

 فقط کتاب

 مرجع معتبر دانلود کتاب های تخصصی

Faghatketab.ir

www.nostarch.com

TH E F I N EST I N G E E K E NTE RTA I N M E NT ™ SHELVE IN:
OPERATING SYSTEM

S/UNIX

$59.95 ($78.95 CDN)

T H E
D E F I N I T I V E

G U I D E T O
F R E E B S D

T H E
D E F I N I T I V E

G U I D E T O
F R E E B S D

FreeBSD—the powerful, flexible, and free Unix-like
operating system—is the preferred server for many
enterprises. But it can be even trickier to use than
either Unix or Linux, and harder still to master.

In this completely revised and updated third edition
of Absolute FreeBSD, FreeBSD committer Michael W.
Lucas covers the newest features and teaches you how
to manage FreeBSD systems. You’ll dive deep into
server management, learning both how things work
and why they work the way they do. New to this edition
is coverage of modern disks and redesigned jail and
packaging systems, as well as FreeBSD transformative
features designed for cloud-based management, like
libxo and UCL.

You’ll also learn how to:

• Choose the right filesystem for your environment

• Back up and restore critical data

• Tweak the kernel—and when not to

• Configure your network, including how to activate
interfaces and select congestion control algorithms

• Manage UFS, ZFS, and other critical filesystems

• Work with advanced security features like blacklistd
and packet filtering

• Implement container-style virtualization with jails

• Perform panic management and bug reporting

Whether you’re a beginner simply in need of a
complete introduction to FreeBSD or an experienced
sysadmin or devops person looking to expand your
skills, Absolute FreeBSD will show you how to take
your FreeBSD system from “just working” to “working
well.” Don’t leave your cubicle without it.

A B O U T T H E A U T H O R

After using Unix since the late ‘80s and spending
twenty-odd years as a network and system adminis-
trator specializing in building and maintaining
high-availability systems, Michael W. Lucas now
writes about them for a living. He’s written more
than 30 books, which have been translated into nine
languages. His critically acclaimed titles include
Absolute OpenBSD, Cisco Routers for the Desperate,
and PGP & GPG, all from No Starch Press. Learn
more at https://mwl.io/.

With a foreword by

M A R S H A L L

K I R K M c K U S I C K
® A B S O L U T E

F R E E B S D
A B S O L U T E

F R E E B S D®

T H E C O M P L E T E G U I D E T O F R E E B S D

M I C H A E L W . L U C A S

3 R
D

E D
I T I O

N

®

L
U

C
A

S
A

B
S

O
L

U
T

E
F

R
E

E
B

S
D

A
B

S
O

L
U

T
E

F
R

E
E

B
S

D

3 R D E D I T I O N

®

®

®

PRAISE FOR ABSOLUTE FrEEBSD

“Even longtime users of FreeBSD may be surprised at the power and features
it can bring to bear as a server platform, and Absolute BSD is an excellent
guide to harnessing that power.”
—UnixReview.com

“ . . . provides beautifully written tutorials and reference material to help you
make the most of the strengths of this OS.”
—LinUxUseR & DeveLopeR magazine

“ . . . packed with a lot of information.”
—Daemon news

“When was the last time you could physically feel yourself getting smarter
while reading a book? If you are a beginning to average FreeBSD user,
Absolute FreeBSD . . . will deliver that sensation in spades.”
—RichaRD BejtLich, tao secURity

“By far the best FreeBSD book I have ever owned is Absolute FreeBSD,
2nd Edition by No Starch Press.”
—BsD zeaLot

“Master practitioner Lucas organizes features and functions to make sense
in the development environment, and so provides aid and comfort to new
users, novices, and those with significant experience alike.”
—scitech Book news

A b s o l u t e
F r e e b s D®

3 r D e D i t i o n

t h e C o m p l e t e G u i d e
t o F r e e b s D

by Michael W. Lucas

San Francisco

ABSOLUTE FREEBSD®, 3RD EDITION. Copyright © 2019 by Michael W. Lucas.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-10: 1-59327-892-6
ISBN-13: 978-1-59327-892-2

Publisher: William Pollock
Production Editor: Janelle Ludowise
Cover and Interior Design: Octopod Studios
Developmental Editor: William Pollock
Technical Reviewers: John Baldwin, Benno Rice, and George V. Neville-Neil
Copyeditor: Julianne Jigour
Compositor: Susan Glinert Stevens
Proofreader: James Fraleigh
Indexer: Nancy Guenther

For information on distribution, translations, or bulk sales, please contact No Starch Press, Inc. directly:
No Starch Press, Inc.
245 8th Street, San Francisco, CA 94103
phone: 1.415.863.9900; info@nostarch.com
www.nostarch.com

Library of Congress Cataloging-in-Publication Data

Lucas, Michael, 1967-
 Absolute FreeBSD : the complete guide to FreeBSD / Michael W. Lucas. -- 2nd ed.
 p. cm.
 Includes index.
 ISBN-13: 978-1-59327-151-0
 ISBN-10: 1-59327-151-4
 1. FreeBSD. 2. UNIX (Computer file) 3. Internet service providers--Computer programs.
4. Web servers--Computer programs. 5. Client/server computing. I. Title.
QA76.76.O63L83 2007
004'.36--dc22
 2007036190

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other
product and company names mentioned herein may be the trademarks of their respective owners. Rather
than use a trademark symbol with every occurrence of a trademarked name, we are using the names only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution
has been taken in the preparation of this work, neither the author nor No Starch Press, Inc. shall have any
liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly or
indirectly by the information contained in it.

www.nostarch.com

About the Author
After using Unix since the late ’80s and spending twenty-odd years as a
network and sytem administrator specializing in building and maintain-
ing high-availability systems, Michael W. Lucas now writes about them for
a living. He’s written more than 30 books, which have been translated into
nine languages. His critically acclaimed titles include Absolute OpenBSD,
Cisco Routers for the Desperate, and PGP & GPG, all from No Starch Press.
Learn more at https://mwl.io/.

About the Technical Reviewers
John Baldwin joined the FreeBSD Project as a committer in 1999. He
has worked in several areas of the system, including SMP infrastructure,
the network stack, virtual memory, and device driver support. John has
served on the Core and Release Engineering teams and organized several
FreeBSD developer summits.

Benno Rice has been using FreeBSD since 1995 and has been a com-
mitter since 2000 when he started the PowerPC port. Since then he
has worked in a variety of areas and for a number of FreeBSD-using
companies. He has also served on the Core Team and presented on
FreeBSD-related topics at several conferences.

George V. Neville-Neil works on networking and operating system code
for fun and profit. His areas of interest are code spelunking, operating
systems, networking, and time protocols. He is the co-author with Marshall
Kirk McKusick and Robert N. M. Watson of The Design and Implementation of
the FreeBSD Operating System (Addison-Wesley Professional, 2004).

B r i e f C o n t e n t s

Foreword by Marshall Kirk McKusick . xvii

Acknowledgments .xxxi

Introduction .xxiii

Chapter 1: Getting More Help . 1

Chapter 2: Before You Install . 15

Chapter 3: Installing . 29

Chapter 4: Start Me Up! The Boot Process . 49

Chapter 5: Read This Before You Break Something Else! (Backup and Recovery) 83

Chapter 6: Kernel Games . 95

Chapter 7: The Network . 123

Chapter 8: Configuring Networking . 143

Chapter 9: Securing Your System . 167

Chapter 10: Disks, Partitioning, and GEOM . 201

Chapter 11: The Unix File System . 231

Chapter 12: The Z File System . 257

Chapter 13: Foreign Filesystems . 281

Chapter 14: Exploring /etc . 317

Chapter 15: Making Your System Useful . 335

Chapter 16: Customizing Software with Ports . 361

Chapter 17: Advanced Software Management . 395

Chapter 18: Upgrading FreeBSD . 421

Chapter 19: Advanced Security Features . 451

Chapter 20: Small System Services . 491

Chapter 21: System Performance and Monitoring . 525

viii Brief Contents

Chapter 22: Jails . 563

Chapter 23: The Fringe of FreeBSD . 583

Chapter 24: Problem Reports and Panics . 599

Afterword . 613

Bibliography . 619

Index . 621

C o n t e n t s i n D e t a i l

Foreword by Marshall Kirk McKusick xxvii

AcKnowledgMents xxxi

IntroductIon xxxiii
What Is FreeBSD? . xxxiv

BSD: FreeBSD’s Granddaddy . xxxiv
The BSD License . xxxv
The AT&T/CSRG/BSDi Iron Cage Match . xxxv
The Birth of FreeBSD . xxxvi

FreeBSD Development . xxxvii
Committers . xxxvii
Contributors . xxxviii
Users . xxxix

Other BSDs . xxxix
NetBSD . xxxix
OpenBSD . xxxix
DragonFly BSD . xxxix
macOS . xl
FreeBSD’s Children . xl

Other Unixes . xl
Solaris . xl
illumos . xli
AIX . xli
Linux . xli
Other Unixes . xli

FreeBSD’s Strengths . xlii
Portability . xlii
Power . xliii
Simplified Software Management . xliii
Customizable Builds . xliii
Advanced Filesystems . xliii

Who Should Use FreeBSD? . xliii
Who Should Run Another BSD? . xliv
Who Should Run a Proprietary Operating System? . xliv
How to Read This Book . xliv
What Must You Know? .xlv
For the New System Administrator .xlv

Desktop FreeBSD . xlvi
How to Think About Unix . xlvi

Notes on the Third Edition . xlviii
Contents of This Book . xlix

x Contents in Detail

1
gettIng More Help 1
Why Not Beg for Help? . 2

The FreeBSD Attitude . 2
Support Options . 2

Man Pages . 3
Manual Sections . 4
Navigating Man Pages . 5
Finding Man Pages . 5
Section Numbers and Man . 6
Man Page Contents . 6

FreeBSD .org . 7
Web Documents . 7
The Mailing List Archives . 8
The Forums . 8

Other Websites . 8
Using FreeBSD Problem-Solving Resources . 9

Checking the Handbook and FAQ . 9
Checking the Man Pages . 9
Mailing Lists Archives and Forums . 11
Using Your Answer . 11

Asking for Help . 11
Composing Your Message . 12
Responding to Email . 14
The Internet Is Forever . 14

2
BeFore You InstAll 15
Default Files . 16
Configuration with UCL . 17
FreeBSD Hardware . 17

Proprietary Hardware . 19
Hardware Requirements . 20
BIOS versus EFI . 20

Disks and Filesystems . 20
FreeBSD Filesystems . 21
Filesystem Encryption . 22
Disk Partitioning Methods . 23
Partitioning with UFS . 23
Multiple Operating Systems . 24
Multiple Hard Drives . 24
Swap Space . 24

Getting FreeBSD . 25
FreeBSD Versions . 26
Choosing Installation Images . 26

Network Installs . 27

Contents in Detail xi

3
InstAllIng 29
Core Settings . 30
Distribution Selection . 32
Disk Partitioning . 34

UFS Installs . 34
ZFS Installs . 39

Network and Service Configuration . 41
Finishing the Install . 46

4
stArt Me up! tHe Boot process 49
Power-On . 50

Unified Extensible Firmware Interface . 50
Basic Input/Output System . 50

The Loader . 51
Boot Multi User [Enter] . 51
Boot FreeBSD in Single-User Mode . 51
Escape to Loader Prompt . 52
Reboot . 52

Single-User Mode . 52
Disks in Single-User Mode . 52
Programs Available in Single-User Mode . 53
The Network in Single-User Mode . 54
Uses for Single-User Mode . 54

The Loader Prompt . 55
Viewing Disks . 55
Loader Variables . 56
Reboot . 56
Booting from the Loader . 57

Loader Configuration . 57
Boot Options . 58
Startup Messages . 59
Multiuser Startup . 62

/etc/rc .conf, /etc/rc .conf .d, and /etc/defaults/rc .conf 63
The rc .d Startup System . 71

The service(8) Command . 71
System Shutdown . 73

Serial Consoles . 74
Serial Protocol . 74
Physical Serial Console Setup . 75
IPMI Serial Console Setup . 76
Configuring FreeBSD’s Serial Console . 77
Using Serial Consoles . 79
Working at the Console . 81

xii Contents in Detail

5
reAd tHIs BeFore You BreAK soMetHIng else!
(BAcKup And recoverY) 83
System Backups . 84
Backup Tapes . 84

Tape Drive Device Nodes, Rewinding, and Ejecting 84
The $TAPE Variable . 85
Tape Status with mt(1) . 86
Other Tape Drive Commands . 87

BSD tar(1) . 87
tar Modes . 88
Other tar Features . 90
Compression . 91
Permissions Restore . 91
And More, More, More . 92

Recording What Happened . 92
Repairing a Broken System . 92

6
Kernel gAMes 95
What Is the Kernel? . 96
Kernel State: sysctl . 97

sysctl MIBs . 98
sysctl Values and Definitions . 99
Viewing sysctls . 100
Changing sysctls . 100
Setting sysctls Automatically . 101

The Kernel Environment . 101
Viewing the Kernel Environment . 101
Dropping Hints to Device Drivers . 102

Kernel Modules . 103
Viewing Loaded Modules . 103
Loading and Unloading Modules . 104
Loading Modules at Boot . 105

Build Your Own Kernel . 105
Preparations . 106
Buses and Attachments . 106
Back Up Your Working Kernel . 107
Configuration File Format . 107
Configuration Files . 109

Building a Kernel . 110
Booting an Alternate Kernel . 111

Custom Kernel Configuration . 112
Trimming a Kernel . 112
Troubleshooting Kernel Builds . 118

Inclusions, Exclusions, and Expanding the Kernel . 119
NOTES . 119
Inclusions and Exclusions . 120
Skipping Modules . 121

Contents in Detail xiii

7
tHe networK 123
Network Layers . 124

The Physical Layer . 124
Datalink: The Physical Protocol . 125
The Network Layer . 125
Heavy Lifting: The Transport Layer . 126
Applications . 126

The Network in Practice . 127
Getting Bits and Hexes . 128
Network Stacks . 130
IPv4 Addresses and Netmasks . 131

Computing Netmasks in Decimal . 132
Unusable IP Addresses . 133
Assigning IPv4 Addresses . 133

IPv6 Addresses and Subnets . 133
IPv6 Basics . 134
Understanding IPv6 Addresses . 134
IPv6 Subnets . 135
Link-Local Addresses . 135
Assigning IPv6 Addresses . 136

TCP/IP Basics . 136
ICMP . 136
UDP . 137
TCP . 137
How Protocols Fit Together . 138
Transport Protocol Ports . 138

Understanding Ethernet . 140
Protocol and Hardware . 140
MAC Addresses . 141

8
conFIgurIng networKIng 143
Network Prerequisites . 144

Configuring Changes with ifconfig(8) . 144
Adding an IP to an Interface . 145
Testing Your Interface . 146
Set Default Route . 146
Multiple IP Addresses on One Interface . 147
Renaming Interfaces . 148
DHCP . 149
Reboot! . 149

The Domain Name Service . 150
Host/IP Information Sources . 151
Local Names with /etc/hosts . 151
Configuring Nameservice . 152
Caching Nameserver . 153

Network Activity . 154
Current Network Activity . 154
What’s Listening on Which Port? . 155

xiv Contents in Detail

Port Listeners in Detail . 156
Network Capacity in the Kernel . 157

Optimizing Network Performance . 158
Optimizing Network Hardware . 159
Memory Usage . 159
Maximum Incoming Connections . 161
Polling . 161
Other Optimizations . 162

Network Adapter Teaming . 162
Aggregation Protocols . 163
Configuring lagg(4) . 164

Virtual LANs . 164
Configuring VLAN Devices . 164
Configuring VLANs at Boot . 165

9
securIng Your sYsteM 167
Who Is the Enemy? . 168

Script Kiddies . 168
Disaffected Users . 169
Botnets . 169
Motivated Skilled Attackers . 169

FreeBSD Security Announcements . 170
User Security . 171

Creating User Accounts . 171
Configuring Adduser: /etc/adduser .conf . 172
Editing Users . 173

Shells and /etc/shells . 178
root, Groups, and Management . 179

The root Password . 179
Groups of Users . 180
Using Groups to Avoid Root . 182

Tweaking User Security . 185
Restricting Login Ability . 185
Restricting System Usage . 188

File Flags . 192
Setting and Viewing File Flags . 194

Securelevels . 195
Securelevel Definitions . 195
Which Securelevel Do You Need? . 197
What Won’t Securelevels and File Flags Accomplish? 197
Living with Securelevels . 198

Network Targets . 198
Putting It All Together . 199

10
dIsKs, pArtItIonIng, And geoM 201
Disks Lie . 201
Device Nodes . 202

Contents in Detail xv

The Common Access Method . 203
What Disks Do You Have? . 204
Non-CAM Devices . 204

The GEOM Storage Architecture . 204
GEOM Autoconfiguration . 205
GEOM vs . Volume Managers . 206
Providers, Consumers, and Slicers . 206
GEOM Control Programs . 207
GEOM Device Nodes and Stacks . 208

Hard Disks, Partitions, and Schemes . 208
The Filesystem Table: /etc/fstab . 209
What’s Mounted Now? . 210
Disk Labeling . 211

Viewing Labels . 212
Sample Labels . 212

GEOM Withering . 214
The gpart(8) Command . 214

Viewing Partitions . 215
Other Views . 216
Removing Partitions . 216

Scheming Disks . 217
Removing the Disk Partitioning Scheme . 217
Assigning the Partitioning Scheme . 217

The GPT Partitioning Scheme . 218
GPT Device Nodes . 218
GPT Partition Types . 219
Creating GPT Partitions . 219
Resizing GPT Partitions . 221
Changing Labels and Types . 221
Booting on Legacy Hardware . 222
Unified Extensible Firmware Interface and GPT . 222
Expanding GPT Disks . 223

The MBR Partitioning Scheme . 223
What Is the Master Boot Record? . 223
BSD Labels . 224
MBR Device Nodes . 224
MBR and Disklabel Alignment . 225
Creating Slices . 225
Removing Slices . 226
Activating Slices . 226

BSD Labels . 227
Creating a BSD Label . 227
Creating BSD Label Partitions . 227
Assigning Specific Partition Letters . 228

11
tHe unIx FIle sYsteM 231
UFS Components . 232

The Fast File System . 232
How UFS Uses FFS . 232
Vnodes . 233

xvi Contents in Detail

Mounting and Unmounting Filesystems . 233
Mounting Standard Filesystems . 233
Special Mounts . 234
Unmounting a Partition . 234
UFS Mount Options . 234

UFS Resiliency . 237
Soft Updates . 237
Soft Updates Journaling . 238
GEOM Journaling . 238

Creating and Tuning UFS Filesystems . 239
UFS Labeling . 239
Block and Fragment Size . 239
Using GEOM Journaling . 240
Tuning UFS . 241
Expanding UFS Filesystems . 243

UFS Snapshots . 243
Taking and Destroying Snapshots . 244
Finding Snapshots . 244
Snapshot Disk Usage . 244

UFS Recovery and Repair . 245
System Shutdown: The Syncer . 245
Dirty Filesystems . 245
File System Checking: fsck(8) . 246
Forcing Read-Write Mounts on Dirty Disks . 248
Background fsck, fsck -y, Foreground fsck, Oy Vey! 248

UFS Space Reservations . 249
How Full Is a Partition? . 250
Adding New UFS storage . 252

Partitioning the Disk . 252
Configuring /etc/fstab . 253
Installing Existing Files onto New Disks . 253
Stackable Mounts . 254

12
tHe Z FIle sYsteM 257
Datasets . 258

Dataset Properties . 260
Managing Datasets . 261

ZFS Pools . 263
Pool Details . 264
Pool Properties . 264
Viewing Pool Properties . 264

Virtual Devices . 265
VDEV Types and Redundancy . 265

Managing Pools . 267
ZFS and Disk Block Size . 267
Creating and Viewing Pools . 268
Multi-VDEV Pools . 269

Contents in Detail xvii

Destroying Pools . 270
Errors and -f . 270

Copy-On-Write . 270
Snapshots . 271

Creating Snapshots . 271
Accessing Snapshots . 272
Destroying Snapshots . 273

Compression . 273
Pool Integrity and Repair . 273

Integrity Verification . 274
Repairing Pools . 274
Pool Status . 274

Boot Environments . 276
Viewing Boot Environments . 277
Creating and Accessing Boot Environments . 277
Activating Boot Environments . 278
Removing Boot Environments . 279
Boot Environments at Boot . 279
Boot Environments and Applications . 279

13
ForeIgn FIlesYsteMs 281
FreeBSD Mount Commands . 282

Supported Foreign Filesystems . 282
Permissions and Foreign Filesystems . 283

Using Removable Media . 284
Ejecting Removable Media . 285
Removable Media and /etc/fstab . 285
Formatting FAT32 Media . 286
Creating Optical Media . 286
Writing Images to Thumb Drives . 288

Memory Filesystems . 288
tmpfs . 289
Memory Disks . 290
Mounting Disk Images . 292
Filesystems in Files . 293

devfs . 295
/dev at Boot . 295
Global devfs Rules . 297
Dynamic Device Management with devd(8) . 299

Miscellaneous Filesystems . 300
The Network File System . 301

NFS Versions . 302
Configuring the NFS Server . 302
Configuring NFS Exports . 304
Enabling the NFS Client . 308

The Common Internet File System . 310
Prerequisites . 310
Kernel Support . 311
Configuring CIFS . 311

xviii Contents in Detail

nsmb .conf Keywords . 311
CIFS Name Resolution . 313
Other smbutil(1) Functions . 313
Mounting a Share . 313
Other mount_smbfs Options . 314
nsmb .conf Options . 314
CIFS File Ownership . 315

Serving CIFS Shares . 315

14
explorIng /etc 317
/etc Across Unix Species . 318
/etc/adduser .conf . 318
/etc/aliases . 318
/etc/amd .map . 318
/etc/auto_master . 318
/etc/blacklistd .conf . 319
/etc/bluetooth, /etc/bluetooth .device .conf, and

/etc/defaults/bluetooth .device .conf . 319
/etc/casper . 319
/etc/crontab and /etc/cron .d . 319
/etc/csh .* . 319
/etc/ddb .conf . 319
/etc/devd .conf . 320
/etc/devfs .conf, /etc/devfs .rules, and /etc/defaults/devfs .rules 320
/etc/dhclient .conf . 320
/etc/disktab . 320
/etc/dma/ . 321
/etc/freebsd-update .conf . 321
/etc/fstab . 321
/etc/ftp .* . 321
/etc/group . 321
/etc/hostid . 321
/etc/hosts . 321
/etc/hosts .allow . 321
/etc/hosts .equiv . 321
/etc/hosts .lpd . 322
/etc/inetd .conf . 322
/etc/libmap .conf . 322
/etc/localtime . 322
/etc/locate .rc . 323
/etc/login .* . 323
/etc/mail . 324
/etc/mail .rc . 324
/etc/mail/mailer .conf . 324
/etc/make .conf . 324

CFLAGS . 324
COPTFLAGS . 325
CXXFLAGS . 325

Contents in Detail xix

/etc/master .passwd . 325
/etc/motd . 325
/etc/mtree . 325
/etc/netconfig . 325
/etc/netstart . 326
/etc/network .subr . 326
/etc/newsyslog .conf . 326
/etc/nscd .conf . 326
/etc/nsmb .conf . 326
/etc/nsswitch .conf . 326
/etc/ntp/, /etc/ntp .conf . 326
/etc/opie* . 326
/etc/pam .d/* . 327
/etc/passwd . 327
/etc/pccard_ether . 327
/etc/periodic .conf and /etc/defaults/periodic .conf . 327

daily_output=”root” . 327
daily_show_success=”YES” . 328
daily_show_info=”YES” . 328
daily_show_badconfig=”NO” . 328
daily_local=”/etc/daily .local” . 328

/etc/pf .conf, /etc/pf .os . 328
/etc/phones . 328
/etc/portsnap .conf . 329
/etc/ppp/ . 329
/etc/printcap . 329
/etc/profile . 329
/etc/protocols . 329
/etc/pwd .db . 329
/etc/rc* . 329
/et/regdomain .xml . 330
/etc/remote . 330
/etc/resolv .conf . 330
/etc/rpc . 330
/etc/security/ . 330
/etc/services . 331
/etc/shells . 331
/etc/skel/ . 331
/etc/snmpd .config . 331
/etc/spwd .db . 331
/etc/src .conf . 331
/etc/ssh/ . 331
/etc/ssl/ . 331
/etc/sysctl .conf . 332
/etc/syslog .conf, /etc/syslog .conf .d/ . 332
/etc/termcap, /etc/termcap .small . 332
/etc/ttys . 332
/etc/unbound/ . 332
/etc/wall_cmos_clock . 332
/etc/zfs/ . 333

xx Contents in Detail

15
MAKIng Your sYsteM useFul 335
Ports and Packages . 336
Packages . 336

Package Files . 337
Introducing pkg(8) . 337
Installing pkg(8) . 338
Common pkg Options . 339
Configuring pkg(8) . 339
Finding Packages . 340
Installing Software . 342
The Package Cache . 345
Package Information and Automatic Installs . 346
Uninstalling Packages . 350
Changing the Package Database . 351
Locking Packages . 352
Package Files . 353
Package Integrity . 354
Package Maintenance . 355
Package Networking and Environment . 355

Package Repositories . 356
Repository Configuration . 356
Repository Customization . 357
Repository Inheritance . 357

Package Branches . 358
Upgrading Packages . 359

16
custoMIZIng soFtwAre wItH ports 361
Making Software . 362
Source Code and Software . 362
The Ports Collection . 363

Ports . 364
The Ports Index . 367

Searching the Index . 368
Legal Restrictions . 369

What’s In a Port? . 370
Installing a Port . 371
Port Customization Options . 373
Building Packages . 379
Uninstalling and Reinstalling Ports . 379
Tracking Port Build Status . 379
Cleaning Up Ports . 380
Read-Only Ports Tree . 380
Changing the Install Path . 380

Private Package Repositories . 381
Poudriere Resources . 382
Installing and Configuring Poudriere . 383
Poudriere Jail Creation . 383
Install a Poudriere Ports Tree . 386

Contents in Detail xxi

Configuring Poudriere Ports . 386
Running Poudriere . 388
Using the Private Repository . 389

All Poudrieres, Large and Small . 391
Small Systems . 391
Large Systems . 391

Updating Poudriere . 392
More Poudriere . 393

17
AdvAnced soFtwAre MAnAgeMent 395
Using Multiple Processors: SMP . 396

Kernel Assumptions . 396
SMP: The First Try . 397
Today’s SMP . 398
Processors and SMP . 399

Threads, Threads, and More Threads . 401
Startup and Shutdown Scripts . 402

rc Script Ordering . 402
A Typical rc Script . 403
Special rc Script Providers . 404
Vendor Startup/Shutdown Scripts . 405
Debugging Custom rc Scripts . 405

Managing Shared Libraries . 405
Shared Library Versions and Files . 406
Attaching Shared Libraries to Programs . 406
LD_LIBRARY_PATH and LD_PRELOAD . 409
What a Program Wants . 410

Remapping Shared Libraries . 410
Running Software from the Wrong OS . 412

Recompilation . 412
Emulation . 413
ABI Reimplementation . 413
Binary Branding . 414
Supported ABIs . 414
Installing and Configuring the Linuxulator . 415

Using Linux Mode . 418
Debugging Linux Mode . 418

Running Software from the Wrong Architecture or Release . 420

18
upgrAdIng FreeBsd 421
FreeBSD Versions . 422

Releases . 422
FreeBSD-current . 422
FreeBSD-stable . 423
Snapshots . 425
FreeBSD Support Model . 426
Testing FreeBSD . 426
Which Version Should You Use? . 427

xxii Contents in Detail

Upgrade Methods . 428
Binary Updates . 428

/etc/freebsd-update .conf . 429
Running freebsd-update(8) . 430
Reverting Updates . 434
Scheduling Binary Updates . 434
Optimizing and Customizing FreeBSD Update . 434

Upgrading via Source . 435
Which Source Code? . 435
Updating Source Code . 437

Building FreeBSD from Source . 437
Build the World . 438
Build, Install, and Test a Kernel . 439
Prepare to Install the New World . 440
Installing the World . 443
Customizing Mergemaster . 446
Upgrades and Single-User Mode . 448

Shrinking FreeBSD . 448
Packages and System Upgrades . 449
Updating Installed Ports . 450

19
AdvAnced securItY FeAtures 451
Unprivileged Users . 452

The nobody Account . 453
A Sample Unprivileged User . 453

Network Traffic Control . 454
Default Accept vs . Default Deny . 454
TCP Wrappers . 455

Configuring Wrappers . 456
Wrapping Up Wrappers . 462

Packet Filtering . 462
Enabling PF . 463
Default Accept and Default Deny in Packet Filtering 463
Basic Packet Filtering and Stateful Inspection . 464
Configuring PF . 465
Small-Server PF Rule Sample . 467
Managing PF . 469

Blacklistd(8) . 470
PF and Blacklistd . 471
Configuring Blacklistd . 471
Configuring Blacklistd Clients . 473
Managing Blacklistd . 474
De-Blacklisting . 474

Public-Key Encryption . 475
OpenSSL . 477
Certificates . 478
TLS Trick: Connecting to TLS-Protected Ports . 481

Global Security Settings . 482
Install-Time Options . 483
Secure Console . 484

Contents in Detail xxiii

Nonexecutable Stack and Stack Guard . 484
Other Security Settings . 485

Preparing for Intrusions with mtree(1) . 485
Running mtree(1) . 486
mtree(1) Output: The Spec File . 487
The Exclusion File . 488
Saving the Spec File . 488
Finding System Differences . 488

Monitoring System Security . 489
Package Security . 490
If You’re Hacked . 490

20
sMAll sYsteM servIces 491
Secure Shell . 491

The SSH Server: sshd(8) . 492
SSH Keys and Fingerprints . 493
Configuring the SSH Daemon . 494
Managing SSH User Access . 496
SSH Clients . 497

Email . 499
mailwrapper(8) . 499
The Dragonfly Mail Agent . 500
The Aliases File and DMA . 503

Network Time . 504
Setting the Time Zone . 504
Network Time Protocol . 505

Name Service Switching . 507
inetd . 508

/etc/inetd .conf . 509
Configuring inetd Servers . 510
Starting inetd(8) . 511
Changing inetd’s Behavior . 512

DHCP . 512
How DHCP Works . 513
Configuring dhcpd(8) . 514
Managing dhcpd(8) . 516

Printing and Print Servers . 516
/etc/printcap . 517
Enabling LPD . 518

TFTP . 518
Root Directory . 518
tftpd and Files . 519
File Ownership . 519
tftpd(8) Configuration . 519

Scheduling Tasks . 520
cron(8) . 520
periodic(8) . 523

xxiv Contents in Detail

21
sYsteM perForMAnce And MonItorIng 525
Computer Resources . 526
Checking the Network . 527
General Bottleneck Analysis with vmstat(8) . 528

Processes . 529
Memory . 529
Paging . 530
Disks . 530
Faults . 531
CPU . 531
Using vmstat . 531
Continuous vmstat . 531

Disk I/O . 532
CPU, Memory, and I/O with top(1) . 533

UFS and top(1) . 533
ZFS and top(1) . 536
Process List . 537
top(1) and I/O . 538

Following Processes . 539
Paging and Swapping . 540

Paging . 541
Swapping . 541

Performance Tuning . 541
Memory Usage . 542
Swap Space Usage . 542
CPU Usage . 543
Rescheduling . 543
Reprioritizing with Niceness . 543

Status Mail . 545
Logging with syslogd . 546

Facilities . 546
Levels . 547
Processing Messages with syslogd(8) . 548
syslogd Customization . 552

Log File Management . 553
Log File Path . 553
Owner and Group . 553
Permissions . 554
Count . 554
Size . 554
Time . 554
Flags . 556
Pidfile . 556
Signal . 557
Sample newsyslog .conf Entry . 557

FreeBSD and SNMP . 557
SNMP 101 . 557
Configuring bsnmpd . 560

Contents in Detail xxv

22
JAIls 563
Jail Basics . 564
Jail Host Server Setup . 565

Jail Host Storage . 565
Jail Networking . 565
Jails at Boot . 568

Jail Setup . 568
Jail Userland . 569
/etc/jail .conf . 569
Testing and Configuring a Jail . 573
Jail Startup and Shutdown . 574
Jail Dependencies . 575

Managing Jails . 575
Viewing Jails and Jail IDs . 575
Jailed Processes . 575
Running Commands in Jails . 576
Installing Jail Packages . 578
Updating Jails . 578

More Jail Options . 579
Jailing Ancient FreeBSD . 580
Last Jail Notes . 581

23
tHe FrInge oF FreeBsd 583
Terminals . 584

/etc/ttys Format . 584
Insecure Console . 585

Managing Cloudy FreeBSD . 586
LibXo . 586
Universal Configuration Language . 587

Diskless FreeBSD . 587
Diskless Clients . 588
DHCP Server Setup . 588
tftpd and the Boot Loader . 590
Diskless Security . 591
The NFS Server and the Diskless Client Userland . 591

Diskless Farm Configuration . 592
Configuration Hierarchy . 593
Diskless Remounting /etc . 593

Finalizing Setup . 594
Installing Packages . 594
SSH Keys . 595

Storage Encryption . 595
Generating and Using a Cryptographic Key . 597
Filesystems on Encrypted Devices . 597

xxvi Contents in Detail

24
proBleM reports And pAnIcs 599
Bug Reports . 600

Before Filing a Bug . 601
Bad Bug Reports . 602
The Fix . 603
Filing Bugs . 603
After Submitting . 605

System Panics . 606
Recognizing Panics . 606
Responding to a Panic . 607

Preparations . 608
The Crash Dump in Action . 608
Testing Crash Dumps . 609
Crash Dump Types . 610
Textdumps . 610
Dumps and Security . 611

AFterword 613
The FreeBSD Community . 613
Why Do We Do It? . 615
What Can You Do? . 615
If Nothing Else . 616
Getting Things Done . 617

BIBlIogrApHY 619
References . 619
Books I've Written . 620

Index 621

F o r e w o r d

I am happy to write the foreword to Michael Lucas’s
third edition of Absolute FreeBSD. For 15 years, Michael’s
Absolute series has provided the definitive guide to
BSD software, filling in the whats and whys left unex-
plained by the detailed but largely factual documenta-
tion. And, as its name implies, it distills to its essence
the enormous volume of FreeBSD documentation
so that those new to the system can get up to speed
quickly.

Michael is an important contributor to the FreeBSD community. He has
filled many of the roles that contributors can take: answering questions, fill-
ing in pieces of missing documentation, helping to make connections in the
community, and generally identifying and facilitating the things that need
to be done. Michael has interacted with thousands of people: hobbyists,

xxviii Foreword

professional software developers, system administrators, and university
professors. Much of his real-world experience and understanding of what
people are trying to get done has been distilled into this book.

I have been involved with the BSD software since its beginning in
1977 as a student project of my office mate, Bill Joy, at the University of
California at Berkeley. By 1980, the BSD distributions had grown from a
few programs that could be added to an AT&T UNIX system to a complete
system coordinated by four people who called themselves the Computer
Systems Research Group (CRSG). By 1983, the socket interface had been
designed and TCP/IP had been implemented underneath it, allowing a
small set of trusted external contributors to log into the CSRG development
machines over the ARPAnet (which later became the internet) and directly
update the sources using SCCS, a very early source code control system.
The CSRG staff could then use SCCS to track changes and verify them
before doing distributions. This structure formed the basis for the current
BSD-based projects once BSD was spun off from the university as open
source in 1992.

Starting with the open-source distribution, FreeBSD initially ran on
only the early PC computers. Over the past quarter century, thousands of
developers have contributed to FreeBSD to make it into a powerful net-
work operating system with state-of-the-art features that runs on all the
modern computing platforms. FreeBSD powers core internet companies
worldwide. From Netflix movie distribution to WhatsApp messaging, from
Network Appliance and Dell/Isilon storage products to Juniper routers,
from the foundation of Apple’s iOS to the base libraries and services of
Google’s Android, it is hard to throw a rock at the internet without hit-
ting FreeBSD. However, FreeBSD is not the product of any one company,
but of a large open source community: the FreeBSD Project, made up of
developers, users, and countless supporters and advocates. While you can,
as many people do, use FreeBSD simply as a piece of software without
ever interacting with that community, you can significantly enrich your
FreeBSD experience by becoming a part of that community.

Whether you are a first-time user or a kernel hacker, the resources avail-
able via the http://www.freebsd.org/ website, countless mailing lists, regional
user groups, and conferences can be invaluable. Have a question? Just email
questions@FreeBSD.org, and one or more of the hundreds of volunteers will
undoubtedly answer it. Want to learn more about the exciting new features
coming in future FreeBSD versions? Read the Project’s quarterly status
reports or development mailing lists, or attend one of the many regional
BSD conferences taking place around the world.

These resources are a product of the FreeBSD Project and its commu-
nity, a large number of collaborating individuals and companies, as well as
the FreeBSD Foundation, a nonprofit organization coordinating funding,
legal resources, and support for development work and community activi-
ties. Michael’s easy-to-use book provides a gateway for newbies to benefit
from this community’s expertise and to become active users of FreeBSD
themselves.

http://www.freebsd.org

Foreword xxix

FreeBSD is open source software, available for you to use and dis-
tribute at no charge. By helping to support, advocate, or even develop
FreeBSD, you can give back to the FreeBSD Project and help this commu-
nity grow.

Whether you are a new user of FreeBSD or an experienced one, I am
confident you will find Absolute FreeBSD a book you want to keep close
at hand.

Marshall Kirk McKusick
FreeBSD Committer
Treasurer, FreeBSD Foundation
Berkeley, California
January 2018

A c k n o w l e d g m e n t s

This book would not exist without decades of support
from the FreeBSD community. Many people have
told me that they reach for my books to learn how
to accomplish something. What they don’t see is how
many times I’ve reached out to mailing lists, forums,
and user groups to get that same sort of help—not to
mention all the times I’ve used other people’s archived discussions to fig-
ure out where I went horribly wrong. In addition to all those folks who’ve
gone before me, though, I need to name those who helped me on this
particular book.

