> “” Then
 Cancel = True
 Exit Sub
 End If

‘Step 3: Set the PivotTable object
 pt = ActiveSheet.Range(ActiveCell.Address).PivotTable

220 Macro 74: Automatically Delete Pivot Table Drill-Down Sheets

‘Step 4: If Drilldowns are Enabled, Drill down
 If ActiveSheet.PivotTables(pt).EnableDrilldown Then
 Selection.ShowDetail = True

 ActiveSheet.Name = _
 Replace(ActiveSheet.Name, “Sheet”, “PivotDrill”)
 End If

End Sub

 1. Step 1 starts by creating the pt object variable for our PivotTable.

 2. Step 2 checks the double-clicked cell. If the cell is not associated with any PivotTable, we can-
cel the double-click event.

 3. If a PivotTable is indeed associated with a cell, Step 3 fills the pt variable with the PivotTable.

 4. Finally, Step 4 checks the EnableDrillDown property. If it is enabled, we trigger the
ShowDetail method. This outputs the drill-down details to a new worksheet.

 The macro follows the output and renames the output sheet so that the first ten characters
are PivotDrill. We do this by using the Replace function. The Replace function replaces
certain text in an expression with other text. In this case, we are replacing the word Sheet
with PivotDrill: Replace(ActiveSheet.Name, “Sheet”, “PivotDrill”).

 Sheet1 becomes PivotDrill1; Sheet12 becomes PivotDrill12, and so on.

 Next, the macro sets up the Worksheet_BeforeDoubleClick event. As the name sug-
gests, this code runs when the workbook closes.

Private Sub Workbook_BeforeClose(Cancel As Boolean)

‘Step 5: Declare your Variables
 Dim ws As Worksheet

‘Step 6: Loop through worksheets
 For Each ws In ThisWorkbook.Worksheets

‘Step 7: Delete any sheet that starts with PivotDrill
 If Left(ws.Name, 10) = “PivotDrill” Then
 Application.DisplayAlerts = False
 ws.Delete
 Application.DisplayAlerts = True
 End If

221Macro 74: Automatically Delete Pivot Table Drill-Down Sheets

 Next ws

End Sub

 5. Step 5 declares the ws Worksheet variable. This is used to hold worksheet objects as we loop
through the workbook.

 6. Step 6 starts the looping, telling Excel we want to evaluate all worksheets in this
workbook.

 7. In the last step, we evaluate the name of the sheet that has focus in the loop. If the left ten
characters of that sheet name are PivotDrill, we delete the worksheet. After all of the sheets
have been evaluated, all drill-down sheets have been cleaned up and the macro ends.

How to use it
To implement the first part of the macro, you need to copy and paste it into the Worksheet_
BeforeDoubleClick event code window. Placing the macro here allows it to run each time you
double-click on the sheet:

 1. Activate the Visual Basic Editor by pressing ALT+F11.

 2. In the Project window, find your project/workbook name and click the plus sign next to it in
order to see all the sheets.

 3. Click on the sheet in which you want to trigger the code.

 4. Select the BeforeDoubleClick event from the Event drop-down list box (see
Figure 6-4).

 5. Type or paste the code.

Figure 6-4: Type or paste your code in the Worksheet_BeforeDoubleClick event code window.

222 Macro 74: Automatically Delete Pivot Table Drill-Down Sheets

To implement this macro, you need to copy and paste it into the Workbook_BeforeClose event
code window. Placing the macro here allows it to run each time you try to close the
workbook.

 1. Activate the Visual Basic Editor by pressing ALT+F11.

 2. In the Project window, find your project/workbook name and click the plus sign next to it in
order to see all the sheets.

 3. Click ThisWorkbook.

 4. Select the BeforeClose event in the Event drop-down list (see Figure 6-5).

 5. Type or paste the code.

Figure 6-5: Enter or paste your code in the Workbook_BeforeClose event code window.

223Macro 75: Print Pivot Table for Each Report Filter Item

Macro 75: Print Pivot Table for
Each Report Filter Item
Pivot tables provide an excellent mechanism to parse large data sets into printable files. You can
build a PivotTable report, complete with aggregations and analysis, and then place a field (like
Region) into the report filter. With the report filter, you can select each data item one at a time, and
then print the PivotTable report.

The macro in this section demonstrates how to automatically iterate through all the values in a
report filter and print.

How it works
In the Excel object model, the Report Filter drop-down list is known as the PageField. To print a
PivotTable for each data item in a report filter, we need to loop through the PivotItems collection
of the PageField object. As we loop, we dynamically change the selection in the report filter, and
then use the ActiveSheet.PrintOut method to print the target range.

Sub Macro75()

‘Step 1: Declare your Variables
 Dim pt As PivotTable
 Dim pf As PivotField
 Dim pi As PivotItem

‘Step 2: Point to the PivotTable in the activecell
 On Error Resume Next
 Set pt = ActiveSheet.PivotTables(ActiveCell.PivotTable.Name)

‘Step 3: Exit if active cell is not in a PivotTable
 If pt Is Nothing Then
 MsgBox “You must place your cursor inside of a PivotTable.”
 Exit Sub
 End If

‘Step 4: Exit if more than one page field
 If pt.PageFields.Count > 1 Then
 MsgBox “Too many Report Filter Fields. Limit 1.”
 Exit Sub
 End If

224 Macro 75: Print Pivot Table for Each Report Filter Item

‘Step 5: Start looping through the page field and its pivot items
 For Each pf In pt.PageFields
 For Each pi In pf.PivotItems

‘Step 6: Change the selection in the report filter
 pt.PivotFields(pf.Name).CurrentPage = pi.Name

‘Step 7: Set Print Area and print
 ActiveSheet.PageSetup.PrintArea = pt.TableRange2.Address
 ActiveSheet.PrintOut Copies:=1

‘Step 8: Get the next page field item
 Next pi
 Next pf

End Sub

 1. For this macro, Step 1 declares three variables: pt as the memory container for our
PivotTable, pf as a memory container for our page fields, and pi to hold each pivot item as
we loop through the PageField object.

 2. The active cell must be inside a PivotTable for this macro to run. The assumption is that when
the cursor is inside a particular PivotTable, we want to perform the macro action on that
pivot.

 Step 2 sets the pt variable to the name of the PivotTable on which the active cell is found.
We do this by using the ActiveCell.PivotTable.Name property to get the name of
the target pivot.

 If the active cell is not inside of a PivotTable, the macro throws an error. This is why we use
the On Error Resume Next statement. This tells Excel to continue with the macro if
there is an error.

 3. Step 3 checks to see whether the pt variable is filled with a PivotTable object. If the pt vari-
able is set to Nothing, the active cell was not on a PivotTable, thus no PivotTable could be
assigned to the variable. If this is the case, the user is notified via a message box, and then we
exit the procedure.

 4. Step 4 determines whether there is more than one report filter field. (If the count of
PageFields is greater than one, there is more than one report filter.) We do this check for
a simple reason: We want to avoid printing reports for filters that just happen to be there.
Without this check, you might wind up printing hundreds of pages. The macro stops with a
message box if the field count is greater than 1.

 You can remove this limitation should you need to simply by deleting or commenting out
Step 4 in the macro.

225Macro 75: Print Pivot Table for Each Report Filter Item

 5. Step 5 starts two loops. The outer loop tells Excel to iterate through all the report filters. The
inner loop tells Excel to loop through all the pivot items in the report filter that currently has
focus.

 6. For each pivot item, the macro captures the item name and uses it to change the report filter
selection. This effectively alters the PivotTable report to match the pivot item.

 7. Step 7 prints the active sheet, and then moves to the next pivot item. After we have looped
through all pivot items in the report filter, the macro moves to the next PageField. After
all PageFields have been evaluated, the macro ends.

How to use it
You can implement this kind of a macro in a standard module:

 1. Activate the Visual Basic Editor by pressing ALT+F11.

 2. Right-click the project/workbook name in the Project window.

 3. Choose Insert➜Module.

 4. Type or paste the code.

226 Macro 76: Create New Workbook for Each Report Filter Item

Macro 76: Create New Workbook
for Each Report Filter Item
Pivot tables provide an excellent mechanism to parse large data sets into separate files. You can
build a PivotTable report, complete with aggregations and analysis, and then place a field (like
Region) into the report filter. With the report filter, you can select each data item one at a time, and
then export the PivotTable data to a new workbook.

The macro in this section demonstrates how to automatically iterate through all the values in a
report filter and export to a new workbook.

How it works
In the Excel object model, the Report Filter drop-down list is known as the PageField. To print a
PivotTable for each data item in a report filter, the macro needs to loop through the PivotItems
collection of the PageField object. As the macro loops, it must dynamically change the selection in
the report filter, and then export the PivotTable report to a new workbook.

Sub Macro76()

‘Step 1: Declare your Variables
 Dim pt As PivotTable
 Dim pf As PivotField
 Dim pi As PivotItem

‘Step 2: Point to the PivotTable in the activecell
 On Error Resume Next
 Set pt = ActiveSheet.PivotTables(ActiveCell.PivotTable.Name)

‘Step 3: Exit if active cell is not in a PivotTable
 If pt Is Nothing Then
 MsgBox “You must place your cursor inside of a PivotTable.”
 Exit Sub
 End If

‘Step 4: Exit if more than one page field
 If pt.PageFields.Count > 1 Then
 MsgBox “Too many Report Filter Fields. Limit 1.”
 Exit Sub
 End If

227Macro 76: Create New Workbook for Each Report Filter Item

‘Step 5: Start looping through the page field and its pivot items
 For Each pf In pt.PageFields
 For Each pi In pf.PivotItems

‘Step 6: Change the selection in the report filter
 pt.PivotFields(pf.Name).CurrentPage = pi.Name

‘Step 7: Copy the data area to a new workbook
 pt.TableRange1.Copy

 Workbooks.Add.Worksheets(1).Paste
 Application.DisplayAlerts = False

 ActiveWorkbook.SaveAs _
 Filename:=”C:\Temp\” & pi.Name & “.xlsx”
 ActiveWorkbook.Close
 Application.DisplayAlerts = True

‘Step 8: Get the next page field item
 Next pi
 Next pf

End Sub

 1. Step 1 declares three variables, pt as the memory container for our PivotTable, pf as a mem-
ory container for our page fields, and pi to hold each pivot item as the macro loops through
the PageField object.

 2. The active cell must be inside a PivotTable for this macro to run. The assumption is that when
the cursor is inside a particular PivotTable, we will want to perform the macro action on that
pivot.

 Step 2 sets the pt variable to the name of the PivotTable on which the active cell is found.
The macro does this by using the ActiveCell.PivotTable.Name property to get the
name of the target pivot.

 If the active cell is not inside of a PivotTable, an error is thrown. This is why we use the On
Error Resume Next statement. This tells Excel to continue with the macro if there is an
error.

 3. Step 3 checks to see whether the pt variable is filled with a PivotTable object. If the pt vari-
able is set to Nothing, the active cell was not on a PivotTable, thus no PivotTable could be
assigned to the variable. If this is the case, the macro notifies the user via a message box, and
then we exit the procedure.

228 Macro 76: Create New Workbook for Each Report Filter Item

 4. Step 4 determines whether there is more than one report filter field. If the count of
PageFields is greater than one, there is more than one report filter. The reason we do this
check is simple. We want to avoid printing reports for filters that just happen to be there.
Without this check, you might wind up printing hundreds of pages. The macro stops and dis-
plays a message box if the field count is greater than 1.

 You can remove the one report filter limitation if you need to simply by deleting or com-
menting out Step 4 in the macro.

 5. Step 5 starts two loops. The outer loop tells Excel to iterate through all the report filters. The
inner loop tells Excel to loop through all the pivot items in the report filter that currently has
focus.

 6. For each pivot item, Step 6 captures the item name and uses it to change the report filter
selection. This effectively alters the PivotTable report to match the pivot item.

 7. Step 7 copies TableRange1 of the PivotTable object. TableRange1 is a built-in range
object that points to the range of the main data area for the PivotTable. We then paste the
data to a new workbook and save it. Note that you need to change the save path to one that
works in your environment.

 8. Step 8 moves to the next pivot item. After the macro has looped through all pivot items in
the report filter, the macro moves to the next PageField. After all PageFields have
been evaluated, the macro ends.

How to use it
You can implement this kind of a macro in a standard module:

 1. Activate the Visual Basic Editor by pressing ALT+F11.

 2. Right-click the project/workbook name in the Project window.

 3. Choose Insert➜Module.

 4. Type or paste the code.

229Macro 77: Transpose Entire Data Range with a PivotTable

Macro 77: Transpose Entire Data
Range with a PivotTable
You may often encounter matrix-style data tables like the one shown in Figure 6-6. The problem is
that the month headings are spread across the top of the table, pulling double duty as column labels
and actual data values. In a PivotTable, this format would force you to manage and maintain 12
fields, each representing a different month.

Ideally, the data would be formatted in a more tabular format, as shown in Figure 6-7.

Figure 6-6: Matrix-style reports are often problematic in PivotTables.

Figure 6-7: Tabular data sets are ideal when working with data.

There are countless methods you can use to transpose an entire data range. The macro in this section
provides an easy way to automate this task.

230 Macro 77: Transpose Entire Data Range with a PivotTable

Multiple consolidation ranges can only output three base fields: Row, Column, and
Value. The Row field is always made up of the first column in your data source. The
Column field is made up of all the column headers after the first column in your data
source. The Value field is made up of the values in your data source.

Because of this, you can only have one dimension column. To understand this, take a
look at Figure 6-6. Note that the first column is essentially a concatenated column con-
sisting of two data dimensions: Market and Category. This is because a multiple consoli-
dation range pivot table can handle only one dimension field.

How it works
You can transpose a dataset with a multiple consolidation range PivotTable. The manual steps to do
so are

 1. Press Alt+D+P to call up the Excel 2003 PivotTable Wizard.

 2. Click the option for Multiple Consolidation Ranges, and then click Next.

 3. Select the I Will Create the Page Fields option, and then click Next.

 4. Define the range you are working with and click Finish to create the PivotTable.

 5. Double-click on the intersection of the Grand Total row and column.

This macro duplicates the steps above, allowing you to transpose your data set in a fraction of the
time.

Sub Macro77()

‘Step 1: Declare your Variables
 Dim SourceRange As Range
 Dim GrandRowRange As Range
 Dim GrandColumnRange As Range

‘Step 2: Define your data source range
 Set SourceRange = Sheets(“Sheet1”).Range(“A4:M87”)

‘Step 3: Build Multiple Consolidation Range Pivot Table
 ActiveWorkbook.PivotCaches.Create(SourceType:=xlConsolidation, _
 SourceData:=SourceRange.Address(ReferenceStyle:=xlR1C1), _
 Version:=xlPivotTableVersion14).CreatePivotTable _
 TableDestination:=””, _
 TableName:=”Pvt2”, _
 DefaultVersion:=xlPivotTableVersion14

231Macro 77:Transpose Entire Data Range with a PivotTable

‘Step 4: Find the Column and Row Grand Totals
 ActiveSheet.PivotTables(1).PivotSelect “’Row Grand Total’”
 Set GrandRowRange = Range(Selection.Address)

 ActiveSheet.PivotTables(1).PivotSelect “’Column Grand Total’”
 Set GrandColumnRange = Range(Selection.Address)

‘Step 5: Drill into the intersection of Row and Column
 Intersect(GrandRowRange, GrandColumnRange).ShowDetail = True

End Sub

How to use it
You can implement this kind of a macro in a standard module:

 1. Activate the Visual Basic Editor by pressing ALT+F11.

 2. Right-click the project/workbook name in the Project window.

 3. Choose Insert➜Module.

 4. Type or paste the code.

232 Part VI: Working with PivotTables

PART VII
Manipulating Charts
with Macros
Charts are the topic of this Part. We show you how to resize them, label them, format them,
and more.

In This Part
Macro 78 Resize All Charts on a Worksheet ... 235
Macro 79 Align a Chart to a Specific Range .. 237
Macro 80 Create a Set of Disconnected Charts .. 239
Macro 81 Print All Charts on a Worksheet .. 241
Macro 82 Label First and Last Chart Points .. 243
Macro 83 Color Chart Series to Match Source Cell Colors .. 246
Macro 84 Color Chart Data Points to Match Source Cell Colors 250

235Macro 78: Resize All Charts on a Worksheet

For those of us tasked with building dashboards and reports, charts are a daily part of our work life.
However, few of us have had the inclination to automate any aspect of our chart work with macros.
Many of us would say that there are too many scope changes and iterative adjustments in the normal
reporting environment to automate charting.

On many levels, that is true, but some aspects of our work lend themselves to a bit of automation. In
this Part, we explore a handful of charting macros that can help you save time and become a bit
more efficient.

The code for this Part can be found on this book’s companion website. See this book’s
Introduction for more on the companion website.

Macro 78: Resize All Charts on a Worksheet
When building a dashboard, you often want to achieve some level of symmetry and balance. This
sometimes requires some level of chart size standardization. The macro in this section gives you an
easy way to set a standard height and width for all your charts at once.

How it works
All charts belong to the ChartObjects collection. To take an action on all charts at one time, you
simply iterate through all the charts in ChartObjects. Each chart in the ChartObjects collec-
tion has an index number that you can use to bring it into focus. For example, Chart
Objects(1) points to the first chart in the sheet.

In this macro, we use this concept to loop through the charts on the active sheet with a simple counter.
Each time a new chart is brought into focus, we change its height and width to the size we’ve defined.

Sub Macro78()

‘Step 1: Declare your variables
 Dim i As Integer

‘Step 2: Start Looping through all the charts
 For i = 1 To ActiveSheet.ChartObjects.Count

‘Step 3: Activate each chart and size
 With ActiveSheet.ChartObjects(i)
 .Width = 300
 .Height = 200
 End With

236 Macro 78: Resize All Charts on a Worksheet

‘Step 4: Increment to move to next chart
 Next i

End Sub

 1. Step 1 declares an integer object that is used as a looping mechanism. We call the
variable i.

 2. Step 2 starts the looping by setting i to count from 1 to the maximum number of charts in
the ChartObjects collection on the active sheet. When the code starts, i initiates with
the number 1. As we loop, the variable increments up one number until it reaches a number
equal to the maximum number of charts on the sheet.

 3. Step 3 passes i to the ChartObjects collection as the index number. This brings a chart
into focus. We then set the width and height of the chart to the number we specify here in
the code. You can change these numbers to suit your needs.

 4. In Step 4, the macro loops back around to increment i up one number and get the next
chart. After all charts have been evaluated, the macro ends.

How to use it
To implement this macro, you can copy and paste it into a standard module:

 1. Activate the Visual Basic Editor by pressing ALT+F11.

 2. Right-click the project/workbook name in the Project window.

 3. Choose Insert➜Module.

 4. Type or paste the code into the newly created blank module.

237Macro 79: Align a Chart to a Specific Range

Macro 79: Align a Chart to a Specific Range
Along with adjusting the size of our charts, many of us spend a good bit of time positioning them so
that they align nicely in our dashboards. This macro helps easily snap your charts to defined ranges,
getting perfect positioning every time.

How it works
Every chart has four properties that dictate its size and position. These properties are Width,
Height, Top, and Left. Interestingly enough, every Range object has these same properties.
So if you set a chart’s Width, Height, Top, and Left properties to match that of a particular
range, the chart essentially snaps to that range.

The idea is that after you have decided how you want your dashboard to be laid out, you take note of
the ranges that encompass each area of your dashboard. You then use those ranges in this macro to
snap each chart to the appropriate range. In this example, we adjust four charts so that their Width,
Height, Top, and Left properties match a given range.

Note that we are identifying each chart with a name. Charts are, by default, named “Chart” and the order
number they were added (Chart 1, Chart 2, Chart 3, and so on). You can see what each of your charts is
named by clicking any chart, and then going up to the Ribbon and selecting Format➜Selection Pane. This
activates a task pane (seen here in Figure 7-1) that lists all the objects on your sheet with their names.