Gavin Atkinson, Diane Bruce, Julian Elischer, Lars Engels, Alex Kozlov,
Steven Kreuzer, Ganael Laplanche, Greg “Groggy” Lehey, Warner Losh,
Remko Lodder, Ruslan Makhmatkhanov, Hiren Panchasara, Colin Percival,
Matthew Seaman, Lev Serebryakov, Carlo Strub, Romain Tartière, and
Thomas Zander all provided vital feedback on earlier versions of this book.
Some of them read individual chapters that they have special expertise in,

xxxii Acknowledgments

while others read the whole blasted book whether they knew the topic or
not. Both kinds of feedback are invaluable. John Baldwin, Benno Rice,
and George Neville-Neil collaborated on performing a final technical
review, catching errors that ranged from the subtly horrific to the blatantly
appalling. Any errors that remain in this book were introduced by myself,
despite all these people’s best efforts.

I’ve also received years of support from Allan Jude and Benedict
Reuschling of the BSDNow (https://www.bsdnow.tv/) podcast, along with
alumnus Kris Moore. They’ve backed my work even when they had no idea
what the heck I was doing. Their show is a great source of BSD-related news,
education, and gossip. (It’s a community. There’s always gossip.) Just this
week, they walked me through understanding the scheduler in a way I never
have before.

Bert JW Regeer donated $800 to the FreeBSD Foundation for the dubi-
ous privilege of being abused in this book. I sincerely thank Bert for being
a good sport, and handling all the indignities I heap upon him with grace
and aplomb.

Of all the folks who back me on Patreon, I must especially thank Stefan
Johnson and Kate Ebneter. Because that’s what their Patreon reward levels
say I’ll do. So: thank you!

Janelle over at No Starch Press had the unenviable job of shepherding
this book through production, which is kind of like herding cats except the
cats are angry and have switchblades. Thank you for dragging this tome
across the finish line. I also need to thank the rest of the No Starch staff, who
suffered through transforming my meandering babblings into a real book.

And as always, my gratitude to my amazing wife Liz.

I n t r o d u c t I o n

Welcome to Absolute FreeBSD! This book is
a one-stop shop for system administrators

who want to build, configure, and manage
FreeBSD servers. It will also be useful for those

folks who want to run FreeBSD on their desktops,
embedded devices, server farms, and so on. By the
time you finish this book, you should be able to use FreeBSD to provide
network services. You should also understand how to manage, patch, and
maintain your FreeBSD systems and have a basic understanding of network-
ing, system security, and software management. We’ll discuss FreeBSD ver-
sions 11 and 12, which are the most recent versions at the time this book is
being released; however, most of this book applies to earlier and later ver-
sions as well.

xxxiv Introduction

What Is FreeBSD?
FreeBSD is a freely available Unix-like operating system popular with inter-
net service providers, in appliances and embedded systems, and anywhere
that reliability on commodity hardware is paramount. One day last week,
FreeBSD miraculously appeared on the internet, fully formed, extruded
directly from the mutant brain of its heroic creator’s lofty intellect. Just
kidding—the truth is far more impressive. FreeBSD is a result of almost
four decades of continuous development, research, and refinement. The
story of FreeBSD begins in 1979, with BSD.

BSD: FreeBSD’s Granddaddy
Many years ago, AT&T needed a lot of specialized, custom-written com-
puter software to run its business. It wasn’t allowed to compete in the
computer industry, however, so it couldn’t sell its software. Instead, AT&T
licensed various pieces of software and the source code for that software
to universities at low, low prices. The universities could save money by
using this software instead of commercial equivalents with pricey licenses,
and university students with access to this nifty technology could read the
source code to see how everything worked. In return, AT&T got exposure,
some pocket change, and a generation of computer scientists who had cut
their teeth on AT&T technology. Everyone got something out of the deal.
The best-known software distributed under this licensing plan was Unix.

Compared with modern operating systems, the original Unix had a lot
of problems. Thousands of students had access to its source code, however,
and hundreds of teachers needed interesting projects for their students. If a
program behaved oddly, or if the operating system itself had a problem, the
people who lived with the system on a day-to-day basis had the tools and the
motivation to fix it. Their efforts quickly improved Unix and created many
features we now take for granted. Students added the ability to control run-
ning processes, also known as job control. The Unix S51K filesystem made
system administrators bawl like exhausted toddlers, so they replaced it with
the Fast File System (FFS), whose features have spread into every modern
filesystem. Many small, useful programs were written over the years, gradu-
ally replacing entire swaths of Unix.

The Computer Systems Research Group (CSRG) at the University of
California, Berkeley, participated in these improvements and also acted
as a central clearinghouse for Unix code improvements. CSRG collected
changes from other universities, evaluated them, packaged them, and
distributed the compilation for free to anyone with a valid AT&T UNIX
license. The CSRG also contracted with the Defense Advanced Research
Projects Agency (DARPA) to implement various features in Unix, such
as TCP/IP. The resulting collection of software came to be known as the
Berkeley Software Distribution, or BSD.

BSD users took the software, improved it further, and then fed their
enhancements back into BSD. Today, we consider this to be a fairly standard

Introduction xxxv

way for an open source project to run, but in 1979 it was revolutionary. BSD
was also quite successful; if you check the copyright statement on an old
BSD system, you’ll see this:

Copyright 1979, 1980, 1983, 1986, 1988, 1989, 1991, 1992, 1993, 1994
 The Regents of the University of California. All rights reserved.

Yep, 15 years of work—a lifetime in software development. How many
other pieces of software are not only still in use, but still in active devel-
opment, 15 years after work began? In fact, so many enhancements and
improvements went into BSD that the CSRG found that over the years, it
had replaced almost all of the original Unix with code created by the CSRG
and its contributors. You had to look hard to find any original AT&T code.

Eventually, the CSRG’s funding ebbed, and it became clear that the BSD
project would end. After some political wrangling within the University of
California, in 1992 the BSD code was released to the general public under
what became known as the BSD license.

The BSD License
BSD code is available for anyone to use under what is probably the most
liberal license in the history of software development. The license can be
summarized as follows:

•	 Don’t claim you wrote this.

•	 Don’t blame us if it breaks.

•	 Don’t use our name to promote your product.

This means that you can do almost anything you want with BSD code.
(The original BSD license did require that users be notified if a software
product included BSD-licensed code, but that requirement was later
dropped.) There’s not even a requirement that you share your changes
with the original authors! People were free to take BSD and include it in
proprietary products, open source products, or free products—they could
even print it out on punch cards and cover the lawn with it. You want to run
off 10,000 BSD CDs and distribute them to your friends? Enjoy. Instead of
copyright, the BSD license is sometimes referred to as copycenter, as in Take
this down to the copy center and run off a few for yourself. Not surprisingly, com-
panies such as Sun Microsystems jumped right on it: it was free, it worked,
and plenty of new graduates had experience with the technology—including
Bill Joy, one of Sun’s founders. One company, BSDi, was formed specifically
to take advantage of BSD Unix.

The AT&T/CSRG/BSDi Iron Cage Match
At AT&T, UNIX work continued apace even as the CSRG went on its merry
way. AT&T took parts of the BSD Unix distribution, integrated them with
its UNIX, and then relicensed the result back to the universities that pro-
vided those improvements. This worked well for AT&T until the company

xxxvi Introduction

was broken up and the resulting companies were permitted to compete
in the computer software business. AT&T had one particularly valuable
property: a high-end operating system that had been extensively debugged
by thousands of people. This operating system had many useful features,
such as a variety of small but powerful commands, a modern filesystem, job
control, and TCP/IP. AT&T started a subsidiary, Unix Systems Laboratories
(USL), which happily started selling Unix to enterprises and charging very
high fees for it, all the while maintaining the university relationship that
had given it such an advanced operating system in the first place.

Berkeley’s public release of the BSD code in 1992 was met with great
displeasure from USL. Almost immediately, USL sued the university and
the software companies that had taken advantage of the software, particu-
larly BSDi. The University of California claimed that the CSRG had com-
piled BSD from thousands of third-party contributors unrelated to AT&T,
and so it was the CSRG’s intellectual property to dispose of as it saw fit.

This lawsuit motivated many people to grab a copy of BSD to see what
all the fuss was about, while others started building products on top of it.
One of these products was 386BSD, which would eventually be used as the
core of FreeBSD 1.0.

In 1994, after two years of legal wrangling, the University of California
lawyers proved that the majority of AT&T UNIX was actually taken in its
entirety from BSD, rather than the other way around. To add insult to injury,
AT&T had actually violated the BSD license by stripping the CSRG copyright
from files it had assimilated. (Only a very special company can violate the
world’s most generous software license!) A half-dozen files were the only
sources of contention, and to resolve these outstanding issues, USL donated
some of them to BSD while retaining some as proprietary information.

Once the dust settled, a new version of BSD Unix was released to the
world as BSD 4.4-Lite. A subsequent update, BSD 4.4-Lite2, is the grand-
father of the current FreeBSD, as well as ancestor to every other BSD vari-
ant in use today.

The Birth of FreeBSD
One early result of BSD was 386BSD, a version of BSD designed to run on
the cheap 386 processor.1 The 386BSD project successfully ported BSD to
Intel’s 386 processor, but it stalled. After a period of neglect, a group of
386BSD users decided to branch out on their own and create FreeBSD so
they could keep the operating system up to date. (Several other groups
started their own branches off of 386BSD around the same time, of which
only NetBSD remains.)

386BSD and FreeBSD 1 were derived from 1992’s BSD release, the sub-
ject of AT&T’s wrath. As a result of the lawsuit, all users of the original BSD
were requested to base any further work on BSD 4.4-Lite2. BSD 4.4-Lite2
was not a complete operating system—in particular, those few files AT&T

1. At the time, several thousand dollars for a computer was dirt cheap. You young punks have
no idea how good you have it.

Introduction xxxvii

had retained as proprietary were vital to the system’s function. (After all, if
those files hadn’t been vital, AT&T wouldn’t have bothered!) The FreeBSD
development team worked frantically to replace those missing files, and
FreeBSD 2.0 was released shortly afterward. Development has continued
ever since.

Today, FreeBSD is used across the internet by some of the most vital
and visible internet-oriented companies. Netflix’s content delivery system
runs entirely on FreeBSD. IBM, Dell/EMC, Juniper, NetApp, Sony and
many other hardware companies use FreeBSD in embedded systems where
you’d never even know it unless someone told you. The fact is, if a company
needs to pump serious internet bandwidth, it’s probably running FreeBSD
or one of its BSD relatives.

FreeBSD also finds its way into all sorts of embedded and dedicated-
purpose devices. Do you have a PlayStation 4? Congratulations, you’re run-
ning FreeBSD. I hear a root shell is hard to get on one of them, though.

Like smog, spiders, and corn syrup, FreeBSD is all around you; you
simply don’t see it because FreeBSD just works. The key to FreeBSD’s reli-
ability is the development team and user community—which are really the
same thing.

FreeBSD Development
There’s an old saying that managing programmers is like herding cats.
Despite the fact that the FreeBSD development team is scattered across
the world and speaks dozens of languages, for the most part, the members
work well together as parts of the FreeBSD community. They’re more like
a pride of lions than a collection of house cats. Unlike some other projects,
all FreeBSD development happens in public. Three groups of people are
responsible for FreeBSD’s progress: committers, contributors, and users.

Committers
FreeBSD has about 500 developers, or committers. Committers have read-and-
write access to the FreeBSD master source code repository and can develop,
debug, or enhance any piece of the system. (The term committer comes from
their ability to commit changes to the source code.) Because these commits
can break the operating system in both subtle and obvious ways, commit-
ters carry a heavy responsibility. Committers are responsible for keeping
FreeBSD working or, at worst, not breaking it as they add new features
and evaluate patches from contributors. Most of these developers are vol-
unteers; only a handful are actually paid to do this painstaking work, and
most of those people are paid only as it relates to other work. For example,
Intel employs committers to ensure that FreeBSD properly supports its net-
work cards. FreeBSD has a high profile in the internet’s heavy-lifting crowd,
so Intel needs its cards to work on FreeBSD.

To plug yourself into the beehive of FreeBSD development, consider
subscribing to the mailing list FreeBSD-hackers@FreeBSD.org, which contains

xxxviii Introduction

most of the technical discussion. Some of the technical talk is broken out
into more specific mailing lists—for example, fine details of the networking
implementation are discussed in FreeBSD-net@FreeBSD.org.

Every few years, the committer team elects a small number of its mem-
bers to serve as a core team, or Core. Core’s work is simultaneously vital,
underrated, and misunderstood. Core is theoretically responsible for the
overall management of FreeBSD, but in practice, it manages little other
than resolving personality disputes and procedural conflicts among com-
mitters. Core also approves new committers and delegates responsibility for
large parts of FreeBSD to individuals or groups. For example, it delegates
authority over the ports and packages system to the ports management
team. Core does not set architectural direction for FreeBSD, nor does it
dictate processes or procedures; that’s up to the committers, who must
agree en masse. Core does suggest, cajole, mediate, and inspire, however.

Core also experiences the worst part of management. Some of the
key functions of management in a company are oversight, motivation, and
handling problems between people. Oversight is provided by the millions of
users who will complain loudly when anything breaks or behaves unexpect-
edly, and FreeBSD committers are self-motivated. The ugly part of manage-
ment is settling squabbles between two people, and that’s the part Core
gets stuck with. The status one gets from saying “I’m in Core” is an insuf-
ficient reward for having to manage the occasional argument between two
talented developers who’ve gotten on each other’s nerves. Fortunately such
disagreements are rare and usually resolved quickly.

Contributors
In addition to the committer team, FreeBSD has thousands of contributors.
Contributors don’t have to worry about breaking the main operating system
source code repository; they submit their patches for consideration by com-
mitters. Committers evaluate contributor submissions and decide what to
accept and what to reject. A contributor who submits many high-quality
patches is often asked to become a committer themselves.

For example, I spent several years contributing to FreeBSD whenever
the urge struck me. Any time I feel that I’ve wasted my life, I can look at the
FreeBSD website and see where my work was accepted by the committers
and distributed to thousands of people. After I submitted the first edition of
this book to the publisher, I spent my spare time submitting patches to the
FreeBSD FAQ. Eventually, some members of the FreeBSD Documentation
Project approached me and asked me to become a committer. As a reward,
I got an email address and the opportunity to humiliate myself before
thousands of people, once again demonstrating that no good deed goes
unpunished.

If I had never contributed anything, I’d remain a user. Nothing’s wrong
with that, either.

Introduction xxxix

Users
Users are the people who run FreeBSD systems. It’s impossible to realisti-
cally estimate the number of FreeBSD users. While organizations such as
the BSDstats Project (http://www.bsdstats.org/) make an effort, these projects
are opt-in. They measure only folks who have installed FreeBSD and then
installed the software that adds their system to the count. Most users down-
load the whole of FreeBSD for free and never register, upgrade, or email a
mailing list. We have no idea how many FreeBSD users are in the world.

Since FreeBSD is by far the most popular open source BSD, that’s not
an inconsiderable number of machines. And since one FreeBSD server can
handle hundreds of thousands of internet domains, a disproportionate
number of sites use FreeBSD as their supporting operating system. This
means that there are hundreds of thousands, if not millions, of FreeBSD
system administrators out in the world today.

Other BSDs
FreeBSD might be the most popular BSD, but it’s not the only one.
BSD 4.4-Lite2 spawned several different projects, each with its own
focus and purpose. Those projects in turn had their own offspring,
several of which thrive today.

NetBSD
NetBSD is similar to FreeBSD in many ways, and NetBSD and FreeBSD
share developers and code. NetBSD’s main goal is to provide a secure and
reliable operating system that can be ported to any hardware platform with
minimal effort. As such, NetBSD runs on Vixens, PocketPC devices, and
high-end SPARC and Alpha servers. I ran NetBSD on my HP Jornada hand-
held computer.2

OpenBSD
OpenBSD branched off from NetBSD in 1996 with the goal of becoming
the most secure BSD. OpenBSD was the first to support hardware-accelerated
cryptography, and its developers are rightfully proud of the fact that their
default installation was largely immune to remote exploits for several years.
The OpenBSD team has contributed several valuable pieces of software to
the world, including the LibreSSL TLS library and the OpenSSH suite used
by almost everyone from Linux to Microsoft.

DragonFly BSD
DragonFly BSD forked from FreeBSD 4 in 2003. It developed in a dif-
ferent direction than FreeBSD, with a new kernel messaging system.

2. If you’re ever in a position where you need to prove that you are Alpha Geek amongst the
pack, running Unix on a 1998 palmtop will almost certainly do it.

xl Introduction

DragonFly BSD has very high performance and its HAMMER filesystem
supports snapshots and fine-grained history. Check out http://www.dragonfly
bsd.org/ for more information.

macOS
Apple’s macOS? That’s right. Apple incorporates large chunks of FreeBSD
into its macOS on an ongoing basis. If you’re looking for a stable operating
system with a friendly face and a powerful core, macOS is unquestionably
for you. While FreeBSD makes an excellent desktop for a computer profes-
sional, I wouldn’t put it in front of a random user. I would put macOS in
front of that same random user without a second thought, however, and I’d
even feel that I was doing the right thing. But macOS includes many things
that aren’t at all necessary for an internet server, and it runs only on Apple
hardware, so I don’t recommend it as an inexpensive general-purpose server.

FreeBSD’s Children
Several projects have taken FreeBSD and built other projects or products
on top of it. The award-winning FreeNAS transforms a commodity system
into a network fileserver. The pfSense project transforms your system into
a firewall with a nice web management interface. TrueOS gives FreeBSD a
friendly face while supporting resource-intensive advanced features, like
ZFS, while GhostBSD puts a friendly face on equipment with less comput-
ing oomph. Other projects like this appear from time to time; while not all
are successful, I’m sure by the time this book comes out, we’ll have one or
two more solid members of this group.

Other Unixes
Several other operating systems derive from or emulate primordial Unix in
one way or another. This list is by no means exhaustive, but I’ll touch on the
high points.

Solaris
The best-known Unix might be Oracle Solaris. Solaris runs on high-end
hardware that supports dozens of processors and gobs of disk. (Yes, gobs is
a technical term, meaning more than you could possibly ever need, and I know
very well that you need more disk than I think you need.) Solaris, especially early
versions of Solaris, had strong BSD roots. Many enterprise-level applications
run on Solaris. Solaris runs mainly on the SPARC hardware platform man-
ufactured by Sun, which allows Sun to support interesting features, such as
hot-swappable memory and mainboards.

The Oracle Corporation acquired Solaris when they bought Sun
Microsystems in 2009. Oracle ceased Solaris development in 2016. While
there’s still an extensive installed base of Solaris systems and you can still
get Solaris from Oracle, as of today, Oracle Solaris has no future.

http://www.dragonflybsd.org/
http://www.dragonflybsd.org/

Introduction xli

illumos
Several years before Oracle purchased Sun Microsystems, Sun open sourced
the majority of Solaris and sponsored the OpenSolaris project to improve
that codebase. OpenSolaris ran successfully until Oracle shut down source
access and reclaimed all of the OpenSolaris resources.

The OpenSolaris code was still available, though. The OpenSolaris
community forked OpenSolaris into illumos (http://illumos.org/). If you
miss Solaris, you can still use a free, modern, Solaris-like operating system.
FreeBSD includes two important features from OpenSolaris, the Zetabyte
Filesystem (ZFS) and DTrace, a full-system tracing system.

AIX
Another Unix contender is IBM’s entry, AIX. AIX’s main claim to fame is
its journaling filesystem, which records all disk transactions as they happen
and allows for fast recovery from a crash. It was also IBM’s standard Unix
for many years, and anything backed by Big Blue shows up all over the
place. AIX started life based on BSD, but AT&T has twiddled just about
everything so that you won’t find much BSD today.

Linux
Linux is a close cousin of Unix, written from the ground up. Linux is simi-
lar to FreeBSD in many ways, though FreeBSD has a much longer heritage
and is friendlier to commercial use than Linux. Linux includes a require-
ment that any user who distributes Linux must make his or her changes
available to the end user, while BSD has no such restriction. Of course, a
Linux fan would say, “FreeBSD is more vulnerable to commercial exploita-
tion than Linux.” Linux developers believe in share-and-share-alike, while
BSD developers offer a no-strings-attached gift to everyone. It all depends
on what’s important to you.

Many new Unix users have a perception of conflict between the BSD
and Linux camps. If you dig a little deeper, however, you’ll find that most of
the developers of these operating systems communicate and cooperate in
a friendly and open manner. It’s just a hard fringe of users and developers
that generate friction, much like different soccer teams’ hooligans or differ-
ent Star Trek series’ fans.3

Other Unixes
Many Unixes have come and gone, while others stagger on. Past contenders
include Silicon Graphics’ IRIX, Hewlett-Packard’s HP/UX, Tru64 Unix,
and the suicidal SCO Group’s UnixWare. Dig further and you’ll find older
castoffs, including Apple’s A/UX and Microsoft’s Xenix. (Yes, Microsoft was
a licensed Unix vendor, back in that age when dinosaurs watched the skies
nervously and my dad hunted mammoth for all the tribal rituals.) Many

3. Original Trek. End of discussion. Fight me.

xlii Introduction

high-end applications are designed to run best on one particular flavor of
Unix. All modern Unixes have learned lessons from these older operating
systems, and today’s Unixes and Unix-like operating systems are remarkably
similar.

FreeBSD’s Strengths
After all this, what makes FreeBSD unique?

Portability
The FreeBSD Project’s goal is to provide a freely redistributable, stable, and
secure operating system that runs on the computer hardware that people
are most likely to have access to. People have ported FreeBSD to a variety of
less popular platforms as well.

The best supported FreeBSD platform is the common 64-bit hardware
developed by AMD, used by almost everyone, and even copied by Intel.
FreeBSD also fully supports the older 32-bit computers, such as 486s and
all the flavors of Pentiums. This book uses 64-bit commodity hardware, or
amd64, as a reference platform.

FreeBSD runs well on several other hardware architectures but is
not completely supported yet. These include 32-bit ARM processors and
PowerPC. While these other platforms are not afterthoughts, they don’t
receive the same level of attention that x86 and amd64 do. The 64-bit
ARM platform is expected to become Tier 1 shortly after this book comes
out, however.

You can also load FreeBSD on certain older architectures, such as
64-bit SPARC. These platforms were once well supported but are on their
way out.

W h y unI x-L Ike?

One thing to note is that FreeBSD, Linux, and so on are called Unix-like instead
of Unix. The term Unix is a trademark of The Open Group. For an operating
system to receive the right to call itself Unix, the vendor must prove that the
OS complies with the current version of the Single Unix Specification. While
FreeBSD generally meets the standard, continuous testing and recertification
cost money, which the FreeBSD Project doesn’t have to spare. Certification as
Unix also requires that someone sign a paper stating not only that he or she
is responsible for FreeBSD’s conformance to the Single Unix Specification but
that he or she will fix any deviations from the standard that are found in the
future. FreeBSD’s development model makes this even more difficult—bugs are
found and deviations are fixed, but there’s nobody who can sign a piece of
paper that guarantees 100 percent standards compliance.

Introduction xliii

Power
Since FreeBSD runs adequately on 486 processors, it runs extremely well
on modern computers. It’s rather nice to have an operating system that
doesn’t demand 8 cores and 12 gigs of RAM just to run the user interface.
As a result, you can actually dedicate your hardware to accomplishing real
work rather than tasks you don’t care about. If you choose to run a pretty
graphical interface with all sorts of spinning gewgaws and fancy whistles,
FreeBSD will support you, and it won’t penalize you if you choose other-
wise. FreeBSD will also support you on the latest n -CPU hardware.

Simplified Software Management
FreeBSD also simplifies software management through the packaging
system and the Ports Collection. Traditionally, running software on a Unix-
like system required a great deal of expertise. Packages and ports simplify
this considerably by automating and documenting the install, uninstall, and
configuration processes for thousands of software packages.

We discuss packages in Chapter 15 and ports in Chapter 16.

Customizable Builds
FreeBSD provides a painless upgrade procedure, but it also lets you pre-
cisely customize the operating system for your hardware. Companies like
Apple do exactly this, but they control both the hardware and the software;
FreeBSD pulls off the same trick on commodity hardware.

Advanced Filesystems
A filesystem is how information is stored on the physical disk—it’s what
maps the file My Resume to a series of zeros and ones on a hard drive.
FreeBSD includes two well-supported filesystems, UFS (Chapter 11) and
ZFS (Chapter 12). UFS has been around for multiple decades and is highly
damage-resistant. ZFS is younger but includes features such as network rep-
lication and self-healing.

Who Should Use FreeBSD?
While FreeBSD can be used as a powerful desktop or development machine,
its history shows a strong bias toward network services: web, mail, file, and
ancillary applications. FreeBSD is most famous for its strengths as an inter-
net server, and it’s an excellent choice as an underlying platform for any
network service. If major firms such as Netflix count on FreeBSD to provide
reliable service, it will work as well for you.

If you’re thinking of running FreeBSD (or any Unix) on your desktop,
you’ll need to understand how your computer works. FreeBSD is not your
best choice if you need point-and-click simplicity. If that’s your goal, get

xliv Introduction

a Mac so you can use the power of Unix when you need it and not worry
about it the rest of the time. If you want to learn FreeBSD, though, running
it on your desktop is the best way—as we’ll discuss later.

Who Should Run Another BSD?
NetBSD and OpenBSD are FreeBSD’s closest competitors. Unlike competi-
tors in the commercial world, this competition is mostly friendly. FreeBSD,
NetBSD, and OpenBSD freely share code and developers; some people even
maintain the same subsystems in multiple operating systems.

If you want to use old or oddball hardware, NetBSD is a good choice
for you. For several years, I ran NetBSD on an ancient SGI workstation that
I used as a Domain Name System (DNS) and fileserver. It did the job well
until the hardware finally released a cloud of smoke and stopped working.

OpenBSD has implemented an impressive variety of security features.
Some of the tools are eventually integrated into FreeBSD, but that takes
months or years. Some of the tools can never be duplicated in FreeBSD,
however. If you have real security concerns and can use a Unix-like system
without the feature set FreeBSD provides, consider OpenBSD. Take a look
at my book Absolute OpenBSD (No Starch Press, 2013) for an introduction.

If you’re just experimenting to see what’s out there, any BSD is good!

Who Should Run a Proprietary Operating System?
Operating systems such as macOS, Windows, AIX, and their ilk are still
quite popular, despite the open source operating systems gnawing at their
market share. High-end enterprises are pretty tightly shackled to commer-
cial operating systems. While this is slowly changing, you’re probably stuck
with commercial operating systems in such environments. But slipping in
an occasional FreeBSD machine to handle basic services, such as monitor-
ing and department file serving, can make your life much easier at much
lower cost. Companies like Dell/EMC/Isilon have built entire businesses
using FreeBSD instead of commercial operating systems.

Of course, if the software you need runs only on a proprietary operat-
ing system, your choice is pretty clear. Still, always ask a vendor whether a
FreeBSD version is available; you might be pleasantly surprised.

How to Read This Book
Many computer books are thick and heavy enough to stun an ox, if you have
the strength to lift them high enough. Plus, they’re either encyclopedic in
scope or so painfully detailed that they’re difficult to actually read. Do you
really need to reference a screenshot when you’re told to click OK or accept
the license agreement? And when was the last time you actually sat down to
read the encyclopedia?

Introduction xlv

Absolute FreeBSD is a little different. It’s designed to be read once, from
front to back. You can skip around if you want to, but each chapter builds
on what comes before it. While this isn’t a small book, it’s smaller than
many popular computer books. After you’ve read it once, it makes a decent
reference.

If you’re a frequent buyer of computer books, please feel free to insert
all that usual crud about “read a chapter at a time for best learning” and
so on. I’m not going to coddle you—if you picked up this book, you either
have two brain cells to rub together or you’re visiting someone who does.
(If it’s the latter, hopefully your host is smart enough to take this book away
from you before you learn enough to become dangerous.)

What Must You Know?
This book is aimed at the new Unix administrator. Three decades ago, the
average Unix administrator had kernel programming experience and was
working on their master’s degree in computer science. Even a decade ago,
they were already a skilled Unix user with real programming skills and most
of a bachelor’s degree in comp sci. Today, Unix-like operating systems are
freely available, computers are cheaper than food, and even 12-year-old
children can run Unix, read the source code, and learn enough to intimi-
date older folks. As such, I don’t expect you to know a huge amount about
Unix before firing it up.

To use this book to its full potential, you need to have familiarity with
some basic tasks, such as how to change directories, list files in a directory,
and log in with a username and password. If you’re not familiar with basic
commands and the Unix shell, I recommend you begin with a book like
UNIX System Administration Handbook by Evi Nemeth and friends (Prentice
Hall PTR, 2017). To make things easier on newer system administrators,
I include the exact commands needed to produce the desired results. If
you learn best by example, you should have everything you need right here.

You’ll also need to know something about computer hardware—not
a huge amount, mind you, but something. It helps to know how to recog-
nize a SATA cable. Your need for this knowledge depends on the hardware
you’re using, but if you’re interested enough to pick up this book and read
this far, you probably know enough.

For the New System Administrator
If you’re new to Unix, the best way to learn is to eat your own dog food. No,
I’m not suggesting that you dine with Rover. If you ran a dog food company,
you’d want to make a product that your own dog eats happily. If your dog
turns his nose up at your latest recipe, you have a problem. The point here
is that if you work with a tool or create something, you should actually use
it. The same thing applies to any Unix-like operating system, including
FreeBSD.

xlvi Introduction

Desktop FreeBSD
If you’re serious about learning FreeBSD, I suggest wiping out the operat-
ing system on your main computer and running FreeBSD instead. No, not
a desktop-oriented FreeBSD derivative like TrueOS or GhostBSD: run raw
FreeBSD. Yes, I know, now that dog food doesn’t sound so bad. But learn-
ing an operating system is like learning a language; total immersion is the
quickest and most powerful way to learn. That’s what I did, and today I
can make a Unix-like system do anything I want. I’ve written entire books
on a FreeBSD laptop, using the open source text editor XEmacs and the
LibreOffice.org business suite. I’ve also used FreeBSD to watch movies, rip
and listen to MP3s, balance my bank accounts, process my email, and surf
the web. The desktop in my lab has a dozen animated BSD daemons run-
ning around the window manager, and I occasionally take a break to zap
them with my mouse. If this doesn’t count as a Stupid Desktop Trick, I don’t
know what does.4

Many Unix system administrators these days come from a Windows
background. They’re beavering away in their little world when their man-
ager swoops by and says, “You can handle one more system, can’t you? Glad
to hear it! It’s a Unix box, by the way,” and then vanishes into the manage-
rial ether. Once the new Unix administrator decides not to quit her job
and start a fresh and exciting career as a whale necropsy technician, she
tentatively pokes at the system. She learns that ls is like dir and that cd is
the same on both platforms. She can learn the commands by rote, reading,
and experience. What she can’t learn, coming from this background, is how
a Unix machine thinks. Unix will not adjust to you; you must adjust to it.
Windows and macOS require similar adjustments but hide them behind a
glittering facade. With that in mind, let’s spend a little time learning how to
think about Unix.

How to Think About Unix
These days, most Unix systems come with pretty GUIs out of the box, but
they’re just eye candy. No matter how graphically delicious the desktop looks,
the real work happens on the command line. The Unix command line is
actually one of Unix’s strengths, and it’s responsible for its unparalleled
flexibility.

Unix’s underlying philosophy is many small tools, each of which does a
single job well. My mail server’s local programs directory (/usr/local/bin)
has 262 programs in it. I installed every one of them, either directly or
indirectly. Most are small, simple programs that do only one task. This
array of small tools makes Unix extremely flexible and adaptable. Many
commercial software packages try to do everything; they wind up with all

4. In the first edition of this book, I neglected to mention exactly how to do a similar Stupid
Desktop Trick, which generated more questioning email than any other topic in the whole
book. In the second edition, I swore I wouldn’t make that same mistake again but neglected
to mention which software package provides the run-around daemons. They say the third
time’s the charm.

Introduction xlvii

sorts of capabilities but only mediocre performance in their core functions.
Remember, at one time you needed to be a programmer to use a Unix sys-
tem, let alone run one. Programmers don’t mind building their own tools.
The Unix concept of pipes encouraged this.

Pipes

People used to GUI environments, such as Windows and macOS, are prob-
ably unfamiliar with how Unix handles output and input. They’re used to
clicking something and seeing either an OK message, an error, nothing, or
(all too often) a pretty blue screen with nifty high-tech letters explaining in
the language called Geek why the system crashed. Unix does things a little
differently.

Unix programs have three channels of communication, or pipes: stan-
dard input, standard output, and standard error. Once you understand how
each of these pipes works, you’re a good way along to understanding the
whole system.

Standard input is the source of information. When you’re at the console
typing a command, the standard input is the data coming from the key-
board. If a program is listening to the network, the standard input is the
network. Many programs can rearrange standard input to accept data from
the network, a file, another program, the keyboard, or any other source.

The standard output is where the program’s output is displayed. This is
frequently the console (screen). Network programs usually return their out-
put to the network. Programs might send their output to a file, to another
program, over the network, or anywhere else available to the computer.

Finally, standard error is where the program sends its error messages.
Frequently, console programs return their errors to the console; others
log errors in a file. If you set up a program incorrectly, it just might dis-
card all error information.

These three pipes can be arbitrarily arranged, a concept that’s perhaps
the biggest hurdle for new Unix users and administrators. For example, if
you don’t like the error messages appearing on the terminal, you can redi-
rect them to a file. If you don’t want to repeatedly type a lot of information
into a command, you can put the information into a file (so you can reuse
it) and dump the file into the command’s standard input. Or, better still,
you can run a command to generate that information and put it in a file,
or just pipe (send) the output of the first command directly to the second,
without even bothering with a file.

Small Programs, Pipes, and the Command Line

Taken to their logical extreme, these input/output pipes and the variety of
tools seem overwhelming. When I saw a sysadmin type something like the
following during my initial Unix training session, I gave serious consider-
ation to changing careers.

$ tail -f /var/log/messages | grep -v popper | grep -v named &

xlviii Introduction

Lines of incomprehensible text began spilling across the screen, and
they kept coming. And worse still, my mentor kept typing as gibberish
poured out! If you’re from a point-and-click computing environment, a
long string of commands like this is definitely intimidating. What do all
those funky words mean? And an ampersand? You want me to learn what?

Think of learning to use the command line as learning a language.
When learning a language, we start with simple words. As we increase our
vocabulary, we also learn how to string the words together. We learn that
placing words in a certain order makes sense, and that a different order
makes no sense at all. You didn’t speak that well at three years old—give
yourself some slack and you’ll get there.

Small, simple programs and pipes provide almost unlimited flexibil-
ity. Have you ever wished you could use a function from one program in
another program? By using a variety of smaller programs and arranging
the inputs and outputs as you like, you can make a Unix system behave in
any manner that amuses you. Eventually, you’ll feel positively hogtied if you
can’t just run a command’s output through | sort -rnk 6 | less.5

Everything Is a File

You can’t be around Unix for very long before hearing that everything is
a file. Programs, account information, and system configuration are all
stored in files. Unix has no Windows-style registry; if you back up the files,
you have the whole system.

What’s more, the system identifies system hardware as files! Your
CD-ROM drive is a file, /dev/cd0. Serial ports appear as files like /dev/cuaa0.
Even virtual devices, such as packet sniffers and partitions on hard drives,
are files.

When you have a problem, keep this fact in mind. Everything is a file,
or is in a file, somewhere on your system. All you have to do is find it!

Notes on the Third Edition
Absolute BSD (No Starch Press, 2002) was my first technology book and was
written when the various BSD operating systems had more in common
than they wanted to admit. The second edition, Absolute FreeBSD (No Starch
Press, 2007), came out after the BSDs had diverged, and detailed FreeBSD’s
advances in the previous five years. With another decade of growth, FreeBSD
has evolved to compete with the best commercial operating systems. You’ll
find multiple top-tier filesystems. Disk management has changed to accom-
modate new partitioning methods. Virtualization is now a thing, and
FreeBSD supports it as either a client or a host.

5. This ugly thing takes the output of the last command, sorts it in reverse order by the
contents of the sixth column, and presents it one screen at a time. If you have hundreds of lines
of output, and you want to know which entries have the highest values in the sixth column,
this is how you do it. Or, if you have lots of time, you can dump the output to a spreadsheet
and fiddle with equally obscure commands for a much longer time.

Introduction xlix

This growth has driven changes in this book.
We won’t discuss configuring mail, DNS, or web servers. You have more

software choices for these tasks than ever before. Entire books have been
written about those choices and how to use them. I’ve written some of those
books. Those topics have been dropped to make space for FreeBSD-specific
material, like ZFS and jails.

Some of these new features are hugely complex. Complete coverage
of ZFS would fill entire books—I know, because I’ve written those books,
too. FreeBSD supports a whole bunch of special-purpose filesystems, each
incredibly useful to the folks who need them and totally irrelevant to those
who don’t. Rather than write a monster tome that nobody would actually
read, I’ve elected to cover the material that every FreeBSD sysadmin must
know. If you’re interested in deeper coverage of a particular topic, it’s
available.

Some subsystems are undergoing radical revision. I could wait to write
this book until every FreeBSD subsystem has a stable interface, but then
it would come out about . . . never. As I write this, the bhyve developers
are actively rototilling their entire configuration system. Given the choice
between glossing over a topic and providing flat-out wrong material, I’ve
chosen to skip detail on bhyve. I hope to be able to delete this paragraph
before this book goes to press.

I’ve ruthlessly excised obsolete information from this edition. For
example, modern disk drives don’t generally have to worry about write
caching. If you discover that a piece of advice you remember using doesn’t
appear in this book, please check FreeBSD’s information resources to see
whether that advice is still applicable.

Contents of This Book
Absolute FreeBSD, 3rd Edition contains the following chapters.

Chapter 1: Getting More Help
This chapter discusses the information resources the FreeBSD Project
and its devotees provide for users. No one book can cover everything,
but knowing how to use the many FreeBSD resources on the internet
helps fill any gaps you find here.

Chapter 2: Before You Install
Getting FreeBSD installed isn’t that hard. Make poor choices during
the install, though, and you’ll have a system that isn’t suited for your
needs. The best way to avoid reinstalling is to think about your require-
ments and make all the decisions beforehand so that the actual install
doesn’t require any thought.