Figure 7-1: The Selection Pane allows you to see all of your chart objects and their respective names.

You can use it to get the appropriate chart names for your version of this macro.

Sub Macro79()

Dim SnapRange As Range

Set SnapRange = ActiveSheet.Range(“B6:G19”)
 With ActiveSheet.ChartObjects(“Chart 1”)
 .Height = SnapRange.Height
 .Width = SnapRange.Width

238 Macro 79: Align a Chart to a Specific Range

 .Top = SnapRange.Top
 .Left = SnapRange.Left
 End With

Set SnapRange = ActiveSheet.Range(“B21:G34”)
 With ActiveSheet.ChartObjects(“Chart 2”)
 .Height = SnapRange.Height
 .Width = SnapRange.Width
 .Top = SnapRange.Top
 .Left = SnapRange.Left
 End With

Set SnapRange = ActiveSheet.Range(“I6:Q19”)
 With ActiveSheet.ChartObjects(“Chart 3”)
 .Height = SnapRange.Height
 .Width = SnapRange.Width
 .Top = SnapRange.Top
 .Left = SnapRange.Left
 End With

Set SnapRange = ActiveSheet.Range(“I21:Q34”)
 With ActiveSheet.ChartObjects(“Chart 4”)
 .Height = SnapRange.Height
 .Width = SnapRange.Width
 .Top = SnapRange.Top
 .Left = SnapRange.Left
 End With

End Sub

How to use it
To implement this macro, you can copy and paste it into a standard module:

 1. Activate the Visual Basic Editor by pressing ALT+F11.

 2. Right-click the project/workbook name in the Project window.

 3. Choose Insert➜Module.

 4. Type or paste the code into the newly created Module.

239Macro 80: Create a Set of Disconnected Charts

Macro 80: Create a Set of Disconnected
Charts
When you need to copy charts from a workbook and paste them elsewhere (another workbook,
PowerPoint, Outlook, and so on), it’s often best to disconnect them from the original source data.
This way, you won’t get any of the annoying missing link messages that Excel throws. This macro
copies all of the charts in the active sheet, pastes them into a new workbook, and disconnects them
from the original source data.

How it works
This macro uses the ShapeRange.Group method to group all the charts on the active sheet into
one shape. This is similar to what you would do if you were to group a set of shapes manually. After
the charts are grouped, we copy the group and paste it to a new workbook. We then use the
BreakLink method to remove references to the original source data. When we do this, Excel
hard-codes the chart data into array formulas.

Sub Macro80()

‘Step 1: Declare your variables
Dim wbLinks As Variant

‘Step 2: Group the charts, copy the group, and then ungroup
 With ActiveSheet.ChartObjects.ShapeRange.Group
 .Copy
 .Ungroup
 End With

‘Step 3: Paste into a new workbook and ungroup
 Workbooks.Add.Sheets(1).Paste
 Selection.ShapeRange.Ungroup

‘Step 4: Break the links
 wbLinks = ActiveWorkbook.LinkSources(Type:=xlLinkTypeExcelLinks)
 ActiveWorkbook.BreakLink Name:=wbLinks(1), _
 Type:=xlLinkTypeExcelLinks

End Sub

240 Macro 80: Create a Set of Disconnected Charts

 1. Step 1 declares the wbLinks variant variable. The macro uses this in Step 4 to pass the link
source when breaking the links.

 2. Step 2 uses ChartObjects.ShapeRange.Group to group all the charts into a single
shape. The macro then copies the group to the clipboard. After the group is copied, the
macro ungroups the charts.

 3. Step 3 creates a new workbook and pastes the copied group to Sheet 1. After the group has
been pasted, we can ungroup so that each chart is separate again. Note that the newly cre-
ated workbook is now the active object, so all references to ActiveWorkbook point back to
this workbook.

 4. Step 4 captures the link source in the wbLinks variable. The macro then tells Excel to break
the links.

Note that because this technique converts the chart source links to an array formula,
this technique can fail if your chart contains too many data points. How many is too
many? It can be different for every PC because it’s limited by memory.

How to use it
To implement this macro, you can copy and paste it into a standard module:

 1. Activate the Visual Basic Editor by pressing ALT+F11.

 2. Right-click the project/workbook name in the Project window.

 3. Choose Insert➜Module.

 4. Type or paste the code into the newly created Module.

241Macro 81: Print All Charts on a Worksheet

Macro 81: Print All Charts on a Worksheet
To print a chart, you can click any embedded chart in your worksheet and then click Print. This prints
the chart on its own sheet without any of the other data on the sheet. This sounds easy enough, but
it can become a chore if you’ve got to do this for many charts. This macro makes short work of this
task.

How it works
All charts belong to the ChartObjects collection. To take an action on all charts at one time, you
simply iterate through all the charts in ChartObjects. Each chart in the ChartObjects collec-
tion has an index number that you can use to bring it into focus. For example, ChartObjects(1)
points to the first chart in the sheet.

In this macro, we use this concept to loop through the charts on the active sheet with a simple coun-
ter. Each time a new chart is brought into focus, print it.

Sub Macro81()

‘Step 1: Declare your variables
 Dim ChartList As Integer
 Dim i As Integer

‘Step 2: Start Looping through all the charts
 For i = 1 To ActiveSheet.ChartObjects.Count

‘Step 3: Activate each chart and print
 ActiveSheet.ChartObjects(i).Activate
 ActiveChart.PageSetup.Orientation = xlLandscape
 ActiveChart.PrintOut Copies:=1

‘Step 4: Increment to move to next chart
 Next i

End Sub

 1. Step 1 declares an integer object that is used as a looping mechanism. We call the
variable i.

 2. Step 2 starts the looping by setting i to count from 1 to the maximum number of charts in
the ChartObjects collection on the active sheet. When the code starts, i initiates with
the number 1. As we loop, the variable increments up one number until it reaches a number
equal to the maximum number of charts on the sheet.

242 Macro 81: Print All Charts on a Worksheet

 3. Step 3 passes i to the ChartObjects collection as the index number. This brings a chart
into focus. We then use the ActiveChart.Printout method to trigger the print. Note
that you can adjust the Orientation property to either xlLandscape or xlPortrait
depending on what you need.

 4. Step 4 loops back around to increment i up one number and get the next chart. After all
charts have been evaluated, the macro ends.

How to use it
To implement this macro, you can copy and paste it into a standard module:

 1. Activate the Visual Basic Editor by pressing ALT+F11.

 2. Right-click the project/workbook name in the Project window.

 3. Choose Insert➜Module.

 4. Type or paste the code into the newly created module.

243Macro 82: Label First and Last Chart Points

Macro 82: Label First and Last Chart Points
One of the best practices for dashboard building is to avoid overwhelming your customers with too
much data at one time — especially in a chart, where they can lose sight of the primary message if
focusing on inconsequential data.

One of the common ways dashboard designers help focus the message of a chart is to limit the data
labels to only the key points — typically, the first and last data points.

That being said, it is a bit arduous to continuously adjust labels every time data is added or when a
new chart is needed. The macro outlined in this section automates the adding of labels to the first
and last data points.

How it works
All charts have a SeriesCollection object that holds the various data series. This macro loops
through all the series, bringing each one into focus one at a time. With the series in focus, we can use
any of its many properties to manipulate it. Here, we are activating the data labels for the first and
last data point in the series.

Sub Macro82()

‘Step 1: Declare your variables
 Dim oChart As Chart
 Dim MySeries As Series

‘Step 2: Point to the active chart
 On Error Resume Next
 Set oChart = ActiveChart

‘Step 3: Exit no chart has been selected
 If oChart Is Nothing Then
 MsgBox “You select a chart first.”
 Exit Sub
 End If

‘Step 4: Loop through the chart series
 For Each MySeries In oChart.SeriesCollection

‘Step 5: Clear ExistingData Labels
 MySeries.ApplyDataLabels (xlDataLabelsShowNone)

244 Macro 82: Label First and Last Chart Points

‘Step 6: Add labels to the first and last data point
 MySeries.Points(1).ApplyDataLabels
 MySeries.Points(MySeries.Points.Count).ApplyDataLabels
 MySeries.DataLabels.Font.Bold = True

‘Step 7: Move to the next series
 Next MySeries

End Sub

 1. Step 1 declares two variables. We use oChart as the memory container for our chart. We
use MySeries as a memory container for each series in our chart.

 2. This macro is designed so that we infer the target chart based on the chart selection. That is
to say, a chart must be selected for this macro to run. The assumption is that we want to per-
form the macro action on the chart we clicked on.

 Step 2 sets the oChart variable to the ActiveChart. If a chart is not selected, an error is
thrown. This is why we use the On Error Resume Next statement. This tells Excel to
continue with the macro if there is an error.

 3. Step 3 checks to see if the oChart variable is filled with a chart object. If the oChart vari-
able is set to Nothing, no chart was selected before running the macro. If this is the case,
we tell the user in a message box, and then we exit the procedure.

 4. Step 4 uses the For…Each statement to start looping through the series in the active charts
SeriesCollection.

 5. If data labels already exist, we need to clear them out. We can do this by using
xlDataLabelsShowNone.

 6. Each data series has a Points collection, which holds all the data points for the chart. Like
most collections in the Excel object model, data points have index numbers.

 Step 6 of the macro uses index numbers to get to the first and last data points. The first data
point is easy; we capture it by using MySeries.Points(1). After we have it in focus, we
can use the ApplyDataLabels method to turn on data labels for that one point.

 The last data label is a bit trickier. We use MySeries.Points.Count to get the maximum
number of data points in the series. That is the index number of the last data point. We place
the last data point in focus, and then we apply labels to it.

 Finally, we adjust the formatting on the data labels so they have bold font.

 7. Step 7 loops back around to get the next series. After we have gone through all the data
series in the chart, the macro ends.

245Macro 82: Label First and Last Chart Points

How to use it
The best place to store this macro is in your Personal Macro Workbook. This way, the macro is always
available to you. The Personal Macro Workbook is loaded whenever you start Excel. In the VBE Project
window, it will be named personal.xlsb.

 1. Activate the Visual Basic Editor by pressing ALT+F11.

 2. Right-click personal.xlb in the Project window.

 3. Choose Insert➜Module.

 4. Type or paste the code into the newly created module.

If you don’t see personal.xlb in your project window, it doesn’t exist yet. You’ll have to record a
macro, using Personal Macro Workbook as the destination.

To record the macro in your Personal Macro Workbook, select the Personal Macro Workbook option
in the Record Macro dialog box before you start recording. This option is in the Store Macro In drop-
down list box. Simply record a couple of cell clicks and then stop recording. You can discard the
recorded macro and replace it with this one.

246 Macro 83: Color Chart Series to Match Source Cell Colors

Macro 83: Color Chart Series
to Match Source Cell Colors
When you create a dashboard, you may have specific color schemes for various types of data. For
example, you may want the North region to always appear in a certain color, or you may want certain
products to have a trademark color. This gives your dashboards a familiarity and consistency that
makes it easier for your audience to consume.

The macro in this section allows the series in your charts to automatically adopt colors in their source
range. The idea is that you can color code the cells in the source range, and then fire this macro to
force the chart to apply the same colors to each respective chart series. Although it’s in black and
white, Figure 7-2 gives you an idea of how it works.

Figure 7-2: Using this macro automatically formats the chart series to match the source cells.

This macro cannot capture colors that have been applied via conditional formatting or
table color banding. This is because conditional format coloring and table color banding
are not applied directly to the cell. They are applied to objects that are separate but sit
on top of the cells.

How it works
All charts have a SeriesCollection object that holds the various data series. In this macro, we
loop through all the series, bringing each one into focus one at a time. With the series in focus, we
can use any of its many properties to manipulate it.

247Macro 83: Color Chart Series to Match Source Cell Colors

In this case, we are setting the color to the color of the source range. We identify the source range for
each series by evaluating its series formula. The series formula contains the range address of the
source data. Passing that address to a range object, we can capture the exact color of cells, and then
use that to color the series.

Sub Macro83()

‘Step 1: Declare your variables
 Dim oChart As Chart
 Dim MySeries As Series
 Dim FormulaSplit As Variant
 Dim SourceRangeColor As Long

‘Step 2: Point to the active chart
 On Error Resume Next
 Set oChart = ActiveChart

‘Step 3: Exit no chart has been selected
 If oChart Is Nothing Then
 MsgBox “You must select a chart first.”
 Exit Sub
 End If
‘Step 4: Loop through the chart series
 For Each MySeries In oChart.SeriesCollection

‘Step 5: Get Source Data Range for the target series
 FormulaSplit = Split(MySeries.Formula, “,”)(2)

‘Step 6: Capture the color in the first cell
 SourceRangeColor = Range(FormulaSplit).Item(1).Interior.Color

‘Step 7: Apply Coloring
 On Error Resume Next
 MySeries.Format.Line.ForeColor.RGB = SourceRangeColor
 MySeries.Format.Line.BackColor.RGB = SourceRangeColor
 MySeries.Format.Fill.ForeColor.RGB = SourceRangeColor

 If Not MySeries.MarkerStyle = xlMarkerStyleNone Then
 MySeries.MarkerBackgroundColor = SourceRangeColor
 MySeries.MarkerForegroundColor = SourceRangeColor
 End If

248 Macro 83: Color Chart Series to Match Source Cell Colors

‘Step 8: Move to the next series
 Next MySeries

End Sub

 1. Step 1 declares four variables. We use oChart as the memory container for our chart,
MySeries as a memory container for each series in our chart, FormulaSplit to capture
and store the source data range, and SourceRangeColor to capture and store the color
index for the source range.

 2. This macro is designed so that we infer the target chart based on the chart selection. In other
words, a chart must be selected for this macro to run. The assumption is that we will want to
perform the macro action on the chart we clicked on.

 In Step 2, we set the oChart variable to the ActiveChart. If a chart is not selected, an error is
thrown. This is why we use the On Error Resume Next statement. This tells Excel to
continue with the macro if there is an error.

 3. Step 3 checks to see whether the oChart variable is filled with a chart object. If the oChart
variable is set to Nothing, no chart was selected before running the macro. If this is the
case, we tell the user in a message box, and then we exit the procedure.

 4. Step 4 uses the For…Each statement to start looping through the series in the active charts
SeriesCollection.

 5. Every chart series has a series formula. The series formula contains references back to the
spreadsheet, pointing to the cells used to create it. A typical series formula looks something
like this:

 =SERIES(Sheet1!F6,Sheet1!D7:D10,Sheet1!F7:F10,2)

 Note that there are three distinct ranges in the formula. The first range points to the series
name, the second range points to the series data labels, and the third range points to the
series data values.

 Step 5 uses the Split function to parse this formula in order to extract out the range for the
series data values.

 6. Step 6 captures the color index of the first cell (item) in the source data range. We assume
that the first cell will be formatted the same as the rest of the range.

 7. After we have the color index, we can apply the color to the various series properties.

 8. In the last step, we loop back around to get the next series. After we have gone through all
the data series in the chart, the macro ends.

249Macro 83: Color Chart Series to Match Source Cell Colors

How to use it
The best place to store this macro is in your Personal Macro Workbook. This way, the macro is always
available to you. The Personal Macro Workbook is loaded whenever you start Excel. In the VBE Project
window, it will be named personal.xlsb.

 1. Activate the Visual Basic Editor by pressing ALT+F11.

 2. Right-click personal.xlb in the Project window.

 3. Choose Insert➜Module.

 4. Type or paste the code into the newly created module.

If you don’t see personal.xlb in your project window, it means it doesn’t exist yet. You’ll have to
record a macro, using Personal Macro Workbook as the destination.

To record the macro in your Personal Macro Workbook, select the Personal Macro Workbook option
in the Record Macro dialog box before you start recording. This option is in the Store Macro In drop-
down list box. Simply record a couple of cell clicks and then stop recording. You can discard the
recorded macro and replace it with this one.

250 Macro 84: Color Chart Data Points to Match Source Cell Colors

Macro 84: Color Chart Data Points
to Match Source Cell Colors
In the previous macro, we force each chart series to apply the same colors as their respective source
data ranges. This macro works the same way, but with data points. You would use this macro if you
wanted to force a pie chart to adopt the color of each data point’s source range.

This macro cannot capture colors that have been applied via conditional formatting or
table color banding. This is because conditional format coloring and table color banding
are not applied directly to the cell. They are applied to objects that are separate but sit
on top of the cells.

How it works
In this case, we are setting the color to the color of the source range. We identify the source range for
each series by evaluating its series formula. The series formula contains the range address of the
source data. Passing that address to a range object, we can capture the exact color of cells, and then
use that to color the series.

Sub Macro84()

‘Step 1: Declare your variables
 Dim oChart As Chart
 Dim MySeries As Series
 Dim i As Integer
 Dim dValues As Variant
 Dim FormulaSplit As String

‘Step 2: Point to the active chart
 On Error Resume Next
 Set oChart = ActiveChart

‘Step 3: Exit no chart has been selected
 If oChart Is Nothing Then
 MsgBox “You must select a chart first.”
 Exit Sub
 End If

‘Step 4: Loop through the chart series
 For Each MySeries In oChart.SeriesCollection

251Macro 84: Color Chart Data Points to Match Source Cell Colors

‘Step 5: Get Source Data Range for the target series
 FormulaSplit = Split(MySeries.Formula, “,”)(2)

‘Step 6: Capture Series Values
 dValues = MySeries.Values

‘Step 7: Loop through series values and set color
 For i = 1 To UBound(dValues)
 MySeries.Points(i).Interior.Color = _
 Range(FormulaSplit).Cells(i).Interior.Color
 Next i

‘Step 8: Move to the next series
 Next MySeries

End Sub

 1. Step 1 declares five variables. We use oChart as the memory container for our chart,
MySeries as a memory container for each series in our chart, dValues in conjunction with
i to loop through the values in the series, and FormulaSplit to capture and store the
source data range.

 2. This macro is designed so that we infer the target chart based on the chart selection. A chart
must be selected for this macro to run. The assumption is that we want to perform the macro
action on the chart we clicked on.

 In Step 2, we set the oChart variable to the ActiveChart. If a chart is not selected, an error is
thrown. This is why we use the On Error Resume Next statement. This tells Excel to
continue with the macro if there is an error.

 3. In Step 3, we check to see whether the oChart variable is filled with a chart object. If the
oChart variable is set to Nothing, no chart was selected before running the macro. If this
is the case, we tell the user in a message box, and then we exit the procedure.

 4. Step 4 uses the For…Each statement to start looping through the series in the active charts
SeriesCollection.

 5. Every chart series has a series formula. The series formula contains references back to the
spreadsheet, pointing to the cells used to create it. A typical series formula looks something
like this:

 =SERIES(Sheet1!F6,Sheet1!D7:D10,Sheet1!F7:F10,2)

252 Macro 84: Color Chart Data Points to Match Source Cell Colors

 Note that there are three distinct ranges in the formula. The first range points to the series
name, the second range points to the series data labels, and the third range points to the
series data values.

 Step 5 uses the Split function to parse this formula in order to extract the range for the
series data values.

 6. Step 6 uses the dValues variant variable to capture the array of data values in the active
series.

 7. Step 7 starts the looping through the data points in the series. It does this by setting i to
count from 1 to the number of data points in dValues. When the loop begins, i initiates with
the number 1. As the macro loops, the variable increments up one number until it reaches a
number equal to the maximum number of data points in the series.

 As the macro loops, it uses i as the index number for the Points collection, effectively expos-
ing the properties for each data point. We then set the color index of the data point to match
the color index for its corresponding source cell.

 8. In the last step, the macro loops back around to get the next series. After we have gone
through all the data series in the chart, the macro ends.

How to use it
The best place to store this macro is in your Personal Macro Workbook. This way, the macro is always
available to you. The Personal Macro Workbook is loaded whenever you start Excel. In the VBE Project
window, it will be named personal.xlsb.

 1. Activate the Visual Basic Editor by pressing ALT+F11.

 2. Right-click personal.xlb in the Project window.

 3. Choose Insert➜Module.

 4. Type or paste the code into the newly created module.

If you don’t see personal.xlb in your project window, it doesn’t exist yet. You’ll have to record a
macro, using Personal Macro Workbook as the destination.

To record the macro in your Personal Macro Workbook, select the Personal Macro Workbook option
in the Record Macro dialog box before you start recording. This option is in the Store Macro In drop-
down list box. Simply record a couple of cell clicks and then stop recording. You can discard the
recorded macro and replace it with this one.

PART VIII
E-Mailing from Excel
This Part covers e-mailing from Excel: converting ranges or worksheets to attachments, saving
attachments to a folder, and more.

In This Part
Macro 85 Mailing the Active Workbook as an Attachment ... 255
Macro 86 Mailing a Specific Range as Attachment .. 258
Macro 87 Mailing a Single Sheet as an Attachment ... 260
Macro 88 Send Mail with a Link to Our Workbook ... 262
Macro 89 Mailing All E-Mail Addresses in Our Contact List ... 264
Macro 90 Saving All Attachments to a Folder .. 266
Macro 91 Saving Certain Attachments to a Folder ... 269

255Macro 85: Mailing the Active Workbook as an Attachment

Did you know that you probably integrate Excel and Outlook all the time? It’s true. If you’ve sent or
received an Excel workbook through Outlook, you’ve integrated the two programs; albeit manually.
In this Part, we show you a few examples of how you can integrate Excel and Outlook in a more auto-
mated fashion.

Note that the macros in this Part automate Microsoft Outlook. For these macros to work,
you need to have Microsoft Outlook installed on your system.

The code for this Part can be found on this book’s companion website. See this book’s
Introduction for more on the companion website.

Macro 85: Mailing the Active
Workbook as an Attachment
The most fundamental Outlook task you can perform through automation is sending an e-mail.
In the sample code shown here, the active workbook is sent to two e-mail recipients as an
attachment.

Some of you may notice that we are not using the SendMail command native to Excel.
With the SendMail command, you can send simple e-mail messages directly from Excel.
However, the SendMail command is not as robust as Outlook automation. SendMail
does not allow you to attach files, or use the CC and BCC fields in the e-mail. This makes
the technique used by this macro a superior method.

How it works
Because this code will be run from Excel, we need to set a reference to the Microsoft Outlook Object
Library. We can set the reference by opening the Visual Basic Editor in Excel and selecting
Tools➜References. Scroll down until you find the entry Microsoft Outlook XX Object Library, where
the XX is your version of Outlook. Select the check box next to the entry.

Sub Macro85()

‘Step 1: Declare our variables
 Dim OLApp As Outlook.Application
 Dim OLMail As Object

‘Step 2: Open Outlook start a new mail item
 Set OLApp = New Outlook.Application

256 Macro 85: Mailing the Active Workbook as an Attachment

 Set OLMail = OLApp.CreateItem(0)
 OLApp.Session.Logon

‘Step 3: Build our mail item and send
 With OLMail
 .To = “admin@datapigtechnologies.com; mike@datapigtechnologies.com”
 .CC = “”
 .BCC = “”
 .Subject = “This is the Subject line”
 .Body = “Sample File Attached”
 .Attachments.Add ActiveWorkbook.FullName
 .Display
 End With

‘Step 4: Memory cleanup
 Set OLMail = Nothing
 Set OLApp = Nothing

End Sub

 1. Step 1 first declares two variables. OLApp is an object variable that exposes the Outlook
Application object. OLMail is an object variable that holds a mail item.

 2. Step 2 activates Outlook and starts a new session. Note that we use OLApp.Session.
Logon to log on to the current MAPI (Messaging Application Programming Interface) ses-
sion with default credentials. It also creates a mail item. This is equivalent to selecting the
New Message button in Outlook.

 3. Step 3 builds the profile of our mail item. This includes the To recipients, the CC recipients,
the BCC recipients, the Subject, the Body, and the Attachments. This step notes that the
recipients are entered in quotes and separates recipients with a semicolon. The standard
syntax for an attachment is .Attachments.Add “File Path”. Here in this code, we
specify the current workbook’s file path with the syntax ActiveWorkbook.Fullname.
This sets the current workbook as the attachment for the e-mail. When the message has
been built, we use the .Display method to review the e-mail. We can replace .Display
with .Send to automatically fire the e-mail without reviewing.

 4. Releasing the objects assigned to our variables is generally good practice. This reduces the
chance of any problems caused by rouge objects that may remain open in memory. As we
can see in the code, we simply set variable to Nothing.

257Macro 85: Mailing the Active Workbook as an Attachment

How to use it
To implement this macro, we can copy and paste it into a standard module:

 1. Activate the Visual Basic Editor by pressing ALT+F11.

 2. Right-click the project/workbook name in the Project window.

 3. Choose Insert➜Module.

 4. Type or paste the code into the newly created module.

258 Macro 86: Mailing a Specific Range as Attachment

Macro 86: Mailing a Specific Range
as Attachment
You may not always want to send your entire workbook through e-mail. This macro demonstrates
how to send a specific range of data rather than the entire workbook.

How it works
Because this code is run from Excel, we need to set a reference to the Microsoft Outlook Object Library.
We can set the reference by opening the Visual Basic Editor in Excel and selecting Tools➜References.
Scroll down until you find the entry Microsoft Outlook XX Object Library, where the XX is your version of
Outlook. Select the check box next to the entry.

Sub Macro86()

‘Step 1: Declare our variables
 Dim OLApp As Outlook.Application
 Dim OLMail As Object

‘Step 2: Copy range, paste to new workbook, and save it
 Sheets(“Revenue Table”).Range(“A1:E7”).Copy
 Workbooks.Add
 Range(“A1”).PasteSpecial xlPasteValues
 Range(“A1”).PasteSpecial xlPasteFormats
 ActiveWorkbook.SaveAs ThisWorkbook.Path & “\TempRangeForEmail.xlsx”

‘Step 3: Open Outlook start a new mail item
 Set OLApp = New Outlook.Application
 Set OLMail = OLApp.CreateItem(0)
 OLApp.Session.Logon

‘Step 4: Build our mail item and send
 With OLMail
 .To = “admin@datapigtechnologies.com; mike@datapigtechnologies.com”
 .CC = “”
 .BCC = “”
 .Subject = “This is the Subject line”
 .Body = “Sample File Attached”
 .Attachments.Add (ThisWorkbook.Path & “\TempRangeForEmail.xlsx”)
 .Display
 End With

‘Step 5: Delete the temporary Excel file
 ActiveWorkbook.Close SaveChanges:=True

259Macro 86: Mailing a Specific Range as Attachment

 Kill ThisWorkbook.Path & “\TempRangeForEmail.xlsx”

‘Step 6: Memory cleanup
 Set OLMail = Nothing
 Set OLApp = Nothing

End Sub

 1. Step 1 declares two variables. OLApp is an object variable that exposes the Outlook
Application object. OLMail is an object variable that holds a mail item.

 2. Step 2 copies a specified range and pastes the values and formats to a temporary Excel file.
The macro then saves that temporary file, giving it a file path and filename.

 3. Step 3 activates Outlook and starts a new session. Note that we use OLApp.Session.
Logon to log on to the current MAPI session with default credentials. We also create a mail
item. This is equivalent to selecting the New Message button in Outlook.

 4. Step 4 builds the profile of the mail item. This includes the To recipients, the CC recipients,
the BCC recipients, the Subject, the Body, and the Attachments. This step notes that the
recipients are entered in quotes and separates recipients by a semicolon.

 Here in this code, we specify our newly created temporary Excel file path as the attachment
for the e-mail. When the message has been built, we use the .Display method to review
the e-mail. We can replace .Display with .Send to automatically fire the e-mail without
reviewing.

 5. We don’t want to leave temporary files hanging out there, so after the e-mail has been sent,
Step 5 deletes the temporary Excel file we created.

 6. It is generally good practice to release the objects assigned to our variables. This reduces the
chance of any problems caused by rouge objects that may remain open in memory. In Step
6, we simply set variable to Nothing.

How to use it
To implement this macro, we can copy and paste it into a standard module:

 1. Activate the Visual Basic Editor by pressing ALT+F11.

 2. Right-click the project/workbook name in the Project window.

 3. Choose Insert➜Module.

 4. Type or paste the code into the newly created module.

260 Macro 87: Mailing a Single Sheet as an Attachment

Macro 87: Mailing a Single Sheet
as an Attachment
This example demonstrates how we would send a specific worksheet of data rather than the entire
workbook.

How it works
Because this code is run from Excel, we need to set a reference to the Microsoft Outlook Object
Library. We can set the reference by opening the Visual Basic Editor in Excel and selecting
Tools➜References. Scroll down until we find the entry Microsoft Outlook XX Object Library, where
the XX is your version of Outlook. Place a check in the check box next to the entry.

Sub Macro87()

‘Step 1: Declare our variables
 Dim OLApp As Outlook.Application
 Dim OLMail As Object

‘Step 2: Copy Worksheet, paste to new workbook, and save it
 Sheets(“Revenue Table”).Copy
 ActiveWorkbook.SaveAs ThisWorkbook.Path & “\TempRangeForEmail.xlsx”

‘Step 3: Open Outlook start a new mail item
 Set OLApp = New Outlook.Application
 Set OLMail = OLApp.CreateItem(0)
 OLApp.Session.Logon

‘Step 4: Build our mail item and send
 With OLMail
 .To = “admin@datapigtechnologies.com; mike@datapigtechnologies.com”
 .CC = “”
 .BCC = “”
 .Subject = “This is the Subject line”
 .Body = “Sample File Attached”
 .Attachments.Add (ThisWorkbook.Path & “\TempRangeForEmail.xlsx”)
 .Display
 End With

‘Step 5: Delete the temporary Excel file
 ActiveWorkbook.Close SaveChanges:=True
 Kill ThisWorkbook.Path & “\TempRangeForEmail.xlsx”

261Macro 87: Mailing a Single Sheet as an Attachment

‘Step 6: Memory cleanup
 Set OLMail = Nothing
 Set OLApp = Nothing

End Sub

 1. Step 1 first declares two variables. OLApp is an object variable that exposes the Outlook
Application object. OLMail is an object variable that holds a mail item.

 2. Step 2 copies a specified range and pastes the values and formats to a temporary Excel file.
We then save that temporary file, giving it a file path and filename.

 3. Step 3 activates Outlook and starts a new session. Note that we use OLApp.Session.
Logon to log on to the current MAPI session with default credentials. We also create a mail
item. This is equivalent to selecting the New Message button in Outlook.

 4. Step 4 builds the profile of the mail item. This includes the To recipients, the CC recipients,
the BCC recipients, the Subject, the Body, and the Attachments. The recipients are entered in
quotes and separated by a semicolon.

 In this code, we specify our newly created temporary Excel file path as the attachment
for the e-mail. When the message has been built, we use the .Display method to review
the e-mail. We can replace .Display with .Send to automatically fire the e-mail without
reviewing.

 5. We don’t want to leave temporary files hanging out there, so after the e-mail has been sent,
we delete the temporary Excel file we created.

 6. It is generally good practice to release the objects assigned to our variables. This reduces the
chance of any problems caused by rouge objects that may remain open in memory. As we
can see in the code, we simply set variable to Nothing.

How to use it
To implement this macro, we can copy and paste it into a standard module:

 1. Activate the Visual Basic Editor by pressing ALT+F11.

 2. Right-click the project/workbook name in the Project window.

 3. Choose Insert➜Module.

 4. Type or paste the code into the newly created module.

262 Macro 88: Send Mail with a Link to Our Workbook

Macro 88: Send Mail with a Link
to Our Workbook
Sometimes, you don’t need to send an attachment at all. Instead, you simply want to send an auto-
mated e-mail with a link to a file. This macro does just that.

Note that your users or customers will have to have at least read access to the network
or location that is tied to the link.

How it works
Keep in mind that because this code will be run from Excel, we need to set a reference to the
Microsoft Outlook Object Library. We can set the reference by opening the Visual Basic Editor in Excel
and selecting Tools➜References. Scroll down until we find the entry Microsoft Outlook XX Object
Library, where the XX is your version of Outlook. Select the check box next to the entry.

Sub Macro88()

‘Step 1: Declare our variables
 Dim OLApp As Outlook.Application
 Dim OLMail As Object

‘Step 2: Open Outlook start a new mail item
 Set OLApp = New Outlook.Application
 Set OLMail = OLApp.CreateItem(0)
 OLApp.Session.Logon

‘Step 3: Build our mail item and send
 With OLMail
 .To = “admin@datapigtechnologies.com; mike@datapigtechnologies.com”
 .CC = “”
 .BCC = “”
 .Subject = “Monthly Report Email with Link”
 .HTMLBody = _
 “<p>Monthly report is ready. Click to Link to get it.</p>” & _
 “<p><a href=” & Chr(34) & “Z:\Downloads\MonthlyReport.xlsx” & _
 Chr(34) & “>Download Now</p>”
 .Display
 End With

263Macro 88: Send Mail with a Link to Our Workbook

‘Step 4: Memory cleanup
 Set OLMail = Nothing
 Set OLApp = Nothing

End Sub

 1. Step 1 declares two variables. OLApp is an object variable that exposes the Outlook
Application object. OLMail is an object variable that holds a mail item.

 2. Step 2 activates Outlook and starts a new session. Note that we use OLApp.Session.
Logon to log on to the current MAPI session with default credentials. This step also creates a
mail item. This is equivalent to selecting the New Message button in Outlook.

 3. Step 3 builds the profile of our mail item. This includes the To recipients, the CC recipients,
the BCC recipients, the Subject, and the HTMLBody.

 To create the hyperlink, we need to use the HTMLBody property to pass HTML tags. We can
replace the file path address shown in the macro with the address for our file. Note this
macro is using the .Display method, which opens the e-mail for our review. We can
replace .Display with .Send to automatically fire the e-mail without reviewing.

 4. It is generally good practice to release the objects assigned to our variables. This reduces the
chance of any problems caused by rouge objects that may remain open in memory. In Step
4, we simply set variable to Nothing.

How to use it
To implement this macro, we can copy and paste it into a standard module:

 1. Activate the Visual Basic Editor by pressing ALT+F11 on our keyboard.

 2. Right-click the project/workbook name in the Project window.

 3. Choose Insert➜Module.

 4. Type or paste the code into the newly created module.

264 Macro 89: Mailing All E-Mail Addresses in Our Contact List

Macro 89: Mailing All E-Mail Addresses
in Our Contact List
Ever need to send out a mass mailing such as a newsletter or a memo? Instead of manually entering
each of our contacts’ e-mail address, we can run the following procedure. In this procedure, we send
out one e-mail, automatically adding all the e-mail addresses in our contact list to our e-mail.

How it works
Because this code will be run from Excel, we need to set a reference to the Microsoft Outlook
Object Library. We can set the reference by opening the Visual Basic Editor in Excel and selecting
Tools➜References. Scroll down until we find the entry Microsoft Outlook XX Object Library, where
the XX is your version of Outlook. Select the check box next to the entry.

Sub Macro89()

‘Step 1: Declare our variables
 Dim OLApp As Outlook.Application
 Dim OLMail As Object
 Dim MyCell As Range
 Dim MyContacts As Range

‘Step 2: Define the range to loop through
 Set MyContacts = Sheets(“Contact List”).Range(“H2:H21”)

‘Step 3: Open Outlook
 Set OLApp = New Outlook.Application
 Set OLMail = OLApp.CreateItem(0)
 OLApp.Session.Logon

‘Step 4: Add each address in the contact list
 With OLMail

 For Each MyCell In MyContacts
 .BCC = .BCC & Chr(59) & MyCell.Value
 Next MyCell

 .Subject = “Sample File Attached”
 .Body = “Sample file is attached”
 .Attachments.Add ActiveWorkbook.FullName
 .Display

265Macro 89: Mailing All E-Mail Addresses in Our Contact List

 End With

‘Step 5: Memory cleanup
 Set OLMail = Nothing
 Set OLApp = Nothing

End Sub

 1. Step 1 declares four variables: OLApp is an object variable that exposes the Outlook
Application object. OLMail is an object variable that holds a mail item. MyCell is an
object variable that holds an Excel range. MyContacts is an object variable that holds
an Excel range.

 2. Step 2 points to the MyContacts variable to the range of cells that contains our e-mail
addresses. This is the range of cells we loop through to add e-mail addresses to our e-mail.

 3. Step 3 activates Outlook and starts a new session. Note that we use OLApp.Session.
Logon to log on to the current MAPI session with default credentials. We also create a mail
item. This is equivalent to selecting the New Message button in Outlook.

 4. Step 4 builds the profile of our mail item. We note that we are looping through each cell in
the MyContacts range and adding the contents (which are e-mail addresses) to the BCC.
Here, we are using the BCC property instead of To or CC so that each recipient gets an e-mail
that looks as though it was sent only to him. Our recipients won’t be able to see any of the
other e-mail addresses because they have been sent with BCC (Blind Courtesy Copy). Note
this macro is using the .Display method, which opens the e-mail for our review. We can
replace .Display with .Send to automatically fire the e-mail without reviewing.

 5. It is generally good practice to release the objects assigned to our variables. This reduces the
chance of any problems caused by rouge objects that may remain open in memory. In Step
5, we simply set the variable to Nothing.

How to use it
To implement this macro, we can copy and paste it into a standard module:

 1. Activate the Visual Basic Editor by pressing ALT+F11 on our keyboard.

 2. Right-click project/workbook name in the Project window.

 3. Choose Insert➜Module.

 4. Type or paste the code into the newly created module.

266 Macro 90: Saving All Attachments to a Folder

Macro 90: Saving All Attachments to a Folder
You may often find that certain processes lend themselves to the exchange of data via e-mail. For
example, you may send a budget template out for each branch manager to fill out and send back to
you via e-mail. Well, if there are 150 branch members, it could be a bit of a pain to bring down all
those e-mail attachments.

The following procedure demonstrates one solution to this problem. In this procedure, we use auto-
mation to search for all attachments in the inbox and save them to a specified folder.

How it works
Because this code will be run from Excel, we need to set a reference to the Microsoft Outlook Object
Library. You can set the reference by opening the Visual Basic Editor in Excel and selecting Tools➜

References. Scroll down until you find the entry Microsoft Outlook XX Object Library, where the XX is
your version of Outlook. Select the check box next to the entry.

Sub Macro90()

‘Step 1: Declare our variables
 Dim ns As Namespace
 Dim MyInbox As MAPIFolder
 Dim MItem As MailItem
 Dim Atmt As Attachment
 Dim FileName As String

‘Step 2: Set a reference to our inbox
 Set ns = GetNamespace(“MAPI”)
 Set MyInbox = ns.GetDefaultFolder(olFolderInbox)

‘Step 3: Check for messages in our inbox; exit if none
 If MyInbox.Items.Count = 0 Then
 MsgBox “No messages in folder.”
 Exit Sub
 End If

‘Step 4: Create directory to hold attachments
 On Error Resume Next
 MkDir “C:\Temp\MyAttachments\”

‘Step 5: Start to loop through each mail item
 For Each MItem In MyInbox.Items

267Macro 90: Saving All Attachments to a Folder

‘Step 6: Save each attachment then go to the next attachment
 For Each Atmt In MItem.Attachments
 FileName = “C:\Temp\MyAttachments\” & Atmt.FileName
 Atmt.SaveAsFile FileName
 Next Atmt

‘Step 7: Move to the next mail item
 Next MItem

‘Step 8: Memory cleanup
 Set ns = Nothing
 Set MyInbox = Nothing

End Sub

 1. Step 1 declares five variables. ns is an object used to expose the MAPI namespace. MyInbox
is used to expose the target mail folder. MItem is used to expose the properties of a mail
item. Atmt is an object variable that holds an Attachment object. FileName is a string vari-
able that holds the name of the attachment.