Chapter 3: Installing
This chapter gives you an overview of installing FreeBSD using differ-
ent partitioning schemes and filesystems.

l Introduction

Chapter 4: Start Me Up! The Boot Process
This chapter teaches you about the FreeBSD boot process and how to
make your system start, stop, and reboot in different configurations.

Chapter 5: Read This Before You Break Something Else!
(Backup and Recovery)

Here we discuss how to back up your data on both a system-wide and a
file-by-file level, and how to make your changes so that they can be eas-
ily undone.

Chapter 6: Kernel Games
This chapter describes configuring the FreeBSD kernel. Unlike some
other operating systems, you’re expected to tune FreeBSD’s kernel to
best suit your purposes. This gives you tremendous flexibility and lets
you optimize your hardware’s potential.

Chapter 7: The Network
Here we discuss the TCP/IP protocol that underlies the modern inter-
net, both version 4 and version 6.

Chapter 8: Configuring the Network
FreeBSD doesn’t only shuffle packets crazy fast, but it also supports vir-
tual LANs, link aggregation, and more. We’ll configure all of that here.

Chapter 9: Securing Your System
This chapter teaches you how to make your computer resist attackers
and intruders.

Chapter 10: Disks, Partitioning, and GEOM
This chapter covers some of the details of working with hard drives in
FreeBSD. Working with modern hardware means understanding mul-
tiple partitioning schemes, disk alignment, and FreeBSD’s disk manage-
ment infrastructure.

Chapter 11: The Unix File System
UFS has been FreeBSD’s standard filesystem for decades, and the con-
cepts of UFS pervade the whole operating system. Whether you intend
to use UFS or not, you must understand its essentials.

Chapter 12: The Z File System
ZFS is a newer filesystem very popular on larger systems. If you’re man-
aging large amounts of data, you’ll want ZFS.

Chapter 13: Foreign Filesystems
Every sysadmin needs to mount disks over the network or use ISOs
without burning them to CD. This chapter takes you through those
duties, as well as introducing FreeBSD-specific filesystems like devfs.

Introduction li

Chapter 14: Exploring /etc
This chapter describes the many configuration files in FreeBSD and
how they operate.

Chapter 15: Making Your System Useful
Here I describe the packages system that FreeBSD uses to manage add-
on software.

Chapter 16: Customizing Software with Ports
Sometimes the prebuilt packages won’t cover everything you need. You
can leverage FreeBSD’s package-building system to create your own
software packages, tuned to meet your exact needs.

Chapter 17: Advanced Software Management
This chapter discusses some of the finer points of running software on
FreeBSD systems.

Chapter 18: Upgrading FreeBSD
This chapter teaches you how to use FreeBSD’s upgrade process. The
upgrade system is among the most remarkable and smooth of any oper-
ating system.

Chapter 19: Advanced Security Features
Here we discuss some of the more interesting security features found in
FreeBSD.

Chapter 20: Small System Services
Here we discuss some of the small programs you’ll need to manage in
order to use FreeBSD properly.

Chapter 21: System Performance and Monitoring
This chapter covers some of FreeBSD’s performance-testing and trouble-
shooting tools and shows you how to interpret the results. We also discuss
logging and FreeBSD’s SNMP implementation.

Chapter 22: Jails
FreeBSD has a process-isolation subsystem, much like Linux and
Solaris containers, called jails. We’ll cover the jail system and how
you can leverage it for system security.

Chapter 23: The Fringe of FreeBSD
This chapter teaches you some of the more interesting tricks you can
do with FreeBSD, such as running systems without disks and with tiny
disks, as well as cloud-friendly features, like libxo.

lii Introduction

Chapter 24: Problem Reports and Panics
This chapter teaches you how to deal with those rare occasions when a
FreeBSD system fails, how to debug problems, and how to create a use-
ful problem report.

You’ll also find an annotated bibliography, an afterword, and a really
spiffy professionally prepared index.

Okay, enough introductory stuff. Onward!

1
G e t t i n G M o r e H e l p

As thick as this book is, it still can’t possi-
bly cover everything you must know about

FreeBSD. After all, Unix has been kicking
around for close to 50 years, BSD is pushing 40,

and FreeBSD is old enough to have its doctorate. Even
if you memorize this book, it won’t cover every situation
you might encounter. The FreeBSD Project supports a huge variety of infor-
mation resources, including numerous mailing lists and the FreeBSD web-
site, not to mention the official manual and Handbook. Its users maintain
even more documentation on even more sites. The flood of information
can be overwhelming in itself, and it can make you want to just email the
world and beg for help. But before you send a question to a mailing list or
forum, confirm that the information you need isn’t already available.

2 Chapter 1

Why Not Beg for Help?
FreeBSD provides two popular resources for assistance: mailing lists and
forums. Many participants on both are very knowledgeable and can answer
questions very quickly. But when you send a question to these community sup-
port resources, you’re asking tens of thousands of people all over the world
to take a moment to read your message. You’re also asking that one or more
of them take the time to help you instead of watching a favorite movie, enjoy-
ing dinner with their families, or catching up on sleep. Problems arise when
these experts answer the same question 10, 50, or even hundreds of times.
They become grumpy. Some get downright tetchy.

What makes matters worse is that many of these same people have spent
a great deal of time and effort making the answers to most of these ques-
tions available elsewhere. If you make it clear that you’ve already searched
the resources and your answer really doesn’t appear therein, you’ll probably
receive a polite, helpful answer. If you ask a question that’s already been
asked several hundred times, however, the expert on that subject just might
snap and go ballistic on you. Do your homework, and chances are you’ll get
an answer more quickly than a fresh call for assistance could provide.

The FreeBSD Attitude
“Homework? What do you mean? Am I back in school? What do you want,
burnt offerings on bended knee?” Yes, you are in school. The information
technology business is nothing but lifelong, self-guided learning. Get used
to it or get out. Burnt offerings, on the other hand, are difficult to transmit
via email and aren’t quite so useful today.

Most commercial software conceals its inner workings. The only access
you have to them is through the options presented by the vendor. Even if you
want to learn how something works, you probably can’t. When something
breaks, you have no choice but to call the vendor and grovel for help. Worse,
the people paid to help you frequently know little more than you do.

If you’ve never worked with open source software vendors, FreeBSD’s
support mechanism might surprise you. There is no toll-free number to
call and no vendor to escalate within. No, you may not speak to a manager
and for a good reason: you are the manager. Congratulations on your
promotion!

Support Options
That being said, you’re not entirely on your own. The FreeBSD community
includes numerous developers, contributors, and users who care very deeply
about FreeBSD’s quality, and they’re happy to work with users who are will-
ing to do their share of the labor. FreeBSD provides everything you need:
complete access to the source code used to create the system, the tools
needed to turn that source code into programs, and the same debuggers
used by the developers. Nothing is hidden; you can see the innards, warts
and all. You can view FreeBSD’s development history since the beginning,

Getting More Help 3

including every change ever made and the reason for it. These tools might
be beyond your abilities, but that’s not the Project’s problem. Various com-
munity members are even happy to provide guidance as you develop your
own skills so you can use those tools yourself. You’ll have lots of help fulfill-
ing your responsibilities.

As a grossly overgeneralized rule, people help those like themselves.
If you want to use FreeBSD, you must make the jump from eating what the
vendor gives you to learning how to cook. Every member of the FreeBSD user
community learned how to use it, and they welcome interested new users with
open arms. If you just want to know what to type without really understand-
ing what’s going on behind the scenes, you’ll be better off reading the docu-
mentation; the general FreeBSD support community simply isn’t motivated to
help those who won’t help themselves or who can’t follow instructions.

If you want to use FreeBSD but have neither the time nor the inclina-
tion to learn more, invest in a commercial support contract. It might not be
able to put you in touch with FreeBSD’s owner, but at least you’ll have some-
one to yell at. You’ll find several commercial support providers listed on the
FreeBSD website.

It’s also important to remember that the FreeBSD Project maintains
only FreeBSD. If you’re having trouble with some other piece of software,
a FreeBSD mailing list is not the place to ask for help. FreeBSD developers
are generally proficient in a variety of software, but that doesn’t mean they
want to help you, say, configure KDE.

The first part of your homework, then, is to learn about the resources
available beyond this book. These include the integrated manual, the
FreeBSD website, the mailing list archives, and other websites.

Man Pages
Man pages (short for manual pages) are the primordial way of presenting
Unix documentation. While man pages have a reputation for being obtuse,
difficult, or even incomprehensible, they’re actually quite friendly—for
particular users. When man pages were first created, the average system
administrator was a C programmer and, as a result, the pages were written
by programmers, for programmers. If you can think like a programmer,
man pages are perfect for you. I’ve tried thinking like a programmer, but I
achieved real success only after remaining awake for two days straight. (Lots
of caffeine and a high fever help.)

Over the last several years, the skill level required for system adminis-
tration has dropped; no longer must you be a programmer. Similarly, man
pages have become more and more readable. Man pages are not tutorials,
however; they explain the behavior of one particular program, not how to
achieve a desired effect. While they’re neither friendly nor comforting, they
should be your first line of defense. If you send a question to a mailing list
without checking the manual, you’re likely to get a terse man whatever in
response.

4 Chapter 1

Manual Sections
The FreeBSD manual is divided into nine sections. Roughly speaking, the
sections are:

1. General user commands

2. System calls and error numbers

3. C programming libraries

4. Devices and device drivers

5. File formats

6. Game instructions

7. Miscellaneous information

8. System maintenance commands

9. Kernel interfaces

Each man page starts with the name of the command it documents
followed by its section number in parentheses, like this: reboot(8). When
you see something in this format in other documents, it’s telling you to
read that man page in that section of the manual. Almost every topic has
a man page. For example, to see the man page for the editor vi, type this
command:

$ man vi

In response, you should see the following:

VI(1) FreeBSD General Commands Manual VI(1)

NAME
 ex, vi, view - text editors

SYNOPSIS
 ex [-FRrSsv] [-c cmd] [-t tag] [-w size] [file ...]
 vi [-eFRrS] [-c cmd] [-t tag] [-w size] [file ...]
 view [-eFrS] [-c cmd] [-t tag] [-w size] [file ...]

DESCRIPTION
 vi is a screen-oriented text editor. ex is a line-oriented text editor.
 ex and vi are different interfaces to the same program, and it is
 possible to switch back and forth during an edit session. view is the
 equivalent of using the -R (read-only) option of vi.
:

The page starts with the title of the man page (vi) and the section num-
ber (1), and then it gives the name of the page. This particular page has
three names: ex, vi, and view. Typing man ex or man view would take you to
this same page.

Getting More Help 5

Navigating Man Pages
Once you’re in a man page, pressing the spacebar or the pgDn key takes
you forward one full screen. If you don’t want to go that far, pressing
enteR or the down arrow scrolls down one line. Typing b or pressing the
pgUp key takes you back one screen. To search within a man page, type /
followed by the word you’re searching for. You’ll jump down to the first
appearance of the word, which will be highlighted. Typing n subsequently
takes you to the next occurrence of the word.

This assumes that you’re using the default BSD pager, more(1). If
you’re using a different pager, use that pager’s syntax. Of course, if you
know so much about Unix that you’ve already set your preferred default
pager, you’ve probably skipped this part of the book.

Finding Man Pages
New users often say that they’d be happy to read the man pages if they
could find the right one. You can perform basic keyword searches on the
man pages with apropos(1) and whatis(1). To search any man page name
or description that includes the word you specify, use apropos(1). To match
only whole words, use whatis(1). For example, if you’re interested in the vi
command, you might try the following:

$ apropos vi
unvis(1) - revert a visual representation of data back to original form
vidcontrol(1) - system console control and configuration utility
vis(1) - display non-printable characters in a visual format
madvise, posix_madvise(2) - give advice about use of memory
posix_fadvise(2) - give advice about use of file data
--snip--

This continues for a total of 581 entries, which is probably far more
than you want to look at. Most of these have nothing to do with vi(1), how-
ever; the letters vi just appear in the name or description. Device driver is
a fairly common term in the manual, so that’s not surprising. On the other
hand, whatis(1) gives more useful results in this case.

$ whatis vi
vi, ex, view, nex, nvi, nview(1) - text editors
$

We get only one result, clearly with relevance to vi(1). On other searches,
apropos(1) gives better results than whatis(1). Experiment with both and
you’ll quickly learn how they fit your style.

The man -k command emulates apropos(1), while man -f emulates
whatis(1).

6 Chapter 1

Section Numbers and Man
You might find cases where a single command appears in multiple parts of
the manual. For example, every man section has an introductory man page
that explains the contents of the section. To specify a section to search for a
man page, give the number immediately after the man command.

$ man 3 intro

This pulls up the introduction to section 3 of the manual. I recommend
you read the intro pages to each section of the manual, if only to help you
understand the breadth and depth of information available.

Man Page Contents
Man pages are divided into sections. While the author can put just about any
heading he or she likes into a man page, several are standard. See mdoc(7)
for a partial list of these headings as well as other man page standards:

•	 NAME gives the name(s) of a program or utility. Some programs have
multiple names—for example, the vi(1) text editor is also available as
ex(1) and view(1).

•	 SYNOPSIS lists the possible command line options and their argu-
ments, or how a library call is accessed. If I’m already familiar with a
program but just can’t remember the option I’m looking for, I find that
this header is sufficient to remind me of what I need.

•	 DESCRIPTION contains a brief description of the program, library,
or feature. The contents of this section vary widely depending on the
topic, as programs, files, and libraries all have very different documen-
tation requirements.

•	 OPTIONS gives a program’s command line options and their effects.

•	 BUGS describes known problems with the code and can frequently save
a lot of headaches. How many times have you wrestled with a computer
problem only to learn that it doesn’t work the way you’d expect under
those circumstances? The goal of the BUGS section is to save you time
by describing known errors and other weirdnesses.1

•	 EXAMPLES gives sample uses of the program. Many programs are very
complicated, and a couple samples of how they’re used clarify more
than any list of options possibly can.

•	 HISTORY shows when the command or code was added to the system
and, if it is not original to FreeBSD, where it was drawn from.

•	 SEE ALSO is traditionally the last section of a man page. Remember
that Unix is like a language and the system is an interrelated whole.
Like duct tape, the SEE ALSO links hold everything together.

1. It’s called honesty. IT professionals may find this term unfamiliar, but a dictionary can help.

Getting More Help 7

If you don’t have access to the manual pages at the moment, many web-
sites offer them. Among them is the main FreeBSD website.

FreeBSD.org
The FreeBSD website (http://www.freebsd.org/) contains a variety of informa-
tion about general FreeBSD administration, installation, and management.
The most useful portions are the Handbook, the FAQ, and the mailing list
archives, but you’ll also find a wide number of articles on dozens of topics.
In addition to documents about FreeBSD, the website contains a great deal
of information about the FreeBSD Project’s internal management and the
status of various parts of the Project.

Web Documents
The FreeBSD documentation is divided into articles and books. The differ-
ence between the two is highly arbitrary: as a rule, books are longer than
articles and cover broader topics, while articles are short and focus on a
single topic. The two books that should most interest new users are the
Handbook and the Frequently Asked Questions (FAQ).

The Handbook is the FreeBSD Project’s tutorial-style manual. It is con-
tinuously updated, describes how to perform basic system tasks, and is an
excellent reference when you’re first starting a project. I deliberately chose
not to include some topics in this book because they have adequate cover-
age in the Handbook.

The FAQ is designed to provide quick answers to the questions most fre-
quently asked on the FreeBSD mailing lists. Some of the answers aren’t suit-
able for inclusion in the Handbook, while others just point to the proper
Handbook chapter or article.

Several other books cover a variety of topics, such as The FreeBSD
Developers’ Handbook, The Porter’s Handbook, and The FreeBSD
Architecture Handbook.

Of the 50 or so articles available, some are kept only for historical rea-
sons (such as the original BSD 4.4 documentation), while others discuss
the subtleties of specific parts of the system, such as serial ports or building
filtering bridges.

On the other hand, the official documentation is also pruned. The
Handbook and FAQ cover the current FreeBSD releases, and the documen-
tation team mercilessly prunes obsolete information. If you want to know
exactly what works with current FreeBSD, go to the Handbook.

These documents are very formal, and they require preparation. As
such, they always lag a bit behind the real world. When a new feature is first
rolled out, the appropriate Handbook entry might not appear for weeks or
months. If the web documentation seems out of date, your best resource for
up-to-the-minute answers is the mailing list archive.

8 Chapter 1

The Mailing List Archives
Unless you’re really on the bleeding edge, someone has probably struggled
with your problem before and posted a question about it to the mailing
lists. After all, the archives go back to 1994 and contain millions of mes-
sages. The only problem is that there are millions of pieces of email, any
one of which might contain the answer you seek. While the FreeBSD.org
website has its own search engine, you can also use any other search engine
that indexes https://lists.FreeBSD.org/.

When reviewing the mailing list archives, be sure to check the date.
The mailing list is forever. A discussion of hardware problems from 1995
might help you feel that you’re part of a long history of sysadmins that have
struggled with cruddy mainboards,2 but it probably won’t help you solve
the issue with your brand new server. These ancient messages are basi-
cally undead documentation, rising from the grave to give you false hope.
They’re part of the Project’s history, though, and won’t be purged.

The Forums
Like many other open source projects, FreeBSD has an online forum,
https://forums.FreeBSD.org/. A forum is much like a mailing list designed for
the web, except that quite a few of us old geezers don’t much care for them.
You can find many good discussions and instructions on the forums, how-
ever, and they’re a valuable information source.

Many people have also posted lengthy tutorials on the forums. Forum-
based tutorials should properly go in the Handbook or an official article,
but nobody’s done the work to move them over yet. Read the discussion
about such tutorials before following them; people will often point out
errors or exceptions, or comment that the whole tutorial is obsolete with a
newer version of FreeBSD. If you want to get involved in FreeBSD, convert-
ing these tutorials into official documentation would be a great place to
start.

The forums have less of a problem with truly old information, but only
because they became official in 2009. When the forums reach a quarter-
century old, they’ll have the same amount of undead documents. By then,
though, an even more whiz-bang discussion system will have come along—
or maybe, just maybe, we’ll have a better way of indexing and retrieving use-
ful information from online discussions.

Other Websites
FreeBSD’s users have built a plethora of websites that you might check for
answers, help, education, products, and general hobnobbing. Almost every
aggregation site such as lobste.rs and Reddit has a FreeBSD section, where
you can get links to new posts and articles. Following those links takes you
to a whole world of blogs. Also, many hosting companies include extensive

2. Computer hardware has gotten faster and smaller, but not particularly better.

Getting More Help 9

FreeBSD tutorials. While these are meant for the company’s customers,
they’re most often perfectly useful for everyone.

One of the most popular FreeBSD sites is FreshPorts, https://www.Fresh
Ports.org/. FreshPorts tracks changes to FreeBSD. Originally, it tracked
changes to add-on software available via the Ports system (which I’ll dis-
cuss in Chapter 16), but it quickly expanded to cover changes to the base
system, the documentation, the website, and more. If you’re looking to see
how FreeBSD has changed, start with FreshPorts.

The FreeBSD Journal (https://www.freebsdfoundation.org/journal/) is a
project of the FreeBSD Foundation. It’s a commercial project, but your sub-
scription fees go directly to the Foundation. Journal articles are reviewed by
some of the most experienced FreeBSD developers and users, so the articles
can be considered authoritative. Though as an editorial board member, I’m
biased.

The FreeBSD Foundation (https://www.freebsdfoundation.org/) supports
FreeBSD development, and I’d encourage everyone to throw a few bucks
their way. I find pages like the project list useful. This lists all of the devel-
opment projects that the FreeBSD Foundation has financially supported
and their current state. Looking through it when writing this paragraph, I
learned that FreeBSD has added wireless mesh support and multipath TCP.
I don’t need either of these right now, but who knows what will happen
next week?

Look around, and you’ll find your own favorites.

Using FreeBSD Problem-Solving Resources
Okay, let’s investigate a common question with FreeBSD resources. People
have asked about FreeBSD’s cryptographic support for decades, so let’s fig-
ure out some definitive answers about what cryptographic functions it does
and does not support.

Cryptography is a complicated topic, and searching for information on
it is complicated by the different ways it’s referred to. It might show up as
“cryptography,” “cryptographic,” the informal “crypto,” or related words,
like “encrypt.” We’ll try any and all of these.

Checking the Handbook and FAQ
Skimming the Handbook’s table of contents brings up entries for “Encrypting
Disk Partitions” and “Encrypting Swap,” which certainly seem relevant. The
FAQ points to these topics as well. That’s a start. Those entries will guide
you to appropriate man pages, which will lead you to more man pages.

Checking the Man Pages
Let’s query the man pages for cryptography, using both apropos and whatis.

$ apropos cryptography
krb5_allow_weak_crypto, krb5_cksumtype_to_enctype...
crypto, cryptodev(4) - user-mode access to hardware-accelerated cryptography

https://www.FreshPorts.org/
https://www.FreshPorts.org/

10 Chapter 1

This is only two entries, but the first entry is extremely long. Anything
that starts with krb5 is related to Kerberos authentication, which is a critical
feature for large networks and does involve cryptography, so that’s relevant.
The second entry is kind of interesting, though: there’s a man page for
crypto(4) and cryptodev(4). (Both words point to the same man page in
section 4, so the number only appears in one search result.) Let’s look at
the man page.

$ man crypto
crypto(3) OpenSSL crypto(3)

NAME
 crypto - OpenSSL cryptographic library

SYNOPSIS
DESCRIPTION
 The OpenSSL crypto library implements a wide range of cryptographic
 algorithms used in various Internet standards. The services provided by
 this library are used by the OpenSSL implementations of SSL, TLS and
 S/MIME, and they have also been used to implement SSH, OpenPGP, and
 other cryptographic standards.

OVERVIEW
 libcrypto consists of a number of sub-libraries that implement the
 individual algorithms.
--snip--

Hang on—OpenSSL is not a cryptographic device. Something obvi-
ously isn’t right. Look closely at this man page; it’s from section 3 of the
manual, the C Libraries section. You need to search the manual for other
entries containing crypto. Let’s try the more specific whatis(1) search.

$ whatis crypto
crypto, cryptodev(4) - user-mode access to hardware-accelerated cryptography
crypto(7) - OpenCrypto algorithms
crypto, crypto_dispatch, crypto_done, crypto_freereq, crypto_freesession,
crypto_get_driverid, crypto_getreq, crypto_kdispatch, crypto_kdone,
crypto_kregister, crypto_newsession, crypto_register, crypto_unblock,
crypto_unregister, crypto_unregister_all, crypto_find_driver(9) - API for
cryptographic services in the kernel

Bingo! We have three crypto man pages: one in section 4, section 7,
and section 9. This gives us information about the interface for programs
accessing hardware cryptographic features, a list of supported algorithms,
and a description of the kernel’s cryptographic services. Reading these will
give you a good grounding in FreeBSD’s cryptography support. The SEE
ALSO links in each will steer you to more information. You can now fill
your brain with crypto.

Getting More Help 11

Mailing Lists Archives and Forums
While the mailing lists and forums are different platforms, you search them
both in similar ways. You could use the FreeBSD website search engine to
search the mailing list archives, but I prefer either Google or DuckDuckGo.
A search for crypto site:lists.FreeBSD.org spits out a whole bunch of results, as
does crypto site:forums.FreeBSD.org.

The problem with using these sorts of discussions for general orienta-
tion on a topic is that folks plunge into nitty-gritty details. You won’t get an
overview of cryptography, but you’ll find details on this algorithm used with
that hardware acceleration on that version of FreeBSD. You can get a very
detailed answer if you craft a very detailed search.

Using Your Answer
Any answer you get for a question will make certain assumptions. If you’re
talking about cryptography, the discussion assumes you know why crypto is
important, how plaintext differs from ciphertext, and what keys are. This is
fairly typical of the level of expertise required for basic problems. If you get
an answer that is beyond your comprehension, you need to do the research
to understand it. While an experienced developer or system administrator
is probably not going to be interested in explaining public key encryption,
he or she might be willing to point you to a web page that explains them if
you ask nicely. Always remember that people have been asking that question
in relation to FreeBSD since 1994 and in relation to Unix for close to half
a century.

Asking for Help
When you finally decide to ask for help, do so in a way that allows people
to actually provide the assistance you need. No matter whether you prefer
email or a forum, you must include all the information you have at your
disposal. There’s a lot of suggested information to include, and you might
think you can skip some or all of it. If you slack off and fail to provide all
the necessary information, though, one of the following things will happen:

•	 Your question will be ignored.

•	 You’ll receive a barrage of email asking you to gather this information.

On the other hand, if you actually want help solving your problem,
include the following pieces of information in your message:

•	 A complete problem description. A message like How do I make my cable
modem work? only generates a multitude of questions: What do you want
your modem to do? What kind of modem is it? What are the symptoms?
What happens when you try to use it? How are you trying to use it?

12 Chapter 1

•	 The output of uname -a. This gives the operating system version and
platform.

•	 Any error output. Be as complete as possible, and include any messages
from the console or from your logs, especially /var/log/messages and any
application-specific logs. Messages about hardware problems should
include a copy of /var/run/dmesg.boot.

It’s much better to start with a message like “My cable modem won’t
connect to my ISP. The modem is a BastardCorp v.90 model BOFH667. My
OS is version 12.2 on a quad-core Opteron. Here’s the contents of /var/log/
messages and /var/run/dmesg.boot from when I try to connect. When I manu-
ally run dhclient, I get these messages.” You’ll skip a whole round of discus-
sions with a message like this, and you’ll get better results more quickly.

Composing Your Message
First, be polite. People often say things online that they wouldn’t dream
of saying to someone’s face. These lists are staffed by volunteers who are
answering your message out of sheer kindness. Before you click that Send
or Submit button, ask yourself, Would I be late for my dream date to answer this
message? The fierce attitude that is occasionally necessary when working
with corporate telephone-based support only makes these knowledgeable
people delete your emails unread or flat-out block your account on the
forum. Their world doesn’t have to include surly jerks. Screaming until
someone helps you is a valuable skill when dealing with commercial soft-
ware support, but it will actively hurt your ability to get support from any
open source project.

No matter whether you choose the forums or email, stay on topic. If
you’re having a problem with X.org, check the X.org website. If your window
manager isn’t working, ask the people responsible for the window manager.
Asking the FreeBSD folks to help you with your Java Application Server con-
figuration is like complaining to industrial machinery salespeople about
your fast-food lunch. They might have an extra ketchup packet, but it’s not
really their problem. On the other hand, if you want your FreeBSD system
to no longer start the mail system at boot time, that’s a FreeBSD issue.3

Sending Email

FreeBSD developers tend to use mailing lists, not the forums. This means
that the mailing lists can get you attention from people who know more
about the system, but it also means that you need to follow the etiquette for
that environment.

Send plaintext email, not HTML. Many FreeBSD developers read their
email with a text-only email program, such as Mutt. Such programs are very
powerful tools for handling large amounts of email, but they do not display
HTML messages without contortions. To see for yourself what this is like,

3. And it’s one that’s in the Handbook, the FAQ, the mailing list archives, and the forums.

Getting More Help 13

install /usr/ports/mail/mutt and read some HTML email with it. If you’re
using a graphic mail client, such as Microsoft Outlook, either send your
email in plaintext or make sure that your messages include both a plaintext
and an HTML version. All mail clients can do this; it’s just a question of dis-
covering where your GUI hides the buttons. What’s more, be sure to wrap
your text at 72 characters. Sending HTML-only email or email without
decent line-wrapping is an invitation to have your email discarded unread.

Harsh? Not at all, once you understand whom you’re writing to. Most
email clients are poorly suited to handling thousands of messages a day, scat-
tered across dozens of mailing lists, each containing a score of simultaneous
conversations. The most popular email clients make reading email easy, but
they do not make it efficient; when you get that much email, efficiency is far
more important than ease. As most people on those mailing lists are in a
similar situation, plaintext mail is very much the standard for them.

Top-posting replies to an email is discouraged. Make any comments
inline with the discussion to retain context.

On a similar note, most email attachments are unnecessary. You do not
need to use OpenPGP on messages sent to a public mailing list, and those
business-card attachments just demonstrate that you aren’t a system admin-
istrator. Don’t use a long email signature. The standard for email signatures
is four lines. That’s it—four lines, each no longer than 72 characters.4 Long
ASCII art signatures are definitely out.

When you’ve composed your nicely detailed and polite question, send it
to FreeBSD-questions@FreeBSD.org. Yes, there are other FreeBSD mailing lists,
some of which are probably dedicated to what you’re having trouble with.
As a new user, however, your question is almost certainly best suited to the
general questions mailing list. I’ve lurked on many of the other mailing lists
for a decade now and have yet to see a new user ask a question on any of
them that wouldn’t have been better served by FreeBSD-questions. Generally,
the questioner is referred back to FreeBSD-questions anyway. If your question
needs to be asked elsewhere, someone will tell you.

This goes back to the first point about politeness. Sending a message
to the architectural mailing list asking about what architectures FreeBSD
runs on is only going to annoy the people who are trying to work on archi-
tectural issues. You might get an answer, but you won’t make any friends.
Conversely, the people on FreeBSD-questions are there because they’re vol-
unteering to help people just like you. They want to hear your intelligent,
well-researched, well-documented questions. Quite a few are FreeBSD
developers, and some are even Core members. Others are slightly more
experienced users who have transcended what you’re going through now
and actively want to give you a hand up.

4. Yes, there is a standard for email signatures and how you should behave on the internet.
RFC 1855 should be enforced with a spiked club and a gel-fueled flamethrower.

14 Chapter 1

Forum Posting

The forums have a different population than the mailing lists. Some devel-
opers hang out there, but not as many as on the mailing lists. The people
on the forums are actively interested in helping you with your problems,
though.

Forums are somewhat easier than the mailing lists. You can post only
in formats the website supports. There are no concerns about top-posting
versus inline posting or unreadable HTML. This ease is part of their popu-
larity. If you get deeper into FreeBSD, though, you’ll eventually want to join
mailing lists.

But no matter which venue you choose, politeness is vital.

Responding to Email
Your answer might be a brief note with a URL or even just two words: man
such-and-such. If that’s what you get, that’s where you need to go. Don’t ask
for more details until you’ve actually studied that resource. If you have a
question about the contents of the reference you’re given, or if you’re con-
fused by the reference, treat it as another problem. Narrow down the source
of your confusion, be specific, and ask about that. Man pages and tutorials
are not perfect, and some parts appear contradictory or mutually exclusive
until you understand them.

Finally, follow through. If someone asks you for more information, pro-
vide it. If you don’t know how to provide it, learn how. If you develop a bad
reputation, nobody will want to help you.

The Internet Is Forever
Those of us who were on the internet back in the ’80s remember when we
treated it as a private playground. We could say whatever we wanted, to
whomever we wanted. After all, it was purely ephemeral. Nobody was keep-
ing this stuff; like CB radio, you could be a total jackass and get away with it.

All those early Usenet discussions? Yeah, Google recovered them and
put them online. Our beliefs were the exact opposite of true.

Potential employers, potential dates, even family members might scan
the internet for your postings to mailing lists or message boards, trying to
learn what sort of person you are. I’ve rejected hiring more than one per-
son based on their postings to mailing lists and discussion boards. I want to
work with a system administrator who sends polite, professional messages
to support forums, not childish and incoherent rants without sufficient
detail to offer any sort of guidance. And I’d think a lot less of my in-laws if I
stumbled across a message from one of them on some message board where
they acted like fools. FreeBSD discussions are widely archived; choose your
words well, because they will haunt you for decades.

Now that you know how to get more help when things go wrong, let’s
install FreeBSD.

2
B e f o r e Y o u I n s t a l l

Getting FreeBSD running on your com-
puter isn’t enough, no matter how much

that first install might satisfy you. It’s just
as important that your install be successful. A

successful install is one that works for its intended pur-
pose. Servers have very different requirements than
desktops, and a server’s intended function can completely change instal-
lation requirements. Proper planning before installing FreeBSD makes
installations much less painful. On the downside, you’ll get much less expe-
rience in reinstalling FreeBSD because you’ll do each install only once. If
mastering the installation program through exhaustive repeated practice
is your main goal, skip this boring “thinking ahead” stuff and read the next
chapter.

I’m assuming that you want to run FreeBSD in the real world, doing
real work, in a real environment. This environment might be your laptop—
while you might argue that your laptop isn’t a production system, I chal-
lenge you to erase all the data on it without backing up and then tell me

16 Chapter 2

it’s not a production system. If you’re installing on a system intended for
destructive testing, and you’re truly indifferent to its fate, I still recommend
following best practices so that you develop good habits.

Consider what hardware you need or have. Then decide how best to
use that hardware, what filesystem you should use, and how to arrange
your disks. Only then should you proceed to downloading and installing
FreeBSD.

Before you even start the install, though, let’s look at a couple concepts
you’ll hit throughout your FreeBSD experience: default files and universal
configuration language (UCL).

First, however, you must understand FreeBSD’s default configuration
filesystem.

Default Files
FreeBSD separates configuration files into default files and customization
files. The default files contain variable assignments and aren’t intended to
be edited; instead, they’re designed to be overridden by another file of the
same name.

Default configurations are kept in a directory called default. For example,
the boot loader configuration file is /boot/loader.conf, and the default configu-
ration file is /boot/defaults/loader.conf. If you want to see a comprehensive list of
loader variables, check the default configuration file.

During upgrades, the installer replaces the default configuration files
but doesn’t touch your local configuration files. This separation ensures
that your local changes remain intact while still allowing new values to be
added to the system. FreeBSD adds features with every release, and its devel-
opers go to great lengths to ensure that changes to these files are backward
compatible. This means that you won’t have to go through the upgraded
configuration and manually merge in your changes; at most, you’ll have to
check out the new defaults file for nifty configuration opportunities and
new system features.

The loader configuration file is a good example of these files. The /boot/
defaults/loader.conf file contains dozens of entries much like this:

verbose_loading="NO" # Set to YES for verbose loader output

The variable verbose_loading defaults to NO. To change this setting, do
not edit /boot/defaults/loader.conf—instead, add the line to /boot/loader.conf
and change it there. Your /boot/loader.conf entries override the default set-
ting, and your local configuration contains only your local changes. A sys-
admin can easily see what changes have been made and how this system
differs from the out-of-the-box configuration.

I encourage you to keep your configuration files in a version control
system. If you have a global configuration management system like Ansible,
that’s grand. Without such a system, a centralized repository using svn(1) or
the loved-or-loathed git(1) will do. Even local revision control systems like
rcs(1) can one day save your hide.

Before You Install 17

The default configuration mechanism appears throughout FreeBSD,
especially in the core system configuration.

Configuration with UCL
The universal configuration language, or UCL, is a common library for manag-
ing Unix-style configuration files. FreeBSD uses UCL for core functions,
such as the packaging system.

Any file that is in UCL can appear in one of several formats, such as
the traditional variable = setting format most Unix programs use, YAML,
or JSON. If you’ve configured any Unix software before, UCL won’t be a
problem.

We’ll see examples of UCL-style configuration throughout this book.
You don’t need to know the details of UCL at this time, merely that UCL is
a thing in FreeBSD.

FreeBSD Hardware
FreeBSD supports a whole bunch of hardware, including different architec-
tures and devices designed for each architecture. One of the Project’s goals
is to support the most widely available hardware, and that list of hardware
includes far more than the “personal computer.” Today’s fully supported
Tier 1 hardware includes 32-bit and 64-bit versions of the Intel-style processor.

Most modern hardware uses 64-bit extensions to Intel’s classic 32-bit
architecture. These extensions were created by AMD, and so the platform is
called amd64. Most hardware built in the last decade uses the amd64 stan-
dard. While amd64 hardware will boot both 32-bit and 64-bit versions of
FreeBSD, the 32-bit version contains a bunch of workarounds to support the
hardware’s features and expanded address space. Run 64-bit FreeBSD on
64-bit hardware.

The traditional 32-bit IBM-compatible PC dominated computing for
decades. FreeBSD supports that hardware with the i386 platform.1 Use

1. The i386 platform persists despite efforts to rename it amd32. I mean, who bought that
pricey Intel hardware anyway?

Don’t CopY t he De fault Conf Ig!

One common mistake is to copy the default configuration to the override file
and then make changes there directly. Such copying will cause major prob-
lems in certain parts of the system. You might get away with it in one or two
places, but eventually it will bite you. Copying /etc/defaults/rc.conf to /etc/
rc.conf, for example, will prevent your system from booting. You have been
warned.

18 Chapter 2

the i386 version of FreeBSD only on pure 32-bit hardware. FreeBSD offers
limited support for a few other hardware platforms, calling them Tier 2
architectures. Some of these are increasingly popular, such as ARM. FreeBSD
supports both 32-bit and 64-bit ARM CPUs with the arm and arm64 plat-
forms. Support for 64-bit ARM hardware is improving rapidly, and you
can expect ARM64 to become a Tier 1 platform soon. Other hardware
platforms are on their way out and have been demoted to Tier 2 before
being removed from the source tree. Additionally, you can run FreeBSD
on PowerPC (ppc) and 64-bit Sparc (sparc64) hardware, which never made
it up to Tier 1. Temporary breakage of bleeding-edge FreeBSD is accept-
able on Tier 2 platforms. Tier 2 platforms might or might not have packages
available.

You’ll also find Tier 3 platforms, which are highly experimental. RISCV
hardware is at Tier 3.

Tier 4 includes barely supported platforms. Some of them are long
obsolete and on their way out. The code still exists and could theoretically
be resurrected, but nobody cares enough to do the work. Others might be
on their way in but are not yet fully developed. Every platform that reaches
a higher tier passes through Tier 4 on its way up.

FreeBSD supports many network cards, hard drive controllers, and other
peripherals for each architecture. As many of these architectures use similar
interfaces and hardware, this isn’t as much of a challenge as you might think:
SATA is SATA anywhere, and an Intel Ethernet card doesn’t magically trans-
form when you put it in an arm64 machine.

While FreeBSD runs just fine on ancient hardware, that hardware must
be in acceptable condition. If your Pentium IV crashes because it has bad
RAM, installing FreeBSD won’t stop the crashes.