 2. Step 2 sets the MyInbox variable to point to the inbox for the default mail client.

 3. Step 3 performs a quick check to make sure there are actually messages in the inbox. If there
are no messages, the macro exits the procedure with a message box stating that there are no
messages.

 4. Step 4 creates a directory to hold the attachments we find. Although you could use an exist-
ing directory, using a directory dedicated specifically for the attachments you bring down is
usually best. Here, we are creating that directory on the fly. Note we are using On Error
Resume Next. This ensures that the code does not error out if the directory we are trying
to create already exists.

 5. Step 5 starts the loop through each mail item in the target mail folder.

 6. Step 6 ensures that each mail item we loop through gets checked for attachments. As we
loop, we save each attachment we find into the specified directory we created.

 7. Step 7 loops back to Step 5 until there are no more mail items to go through.

 8. Releasing the objects assigned to our variables is good general practice. This reduces the
chance of any problems caused by rogue objects that may remain open in memory. Step 8
simply sets the variable to Nothing.

268 Macro 90: Saving All Attachments to a Folder

How to use it
To implement this macro, we can copy and paste it into a standard module:

 1. Activate the Visual Basic Editor by pressing ALT+F11.

 2. Right-click the project/workbook name in the Project window.

 3. Choose Insert➜Module.

 4. Type or paste the code into the newly created module.

269Macro 91: Saving Certain Attachments to a Folder

Macro 91: Saving Certain Attachments
to a Folder
In the previous procedure, we showed you how to use automation to search for all attachments in your
inbox and save them to a specified folder. However, in most situations, you probably only want to save
certain attachments; for example, those attachments attached to e-mails that contain a certain Subject.
In this example, we get a demonstration of how to check for certain syntax and selectively bring down
attachments.

How it works
Because this code will be run from Excel, we need to set a reference to the Microsoft Outlook Object
Library. We can set the reference by opening the Visual Basic Editor in Excel and selecting
Tools➜References. Scroll down until we find the entry Microsoft Outlook XX Object Library, where
the XX is your version of Outlook. Select the check box next to the entry.

Sub Macro91()

‘Step 1: Declare our variables
 Dim ns As Namespace
 Dim MyInbox As MAPIFolder
 Dim MItem As Object
 Dim Atmt As Attachment
 Dim FileName As String
 Dim i As Integer

‘Step 2: Set a reference to our inbox
 Set ns = GetNamespace(“MAPI”)
 Set MyInbox = ns.GetDefaultFolder(olFolderInbox)

‘Step 3: Check for messages in our inbox; exit if none
 If MyInbox.Items.Count = 0 Then
 MsgBox “No messages in folder.”
 Exit Sub
 End If

‘Step 4: Create directory to hold attachments
 On Error Resume Next
 MkDir “C:\OffTheGrid\MyAttachments\”

‘Step 5: Start to loop through each mail item
 For Each MItem In MyInbox.Items

270 Macro 91: Saving Certain Attachments to a Folder

‘Step 6: Check for the words Data Submission in Subject line
 If InStr(1, MItem.Subject, “Data Submission”) < 1 Then
 GoTo SkipIt
 End If

‘Step 7: Save each with a log number; go to the next attachment
 i = 0
 For Each Atmt In MItem.Attachments
 FileName = _
 “C:\Temp\MyAttachments\Attachment-” & i & “-” & Atmt.FileName
 Atmt.SaveAsFile FileName
 i = i + 1
 Next Atmt

‘Step 8: Move to the next mail item
SkipIt:
 Next MItem

‘Step 9: Memory cleanup
 Set ns = Nothing
 Set MyInbox = Nothing

End Sub

 1. Step 1 first declares six variables. ns is an object used to expose the MAPI namespace.
MyInbox is used to expose the target mail folder. MItem is used to expose the properties of
a mail item. Atmt is an object variable that holds an Attachment object. FileName is a
string variable that holds the name of the attachment. i is an integer variable used to
ensure each attachment is saved as a unique name.

 2. Step 2 sets the MyInbox variable to point to the inbox for our default mail client.

 3. Step 3 performs a quick check to make sure there are actually messages in our inbox. If there
are no messages, it exits the procedure with a message box stating that there are no mes-
sages.

 4. Step 4 creates a directory to hold the attachments we find. Note that it uses On Error
Resume Next. This ensures that the code does not error out if the directory we are trying
to create already exists.

 5. Step 5 starts the loop through each mail item in the target mail folder.

271Macro 91: Saving Certain Attachments to a Folder

 6. In Step 6, we use the Instr function to check whether the string Data Submission is in
the Subject line of the e-mail. If that string does not exist, we don’t care about any attach-
ments to that message. Therefore, we force the code to go to the SkipIt reference (in Step
8). Because the line of code immediately following the SkipIt reference is essentially a
Move Next command, this has the effect of telling the procedure to move to the next mail
item.

 7. Step 7 loops through and saves each attachment into the specified directory we created.
Note that we are adding a running integer to the name of each attachment. This is to ensure
that each attachment is saved as a unique name, helping us to avoid overwriting attach-
ments.

 8. Step 8 loops back to Step 5 until there are no more mail items to go through.

 9. Releasing the objects assigned to our variables is generally good practice. This reduces
the chance of any problems caused by rouge objects that may remain open in memory.
In Step 9, we simply set variable to Nothing.

How to use it
To implement this macro, we can copy and paste it into a standard module:

 1. Activate the Visual Basic Editor by pressing ALT+F11.

 2. Right-click the project/workbook name in the Project window.

 3. Choose Insert➜Module.

 4. Type or paste the code into the newly created module.

272 Part VIII: E-Mailing from Excel

PART IX
Integrating Excel
and Other Office
Applications
This Part contains macros for making Excel work with PowerPoint, Word, and Access.

In This Part
Macro 92 Running an Access Query from Excel .. 275
Macro 93 Running an Access Macro from Excel ... 278
Macro 94 Opening an Access Report from Excel ... 280
Macro 95 Opening an Access Form from Excel .. 282
Macro 96 Compacting an Access Database from Excel .. 284
Macro 97 Sending Excel Data to a Word Document .. 286
Macro 98 Simulating Mail Merge with a Word Document ... 289
Macro 99 Sending Excel Data to a PowerPoint Presentation .. 293
Macro 100 Sending All Excel Charts to a PowerPoint Presentation 296
Macro 101 Convert a Workbook into a PowerPoint Presentation 299

275Macro 92: Running an Access Query from Excel

Every data-oriented process has an application flow — a succession of applications that take the data
from creation to end-user. Sometimes a dataset is touched by only one application, such as when
you’re creating a report and presenting it in Excel. In many cases, however, data is moved from a
database such as Microsoft Access, analyzed and aggregated in Excel, and then distributed via a
Word document, PowerPoint presentation, or even e-mail. In this Part, we look at some of the useful
macros you can implement to have Excel integrate with other Office applications.

The code for this Part can be found on this book’s companion website. See this book’s
Introduction for more on the companion website.

Macro 92: Running an Access Query
from Excel
Here’s a nifty macro for those of you who often copy and paste the results of your Microsoft Access
queries to Excel. In this macro, you use DAO (Data Access Object) to open and run an Access query in
the background and output the results into Excel.

How it works
In this macro, you point Excel to an Access database and pull data from an existing Access query. You
then store that query in a Recordset object, which you can use to populate your Excel spread-
sheet.

Because you are automating Access, you need to set a reference to the Microsoft Access Object
Library. To do so, open the VBE in Excel and select Tools➜References. The Reference dialog box
opens. Scroll down until you find the entry Microsoft Access XX Object Library, where the XX is your
version of Access. Select the check box next to the entry.

In addition to the Access Object Library, you need to set a reference to Microsoft DAO XX Object Library,
where the XX is the version number. Note that you may see multiple versions of this library in the
Reference dialog box. You should generally select the latest version of the Microsoft DAO Library avail-
able. While still in the Reference dialog box, select the check box next to the entry.

Sub Macro92()

‘Step 1: Declare your variables
 Dim MyDatabase As DAO.Database
 Dim MyQueryDef As DAO.QueryDef
 Dim MyRecordset As DAO.Recordset
 Dim i As Integer

276 Macro 92: Running an Access Query from Excel

‘Step 2: Identify the database and query
 Set MyDatabase = DBEngine.OpenDatabase _
 (“C:\Temp\YourAccessDatabse.accdb”)

 Set MyQueryDef = MyDatabase.QueryDefs(“Your Query Name”)

‘Step 3: Open the query
 Set MyRecordset = MyQueryDef.OpenRecordset

‘Step 4: Clear previous contents
 Sheets(“Sheet1”).Select
 ActiveSheet.Range(“A6:K10000”).ClearContents

‘Step 5: Copy the recordset to Excel
 ActiveSheet.Range(“A7”).CopyFromRecordset MyRecordset

‘Step 6: Add column heading names to the spreadsheet
 For i = 1 To MyRecordset.Fields.Count
 ActiveSheet.Cells(6, i).Value = MyRecordset.Fields(i - 1).Name
 Next i

End Sub

 1. Step 1 declares the necessary variables. The MyDatabase object variable exposes your
Access database application via the DAO Object Library. MyQueryDef is also an object
variable that serves as a memory container for the target query. MyRecordset is a
Recordset object that holds the results of the data pull. In addition to these, the i
integer variable is used to add column headings.

 2. Step 2 specifies the database that holds your target query as well as which query will be
run. Assigning the query to a QueryDef object allows you to essentially open the query in
memory.

 3. Step 3 literally runs the query in memory. The results of the query are then stored into the
MyRecordset object. After the results are in a recordset, you can output the data to Excel.

 4. Step 4 prepares for the recordset output by clearing the output area. This ensures no residual
data is left from previous data pulls.

277Macro 92: Running an Access Query from Excel

 5. This step uses Excel’s CopyFromRecordset method to get the returned dataset into the
spreadsheet. In this example, the macro copies the data in the MyRecordset object onto
Sheet1 at cell A7.

 6. Finally, you enumerate through each field in the recordset to automatically get the name of
each header and enter it into Excel.

How to use it
To implement this macro, you can copy and paste it into a standard module:

 1. Activate the Visual Basic Editor by pressing ALT+F11.

 2. Right-click the project/workbook name in the Project window.

 3. Choose Insert➜Module.

 4. Type or paste the code into the newly created module.

278 Macro 93: Running an Access Macro from Excel

Macro 93: Running an Access Macro
from Excel
You can run Access macros from Excel, using automation to fire the macro without opening Access.
This technique can be useful not only for running those epic macros that involve a multistep series
of 20 queries, but can also come in handy for everyday tasks like outputting a Access data to an
Excel file.

How it works
The following macro is a simple way to trigger an Access macro programmatically.

Note that you will need to set a reference to the Microsoft Access Object Library. To do so, open the
VBE in Excel and select Tools➜References. The Reference dialog box opens. Scroll down until you
find the entry Microsoft Access XX Object Library, where the XX is your version of Access. Select the
check box next to the entry.

Sub Macro93()

‘Step 1: Declare your variables
 Dim AC As Access.Application

‘Step 2: Start Access and open the target database
 Set AC = New Access.Application
 AC.OpenCurrentDatabase _
 (“C:\Temp\YourAccessDatabse.accdb”)

‘Step 3: Open the target report and send to Word
 With AC
 .DoCmd.RunMacro “MyMacro”
 .Quit
 End With

End Sub

 1. The first thing the macro does is declare the AC object variable. This variable exposes the
Access database application library.

 2. Step 2 uses the AC variable to start a new instance of Microsoft Access and open the data-
base that houses the target macro.

 3. Step 3 runs the appropriate macro and closes the database.

279Macro 93: Running an Access Macro from Excel

How to use it
To implement this macro, you can copy and paste it into a standard module:

 1. Activate the Visual Basic Editor by pressing ALT+F11.

 2. Right-click the project/workbook name in the Project window.

 3. Choose Insert➜Module.

 4. Type or paste the code into the newly created module.

280 Macro 94: Opening an Access Report from Excel

Macro 94: Opening an Access Report
from Excel
Access reports allow you to build professional looking reports that have a clean PDF-style look and
feel. If you run and distribute a great deal of Access reports, the following macro can help automate
your processes.

How it works
This macro demonstrates how you can open your Access reports right from Excel. The appealing
thing about this technique is that you don’t see Access at all; the report goes straight to a Word rich
text file.

Note that you will need to set a reference to the Microsoft Access Object Library. To do so, open the
VBE in Excel and select Tools➜References. The Reference dialog box opens. Scroll down until you
find the entry Microsoft Access XX Object Library, where XX is your version of Access. Select the check
box next to the entry.

Sub Macro94()

‘Step 1: Declare your variables
 Dim AC As Access.Application

‘Step 2: Start Access and open the target database
 Set AC = New Access.Application
 AC.OpenCurrentDatabase _
 (“C:\Temp\YourAccessDatabase.accdb”)

‘Step 3: Open the target report as a Word rich text file
 With AC
 .DoCmd.OpenReport “Revenue Report”, acViewPreview
 .DoCmd.RunCommand acCmdOutputToRTF
 .Quit
 End With

End Sub

281Macro 94: Opening an Access Report from Excel

 1. Step 1 declares the AC object variable. This variable exposes the Access database
application library.

 2. In Step 2, the AC variable starts a new instance of Microsoft Access and opens the
database that houses the target report.

 3. Step 3 simply runs the appropriate report, sending the output to a Microsoft Word rich text
file. After the file is output, the database closes.

How to use it
To implement this macro, you can copy and paste it into a standard module

 1. Activate the Visual Basic Editor by pressing ALT+F11.

 2. Right-click project/workbook name in the Project window.

 3. Choose Insert➜Module.

 4. Type or paste the code into the newly created module.

282 Macro 95: Opening an Access Form from Excel

Macro 95: Opening an Access Form
from Excel
In some instances, you or your clients may need to switch focus to an Access form. This example
demonstrates how you can open an Access form from Excel.

How it works
With this macro, you point Excel to an Access database and trigger a specific Access form to open.

Because you are automating Access, you need to set a reference to the Microsoft Access Object
Library. To do so, open the VBE in Excel and select Tools➜References. The Reference dialog box
activates. Scroll down until you find the entry Microsoft Access XX Object Library, where the XX is
your version of Access. Select the check box next to the entry.

Sub Macro95()

‘Step 1: Declare your variables
 Dim AC As Access.Application

‘Step 2: Start Access and open the target database
 Set AC = New Access.Application
 AC.OpenCurrentDatabase _
 (“C:\Temp\YourAccessDatabase.accdb”)

‘Step 3: Open the target form and make Access visible
 With AC
 .DoCmd.OpenForm “MainForm”, acNormal
 .Visible = True
 End With

End Sub

 1. Step 1 declares the AC object variable. This variable exposes the Access database application
library.

 2. Step 2 uses the AC variable to start a new instance of Microsoft Access and opens the data-
base that houses the target form.

 3. Step 3 opens the appropriate form. The Access form opens in a new Microsoft Access win-
dow. Note that you are not closing the database in the last line of Step 3 (as with the previ-
ous macros). Instead, you make the Access application visible.

283Macro 95: Opening an Access Form from Excel

How to use it
To implement this macro, you can copy and paste it into a standard module:

 1. Activate the Visual Basic Editor by pressing ALT+F11.

 2. Right-click project/workbook name in the Project window

 3. Choose Insert➜Module.

 4. Type or paste the code into the newly created module.

284 Macro 96: Compacting an Access Database from Excel

Macro 96: Compacting an Access
Database from Excel
During your integrated processes, you may routinely increase or decrease the number of records and
tables in your database. As time goes on, you may notice that your Access database gets bigger. This
is because Access does not release file space. All the space needed for the data you move in and out
of your database is held by your Access file, regardless of whether the data is still there. In that light,
it’s critical that you run Compact and Repair on your Access database regularly. Among other things,
running Compact and Repair defragments your database, releasing any unused space and ensuring
your database does not grow to an unmanageable size. Office automation enables you to Compact
and Repair your databases right from code.

How it works
When you compact and repair an Access database manually, it seems as though Access compresses
your original database; this is not the case. Access is really doing nothing more than creating a copy
of your Access database (minus the empty file space) and deleting the old file.

This macro essentially mimics those actions in order to programmatically Compact and Repair an
Access application.

Note that in order to use this code, you need to set a reference to the Microsoft Access Object
Library. To do so, open the VBE in Excel and select Tools➜References. The Reference dialog box
opens. Scroll down until you find the entry Microsoft Access XX Object Library, where the XX is your
version of Access. Select the check box next to the entry.

Sub Macro96()

‘Step 1: Declare your variables
 Dim OriginalFile As String
 Dim BackupFile As String
 Dim TempFile As String

‘Step 2: Identify the target database assign file paths
 OriginalFile = “C:\Temp\MyDatabase.accdb”
 BackupFile = “C:\Temp\MyDatabaseBackup.accdb”
 TempFile = “C:\Temp\MyDatabaseTemporary.accdb”

‘Step 3: Make a backup copy of database
 FileCopy OriginalFile, BackupFile

‘Step 4: Perform the compact and repair
 DBEngine.CompactDatabase OriginalFile, TempFile

285Macro 96: Compacting an Access Database from Excel

‘Step 5: Delete the old database
 Kill OriginalFile

‘Step 6: Rename the temporary database to the old database name
 Name TempFile As OriginalFile

End Sub

 1. Step 1 declares three string variables that hold filenames.

 2. Step 2 then assigns each of the string variables a filename. The OriginalFile variable is
assigned the file path and name of the target database. The BackupFile variable is
assigned the file path and name of a backup file we will create during this procedure. The
TempFile variable is assigned the file path and name of a temporary file we create during
this procedure.

 3. Step 3 uses the FileCopy function to make a backup of the OriginalFile (the target
database). Although this step is not necessary for the Compact and Repair procedure, it’s
generally a good practice to make a backup of your database before running this level of
VBA on it.

 4. Step 4 executes the Compact and Repair, specifying the original database and specifying the
file path of the temporary database.

 5. At this point, you have two copies of your database: the original database and a second data-
base, which is a copy of your original without the empty file space. Step 5 deletes the original
database, leaving you with the copy.

 6. Step 6 simply renames the temporary file, giving it the name of your original database. This
leaves you with a database that is compact and optimized.

How to use it
To implement this macro, you can copy and paste it into a standard module:

 1. Activate the Visual Basic Editor by pressing ALT+F11.

 2. Right-click the project/workbook name in the Project window.

 3. Choose Insert➜Module.

 4. Type or paste the code.

286 Macro 97: Sending Excel Data to a Word Document

Macro 97: Sending Excel Data
to a Word Document
If you find that you are constantly copying and pasting data into Microsoft Word, you can use a
macro to automate this task.

How it works
Before walking through the macro, it’s important to go over a few set-up steps.

To get ready for a process like this, you must have a template Word document already created. In that
document, create a bookmark tagging the location where you want your Excel data to be copied.

To create a bookmark in a Word document, place your cursor where you want the bookmark, select
the Insert tab, and select Bookmark (found under the Links group). This activates the Bookmark dia-
log box where you assign a name for your bookmark. After the name has been assigned, click the
Add button.

One of the sample files for this Part is a document called PasteTable.docx. This docu-
ment is a simple template that contains one bookmark called DataTableHere. In this
sample code, you copy a range to that PasteTable.docx template, using the
DataTableHere bookmark to specify where to paste the copied range.

You also need to set a reference to the Microsoft Word Object Library. To do so, open the Visual Basic
Editor in Excel and select Tools➜References. The Reference dialog box opens. Scroll down until you
find the entry Microsoft Word XX Object Library, where the XX is your version of Word. Select the
check box next to the entry.