FreeBSD supports most RAID controllers and includes software to
manage most of them. However, I would encourage folks running the UFS
filesystem to use FreeBSD’s RAID options rather than a hardware RAID con-
troller. RAID controllers were created when managing storage redundancy
was so computing intensive that it monopolized the host’s processor. Today’s
computing hardware manages RAID without breaking a sweat. Additionally,
RAID controllers use custom formats on hard drives. Often, the only device
that can read those disks is another RAID controller of the exact same
model. The unexpected demise of a RAID controller can leave you trawl-
ing dubious internet auctions in search of old controllers. And if you think
those controllers are expensive new, wait until they’re five years old and the
only folks willing to buy them are those truly desperate for that exact model!
FreeBSD has a few different options for software RAID, and those disks can
be read with any similar hardware.

If you’re using ZFS, the warnings against RAID controllers become
“ just don’t.” ZFS expects to have direct access to the disks. Using a RAID
controller disables much of ZFS’s self-healing and error-correction abilities.

Before You Install 19

If you must use a RAID controller, disable RAID and have it serve as a stor-
age controller. While many RAID cards claim they can act as a RAID con-
troller, most actually serve up a bunch of one-drive RAID containers. Verify
that your RAID controller can be shifted to just-a-bunch-of-disks (JBOD) or
host-bus-adapter (HBA) mode before deploying ZFS on it.

This book uses amd64 as a reference platform. Everything should work
on a 32-bit i386 host, but amd64 is the world’s standard these days, so we’ll
use it. The test systems include a couple of iXsystems storage servers and a
variety of virtual machines.2

Proprietary Hardware
Some hardware vendors believe that keeping their hardware interfaces
secret prevents competitors from copying their designs and breaking into
their market. This has repeatedly been demonstrated to be terrible strategy,
especially as the flood of generic parts has largely drowned these secretive
hardware manufacturers. A few vendors still cling to their secrecy, however.
We call such devices proprietary hardware.

Developing device drivers for a piece of hardware without its interface
specifications is quite difficult. Some hardware can be well supported without
full documentation and is sufficiently common to make struggling through
this lack of documentation worthwhile.

If a FreeBSD developer has a piece of hardware, documentation for that
hardware, and interest in that hardware, he’ll probably implement support
for it. If not, that hardware won’t work on FreeBSD. In most cases, unsup-
ported proprietary hardware can be easily replaced with less expensive and
more open options.

Some vendors provide closed-source binary drivers for their hardware in
the form of kernel modules (see Chapter 6). Remember that while FreeBSD
refers to the kernel as modular, that means that you can choose which parts
to load and which to leave out. Once a kernel module is loaded, that module
has complete access to the entire kernel. It’s entirely possible for a video
driver kernel module to corrupt your filesystem. I strongly encourage you to
avoid binary drivers whenever possible, and to avoid hardware that requires
such drivers.

2. I no longer have customers, so, sadly, I was unable to test on their hardware.

Is M Y h a r Dwa r e suppor t e D?

The easiest way to determine whether a piece of hardware is supported is
to boot FreeBSD on it. If you don’t have physical access to the hardware yet,
check https://www.FreeBSD.org/ for the release notes for your chosen version.

20 Chapter 2

Hardware Requirements
Once upon a time, a host’s minimal hardware requirements were a big deal.
FreeBSD 1.0 supported very specific hard drive controllers and Ethernet
adapters, and needed several megabytes of RAM. Hardware that couldn’t
run FreeBSD was still in common use back then.

Most hardware requirements are a thing of the past. Any amd64 system
ever produced can run FreeBSD. Any server-grade i386 system built this
millennium can run FreeBSD. Yes, a Pentium with a meager 18GB SCSI-2
disk and a paltry 128MB of RAM offers mediocre performance, but if you
want good performance, try not using that hardware.

Just because a piece of hardware should work doesn’t mean it will work.
“Inexpensive” is not the same as “cheap.” Supported lousy hardware is still
lousy. Research your hardware before buying it.

FreeBSD runs fine on hypervisors, such as VMware, VirtualBox,
Xen, and KVM. Legitimate cloud providers offer FreeBSD images and
ISOs. FreeBSD runs just fine on the integrated bhyve(8) hypervisor and
OpenBSD’s vmm(8). You can do a base install with 128MB of RAM and
1GB of disk, although you’ll probably want more than that for serious
experimentation.

BIOS versus EFI
Back in the 1980s, IBM invented the basic input/output system (BIOS)
to handle low-level hardware tasks, like finding the operating system.
Generations of IT people have argued with the BIOS. BIOS had built-in
limitations that keep it from working well on modern hardware, though.
The modern BIOS-like thing is called the Extensible Firmware Interface (EFI).
EFI is far more flexible and powerful than the BIOS. FreeBSD boots just
fine from EFI, and using EFI permits FreeBSD to do some interesting
things, like full-disk encryption.

If your hardware supports EFI, use it. Only fall back to BIOS mode if
FreeBSD exposes a bug in your hardware’s EFI implementation, in which
case I’d encourage you to file a bug (see Chapter 24). Note that the hard-
ware setup utility might call BIOS mode “legacy boot” or “ancient crap” or
some such thing.

Disks and Filesystems
Perhaps the most critical part of installing a system is how you allocate disk
space and which filesystem you use. A base install of FreeBSD fits in about
half a gigabyte of disk, but the filesystem beneath those files dictates much
of how the system behaves.

Before You Install 21

FreeBSD Filesystems
FreeBSD supports two major filesystems, UFS and ZFS. Which should you
use? That depends entirely on what you want to do with your system. To
make a decision before booting your install media, you’ll need to under-
stand the basics of each.

FreeBSD’s Unix File System (UFS) is a direct descendant of the filesystem
shipped with 4.4 BSD and has been under continuous development for
decades. One of UFS’s original authors still hangs around the FreeBSD
community actively improving the filesystem, as well as offering support
and guidance to newer generations of developers. UFS’s place as the pri-
mordial FreeBSD filesystem has let it extend fingers throughout the operat-
ing system. Many other FreeBSD filesystems attach to the kernel’s virtual
memory system through infrastructure created for UFS. UFS is designed
to handle the most common situations effectively while reliably supporting
unusual configurations. FreeBSD ships with UFS configured to be as widely
useful as possible on modern hardware, but you can choose to optimize a
partition for trillions of tiny files or a handful of 1TB files if you desire.

ZFS (not an acronym) was introduced by Solaris in 2005 and inte-
grated into FreeBSD in 2007. Its youth seems to be a disadvantage, but it
combines technologies and concepts that have been used for much longer.
ZFS computes a checksum of every block of data or metadata and can use
it for error correction. Storage is pooled, meaning that you can dynami-
cally add more disks to an existing ZFS filesystem without recreating the
filesystem. ZFS has a whole bunch of cool features, such as highly effective
built-in replication and the ability to create and remove datasets (parti-
tions) on the fly.

While ZFS was written over a decade ago, it was written for future hard-
ware. All of those cool features impose a performance cost, and ZFS can
use a whole bunch of memory. While 32-bit systems can use ZFS, it’s not rec-
ommended. I resist running ZFS on hosts with less than 4GB of RAM and
refuse to run it on less than 2GB of RAM. UFS serves small and embedded
systems better than ZFS can.

ZFS makes a great storage system for a virtualization server, but it isn’t
necessarily right for virtual machines that use disk images. Many virtual
machines don’t get enough memory to effectively run ZFS. Additionally,
I’ve seen more than one KVM-based virtualization system fail to migrate
ZFS-based virtual machines. If you want to use ZFS on virtualized clients,
be sure your virtualization system supports restoring and migrating ZFS
disk images before installing a slew of hosts.

Some people insist that ZFS requires ECC RAM. ECC RAM is good,
and you should get it if you can. ZFS without ECC is no worse than UFS with
ECC, however. ECC provides a layer of integrity checks much like ZFS. If a
host’s non-ECC memory gets hit by a cosmic ray, ZFS writes corrupt data to
disk—just as if you used UFS.

Finally, ZFS assumes you’re doing things the ZFS way. ZFS is a combina-
tion filesystem and volume manager. It expects access to raw disks. Never,

22 Chapter 2

never, never use a RAID controller with ZFS; using RAID volumes as disks
interferes with ZFS’s self-healing features. Many RAID controllers claim to
offer raw disks, but what they really offer are one-disk RAID containers.3

UFS isn’t perfect either. A power failure or system crash can damage a
UFS filesystem. Repairing that filesystem takes time and system memory.
Roughly speaking, repairing each terabyte in a UFS filesystem requires
700MB of RAM. If you create a 7TB filesystem on a system with 6GB of
RAM, FreeBSD can’t automatically repair it.

To boil this all down, on a modern amd64 laptop or a server, I recom-
mend ZFS. Test ZFS with your virtualization system. If it works, use ZFS
for 64-bit virtual machines with 4GB of RAM or greater. On i386 hard-
ware or 64-bit hosts with less than 4GB of RAM, use UFS.

If you’re running a high-load, high-volume application and database,
experiment with both UFS and ZFS on your production hardware to see
which works better in your application before proceeding. Experiment with
different arrangements of disks, ZFS pool types, and GEOM RAID methods.
Some applications work better with UFS than ZFS. Netflix, for example,
delivers all of its content from FreeBSD hosts with massive amounts of
storage formatted with UFS. Before installing your massive storage server,
review Chapter 12 for additional ZFS deployment considerations.

All this advice is secondary to an iron rule: choose the filesystem that
best suits your environment.

Filesystem Encryption
Disk encryption has become a vital feature for many environments. A user
that loses his laptop doesn’t want to lose his data. Certain organizations
require that critical data be encrypted on resting, or inactive, disks. You
can’t retroactively encrypt a disk on an installed system.

FreeBSD supports two disk encryption systems: GEOM-Based Disk
Encryption (GBDE) and GELI. The gbde(8) encryption system is designed
for use in situations where the mere existence of encrypted data can
threaten the user’s life. It’s designed to protect a user who has a gun to
their head. Thankfully, that use case is rare; this book doesn’t cover it.

The geli(8) encryption system protects against more common risks. If
your laptop is stolen, GELI prevents the thief from reading the hard drive.4
If you store your company’s financial records on a GELI-encrypted parti-
tion, the service tech can’t read it during a service call. Chapter 23 covers
GELI in more detail.

Many organizations require disks containing financial data or intellectual
property to be rendered unreadable when decommissioned. You can send
such disks to be shredded, but encrypting the disks at install time is equally
effective. The disks become unreadable when you destroy the encryption key.

3. ZFS expert Allan Jude often declares that disks plot against us, but a disk’s plot pales next
to a RAID controller’s perfidy.

4. Mind you, casual thieves will consider a laptop running FreeBSD effectively encrypted
anyway.

Before You Install 23

I recommend encrypting either the entire system or none of the system.
Partially encrypted disks leave opportunities for skilled intruders to sabo-
tage your system and subvert the encryption.

Decide whether or not you need encryption before proceeding.

Disk Partitioning Methods
Disk partitioning lets you divide a disk or disk array into logical units. Even
hosts with average consumer-grade operating systems, such as the Windows
laptop you’ll find at your local big-box store, ship with multiple partitions
on the hard drive. A partitioning scheme is the system for organizing parti-
tions on a disk.

Computing is always in transition between technologies, and right now
we’re amidst a particularly annoying change in disk partitioning. Older and
smaller hardware uses master boot record (MBR) partitioning and is always
limited to disks of 2TB or smaller. Newer and larger hardware uses the
more flexible and generally better GUID Partition Tables (GPT) scheme.
FreeBSD manages both types of partition with gpart(8).

Which should you use in your install? Use GPT on any system that sup-
ports GPT, no matter the size of the disk. Use MBR if and only if the system
can’t support GPT. (You can use gptboot(8) and gptzfsboot(8) to bludgeon
GPT support onto MBR-only disks, but save that for your second or third
install.)

I’ve encountered more than one system that supports GPT but has
a hardware limitation that prevents it from using disks larger than 2TB.
While MBR might seem sensible on such a system, remember that GPT is
far more flexible. Even if you’re a sysadmin with decades of experience with
MBR, learn and use GPT.

Partitioning with UFS
If you decide to use UFS for your host, you’ll need to consider filesystem
partitioning. Thanks to the wide variety of disk sizes FreeBSD supports, the
installer doesn’t attempt to predict how you’ll want to partition your system.
Decide how to partition the disk before installing.

At a minimum, separate your operating system from your data. If this
host is for user accounts, create a separate /home partition. If you’re running
a database, create a partition for the database. Web servers should have a
partition for web data and probably a second one for logs.

As an old Unix hand, I usually create separate /usr, /usr/local, /var, /var/
log, and /home partitions, as well as a partition for root (/) and one for swap
space, plus a separate partition for the server’s application data. I’m told
that I’m a fuddy-duddy, though, and that my concerns about rogue pro-
cesses and users filling up the hard drive are obsolete these days.5

5. While I won’t stand in the way of progress, I reserve the right to snicker when progress
drives into the ditch.

24 Chapter 2

A base install of modern FreeBSD fits in about half a gigabyte. That’s
trivial next to today’s hard drives. On a modern disk running on real hard-
ware, assigning 20GB for the operating system and related programs should
be more than sufficient.

If you’re running FreeBSD on modern hardware, though, you probably
want to use ZFS rather than UFS.

Multiple Operating Systems
Back in the Stone Age (roughly 2001), being able to install four operating
systems on a single 6GB hard drive thrilled me. This was the only way to
run multiple operating systems on a desktop without swapping hard drives.

It’s still possible to do multiboot installations, but virtualization is far
better. You don’t have to shut down your main operating system to access
one of the other operating systems. The bhyve(8) hypervisor lets you run
other operating systems, including Microsoft Windows, on top of FreeBSD.
Other operating systems have hypervisors that let you run FreeBSD on top
of them.

Multiple Hard Drives
If you have multiple hard drives in your host, you should almost certainly use
them to create some sort of storage redundancy. If you’re using ZFS, use a
mirror or some sort of RAID-Z (see Chapter 12). If you use UFS, FreeBSD
supports software RAID. When you have a whole bunch of hard drives,
though, life gets a little more complicated.

The rule of thumb is still to separate your operating system from your
application data. If you have 30 hard drives, mirror 2 of them for your operat-
ing system install and use the others for your data. Like all rules of thumb,
this is debatable. But no sysadmin will tell you that this is an actively bad idea.

With many hard drives, consider which data passes through which disk
controller. If a disk controller dies, what happens to your system? If both of
your operating system disks are attached to a single controller and the con-
troller dies, your host goes down. Putting each drive on a different control-
ler offers redundancy. Ideally, attach your mirrored operating system disks
to different drive controllers.

Also, remember that SATA disk controllers split all their data through-
put among all the hard drives connected to them. If you have two disks on
a SATA controller, each disk works, on average, about half as fast as it would
work alone on the same channel. Port multipliers add disks but slash per-
disk performance.

Swap Space
When FreeBSD (and any other modern operating system) uses up all
the physical RAM, it can move information that’s been sitting idle from
memory into swap. Now that even laptops ship with 32GB of RAM, it’s hard

Before You Install 25

to imagine a host running out of memory, but never underestimate a pro-
gram’s ability to devour RAM. Virtual systems might be allocated very tiny
amounts of RAM.

So, how much swap space do you need? This is a matter of long debate
between sysadmins. The short answer is, “It depends.” What does it depend
on? Everything. Long-running wisdom claimed that a host should have twice
as much swap as it has physical memory, but today that’s not only obsolete but
dangerous. When a process starts catastrophically allocating memory—say,
in a bug caused by an infinite loop—the kernel kills the process once the
system runs out of virtual memory. A system with 32GB of RAM and 64GB of
swap has 96GB of virtual memory. The i386 platform limits memory usage
to 512MB per process, which means that the kernel stops such runaway pro-
cesses pretty quickly. 64-bit systems, like amd64, have vast virtual memory
spaces. A system thrashing gigabytes of memory between disk and RAM will
be excruciatingly slow. A modern host should have only enough swap space to
perform its task.

Multiple hard drives let you increase the efficiency of swap space by
splitting it between disks on different drive controllers. Remember, though,
that a crash dump must fit entirely within a single swap partition. FreeBSD
compresses crash dumps so that they don’t take up as much room, but still,
many small swap partitions can be counterproductive. If you have a large
number of drives, don’t use the application drives for swap; restrain swap
space to the operating system drives.

The main use for swap on modern systems is to have a place to store
a memory dump should the system panic and crash. FreeBSD uses kernel
minidumps, so they dump only the kernel memory. A minidump is much
smaller than a full dump: a host with 8GB RAM has an average minidump
size of about 250MB. Provisioning a gigabyte of swap per 10GB of RAM
should be sufficient for most situations.

If you have a truly intractable problem, though, you might need to
dump the entire contents of your RAM to swap. If I’m setting up an impor-
tant production system, I always create an unused partition larger than the
host’s greatest possible virtual memory space and tell the host to dump the
kernel to that partition. If my laptop has such a problem, I’ll just plug in a
flash drive and configure the system to dump on it instead.

Getting FreeBSD
Now that you’ve made all your decisions, you need a copy of FreeBSD. If
this is your first time installing FreeBSD, go to https://www.FreeBSD.org/
and look for the Get FreeBSD section at the top. Right by that, you’ll see a
list of supported releases, including (probably) two releases recommended
for production. Sometimes there’s one. Sometimes there’s three, but usu-
ally two.

26 Chapter 2

FreeBSD Versions
Two production releases? What madness is this?

FreeBSD development occurs in multiple tracks, as I will discuss in
Chapter 18. A few tracks coexist, in various states of support. Each track
receives bugfixes and incremental improvements. Newer tracks get new
features.

As I write this, FreeBSD.org lists two production releases, numbered
11.0 and 10.4. Version 11.0 is the most recently released version, but it’s also
a .0 release. It’s the first release on this track. It will have the newest features,
but it has the greatest likelihood of including unknown bugs. Version 10.4
is slightly older and lacks some features in version 11.0, but it’s the fourth
release along that track. It’s not guaranteed to be bug free, but many people
have run it in production for months or years. Any screamingly obvious prob-
lems have been fixed.

Every FreeBSD release eventually reaches End of Life (EoL) and loses
support. The security team stops producing patches and new packages are
no longer available. The older release will reach EoL before the newer ver-
sion. If you install FreeBSD 10.4 today, you’ll need to upgrade to 11 at some
point—but by then, you’ll be upgrading to something that’s not a .0 release.

FreeBSD averages two production releases at a time. This isn’t an invio-
late rule, only observed behavior. Sometime around when the 12.0 release
escapes, the 10 branch will reach EoL.

I personally will run FreeBSD .0 releases, but having been burned with
other operating systems before, I sympathize with the folks who categori-
cally reject .0 versions. If you’ve never used FreeBSD before, I recommend
installing the most recent production release. It has the latest device drivers
and newest features.

Follow the download link and grab your chosen version.

Choosing Installation Images
You can choose between several different formats of FreeBSD installation
media. All installation media is available both compressed with xz(1) and
uncompressed. If you can conveniently extract .xz files, download the com-
pressed versions. This saves the donated bandwidth and reduces download
time. Any modern operating system can either handle .xz files natively or
has add-on software for the task.

FreeBSD offers two styles of installation media. The first contains
only enough to boot the FreeBSD installer and bring up the network. The
installer then downloads the operating system files from a FreeBSD mirror
site. If you’re going to do multiple installs of the same FreeBSD version,
though, you’re better off downloading an installer that includes the operat-
ing system files.

The installer comes in both optical disk (.iso) and flash (.img) formats.
Choose the format that fits your system. If you’re installing a virtual machine,
an ISO is probably simplest.

Before You Install 27

Each installer image starts with the word FreeBSD, the release, and the
platform. If you’re downloading FreeBSD 12.0 for amd64 hardware, the
installer images will all have names that start with FreeBSD-12.0-RELEASE-
amd64. Right after that, the file identifies the installation type.

File endings are a tool to help you easily find what you need:

•	 Files ending in bootonly.iso are ISO images that boot the FreeBSD
installer. Using them means downloading FreeBSD over the network.

•	 Files ending in disc1.iso are ISO images that contain the full FreeBSD
installer. This image contains the operating system files.

•	 Files that end in mini-memstick.img are for flash drives. They boot the
FreeBSD installer but download the operating system files over the
network.

•	 Files that end in memstick.img are flash drive images that contain a com-
plete FreeBSD install.

FreeBSD also provides much larger DVD images. These contain all of
FreeBSD and a whole bunch of packages. They’re meant for people who
want to use FreeBSD without internet access. Please remember that all of
the FreeBSD Project’s bandwidth is donated; don’t download a massive
DVD image unless you actually need it.

Once you have an installation image, you need to get it on actual boot
media. Use your operating system’s built-in tools to burn the image to a
physical disk. While Windows now includes CD burning as a built-in feature,
it doesn’t include flash disk imaging. The FreeBSD Project recommends
Image Writer for Windows (https://sourceforge.net/projects/win32diskimager/), a
perfectly fine option. Bring up the program, select your flash drive and the
image, and click Start.

Network Installs
If your installation media only boots the installer and you need to grab the
FreeBSD distribution files over the network, you’ll need to configure the net-
work while the installer is running. If your network runs DHCP, the installer

f r e e BsD MIr rors

Old documents make much of the importance of choosing a good mirror
site for installation. Ignore all that. The FreeBSD software distribution site, ftp
.freebsd.org/, is a worldwide collection of mirror servers. When you grab the
installation media, packages, or any other FreeBSD materials, you’re automati-
cally directed to the closest mirror site. If you want to use a specific mirror
rather than the GeoDNS-selected one, choose it by name from the list in
Appendix A of the FreeBSD Handbook (discussed in Chapter 1).

28 Chapter 2

should just pick up your network configuration. If not, your FreeBSD
host will need a valid network configuration. Before starting the installer,
gather:

•	 A valid IP address and netmask

•	 The default gateway for your network

•	 The nameserver IP addresses

If you must use a proxy server to reach the internet, you’ll need its con-
figuration as well.

Armed with this information, you can install FreeBSD.

3
I n s t a l l I n g

You’ve thought about what you want your
FreeBSD install to do. You’ve chosen hard-

ware. You’ve downloaded boot media and
burned it to a flash drive or optical disk. You’ve

found a working USB keyboard and set up your test
machine to boot from that media. Now let’s walk through a FreeBSD install.
Boot up your install media and follow along.

Throughout this walkthrough, I’ll mention the various key mappings,
quirks, and shortcuts the installer provides. One annoyance is that the
installer offers no back button: if you screw up something basic, like the
disk partitioning, start over.

My desktop, of course, has been installed and running for years. I’ve
somehow been coerced to setting up a system for Bert,1 though. If he doesn’t
like my installation methods, he can read this chapter and install his own
dang machines.

1. For those who skipped the Acknowledgments: Bert donated $800 to the FreeBSD
Foundation in exchange for the privilege of being abused herein. I’m not gratuitously
tormenting Bert; he paid real money for it.

30 Chapter 3

Core Settings
Upon booting the install media, I see the boot loader screen with its 10-second
countdown, as shown in Figure 3-1.

Figure 3-1: The boot loader

Hitting enteR skips the 10-second counter.
I then get the selection menu shown in Figure 3-2.

Figure 3-2: Selecting Install

Installing 31

In Chapter 5, we’ll discuss using the live CD option to repair dam-
aged systems. For right now, choose Install (the default) by pressing enteR.

You might notice that the first letter of each choice is in red, while
most of the text is gray. You can type that letter to make a choice rather
than arrowing over. Here, entering S takes you to a shell, while L starts
the live CD image.

You’re now entering bsdinstall(8), FreeBSD’s old-fashioned installer.
While other operating systems have pretty graphical installers with mouse-
driven menus and multicolor pie charts, FreeBSD’s looks like an old
DOS program. You’ll start your install by choosing a keymap, as shown
in Figure 3-3.

Figure 3-3: Keymap selection

Bert’s typing habits are atrocious, and he really needs a better key-
board layout. You can arrow up and down this list, but that’s slow. pageUp
and pageDown take you up and down a whole screen at a time, while
home and enD take you to the top and bottom, respectively. When I find
a keymap I like, I press enteR. I can then test the keymap, as shown in
Figure 3-4.

The keymap looked familiar, but many keymaps have similar names.
Hitting enteR brings up a field where I can hammer on the keyboard to
test whether the keymap fits what I think I picked. If it looks good, enteR
brings me back to this screen, where I can hit the up arrow and enteR to
proceed.

The installer then asks me for a hostname, as Figure 3-5 shows.

32 Chapter 3

Figure 3-4: To test or not?

Figure 3-5: Entering a hostname

I’m my own network administrator, so I can use any name I want. Your
organization might have different rules. Hit enteR to proceed.

Distribution Selection
While setting a keymap and a hostname are important, the first truly
FreeBSD-specific item comes up when we choose distributions to install.
In FreeBSD, a distribution is a particular subset of FreeBSD components.

Installing 33

When you install FreeBSD, you’ll need to pick which distributions you
want. The installer doesn’t list any mandatory selections: you must have
a kernel and the basic userland. Some parts are optional, however (see
Figure 3-6).

Figure 3-6: Distributions

You don’t need any of these, but some will be very useful for certain
situations.

base-dbg Debugging symbols for the base system, useful to programmers

doc FreeBSD’s official documentation, such as the Handbook

kernel-dbg Debugging symbols for the kernel, useful to programmers

lib32-dbg Debugging symbols for 32-bit libraries (only on 64-bit systems)

lib32 32-bit compatibility libraries (only on 64-bit systems)

src Source code of installed operating system

tests FreeBSD’s self-test tools

If you’re programming or developing on FreeBSD, or developing
FreeBSD itself, arrow up and down to select the debugging libraries. New
users might find the documentation helpful. Use the spacebar to select and
deselect an option, and enteR to proceed to disk partitioning.

I recommend always installing the operating system source code. It
takes up very little space and can be an invaluable resource.

In my case, I want Bert to bother me as little as possible. I give him all
the debugging libraries and the system source code, so if he whinges I can
tell him to read /usr/src.

34 Chapter 3

Disk Partitioning
FreeBSD supports two primary filesystems: UFS and ZFS (see Figure 3-7).
Chapter 2 discusses choosing between them, so I won’t cover that again.
Now I need to stop waffling and make a choice.

Figure 3-7: Choosing a filesystem

Experienced users can select Manual or, for the hardcore, Shell.
I’m letting you follow along, though, so I’ll either choose Auto (UFS) or
Auto (ZFS). I’ll use UFS to demonstrate disk partitioning and then go
on to ZFS.

UFS Installs
Because the default UFS install is straightforward and many people use the
default options just fine, I’m choosing some more obscure options to dem-
onstrate using bsdinstall. I’m asked first how much of the disk I want to use,
as shown in Figure 3-8.

If Bert wants to use multiple operating systems, he can fire up a hyper-
visor. I hit enteR to use the whole disk. A pop-up appears, warning me that
I’m about to erase the disk. Yes, I am. That’s the point. Select Yes. I’m then
asked to choose a partition scheme, as shown in Figure 3-9.

Installing 35

Figure 3-8: Disk use

Figure 3-9: Partition schemes

Bsdinstall conservatively defaults to using MBR partitions. Just about
everything supports MBR partitions, much like everything supports BIOS
rather than EFI, but GPT will cause me much less pain later. I arrow up
one space and select GPT, bringing up the default GPT partitioning (see
Figure 3-10).

36 Chapter 3

Figure 3-10: Default GPT partitioning

You can hit enteR right now to finish your UFS partitions, but I’m cer-
tain Bert needs special treatment. Let’s create special partitioning just for him.

Every GPT system needs a freebsd-boot partition, so leave ada0p1 alone.
Arrow down to ada0p2, and either hit D or arrow over to the Delete button
to blow it away. Do the same for ada0p3, leaving you with a single partition
and a bunch of empty space, as seen in Figure 3-11.

Figure 3-11: Only the boot loader

Now decide how you want this disk partitioned. The disk has 16GB of
space, which I’m dividing up as follows:

•	 512KB freebsd-boot EFI boot partition

•	 1GB swap

Installing 37

•	 4GB emergency dump space (see Chapter 24)

•	 1GB root (/)

•	 512MB /tmp

•	 2GB /var

•	 Everything else in /usr

The boot partition already exists, so I arrow over to Create or just hit C
to add the first partition, bringing up the dialog in Figure 3-12.

Figure 3-12: Adding a new partition

The arrow keys will move you between the options at the bottom of the
screen, but you’ll need the taB key to bounce up into the text area at the top.
Once you’re in the text area, the arrow keys will move you from field to field
and back and forth in each line. Our first partition will be swap space, so use
the DeLete key to erase the contents of the Type field and enter freebsd-swap.
Set the size to 1GB. Every partition should have a label, so I label this swap0.
We discuss labels in Chapter 10.

Now hit taB to leave the text boxes and select OK.
I’m pretty sure that Bert is going to panic this machine and do it in

such a terrible way that I’m going to have to dump all of the host’s memory
to disk. The host has 4GB of RAM, so I create a 4GB dump partition. It’ll
look exactly like the swap space, including a type of freebsd-swap, but I set
the size to 4GB and label it dump0.

The root partition is a little different, as shown in Figure 3-13. The
root partition needs a filesystem, so set the type to freebsd-ufs. I’ve decided
to allocate it 1GB. The root partition always has a mountpoint of /, and I
label it root.

38 Chapter 3

Figure 3-13: Adding the root partition

The remaining partitions for /tmp, /var, and /usr all look similar. When
you’ve used up all the disk space, you’ll get a partition table much like that
in Figure 3-14.

Figure 3-14: Complete custom GPT/UFS partition table

The installer asks me whether I’m sure. This layout should keep Bert
from complaining that log files have overflowed his system, so I’m content.
Select Finish to partition the disk and have the install proceed.

Installing 39

ZFS Installs
If I choose ZFS, I’ll get the ZFS configuration screen shown in Figure 3-15.

Figure 3-15: ZFS configuration

The default option is Install, which will give you an error because you
haven’t selected a ZFS virtual device type yet. You’ll need to start with Pool
Type/Disks. Before we get there, though, let’s look at the other choices.

The default name of a FreeBSD root ZFS pool is zroot. There’s no real
reason to change this, unless you want your system to look different than
any other ZFS system out there or your organization has standards for
naming pools.

The Force 4K Sectors option is important for reasons we’ll discuss in
Chapter 10. Unless you know for absolutely certain that your disks have
512-byte sectors, leave this option at Yes.

If you choose Encrypt Disks, you’ll be prompted for a passphrase for
full-disk encryption. FreeBSD uses GELI for ZFS encryption (see Chapter 23),
although when ZFS gets native encryption this might change.

For Partition Scheme, choose GPT. If your host can reasonably run
ZFS, it supports GPT.

How much swap space do you need? Adjust Swap Size as necessary.
I want this host to have enough space for a full kernel memory dump,
because Bert, so I adjust the swap size to 4GB.

Hosts with multiple hard drives can use swap partitions on multiple
drives. When a drive containing a swap partition fails, the host loses every-
thing in that swapped-out chunk of memory and crashes. Choosing Mirror
Swap gives your swap space redundancy but uses more disk space.

Should you choose Encrypt Swap? There’s very little performance cost
and, in case your hard drives are stolen, potential advantages.

40 Chapter 3

Now go up and choose Pool Type/Disks to select a ZFS virtual device
type, as shown in Figure 3-16.

Figure 3-16: Virtual device selection

Chapter 12 discusses ZFS virtual devices at length. Selecting a virtual
device type is the most important decision you’ll make for a ZFS system.
For a single-disk host, however, the only viable option is stripe. Select it
and you’ll get an option to choose the hard drives in your ZFS pool (see
Figure 3-17).

Figure 3-17: ZFS disk selection

Use the spacebar to select the disks you want to include in this pool. As
this host has only one disk, I select it and then select OK to continue.

Installing 41

The installer returns me to the main ZFS configuration screen. I
double-check my selections (GPT partitioning and 4GB swap) and then
arrow up to select Install. The installer gives me a final “Are you really, really
sure?” warning. I’m sure.

Network and Service Configuration
Once you approve the disk layout, bsdinstall writes the new partition table
to disk, creates filesystems, and extracts the distributions you’ve chosen
without further intervention. The installer moves on to set up the network,
services, and users.

First, you are prompted for the system’s new root password. The root
user can do absolutely anything to the system, so make it a good password.
You’ll have to enter it twice to have it accepted.

Arrow up and down to choose a network interface. This host has only a
single interface, so I hit enteR to configure it (see Figure 3-18).

Figure 3-18: Selecting network interface

Next, we’re asked whether we want to configure IPv4 for this interface. If
you’re not sure what IPv4 is, but you want internet, select Yes. I certainly do.
We’re then asked whether we want to use DHCP to automatically configure
networking. If this is a disposable system, then probably, but this is going to
be Bert’s personal server. It needs a special network configuration. I select No
and bring up the Network Configuration screen, shown in Figure 3-19.

Your cursor is already up in the text area. Use the arrow keys to move
down, not taB or enteR. See how OK is highlighted? Once you hit enteR,
the installer proceeds to the next screen whether you’ve set up the network
or not. Fill in the appropriate values for the IP address, subnet mask, and
default gateway. If you don’t know what these are, you should’ve used DHCP

42 Chapter 3

or read Chapter 7. Don’t worry about making a mistake here; if you goof,
the last screen of the installer offers a chance to change the network con-
figuration. Hit enteR when you’re done.

Figure 3-19: Network configuration

Once you’ve configured IPv4, the installer proceeds to IPv6. You’re all on
modern networks, so go ahead and configure it. The IP address, netmask,
and default router settings are much like IPv4. The installer also supports
SLAAC, also known as DHCP for IPv6. If you’re still on a decrepit IPv4-only
network, though, skip IPv6.

You’re then given the option to configure DNS. Here, I enter the search
domains and nameservers for my network (see Figure 3-20).

Figure 3-20: Resolver configuration

Installing 43

If you have IP address information for your network but don’t know the
search domains and the name server IP addresses, copy those values from
another machine.

The installer now requests the host’s time zone. Rather than dump-
ing all the time zones on you in a giant list, you get a series of hierarchical
menus, as shown in Figure 3-21.

Figure 3-21: Time zone selector

Choose your continent. You’ll then be asked for a region. I choose
United States—Bert’s in Europe, yes, but I want him to be painfully aware
that if he requests help during his mornings, he’s not going to get it.
Remember that the enD and home keys take you to the top and bottom
of these long lists; it’s much faster to get to the United States by hitting
enD and going up a couple spots than to page through every country in
the Western Hemisphere, including all those little islands. I then get to
choose from any time zone in the United States. US citizens will once
again be reminded that many states have really messed-up time zones.2
Even my home of Michigan isn’t innocent. But I choose Michigan and am
given a chance to confirm my choice (see Figure 3-22).

I recognize EDT, or Eastern Daylight Time. If I didn’t, I’d select No and
try again.

The next few screens give you the option to set the system clock.
Weirdly, the default is set to Skip. While you can enter the time and date-
here, it’s much easier to set the time from the network, as we’ll do later.

Now we can enable a few services at system startup, as shown in
Figure 3-23.

2. Indiana, I’m looking at you.

44 Chapter 3

Figure 3-22: US time zones

Figure 3-23: Startup services

Most hosts need SSH, and you should always enable kernel crash dumps.
Other services might not fit your network, though. I always enable ntpd
(see Chapter 20) and local_unbound (see Chapter 8) so that the host’s clock
synchronizes itself to the public NTP servers and keeps a local DNS cache,
but if your host doesn’t have access to the public internet, they aren’t as use-
ful. Laptop users might investigate moused(8) and powerd(8).

We then get the system hardening options shown in Figure 3-24.

Installing 45

Figure 3-24: Hardening options

We discuss the hardening options at length in Chapter 19. If this is your
first install, and you want to have a gentle learning experience, leave them
all off. If you want to learn how to work on a more properly secured system,
select everything. I enable every hardening option on all of my hosts, and
learning to work with improved security will be good for Bert.

Now we can add a user to the system (see Figure 3-25). I recommend
adding at least one unprivileged user to each system so that you can log on
to the newly installed host without going straight to root. If you have a pro-
visioning system such as Ansible that requires a user account, create that
account here. This host is for Bert, so I’m giving him an account.

Figure 3-25: Adding a user

46 Chapter 3

Chapter 9 discusses creating user accounts in detail, but I’ll give some
reasonable settings for the first account here. Bert’s preferred account name
is xistence, and I’ll indulge him in it. I fill in his first name, and just hit enteR
to take the default Uid and Login group. He’s the primary user on this system,
so I add him to the wheel group, allowing him to use the root password. He
gets the tcsh shell because it’s my favorite.

If you have a policy on where user home directories go, follow it. Other-
wise, take the defaults. Similarly, while you can adjust the password settings
to fit the default, generally speaking, it’s easiest to type the user’s password.
Many people recommend a password like ChangeMe, but I prefer to go with
passwords that actively encourage users to change them as soon as possible—
maybe something like BertIsTheWorstIMeanTheWorstHumanBeingEver.3 And if
I lock out the account after I create it, I’ll need to unlock it only when he
wants to use the machine.

After adding one user, I’m asked whether I want to add another. If I add
an account for myself, I’ll bear partial liability for this host. I say No.

Finishing the Install
The core configuration, shown in Figure 3-26, is all done! I then get a
chance to go back and tweak some settings.

Figure 3-26: Final configuration

Most of these options come straight from earlier in the install process.
Do you want to go back to change the network configuration? Choose
Network. Should you add another user or enable more services? Did you
enter the wrong password? This is your chance to right those wrongs.

When you think you’re ready, select Exit to discover you don’t have to
be done.

3. This isn’t true. Bert’s not even that accomplished.

Installing 47

The installer covers the basics, but every environment is unique. Manual
configuration offers a command prompt chrooted into the system that gives
you the chance to make any final changes (see Figure 3-27). Choose No and
you’ll be told to remove the boot media and reboot. I often find tweaking a
host before its first boot simplifies my life, so I choose Yes.

Figure 3-27: Manual configuration

I’m chrooted into the installed host with a root shell. The exact tasks
you perform here depend entirely on your network. Chapter 9 discusses
chflags(8) and schg. Now I type exit, as shown in Figure 3-28.