Sub Macro97()

‘Step 1: Declare your variables
 Dim MyRange As Excel.Range
 Dim wd As Word.Application
 Dim wdDoc As Word.Document
 Dim WdRange As Word.Range

‘Step 2: Copy the defined range
 Sheets(“Revenue Table”).Range(“B4:F10”).Copy

‘Step 3: Open the target Word document
 Set wd = New Word.Application
 Set wdDoc = wd.Documents.Open _

287Macro 97: Sending Excel Data to a Word Document

 (ThisWorkbook.Path & “\” & “PasteTable.docx”)
 wd.Visible = True

‘Step 4: Set focus on the target bookmark
 Set WdRange = wdDoc.Bookmarks(“DataTableHere”).Range

‘Step 5: Delete the old table and paste new
 On Error Resume Next
 WdRange.Tables(1).Delete
 WdRange.Paste ‘paste in the table

‘Step 6: Adjust column widths
 WdRange.Tables(1).Columns.SetWidth _
 (MyRange.Width / MyRange.Columns.Count), wdAdjustSameWidth

‘Step 7: Reinsert the bookmark
 wdDoc.Bookmarks.Add “DataTableHere”, WdRange

‘Step 8: Memory cleanup
 Set wd = Nothing
 Set wdDoc = Nothing
 Set WdRange = Nothing

End Sub

 1. Step 1 declares four variables: MyRange contains the target Excel range you want copied;
wd is an object variable that exposes the Word Application object; wdDoc is an object
variable that exposes the Word Document object; and wdRange is an object variable that
exposes the Word Range object.

 2. Step 2 copies a range from the Revenue Table worksheet. In this example, the range is hard-
coded, but we can always make this range into something more variable.

 3. Step 3 opens an existing target Word document that serves as a template. Note that we are
setting the Visible property of the Word application to True. This ensures that we can
see the action in Word as the code runs.

 4. Step 4 uses Word’s Range object to set focus on the target bookmark. This essentially selects
the bookmark as a range, allowing you to take actions in that range.

 5. Step 5 deletes any table that may exist within the bookmark, and then pastes the copied
Excel range. If we don’t delete any existing tables first, the copied range is appended to the
existing data.

288 Macro 97: Sending Excel Data to a Word Document

 6. When you’re pasting an Excel range into a Word document, the column widths don’t always
fit the content in the cells appropriately. Step 6 fixes this issue by adjusting the column
widths. Here, each column’s width is set to a number that equals the total width of the table
divided by the number of columns in the table.

 7. When we paste an Excel range to the target bookmark, we essentially overwrite the book-
mark. Step 7 re-creates the bookmark to ensure that the next time you run this code, the
bookmark is there.

 8. Finally, the macro releases the objects assigned to the variables, reducing the chance of any
problems caused by rogue objects that may remain open in memory.

How to use it
To implement this macro, you can copy and paste it into a standard module:

 1. Activate the Visual Basic Editor by pressing ALT+F11.

 2. Right-click the project/workbook name in the Project window.

 3. Choose Insert➜Module.

 4. Type or paste the code in the newly created module.

289Macro 98: Simulating Mail Merge with a Word Document

Macro 98: Simulating Mail Merge
with a Word Document
One of the most requested forms of integration with Word is the mail merge. In most cases, mail
merge refers to the process of creating one letter or document and then combining it with a separate
document containing their names and addresses. For example, suppose you had a list of customers
and you wanted to compose a letter to each customer. With mail merge, you can write the body of
the letter one time, and then run the mail merge feature in Word to automatically create a letter for
each customer, affixing the appropriate, address, name and other information to each letter.

For you automation buffs, you can use a macro to simulate the Word mail merge function from Excel.

How it works
The idea is relatively simple. You start with a template that contains bookmarks identifying where
each element of contact information should go. After the template is ready, the idea is to simply loop
through each contact in your contact list, assigning the component pieces of their contact informa-
tion to the respective bookmarks.

One of the sample files for this Part is a document called MailMerge.docx. This docu-
ment has all the bookmarks needed to run the sample code shown here.

Note that you will need to set a reference to the Microsoft Word Object Library. To do so, open the
Visual Basic Editor in Excel and select Tools➜References. The Reference dialog box opens. Scroll
down until you find the entry Microsoft Word XX Object Library, where the XX is your version of Word.
Select the check box next to the entry.

Sub Macro98()

‘Step 1: Declare your variables
 Dim wd As Word.Application
 Dim wdDoc As Word.Document
 Dim MyRange As Excel.Range
 Dim MyCell As Excel.Range
 Dim txtAddress As String
 Dim txtCity As String
 Dim txtState As String
 Dim txtPostalCode As String
 Dim txtFname As String
 Dim txtFullname As String

290 Macro 98: Simulating Mail Merge with a Word Document

‘Step 2: Start Word and add a new document
 Set wd = New Word.Application
 Set wdDoc = wd.Documents.Add
 wd.Visible = True

‘Step 3: Set the range of your contact list
 Set MyRange = Sheets(“Contact List”).Range(“A5:A24”)

‘Step 4: Start the loop through each cell
 For Each MyCell In MyRange.Cells

‘Step 5: Assign values to each component of the letter
 txtAddress = MyCell.Value
 txtCity = MyCell.Offset(, 1).Value
 txtState = MyCell.Offset(, 2).Value
 txtPostalCode = MyCell.Offset(, 3).Value
 txtFname = MyCell.Offset(, 5).Value
 txtFullname = MyCell.Offset(, 6).Value

‘Step 6: Insert the structure of template document
 wd.Selection.InsertFile _
 ThisWorkbook.Path & “\” & “MailMerge.docx”

‘Step 7: Fill each relevant bookmark with respective value
 wd.Selection.Goto What:=wdGoToBookmark, Name:=”Customer”
 wd.Selection.TypeText Text:=txtFullname

 wd.Selection.Goto What:=wdGoToBookmark, Name:=”Address”
 wd.Selection.TypeText Text:=txtAddress

 wd.Selection.Goto What:=wdGoToBookmark, Name:=”City”
 wd.Selection.TypeText Text:=txtCity

 wd.Selection.Goto What:=wdGoToBookmark, Name:=”State”
 wd.Selection.TypeText Text:=txtState

 wd.Selection.Goto What:=wdGoToBookmark, Name:=”Zip”
 wd.Selection.TypeText Text:=txtPostalCode

 wd.Selection.Goto What:=wdGoToBookmark, Name:=”FirstName”
 wd.Selection.TypeText Text:=txtFname

‘Step 8: Clear any remaining bookmarks
 On Error Resume Next

291Macro 98: Simulating Mail Merge with a Word Document

 wdDoc.Bookmarks(“Address”).Delete
 wdDoc.Bookmarks(“Customer”).Delete
 wdDoc.Bookmarks(“City”).Delete
 wdDoc.Bookmarks(“State”).Delete
 wdDoc.Bookmarks(“FirstName”).Delete
 wdDoc.Bookmarks(“Zip”).Delete

‘Step 9: Go to the end, insert new page, and start with the next cell
 wd.Selection.EndKey Unit:=wdStory
 wd.Selection.InsertBreak Type:=wdPageBreak
 Next MyCell

‘Step 10: Set cursor to beginning and clean up memory
 wd.Selection.HomeKey Unit:=wdStory
 wd.Activate
 Set wd = Nothing
 Set wdDoc = Nothing

End Sub

 1. Step 1 declares four variables: wd is an object variable that exposes the Word Application
object, wdDoc is an object variable that exposes the Word Document object, MyRange con-
tains the range defining the contact list, and MyCell is used to pass cell values into the
string variables. We also declare six string variables. Each of the string variables holds a com-
ponent piece of information for each contact in the contact list.

 2. This step opens Word with a blank document. Note that we set the Visible property of the
Word application to True. This ensures that we can see the action in Word as the code runs.

 3. Step 3 defines each contact in the contact list. Note that this range only selects the first col-
umn in the contacts table. This is because each cell in the range must be passed individually
to string variables. Selecting only the first column gives us one cell per row. From that one
cell, we can easily adjust the cursor to the right or left to capture the cells around it. The idea
is that if we move to the right one space, we get the value of the next field in that row. If we
move to the right two spaces, we get the value of that field, and so on.

 4. This step starts the loop through each contact as defined in the range set in Step 3.

 5. Step 5 uses Excel’s Offset method to capture the value of each field in a particular row. We
start with the range defined in Step 3 (the first column in the list of contacts). We then use
Offset to move the cursor a certain number of columns to the right to capture the data in
each relevant field. As each field is covered, we assign their values to the appropriate string
variable.

292 Macro 98: Simulating Mail Merge with a Word Document

 6. In Step 6, we insert the existing template into the empty document in Word. This is tanta-
mount to copying the structure of our template and pasting it into a blank document.

 7. Step 7 assigns the value of each string variable to its respective bookmark. As you can see in
the code, this step selects the bookmark by name, and then changes the text to equal the
value of the assigned string variable.

 8. The goal in Step 8 is to remove any stray bookmarks. If any bookmarks linger, we get dupli-
cate bookmarks as the procedure loops through each cell.

 9. At this point in the code, we have created a document for one contact in our list of contacts.
The idea now is to create a new blank document so that we can perform the same procedure
for the next contact. Inserting a page break effectively creates the new blank document. We
then loop back to Step 5, where we pick up the contact information for the next row in the
list. Then at Step 6, we insert the blank template (complete with bookmarks) into the new
page. Finally, we assign values to the bookmarks and clean up. The For…Next loop
ensures that this cycle is repeated for each row in the contact list.

 10. Step 10 releases the objects assigned to your variables, reducing the chance of any problems
caused by rogue objects that may remain open in memory.

How to use it
To implement this macro, you can copy and paste it into a standard module:

 1. Activate the Visual Basic Editor by pressing ALT+F11.

 2. Right-click the project/workbook name in the Project window.

 3. Choose Insert➜Module.

 4. Type or paste the code in the newly created module.

293Macro 99: Sending Excel Data to a PowerPoint Presentation

Macro 99: Sending Excel Data
to a PowerPoint Presentation
It’s been said that up to 50 percent of PowerPoint presentations contain data that has been copied
straight out of Excel. This is not difficult to believe. It’s often much easier to analyze and create charts
and data views in Excel than in PowerPoint. After you’ve created those charts and data views, why
wouldn’t you simply move them into PowerPoint? The macro in this section allows you to dynami-
cally create PowerPoint slides that contain data from a range you specify.

How it works
In this example, you are copying a range from an Excel file and pasting that range to a slide in a
newly created PowerPoint presentation.

Keep in mind that because this code is run from Excel, you need to set a reference to the Microsoft
PowerPoint Object Library. Again, you can set the reference by opening the Visual Basic Editor in
Excel and selecting Tools➜References. Scroll down until you find the entry Microsoft PowerPoint XX
Object Library, where the XX is your version of PowerPoint. Select the check box next to the entry.

Sub CopyRangeToPresentation ()

‘Step 1: Declare your variables
 Dim PP As PowerPoint.Application
 Dim PPPres As PowerPoint.Presentation
 Dim PPSlide As PowerPoint.Slide
 Dim SlideTitle As String

‘Step 2: Open PowerPoint and create new presentation
 Set PP = New PowerPoint.Application
 Set PPPres = PP.Presentations.Add
 PP.Visible = True

‘Step 3: Add new slide as slide 1 and set focus to it
 Set PPSlide = PPPres.Slides.Add(1, ppLayoutTitleOnly)
 PPSlide.Select

‘Step 4: Copy the range as a picture
 Sheets(“Slide Data”).Range(“A1:J28”).CopyPicture _
 Appearance:=xlScreen, Format:=xlPicture

294 Macro 99: Sending Excel Data to a PowerPoint Presentation

‘Step 5: Paste the picture and adjust its position
 PPSlide.Shapes.Paste.Select
 PP.ActiveWindow.Selection.ShapeRange.Align msoAlignCenters, True
 PP.ActiveWindow.Selection.ShapeRange.Align msoAlignMiddles, True

‘Step 6: Add the title to the slide
 SlideTitle = “My First PowerPoint Slide”
 PPSlide.Shapes.Title.TextFrame.TextRange.Text = SlideTitle

‘Step 7: Memory Cleanup
 PP.Activate
 Set PPSlide = Nothing
 Set PPPres = Nothing
 Set PP = Nothing

End sub

 1. Step 1 declares four variables: PP is an object variable that exposes the PowerPoint
Application object; PPPres is an object variable that exposes the PowerPoint Presentation
object; PPSlide is an object variable that exposes the PowerPoint Slide object; and
SlideTitle is an string variable used to pass the text for the slide title.

 2. Step 2 opens PowerPoint with an empty presentation. Note that we are setting the
Visible property of the PowerPoint application to True. This ensures that you can see the
action as the code runs.

 3. Step 3 adds a new slide to the presentation using the Add method of Slide object. Note
that we are using the ppLayoutTitleOnly, ensuring the slide is created with a title text
frame. We then take an extra step here and actually set focus on the slide. That is to say, we
explicitly tell PowerPoint to select this slide, making it active.

 4. Step 4 uses the CopyPicture method to copy the target range as a picture. The range
being copied here is range A1 to J28 in the Slide Data tab.

 5. Step 5 pastes the picture into the active slide and centers the picture both horizontally and
vertically.

 6. Step 6 stores the text for the title in a string variable, and then passes that variable to
PowerPoint to apply text to the title text frame.

 7. Step 7 releases the objects assigned to our variables, reducing the chance of any problems
caused by rogue objects that may remain open in memory.

295Macro 99: Sending Excel Data to a PowerPoint Presentation

How to use it
To implement this macro, you can copy and paste it into a standard module:

 1. Activate the Visual Basic Editor by pressing ALT+F11.

 2. Right-click the project/workbook name in the Project window.

 3. Choose Insert➜Module.

 4. Type or paste the code.

296 Macro 100: Sending All Excel Charts to a PowerPoint Presentation

Macro 100: Sending All Excel Charts
to a PowerPoint Presentation
It’s not uncommon to see multiple charts on one worksheet. Many of us occasionally need to copy
our charts to PowerPoint presentations. The macro here assists in that task, effectively automating
the process of copying each one of these charts into its own slide.

How it works
In this macro, we loop through the ActiveSheet.ChartObjects collection to copy each chart
as a picture into its own page in a newly created PowerPoint presentation.

Keep in mind that because this code will be run from Excel, you need to set a reference to the
Microsoft PowerPoint Object Library. Again, you can set the reference by opening the Visual Basic
Editor in Excel and selecting Tools➜References. Scroll down until you find the entry Microsoft
PowerPoint XX Object Library, where the XX is your version of PowerPoint. Select the check box
next to the entry.

Sub CopyAllChartsToPresentation()

‘Step 1: Declare your variables
 Dim PP As PowerPoint.Application
 Dim PPPres As PowerPoint.Presentation
 Dim PPSlide As PowerPoint.Slide
 Dim i As Integer

‘Step 2: Check for charts; exit if no charts exist
 Sheets(“Slide Data”).Select
 If ActiveSheet.ChartObjects.Count < 1 Then
 MsgBox “No charts existing the active sheet”
 Exit Sub
 End If

‘Step 3: Open PowerPoint and create new presentation
 Set PP = New PowerPoint.Application
 Set PPPres = PP.Presentations.Add
 PP.Visible = True

‘Step 4: Start the loop based on chart count
 For i = 1 To ActiveSheet.ChartObjects.Count

‘Step 5: Copy the chart as a picture
 ActiveSheet.ChartObjects(i).Chart.CopyPicture _
 Size:=xlScreen, Format:=xlPicture
 Application.Wait (Now + TimeValue(“0:00:1”))

297Macro 100: Sending All Excel Charts to a PowerPoint Presentation

‘Step 6: Count slides and add new slide as next available slide number
 ppSlideCount = PPPres.Slides.Count
 Set PPSlide = PPPres.Slides.Add(SlideCount + 1, ppLayoutBlank)
 PPSlide.Select

‘Step 7: Paste the picture and adjust its position; Go to next chart
 PPSlide.Shapes.Paste.Select
 PP.ActiveWindow.Selection.ShapeRange.Align msoAlignCenters, True
 PP.ActiveWindow.Selection.ShapeRange.Align msoAlignMiddles, True
 Next i

‘Step 8: Memory Cleanup
 Set PPSlide = Nothing
 Set PPPres = Nothing
 Set PP = Nothing

End Sub

 1. Step 1 declares four variables: PP is an object variable that exposes the PowerPoint
Application object; PPPres is an object variable that exposes the PowerPoint Presentation
object; PPSlide is an object variable that exposes the PowerPoint Slide object; and i is
used as a counter to help loop through the charts in the worksheet.

 2. Step 2 does an administrative check to ensure that there are actually charts in the specified
worksheet. If no charts are found, the macro exits the procedure with no further action.

 3. Step 3 opens PowerPoint with an empty presentation. Note that we are setting the
Visible property of the PowerPoint application to True. This ensures that we can see the
action as the code runs.

 4. Step 4 establishes how many times the macro will go through the procedure by capturing
the number of charts in the worksheet. In other words, if the worksheet contains
five charts, the code will loop five times. The macro starts the loop with one and keeps loop-
ing through the procedure until we hit the number of charts in the worksheet. The variable i
ultimately represents the chart number we are currently on.

 5. Step 5 uses the CopyPicture method to copy the chart as a picture. The variable i passes
the actual chart number we are currently working with. The Application.Wait method
tells the macro to pause for a second, allowing the clipboard to catch up with all the copying
going on.

 6. Step 6 adds a new slide to the presentation using the Add method of the Slide object.
Note that we are using SlideCount+1 to specify the index number of the added slide.
Because we are looping through an unknown number of charts, we can’t hard-code the
index number for each slide. Using SlideCount+1 allows us to dynamically assign the
next available number as the slide index. Note that in Step 6, we are using ppLayout
Blank, ensuring that the newly created slides start with a blank layout. The macro then
takes an extra step here and actually sets focus on the slide. In other words, the code explic-
itly tells PowerPoint to select this slide, making it active.

298 Macro 100: Sending All Excel Charts to a PowerPoint Presentation

 7. Step 7 pastes the picture into the active slide, centers the picture both horizontally and verti-
cally, and then moves to the next chart.

 8. Step 8 releases the objects assigned to your variables, reducing the chance of any problems
caused by rouge objects that may remain open in memory.

How to use it
To implement this macro, you can copy and paste it into a standard module:

 1. Activate the Visual Basic Editor by pressing ALT+F11.

 2. Right-click the project/workbook name in the Project window.

 3. Choose Insert➜Module.

 4. Type or paste the code.

299Macro 101: Convert a Workbook into a PowerPoint Presentation

Macro 101: Convert a Workbook
into a PowerPoint Presentation
This macro takes the concept of using Excel data in PowerPoint to the extreme. Open the sample
workbook called Macro 101 Convert a Workbook into a PowerPoint Presentation.xlsm. In this work-
book, notice that each worksheet contains its own data about a region. It’s almost like each work-
sheet is its own separate slide, providing information on a particular region.

The idea here is that you can build a workbook in such a way that it mimics a PowerPoint presentation;
the workbook is the presentation itself and each worksheet becomes a slide in the presen tation.
After you do that, you can easily convert that workbook into an actual PowerPoint presentation using
a bit of automation.

With this technique, you can build entire presentations in Excel, where you have better analytical
and automation tools. Then you can simply convert the Excel version of your presentation to a
PowerPoint presentation.

How it works
Before you implement this macro in your workbook, you need to set a reference to the Microsoft
PowerPoint Object Library. Again, you can set the reference by opening the Visual Basic Editor in
Excel and selecting Tools➜References. Scroll down until you find the entry Microsoft PowerPoint XX
Object Library, where the XX is your version of PowerPoint. Select a check box next to the entry.

Sub Macro101()

‘Step 1: Declare your variables
 Dim pp As PowerPoint.Application
 Dim PPPres As PowerPoint.Presentation
 Dim PPSlide As PowerPoint.Slide
 Dim xlwksht As Excel.Worksheet
 Dim MyRange As String
 Dim MyTitle As String

‘Step 2: Open PowerPoint, add a new presentation and make visible
 Set pp = New PowerPoint.Application
 Set PPPres = pp.Presentations.Add
 pp.Visible = True

‘Step 3: Set the ranges for your data and title
 MyRange = “A1:I27”

300 Macro 101: Convert a Workbook into a PowerPoint Presentation

‘Step 4: Start the loop through each worksheet
 For Each xlwksht In ActiveWorkbook.Worksheets
 xlwksht.Select
 Application.Wait (Now + TimeValue(“0:00:1”))
 MyTitle = xlwksht.Range(“C19”).Value

‘Step 5: Copy the range as picture
 xlwksht.Range(MyRange).CopyPicture _
 Appearance:=xlScreen, Format:=xlPicture

‘Step 6: Count slides and add new slide as next available slide number
 SlideCount = PPPres.Slides.Count
 Set PPSlide = PPPres.Slides.Add(SlideCount + 1, ppLayoutTitleOnly)
 PPSlide.Select

‘Step 7: Paste the picture and adjust its position
 PPSlide.Shapes.Paste.Select
 pp.ActiveWindow.Selection.ShapeRange.Align msoAlignCenters, True
 pp.ActiveWindow.Selection.ShapeRange.Top = 100

‘Step 8: Add the title to the slide then move to next worksheet
 PPSlide.Shapes.Title.TextFrame.TextRange.Text = MyTitle
 Next xlwksht

‘Step 9: Memory Cleanup
 pp.Activate
 Set PPSlide = Nothing
 Set PPPres = Nothing
 Set pp = Nothing

End Sub

 1. Step 1 declares six variables: PP is an object variable that exposes the PowerPoint
Application object; PPPres is an object variable that exposes the PowerPoint Presentation
object; PPSlide is an object variable that exposes the PowerPoint Slide object; xlwksht is
an object variable that exposes the Worksheet object; MyRange is a string variable used to
store and pass a range name as a string; and MyTitle is a string variable used to store and
pass a title for each slide.

 2. Step 2 opens PowerPoint with an empty presentation. Note that we are setting the
Visible property of the PowerPoint application to True. This ensures that we can see the
action as the code runs.

 3. Step 3 fills the MyRange variable with a string representing the range we want to capture as
the slide content. We also fill the MyTitle variable with the value of cell C19. The value here
becomes the title for the slide.

301Macro 101: Convert a Workbook into a PowerPoint Presentation

 4. Step 4 starts the loop through each worksheet in the workbook. The loop stops when all
worksheets have been looped through. Note that we are using the Application.Wait
method, telling the macro to pause for a second. This allows the chart to render completely
before the range is copied.

 5. Step 5 uses the CopyPicture method to copy our specified range as a picture.

 6. Step 6 adds a new slide to the presentation using the Add method of the Slide object.
Note that we are using SlideCount+1 to specify the index number of the added slide.
Using SlideCount+1 allows us to dynamically assign the next available number as the
slide index. Also note that we are using ppLayoutTitleOnly, ensuring our slide is cre-
ated with a title text frame.

 7. Step 7 pastes the picture into the active slide, centers the picture horizontally, and adjusts
the picture vertically 100 pixels from the top margin.

 8. Step 8 passes the MyTitle variable to apply text to the title text frame.

 9. Step 9 releases the objects assigned to the variables, reducing the chance of any problems
caused by rogue objects that may remain open in memory.

How to use it
To implement this macro, you can copy and paste it into a standard module:

 1. Activate the Visual Basic Editor by pressing ALT+F11.

 2. Right-click the project/workbook name in the Project window.

 3. Choose Insert➜Module.

 4. Type or paste the code.

Index

302

refreshing all PivotTables in workbook, 192
versus ThisWorkbook, 59

ActiveWorkbook.Fullname syntax, 256
ActiveX controls, 19
Add method

new worksheet, adding, 74
Slide object, 294, 297, 301
Workbook object, 40

Address properties, 102
addresses in contact list, mailing all, 264–265
AF variable, 184
AF.Filters object, 184–185
After argument, Move method, 81
aligning chart to specific range, 237–238
alphabetical order

sorting all PivotTable fields in, 211–212
sorting worksheets by name, 83–84

alternate color banding, applying, 128–129
ampersand (&), 157, 162
appending text to left or right of cells, 161–162
application flow, 275
Application object, 32
Application.ConvertFormula function, 209
applications, Office, integrating Excel with. See also Outlook,

integrating with Excel
Access database, compacting from Excel, 284–285
Access form, opening from Excel, 282–283
Access macro, running from Excel, 278–279
Access query, running from Excel, 275–277
Access report, opening from Excel, 280–281
overview, 4, 275
PowerPoint presentation, converting workbook into,

299–301
PowerPoint presentation, sending all Excel charts to,

296–298
PowerPoint presentation, sending Excel data to,

293–295
Word document, sending Excel data to, 286–288
Word document, simulating mail merge with, 289–292

Application.Wait method, 297, 301
ApplyDataLabels method, 244
area code, appending to cells, 161–162

Symbols
& (ampersand), 157, 162

A
absolute references, recording macros with, 11–13
AC variable, 278, 280, 282
Access, Microsoft

compacting database from Excel, 284–285
opening form from Excel, 282–283
opening report from Excel, 280–281
running macro from Excel, 278–279
running query from Excel, 275–277

Access Object Library, 275
activating VBE, 9, 19
active rows and columns, highlighting, 101–102
active workbook, mailing as attachment, 255–257
active worksheet

deleting all worksheets except, 75–76
hiding all worksheets except, 77–78

ActiveCell.PivotTable.Name property
data field titles, adjusting all PivotTable, 203
PivotTable data items, applying number formatting for

all, 208
PivotTable data items, setting all to Sum, 205
report filter items, creating new workbook for each, 227
report filter items, printing PivotTable for each, 224
restrictions, pivot field, 218
restrictions, PivotTable, 216
sorting PivotTable fields in alphabetical order, 212
subtotals in PivotTable, hiding all, 201

ActiveChart.Printout method, 242
ActiveSheet object

AutoFilter, creating new sheet for each item in, 179
Name property, 74
new workbook, creating from scratch, 40
UsedRange property, 118–119, 120–121, 167

ActiveSheet.ChartObjects collection, 296
ActiveSheet.PrintOut method, 223
ActiveWorkbook object

deleting all but active worksheet, 75
hiding all but active worksheet, 77

Index 303

blank cells, replacing with values, 158–160
blank columns

deleting, 120–121
finding and selecting first, 125–127

blank rows
deleting, 118–119
finding and selecting first, 125–127
inserting in range, 115–116

Blind Courtesy Copy (BCC), 265
bookmark, in Word document, 286, 287–288, 289, 292
Boolean variables, 34
BreakLink method, 239
buttons, assigning macro to, 17–19

C
cache, pivot

making all PivotTables use same, 197–198
number formatting in, 207
overview, 196

CacheIndex property, 196, 198
Calculate event, 185–186
calculation type, PivotTable, 204–206
Caption property, 203
Caution icon, 4
Cdbl function, 147, 148
cells

appending text to left or right of, 161–162
blank, replacing with value, 158–160
enumerating through range of, 111–112
padding with zeros, 155–157
preventing workbook from closing until populated,

67–68
saving workbook when changed, 41–42
source, coloring chart data points to match, 250–252
source, coloring chart series to match, 246–249
trimming spaces from all in range, 150–151

Cells collection, SpecialCells method, 122–123
Cells item

filtered columns, showing in status bar, 185
number formatting for all data items, applying, 209
Range object, 106, 125
table of contents, creating for worksheets, 98

Change event, 134–135
characters, non-printing, cleaning up, 166–167
charting macros

aligning chart to specific range, 237–238
coloring chart data points to match source cell colors,

250–252

ASCII code, 166–167, 203
Assign Macro dialog box, 18
Atmt variable, 267, 270
attachments

active workbook, mailing as, 255–257
saving all to folder, 266–268
saving certain to folder, 269–271
single sheet, mailing as, 260–261
specific range, mailing as, 258–259

Auto Data Tips option, Options dialog box, 28
Auto Indent setting, Options dialog box, 28
Auto List Members option, Options dialog box, 28
Auto Quick Info option, Options dialog box, 28
Auto Syntax Check option, Options dialog box, 27–28
AutoFilter

drop-down arrows, selectively hiding, 172–174
filtered columns, showing in status bar, 183–186
filtered rows, copying to new workbook, 175–176
new sheets, creating for each item in, 177–182

AutoFilter object, 173, 175, 181
AutoFilterMode property, 175, 179, 184
automatically deleting PivotTable drill-down sheets,

219–223
automatically saving workbooks, 43–45
automation, defined, 1
AutoSort method, 212

B
backup of current workbook, creating, 69–70
BackupFile variable, 285
backwards-compatible PivotTable, creating, 189–191
BCC (Blind Courtesy Copy), 265
Before argument

adding new sheet to workbook using, 97
Move method, 81

Before parameter, 87, 89
BeforeClose event

drill-down sheets, automatically deleting PivotTable,
219, 222

filtered columns, showing in status bar, 186
preventing workbook from closing until cell is

populated, 67–68
protecting worksheet on workbook close, 46–47
saving workbook before closing, 43, 44–45

BeforeDoubleClick event
drill-down sheets, automatically deleting PivotTable, 219,

220, 221
highlighting active row and column, 102
sorting range on double-click, 131
zooming in and out of worksheet with double-click, 100

Index304

charting macros (continued)
coloring chart series to match source cell colors,

246–249
labeling first and last chart points, 243–245
overview, 3, 235
printing all charts on worksheet, 241–242
resizing all charts on worksheet, 235–236
sending all charts to PowerPoint presentation, 296–298
set of disconnected charts, creating, 239–240

ChartObjects collection, 235–236, 241–242
ChartObjects.ShapeRange.Group, 239
Choose a Workbook to Open dialog box, 52–53
Chr function, 167, 203
cleaning up non-printing characters, 166–167
closing Code windows, 24
closing workbooks

all at once, 61–62
preventing until cell is populated, 67–68
protecting worksheet when, 46–47
saving before, 43–45

code, in VBA modules, 22–23, 25–27
Code Colors option, Options dialog box, 29
Code window, VBE

examining macro, 9
getting VBA code into module, 25–27
minimizing and maximizing, 24
overview, 21, 24

Collection object, 180
collections, Excel object model, 32–33
color, grouping worksheets by, 85–86
color banding, applying alternate, 128–129
coloring

chart data points, to match source cell colors, 250–252
chart series, to match source cell colors, 246–249
named ranges, 113–114

columns
capturing number of, when creating new sheet for each

item in AutoFilter, 180
deleting blank, 120–121
filtered, showing in status bar, 183–186
first blank, finding and selecting, 125–127
highlighting active, 101–102
Text to Columns command, performing on all, 143–146
unhiding all, 117

Columns collection, 117, 121
comments, in macro code, 9
Compact and Repair procedure, Access, 284–285
compacting Access database from Excel, 284–285
companion website, 4

Compatibility mode, 189–190
conditional checks, with Select Case statement, 44
conditional format coloring, 246
contact list

mailing to all addresses in, 264–265
simulating mail merge with Word document,

289, 291–292
conventions used in book, 4
converting all formulas in range to values, 141–142
Copy method

AutoFilter, creating new sheet for each item in, 181
copying and pasting ranges, 139
copying filtered rows to new workbook, 175

CopyFromRecordset method, 277
copying

data into new workbook, 39–40
filtered rows to new workbook, 175–176
ranges, 139–140
into VBA modules, 26–27
worksheet to new workbook, 87

CopyPicture method
PowerPoint presentation, converting workbook

into, 301
PowerPoint presentation, sending all Excel charts

to, 297
PowerPoint presentation, sending Excel data to, 294

Count calculation type, 204
counters

deleting blank columns, 120–121
deleting blank rows, 118–119
inserting blank rows in range, 115–116
table of contents, creating for worksheets, 97–98

CountIf function
hiding all rows but those containing duplicate data,

170, 171
highlighting duplicates in range of data, 168, 169

current workbook, creating backup of, 69–70
CurrentSheetIndex variable, 84, 86
custom sort, applying to PivotTable data items, 213–214
custom sort list, 213
Customize Quick Access Toolbar option, 19
customizing VBE

Docking tab, 31
Editor Format tab, 29–30
Editor tab, 27–29
General tab, 30
overview, 27

cycling through open Code windows, 24

Index 305

D
DAO (Data Access Object), 275–276
data cleanup macro, creating, 163–165
data connections in workbook, refreshing all on opening,

59–60
data field titles, adjusting all, 202–203
data points, chart

coloring to match source cell colors, 250–252
labeling first and last, 243–245

data transformation macros
appending text to left or right of cells, 161–162
AutoFilter, creating new sheet for each item in, 177–182
AutoFilter drop-down arrows, selectively hiding,

`172–174
blank cells, replacing with value, 158–160
copying and pasting range, 139–140
filtered columns, showing in status bar, 183–186
filtered rows, copying to new workbook, 175–176
formulas, converting all in range to values, 141–142
hiding all rows but those containing duplicate data,

170–171
highlighting duplicates in range of data, 168–169
non-printing characters, cleaning up, 166–167
overview, 3, 139
padding cells with zeros, 155–157
super data cleanup macro, creating, 163–165
Text to Columns command, performing on all columns,

143–146
trailing minus signs, converting, 147–149
trimming spaces from all cells in range, 150–151
truncating ZIP codes to left five digits, 152–154

databases, Access, compacting from Excel, 284–285
DataTableHere bookmark, 286
date, creating backup of current workbook with today’s,

69–70
Date function, 69
declarations, in VBA modules, 22
declaring variables, 34
Default to Full Module View option, Options dialog box, 29
DefaultVersion property, 190
Define Name command, Formulas tab, 108
deleting

all but active worksheet, 75–76
blank columns, 120–121
blank rows, 118–119
PivotTable drill-down sheets automatically, 219–223
VBA modules, 23–24

Description field, Record Macro dialog box, 8
Destination argument, 139
Developer tab, 7
Dim statement, 28
Dir function

determining whether workbook exists in directory,
57–58

opening all workbooks in directory, 63–64
printing all workbooks in directory, 65

directory
determining whether workbook exists in, 57–58
opening all workbooks in, 63–64
printing all workbooks in, 65–66

disconnected charts, creating set of, 239–240
.Display method

mailing active workbook as attachment, 256
mailing to all addresses in contact list, 265
mailing single sheet as attachment, 261
mailing specific range as attachment, 259
sending mail with link to workbook, 263

DisplayAlerts method
deleting all but active worksheet, 75–76
new workbook, creating from scratch, 40
table of contents, creating for worksheets, 97

Do Not Show Subtotals option, 199
Docking tab, Options dialog box, 31
documents, trusted, 16
documents, Word

sending Excel data to, 286–288
simulating mail merge with, 289–292

Double data type, 147–148
Double variables, 34
double-click

highlight active row and column with, 101–102
sorting range on, 130–131
zooming in and out of worksheet with, 99–100

Drag-and-Drop Text Editing option, Options dialog box, 29
DragToColumn property, PivotField object, 217
DragToData property, PivotField object, 217
DragToHide property, PivotField object, 217
DragToPage property, PivotField object, 217
DragToRow property, PivotField object, 217
drill-down sheets, PivotTable, 219–223
drop-down arrows, AutoFilter, 172–174
duplicate data

hiding all rows but those containing, 170–171
highlighting in range of data, 168–169

Index306

dValues variable, 251–252
dynamically setting print area of worksheet, 134–135
dynamically transforming data, macros for

appending text to left or right of cells, 161–162
AutoFilter, creating new sheet for each item in, 177–182
AutoFilter drop-down arrows, selectively hiding,

172–174
blank cells, replacing with value, 158–160
copying and pasting range, 139–140
filtered columns, showing in status bar, 183–186
filtered rows, copying to new workbook, 175–176
formulas, converting all in range to values, 141–142
hiding all rows but those containing duplicate data,

170–171
highlighting duplicates in range of data, 168–169
non-printing characters, cleaning up, 166–167
overview, 3, 139
padding cells with zeros, 155–157
super data cleanup macro, creating, 163–165
Text to Columns command, performing on all columns,

143–146
trailing minus signs, converting, 147–149
trimming spaces from all cells in range, 150–151
ZIP codes, truncating to left five digits, 152–154

E
Edit Custom Lists option, Excel Options dialog box, 213
Edit toolbar, VBE, 28
editing macro, 10
Editor Format tab, Options dialog box, 29–30
Editor tab, Options dialog box, 27–29
Else argument, 171
e-mailing from Excel

active workbook, mailing as attachment, 255–257
to all addresses in contact list, 264–265
link to workbook, sending mail with, 262–263
overview, 4, 255
saving all attachments to folder, 266–268
saving certain attachments to folder, 269–271
single sheet, mailing as attachment, 260–261
specific range, mailing as attachment, 258–259

EnableDrillDown property, 215, 220
EnableFieldDialog property, PivotTable object, 215
EnableFieldList property, PivotTable object, 215
EnableItemSelection property, PivotField object, 217
EnableWizard property, PivotTable object, 215
End property

finding and selecting first blank row or column,
125–127

sorting range on double-click, 130

EntireRow property, 171
EntireRow.Insert method, 116
enumerating through range of cells, 111–112
Error Trapping settings, Options dialog box, 30
Esc key, 99
events, 8
examining macros, 9
Excel 2003, PivotTable macros for working with, 189–191
Excel 2003 PivotTable Wizard, 230
Excel 2010, security in, 16, 36
Excel Macro-Enabled Workbook files, 15
Excel macros. See also recording macros; specific macros

overview, 1–4
samples, 35–36

Excel object model
collections, 32–33
methods, 33–34
objects, 31–32
overview, 31
properties, 33

Excel Options dialog box, 19, 213

F
F5 key, 26
False settings, Subtotals, 200
fields, PivotTable, sorting in alphabetical order, 211–212
file extensions, macro-enabled, 15, 36
FileCopy function, 285
FileFilter parameter, GetOpenFilename method, 53
FileIsOpenTest function, 55
FileName variable

saving all attachments to folder, 267
saving certain attachments to folder, 270

filenames, 88–89
filtered columns, showing in status bar, 183–186
filtered rows, copying to new workbook, 175–176
Find and Replace functionality, 166
finding first blank row or column, 125–127
first chart points, labeling, 243–245
fixed-width font, 30
FName variable

determining whether workbook exists in directory, 57
opening specific workbook defined by user, 53

folders
saving all attachments to, 266–268
saving certain attachments to, 269–271

Font option, Options dialog box, 30
For Each statement

alternate color banding, applying, 128
appending text to left or right of cells, 161

Index 307

enumerating through range of cells, 111
formulas, converting all in range to values, 141
hiding all rows but those containing duplicate data, 170
hiding all subtotals in PivotTable, 201
highlighting duplicates in range, 168
pivot data field titles, adjusting all, 203
pivot field restrictions, applying, 218
sorting PivotTable fields in alphabetical order, 212
Sum, setting all data items to, 205
Text to Columns command, performing on all

columns, 144
trailing minus signs, converting, 147

For…Each statement
coloring chart data points to match source cell

colors, 251
coloring chart series to match source cell colors, 248
labeling first and last chart points, 244

For…Next loop, 292
form controls, assigning macro to, 17–19
Format Cells dialog box, 155
formatting

all formulas in workbook, 122–124
all named ranges, 113–114
number, applying for all data items, 207–210
ranges, 105–107

forms, Access, opening from Excel, 282–283
formulas

in range, converting all to values, 141–142
selecting and formatting all in workbook, 122–124