Figure 3-28: Final shell configuration

Then I reboot, pull the installation media, and boot into a complete
FreeBSD install!

4
S t a r t M e U p ! t h e B o o t p r o c e S S

While FreeBSD boots easily and automati-
cally when you turn on the power, under-

standing exactly what happens at each stage
will make you a better system administrator.

Intervention during the boot process is rarely neces-
sary, but one day you’ll be glad you know how to do it.
And once you’re comfortable with adjusting the boot
process, you’ll find you can solve problems you’ve pre-
viously accepted and endured.

We’ll start by discussing how the system loader starts and gathering
information from the loader. You can use the loader to change the early
boot process, including booting alternate kernels and starting in single-user
mode. We’ll cover serial consoles, a standard system management tool. The
FreeBSD multiuser startup process is responsible for starting all the various

50 Chapter 4

services that make your computer useful, and we’ll give attention to that as
well. In addition, we’ll cover the information FreeBSD records about the
boot process and how FreeBSD turns itself off without corrupting data.

The boot process itself can be divided into three main parts: the
loader, single-user startup, and multiuser startup.

Power-On
A computer needs enough brains to find and load its operating system. For
many years, this facility came from the basic input/output system (BIOS).
Newer systems use the Unified Extensible Firmware Interface (UEFI) instead
of the BIOS. New installs should use UEFI. Other hardware platforms have
console firmware or bootroms that perform the same function, but we’re
focused on commodity hardware, so we’ll cover UEFI and BIOS.

Unified Extensible Firmware Interface
UEFI is a replacement for the three-decades-old BIOS. Any new system will
come with UEFI enabled and will expect to use it.

UEFI searches the boot drive for a partition marked as a UEFI boot
partition. Despite what the special mark might imply, that partition con-
tains only a FAT filesystem with a specific directory and file layout. UEFI
executes the file /EFI/BOOT/BOOTX64.EFI. That file might be a fancy
multi-OS boot loader, or it might dump you straight into an operating
system. In FreeBSD, the UEFI boot fires up the boot loader, /boot/loader.efi.

UEFI is comparatively new. If your new system has trouble booting
FreeBSD, you might try enabling a BIOS or “legacy” mode. If the system
boots FreeBSD in BIOS mode but not with UEFI, please file a bug, as dis-
cussed in Chapter 24.1

Basic Input/Output System
The primordial Intel PC used a basic input/output system (BIOS) with just
enough brains to look for an operating system somewhere on a disk. A BIOS

1. Such systems should be rare, but with your luck, you’ll find one.

r ecUrSion Wa r ning

Some of the topics in this chapter reference material found in later chapters.
Those later chapters, in turn, require that you understand this chapter first.
There’s no good place to begin learning. If you don’t quite understand a part
of this chapter, just skim over it and continue reading; it really will coalesce in
your mind as you proceed.

Start Me Up! The Boot Process 51

searches for a disk partition marked active and then executes the first section
of that partition. For FreeBSD, that chunk of data is called the loader. Every
FreeBSD system has a reference copy of the loader as /boot/loader.

A BIOS has all sorts of limitations. The boot loader must reside in a
very specific section of the disk. BIOS can’t boot from disks larger than
2.2TB. The target boot loader must be smaller than 512KB—huge by 1980
standards, yes, but paltry today. The installed loader is a binary, not a file-
system, so even minor changes require recompiling. UEFI has none of these
limitations and offers modern features, like mouse support.

Ultimately, though, a BIOS and UEFI both have the goal of getting
your system to the FreeBSD loader.

The Loader
The loader, or boot blocks, loads the FreeBSD kernel and presents you with a
menu before starting that kernel. The loader(8) program offers a menu of
seven options on the left. A new FreeBSD system presents these options:

1. Boot Multi User [Enter]

2. Boot Single User

3. Escape to loader prompt

4. Reboot

5. Kernel: default/kernel (1 of 2)

6. Configure Boot Options…

7. Select Boot Environment…

Each option highlights certain words or characters, such as S in “Boot
Single User” and esc in “Escape to loader prompt.” Select an option by
pressing the highlighted character or the number.

The options at the top of the menu control how FreeBSD boots. We’ll
look at each option in turn. If you wait 10 seconds, the loader automatically
boots FreeBSD by default.

The options at the bottom half let you fine-tune the boot process. You
can tweak how you want the system to boot, as we’ll discuss later, and then
choose one of the preceding booting options.

Boot Multi User [Enter]
This is a normal boot. Hit enteR to boot immediately, skipping the 10-second
delay.

Boot FreeBSD in Single-User Mode
Single-user mode is a minimal startup mode that’s very useful on damaged
systems, especially when the damage was self-inflicted. It’s the earliest point
where FreeBSD can provide a command prompt, and it’s important enough
to have its own section later in this chapter.

52 Chapter 4

Escape to Loader Prompt
The loader includes a command line interpreter, where you can issue com-
mands to tweak your system to boot exactly the way you need. We’ll cover
this in detail in “The Loader Prompt” on page 55.

Reboot
Once more, this time with feeling!

Of these options, the most important are single-user mode and the
loader prompt.

Single-User Mode
FreeBSD can perform a minimal boot, called single-user mode, that loads the
kernel and finds devices but doesn’t automatically set up your filesystems,
start the network, enable security, or run any standard Unix services. Single-
user mode is the earliest the system can possibly give you a command prompt.

Why use single-user mode? If a badly configured daemon hangs the
boot, you can enter single-user mode to prevent it from starting. If you’ve
lost your root password, you can boot into single-user mode to change it. If
you need to shuffle critical filesystems around, again, single-user mode is
the place to do it.

When you choose a single-user mode boot, you’ll see the regular system
startup messages flow past. Before any programs start, however, the kernel
offers you a chance to choose a shell. You can enter any shell on the root par-
tition; I usually just take the default /bin/sh, but use /bin/tcsh if you prefer.

Disks in Single-User Mode
In single-user mode, the root partition is mounted read-only and no other
disks are mounted. (We’ll discuss mounting filesystems in Chapter 10, but
for now just follow along.) Many of the programs that you’ll want to use are
on partitions other than the root, so you’ll want them all mounted read-
write and available. The way to do this varies depending on whether you’re
using UFS or ZFS.

UFS in Single-User Mode

To make all the filesystems listed in the filesystem table /etc/fstab usable, run
the following commands:

fsck -p
mount -o rw /
mount -a

The fsck(8) program “cleans” the filesystems and confirms that they’re
internally consistent and that all the files that a disk thinks it has are actu-
ally present and accounted for.

Start Me Up! The Boot Process 53

The root filesystem is mounted read-only. Whatever drove us to single-
user mode probably requires changing the root filesystem. Remount the
root filesystem read-write.

Finally, the -a flag to mount(8) activates every filesystem listed in
/etc/fstab (see Chapter 10). If one of these filesystems is causing you prob-
lems, you can mount the desired filesystems individually by specifying them
on the command line (for example, mount /usr). If you’re an advanced user
with NFS filesystems configured (see Chapter 13), you’ll see error messages
for those filesystems at this point because the network isn’t up yet. If the
host has network filesystems in /etc/fstab, mount only the UFS filesystems as
shown next.

If you have trouble mounting partitions by name, try using the device
name instead. The device name for the root partition is probably /dev/ad0s1a.
You’ll also need to specify a mount point for this partition. For example, to
mount your first IDE disk partition as root, enter the command:

mount /dev/ad0s1a /

If you have network filesystems on your server but your network isn’t up
yet, you can mount all your local partitions by specifying the filesystem type.
Here, we mount all of the local filesystems of type UFS, which is FreeBSD’s
default filesystem type:

mount -a -t ufs

You can now access your UFS filesystems.

ZFS in Single-User Mode

To make all of your ZFS datasets available, use zfs mount. You can either
mount individual datasets by name or mount everything that’s marked as
mountable with -a.

zfs mount -a

ZFS will perform its usual integrity checks before mounting the datasets.
Most of the datasets will be exactly as accessible as in multiuser mode,

but the dataset mounted as root will still be read-only. Turn that off. Here,
I’m setting the root dataset to read-write on a default FreeBSD install.

zfs set readonly=off zroot/ROOT/default

You can now change the filesystem.

Programs Available in Single-User Mode
The commands available for your use depend on which partitions are
mounted. Some basic commands are available on the root partition in /bin
and /sbin, and they’re available even if root is mounted read-only. Others

54 Chapter 4

live in /usr and are inaccessible until you mount that partition. (Take a look
at /bin and /sbin on your system to get an idea of what you’ll have to work
with when things go bad.)

If you’ve scrambled your shared library system (see Chapter 17), none
of these programs will work. If you’re that unlucky, FreeBSD provides stati-
cally linked versions of many core utilities in the /rescue directory.

The Network in Single-User Mode
If you want to have network connectivity in single-user mode, use the shell
script /etc/netstart. This script calls the appropriate scripts to start the net-
work, gives IP addresses to interfaces, and enables packet filtering and rout-
ing. If you want some, but not all, of these services, you’ll need to read that
shell script and execute the appropriate commands manually.

Uses for Single-User Mode
In single-user mode, your access to the system is limited only by your
knowledge of FreeBSD and Unix.

For example, if you’ve forgotten your root password, you can reset it
from single-user mode:

passwd
Changing local password for root
New Password:
Retype New Password:
#

n o t e You’ll notice that you weren’t asked for the old root password. In single-user mode,
you’re automatically root, and passwd(8) doesn’t ask root for any password.

Or, if you find that there’s a typo in /etc/fstab that confuses the system
and makes it unbootable, you can mount the root partition with the device
name and then edit /etc/fstab to resolve the issue.

If you have a program that panics the system on boot and you need to
stop that program from starting again, you can either edit /etc/rc.conf to dis-
able the program or set the permissions on the startup script so that it can’t
execute.

chmod a-x /usr/local/etc/rc.d/program.sh

We’ll discuss third-party programs (ports and packages) in Chapter 15.
You need to understand single-user mode to be a successful sysadmin,

and we’ll refer to it throughout this book. For now, though, let’s look at the
loader prompt.

SyS t e M Fa ilUr e S v e rSUS h UM a n Fa il ingS

There’s a reason all of these examples involve recovering from human errors.
Hardware failures aren’t common, and FreeBSD failures, even less so. If it
weren’t for human error, our computers would almost never let us down. As
you learn more about FreeBSD, you’ll be more and more capable in single-
user mode.

Start Me Up! The Boot Process 55

The Loader Prompt
The loader prompt allows you to make basic changes to your computer’s boot
environment and the variables that must be configured early in the boot pro-
cess. It’s not a Unix-like environment; it’s cramped and supports only a mini-
mal feature set. When you escape to a loader prompt (the third option in the
boot menu), you’ll see the following:

Type '?' for a list of commands, 'help' for more detailed help.
OK

This is the loader prompt. While the word OK might be friendly and
reassuring, it’s one of the few friendly things about the loader environment.
This isn’t a full-featured operating system; it’s a tool for configuring a sys-
tem boot that’s not intended for the ignorant nor the faint of heart. Any
changes you make at the loader prompt affect only the current boot. To
undo changes, reboot again. (We’ll see how to make loader changes perma-
nent in the next section.)

To see all available commands, enter a question mark.

OK ?
Available commands:
 heap show heap usage
 reboot reboot the system
 lszfs list child datasets of a zfs dataset
--snip--

Many loader commands aren’t useful to anyone except a developer, so
we’ll focus on the commands useful to a system administrator.

Viewing Disks
To view the disks that the loader knows about, use lsdev.

OK lsdev
u cd devices:

disk devices:
v disk0: BIOS drive C (33554432 X 512):
 w disk0p1: FreeBSD boot

 disk0p2: FreeBSD swap

live in /usr and are inaccessible until you mount that partition. (Take a look
at /bin and /sbin on your system to get an idea of what you’ll have to work
with when things go bad.)

If you’ve scrambled your shared library system (see Chapter 17), none
of these programs will work. If you’re that unlucky, FreeBSD provides stati-
cally linked versions of many core utilities in the /rescue directory.

The Network in Single-User Mode
If you want to have network connectivity in single-user mode, use the shell
script /etc/netstart. This script calls the appropriate scripts to start the net-
work, gives IP addresses to interfaces, and enables packet filtering and rout-
ing. If you want some, but not all, of these services, you’ll need to read that
shell script and execute the appropriate commands manually.

Uses for Single-User Mode
In single-user mode, your access to the system is limited only by your
knowledge of FreeBSD and Unix.

For example, if you’ve forgotten your root password, you can reset it
from single-user mode:

passwd
Changing local password for root
New Password:
Retype New Password:
#

n o t e You’ll notice that you weren’t asked for the old root password. In single-user mode,
you’re automatically root, and passwd(8) doesn’t ask root for any password.

Or, if you find that there’s a typo in /etc/fstab that confuses the system
and makes it unbootable, you can mount the root partition with the device
name and then edit /etc/fstab to resolve the issue.

If you have a program that panics the system on boot and you need to
stop that program from starting again, you can either edit /etc/rc.conf to dis-
able the program or set the permissions on the startup script so that it can’t
execute.

chmod a-x /usr/local/etc/rc.d/program.sh

We’ll discuss third-party programs (ports and packages) in Chapter 15.
You need to understand single-user mode to be a successful sysadmin,

and we’ll refer to it throughout this book. For now, though, let’s look at the
loader prompt.

SyS t e M Fa ilUr e S v e rSUS h UM a n Fa il ingS

There’s a reason all of these examples involve recovering from human errors.
Hardware failures aren’t common, and FreeBSD failures, even less so. If it
weren’t for human error, our computers would almost never let us down. As
you learn more about FreeBSD, you’ll be more and more capable in single-
user mode.

56 Chapter 4

 disk0p3: FreeBSD ZFS
x zfs devices:

 zfs:zroot

The loader checks for CD drives u and doesn’t find any. (The loader
finds CD drives only if you boot from a CD, so don’t be alarmed by this.)
It finds a hard drive, known to the BIOS as drive C v. It then describes the
partitions on that hard drive. As we’ll see in Chapter 10, GPT partitions
identify partitions with the letter p and a number. The partition disk0p1 w
is a FreeBSD boot partition used to bootstrap FreeBSD from the BIOS. You
might find this knowledge useful on an unfamiliar system that’s having
trouble booting. The loader can also identify the ZFS pools x on the host.

Loader Variables
The loader has variables set within the kernel and by a configuration file.
View these variables and their settings with the show command, and use the
spacebar to advance to the next page.

OK show
LINES=24
acpi.oem=VBOX
acpi.revision=2
acpi.rsdp=0x000e0000
--snip--

These values include low-level kernel tunables and information gleaned
from the hardware BIOS or UEFI. We’ll see a partial list of loader variables
in “Loader Configuration” on page 57, and additional values will be
brought up throughout the book in the appropriate sections.

You can show specific variables by name. Sadly, you can’t show all of a
keyword’s sub-variables. A command like show acpi.oem works, but show acpi
or show acpi.* doesn’t.

Change a value for a single boot with the set command. For example, to
change the console setting to comconsole, you’d enter:

OK set console=comconsole

The loader lets you change variables that really shouldn’t change.
Setting acpi.revision to 4 won’t suddenly upgrade your system to ACPI
version 4, and you can’t change hard drives with a software setting.

Reboot
You didn’t mean to get into the loader? Start over.

Start Me Up! The Boot Process 57

Booting from the Loader
Now that you’ve twiddled your system’s low-level settings, you probably want
to boot the system. Use the boot(8) command. You can adjust the boot fur-
ther using the boot flags discussed in the man page.

Once your system boots just the way you need it to, you’ll probably want
to make those settings permanent. FreeBSD lets you do this through the
loader configuration file.

Loader Configuration
Make loader setting changes permanent with the configuration file /boot/
loader.conf. Settings in this file are fed directly into the boot loader at system
startup. Of course, if you enjoy being at your console every time the system
boots, then don’t bother with this!

The loader has a default configuration file, /boot/defaults/loader.conf. We
override many of the values here.

If you look at the default loader configuration, you’ll see many options
that resemble variables listed in the loader. For example, here we can set
the name of the console device:

console="vidconsole"

Throughout the FreeBSD documentation, you’ll see references to
boot-time tunables and loader settings. All of these are set in loader.conf, which
includes many sysctl values that are read-only once the system is up and
kicking. (For more on tunables and sysctls, see Chapter 6.) Here, we force
the kernel variable kern.maxusers to 32.

kern.maxusers="32"

Some of these variables don’t have a specific value set in loader.conf;
instead, they appear as empty quotes. This means that the loader normally
lets the kernel set this value, but if you want to override the kernel’s setting,
you can.

kern.nbuf=""

The kernel has an idea of what the value of kern.nbuf should be, but you
can have the loader dictate a different value if you must.

We’ll discuss system tuning via the boot loader in the appropriate
section—for example, kernel values will be discussed in Chapter 6, where
they’ll make something resembling sense—but here are some commonly
used loader values that affect the appearance and operation of the loader
itself and basic boot functionality. As FreeBSD matures, the developers
introduce new loader values and alter the functionality of old ones, so be
sure to check /boot/defaults/loader.conf on your installation for the current list.

58 Chapter 4

boot_verbose="NO"

This value toggles the verbose boot mode that you can reach through
the boot menu. In a standard boot, the kernel prints out a few basic
notes about each device as it identifies system hardware. When you boot
in verbose mode, the kernel tells each device driver to print out any
and all information it can about each device as well as display assorted
kernel-related setup details. Verbose mode is useful for debugging and
development, but not generally for day-to-day use.

autoboot_delay="10"

This value indicates the number of seconds between the display of the
boot menu and the automatic boot. I frequently turn this down to 2 or
3 seconds, as I want my machines to come up as quickly as possible.

beastie_disable="NO"

This value controls the appearance of the boot menu (originally,
an ASCII art image of the BSD “Beastie” mascot decorated the boot
menu). If set to YES, the boot menu will not appear.

loader_logo="fbsdbw"

This value allows you to choose which logo appears to the right of the
boot menu. The fbsdbw option gives you the default FreeBSD logo in
ASCII art. Other options include beastiebw (the original logo), beastie
(the logo in color), and none (no logo).

Boot Options
The boot menu also presents three options: choosing a kernel, setting boot
options, and selecting a boot environment. We’ll discuss each of these in an
appropriate section, but here’s a bit to orient you.

A host can have multiple kernels in its /boot directory. Hitting the Kernel
option tells the loader to cycle between the available options. To have a
kernel appear as an option, list it in loader.conf in the kernels variable.

KERNELS="kernel kernel.old kernel.GENERIC"

The menu recognizes kernels only in directories beginning with /boot/
kernel. If you have a kernel in /boot/gerbil, you’ll have to load it from the
loader prompt.

FreeBSD supports a number of boot options. Selecting the Configure
Boot Options item brings up the most popular.

Load System Defaults
You mucked with your settings and want to undo all that? Choose
this. You can at least boot the system to single-user mode and fix your
loader.conf.

Start Me Up! The Boot Process 59

ACPI Support
ACPI is the Advanced Configuration and Power Interface, an Intel/
Toshiba/Microsoft standard for hardware configuration. It replaces and
subsumes a whole bunch of obscure standards. ACPI has been a standard
for many years now, but if a particular piece of hardware has trouble
running FreeBSD, you can turn it off and see what happens. If you even
think of trying this option, also read Chapter 24 and file a bug report.

Safe Mode
FreeBSD’s safe mode turns on just about every conservative option in the
operating system. It turns off DMA and write caching on hard disks,
limiting their speed but increasing their reliability. It turns off ACPI.
32-bit systems disable SMP. USB keyboards no longer work in safe
mode. This option is useful for debugging older hardware.

Verbose
The FreeBSD kernel probes every piece of hardware as it boots. Most of
the information discovered is irrelevant to day-to-day use, so the boot
loader doesn’t display it. When you boot in verbose mode, FreeBSD
prints all the details it can about every system setting and attached
device. The information will be available later in /var/run/dmesg.boot, as
discussed in the next section. I encourage you to try verbose mode on
new machines, just to glimpse the system’s complexity.

Finally, the Select Boot Environment option lets you choose between ZFS
boot environments, as discussed in Chapter 12.

Startup Messages
A booting FreeBSD system displays messages indicating the hardware
attached to the system, the operating system version, and the status of vari-
ous programs and services as they start. These messages are important
when you first install your system and when you do troubleshooting. The
boot messages always start off the same way, with a statement listing the
copyrights for the FreeBSD Project and the Regents of the University of
California:

Copyright (c) 1992-2018 The FreeBSD Project.
Copyright (c) 1979, 1980, 1983, 1986, 1988, 1989, 1991, 1992, 1993, 1994
 The Regents of the University of California. All rights reserved.
FreeBSD is a registered trademark of The FreeBSD Foundation.
FreeBSD 12.0-CURRENT #3 r320502: Fri Jun 30 13:48:50 EDT 2017
 root@storm:/usr/obj/usr/src/sys/GENERIC amd64
FreeBSD clang version 4.0.0 (tags/RELEASE_400/final 297347) (based on LLVM
4.0.0)

In addition, you get a notice of the version of FreeBSD that’s booting,
along with the date and time it was compiled and the compiler used. You
can also see who compiled this kernel, what machine it was built on, and

60 Chapter 4

even where in the filesystem this kernel was built. If you build a lot of ker-
nels, this information can be invaluable when trying to identify exactly what
system features are available.

WARNING: WITNESS option enabled, expect reduced performance.

The kernel will print out diagnostic messages throughout the boot
process. The preceding message means that I have debugging and fault-
identifying code enabled in this particular kernel, and my performance will
suffer as a result. In this case, I don’t care about the performance impact, for
reasons which will become clear momentarily.

Timecounter "i8254" frequency 1193182 Hz quality 100

This message identifies a particular piece of hardware. The timecounter,
or hardware clock, is a special piece of hardware, and while your computer
needs one, it’s such a low-level device that the end user really can’t do much
with it directly. Now and then, you’ll see messages like this for hardware
that isn’t directly visible to the user but is vital to the system. The boot mes-
sages dance between showing too much detail and obscuring details that
might be critical. For example, it’ll also show all the information it can
about the CPU in the system:

CPU: Intel(R) Xeon(R) CPU E5-1620 v2 @ u3.70GHz (3700.08-MHz K8-class CPU)
 Origin="GenuineIntel" Id=0x306e4 Family=0x6 Model=0x3e Stepping=4

v Features=0xbfebfbff<FPU,VME,DE,PSE,TSC,MSR,PAE,MCE,CX8,APIC,SEP,MTRR,PGE,MCA,
CMOV,PAT,PSE36,CLFLUSH,DTS,ACPI,MMX,FXSR,SSE,SSE2,SS,HTT,TM,PBE>
 Features2=0x7fbee3ff<SSE3,PCLMULQDQ,DTES64,MON,DS_CPL,VMX,SMX,EST,TM2,SSSE3,CX16,
xTPR,PDCM,PCID,DCA,SSE4.1,SSE4.2,x2APIC,POPCNT,TSCDLT,AESNI,XSAVE,OSXSAVE,AVX,F16C,RDRAND>
 AMD Features=0x2c100800<SYSCALL,NX,Page1GB,RDTSCP,LM>
 AMD Features2=0x1<LAHF>
 Structured Extended Features=0x281<FSGSBASE,SMEP,ERMS>
 XSAVE Features=0x1<XSAVEOPT>
 VT-x: PAT,HLT,MTF,PAUSE,EPT,UG,VPID,VID,PostIntr
 TSC: P-state invariant, performance statistics

You probably didn’t know that a simple CPU could have so many details
and features, did you? But when you file a trouble report that advanced fea-
tures don’t work, a developer might respond by asking whether your CPU
has a particular feature.

Here’s why I’m not worried about the performance hit caused by the
WITNESS option shown earlier: this box is pretty darn fast u and supports a
whole bunch of features important to modern CPUs v. While I certainly
want all the performance I paid for, I also want to catch any problems when
they happen. I want to be able to file good bug reports on those problems,
so the developers will listen to my problem report. That’s why I’m running a
development version of FreeBSD that ships with WITNESS enabled, after all!

FreeBSD/SMP: Multiprocessor System Detected: 8 CPUs

Start Me Up! The Boot Process 61

Here, the kernel announces that it’s found all eight CPU cores and is
ready to manage them. I have CPU power to spare and a fair amount of
memory as well.

u real memory = 34359738368 (32768 MB)
v avail memory = 33207656448 w(31669 MB)

The real memory u is the amount of RAM physically installed in the
computer, while the avail memory v is the amount of memory left over
after the kernel is loaded. I have 31,669MB of RAM w available for real
work, which more than suffices for the load on this system.

uioapic0 <Version 2.0> virqs 0-23 on motherboard
wioapic1 <Version 2.0> irqs 24-47 on motherboard

Here’s a fairly typical device entry. This device is known as ioapic,
and the kernel has found that this hardware is version 2.0 and has extra
information associated with it v. What’s more, we’ve found two devices of
that type, numbered 0 u and 1 w. (All devices are numbered starting with
zero.) You can find out more about the device by reading the man page for
the device driver. Almost all—but not all—device drivers have man pages.

usbus0: EHCI version 1.0
usbus0 on ehci0
usbus0: 480Mbps High Speed USB v2.0

Not all device drivers print all their information on a single line. Here,
we have a single device, usbus, that takes up three lines with just a single
instance of the device. The only way to know that this is a single USB bus
rather than three separate ones is to check the number of the device. All of
these are for device number zero, so it’s a single device.

u pci0: <simple comms> at device 22.0 (no driver attached)
v pcib8: <ACPI PCI-PCI bridge> irq 17 at device 28.0 on wpci0
x pci8: <ACPI PCI bus> on ypcib8

One interesting thing about the boot messages is that they display
how your computer’s components are attached to one another. Here, we
have pci0 u, a PCI interface directly on the mainboard. Then, there’s
pcib8 v, PCI bridge number eight attached to pci0 w. We also find PCI
bus pci8 x attached to that PCI bridge y. As you read on, you’ll find indi-
vidual devices attached to that bus. You might not be equipped to do much
with this information now, but you’ll find that having it available will be
valuable when you have to troubleshoot a problem.

uem0: <Intel(R) PRO/v1000 Network Connection> port 0xd000-0xd01f mem
0xfba00000-0xfba1ffff,0xfba20000-0xfba23fff irq 18 at device 0.0 on pci9

62 Chapter 4

This entry shows em0, a network card of type em(4) u, and indicates
that the card speaks gigabit Ethernet v. We also see all sorts of information
about its memory address, IRQ, and PCI bus attachment.

Every device on your computer has one or more entries like these.
Taken as a whole, they describe your computer’s hardware in reasonable
detail. If you boot in verbose mode, you’ll see even more detail—probably
far more than you want.

One key thing that the kernel displays in the boot messages is the
device name for each piece of hardware. This is critical information for
managing your system. Every piece of hardware has a device node name,
and to configure it, you’ll need to know that name. For example, earlier
we saw an entry for an Ethernet card called em0. The card uses the em(4)
driver, and the first device controlled by this driver has number zero. Your
second device of this type would be em1, then em2, and so on.

Most devices that can be configured or managed have a device node
entry somewhere under /dev. For example, the first optical drive is repre-
sented by the file /dev/cd0. These files are called device nodes, and they’re
a convenient way to address a particular piece of hardware. Most device
nodes can’t be directly accessed as a regular file; you can’t cat(1) a device
node or copy another file to it. However, device nodes are used as argu-
ments to specialized programs. For example, the hard drive that showed up
at boot as ada4 is the same as the device node /dev/ada4. When you want
to mount that hard drive, you can use the device node name and be sure
you’re getting that exact piece of hardware.

Multiuser Startup
Beyond single-user mode, you’ll find multiuser mode. This is the standard
operating mode for a Unix-like OS. If you’re doing real work, your system is
in multiuser mode.

When FreeBSD finishes inspecting the hardware and attaching all the
device drivers appropriately, it runs the shell script /etc/rc. This script mounts
all filesystems, brings up the network interfaces, configures device nodes,
identifies available shared libraries, and does all the other work necessary to
make a system ready for normal work. Most systems have different startup

t he Boot Me SS age S F il e

While the boot information is handy, chances are it’ll disappear from the
screen by the time you need it. For future reference, FreeBSD stores boot mes-
sages in the file /var/run/dmesg.boot. This means that you can inspect your
kernel’s hardware messages even after your system has been up and running
for months.

Start Me Up! The Boot Process 63

requirements; while almost every server needs to mount a hard drive, a web
server’s operating requirements are very different from those of a database
server, even if it’s running on absolutely identical hardware. This means that
/etc/rc must be extremely flexible. It achieves flexibility by delegating every-
thing to other shell scripts responsible for specific aspects of the system.

The /etc/rc script is controlled by the files /etc/defaults/rc.conf and /etc/rc.conf.

/etc/rc.conf, /etc/rc.conf.d, and /etc/defaults/rc.conf
Much like the loader configuration file, the configuration of /etc/rc is split
between two files: the default settings file, /etc/defaults/rc.conf, and the local
settings file, /etc/rc.conf. Settings in /etc/rc.conf override any values given in
/etc/defaults/rc.conf, exactly as with the loader.

The /etc/defaults/rc.conf file is huge and contains quite a few variables,
frequently called knobs, or tunables. We aren’t going to discuss all of them,
not only because knobs are added continually and such a list would be
immediately obsolete but also because quite a few knobs aren’t commonly
used on servers. Almost everything in a standard FreeBSD system has one
or more rc.conf knobs, from your keyboard map to TCP/IP behavior. For a
complete, up-to-date list, read rc.conf(5). To change rc.conf settings, you can
either use a text editor or sysrc(8).

sysrc(8)

While editing rc.conf by hand works just fine, in this age of cloud computing,
it’s not sustainable across large numbers of machines. If you must change
dozens of servers, you need a reliable way to alter the system without either
manually editing each server’s config or resorting to sed/awk hackery.2

FreeBSD includes sysrc(8), a command line program to consis-
tently and safely alter /etc/rc.conf and friends from the command line.
Additionally, sysrc(8) can display information about your system’s non-
default settings.

Start by using -a to ask sysrc(8) what it knows about your host.

sysrc -a
clear_tmp_enable: YES
defaultrouter: 203.0.113.1
dumpdev: AUTO
keymap: us.dvorak.kbd
--snip--

You’ll get a list of all non-default /etc/rc.conf settings.
To have sysrc(8) enable a service, give it the variable name, an equals

sign, and the new value.

sysrc rc_startmsgs=NO
rc_startmsgs: YES -> NO

2. I’m confident in my sed(1) and awk(1) hackery, but not quite “run this on 400 virtual
servers and go home” confident.

64 Chapter 4

The variable rc_startmsgs is now set to no.
Remember that sysrc(8) is a tool for changing rc.conf, not for configur-

ing FreeBSD. It does no validity checking. One of my very junior sysadmins
really doesn’t want Bert logging in, and he took some bad advice on how to
prevent that.

sysrc bert=no

While this code sets bert="no" in /etc/rc.conf, this variable doesn’t do any-
thing. Remove it with the -x flag.

sysrc -x bert

Many FreeBSD configuration files closely resemble rc.conf. You can use
sysrc(8) to manage them by adding the -f flag and the file name.

sysrc -af /boot/loader.conf

Should you edit rc.conf or use sysrc(8)? If you’re making manual changes,
then use whichever you prefer. Automation should err on the side of sysrc(8).
This book mixes examples of both.

/etc/rc.conf.d/

If you use a server configuration system such as Puppet or Ansible, you
might trust copying entire files more than editing them. Use /etc/rc.conf.d/
files to enable services through such tools.

To manage a service in /etc/rc.conf.d/, create a file named after the
service. That is, to manage bsnmpd(8) you’d create /etc/rc.conf.d/bsnmpd.
Enable or disable that service in this file.

bsnmpd_enable=YES

I normally use Ansible’s service enabling features that directly alter
/etc/rc.conf rather than /etc/rc.conf.d, but use whatever you prefer.

The next few sections illustrate the types of things you can enable and
disable in /etc/rc.conf. Each appears in /etc/defaults/rc.conf and can be over-
ridden by an /etc/rc.conf entry. Each variable appears with its default setting.

Startup Options

The following rc.conf options control how FreeBSD configures itself and
starts other programs. These far-reaching settings affect how all other
system programs and services run.

If you’re having a problem with the startup scripts themselves, you
might enable debugging on /etc/rc and its subordinate scripts. This can pro-
vide additional information about why a script is or isn’t starting.

rc_debug="NO"

Start Me Up! The Boot Process 65

If you don’t need the full debugging output but would like some addi-
tional information about the /etc/rc process, enable informational messages
with rc_info:

rc_info="NO"

When the boot process hits multiuser startup, it prints out a message for
each daemon it starts. Remove those messages with the rc_startmsgs option.

rc_startmsgs="NO"

Filesystem Options

FreeBSD can use memory as a filesystem, as we’ll discuss in Chapter 13.
One common use for this feature is to make /tmp really fast by using mem-
ory rather than a hard drive as its backend. Once you’ve read Chapter 13,
you might consider implementing this. Variables in rc.conf let you enable a
memory-backed /tmp and set its size transparently and painlessly. You can
also choose the options FreeBSD will use to complete the filesystem. (The
impatient among you are probably wondering what the -S flag means. It
means disable soft updates. If you have no idea what this means, either, wait
for Chapter 11.) If you want to use a memory filesystem /tmp, set tmpmfs to
YES and set tmpsize to the desired size of your /tmp.

tmpmfs="AUTO"
tmpsize="20m"
tmpmfs_flags="-S"

Another popular FreeBSD filesystem feature is its integrated encrypted
partitions. FreeBSD supports two different filesystem encryption systems
out of the box: GBDE and GELI. GEOM-Based Disk Encryption (GBDE) was
FreeBSD’s first encrypted filesystem designed for military-grade use. GELI
is a little more friendly and complies with different standards than GBDE.
(You definitely want to read Chapter 23 before enabling either of these!)

geli_devices=""
geli_tries=""
geli_default_flags=""
geli_autodetach="YES"

By default, FreeBSD mounts the root partition read-write upon achiev-
ing multiuser mode. If you want to run in read-only mode instead, you can
set the following variable to NO. Many people consider this more secure, but
a read-only root can interfere with operation of certain software, and it’ll
certainly prevent you from editing any files on the root partition!

root_rw_mount="YES"

66 Chapter 4

When a booting FreeBSD attempts to mount its filesystems, it checks
them for internal consistency. If the kernel finds major filesystem problems,
it can try to fix them automatically with fsck -y. While this is necessary in
certain situations, it’s not entirely safe. (Be sure to read Chapter 11 very
carefully before enabling this!)

fsck_y_enable="NO"

The kernel might also find minor filesystem problems, which it resolves
on the fly using a background fsck while the system is running in multiuser
mode, as discussed in Chapter 11. There are legitimate concerns about the
safety of using this feature in certain circumstances. You can control the
use of background fsck and set how long the system will wait before begin-
ning the background fsck.

background_fsck="YES"
background_fsck_delay="60"

Miscellaneous Network Daemons

FreeBSD includes many smaller programs, or daemons, that run in the
background to provide specific services. We’ll cover quite a few of these
integrated services throughout the book, but here are a few specific ones
that’ll be of interest to experienced system administrators. One popular
daemon is syslogd(8). Logs are a Good Thing. Logs are so very, very good
that large parts of Chapter 21 are devoted to the topic of logging with, for,
by, and on FreeBSD.

syslogd_enable="YES"

Once you’ve decided to run the logging daemon, you can choose
exactly how it’ll run by setting command line flags for it. FreeBSD will use
these flags when starting the daemon. For all the programs included in
rc.conf that can take command line flags, the flags are given in this format:

syslogd_flags="-s"

Another popular daemon is inetd(8), the server for small network ser-
vices. (We cover inetd in Chapter 20.)

inetd_enable="NO"

Most systems use the Secure Shell (SSH) daemon for remote logins.
If you want to connect to your system remotely over the network, you’ll
almost certainly need SSH services.

sshd_enable="NO"

Start Me Up! The Boot Process 67

While the SSH daemon can be configured via the command line, you’re
generally better off using the configuration files in /etc/ssh/. See Chapter 20
for details.

sshd_flags=""

FreeBSD also incorporates extensive time-keeping software that func-
tions to ensure the system clock remains synchronized with the rest of the
world. You’ll need to configure this for it to be useful; we’ll cover that in
Chapter 20.

ntpd_enable="NO"
ntpd_flags="-p /var/run/ntpd.pid -f /var/db/ntpd.drift"

In addition, FreeBSD includes a small SNMP daemon for use in facili-
ties with SNMP-based management tools. We’ll cover configuring SNMP in
Chapter 21.

bsnmpd_enable="NO"

Network Options

These knobs control how FreeBSD configures its network facilities dur-
ing boot. We’ll discuss networking in Chapter 7.

Every machine on the internet needs a hostname. The hostname is the
fully qualified domain name of the system, such as www.absolutefreebsd.org.
Many programs won’t run properly without this.

hostname=""

FreeBSD includes a few different integrated firewall packages. We’re
going to briefly cover the packet filter (PF) in Chapter 19. Enable and dis-
able PF in rc.conf.

pf_enable="NO"

You might be interested in failed attempts to connect to your system
over the network. This will help detect port scans and network intrusion
attempts, but it’ll also collect a lot of garbage. It’s interesting to set this for a
short period of time just to see what really happens on your network. (Then
again, knowing what’s really going on tends to cause heartburn.) Set this to
1 to log failed connection attempts.

log_in_vain="0"

Routers use ICMP redirects to inform client machines of the proper
network gateways for particular routes. While this is completely legitimate,
on some networks intruders can use this to capture data. If you don’t need

68 Chapter 4

ICMP redirects on your network, you can set this option for an extremely
tiny measure of added security. If you’re not sure whether you’re using
them, ask your network administrator.

icmp_drop_redirect="NO"

If you are the network administrator and you’re not sure whether your
network uses ICMP redirects, there’s an easy way to find out—just log all redi-
rects received by your system to /var/log/messages.3 Note that if your server is
under attack, this can fill your hard drive with redirect logs fairly quickly.

icmp_log_redirect="NO"

To get on the network, you’ll need to assign each interface an IP address.
We’ll discuss this in some detail in Chapter 8. You can get a list of your net-
work interfaces with the ifconfig(8) command. List each network interface
on its own line, with its network configuration information in quotes. For
example, to give your em0 network card an IP address of 172.18.11.3 and a
netmask of 255.255.254.0, you would use:

ifconfig_em0="inet 172.18.11.3 netmask 255.255.254.0"

If your network uses DHCP, use the value dhcp as an IP address.

ifconfig_em0="dhcp"

Similarly, you can assign aliases to a network card. An alias is not the
card’s actual IP address, but the card answers for that IP address, as dis-
cussed in Chapter 8. FreeBSD supports hundreds of aliases on a single card,
with rc.conf entries in the following form:

ifconfig_em0_aliasnumber="address netmask 255.255.255.255"

The alias numbers must be continuous, starting with 0. If there’s a
break in numbering, aliases above the break won’t be installed at boot time.
(This is a common problem, and when you see it, check your list of aliases.)
For example, an alias of 192.168.3.4 would be listed as:

ifconfig_em0_alias0="192.168.3.4 netmask 255.255.255.255"

Network Routing Options

FreeBSD’s network stack includes many features for routing internet traffic.
These start with the very basic, such as configuring an IP for your default

3. And if you’ve never heard of ICMP redirects, run, do not walk, to your nearest book shill
and get a copy of The TCP/IP Guide by Charles M. Kozierok (No Starch Press, 2005). Once you
have it, read it.