Formulas option, Go To Special dialog box, 122
Formulas tab, Ribbon, 108
FormulaSplit variable

coloring chart data points to match source cell
colors, 251

coloring chart series to match source cell colors, 248
FPath variable, 57
Function procedures

defined, 22
determining whether workbook exists in directory,

57–58
determining whether workbook is already open, 54–55

Function property, 204, 205

G
General tab, Options dialog box, 30
GetOpenFilename method, 53
Go To Special dialog box, 122
grouping worksheets by color, 85–86

H
HasFormula property, 142
Height property, charts, 237
hiding

all but active worksheet, 77–78
all rows but those containing duplicate data, 170–171
all subtotals in PivotTable, 199–201
AutoFilter drop-down arrows, selectively, 172–174

hierarchy, Excel object model, 32
highlighting

active rows and columns, 101–102
duplicates in range of data, 168–169

HighlightRange variable, 113–114
HTMLBody property, 263
hyperlink to workbook, sending mail with, 262–263
Hyperlinks.Add method, 98

I
i variable

Access query, running from Excel, 276
attachments, saving certain to folder, 270
AutoFilter, creating new sheet for each item in, 179–180
coloring chart data points to match source cell

colors, 252
filtered columns, showing in status bar, 184, 185
number formatting for all data items, applying,

208–209
PowerPoint presentation, sending all Excel charts

to, 297
printing all charts on worksheet, 241–242
resizing all charts on worksheet, 236
table of contents, creating for worksheets, 97–98

icons, explained, 4
iCounter variable

deleting blank columns, 120–121
deleting blank rows, 118–119
inserting blank rows in range, 115–116

If…Then…Else statement, 42
Immediate window, VBE, 21
incremental counter, 115–116
Indent button, VBE, 28
index numbers, for colors, 85
Insert button, Developer tab, 18
inserting blank rows in range, 115–116
Instr function, 271
Integer variables, 34
Intersect method, 41–42

Index308

inventory summary, PivotTable, 194–196
IsEmpty function

blank cells, replacing with values, 159
hiding all rows but those containing duplicate data, 171
padding cells with zeros, 157
Text to Columns command, performing on all

columns, 146
trimming spaces from all cells in range, 151
ZIP codes, truncating to left five digits, 153

IsNumeric function, 148

K
Key argument, 131

L
labeling first and last chart points, 243–245
LastColumn variable, 127
LastRow variable

finding and selecting first blank row or column, 126
sorting range on double-click, 130

leading spaces, trimming from all cells in range, 150–151
Left function

AutoFilter, creating new sheet for each item in, 181
ZIP codes, truncating to left five digits, 152–153

Left property, charts, 237
Len function, 158–159
limiting range movement to particular area, 132–133
line-continuation character, in VBA code, 25
link to workbook, sending mail with, 262–263
locations, trusted, 16–17
Long variables, 34

M
Macro dialog box, 12–14
Macro Name field, Record Macro dialog box, 8
Macro Recorder

absolute references, 11–12
PivotTable-related tasks, 189
relative references, 14
starting up, 7–8

Macro Security button, Developer tab, 16
macro-enabled file extensions, 15, 36
macros. See also recording macros; specific macros

Access, running from Excel, 278–279
overview, 1
samples, 35–36

mail merge, simulating with Word document, 289–292

mailing from Excel
active workbook, mailing as attachment, 255–257
to all addresses in contact list, 264–265
link to workbook, sending mail with, 262–263
overview, 4, 255
saving all attachments to folder, 266–268
saving certain attachments to folder, 269–271
single sheet, mailing as attachment, 260–261
specific range, mailing as attachment, 258–259

Margin Indicator Bar option, Options dialog box, 30
matrix-style reports, in PivotTables, 229
maximizing Code window, 24
menu bar, VBE, 20
methods, Excel object model, 33–34
Microsoft Access Object Library, 275
Microsoft DAO Object Library, 275
Microsoft Excel Objects, Project window, 22
Microsoft Office applications, integrating Excel with. See also

Microsoft Outlook, integrating with Excel
Access database, compacting from Excel, 284–285
Access form, opening from Excel, 282–283
Access macro, running from Excel, 278–279
Access query, running from Excel, 275–277
Access report, opening from Excel, 280–281
overview, 4, 275
PowerPoint presentation, converting workbook into,

299–301
PowerPoint presentation, sending all Excel charts

to, 296–298
PowerPoint presentation, sending Excel data to,

293–295
Word document, sending Excel data to, 286–288
Word document, simulating mail merge with, 289–292

Microsoft Outlook, integrating with Excel
active workbook, mailing as attachment, 255–257
addresses in contact list, mailing to all, 264–265
link to workbook, sending mail with, 262–263
overview, 4, 255
saving all attachments to folder, 266–268
saving certain attachments to folder, 269–271
single sheet, mailing as attachment, 260–261
specific range, mailing as attachment, 258–259

Microsoft Outlook Object Library, 255
Microsoft PowerPoint Object Library, 293
Microsoft Word Object Library, 286
minimizing Code window, 24
minus signs, converting trailing, 147–149
MItem variable, 270

Index 309

module, VBA
adding new, 22–23
getting VBA code into, 25–27
removing, 23–24

Modules folder, Project window, 23
Move method

grouping worksheets by color, 86
moving worksheets around, 81
sorting worksheets by name, 84

Move Next command, 271
movement, range, limiting to particular area, 132–133
moving worksheets around, 81–82
multiple consolidation ranges, in PivotTables, 230
MultiSelect parameter, GetOpenFilename method, 53
MyCell variable

alternate color banding, applying, 129
appending text to left or right of cells, 162
blank cells, replacing with values, 159
enumerating through range of cells, 111
formulas, converting all in range to values, 142
hiding all rows but those containing duplicate data, 171
highlighting duplicates in range, 169
mailing all addresses in contact list, 265
padding cells with zeros, 156
PivotTable inventory summary, creating, 195–196
simulating mail merge with Word document, 291
Text to Columns command, performing on all

columns, 144
trailing minus signs, converting, 148
trimming spaces from all cells in range, 151
truncating ZIP codes to left five digits, 153

MyContacts variable, 265
MyDatabase object, 276
MyFiles string variable, 64, 65
MyInbox variable

saving all attachments to folder, 267
saving certain attachments to folder, 270

MyQueryDef object, 276
MyRange variable

alternate color banding, applying, 129
appending text to left or right of cells, 162
AutoFilter, creating new sheet for each item in, 179–180
blank cells, replacing with values, 159
blank columns, deleting, 120–121
blank rows, deleting, 118–119
blank rows, inserting in range, 115–116
enumerating through range of cells, 111
formulas, converting all in range to values, 142
hiding all rows but those containing duplicate data, 171

highlighting duplicates in range, 169
mail merge, simulating with Word document, 291
padding cells with zeros, 156
PowerPoint presentation, converting workbook

into, 300
Text to Columns command, performing on all

columns, 144
trailing minus signs, converting, 148
trimming spaces from all cells in range, 151
Word document, sending Excel data to, 287
ZIP codes, truncating to left five digits, 153

MyRecordset object, 276–277
MySeries variable

coloring chart data points to match source cell
colors, 251

coloring chart series to match source cell colors, 248
labeling first and last chart points, 244

MySeries.Points(1), 244
MySeries.Points.Count, 244
MySheet variable, 179
MyTitle variable, 300–301

N
name, sorting worksheets by, 83–84
Name Manager dialog box, 108–109
Name property

ActiveSheet object, 74
PivotTable object, 196
Range object, 109
renaming worksheets by changing, 33
ThisWorkbook object, 69

named ranges
creating and selecting, 108–110
selecting and formatting all, 113–114

Names collection, 113–114
naming new worksheet, 73–74
navigating worksheets, macros for

alternate color banding, applying, 128–129
blank columns, deleting, 120–121
blank rows, deleting, 118–119
blank rows, inserting in range, 115–116
enumerating through range of cells, 111–112
first blank row or column, finding and selecting, 125–127
formulas in workbook, selecting and formatting all,

122–124
named ranges, creating and selecting, 108–110
named ranges, selecting and formatting all, 113–114
overview, 3, 105

Index310

navigating worksheets, macros for (continued)
print area of worksheet, dynamically setting, 134–135
range movement, limiting to particular area, 132–133
selecting and formatting range, 105–107
sorting range on double-click, 130–131
unhiding all rows and columns, 117

New Name dialog box, 108, 109
nodes, Project window, 22
non-printing characters, cleaning up, 166–167
Note icon, 4
=Now() function, 185
ns variable

saving all attachments to folder, 267
saving certain attachments to folder, 270

number formatting, applying for all data items, 207–210
NumberFormat property, 157
numbers-based sorting, 83

O
object model, Excel

collections, 32–33
methods, 33–34
objects, 31–32
overview, 31
properties, 33

Object variables, 34
objects, Excel object model, 31–32
oChart variable

coloring chart data points to match source cell
colors, 251

coloring chart series to match source cell colors, 248
labeling first and last chart points, 244

Office applications, integrating Excel with. See also Outlook,
integrating with Excel

Access database, compacting from Excel, 284–285
Access form, opening from Excel, 282–283
Access macro, running from Excel, 278–279
Access query, running from Excel, 275–277
Access report, opening from Excel, 280–281
overview, 4, 275
PowerPoint presentation, converting workbook into,

299–301
PowerPoint presentation, sending all Excel charts to,

296–298
PowerPoint presentation, sending Excel data to,

293–295
Word document, sending Excel data to, 286–288
Word document, simulating mail merge with, 289–292

Offset method, 291
Offset property

absolute reference macros, 14
alternate color banding, applying, 128
first blank row or column, finding and selecting,

125–126, 127
PivotTable inventory summary, creating, 195–196

OLApp variable
mailing active workbook as attachment, 256
mailing all addresses in contact list, 265
mailing single sheet as attachment, 261
mailing specific range as attachment, 259
sending mail with link to workbook, 263

OLApp.Session.Logon

mailing active workbook as attachment, 256
mailing all addresses in contact list, 265
mailing specific range as attachment, 259
sending mail with link to workbook, 263

OLMail variable
mailing active workbook as attachment, 256
mailing all addresses in contact list, 265
mailing single sheet as attachment, 261
mailing specific range as attachment, 259
sending mail with link to workbook, 263

On Error GoTo 0 error handler, 97
On Error Resume Next statement

coloring chart data points to match source cell
colors, 251

coloring chart series to match source cell colors, 248
hiding all subtotals in PivotTable, 201
labeling first and last chart points, 244
number formatting for all PivotTable data items,

applying, 209
pivot data field titles, adjusting all, 203
printing PivotTable for each report filter item, 224
report filter items, creating new workbook for each, 227
saving all attachments to folder, 267
saving certain attachments to folder, 270
sorting PivotTable fields in alphabetical order, 212
Sum, setting all data items to, 205
table of contents, creating for worksheets, 97

Open event
limiting range movement to particular area, 132–133
opening workbook to specific tab, 50–51
refreshing all data connections in workbook on

opening, 59–60
unprotecting worksheet on opening workbook, 48–49

opening workbooks
all in directory, 63–64
determining whether workbook is already open, 54–56

Index 311

refreshing all data connections when, 59–60
to specific tab, 50–51
specific workbook defined by user, 52–53
unprotecting worksheet on, 48–49

Options dialog box, VBE
Docking tab, 31
Editor Format tab, 29–30
Editor tab, 27–29
General tab, 30
overview, 27

Orientation property, 242
OriginalFile variable, 285
Outdent button, VBE, 28
Outlook, integrating with Excel

active workbook, mailing as attachment, 255–257
addresses in contact list, mailing to all, 264–265
link to workbook, sending mail with, 262–263
overview, 4, 255
saving all attachments to folder, 266–268
saving certain attachments to folder, 269–271
single sheet, mailing as attachment, 260–261
specific range, mailing as attachment, 258–259

P
padding cells with zeros, 155–157
PageField object, 223–228
parameters, method, 34
Parent.Range property, PivotTable object, 196
Password argument

protecting all worksheets, 92
unprotecting all worksheets, 94

passwords
protecting all worksheets, 92
protecting worksheet on workbook closure, 46
unprotecting all worksheets, 94
unprotecting worksheet on opening workbook, 48

Paste method, 40
PasteSpecial method, 139
PasteTable.docx file, 286
pasting

data into new workbook, 39–40
range, 139–140
into VBA modules, 26–27

Path property, ThisWorkbook object, 69
Personal Macro Workbook

alternate color banding, applying, 129
closing all workbooks at once, 61–62
coloring chart data points to match source cell

colors, 252

coloring chart series to match source cell colors, 249
deleting all but active worksheet, 76
deleting blank columns, 121
deleting blank rows, 119
grouping worksheets by color, 86
labeling first and last chart points, 245
moving worksheets around, 81–82
printing specified worksheets, 90–91
protecting all worksheets, 92–93
selecting and formatting all formulas in workbook,

123–124
selecting and formatting all named ranges, 114
sorting worksheets by name, 84
storing macros in, 17
unhiding all rows and columns, 117
unhiding all worksheets in workbook, 79–80
unprotecting all worksheets, 95

pf variable
number formatting for all data items, applying, 208
pivot data field titles, adjusting all, 203
pivot field restrictions, applying, 218
printing PivotTable for each report filter item, 224
report filter items, creating new workbook for each, 227
sorting PivotTable fields in alphabetical order, 211
subtotals in PivotTable, hiding all, 201
Sum, setting all data items to, 205

pi variable
creating new workbook for each report filter item, 227
printing PivotTable for each report filter item, 224

pivot cache
making all PivotTables use same, 197–198
number formatting in, 207
overview, 196

pivot field restrictions, applying, 217–218
PivotCache.EnableRefresh property, PivotTable

object, 215
PivotCache.Recordcount property, PivotTable

object, 196
PivotCache.SourceData property, PivotTable

object, 196
PivotField object, 217
PivotItems collection, 223, 226
PivotItems object, 213
PivotTable macros

backwards-compatible PivotTable, creating, 189–191
custom sort, applying to data items, 213–214
data field titles, adjusting all, 202–203
drill-down sheets, automatically deleting, 219–223
hiding all subtotals, 199–201
inventory summary, creating, 194–196

Index312

PivotTable macros (continued)
number formatting, applying for all data items, 207–210
overview, 3, 189
pivot cache, making all PivotTables use same, 197–198
pivot field restrictions, applying, 217–218
printing PivotTable for each report filter item, 223–225
refreshing all PivotTables in workbook, 192–193
report filter item, creating new workbook for each,

226–228
restrictions, applying, 215–216
sorting all fields in alphabetical order, 211–212
Sum calculation type, setting all data items to, 204–206
transposing entire data range, 229–231

PivotTable object
applying restrictions, 215
inventory summary, creating, 194–196
refreshing all PivotTables in workbook, 192

Points collection, 244
Position property, PivotItems object, 213
positioning charts, 237–238
PowerPoint presentations

converting workbook into, 299–301
sending all Excel charts to, 296–298
sending Excel data to, 293–295

PP variable
converting workbook into PowerPoint

presentation, 300
sending all Excel charts to PowerPoint

presentation, 297
sending Excel data to PowerPoint presentation, 294

ppLayoutBlank, 297
ppLayoutTitleOnly

converting workbook into PowerPoint
presentation, 301

sending Excel data to PowerPoint presentation, 294
PPPres variable

converting workbook into PowerPoint
presentation, 300

sending all Excel charts to PowerPoint
presentation, 297

sending Excel data to PowerPoint presentation, 294
PPSlide variable

converting workbook into PowerPoint
presentation, 300

sending all Excel charts to PowerPoint
presentation, 297

sending Excel data to PowerPoint presentation, 294
presentations, PowerPoint

converting workbook into, 299–301
sending all Excel charts to, 296–298
sending Excel data to, 293–295

preventing workbook from closing until cell is populated,
67–68

PrevSheetIndex variable
grouping worksheets by color, 86
sorting worksheets by name, 84

print area of worksheet, dynamically setting, 134–135
PrintArea property, 134
printing

all charts on worksheet, 241–242
all workbooks in directory, 65–66
PivotTable for each report filter item, 223–225
specified worksheets, 90–91

PrintOut method, 90
Procedure Separator option, Options dialog box, 29
Project window, VBE

adding new VBA module, 22–23
examining macro, 9
overview, 21–22
removing VBA module, 23–24

properties, Excel object model, 33
protecting

all worksheets, 92–93
worksheet on workbook closure, 46–47

protection settings, PivotTable, 215–216
pt variable

drill-down sheets, automatically deleting
PivotTable, 220

hiding all subtotals in PivotTable, 201, 203
number formatting for all data items, applying,

208, 209
pivot field restrictions, applying, 218
PivotTable inventory summary, creating, 195
PivotTable restrictions, applying, 216
printing PivotTable for each report filter item, 224
refreshing all PivotTables in workbook, 192
report filter items, creating new workbook for each, 227
shared pivot cache, 198
sorting PivotTable fields in alphabetical order, 211–212
Sum, setting all data items to, 205

Q
queries, Access, running from Excel, 275–277
QueryDef object, 276
Quick Access toolbar, placing macro on, 19

R
R1C1 reference style, 209
range macros

aligning chart to specific range, 237–238
alternate color banding, applying, 128–129

Index 313

converting all formulas in range to values, 141–142
copying and pasting ranges, 139–140
deleting blank columns, 120–121
deleting blank rows, 118–119
enumerating through range of cells, 111–112
first blank row or column, finding and selecting, 125–127
formulas in workbook, selecting and formatting all,

122–124
highlighting duplicates, 168–169
inserting blank rows in range, 115–116
named ranges, creating and selecting, 108–110
named ranges, selecting and formatting all, 113–114
overview, 3, 105
PowerPoint slides, creating from range, 293–294
print area of worksheet, dynamically setting, 134–135
range movement, limiting to particular area, 132–133
selecting and formatting range, 105–107
sorting range on double-click, 130–131
specific range, mailing as attachment, 258–259
transposing range with PivotTable, 229–231
trimming spaces from all cells in range, 150–151
unhiding all rows and columns, 117
Word document, sending to, 287–288

Range object
alternate color banding, applying, 128–129
appending text to left or right of cells, 161–162
converting all formulas in range to values, 141–142
copying and pasting ranges, 139
enumerating through range of cells, 111
hiding all rows but those containing duplicate data, 171
highlighting duplicates in range, 169
named ranges, creating and selecting, 109–110
padding cells with zeros, 156
replacing blank cells with values, 159
selecting and formatting ranges, 105–106
sending Excel data to Word document, 287
super data cleanup macro, 163
Text to Columns command, performing on all columns,

144–145
trailing minus signs, converting, 147–148
trimming spaces from all cells in range, 151
truncating ZIP codes to left five digits, 153

Range property
AF AutoFilter object, 185
AutoFilter object, 175, 181

range string, 102
RangeName variable, 113
Range.Select statement, 102
Record Macro dialog box

overview, 7–8
Personal Macro Workbook, storing macros in, 17, 62

recording macros
with absolute references, 11–13
assigning macro to button and other form controls,

17–19
Code window, working with, 24–27
customizing VBA environment, 27–31
editing macro, 10
examining macro, 9
Excel object model, 31–34
macro-enabled file extensions, 15
overview, 7–9
Project window, working with, 21–24
Quick Access toolbar, placing macro on, 19
with relative references, 13–15
security in Excel 2010, 16
storing macros in Personal Macro Workbook, 17
testing macro, 10
trusted locations, 16–17
variables, 34–35
VBE, working in, 19–21

Recordset object, 275
Redo button, 25
Reference dialog box

Access query, running from Excel, 275
Word document, sending Excel data to, 286

RefersToRange property, 113
RefreshAll method

refreshing all data connections in workbook on
opening, 59

refreshing all PivotTables in workbook, 193
refreshing

all data connections in workbook on opening, 59–60
all PivotTables in workbook, 192–193