Start Me Up! The Boot Process 69

gateway. While assigning a valid IP address to a network interface gets you
on the local network, a default router will give you access to everything
beyond your LAN.

defaultrouter=""

Network control devices, such as firewalls, must pass traffic between
different interfaces. While FreeBSD won’t do this by default, it’s simple to
enable. Just tell the system that it’s a gateway and it’ll connect multiple net-
works for you.

gateway_enable="NO"

Console Options

The console options control how the monitor and keyboard behave. You can
change the language of your keyboard, the monitor’s font size, or just about
anything else you like. For example, the keyboard map defaults to the standard
US keyboard, frequently called QWERTY. You’ll find all sorts of keymaps in the
directory /usr/share/syscons/keymaps. I prefer the Dvorak keyboard layout, which
has an entry there as us.dvorak. By changing the keymap knob to us.dvorak, my
system will use a Dvorak keyboard once it boots to multiuser mode.

keymap="NO"

FreeBSD turns the monitor dark when the keyboard has been idle for a
time specified in the blanktime knob. If you set this to NO, FreeBSD won’t dim
the screen. Mind you, new hardware will dim the monitor after some time
as well, to conserve power. If your screen goes blank even if you’ve set the
blanktime knob to NO, check your BIOS and your monitor manual.

blanktime="300"

FreeBSD can also use a variety of fonts on the console. While the default
font is fine for servers, you might want a different font on your desktop or
laptop. My laptop has one of those 17-inch screens proportioned for watching
movies, and the default fonts look kind of silly at that size. You can choose
a new font from the directory /usr/share/syscons/fonts. Try a few to see how
they look on your systems. The font’s name includes the size, so you can set
the appropriate variable. For example, the font swiss-8x8.fnt is the Swiss font,
8 pixels by 8 pixels. To use it, you would set the font8x8 knob.

font8x16="NO"
font8x14="NO"
font8x8="YES"

You can use a mouse on the console, even without a GUI. By default,
FreeBSD will try to autodetect your mouse type. If you have a PS/2 or USB

70 Chapter 4

mouse, chances are that it’ll just work when you enable the mouse daemon,
without any special configuration. Some older and more unusual types of
mice require manual configuration, as documented in moused(8).

moused_enable="NO"
moused_type="AUTO"

You can also change the display on your monitor to fit your needs. If
you have an odd-sized monitor, you can change the number of lines of text
and their length to fit, change text colors, change your cursor and cursor
behavior, and do all sorts of other little tweaks. You can get a full list of dif-
ferent options in man vidcontrol(1).

allscreens_flags=""

Similarly, you can adjust your keyboard behavior almost arbitrarily.
Everything from key repeat speed to the effect of function keys can be con-
figured, as documented in kbdcontrol(1).

allscreens_kbdflags=""

Other Options

This final potpourri of knobs might or might not be useful in any given
environment, but they’re needed frequently enough to deserve mention.
For example, not all systems have access to a printer, but those that do will
want to run the printing daemon lpd(8). We brush up against printer con-
figuration in Chapter 20.

lpd_enable="NO"

The sendmail(8) daemon manages transmission and receipt of email
between systems. While almost all systems need to transmit email, most
FreeBSD machines don’t need to receive email. The sendmail_enable knob
specifically handles incoming mail, while sendmail_outbound_enable allows
the machine to transmit mail. See Chapter 20 for more details.

sendmail_enable="NO"
sendmail_submit_enable="YES"

One of FreeBSD’s more interesting features is its ability to run software
built for Linux. We discuss this feature in Chapter 17. Running Linux soft-
ware isn’t quite as easy as throwing this toggle, so don’t enable Linux com-
patibility modes without reading that chapter first!

linux_enable="NO"

Start Me Up! The Boot Process 71

A vital part of any Unix-like operating system is shared libraries.
You can control where FreeBSD looks for shared libraries. Although the
default setting is usually adequate, if you find yourself regularly setting the
LD_LIBRARY_PATH environment variable for your users, you should consider
adjusting the library path instead. See Chapter 17 for more advice on the
library path.

ldconfig_paths="/usr/lib /usr/local/lib"

FreeBSD has a security profile system that allows the administrator
to control basic system features. You can globally disallow mounting hard
disks, accessing particular TCP/IP ports, and even changing files. See
Chapter 9 for details on how to use these.

kern_securelevel_enable="NO"
kern_securelevel="-1"

Now that you know a smattering of the configuration knobs FreeBSD
supports out of the box, let’s see how they’re used.

The rc.d Startup System
FreeBSD bridges the gap between single-user mode and multiuser mode
via the shell script /etc/rc. This script reads in the configuration files /etc/
defaults/rc.conf and /etc/rc.conf, and runs a collection of other scripts based
on what it finds there. For example, if you’ve enabled the network time
daemon, /etc/rc runs a script written specifically for starting that daemon.
FreeBSD includes scripts for starting services, mounting disks, configuring
the network, and setting security parameters.

These scripts live in /etc/rc.d and /usr/local/etc/rc.d. I’d recommend read-
ing a few of them if only to see how the rc.d system works.

Control these scripts with service(8).

The service(8) Command
All of the rc.d scripts are readable, and the way they fit together is pretty
straightforward. When you have a problem, you can read the scripts to see
how they work and what they do. But that’s a lot like work, and most sysad-
mins have more interesting work to do. The service(8) command provides
a friendly frontend to the rc.d scripts. You can use service(8) to see which
scripts run automatically; to stop, start, and restart services; to check the
status of a service; and more.

Listing and Identifying Enabled Services

Use the -e flag to service(8) to see the full path of all scripts that’ll be run
at system boot, in the order they’ll be run.

72 Chapter 4

service -e
/etc/rc.d/hostid
/etc/rc.d/zvol
/etc/rc.d/hostid_save
/etc/rc.d/zfsbe
--snip--
/etc/rc.d/sshd
/etc/rc.d/sendmail
--snip--

This tiny host runs 23 scripts at boot.
One important detail here is the script name. You’ll use the script name

in other commands, like starting, stopping, and restarting services.

Managing Services

While it’s entirely possible to restart, say, sshd(8) at the command line, a
production host needs everything to run consistently. Best practice calls for
using service(8) to manage processes. You’ll need the script name as shown
earlier, but without the directory path.

service name command

For example, suppose I want to restart the sshd(8) service. According to
the service -e output shown earlier, there’s a script /etc/rc.d/sshd. I strongly sus-
pect this script manages sshd(8), but I want to be certain I don’t accidentally
restart the Stupidly Similarly named Harassment Daemon. This is where the
describe command comes in. Let’s ask service(8) to describe the sshd script.

service sshd describe
Secure Shell Daemon

It’s the right daemon. Let’s restart it.

service sshd restart
u Performing sanity check on sshd configuration.
v Stopping sshd.
w Performing sanity check on sshd configuration.
x Starting sshd.

Restarting a service is a combination of “stop the service” and “start the
service.” This particular service does more than that, though. It starts by
verifying the configuration file u and then stopping the daemon v. It then
reverifies the configuration w and starts the daemon x. Why?

SSH handles remote access to this host. If the SSH service breaks, nobody
can log into the host to fix the SSH service. Yes, you could use a remote KVM
or IPMI or drive to the colocation facility, but any of these prolongs the out-
age. It’s much better to verify that sshd(8) can be restarted before shutting
it down. Many service scripts include this kind of safety check. If a service
complains that it can’t stop, read the output carefully to find out why.

Start Me Up! The Boot Process 73

The commands each service supports vary. The easiest way to get the
full list of commands a particular service supports is to give the service a
bogus argument. Something like “bert” is pretty bogus.

service sshd bert
/etc/rc.d/sshd: unknown directive 'bert'.
Usage: /etc/rc.d/sshd [fast|force|one|quiet](start|stop|restart|rcvar|enabled|
describe|extracommands|configtest|keygen|reload|status|poll)

You get a full list of commands this service supports, in two groups.
The first group, in square brackets, contains options for the commands.

Here are the standard options. Use them as prefixes for the commands in
the second group.

fast Do no checking (used during startup).

force Try harder.

one Start this service despite not being enabled in rc.conf.

quiet Only print service name (used during startup).

The second group, in parentheses, contains the following commands:

start Start the service.

stop Stop the service.

restart Stop and restart the service.

rcvar Print the rc.conf variables for this service.

enabled Return true in shell if enabled (for script use).

describe Print service description.

extracommands Show service-specific commands.

The extracommands command is very specific to the service and lists only
the additional commands this service accepts. By default, the extra com-
mands appear after the default commands. Here are some common extra
commands:

configtest Parse the service’s configuration file and stop if there’s an
error.

reload Perform a soft reload (usually via SIGHUP) rather than a restart.

status Determine whether service is running.

To determine exactly what a service’s extra commands do, you need to
read the service script.

We’ll look at rc.d in more detail in Chapter 17, when we discuss custom-
izing and writing your own rc.d scripts.

System Shutdown
FreeBSD makes the rc.d startup system do double duty; not only must it
handle system startup, it must also shut all those programs down when
it’s time to power down. Something has to unmount all those hard drives,

74 Chapter 4

shut down the daemons, and clean up after doing all the work. Some pro-
grams don’t care whether they’re unceremoniously killed when the system
closes up for the night—after all, after the system goes down, any clients
connected over SSH will be knocked off and any half-delivered web pages
remain incomplete. Database software, however, cares very much about how
it’s turned off, and unceremoniously killing the process will damage your
data. Many other programs that manage actual data are just as particular,
and if you don’t let them clean up after themselves, you’ll regret it.

When you shut down FreeBSD with the shutdown(8), halt(8), or
reboot(8) commands, the system calls the shell script /etc/rc.shutdown.
This script calls each rc.d script in turn with the stop option, reversing the
order they were called during startup, thereby allowing server programs to
terminate gracefully and disks to tidy themselves up before the power dies.

Serial Consoles
All this console stuff is nice, but when your FreeBSD system is in a coloca-
tion facility on the other side of the country or on another continent, you
can’t just walk up to the keyboard and start typing. Many data centers won’t
have room for a keyboard or monitor. And how do you reset the machine
remotely when it won’t respond to the network? Using a serial console to
redirect the computer’s keyboard and video to the serial port instead of the
keyboard and monitor helps with all of these problems.

Serial consoles can be physical, such as a serial port on the back of a
computer. By hooking up a standard null modem cable to the serial port
and attaching the other end to another computer’s serial port, you can
access the first system’s boot messages from the second computer.

They might also be virtual, as provided by IPMI’s Serial-over-LAN (SOL)
protocol. Rather than a null modem cable, you’ll need to set up the IPMI
interface and use special software to configure and access the virtual
serial port.

Before we set up a port, though, let’s talk about serial port protocol.

Serial Protocol
Some of the first computer consoles were serial ports connected to tele-
types. Serial has been around a long time and has evolved over the decades.
Unlike modern protocols, serial lines do not autonegotiate. You must con-
figure both sides of a serial link to the exact same settings. A configuration
mismatch will cause either a blank screen or gibberish.

Original serial lines worked at low speeds. Many of the serial cables
remain basically the same, but we’ve developed better software and hard-
ware to stick at each end that allows us to transmit data much faster. Where
old serial connections ran at 300 bits per second (baud), a whole bunch of
modern hardware can run at 115,200 baud. Across hardware platforms,
though, the common standard is 9600 baud, which is FreeBSD’s default
console speed. A baud rate of 9600 is enough to carry whole screens of text
at a comfortable speed.

Start Me Up! The Boot Process 75

Stick with 9600 baud for physical connections, unless you can’t. Some
modern hardware doesn’t support 9600 baud. Some claim to support
9600 baud, but don’t. I’ve worked with devices hardcoded to 115,200 baud.
Anything that fails or flat-out refuses to do 9600 baud is busted by design,
but we often don’t control the choice of hardware. Changing the serial
console speed for reasons other than hardware limitations makes your con-
nection more fragile, and if you’re using the console, you’re in no mood for
fragility. When I mention changing the port speed, that’s for use only when
you have to.

SOL connections aren’t physical wires, so you don’t have to worry about
line noise. You can safely run them at higher speeds.

Serial protocols also include a whole bunch of settings beyond their
speed. It’s possible to muck with them, but the standard settings of 8 data
bits, no parity, and 1 stop bit are the most widely used. You can’t change
these in FreeBSD without recompiling the kernel, so don’t muck with them.

With that in mind, let’s set up a console.

Physical Serial Console Setup
No matter what sort of serial console you have, you’ll need to plug into it
correctly to make it work. You’ll need a null modem cable, available at any
computer store or from online vendors. While the gold-plated serial cables
are not worth the money, don’t buy the cheapest cable you can find either;
if you have an emergency and need the serial console, you’re probably not
in the mood to endure line noise!4

Plug one end of the null modem cable into the serial console port
on your FreeBSD server—by default the first serial port (COM1 or uart0,
depending on what operating system you’re used to). You can change this
with a server.

Plug the other end of your null modem cable into an open serial port on
another system. I recommend either another FreeBSD (or other Unix) sys-
tem or a terminal server, but you can use a Windows box if that’s all you have.

If you have two FreeBSD machines at a remote location, make sure that
they each have two serial ports. Get two null modem cables and plug the
first serial port on each box into the second serial port of the other machine.
That way, you can use each machine as the console client for the other. If you
have three machines, daisy-chain them into a loop. By combining twos and
threes, you can get serial consoles on any number of systems. I’ve worked data
centers with 30 or 40 FreeBSD machines, where installing monitors was sim-
ply not practical, and we used serial consoles to great effect. Once you have a
rack or two of servers, however, investing in a terminal server is a really good
idea. You can find them cheaply on eBay.

Another option is to use two DB9-to-RJ45 converters, one standard
and one crossover. These allow you to run your console connections over
a standard CAT5 cable. If you have a lights-out data center where human

4. For the youngsters: line noise, or interference, causes random junk to appear in your
terminal session. Random junk other than what you typed, that is.

76 Chapter 4

beings are not allowed, you can have your serial consoles come out near
your desk, in your warm room, or anywhere else your standard Ethernet-
style patch panels reach. Most modern data facilities are better equipped
to handle Ethernet than serial cables.

IPMI Serial Console Setup
The Intelligent Platform Management Interface (IPMI) is a standard for manag-
ing computer systems at a hardware level. IPMI runs separately from the
operating system, using a small device called a baseboard management controller
(BMC). Essentially, the BMC acts as your remote hands and eyes to control
the server. To use an IPMI console, you’ll need to configure both the BMC
and the host’s BIOS or UEFI.

I’ll try to orient you here, but the best resource for configuring BMC or
UEFI is your hardware manual.5

BMC Setup

A server’s BMC has its own IP address and normally gets a dedicated
Ethernet port on the mainboard. Each vendor gets to design its own BMC
in a way that conforms to its own biases. This means that configuring the
BMC is way, way beyond the scope of this book, but here are a few hints.

You configure most BMCs through a web interface. Before you can
access the web interface, though, the BMC needs an IP address. Set most
BMC IP information in the BIOS or UEFI firmware’s setup menu. Once
you get in the management interface, configure a username and password.
Remember them.

A usual BMC also includes functions such as power cycling the main
system, remote console access via some sort of downloaded application
(often Java), virtual media, and more.

Never forget that the BMC is a small embedded computer running a
web server and that it was written by some overworked corporate employee
charged with building the minimum viable product. The BMC wasn’t tested
for how it performed after several months of uptime. If it gives you even a
sneeze of trouble, reboot it. No, you don’t have to power cycle the whole
computer; there’s usually a “BMC Reset” or “Unit Reboot” menu option
somewhere in the web interface.

If the BMC supports an applet-based console, why use a serial con-
sole? Because the BMC console is applet-based and BMC firmwares are
rarely updated. I have quite a few BMC consoles that work only with obso-
lete, insecure6 versions of Java. Using them requires overriding security
warnings and repeatedly clicking the “Yes, I know I’m an idiot, do it any-
way” box. I have to keep a virtual machine with this insecure Java version
specifically to access those consoles. The applet-based console doesn’t sup-
port copy and paste, and is often very laggy.

5. You know, the hardware manual. The booklet you pitched with the server’s shipping box.

6. All right, “even more insecure.” Happy?

Start Me Up! The Boot Process 77

IPMI works better than the Java console applet over slower connections.
I can copy and paste. Also, I can use the IPMI console from the command
line, from any modern operating system.

While you’re in the BMC setup, locate the option to launch SOL. That
brings up an applet to connect to the host’s SOL interface, which will help
you test your serial console configuration.

UEFI/BIOS Serial Console Configuration

Once your BMC is ready, you must configure the server hardware to direct
a serial port to the BMC. Go to the hardware’s Setup menu, where you con-
figure your UEFI or BIOS. Somewhere in that maze of twisty little options,
you’ll find something like “Serial Port Console Redirection.”

A vital question here is, how many serial ports does your host have?
Maybe it has none. Maybe it has several. You can choose to redirect one
of those ports or add an additional, virtual port. I encourage you to leave
your existing serial ports alone and add a virtual port dedicated to SOL. It’s
probably called something like “SOL Console Redirection.” Enable it, and
go into the settings for that port.

Here are some settings I find helpful for FreeBSD and SOL:

Terminal type vt100

Data bits 8

Parity none

Stop bits 1

Flow control none

The tricky part is the baud, speed, or bits-per-second setting. Stick with
the default speed, but make a note of it. You’ll need the speed to connect.

Now that you have a serial console, set up FreeBSD.

Configuring FreeBSD’s Serial Console
As FreeBSD boots, the loader decides where to print console messages and
where to accept input from. While this defaults to the monitor and key-
board, with a few tweaks, you can redirect the console to a serial port. The
serial console won’t grant BIOS access, but you can tweak the FreeBSD boot
itself in almost any way. You can configure a serial console in either the
first- or second-stage boot loader.

A first-stage boot loader gets you console access at the earliest possible
moment but requires you use the first serial port as a console. Changing the
port requires recompiling the kernel. The first-stage boot loader allows you
to perform tasks like choose which disk you’re going to load the second-stage
loader from—essentially, to boot from a disk other than the disk the BIOS
or UEFI selected. This is undeniably useful, but very few users need this.

The second-stage boot loader can use any serial port as a console, but
the first bit of output you’ll get is the boot menu discussed in “The Loader
Prompt” on page 55. For most of us, that’s perfectly acceptable.

78 Chapter 4

Console Options

FreeBSD’s default configuration uses the monitor and keyboard as the
console. You can choose to switch to only the serial console or to use a
dual console. Choose which with the /boot/loader.conf option console.

A serial-only console prevents some random colocation employee from
power cycling your box, plugging in a monitor, and dinking with the menu.
Yes, they could still work mayhem from the first-stage loader or boot off of
USB, but that requires greater skill. Set the console variable to comconsole to
use only the serial port as a console.

console="comconsole"

For most deployments, I recommend a dual console. Dual consoles
show console activity on both the serial port and the monitor. You can use
either the standard or the serial console as needed. Specify a dual-console
configuration by listing both comconsole and vidconsole.

console="comconsole vidconsole"

If you’re in a server-room situation, you might want to switch back and
forth between a standard console and a serial console. I generally manage
large arrays of FreeBSD systems via the serial console but leave the video
console in place in case of trouble.

The console won’t be effective until after a reboot. You can see whether
FreeBSD put its console on a serial port by checking the boot messages.

uart0: <16550 or compatible> port 0x3f8-0x3ff irq 4 flags 0x10 on acpi0
uart0: console (9600,n,8,1)

The second line shows that the serial port uart0 is configured as a con-
sole, using the default settings. We’ll look at those settings in “Using Serial
Consoles” on page 79.

Advanced Console Options

In addition to enabling the console, you can adjust the console’s port and
the speed.

Maybe I need to use the second serial port for the console. Perhaps the
first serial port has something plugged into it, or maybe the second port is
the virtual SOL port. Serial ports use the uart(4) device driver. Remember
that FreeBSD devices start numbering at zero, while COM ports start num-
bering at 1. COM1 is uart0, COM2 is uart1, and so on. You’ll need the port’s
base I/O port, which you can get from the system bootup messages.

grep uart /var/run/dmesg.boot
uart0: <16550 or compatible> port u0x3f8-0x3ff irq 4 flags 0x10 on acpi0
uart1: <16550 or compatible> port v0x2f8-0x2ff irq 3 on acpi0

Start Me Up! The Boot Process 79

The first number after the word port is the base I/O port u. The base
address of COM2, or uart1, is 0x2f8. Set comconsole_port to this value v.

comconsole_port="0x2f8"

Your console is now on serial port COM2.
If my serial connection won’t do 9600 baud, I can change the port

speed with the comconsole_speed option.

comconsole_speed="115200"

On a physical port, don’t increase the port speed just because you can.

Using Serial Consoles
Now that you have both physical and software set up, configure your client
to access the serial console. The key to using a serial console is to remember
the following settings:

•	 Speed (9600 baud, or whatever your hardware is set to)

•	 8 bits

•	 No parity

•	 1 stop bit

The way you access a serial line depends on whether it’s a physical line
or an IPMI SOL connection.

Physical Serial Lines

Connect your client to the other end of the serial line. You can find ter-
minal emulators for Microsoft platforms (PuTTY being the most famous),
macOS, and almost any other operating system. Once upon a time, I used
a Palm handheld with a serial cable to access serial consoles. Enter the
correct value settings into the terminal emulator, and the serial console
will “ just work.”

FreeBSD accesses serial lines with tip(1), a program that allows you to
connect to remote systems in a manner similar to telnet. To run tip, do this
as root:

tip portname

A port name is shorthand for specifying the serial port number and
speed to be used on a serial port. The file /etc/remote contains a list of port

80 Chapter 4

names. Most of the entries in this file are relics of the eon when UUCP was
the major data transfer protocol and serial lines were the norm instead of the
exception.7 At the end of this file, you’ll see a few entries like:

Finger friendly shortcuts
uart0|com1:dv=/dev/cuau0:br#9600:pa=none:
uart1|com2:dv=/dev/cuau1:br#9600:pa=none:
--snip--

The uart entries are the standard Unix-type device names, while the
com names were added for the convenience of people who grew up on x86
hardware.

Assume that you have two FreeBSD boxes wired back-to-back, with each
one’s serial port 1 null-modemed into serial port 2. Both machines are con-
figured to use a serial console. You’ll want to connect to your local serial
port 2 to talk to the other system’s serial console:

tip uart1
connected

You’re in!
To disconnect the serial console, press enteR and then type the discon-

nect sequence “tilde-dot” at any time.

~.

You’ll be gracefully disconnected. (This also works in the OpenSSH
client.)

The tip(1) program uses the tilde (~) as a control character. Read the
man page for a full list of things you can do with it.

IPMI SOL Connections

You’ll need a SOL client to connect to your IPMI serial port. The quick-
est way to test your configuration is probably with the SOL client applet
included in your BMC. While that client has most of the disadvantages of
the console applet, it’s a good place to test. If the BMC SOL client doesn’t
work, check your SOL settings and FreeBSD configuration. Verify that
the SOL client is set to use the same speed you set in the hardware and in
FreeBSD. If it doesn’t work but all your settings appear to match, reboot the
BMC. Once it works, you can use SOL from another host.

The standard IPMI SOL client is IPMItool (https://sourceforge.net/projects/
ipmitool/), available as the ipmitool package. (Chapter 15 discusses pack-
ages.) IPMItool can interact with your BMC over the network, granting
you all of the BMC functions without logging into a clunky web interface.
You can reboot the host, check hardware alarms and sensors, and more, all

7. This might not predate dinosaurs, but it was before spam and before the web. I miss that
golden age.

Start Me Up! The Boot Process 81

from the command line. But for the moment, we’ll stick with the SOL con-
sole. Use the BMC’s hostname or IP, the username, and the password to log
into SOL.

ipmitool -H bmc -U username -I lanplus sol activate

Here, I log into my web server’s BMC, with the hostname www-bmc,
using the username “bert.”

ipmitool -H www-kvm -U bert -I lanplus sol activate

Enter the password at the prompt, and the SOL will acknowledge your
login.

[SOL Session operational. Use ~? for help]

We have a console. Probably. Let’s do the final test.

Working at the Console
The real test of a serial console is whether or not you can get data across it.
Once you have your console connected, hit enteR.

FreeBSD/amd64 (www) (ttyu2)

login:

FreeBSD permits logins on serial consoles by default. Log in to the host
and reboot it, and you’ll get the usual console messages.

Jul 13 11:48:24 Stopping cron.
Stopping sshd.
Stopping devd.
Writing entropy file:.
Writing early boot entropy file:.
Terminated
.
Jul 13 11:48:24 zfs1 syslogd: exiting on signal 15
Waiting (max 60 seconds) for system process `vnlru' to stop... done
Waiting (max 60 seconds) for system process `bufdaemon' to stop... done
Waiting (max 60 seconds) for system process `syncer' to stop...
Syncing disks, vnodes remaining... 0 0 0 done
All buffers synced.

There will be a long pause while the system runs its BIOS routines and
hands control over to the serial console. Just about the time you decide
that the machine is never coming back up, you’ll get the loader menu.
Congratulations! You’re using a serial console. Press the spacebar to inter-
rupt the boot just as if you were at the keyboard.

It doesn’t matter how far away the system is; you can change your boot-
ing kernel, get a verbose boot, bring it up in single-user mode, or manually

82 Chapter 4

fsck the hard drive—whatever. A software serial console might not show you
the BIOS, but chances are that’s set up correctly already. Once you’ve used
a serial console for a while, it won’t matter whether the machine is on the
other side of the world or the other side of the room; getting out of your
chair merely to access the console will feel like too much work.

If a system in a remote location entirely locks up, you can connect to
your serial console and have the “remote hands” at the colocation facility
power-cycle the system. It might not be good for your computer, but it’s
also not good for it to be locked up. With the serial console, you can boot
into single-user mode and fix the problem by digging through the logs and
whatever other troubleshooting you feel capable of. We’ll discuss trouble-
shooting this sort of problem in Chapter 24.

Now that you understand how FreeBSD starts up and shuts down, let’s
look at some basic tools you can use to ensure that your system will con-
tinue to run even after you’ve been experimenting with it.

5
R e a d T h i s B e f o R e Y o u

B R e a k s o m e T h i n g e l s e !
(B a c k u p a n d R e c o v e R Y)

The most common cause of system failure
is those pesky humans, but hardware and

operating systems also fail. Hackers learn
new ways to disrupt networks and penetrate

applications, and you’ll inevitably need to upgrade
and patch your system on a regular basis. (Whether
or not you will upgrade and patch is an entirely separate question.) Any time
you touch a system, there’s a chance you’ll make a mistake, misconfigure a
vital service, or otherwise totally ruin your system. Just think of how many
times you’ve patched a computer running any OS and found something
behaving oddly afterward! Even small system changes can damage data. You
should, therefore, always assume that the worst is about to happen. In our
case, this means that if either the hardware or a human being destroys the
data on your hard drive, you must be able to restore that data.

We’ll start with system backups and managing tape drives using tar(1)
and then review recording system behavior with script(1). Finally, should
you suffer a partial or near-total disaster, we’ll consider recovering and
rebuilding with single-user mode and the install media.

84 Chapter 5

System Backups
You need a system backup only if you care about your data. That isn’t as
inane as it sounds. The real question is, “How much would it cost to replace
my data?” A low-end tape backup system can run a few hundred dollars.
How much is your time worth, and how long will it take to restore your sys-
tem from the install media? If the most important data on your hard disk is
your web browser’s bookmarks file, a backup system probably isn’t worth the
investment. But if your server is your company’s backbone, you’ll want to
take this investment very seriously.

Online backups can easily be damaged or destroyed by whatever ruins
the live server. Proper backups are stored safely offline. Tools like rsync(1),
and even ZFS replication, don’t create actual backups; they create conve-
nient online copies.

A complete backup and restore operation requires a tape drive and
media. You can also back up to files, across the network, or to removable
media, such as CDs or DVDs. Many people use removable multiterabyte
hard drives connected via USB 3 for backups. Despite our best efforts, tape
is still an important medium for many environments.

Backup Tapes
FreeBSD supports SCSI and USB tape drives. SCSI drives are the fastest and
most reliable. USB tape drives are not always standards-compliant and hence
not always compatible with FreeBSD. Definitely check the release notes or the
FreeBSD mailing list archives to confirm that your tape drive is compatible
with FreeBSD.

Once you’ve physically installed your tape drive, you need to confirm
that FreeBSD recognizes it. The simplest way is to check the /var/run/dmesg
.boot file for sa devices (see Chapter 4). For example, the following three
lines from dmesg.boot describe the SCSI tape device in this machine:

usa0 at mps0 bus 0 vscbus0 wtarget 3 lun 0
sa0: x<QUANTUM ULTRIUM 5 3210> Removable Sequential Access SPC-4 SCSI device
sa0: Serial Number HU1313V6JA
sa0: y600.000MB/s transfers
sa0: Command Queueing enabled

Of all the information we have on this tape drive, the most important
is that your FreeBSD system knows this device as sa0 u. We also see that it’s
attached to the SCSI card mps0 v at SCSI ID 3 w, and we see the drive’s
model number x as well as the fact that it can run at 600MB per second y.

Tape Drive Device Nodes, Rewinding, and Ejecting
Tape is a linear storage medium. Each section of tape holds a particular piece
of data. If you back up multiple chunks of data to tape, avoid rewinding after
each backup operation. Imagine that you wrote a backup of one system to

Read This Before You Break Something Else! (Backup and Recovery) 85

tape, rewound the tape, and backed up another system. The second backup
would overwrite the first because it used the same chunk of tape. When you
run multiple backups on a single tape, use the appropriate device node to
ensure you don’t rewind the tape between tasks.

As with many Unix devices with decades worth of history, the way you
access a tape drive controls how it behaves. Tape drives have several differ-
ent device nodes, and each one makes the tape drive behave differently.
The most basic tape-control mechanism is the device node used to access it.
Normal tape drives have three nodes: /dev/esa0, /dev/nsa0, and /dev/sa0.

Tapes are sequential access devices, and to access certain data on a par-
ticular section of tape, you must roll the tape back to expose that section. To
rewind or not to rewind is an important question.

n o T e The behavior of different tape device nodes varies between operating systems. Different
versions of Unix, with different tape management software, handle tapes differently.
Do not make assumptions with your backup tapes!

If you use the node name that matches the device name, the tape drive
will automatically rewind when your command finishes. Our sample SCSI
tape drive has a device name of sa0, so if you run a command using /dev/
sa0 as the device node, the tape will rewind when the command finishes.

If you don’t want the tape to automatically rewind when the command
completes, stop it from rewinding by using the node name that starts with n.
Perhaps you need to append a second backup from a different machine onto
the tape or you want to catalog the tape before rewinding and ejecting. In
our example, use /dev/nsa0 to run your command without rewinding.

To automatically eject a tape when a command finishes, use the node
that begins with e. For example, if you’re running a full system backup, you
probably want the tape to eject when the command finishes so the operator
can put the tape in a case to ship offsite or place in storage. Our example
uses the /dev/esa0 device name to eject the tape when the command finishes.
Some tape drives might not support automatic ejection; they’ll require you
to push the physical button to work the lever that winches the tape out of the
drive. The easiest way to identify such a drive is to try to eject it via the device
node and see what happens.

The $TAPE Variable
Many programs assume that your tape drive is /dev/sa0, but that isn’t always
correct. Even if you have only one tape drive, you might want to eject it auto-
matically (/dev/esa0) or not to rewind it upon completion (/dev/nsa0).

Many (but not all) backup-related programs use the environment vari-
able $TAPE to control which device node they use by default. You can always
override $TAPE on the command line, but setting it to your most commonly
used choice can save you some annoyances later.

86 Chapter 5

Tape Status with mt(1)
Now that you know how to find your tape drive, you can perform basic
actions on it—such as rewinding, retensioning, erasing, and so on—with
mt(1). One basic thing mt(1) does is check a tape drive’s status, as follows:

mt status
Mode Density Blocksize bpi Compression
Current: u0x25:DDS-3 variable 97000 vDCLZ
---------available modes---------
0: 0x25:DDS-3 variable 97000 DCLZ
1: 0x25:DDS-3 variable 97000 DCLZ
2: 0x25:DDS-3 variable 97000 DCLZ
3: 0x25:DDS-3 variable 97000 DCLZ

 w Current Driver State: at rest.

File Number: 0 Record Number: 0 Residual Count 0

You don’t have to worry about most of the information here, but if you
want to go through it line by line, the mt(1) man page contains a good
description of all the features. At the very least, if the command returns
anything useful, this means mt(1) can find your tape drive.

One of the first things we see is the drive density u. Older drives
can have tapes of different densities for different purposes, but modern
tape drives pack data as tightly as possible. This particular tape drive is
a DDS-3 model; while you could choose to use another density, all the
choices it offers are DDS-3. We also see that this tape drive offers hard-
ware compression with the DCLZ algorithm v. Near the bottom, we see
what the tape drive is doing right now w.

The status command might give you different sorts of messages.
The most problematic is the one that tells you that your tape drive is not
configured:

#mt status
mt: /dev/nsa0: Device not configured

This means that you don’t actually have a tape at the device node that
your $TAPE variable points at. You can experiment with device nodes and
mt(1) by using the -f flag to specify a device node (for example, mt -f /dev/
nsa1 status), although you should get correct information from dmesg.boot.
If you’re sure that your device node is correct, perhaps you don’t have a tape
inserted into the drive or the tape drive needs cleaning.

Another response you might get from mt status is mt: /dev/nsa0: Device
busy. You asked for the status of your tape, and it replied, “I can’t talk now.
I’m busy.” Try again later, or check ps -ax to see what commands are using
the tape drive. When you’re working with actual tape, only one program
instance can access it at a time. You can’t list the contents of a tape while
you’re extracting a file from that tape.

Read This Before You Break Something Else! (Backup and Recovery) 87

Other Tape Drive Commands
You can do more with a tape drive than just check to see whether it’s alive.
The mt(1) subcommands I use most frequently are retension, erase, rewind,
and offline.

Tapes tend to stretch, especially after they’re used the first time. (I
know perfectly well that modern tape vendors all claim that they pre-
stretch their tapes or that their tapes can’t be stretched, but that claim
and two slices of bread will get you a bologna sandwich.) Retensioning a
tape is simply running the tape completely through, both forward and
back, with the command mt retension. Retensioning takes all the slack out
of the tape and makes backups more reliable.

Erasing removes all data from a tape. This isn’t a solidly reliable erasure,
which you’d need to conceal data from a data recovery firm or the IRS;
mt erase simply rolls through the tape and overwrites everything once. This
can take a very long time. If you want to erase the tape quickly, you can use
mt erase 0 to simply mark the tape as blank.

The mt rewind command rolls a tape back to the beginning, same as
accessing the device through its default device node.

When you offline a tape, you rewind and eject it so that you can put a
new tape in. The command is, oddly enough, mt offline.

Now let’s get some data on that tape.

BSD tar(1)
The most popular tool for backing up systems to tape is tar(1). Tar is short
for “tape archiver”—it’s literally written for backups. FreeBSD also includes
dump(8), but that’s intended only for UFS filesystems that don’t use soft
updates journaling. You’ll certainly encounter other backup tools too, such
as pax and cpio, as well as network-based backup tools, like Amanda, Bacula,
and Tarsnap. These tools are well suited for certain environments but aren’t
as universal as tar. Tar is a common standard recognized by almost every
operating system vendor; you can find tar for Windows, Linux, Unix, BSD,
macOS, AS/400, VMS, Atari, Commodore 64, QNX, and just about every-
thing else you might encounter.

Ta pe dR i v e T e mpe R a me n T

Not all tape drives support all functions. Older tape drives in particular are
quite touchy, even crotchety, requiring very specific settings to work accept-
ably. If you have a problem with a particular drive, check the FreeBSD-
questions mailing list archive for messages from others with the same
problem. You’ll probably find your answer there.

88 Chapter 5

You can use tar(1) to back up to tape or to a file. A backup file contain-
ing tarred files is called a tarball. It’s very fast and easy to restore just one file
or a subset of files from a tarball. It’s also easy to restore a portion of your
backup from tape, but it’s not nearly as fast.

FreeBSD uses a version of tar called bsdtar. Bsdtar can behave com-
pletely consistently with GNU tar and can also behave in strict accordance
with POSIX tar. If you’re at all concerned about the differences between
GNU tar, POSIX tar, and bsdtar, read tar(1) for all the gory details. Bsdtar
is built on libarchive(3), a library specifically for creating and extracting
backup archives. Thanks to libarchive, bsdtar can extract files from anything
from a traditional tape backup to an ISO image, all with the same interface.
If you need to open an RPM, a zip file, or almost any other archive, bsdtar is
your friend.

Bsdtar, like any other tar(1), can be dumb. If your filesystem is corrupt
in any way, bsdtar will back up what it thinks you asked for. It will then hap-
pily restore files that were damaged during the original backup, overwriting
working-but-incorrect files with not-working-and-still-incorrect versions.
These sorts of problems rarely happen, but tend to be unforgettable when
they do.

tar Modes
Tar can perform several different actions, controlled by the command
line flags. These different actions are called modes. You’ll need to read the
man page for a complete description of all tar modes, but the following list
describes the most commonly used ones.

Create an Archive

Use create mode (-c) to create a new archive. Unless you specify otherwise,
this flag backs up everything to your tape drive ($TAPE, or /dev/sa0 if you
haven’t set $TAPE). To back up your entire system, you’d tell tar to archive
everything from the root directory down:

tar -c /

f il e sYs T e m cohe R e nce

No matter what backup software you use, files can change as you’re trying to
back them up. Log files constantly add stuff at the end, while databases can
change anywhere in the file. Filesystem snapshots are always consistent, and
both UFS (Chapter 11) and ZFS (Chapter 12) support them. Never back up live
databases; instead, dump the database to an archive file and back up that
archive.

Read This Before You Break Something Else! (Backup and Recovery) 89

In response, your tape drive should light up and, if your tape is big
enough, eventually present you with a complete system backup. Many
modern hard drives are bigger than tape drives can hold, however, so it
makes sense to back up only the vital portions of your system. For exam-
ple, if the only files on your computer that you need are in the directories
/home and /var, you could specify those directories on the command line:

tar -c /home /var

List Archive Contents

List mode (-t) lists all the files in an archive. Once you’ve created an archive,
you can use this mode to list the tape’s contents.

tar -t
.
.snap
dev
tmp
--snip--

This list includes all the files in your backup and might take a while to
run. Note that the initial slashes are missing from filenames; for example,
/tmp shows up as tmp. This becomes important during restores.

Extract Files from Backup

In extract mode, tar retrieves files from the archive and copies them to the
disk. (This is also called untarring.) Tar extracts files in your current loca-
tion; if you want to overwrite the existing /etc directory of your system with
files from your backup, go to the root directory first. On the other hand, to
restore a copy of /etc in my home directory, I’d go to my home directory first.

cd /home/mwlucas
tar -x etc

Remember when I said that the missing initial slash would be important?
Here’s why. If the backup included that initial slash, tar would always extract
files relative to the root directory. The restored backup of /etc/rc.conf would
always be written to /etc/rc.conf. Without the leading /, you can recover the
file anywhere you want; the restored /etc/rc.conf can be resurrected as /home/
mwlucas/etc/rc.conf. If I’m restoring files from a machine that’s been decom-
missioned, I don’t want them to overwrite files on the current machine; I
want them placed elsewhere so they won’t interfere with my system.

Verify Backups

Once you have a backup, you probably want to confirm that it matches your
system. Diff mode (-d) compares the files on tape to the files on disk. If
everything on the tape matches the system, tar -d runs silently. A perfect

90 Chapter 5

match between tape and system is not normal, however. Log files usually
grow during the backup process, so the log files on tape shouldn’t match
the files on disk. Similarly, if you have a database server running, the data-
base files might not match. If you truly want a perfect backup (also called a
cold backup), you’ll need to shut down to single-user mode before taking the
backup. You must decide which errors you can live with and which require
correction.

Other tar Features
Tar has several other features that can make it more friendly or useful.
These include verbose behavior, different types of compression, permis-
sions restore, and the most popular option—alternate storage.

Use Non-default Storage

Tar feeds everything to your tape drive by default, but the -f flag allows you
to specify another device or file as the destination. In all of the preceding
examples, either I’m using the default tape drive, /dev/sa0, or I’ve set $TAPE.
If I have neither of these, I’d need to specify a tape drive with -f:

tar -c -f /dev/east0 /

You can also back up to a file (or tarball) instead of using a tape. Source
code distributed via the internet is frequently distributed as tarballs. Use the
same -f flag to specify a filename. For example, to back up the chapters of
this book as they were written, I ran the following every so often to create the
tarball bookbackup.tar:

#tar -cf bookbackup.tar /home/mwlucas/af3e/

This file can easily be backed up on machines elsewhere—so even if
my house burns down, the book would be safe. I could then run phone and
power lines to the neighbor’s house, borrow a laptop, find an open wire-
less access point, run tar -xf bookbackup.tar, and work amidst the charred
timbers while waiting for the insurance company. (I couldn’t do much else
at the time, anyway.)

Verbose

Tar normally runs silently unless it encounters an error. This is good most
of the time (who wants to read the complete list of files on the server every
time a backup runs?), but sometimes you like to have the warm fuzzy feel-
ing of watching a program do its work. Adding the -v flag makes tar print
the name of each file it processes. You can use the verbose flag to create
a complete list of all the files being backed up or restored. In a routine
backup or restore, this verbosity makes errors difficult to see.

Read This Before You Break Something Else! (Backup and Recovery) 91

Compression
Bsdtar inherits support for every compression algorithm libarchive(3)
understands. We’ll cover a few you might use to create archives, in order
from the most to least desirable. Bsdtar supports many more compression
algorithms, but you wouldn’t normally use them to create an archive.

XZ Compression

The XZ compression algorithm is the new hotness. Enable it with -J. Non-
FreeBSD hosts might need to pipe restores through xz(1) to read them.
Tarballs compressed with XZ usually end in .txz.

bzip Compression

FreeBSD’s tar supports bzip compression, which shrinks files even more
tightly than gzip, with the -j flag. Bzip uses more CPU time than gzip, but
these days, CPU time is not nearly as limited as when gzip came out. Not all
versions of tar support bzip compression, either. If you’ll only be reading
your files on a FreeBSD machine or you’re comfortable installing bzip on
other platforms, use the -j flag. Most tarballs compressed with bzip(1) end
in .tbz.

gzip Compression

The gzip flag (-z) runs the files through the gzip(1) compression program
on their way to or from the archive. Compressed tarballs usually have the
extension .tar.gz, .tgz, or, on rare occasion, .taz. Compression can greatly
reduce the size of an archive; many backups shrink by 50 percent or more
with compression. While all modern versions of tar support gzip, older
versions don’t, so if you want absolutely everybody to be able to read your
backup, don’t use -z.

Primordial Unix Compression

In contrast, all Unix versions of tar can use the -Z flag to compress files with
compress(1). The compress program isn’t as efficient as gzip, but it does
reduce file size. Every implementation of tar you’re likely to encounter sup-
ports compress(1). Tarballs compressed with -Z have the extension .tar.Z.

Permissions Restore
The -p flag restores the original permissions on extracted files. By default,
tar sets the owner of an extracted file to the username that’s extracting the
file. This is fine for source code, but for system restores, you really want to
restore the file’s original permissions. (Try to restore these permissions by
hand some time; you’ll learn quite a bit about why you should have done it
right the first time.)

92 Chapter 5

And More, More, More . . .
Tar has many, many more functions to accommodate decades of changes in
backups, files, filesystems, and disks. For a complete list of functions, read
man tar(1).

Recording What Happened
You can now back up your entire system as well as track changes in a single
file. All that remains is to track what’s happening on the screen in front of
you. One of those rarely mentioned but quite useful tools every sysadmin
should know is script(1). It logs everything you type and everything that
appears on the screen. You can record errors and log output for later dissec-
tion and analysis. For example, if you’re running a program that fails in the
same spot every time, you can use script to copy your keystrokes and the pro-
gram’s response. This is notably useful when upgrading your system or build-
ing software from source code; the last 30 lines or so of the log file make a
nice addition to a help request.

To start script(1), just type script. You’ll get your command prompt
back and can continue working normally. When you want the recording to
stop, just type exit or press ctRL-D. Your activity will appear in a file named
typescript. If you want the file to have a particular name or be in a particular
location, just give that name as an argument to script:

script /home/mwlucas/debug.txt

This tool is extremely useful for recording exactly what you typed and
exactly how the system responded. Any time you need to ask for help, con-
sider script(1).

Repairing a Broken System
The best way to learn an operating system is to play with it, and the harder
you play, the more you learn. If you play hard enough, you’ll certainly
break something, which is a good thing—having to fix a badly broken

compR e ssion a nd f R e e Bsd Ta R

FreeBSD’s libarchive autodetects compression types used in backups. While
you must specify your desired compression when creating an archive, you
don’t need to give a compression algorithm when extracting. Let tar(1) deter-
mine the compression type, and it will Do The Right Thing automatically, even
if the archive is compressed with an algorithm you’ve never seen before.

Read This Before You Break Something Else! (Backup and Recovery) 93

system is arguably the fastest way to learn. If you’ve just rendered your system
unbootable or plan to learn quickly enough to risk doing that, this section is
for you. If your system is deeply hosed, you’ll learn a lot and quickly.

Single-user mode (discussed in Chapter 4) gives you access to many
different commands and tools. What if you’ve destroyed those tools, how-
ever? Perhaps you’ve even damaged the statically linked programs in /rescue.
That’s where the install media comes in.

The FreeBSD installation images have an option to activate a live system.
This live system includes all the programs that come by default with FreeBSD.
When you boot off the install media, you can choose to enter the live CD
instead of installing.

You must have some familiarity with system administration to use the
live CD. Essentially, the live CD gives you a command prompt and a vari-
ety of Unix utilities. You get to use the boot-time error messages and that
ballast you keep between your ears to fix the problem. It’s you against the
computer. Of the first half-dozen times I’ve resorted to a live CD or its pre-
decessors, the computer won three. After that, though, my success rate was
much improved. Reading this book, as well as other Unix administration
manuals, will improve your odds of success.

It’s impossible to outline a step-by-step process for generic problem situ-
ations; the exact steps you must follow depend on the exact damage you’ve
inflicted on your poor, innocent operating system. If you’re really desper-
ate, however, the live CD gives you a shot at recovery without reinstalling.
I’ve had problems where I’ve accidentally destroyed my /etc directory or
fried the getty(1) program that displays a login prompt. Careful use of the
live CD can repair these problems in a fraction of the time a reinstall would
take. If nothing else, perhaps you can back up any data that survived being
exposed to you and then reinstall.

Always use install media that’s roughly equivalent to the FreeBSD version
you’re running. You can probably use a 12.2 install CD to repair a 12.1 system,
but a 14-current install disk might cause a whole new set of problems.

Now that you can recover from almost any mistake you might make,
let’s dive into the heart of FreeBSD: the kernel.

6
K e r n e l G a m e s

If you’re new to Unix administration, the
word kernel might intimidate you. After all,

the kernel is one of those secret parts of a
computer that mere mortals are not meant to

dabble in. In some versions of Unix, kernel tampering
is unthinkable. Microsoft doesn’t advertise that its
operating systems even have kernels, which is like glossing over the fact
that human beings have brains.1 While high-level users can access the
kernel through a variety of methods, this isn’t widely acknowledged or
encouraged. In many parts of the open source Unix-like world, however,
meddling with the kernel is a very viable and expected way to change
system behavior. It would probably be an excellent way to adjust other
operating systems, if you were allowed to do so.

1. Yes, I could make any number of editorial comments here, but they’re all too easy. I do have
some standards, you know.

96 Chapter 6

The FreeBSD kernel can be dynamically tuned or changed on the fly,
and most aspects of system performance can be adjusted as needed. We’ll
discuss the kernel’s sysctl interface and how you can use it to alter a run-
ning kernel.

At the same time, some parts of the kernel can be altered only while the
system is in the early stages of booting. The boot loader lets you adjust the
kernel before the host even finds its filesystems.

Some kernel features require extensive reconfiguration. You can custom-
build kernels for really tiny systems or build a kernel tuned precisely for the
hardware you’re running. The best way to do this is to build your own kernel.

FreeBSD has a modular kernel, meaning that entire chunks of the
kernel can be loaded or unloaded from the operating system, turning
entire subsystems on or off as desired. This is highly useful in this age of
removable hardware, such as PC cards and USB devices. Loadable kernel
modules can impact performance, system behavior, and hardware support.

Finally, we’ll cover basic debugging of your kernel, including some of
the scary-looking messages it gives out as well as when and how to boot
alternate kernels.

What Is the Kernel?
You’ll hear many different definitions of a kernel. Many are just flat-out
confusing, some are technically correct but bewilder the novice, while oth-
ers are wrong. The following definition isn’t complete, but it’ll do for most
people most of the time and it’s comprehensible: the kernel is the interface
between the hardware and the software.

The kernel lets the software write data to disk drives and to the net-
work. When a program wants memory, the kernel handles all the low-level
details of accessing the physical memory chip and allocating resources
for the job. Once your MP3 file passes through the codec software, the
kernel translates the codec output into a stream of zeros and ones that
your particular sound card understands. When a program requests CPU
time, the kernel schedules a time slot for it. In short, the kernel provides
all the software interfaces that programs need in order to access hardware
resources.

While the kernel’s job is easy to define (at least in this simplistic
manner), it’s actually a complicated task. Different programs expect the
kernel to provide different interfaces to the hardware, and different types
of hardware provide interfaces differently. For example, FreeBSD supports
a few dozen families of Ethernet cards, each with its own requirements
that the kernel must handle. If the kernel can’t talk to the network card,
the system isn’t on the network. Different programs request memory to be
arranged in different ways, and if you have a program that requests memory
in a manner the kernel doesn’t support, you’re out of luck. The way your
kernel investigates some hardware during the boot sequence defines how

Kernel Games 97

the hardware behaves, so you have to control that. Some devices identify
themselves in a friendly manner, while others lock up if you dare to ask
them what they’re for.

The kernel and any modules included with FreeBSD are files in the
directory /boot/kernel. Third-party kernel modules go in /boot/modules. Files
elsewhere in the system are not part of the kernel. Nonkernel files are col-
lectively called the userland, meaning they’re intended for users even if they
use kernel facilities.

Since a kernel is just a set of files, you can have alternative kernels on
hand for special situations. On systems where you’ve built your own kernel,
you will find /boot/kernel.old, a directory containing the kernel that was
installed before your current kernel. I habitually copy the kernel installed
with the system into /boot/kernel.install. You can also create your own special
kernels. The FreeBSD team makes configuring and installing kernels as
simple as possible. The simplest and best-supported way to alter a kernel is
through the sysctl interface.

Kernel State: sysctl
The sysctl(8) program allows you to peek at the values used by the kernel
and, in some cases, to set them. Just to make things more confusing, these
values are also sometimes known as sysctls. The sysctl interface is a powerful
feature because, in many cases, it will let you solve performance issues with-
out rebuilding the kernel or reconfiguring an application. Unfortunately,
this power also gives you the ability to sweep the legs out from under a run-
ning program and make your users really, really unhappy.

The sysctl(8) program handles all sysctl operations. Throughout this
book, I’ll point out how particular sysctls change system behavior, but first,
you need to understand sysctls in general. Start by grabbing all the human-
visible sysctls on your system and saving them to a file so you can study
them easily.

sysctl -o -a > sysctl.out

The file sysctl.out now contains hundreds of sysctl variables and their
values, most of which will look utterly meaningless. A few of them, however,
you can interpret without knowing much:

kern.hostname: storm

This particular sysctl, called kern.hostname, has the value storm. Oddly
enough, the system I ran this command on has a hostname of storm, and the
sysctl hints that this is the kernel’s name for the system it’s running on. See
these sysctls with the -a flag. Most sysctls are meant to be read this way, but
a few, called opaque sysctls, can only be interpreted by userland programs.
Show opaque sysctls with the -o flag.

98 Chapter 6

net.local.stream.pcblist: Format:S,xunpcb Length:5488 Dump:0x20000000000000001
1000000dec0adde...

I could guess that the variable net.local.stream.pcblist represents some-
thing for the network stack. I can’t even guess what the value means. Userland
programs like netstat(1) pull information from these opaque sysctls.

sysctl MIBs
The sysctls are organized in a tree format called a management information
base (MIB) with several broad categories, such as net (network), kern (kernel),
and vm (virtual memory). Table 6-1 lists the roots of the sysctl MIB tree on
a system running the GENERIC kernel.

Table 6-1: Roots of the sysctl MIB Tree

sysctl Function

kern Core kernel functions and features
vm Virtual memory system
vfs Filesystem
net Networking
debug Debugging
hw Hardware
machdep Machine-dependent settings
user Userland interface information
p1003_1b POSIX behavior
kstat Kernel statistics
dev Device-specific information
security Security-specific kernel features

Each of these categories is divided further. For example, the net
category, covering all networking sysctls, is divided into categories such
as IP, ICMP, TCP, and UDP. The concept of a management information
base is used in several other parts of system administration, as we’ll see
in Chapter 21 and you’ll see throughout your career. The terms sysctl MIB
and sysctl are frequently used interchangeably. Each category is named by
stringing together the parent category and all of its children to create a
unique variable name, such as:

--snip--
kern.maxfilesperproc: 11095
kern.maxprocperuid: 5547
kern.ipc.maxsockbuf: 262144
kern.ipc.sockbuf_waste_factor: 8
kern.ipc.max_linkhdr: 16
--snip--

Kernel Games 99

Here we have five sysctls plucked from the middle of the kern category.
The first two are directly beneath the kern label and have no sensible group-
ing with other values other than the fact that they’re kernel-related. The
remaining three all begin with kern.ipc; they’re part of the IPC (interprocess
communication) section of kernel sysctls. If you keep reading the sysctls you
saved, you’ll see that some sysctl variables are several categories deep.

sysctl Values and Definitions
Each MIB has a value that represents a buffer, setting, or characteristic
used by the kernel. Changing the value changes how the kernel operates.
For example, the kernel handles transmitting and receiving packets, but by
default won’t send a packet from one interface to another. You can change a
sysctl to permit this forwarding, thereby turning your host into a router.

Each sysctl value is either a string, an integer, a binary value, or an
opaque. Strings are free-form texts of arbitrary length; integers are ordinary
whole numbers; binary values are either 0 (off) or 1 (on); and opaques are
pieces of machine code that only specialized programs can interpret.

Many sysctl values are not well documented; there is no single docu-
ment listing all available sysctl MIBs and their functions. A MIB’s documen-
tation generally appears in a man page for the corresponding function, or
sometimes only in the source code. For example, the original documenta-
tion for the MIB kern.securelevel (discussed in Chapter 9) is in security(7).
Although sysctl documentation has expanded in recent years, many MIBs
still have no documentation.

Fortunately, some MIBs have obvious meanings. For example, as we
discuss later in this chapter, this is an important MIB if you frequently boot
different kernels:

kern.bootfile: /boot/kernel/kernel

If you’re debugging a problem and have to reboot with several different
kernels in succession, you can easily forget which kernel you’ve booted (not
that this has ever happened to me, really). A reminder can therefore be
helpful.

An easy way to get some idea of what a sysctl does is to use the -d switch
with the full MIB. This prints a brief description of the sysctl:

sysctl -d kern.maxfilesperproc
kern.maxfilesperproc: Maximum files allowed open per process

This brief definition tells you that this sysctl controls exactly what you
might think it does. Unfortunately, not all sysctls provide definitions with
-d. While this example is fairly easy, other MIBs might be much more dif-
ficult to guess.

100 Chapter 6

Viewing sysctls
To view all the MIBs available in a particular subtree of the MIB tree, use
the sysctl command with the name of the part of the tree you want to see.
For example, to see everything under kern, enter this command:

sysctl kern
kern.ostype: FreeBSD
kern.osrelease: 12.0-CURRENT
kern.osrevision: 199506
kern.version: FreeBSD 12.0-CURRENT #0 r322672: Fri Aug 18 16:31:34 EDT 2018
 root@storm:/usr/obj/usr/src/sys/GENERIC
--snip--

This list goes on for quite some time. If you’re just becoming familiar
with sysctls, you might use this to see what’s available. To get the exact value
of a specific sysctl, give the full MIB name as an argument:

sysctl kern.securelevel
kern.securelevel: -1

The MIB kern.securelevel has the integer value -1. We’ll discuss the
meaning of this sysctl and its value in Chapter 9.

Changing sysctls
Some sysctls are read-only. For example, take a look at the hardware MIBs:

hw.model: Intel(R) Xeon(R) CPU E5-1620 v2 @ 3.70GHz

The FreeBSD Project has yet to develop the technology to change
Intel hardware into ARM64 hardware via a software setting, so this sysctl
is read-only. If you were able to change it, all you’d do is crash your system.
FreeBSD protects you by not allowing you to change this value. An attempt
to change it won’t hurt anything, but you’ll get a warning. On the other
hand, consider the following MIB:

vfs.usermount: 0

This MIB determines whether users can mount removable media, such
as CDROM and floppy drives, as discussed in Chapter 13. Changing this
MIB requires no extensive tweaks within the kernel or modifications to hard-
ware; it’s only an in-kernel permissions setting. To change this value, use the
sysctl(8) command, the sysctl MIB, an equal sign, and the desired value:

sysctl vfs.usermount=1
vfs.usermount: 0 -> 1

Kernel Games 101

The sysctl(8) program responds by showing the sysctl name, the old
value, and the new value. This sysctl is now changed. A sysctl that can be
tuned on the fly like this is called a runtime tunable sysctl.

Setting sysctls Automatically
Once you’ve tweaked your kernel’s settings to your whim, you’ll want those
settings to remain after a reboot. Use the file /etc/sysctl.conf for this. List
each sysctl you want to set and the desired value in this file. For example,
to set the vfs.usermount sysctl at boot, add the following on its own line in
/etc/sysctl.conf:

vfs.usermount=1

The Kernel Environment
The kernel is a program started by the boot loader. The boot loader can
hand environment variables to the kernel, creating the kernel environment.
The kernel environment is also a MIB tree, much like the sysctl tree. Many,
but not all, of these environment variables later get mapped onto read-only
sysctls.

Viewing the Kernel Environment
Use kenv(8) to view the kernel environment. Give it the name of a kernel
environment variable to see just that variable, or run it without arguments
to see the whole tree.

kenv
LINES="24"
acpi.oem="SUPERM"
acpi.revision="2"
acpi.rsdp="0x000f04a0"
acpi.rsdt="0x7dff3028"
--snip--

These variables look an awful lot like the loader variables. Because they
are the loader variables. They frequently relate to initial hardware probes.
If your serial port uses an unusual memory address, the kernel needs to
know about that before trying to probe it.

These environment settings are also called boot-time tunable sysctls, or
tunables, frequently related to low-level hardware settings. As an example,
when the kernel first probes a hard drive, it must decide whether it’s going
to provide ident-based or GPT ID-based labels. This decision must be made
before anything in the kernel accesses the hard drive, and you can’t change
your mind without rebooting the machine.

102 Chapter 6

Kernel environment variables can be set only from the loader. You can
make changes manually at boot time or set them in /boot/loader.conf to take
effect at the next boot (see Chapter 4).

Much like sysctl.conf, setting tunable values in loader.conf will let you really
mess up a machine. The good news is that these values are easily unset.

Dropping Hints to Device Drivers
You can use environment variables to tell device drivers needed settings.
You’ll learn about these settings by reading the driver man pages and
other documentation. Additionally, much ancient hardware requires the
kernel to address it at very specific IRQ and memory values. If you’re old
enough to remember plug-and-pray, “hardware configuration” floppy
disks, and special slots for bus master cards, you know what I’m talking
about and probably have one of these systems polluting your hardware
closet even today. (If you’re too young for that, buy one of us geezers a
drink and listen to our horror stories.2) You can tell FreeBSD to probe for
such hardware at any IRQ or memory address you specify, which is very
useful when you have a card with a known configuration but the floppy
that can change that configuration biodegraded years ago.

If you’re truly unfortunate, you might have a machine with a built-in
floppy disk drive. Look in /boot/device.hints to find entries that configure
this hardware:

hint.fdc.0.at="isa"
hint.ufdc.v0.wport=x"0x3F0"
hint.fdc.0.irq=y"6"
hint.fdc.0.drq=z"2"

These entries are all hints for the fdc(4) device driver u. The entry is
used for fdc device number zero v. If you enable this device, a booting kernel

2. In truth, listening is optional.

Too m a n y T un a bl e s?

Don’t become confused between sysctl values that can be set only at boot,
sysctl values that can be tuned on the fly, and sysctls that can be set on the
fly but have been configured to automatically adjust at boot. Remember that
boot-time tunable sysctls involve low-level kernel functions, while runtime tun-
ables involve higher-level functions. Having sysctls adjust themselves at boot is
merely an example of saving your work—it doesn’t change the category that
the sysctl belongs to.

Kernel Games 103

will probe for a card at memory address (or port w) 0x3F0 x, IRQ 6 y, and
DRQ 2 z. If it finds a device with these characteristics, it gets assigned the
fdc(4) driver. If that device isn’t a floppy drive, you’ll have amusing crashes.3

Boot-time tunables and sysctl let you adjust how a kernel behaves, but
kernel modules let you add functionality to a running kernel.

Kernel Modules
Kernel modules are parts of a kernel that can be started, or loaded, when
needed and unloaded when unused. Kernel modules can be loaded when
you plug in a piece of hardware and removed with that hardware. This
greatly expands the system’s flexibility. Plus, a kernel with all possible func-
tions compiled into it would be rather large. Using modules, you can have a
smaller, more efficient kernel and load rarely used functionality only when
it’s required.

Just as the default kernel is held in the file /boot/kernel/kernel, kernel
modules are the other files under /boot/kernel. Take a look in that directory
to see hundreds of kernel module files. Each kernel module name ends
in .ko. Generally speaking, the file is named after the functionality con-
tained in the module. For example, the file /boot/kernel/wlan.ko handles the
wlan(4) wireless layer. FreeBSD needs this module for wireless networking.

Viewing Loaded Modules
The kldstat(8) command shows modules loaded into the kernel.

kldstat
Id Refs Address Size Name

u 1 36 0xffffffff80200000 204c3e0 kernel
v 2 1 0xffffffff8224e000 3c14f0 zfs.ko
w 3 2 0xffffffff82610000 d5f8 opensolaris.ko
x 5 1 0xffffffff82821000 ac15 linprocfs.ko

--snip--

3. Which anyone using a built-in floppy drive outside a lab fully deserves.

T e s T inG booT-T ime T un a bl e s

All of these hints and boot-time tunable sysctls are available in the boot loader
and can be set interactively at the OK prompt, as discussed in Chapter 4. You
can test settings without editing loader.conf, find the value that works, and
only then make the change permanent in a file.

104 Chapter 6

This desktop has three kernel modules loaded. The first is the kernel
proper u; then, modules to support ZFS v and the OpenSolaris kernel
functions needed by ZFS w follow. I experiment with Linux software on
this host (see Chapter 17), so finding the linprocfs(5) module x loaded is
not a surprise.

Each module contains one or more submodules, which you can view
using kldstat -v, but the kernel itself has a few hundred submodules—so
be ready for a lot of output.

Loading and Unloading Modules
Loading and unloading kernel modules is done with kldload(8) and
kldunload(8). For example, suppose I’m experimenting with IPMI on a
test host. This requires the ipmi(4) kernel module. While I’d normally
load this automatically at boot using loader.conf, I’m in the lab. I use the
kldload command and the name of the kernel module or the file contain-
ing the kernel module for that feature:

kldload /boot/kernel/ipmi.ko

If I happen to remember the name of the module, I can just use that.
The module name doesn’t need the .ko at the end of the file. I happen to
recall the name of the IPMI module.

kldload ipmi

Most often, my feeble brain relies on tab completion in my shell to
remind me of the module’s full and proper name.

Once I finish experimenting, I’ll unload the module.4 Specify the name
of the kernel module as it appears in kldstat(8).

kldunload ipmi

Any module that’s actively in use, such as the opensolaris.ko module
loaded whenever you use ZFS, will not be permitted to unload. Attempting
to unload an active module gives you an error like this:

kldunload opensolaris
kldunload: can't unload file: Device busy

Sysadmins load modules much more often than they unload them.
Unloading modules is expected to work, and it works the overwhelming
majority of the time, but it’s arguably the most common way to panic a
system. If unloading a module triggers a panic, file a bug report as per
Chapter 24.

4. Actually, I probably won’t bother, as I’ll be shutting down the test host. But you get the idea.

Kernel Games 105

Loading Modules at Boot
Use /boot/loader.conf to load modules at boot. The default loader.conf includes
many examples of loading kernel modules, but the syntax is always the same.
Take the name of the kernel module, chop off the trailing .ko, and add the
string _load="YES". For example, to load the module /boot/kernel/procfs.ko auto-
matically at boot, add this to loader.conf:

procfs_load="YES"

The hard part, of course, is knowing which module to load. The easy
ones are device drivers; if you install a new network or SCSI card that your
kernel doesn’t support, you can load the driver module instead of reconfig-
uring the kernel. In this case, you’ll need to find out which driver supports
your card; the man pages and Google are your friends there. I’ll be giving
specific pointers to kernel modules to solve particular problems throughout
this book.

Wait a minute, though—why would FreeBSD make you load a device
driver to recognize hardware if it recognizes almost everything at boot?
That’s an excellent question! The answer is that you may have built your
own custom kernel and removed support for hardware you’re not using.
You don’t know how to build a kernel? Well, let’s fix that right now.

Build Your Own Kernel
Eventually, you’ll find that you can’t tweak your kernel as much as you
like using only sysctl(8) and modules, and your only solution will be to
build a customized kernel. This sounds much harder than it is; we’re not
talking about writing code here—just editing a text file and running a
couple of commands. If you follow the process, it’s perfectly safe. If you
don’t follow the process, well, it’s like driving on the wrong side of the road.
(Downtown. During rush hour.) But the recovery from a bad kernel isn’t
that bad, either.

The kernel shipped in a default install is called GENERIC. GENERIC is
configured to run on a wide variety of hardware, although not necessarily
optimally. GENERIC boots nicely on most hardware from the last 15 years
or so, and I frequently use it in production. When you customize your ker-
nel, you can add support for specific hardware, remove support for hard-
ware you don’t need, or enable features not included in GENERIC.

Don’T r e buil D T he Ke r ne l

Once upon a time, building a kernel was considered a rite of passage. This is
no longer the case. Most sysadmins need to rebuild a kernel only when they’re
playing with experimental features or specialty hardware.

106 Chapter 6

Preparations
You must have the kernel source code before you can build a kernel. If
you followed my advice back in Chapter 3, you’re all set. If not, you can
either go back into the installer and load the kernel sources, download the
source code from a FreeBSD mirror, or jump ahead to Chapter 18 and use
svnlite(1). If you don’t remember whether you installed the source code,
look into your /usr/src directory. If it contains a bunch of files and directo-
ries, you have the kernel sources.

Before building a new kernel, you must know what hardware your
system has. This can be difficult to determine; the brand name on a com-
ponent doesn’t necessarily describe the device’s identity or abilities. Many
companies use rebranded generic components—I remember one manu-
facturer that released four different network cards under the same model
name and didn’t even put a version number on the first three. The only way
to tell the difference was to keep trying different device drivers until one of
them worked. This has been going on for decades—many different compa-
nies manufactured NE2000-compatible network cards. The outside of the
box had a vendor’s name on it, but the circuits on the card said NE2000.
Fortunately, some vendors use a standard architecture for their drivers and
hardware; you can be fairly sure that an Intel network card will be recog-
nized by the Intel device driver.

The best place to see what hardware FreeBSD found on your system is
the file /var/run/dmesg.boot, discussed in Chapter 4. Each entry represents
either a hardware or software feature in the kernel. As you work on a new
kernel for a system, keep the dmesg.boot of that system handy.

Buses and Attachments
Every device in the computer is attached to some other device. If you read
your dmesg.boot carefully, you can see these chains of attachments. Here’s an
edited set of boot messages to demonstrate:

u acpi0: <SUPERM SMCI--MB> on motherboard
v acpi0: Power Button (fixed)
w cpu0: <ACPI CPU> on acpi0

cpu1: <ACPI CPU> on acpi0
x attimer0: <AT timer> port 0x40-0x43 irq 0 on acpi0
y pcib0: <ACPI Host-PCI bridge> port 0xcf8-0xcff on acpi0
z pci0: <ACPI PCI bus> on pcib0

Our first device on this system is acpi0 u. You might not know what that is,
but you could always read man acpi to find out. (Or, if you must, you could read
the rest of this chapter.) There’s a power button v on the acpi0 device. The
CPUs w are also attached to acpi0, as is a timekeeping device x. Eventually
we have the first PCI bridge, pcib0 y, attached to the acpi0 device. The first
PCI bus z is in turn attached to the PCI bridge.

So, your common PCI devices connect to a hierarchy of buses that, in
turn, attach to a PCI bridge to talk to the rest of the computer. You could

Kernel Games 107

read dmesg.boot and draw a tree of all the devices on the system; while that
isn’t necessary, understanding what’s attached where makes configuring a
kernel much more likely to succeed.

If you’re in doubt, use pciconf(8) to see what’s actually on your system.
pciconf -lv will list every PCI device attached to the system, whether or not
the current kernel found a driver for it.

Back Up Your Working Kernel
A bad kernel can render your system unbootable, so you absolutely must keep
a good kernel around at all times. The kernel install process keeps your pre-
vious kernel around for backup purposes, in the directory /boot/kernel.old.
This is nice for being able to fall back, but I recommend that you go fur-
ther. See Chapter 4 for details on booting alternate kernels.

If you don’t keep a known good backup, here’s what can happen. If
you build a new kernel, find that you made a minor mistake, and have to
rebuild it again, the system-generated backup kernel is actually the first
kernel you made—the one with that minor mistake. Your working kernel
has been deleted. When you discover that your new custom kernel has the
same problem, or an even more serious error, you’ll deeply regret the loss
of that working kernel.

A common place to keep a known good kernel is /boot/kernel.good. Back
up your working, reliable kernel like this:

cp -a /boot/kernel /boot/kernel.good

If you’re using ZFS, a boot environment might make more sense than
copying (see Chapter 12).

Don’t be afraid to keep a variety of kernels on hand. Disk space is
cheaper than time. I know people who keep kernels in directories named
by date so that they can fall back to earlier versions if necessary. Many
people also keep a current copy of the GENERIC kernel in /boot/kernel
.GENERIC for testing and debugging purposes. The only way to have too
many kernels is to fill up your hard drive.

Configuration File Format
FreeBSD’s kernel is configured via text files. There’s no graphical utility or
menu-driven system for kernel configuration; it’s still much the same as in
4.4 BSD. If you’re not comfortable with text configuration files, building a
kernel is just not for you.

Each kernel configuration entry is on a single line. You’ll see a label
to indicate what sort of entry this is, and then a term for the entry. Many
entries also have comments set off with a hash mark, much like this entry
for the FreeBSD filesystem FFS:

options FFS # Berkeley Fast Filesystem

108 Chapter 6

Every complete kernel configuration file is made up of five types
of entries: cpu, ident, makeoptions, options, and devices. The presence or
absence of these entries dictates how the kernel supports the associated
feature or hardware:

cpu This label indicates what kind of processor this kernel supports.
The kernel configuration file for the boring old PC hardware includes
several CPU entries to cover processors such as the 486 (I486_CPU),
Pentium (I586_CPU), and Pentium Pro through modern Pentium 4
CPUs (I686_CPU). The kernel configuration for amd64/EM64T hard-
ware includes only one CPU type, HAMMER, as that architecture has
only one CPU family. While a kernel configuration can include mul-
tiple CPU types, they must be of similar architectures; a kernel can run
on 486 and Pentium CPUs, but you can’t have a single kernel run on
both Intel-compatible and ARM processors.

ident Every kernel has a single ident line, giving a name for the kernel.
That’s how the GENERIC kernel gets its name; it’s an arbitrary text
string.

makeoptions This string gives instructions to the kernel-building soft-
ware. The most common option is DEBUG=-g, which tells the compiler to
build a debugging kernel. Debugging kernels help developers trouble-
shoot system problems.

options These are kernel functions that don’t require particular hard-
ware. This includes filesystems, networking protocols, and in-kernel
debuggers.

devices Also known as device drivers, these provide the kernel with
instructions on how to speak to certain devices. If you want your
system to support a piece of hardware, the kernel must include the
device driver for that hardware. Some device entries, called pseudo-
devices, aren’t tied to particular hardware, but instead support whole
categories of hardware—such as Ethernet, random number genera-
tors, or memory disks. You might wonder what differentiates a pseu-
dodevice from an option. The answer is that pseudodevices appear
to the system as devices in at least some ways, while options have no
device-like features. For example, the loopback pseudodevice is a
network interface that connects to only the local machine. While no
hardware exists for it, software can connect to the loopback interface
and send network traffic to other software on the same machine.

Here’s another snippet of a configuration file—the part that covers
ATA controllers:

ATA controllers
device ahci # AHCI-compatible SATA controllers
device ata # Legacy ATA/SATA controllers
device mvs # Marvell 88SX50XX/88SX60XX/88SX70XX/SoC SATA
device siis # SiliconImage SiI3124/SiI3132/SiI3531 SATA

Kernel Games 109

Each of these devices is a different type of ATA controller. Compare
these entries to a couple of our ATA entries in /var/run/dmesg.boot :

atapci0: <Intel PIIX4 UDMA33 controller> port 0x1f0-0x1f7,0x3f6,0x170
-0x177,0x376,0xc160-0xc16f at device 1.1 on pci0
ata0: <ATA channel> at channel 0 on atapci0
ata1: <ATA channel> at channel 1 on atapci0
ada0 at ata0 bus 0 scbus0 target 0 lun 0
cd0 at ata1 bus 0 scbus1 target 0 lun 0

The kernel configuration has an ATA bus, device ata. It’s a “legacy”
ATA bus, whatever the word “legacy” means today. The dmesg snippet here
starts with the atapci device, the controller where ATA meets PCI. We then
have two ATA buses, ata0 and ata1. Disk ada0 is on ata0, while CD drive cd0
is on ata1.

Without device ata in the kernel configuration, the kernel would not
recognize the ATA bus. Even if the system figured out that the system has
a DVD drive, the kernel wouldn’t know the route to get information to and
from it. Your kernel configuration must include all the intermediary devices
for the drivers that rely on them. On the other hand, if your system doesn’t
have ATA RAID drives, floppy drives, or tape drives, you can remove those
device drivers from your kernel.

If this host had an AHCI, MVS, or SIIS controller, those device names
would show up in dmesg instead of ata.