RefreshTable method, 193
relative references, recording macros with, 13–15
removing VBA module, 23–24
renaming PivotTable data fields, 202–203
Replace function, 220
Replace method, 166
Replacement argument, 167
replacing blank cells with values, 158–160
report filter items

creating new workbook for each, 226–228
printing PivotTable for each, 223–225

reports, Access, opening from Excel, 280–281
Require Variable Declaration option, Options dialog

box, 28
resizing all charts on worksheet, 235–236
Restore button, Code window, 24
restrictions, PivotTable, 215–216

Index314

Right function
overview, 153
padding cells with zeros, 157

rows
deleting blank, 118–119
filtered, copying to new workbook, 175–176
first blank, finding and selecting, 125–127
hiding all but those containing duplicate data, 170–171
highlighting active, 101–102
inserting blank in range, 115–116
unhiding all, 117

Rows collection
deleting blank rows, 119
inserting blank rows in range, 116
unhiding all rows and columns, 117

S
sample macros, 35–36
SaveAs method, 40
SaveChanges argument, 61
SaveCopyAs method, 69
saving

all attachments to folder, 266–268
certain attachments to folder, 269–271
workbook before closing, 43–45
workbook before running macro, 142
workbook when particular cell is changed, 41–42

ScrollArea property, 132
scrubbing data. See transforming data, macros for
security in Excel 2010, 16, 36
Select Case statement, 43–44
selecting

all formulas in workbook, 122–124
all named ranges, 113–114
first blank row or column, 125–127
named ranges, 108–110
range, 105–107

Selection Pane, 237
selectively hiding AutoFilter drop-down arrows, 172–174
.Send method

mailing active workbook as attachment, 256
mailing to all addresses in contact list, 265
mailing single sheet as attachment, 261
mailing specific range as attachment, 259

SendMail command, 255
series, chart, coloring to match source cell colors, 246–249
series formula, charts, 248, 250–252
SeriesCollection object

coloring chart series to match source cell colors, 246
labeling first and last chart points, 243

set of disconnected charts, creating, 239–240
ShapeRange.Group method, 239
shaping data. See transforming data, macros for
shared pivot cache, 197–198
Shortcut Key field, Record Macro dialog box, 8
shortcut menus, VBE, 20
ShowDetail method, 220
simulating mail merge with Word document, 289–292
Size setting, Options dialog box, 30
SkipIt reference, 271
Slide object

converting workbook into PowerPoint presentation, 301
sending all Excel charts to PowerPoint presentation, 297
sending Excel data to PowerPoint presentation, 294

SlideCount+1

converting workbook into PowerPoint
presentation, 301

sending all Excel charts to PowerPoint
presentation, 297

SlideTitle variable, 294
Sort method, 130
sorting

all PivotTable fields in alphabetical order, 211–212
custom sort, applying to PivotTable data items,

213–214
range, on double-click, 130–131
worksheets, by name, 83–84

source data, PivotTable, 207
SourceData property

number formatting for all PivotTable data items,
applying, 207, 209

PivotTable inventory summary, creating, 196
SourceName property, 203
SourceRangeColor variable, 248
spaces, trimming from all cells in range, 150–151
SpecialCells method, 122–123
Split function

coloring chart data points to match source cell
colors, 252

coloring chart series to match source cell colors, 248
SrcRange variable, 208–209
Standard toolbar, VBE, 20
statements, in VBA code, 25
status bar, showing filtered columns in, 183–186
StatusBar property, 183–185
Step-1 qualifier

deleting blank columns, 121
deleting blank rows, 119
inserting blank rows in range, 116

Index 315

Store Macro In drop-down list, Record Macro dialog box,
8, 17, 62

storing macros in Personal Macro Workbook, 17
strFormat variable, 208–209
String variables, 34
strLabel variable, 208–209
strOutput variable, 184–185
strRange object, 102
Sub procedures

overview, 26
in VBA modules, 22

subtotals in PivotTable, hiding all, 199–201
Sum calculation type, setting all data items to, 204–206
summary, PivotTable inventory, 194–196
super data cleanup macro, creating, 163–165
syntax errors, 27

T
tab, opening workbook to specific, 50–51
tab colors, grouping worksheets by, 85–86
Tab key, 28
Tab.ColorIndex property, 86
table color banding, 246
table of contents, creating for worksheets, 96–98
TableRange1 object, 228
TableRange2.Address property, PivotTable

object, 196
tabular data sets, in PivotTables, 229
TargetField variable, 184, 185
TargetWorkbook string variable, 55
TempFile variable, 285
TestBook string variable, 55
testing macro, 10
Text property, 33
Text to Columns command, performing on all columns,

143–146
text-based sorting, 83
This Workbook option, Record Macro dialog box, 8
ThisWorkbook object

copying worksheet to new workbook, 87
deleting all but active worksheet, 75
hiding all but active worksheet, 77
new workbook for each worksheet, creating, 89
Path property, 69
Personal Macro Workbook, 76
refreshing all data connections, 59
refreshing all PivotTables in workbook, 192–193
shared pivot cache, 198

Tip icon, 4
Title parameter, GetOpenFilename method, 53
titles, data field, adjusting all, 202–203
today’s date, creating backup of current workbook with,

69–70
toolbars, VBE, 20–21
Top property, charts, 237
trailing minus signs, converting, 147–149
trailing spaces, trimming from all cells in range, 150–151
transforming data, macros for

appending text to left or right of cells, 161–162
AutoFilter, creating new sheet for each item in, 177–182
AutoFilter drop-down arrows, selectively hiding,

172–174
blank cells, replacing with values, 158–160
copying and pasting range, 139–140
filtered columns, showing in status bar, 183–186
filtered rows, copying to new workbook, 175–176
formulas, converting all in range to values, 141–142
hiding all rows but those containing duplicate data,

170–171
highlighting duplicates in range of data, 168–169
non-printing characters, cleaning up, 166–167
overview, 3, 139
padding cells with zeros, 155–157
super data cleanup macro, creating, 163–165
Text to Columns command, performing on all columns,

143–146
trailing minus signs, converting, 147–149
trimming spaces from all cells in range, 150–151
ZIP codes, truncating to left five digits, 152–154

transposing entire data range with PivotTable, 229–231
Trim function, 150–151
trimming spaces from all cells in range, 150–151
truncating ZIP codes to left five digits, 152–154
Trust Center dialog box, 16–17
trusted documents, 16
trusted locations, 16–17
Trusted Locations menu, Trust Center dialog box, 16–17

U
UCase function, 84
UList Collection object, 180
UList variable, 179
UListValue variable, 179, 180–181
Undo button, 25
undo stack, 36, 142
Unhide option, 78

Index316

unhiding
all rows and columns, 117
all worksheets in workbook, 79–80

unprotecting
all worksheets, 94–95
worksheet on opening workbook, 48–49

U.S. ZIP codes, truncating to left five digits, 152–154
Use Relative References option, Developer tab, 13
UsedRange object, 167
UsedRange property

deleting blank columns, 120–121
deleting blank rows, 118–119
print area of worksheet, dynamically setting, 134

user, opening specific workbook defined by, 52–53

V
values

assigning to variables, 34–35
converting all formulas in range to, 141–142

variables, 34–35
Variant variables, 34
VBA. See Visual Basic for Applications
VBE. See Visual Basic Editor
vbOKCancel argument, 44
Version property, 190
Visible property

PowerPoint application, 294, 297, 300
Word application, 287, 291

visible state, 79
VisibleDropDown parameter, 173
Visual Basic Editor (VBE)

activating, 9, 19
Code window, 21, 24–27
customizing, 27–31
Immediate window, 21
menu bar, 20
overview, 19
Project window, 21–24
setting reference to Access and DAO object

libraries, 275
setting reference to Microsoft Outlook Object

Library, 255
setting reference to Microsoft PowerPoint Object

Library, 293
setting reference to Microsoft Word Object Library, 286
toolbar, 20–21

Visual Basic for Applications (VBA)
adding new module, 22–23
code, getting into VBA module, 25–27
Code window, 21

comprehensive guide to, 36
defined, 1
removing module, 23–24

volatile functions, 185

W
wb variable, 89
wbLinks variable, 239, 240
wd variable

sending Excel data to Word document, 287
simulating mail merge with Word document, 291

wdDoc variable
sending Excel data to Word document, 287
simulating mail merge with Word document, 291

wdRange variable, 287
website, companion, 4
Width property, charts, 237
With…End With statement

formulas, selecting and formatting all in workbook, 122
named ranges, creating and selecting, 110
ranges, selecting and formatting, 106

Word, Microsoft
sending Excel data to document, 286–288
simulating mail merge with document, 289–292

workbook macros
active workbook, mailing as attachment, 255–257
backup of current workbook with today’s date, creating,

69–70
closing all workbooks at once, 61–62
copying filtered rows to new workbook, 175–176
copying worksheet to new workbook, 87
determining whether workbook exists in directory, 57–58
determining whether workbook is already open, 54–56
link to workbook, sending mail with, 262–263
new workbook, creating for each item in AutoFilter, 181
new workbook, creating for each report filter item,

226–228
new workbook, creating for each worksheet, 88–89
new workbook, creating from scratch, 39–40
opening all workbooks in directory, 63–64
opening specific workbook defined by user, 52–53
opening workbook to specific tab, 50–51
overview, 3
PowerPoint presentation, converting into, 299–301
preventing workbook from closing until cell is populated,

67–68
printing all workbooks in directory, 65–66
protecting worksheet on workbook closure, 46–47

Index 317

refreshing all data connections in workbook on
opening, 59–60

refreshing all PivotTables in, 192–193
saving workbook before closing, 43–45
saving workbook when particular cell is changed, 41–42
selecting and formatting all formulas, 122–124
trusted documents, 16
unhiding all worksheets, 79–80
unprotecting worksheet on opening workbook, 48–49

Workbook_BeforeClose event
PivotTable drill-down sheets, automatically

deleting, 219
showing filtered columns in status bar, 186

Workbook_BeforeClose event code window
PivotTable drill-down sheets, automatically

deleting, 222
preventing workbook from closing until cell is

populated, 68
saving workbook before closing, 44–47

Workbook_Open event code window
limiting range movement to particular area, 132–133
opening workbook to specific tab, 50–51
refreshing all data connections in workbook on opening,

59–60
unprotecting worksheet on opening workbook, 48–49

Workbooks collection, 61
Workbooks.Add.Worksheets(1), 175
worksheet macros. See also navigating worksheets,

macros for
adding and naming new worksheet, 73–74
AutoFilter, creating new sheet for each item in, 177–182
copying worksheet to new workbook, 87
deleting all but active worksheet, 75–76
grouping worksheets by color, 85–86
hiding all but active worksheet, 77–78
highlighting active rows and columns, 101–102
mailing sheet as attachment, 260–261
moving worksheets around, 81–82
new workbook for each worksheet, creating, 88–89
overview, 3, 73
print area, dynamically setting, 134–135
printing all charts, 241–242
printing specified worksheets, 90–91
protecting all worksheets, 92–93
protecting sheet on workbook closure, 46–47
resizing all charts, 235–236
sorting worksheets by name, 83–84
starting workbook on specific worksheet, 50–51

table of contents for worksheets, creating, 96–98
unhiding all worksheets in workbook, 79–80
unprotecting all worksheets, 94–95
unprotecting worksheet on opening workbook, 48–49
zooming in and out of worksheet, 99–100

Worksheet_Activate event, 186
Worksheet_BeforeDoubleClick event, 219, 220
Worksheet_BeforeDoubleClick event code window

highlighting active row and column, 102
PivotTable drill-down sheets, automatically

deleting, 221
sorting range on double-click, 131
zooming in and out of worksheet with double-click, 100

Worksheet_Calculate event code window, 185–186
Worksheet_Change event code window

print area of worksheet, dynamically setting, 134–135
saving workbook when particular cell is changed, 42

Worksheet_Deactivate event, 186
WorksheetFunction object

hiding all rows but those containing duplicate data, 171
highlighting duplicates in range of data, 169

Worksheets collection, 32–33
ws object

deleting all but active worksheet, 75
formulas, selecting and formatting all in workbook, 123
hiding all but active worksheet, 77
PivotTable inventory summary, creating, 195
protecting all worksheets, 92
refreshing all PivotTables in workbook, 192
shared pivot cache, 198
unhiding all worksheets in workbook, 79
unprotecting all worksheets, 94

ws variable
creating new workbook for each worksheet, 89
PivotTable drill-down sheets, automatically

deleting, 221

X
xlDataLabelsShowNone, 244
xlPasteFormats, 139
.xls files, 189–191
xlSheetHidden, 78
xlSheetVeryHidden, 78
xlSheetVisible, 79
.xlsm extension, 15
.xlsx extension, 15, 64–65
xlwksht variable, 300

Index318

Z
zeros, padding cells with, 155–157
ZIP codes, truncating to left five digits, 152–154
zooming in and out of worksheet, 99–100

Index 319

More great Excel guides
from Mr. Spreadsheet!

Need to know more about Excel? John Walkenbach has it covered.

978-0-470-47537-9

978-0-470-47535-5 978-0-470-47536-2

978-0-470-62012-0

Available wherever books are sold, or online at wiley.com

http://www.wiley.com

	101 Ready-to-Use Excel® Macros
	About the Authors
	Dedication
	Authors’ Acknowledgments
	Contents at a Glance
	Table of Contents
	Introduction
	Topics Covered
	What You Need to Know
	What You Need to Have
	How This Book Is Organized
	Conventions in This Book
	About the Companion Website

	PART I: Getting Started with Excel Macros
	Becoming Familiar with Macro Recording Basics
	Comparing Absolute and Relative Macro Recording
	Looking at Other Macro Recording Concepts
	Working in the Visual Basic Editor
	Working with the Project window
	Working with a Code Window
	Customizing the VBA Environment
	Discovering the Excel Object Model
	Taking a Brief Look at Variables
	About the Macros in This Book

	PART II: Working with Workbooks
	Macro 1: Creating a New Workbook from Scratch
	Macro 2: Saving a Workbook When a Particular Cell Is Changed
	Macro 3: Saving a Workbook Before Closing
	Macro 4: Protect a Worksheet on Workbook Close
	Macro 5: Unprotect a Worksheet on Workbook Open
	Macro 6: Open a Workbook to a Specific Tab
	Macro 7: Opening a Specific Workbook Defined by the User
	Macro 8: Determine Whether a Workbook Is Already Open
	Macro 9: Determine Whether a Workbook Exists in a Directory
	Macro 10: Refresh All Data Connections in Workbook on Open
	Macro 11: Close All Workbooks at Once
	Macro 12: Open All Workbooks in a Directory
	Macro 13: Print All Workbooks in a Directory
	Macro 14: Preventing the Workbook from Closing Until a Cell Is Populated
	Macro 15: Create a Backup of a Current Workbook with Today’s Date

	PART III: Automating Worksheet Tasks with Macros
	Macro 16: Add and Name a New Worksheet
	Macro 17: Delete All but the Active Worksheet
	Macro 18: Hide All but the Active Worksheet
	Macro 19: Unhide All Worksheets in a Workbook
	Macro 20: Moving Worksheets Around
	Macro 21: Sort Worksheets by Name
	Macro 22: Group Worksheets by Color
	Macro 23: Copy a Worksheet to a New Workbook
	Macro 24: Create a New Workbook for Each Worksheet
	Macro 25: Print Specified Worksheets
	Macro 26: Protect All Worksheets
	Macro 27: Unprotect All Worksheets
	Macro 28: Create a Table of Contents for Your Worksheets
	Macro 29: Zooming In and Out of a Worksheet with Double-Click
	Macro 30: Highlight the Active Row and Column

	PART IV: Selecting and Modifying Ranges
	Macro 31: Selecting and Formatting a Range
	Macro 32: Creating and Selecting Named Ranges
	Macro 33: Enumerating Through a Range of Cells
	Macro 34: Select and Format All Named Ranges
	Macro 35: Inserting Blank Rows in a Range
	Macro 36: Unhide All Rows and Columns
	Macro 37: Deleting Blank Rows
	Macro 38: Deleting Blank Columns
	Macro 39: Select and Format All Formulas in a Workbook
	Macro 40: Find and Select the First Blank Row or Column
	Macro 41: Apply Alternate Color Banding
	Macro 42: Sort a Range on Double-Click
	Macro 43: Limit Range Movement to a Particular Area
	Macro 44: Dynamically Set the Print Area of a Worksheet

	PART V: Working with Data
	Macro 45: Copy and Paste a Range
	Macro 46: Convert All Formulas in a Range to Values
	Macro 47: Perform the Text to Columns Command on All Columns
	Macro 48: Convert Trailing Minus Signs
	Macro 49: Trim Spaces from All Cells in a Range
	Macro 50: Truncate ZIP Codes to the Left Five
	Macro 51: Padding Cells with Zeros
	Macro 52: Replace Blanks Cells with a Value
	Macro 53: Append Text to the Left or Right of Your Cells
	Macro 54: Create a Super Data Cleanup Macro
	Macro 55: Clean Up Non-Printing Characters
	Macro 56: Highlight Duplicates in a Range of Data
	Macro 57: Hide All Rows but Those Containing Duplicate Data
	Macro 58: Selectively Hide AutoFilter Drop-down Arrows
	Macro 59: Copy Filtered Rows to a New Workbook
	Macro 60: Create a New Sheet for Each Item in an AutoFilter
	Macro 61: Show Filtered Columns in the Status Bar

	PART VI: Working with PivotTables
	Macro 62: Create a Backwards-Compatible PivotTable
	Macro 63: Refresh All PivotTables Workbook
	Macro 64: Create a Pivot Table Inventory Summary
	Macro 65: Make All PivotTables Use the Same Pivot Cache
	Macro 66: Hide All Subtotals in a PivotTable
	Macro 67: Adjust All Pivot Data Field Titles
	Macro 68: Set All Data Items to Sum
	Macro 69: Apply Number Formatting for All Data Items
	Macro 70: Sort All Fields in Alphabetical Order
	Macro 71: Apply Custom Sort to Data Items
	Macro 72: Apply PivotTable Restrictions
	Macro 73: Apply Pivot Field Restrictions
	Macro 74: Automatically Delete Pivot Table Drill-Down Sheets
	Macro 75: Print Pivot Table for Each Report Filter Item
	Macro 76: Create New Workbook for Each Report Filter Item
	Macro 77: Transpose Entire Data Range with a PivotTable

	PART VII: Manipulating Charts with Macros
	Macro 78: Resize All Charts on a Worksheet
	Macro 79: Align a Chart to a Specific Range
	Macro 80: Create a Set of Disconnected Charts
	Macro 81: Print All Charts on a Worksheet
	Macro 82: Label First and Last Chart Points
	Macro 83: Color Chart Series to Match Source Cell Colors
	Macro 84: Color Chart Data Points to Match Source Cell Colors

	PART VIII: E-Mailing from Excel
	Macro 85: Mailing the Active Workbook as an Attachment
	Macro 86: Mailing a Specific Range as Attachment
	Macro 87: Mailing a Single Sheet as an Attachment
	Macro 88: Send Mail with a Link to Our Workbook
	Macro 89: Mailing All E-Mail Addresses in Our Contact List
	Macro 90: Saving All Attachments to a Folder
	Macro 91: Saving Certain Attachments to a Folder

	PART IX: Integrating Excel and Other Office Applications
	Macro 92: Running an Access Query from Excel
	Macro 93: Running an Access Macro from Excel
	Macro 94: Opening an Access Report from Excel
	Macro 95: Opening an Access Form from Excel
	Macro 96: Compacting an Access Database from Excel
	Macro 97: Sending Excel Data to a Word Document
	Macro 98: Simulating Mail Merge with a Word Document
	Macro 99: Sending Excel Data to a PowerPoint Presentation
	Macro 100: Sending All Excel Charts to a PowerPoint Presentation
	Macro 101: Convert a Workbook into a PowerPoint Presentation

	Index