Configuration Files
Fortunately, you don’t normally create a kernel configuration file from
scratch; instead, you build on an existing one. Start with the GENERIC
kernel for your hardware architecture. It can be found in /sys/<arch>/conf —
for example, the i386 kernel configuration files are in /sys/i386/conf, the
amd64 kernel configuration files are in /sys/amd64/conf, and so on. This
directory contains several files, of which the most important are DEFAULTS,
GENERIC, GENERIC.hints, MINIMAL, and NOTES :

DEFAULTS This is a list of options and devices that are enabled by
default for a given architecture. That doesn’t mean that you can com-
pile and run DEFAULTS, but it is a starting point should you want to
build a kernel by adding devices. Using GENERIC is easier, though.

GENERIC This is the configuration for the standard kernel. It con-
tains all the settings needed to get standard hardware of that archi-
tecture up and running; this is the kernel configuration used by the
installer.

GENERIC.hints This is the hints file that is later installed as /boot/
device.hints. This file provides configuration information for older
hardware.

110 Chapter 6

MINIMAL This configuration excludes anything that can be loaded
from a module.

NOTES This is an all-inclusive kernel configuration for that hardware
platform. Every platform-specific feature is included in NOTES. Find
platform-independent kernel features in /usr/src/sys/conf/NOTES.

Many architectures also have architecture-specific configurations,
needed only for that hardware. The i386 architecture includes the PAE
kernel configuration, which lets you use more than 4GB of RAM on a 32-bit
system. The arm architecture includes dozens of configurations, one for
each of the many different platforms FreeBSD supports.

Sometimes, you’ll find a kernel configuration that does exactly what
you want. I want the smallest possible kernel. The MINIMAL kernel looks
like a good place to start. Let’s build it.

Building a Kernel
A base install of FreeBSD, combined with the operating system source
code, includes all the infrastructure you need to easily build a kernel.
All you need to do is tell the system which kernel configuration to build
through the KERNCONF variable. You can set KERNCONF in /etc/src.conf
(or /etc/make.conf, if you’re really old-school).

KERNCONF=MINIMAL

If you’re experimenting with building and running different kernels,
though, it’s best to set the configuration file on the command line when you
build the kernel. Build the kernel with the make buildkernel command.

cd /usr/src
make KERNCONF=MINIMAL buildkernel

The build process first runs config(8) to find syntactical configura-
tion errors. If config(8) detects a problem, it reports the error and stops.
Some errors are blatantly obvious—for example, you might have acciden-
tally deleted support for the Unix File System (UFS) but included support
for booting off of UFS. One requires the other, and config(8) will tell you
exactly what’s wrong. Other messages are strange and obscure; those that
may take the longest to figure out are like this:

MINIMAL: unknown option "NET6"

NET6 is the IPv6 option, isn’t it? No, that’s I NET6. Apparently some
doofus examined the config file in a text editor and accidentally deleted a
letter. The error is perfectly self-explanatory—once you’re familiar with all
the supported kernel options. Read these errors carefully!

Kernel Games 111

Once config(8) validates the configuration, the kernel build process
takes a few minutes on a modern machine. A successful build ends with a
message like this.

--
>>> Kernel build for MINIMAL completed on Tue Sep 12 14:27:08 EDT 2017
--

After building the kernel, install it. Running make installkernel moves
your current kernel to /boot/kernel.old and installs the new kernel in /boot/
kernel. Installing a kernel is much faster than building it.

Once the install completes, reboot your server and watch the boot mes-
sages. If everything worked, you’ll get something like the following, showing
exactly what kernel is running and when it was built.

Copyright (c) 1992-2018 The FreeBSD Project.
Copyright (c) 1979, 1980, 1983, 1986, 1988, 1989, 1991, 1992, 1993, 1994
The Regents of the University of California. All rights reserved.
FreeBSD storm 12.0-CURRENT FreeBSD 12.0-CURRENT #0 r323136: Sat Sep 2
21:46:53 EDT 2018 root@storm:/usr/obj/usr/src/sys/MINIMAL amd64
--snip--

The catch is, the MINIMAL kernel doesn’t boot all hardware. It doesn’t
boot most hardware. And of the hardware MINIMAL can boot, it won’t boot
most FreeBSD installations on that hardware.

MINIMAL leaves everything that can be a module in a module. Disk
partitioning methods, both GPT and MBR, can be modules. You must
load either geom_part_gpt.ko or geom_part_mbr.ko via loader.conf to boot
MINIMAL. Filesystems are modules too, so you have to load those. In
short, you have to load every stupid module required by the hardware
and your installation decisions. MINIMAL is a good reference of what all
kernels need, and a decent place to start designing your own kernel, but
insufficient for production.

Booting an Alternate Kernel
So, what to do if your new kernel doesn’t work, or if it works badly? Perhaps
you forgot a device driver or accidentally cut out the INET option and can’t

T rus T inG T he Ke r ne l

Eventually, you’ll get to where you trust your kernel configuration and want to
build and install it in a single command. The make kernel command builds and
installs the kernel. Truly intense sysadmins run make kernel && reboot.

112 Chapter 6

access the internet. Sometimes it’ll hang up so early in the boot process that
the only thing you can do is reboot the host. Don’t panic! You did keep your
old kernel, right? Here’s what to do.

Start by recording the error message. You’ll need to research that mes-
sage to find out how your new kernel failed you.5 To fix the error, though,
you’ll need to boot a working kernel so you can build an improved kernel.

Back in Chapter 4, we discussed the mechanics of booting an alternate
kernel. We’ll go through the process of what to type here, but to see some
of the in-depth details of loader management, you’ll want to go back to
the earlier section. For now, we’ll focus on the reasons to boot an alternate
kernel and on how to do it correctly.

Start by deciding which kernel you want to boot. Your old kernel should
be in a directory under /boot; in this section, we’ll assume that you want to
boot the kernel in /boot/kernel.good. Reboot and interrupt the boot to get
to the boot menu. The fifth option lets you choose a different kernel. The
menu displays every kernel directory listed in the kernels option in loader.
conf. While it lists kernel and kernel.old by default, I’ll add kernel.good.

Once you install another new kernel, though, remember: the existing
/boot/kernel gets copied to /boot/kernel.old, so your new kernel can be placed
in /boot/kernel. If that kernel doesn’t boot, and your new kernel also doesn’t
boot, you’ll be left without a working kernel. This kind of sucks. Be sure you
keep a known good kernel on hand.

Custom Kernel Configuration
Maybe none of the provided kernel configurations are suitable for you.
You need something different. FreeBSD lets you create whatever you want.
It’s easiest to modify an existing configuration, however. You can either
copy an existing file or use include options. We’ll start by modifying an
existing file. Be sure you use the correct architecture directory, probably
either /sys/amd64/conf or /sys/i386/conf.

Do not edit any of the files in the configuration directory directly.
Instead, copy GENERIC to a file named after your machine or the kernel’s
function and then edit the copy. For this example, I’m building a minimal
kernel to support VirtualBox systems. I copy the file GENERIC to a file
called VBOX and open VBOX in my preferred text editor.

Trimming a Kernel
Once upon a time, memory was far more expensive than it is today and was
available only in smaller quantities. When a system has 128MB of RAM, you
want every bit of that to be available for work, not holding useless device
drivers. Today, when a cheap laptop somehow suffers through the day with
a paltry 64GB RAM, kernel size is almost irrelevant.

5. You’ll discover that, actually, you failed your new kernel. But whatever.

Kernel Games 113

For most of us, stripping unnecessary drivers and features out of a ker-
nel to shrink it is a waste of time and energy, but I would encourage you to
do it once. It will teach you how to build a kernel so that when you have to
test a kernel patch or something, you won’t need to learn kernel building
along with coping with the problem compelling the rebuild. It’ll also help
when you start experimenting with FreeBSD on tiny hosts like a BeagleBone
or Raspberry Pi.

I want to build a kernel that supports VirtualBox kernels. I boot a work-
ing FreeBSD install on VirtualBox so I can get at dmesg.boot. I’ll be going
back and forth between the dmesg and the configuration, commenting out
unneeded entries.

CPU Types

On most architectures, FreeBSD supports only one or two types of CPU.
The amd64 platform supports only one, HAMMER. The i386 platform
supports three, but two of those—the 486 and the original Pentium—are
wildly obsolete outside the embedded market.

cpu I486_CPU
cpu I586_CPU
cpu I686_CPU

You need to include only the CPU you have. If you’re not sure of the
CPU in your hardware, check dmesg.boot. I have an ancient laptop that shows:

CPU: AMD Athlon(tm) 64 X2 Dual Core Processor 4200+ (2200.10-MHz 686-class CPU)
 Origin = "AuthenticAMD" Id = 0x20fb1 Stepping = 1
 Features=0x178bfbff<FPU,VME,DE,PSE,TSC,MSR,PAE,MCE,CX8,APIC,SEP,MTRR,PGE,MCA,
CMOV,PAT,PSE36,CLFLUSH,MMX,FXSR,SSE,SSE2,HTT>
--snip--

As shown in bold, this is a 686-class CPU, which means that I can remove
the I486_CPU and I586_CPU statements to make my kernel smaller.

Core Options

Following the CPU type configuration entries, we have a whole list of options
for basic FreeBSD services, such as TCP/IP and filesystems. An average sys-
tem won’t require all of these, but having them present provides a great deal
of flexibility. You’ll also encounter options rarely used in your environment
as well as those you can remove from your custom kernel configuration. We
won’t discuss all possible kernel options but will cover specific examples of
different option types. I’ll specifically mention those that can be trimmed
from an internet server. The LINT file, man pages, and your favorite internet
search engine can fill you in on the other options. If you’re in doubt about an
option, keep it. Or disable it and see what breaks.

114 Chapter 6

Consider the following network-related options:

options INET # InterNETworking
options INET6 # IPv6 communications protocols
options IPSEC # IP (v4/v6) security
options IPSEC_SUPPORT # Allow kldload of ipsec and tcpmd5
options TCP_OFFLOAD # TCP offload
options TCP_HHOOK # hhook(9) framework for TCP
options SCTP # Stream Control Transmission Protocol

These options support networking. INET is the standard old-fashioned
TCP/IP, while INET6 supports IPv6. Much Unix-like software depends
on TCP/IP, so you certainly require both of these. IPSEC and IPSEC_
SUPPORT let you use the IPSec VPN protocol. I certainly won’t use these
on my virtual machines, so I’ll comment them out.

The TCP_OFFLOAD option lets the network stack offload TCP/IP
computations to the network card. That sounds good, except the vnet(4)
network interfaces on virtual machines don’t perform that function. Off
with its head!

The TCP_HHOOK option gives you a convenient man page to read.
Would I use this option? Maaaybe. More importantly, I don’t know what
software I’m running will need it. I’ll keep it.

The SCTP transport protocol is nifty, but totally useless to the virtual
machines running on my laptop. Bye-bye.

options FFS # Berkeley Fast Filesystem
options SOFTUPDATES # Enable FFS soft updates support
options UFS_ACL # Support for access control lists
options UFS_DIRHASH # Improve performance on big directories
options UFS_GJOURNAL # Enable gjournal-based UFS journaling

The FFS option provides the standard FreeBSD filesystem, UFS. Even
a ZFS host needs UFS support. Keep it. The other options are all related
to FFS. We discuss FFS and its options in more detail than you care for in
Chapter 11, but for right now, just trust me and go with it.

Soft updates ensure disk integrity even when the system shuts down
incorrectly. As discussed in acl(9), UFS access control lists allow you to
grant very detailed permissions on files, which I won’t need on my virtual
host. Whack!

UFS_DIRHASH enables directory hashing, making directories with
thousands of files more efficient. Keep that. And I’m going to use soft
updates journaling, not gjournaling, so UFS_GJOURNAL can go away.

options MD_ROOT # MD is a potential root device

This option—and all other _ROOT options—lets the system use some-
thing other than a standard UFS or ZFS filesystem as a disk device for the
root partition. The installer uses a memory device (MD) as a root partition.
If you’re using a diskless system (see Chapter 23), you’ll need an NFS root

Kernel Games 115

partition. If you’re running FreeBSD on a standard computer system, with
a hard drive and a keyboard and whatnot, your kernel doesn’t need any of
these features.

options NFSCL # Network Filesystem Client
options NFSD # Network Filesystem Server
options NFSLOCKD # Network Lock Manager

These two options support the Network File System (see Chapter 13).
The vital question here is, do you need NFS? If so, do you need to be a
server or a client? I’ll include these.

options MSDOSFS # MSDOS filesystem
options CD9660 # ISO 9660 filesystem
options PROCFS # Process filesystem (requires PSEUDOFS)
options PSEUDOFS # Pseudo-filesystem framework

These options support intermittently used filesystems, such as FAT,
CDs, the process filesystem, and the pseudo-filesystem framework. We dis-
cuss many of these filesystems in Chapter 13, but they’re all available as ker-
nel modules. Kill them.

options COMPAT_FREEBSD32 # Compatible with i386 binaries
options COMPAT_FREEBSD4 # Compatible with FreeBSD4
options COMPAT_FREEBSD5 # Compatible with FreeBSD5
options COMPAT_FREEBSD6 # Compatible with FreeBSD6
--snip--

These compatibility options let your system run software built for older
versions of FreeBSD or software that makes assumptions about the kernel
that were valid for older versions of FreeBSD but are no longer true. If
you’re installing a system from scratch, you probably won’t need compat-
ibility with FreeBSD 4, 5, or 6, but a surprising amount of software requires
compatibility with 32-bit FreeBSD. Keep the COMPAT_FREEBSD32 option, or your
system will break.

options SCSI_DELAY=5000 # Delay (in ms) before probing SCSI

The SCSI_DELAY option specifies the number of milliseconds FreeBSD
waits after finding your SCSI controllers before probing them, giving them
a chance to spin up and identify themselves to the SCSI bus. If you have no
SCSI hardware, you can remove this line.

options SYSVSHM # SYSV-style shared memory
options SYSVMSG # SYSV-style message queues
options SYSVSEM # SYSV-style semaphores

These options enable System-V-style shared memory and interprocess
communication. Many database programs use this feature.

116 Chapter 6

Multiple Processors

The following entries enable symmetric multiprocessing (SMP) in i386
kernels:

options SMP # Symmetric MultiProcessor Kernel
options DEVICE_NUMA # I/O Device Affinity
options EARLY_AP_STARTUP

These probably don’t hurt, but if you know you’re running on a board
with a single core, possibly a system that’s very old or using embedded hard-
ware, you can remove them.

Device Drivers

After all the options, you’ll find device driver entries, which are grouped
in fairly sensible ways. To shrink your kernel, you’ll want to get rid of every-
thing that your host isn’t using—but what, exactly, is your host not using?
Search for each device driver in dmesg.boot.

The first device entries are buses, such as device pci and device acpi.
Keep these, unless you truly don’t have that sort of bus in your system.

Next, we reach what most people consider device drivers proper—entries
for floppy drives, SCSI controllers, RAID controllers, and so on. If your
goal is to reduce the size of your kernel, this is a good place to trim heavily;
remove all device drivers for hardware your computer doesn’t have. You’ll also
find a section of device drivers for such mundane things as keyboards, video
cards, USB ports, and so on. You almost certainly don’t want to delete these.

The network card device driver section is quite long and looks much
like the SCSI and IDE sections. If you’re not going to replace your network
card any time soon, you can eliminate drivers for any network cards you
aren’t using.

We won’t list all the device drivers here, as there’s very little to be
learned from such a list other than the hardware FreeBSD supported at
the time I wrote this section. Check the release notes for the version of
FreeBSD you’re running to see what hardware it supports.

You’ll also find a big section of drivers for virtualization. The most com-
monly used virtual interfaces are based on VirtIO, but you’ll also see spe-
cific drivers for Xen, Hyper-V, and VMware. A kernel needs only the drivers
for the virtualization platform it’s run on. Kernels for real hardware don’t
need any of them, even if the host will have virtual machines running on it.

Pseudodevices

You’ll find a selection of pseudodevices near the bottom of the GENERIC
kernel configuration. As the name suggests, these are created entirely out
of software. Here are some of the more commonly used pseudodevices.

device loop # Network loopback

Kernel Games 117

The loopback device allows the system to communicate with itself via
network sockets and network protocols. We’ll discuss network connections
in some detail in the next chapter. You might be surprised at just how many
programs use the loopback device, so don’t remove it.

device random # Entropy device
device padlock_rng # VIA Padlock RNG
device rdrand_rng # Intel Bull Mountain RNGdevice

These devices provide pseudorandom numbers, required for cryptog-
raphy operations and such mission-critical applications as games. Some of
them require support in the underlying chipset. FreeBSD supports a variety
of randomness sources, transparently aggregating them all into the random
devices /dev/random and /dev/urandom.

device ether # Ethernet support

Ethernet has many device-like characteristics, and it’s simplest for
FreeBSD to treat it as a device. Leave this, unless you’re looking for a learn-
ing opportunity.

device vlan # 802.1Q VLAN support
device tun # Packet tunnel
device gif # IPv6 and IPv4 tunneling

These devices support networking features like VLANs and different
sorts of tunnels.

device md # Memory "disks"

Memory disks allow you to store files in memory. This is useful for very
fast, temporary data storage, as we’ll learn in Chapter 13. For most (but not
all) internet servers, memory disks are a waste of RAM. You can also use
memory disks to mount and access disk images. If you’re not using memory
disks, you can remove them from your kernel.

Removable Hardware

The GENERIC kernel supports a few different sorts of removable hardware.
If you have a laptop built in a year containing two consecutive nines or zeros,
it might have Cardbus or even PCMCIA cards. Otherwise, you don’t need that
support in your kernel. FreeBSD supports hot-pluggable PCI cards, but if you
don’t have them? Throw those drivers out.

Including the Configuration File

Your kernel binary might be separated from the machine it’s built on.
I recommend using the INCLUDE_CONFIG_FILE option to copy the
kernel configuration into the compiled kernel. You’ll lose any comments,

118 Chapter 6

but at least you’ll have the options and devices in this kernel and can
duplicate it if needed. The sysctl kern.conftxt contains the kernel.

Once you have your trimmed kernel, try to build it. Your first kernel
configuration will invariably go wrong.

Troubleshooting Kernel Builds
If your kernel build fails, the first troubleshooting step is to look at the last
lines of the output. Some of these errors are quite cryptic, but others will
be self-explanatory. The important thing to remember is that errors that
say, “Stop in some directory” aren’t useful; the useful error will be before
these. We talked about how to solve these problems in “Asking for Help”
on page 11: take the error message and toddle off to the search engine.
Compile errors usually result from a configuration error.

Fortunately, FreeBSD insists upon compiling a complete kernel before
installing anything. A busted build won’t damage your installed system. It
will, however, give you an opportunity to test those troubleshooting skills we
talked about way back in Chapter 1.

The most common sort of error is when the make buildkernel stage fails.
It might look something like this:

--snip--
linking kernel.full
vesa.o: In function `vesa_unload':
/usr/src/sys/dev/fb/vesa.c:1952: undefined reference to u `vesa_unload_ioctl'
vesa.o: In function `vesa_configure':
/usr/src/sys/dev/fb/vesa.c:1169: undefined reference to v `vesa_load_ioctl'
*** Error code 1
--snip--

You’ll see a few pages of Error code 1 messages, but the actual error
appears before them.

Some line in our kernel requires the functions vesa_unload_ioctl u and
vesa_load_ioctl v, but the device or option that provides that function isn’t
in the kernel. Try an internet search for the errors. See whether there’s a
man page for those functions. If all else fails, search the source code.

cd /usr/src/sys
grep -R vesa_unload_ioctl *
dev/fb/vesa.h:int vesa_unload_ioctl(void);
dev/fb/vesa.c: if ((error = vesa_unload_ioctl()) == 0) {
dev/syscons/scvesactl.c:vesa_unload_ioctl(void)

Wait—wasn’t there a reference to a “syscons” driver in the GENERIC
config file?

syscons is the default console driver, resembling an SCO console
#device sc
#options SC_PIXEL_MODE # add support for the raster text mode

Kernel Games 119

I had commented out the sc(4) driver. Add it back in and try again.
There are more “proper” ways of figuring out what kernel devices

require what devices. They all boil down to “read and comprehend the
source code.” Trial, error, research, and more trial and error turn out to
be quicker for most of us.

Inclusions, Exclusions, and Expanding the Kernel
Now that you can build a kernel, let’s get a little fancy and see how to use
inclusions, the various no configurations, and the NOTES file.

NOTES
FreeBSD’s kernel includes all sorts of features that aren’t included in
GENERIC. Many of these special features are intended for very specific
systems or for weird corner cases of a special network. You can find a
complete list of hardware-specific features in the file NOTES under each
platform’s kernel configuration directory—for example, /sys/amd64/
conf/NOTES. Hardware-independent kernel features—those that work
on every platform FreeBSD supports—can be found in /sys/conf/NOTES.
If you have hardware that doesn’t appear to be completely supported in
the GENERIC kernel, take a look at NOTES. Some of these features are
obscure, but if you have the hardware, you’ll appreciate them. Let’s take
a look at a typical entry from NOTES :

Direct Rendering modules for 3D acceleration.
device drm # DRM core module required by DRM drivers
device mach64drm # ATI Rage Pro, Rage Mobility P/M, Rage XL
device mgadrm # AGP Matrox G200, G400, G450, G550
device r128drm # ATI Rage 128
device savagedrm # S3 Savage3D, Savage4
device sisdrm # SiS 300/305, 540, 630
device tdfxdrm # 3dfx Voodoo 3/4/5 and Banshee
device viadrm # VIA
options DRM_DEBUG # Include debug printfs (slow)

Are you using any of these video cards on your desktop? Maybe you
want a custom kernel that includes the appropriate device driver.

If the NOTES file lists all the features for every possible device, why
not just use it as the basis for your kernel? First, such a kernel would use
up far more memory than the GENERIC kernel. While even small modern
machines have enough memory to run GENERIC without trouble, if the
kernel becomes ten times larger without the corresponding increase in
functionality, people would get annoyed. Also, many options are mutually
exclusive. You’ll find options that let you dictate how the kernel schedules
processes, for example. The kernel can use only one scheduler at a time,
and each scheduler runs its tendrils throughout the kernel. Adding all of
them to the kernel simultaneously would increase code complexity and
decrease stability.

120 Chapter 6

I make it a point to review NOTES every release or two, just to look for
interesting new features.

Inclusions and Exclusions
FreeBSD’s kernel configuration has two interesting abilities that can make
maintaining a kernel easier: the no options and the include feature.

The include feature lets you pull a separate file into the kernel configura-
tion. For example, if you have a kernel configuration that can be described
as “GENERIC with a couple extra tidbits,” you could include the GENERIC
kernel configuration with an include statement:

include GENERIC

So, if you want to build a kernel that has all the functionality of GENERIC
but also supports the DRM features of the VIA 3d chips, you could create a
valid kernel configuration composed entirely of the following:

ident VIADRM
include GENERIC
options drm
options viadrm

You might think that this is actually more work than copying GENERIC
to a new file and editing it, and you’d be correct. Why would you bother with
this, then? The biggest reason is that as you upgrade FreeBSD, the GENERIC
configuration can change. The GENERIC in FreeBSD 12.1 is slightly differ-
ent from that in 12.0. Your new configuration is valid for both releases and in
both cases can be legitimately described as “GENERIC plus my options.”

This works well for including items but isn’t very good for removing
things from the kernel. Rather than manually recreating your kernel for every
new FreeBSD version, you can use an include statement but exclude unneeded
entries with the nodevice and nooptions keywords. Remove unwanted device
drivers with nodevice, while nooptions disables unwanted options.

Take a look at the GENERIC-NODEBUG kernel configuration on a
-current machine. It’s the same as the GENERIC configuration, but it has
all of the debugging features disabled.

include GENERIC

ident GENERIC-NODEBUG

nooptions INVARIANTS
nooptions INVARIANT_SUPPORT
nooptions WITNESS
nooptions WITNESS_SKIPSPIN
nooptions BUF_TRACKING
nooptions DEADLKRES
nooptions FULL_BUF_TRACKING

Kernel Games 121

We start by including the GENERIC kernel configuration. This kernel
identifies itself as GENERIC-NODEBUG, though. The following seven
nooptions statements turn off FreeBSD-current’s standard debugging options.
Developers use the GENERIC-NODEBUG kernel to see whether the kernel
debugger is causing problems. If a kernel with debugging panics while a ker-
nel without debugging does not panic, the debugging code suddenly looks
suspiciously dubious.

Skipping Modules
If you’ve gone to the trouble of building a custom kernel, you probably know
exactly which kernel modules your host needs. Why build all these dozens of
kernel modules if you’re never going to use them? You can turn off the build-
ing of modules with the MODULES_OVERRIDE option. Set MODULES_OVERRIDE to the list
of modules you want to build and install.

make MODULES_OVERRIDE='' kernel

Perhaps you want to build most of the modules, but you have reason
to loathe a specific module. Exclude it from the build with WITHOUT_MODULES.
Here, I exclude vmm from the build, because I don’t want even the tempta-
tion of running bhyve(8) on VirtualBox. It’s only a small step from there to
running a dozen layers of virtualization and wondering why my laptop is slow.

make KERNCONF=VBOX WITHOUT_MODULES=vmm kernel

Selectively building modules, combined with custom kernels, lets you
lock yourself into really itty-bitty boxes. You’ll only understand how itty-bitty
those boxes are when you find you’re missing a feature you never thought
you’d need. If you must build a kernel, be generous in what you keep.

Now that your local machine is tuned precisely the way you want it, let’s
consider the rest of the internet.

7
T h e N e T w o r k

FreeBSD is famous for its network per-
formance. The TCP/IP network protocol

suite was first developed on BSD, and BSD,
in turn, included the first major implementa-

tion of TCP/IP. While competing network protocols
were considered more exciting in the 1980s, the wide
availability, flexibility, and liberal licensing of the BSD TCP/IP stack made it
the de facto standard. This isn’t just a historical curiosity; today, Facebook is
actively looking for engineers who can make Linux’s network performance
match that of FreeBSD. The project is expected to take several years.

Many system administrators today have a vague familiarity with the
basics of networking but don’t really understand how it all hangs together.
Good sysadmins understand the network, however. Knowing what an IP
address really is, how a netmask works, and how a port number differs from
a protocol number is a necessary step toward mastering your profession.
We’ll cover some of these issues in this chapter. For a start, you must under-
stand the network layers.

124 Chapter 7

While this chapter gives a decent overview of TCP/IP, it won’t cover
many of the numerous details, gotchas, and caveats. If you need to learn
more about TCP/IP, pick up a book on the subject. For an overview, check
out my book Networking for Systems Administrators (Tilted Windmill Press, 2015).
Eventually you’ll need a deep dive into networking; proceed directly to
Charles M. Kozierok’s The TCP/IP Guide (No Starch Press, 2005).

The dominant internet protocol is TCP/IP (Transmission Control
Protocol over Internet Protocol). TCP is a transport protocol, while IP is a
network protocol, but they’re so tightly intertwined that they’re generally
referred to as a single entity. We’ll look at how the network works, then dis-
cuss IP versions 4 and 6, and proceed to TCP and UDP.

Network Layers
Each layer of the network handles a specific task within the network process
and interacts only with the layers above and below it. People learning TCP/IP
often laugh when they hear that all these layers simplify the network pro-
cess, but this is really true. The important thing to remember right now is
that each layer communicates only with the layer directly above it and the
layer directly beneath it.

The classic Open System Interconnection (OSI) network protocol stack
has seven layers, is exhaustively complete, and covers almost any situation
with any network protocol and any application. The internet, however, is
just one such situation, and this isn’t a book about networking or networked
applications in general. We’re limiting our discussion to TCP/IP networks,
such as the internet and almost all corporate networks, so we need to con-
sider only four layers of the network stack.

The Physical Layer
At the very bottom, we have the physical layer: the network card and
the wire, fiber, or radio waves leaving it. This layer includes the physical
switch; the hub, or base station; the cables attaching that device to the
router; and the fiber that runs from your office to the telephone company.
The telephone company switch is part of the physical layer, as are trans-
continental fiber-optic cables. If it can be tripped over, dropped, or chain-
sawed, it’s part of the physical layer. From this point on, we’ll refer to the
physical layer as the wire, although this layer can be just about any sort of
medium.

This is the easiest layer to understand—it’s as simple as having intact
hardware. If your wire meets the requirements of the physical protocol,
you’re in business. If not, you’re bankrupt. Without a physical layer, the
rest of the network can’t work—period. End of story. One of the functions
of internet routers is to connect one sort of physical layer to another—for
example, converting local Ethernet into optical fiber. The physical layer has
no decision-making abilities and no intelligence; everything that runs over
it is dictated by the datalink layer.

The Network 125

Datalink: The Physical Protocol
The datalink layer, or the physical protocol, is where things get interesting.
This layer transforms information into the actual ones and zeros that are
sent over the physical layer in the appropriate encoding for that physical
protocol. For example, IP version 4 (IPv4) over Ethernet uses Media Access
Control (MAC) addresses and the Address Resolution Protocol (ARP); IP
version 6 (IPv6) over Ethernet uses Neighbor Discovery Protocol (NDP
or sometimes ND). In addition to the popular Ethernet datalink layers,
FreeBSD supports others, including Point-to-Point Protocol (PPP) and
High-Level Data Link Control (HDLC), as well as combinations such as the
PPP over Ethernet (PPPoE) used by some home broadband vendors. While
FreeBSD supports all of these datalink protocols, it doesn’t support every
datalink protocol ever used. If you have unusual network requirements,
check the documentation for your version of FreeBSD to see whether it’s
supported.

Some physical protocols have been implemented over many different
physical layers. Ethernet, for instance, has been transmitted over twinax,
coax, CAT3, CAT5, CAT6, CAT7, optical fiber, HDMI, and radio waves. With
minor changes in the device drivers, the datalink layer can address any sort of
physical layer. This is one of the ways in which layers simplify the network. We’ll
discuss Ethernet in detail in “Understanding Ethernet” on page 140 at the
end of this chapter, as it’s the most common network type FreeBSD systems use.
By understanding Ethernet on FreeBSD, you’ll be able to manage other proto-
cols on FreeBSD as well—once you understand those protocols, of course!

In addition to exchanging information with the physical layer, the data-
link layer communicates with the network layer.

The Network Layer
The network layer? Isn’t the whole thing a network?

Yes, but the network layer is more specific. It maps connectivity between
network nodes, answering questions like, “Where are other hosts?” and
“Can you reach this particular host?” This logical protocol provides a con-
sistent interface to programs that run over the network, no matter what
sort of physical layer you’re using. The network layer used on the internet is
Internet Protocol (IP). IP provides each host with a unique1 address, known as
an IP address, so that any other host on the network can find it. You need to
understand IP, both version 4 and version 6.

The network layer is where we truly abstract away the underlying physi-
cal media. Is IP running over Ethernet? ATM? Carrier pigeon? Who cares?
It’s got an IP address, so we can talk to it. Move on.

The network layer talks to the datalink layer below it and the transport
layer above it.

1. Yes, I know about IPv4 Network Address Translation, where not all IP addresses are unique.
NAT is a lie, and lying to your network is a good route to trouble—ask anyone who uses NAT
on a really large scale. But even with NAT, if you’re on the public internet, your network has
one or more unique IP addresses.

126 Chapter 7

Heavy Lifting: The Transport Layer
The transport layer deals with real data for real applications and perhaps
even real human beings. The three common transport layer protocols are
ICMP, TCP, and UDP.

Internet Control Message Protocol (ICMP) manages basic connectivity mes-
sages between hosts with IP addresses. If IP provides a road and addresses,
ICMP provides traffic lights and highway exit signs. Most of the time, ICMP
just runs in the background and you never have to think about it.

The other well-known transport protocols are User Datagram Protocol
(UDP) and Transmission Control Protocol (TCP). How common are these?

Well, the Internet Protocol suite is generally called TCP/IP. These
protocols provide services such as multiplexing via port numbers and
transmitting user data. UDP is a bare-bones transport protocol, offering
the minimum services needed to transfer data over the network. TCP pro-
vides more sophisticated features, such as congestion control and integrity
checking.

In addition to these three, many other protocols run above IP. The file
/etc/protocols contains a fairly comprehensive list of transport protocols that
use IP as an underlying mechanism. You won’t find non-IP protocols here,
such as Digital’s LAT, but it contains many more protocols than you’ll ever
see in the real world. For example, here are the entries for IP and ICMP, the
network-layer protocols commonly used on the internet:

uip v0 wIP x# Internet protocol, pseudo protocol number
 icmp 1 ICMP # Internet control message protocol

Each entry in /etc/protocols has three key fields: an unofficial name u, a
protocol number v, and any aliases w. The protocol number is used within
network requests to identify traffic. You’ll see it if you ever fire up a packet
sniffer or start digging deeper into your network for any reason. As you can
see, IP is protocol 0 and ICMP is protocol 1—if that’s not the groundwork
for everything else, it’s hard to see what could be! TCP is protocol 6, and
UDP is protocol 17. You’ll also see comments x giving slightly more detail
about each protocol.

The transport layer speaks to the network layer below and to the appli-
cations above it.

Applications
Applications are definitely a part of the network. Applications open requests
for network connectivity, send data over the network, receive data from the
network, and process that data. Web browsers, email clients, JSP servers, and
so on are all network-aware applications. Applications have to communicate
only with the network protocol and the user. Problems with the user layer are
beyond the scope of this book.2

2. If my current research on reformatting and reinstalling users bears fruit, however, I will be
certain to publish my results.

The Network 127

The Network in Practice
So, you understand how everything hooks together and are ready to move
on, right? Don’t think so. Let’s see how this works in the real world. Some of
this explanation touches on stuff that we’ll cover later in this chapter, but if
you’re reading this book, you’re probably conversant enough with networks to
be able to follow it. If you’re having trouble, reread this section after reading
the remainder of this chapter. (Just buy a second copy of this book, cut these
pages out of the second copy, and glue them in at the end of this chapter.)

Suppose a user connected to the internet via your network wants to
look at Yahoo! The user accesses his web browser and enters the URL.

The browser application knows how to talk to the next layer down in
the network, which is the transport layer. After kneading the user’s request
into an appropriate form, the browser asks the transport layer for a TCP
connection to a particular IP address on port 80. (Purists will note that
we’re skipping the DNS request part of the process, but it’s quite similar to
what’s being described and would only confuse our example.)

The transport layer examines the browser’s request. Since the appli-
cation has requested a TCP connection, the transport layer allocates the
appropriate system resources for that sort of connection. The request is
broken up into digestible chunks and handed down to the network layer.

The network layer doesn’t care about the actual request. It’s been
handed a lump of data to be carried over the internet. Much like your
mail carrier delivers letters without caring about the contents, the net-
work layer just bundles the TCP data with the proper addressing informa-
tion. The resulting mass of data is called a packet. The network layer hands
these packets down to the datalink layer.

The datalink layer doesn’t care about the contents of the packet. It cer-
tainly doesn’t care about IP addressing or routing. It’s been given a lump
of zeros and ones, and it has the job of transmitting those zeros and ones
across the network. All it knows is how to perform that transmission. The
datalink layer may add the appropriate header and/or footer information
to the packet for the physical medium used, creating a frame. Finally, it
hands the frame off to the physical layer for transmission on the local wire,
wave, or other media.

e ach INsIde T he oT he r?

Yes, your original web request has been encapsulated by the TCP protocol. That
request has been encapsulated again at the transport layer by the IP protocol
and once more by the datalink protocol. All these headers are piled on at the
front and back of your original request. Have you ever seen that picture of a
small fish being swallowed by a slightly larger fish, which is in turn being eaten
by a larger fish, and so on? It’s exactly like that. Or, if you prefer, a frame is like
the outermost matryoshka doll. Unwrap one protocol and you’ll find another.

128 Chapter 7

The physical layer has no intelligence at all. The datalink layer hands it
a bunch of zeros and ones, and the physical layer transmits them to another
physical device. It has no idea what protocol is being spoken or how those
digits might be echoed through a switch, hub, or repeater, but one of the
hosts on this network is presumably the router of the network.

When the router receives the zeros and ones, it hands them up to the
datalink layer. The datalink layer strips its framing information and hands
the resulting packet up to the network layer within the router. The router’s
network layer examines the packet and decides what to do with it based on
its routing tables. It then hands the packet down to the appropriate data-
link layer. This might be another Ethernet interface or perhaps a PPP inter-
face out of a T1.

Your wire can go through many physical changes as the data travels.
Your cable internet line could be aggregated into an optical fiber DS3,
which is then transformed into an OC192 cross-country link. Thanks to
the wonders of layering and abstraction, neither your computer nor your
user needs to know anything about any of these.

When the request reaches its destination, the computer at the other end
of the transaction accepts the frame and sends it all the way back up the
protocol stack. The physical wire accepts the zeros and ones and sends them
up to the datalink layer. The datalink layer strips the Ethernet headers off
the frame and hands the resulting packet up to the network. The network
layer strips off the packet header and shuffles the remaining segments up
to the transport layer. The transport layer reassembles the segments into
a data stream, which it then hands to an application—in this case, a web
server. The application processes the request and returns an answer, which
descends the protocol stack and travels across the network, bouncing up
and down through various datalink layers on the way as necessary. This is an
awful lot of work to make the machine go through just so you can get your
“404 Page Not Found” error.

This example shows why layering is so important. Each layer knows
only what it absolutely must about the layers above and below it, making it
possible to swap out the innards of layers if desired. When a new datalink
protocol is created, the other layers don’t have to change; the network pro-
tocol just hands a properly formatted request to the datalink layer and lets
that layer do its thing. When you have a new network card, you only need
a driver that interfaces with the datalink layer and the physical layer; you
don’t have to change anything higher in the network stack, including your
application. Imagine a device driver that had to be installed in your web
browser, your email client, and every other application you had on your com-
puter, including the custom-built ones. You would quickly give up on comput-
ing and take up something sane and sensible, like skydiving with anvils.

Getting Bits and Hexes
As a system administrator, you’ll frequently come across terms like 48-bit
address and 18-bit netmask. I’ve seen a surprising number of sysadmins who

The Network 129

just nod and smile when they hear this, all the while thinking, “Yeah, what-
ever, just tell me what I need to know to do my job.” Unfortunately, math is
a real part of the job, and you must understand bits. While this math is not
immediately intuitive, understanding it is one of the things that separates
amateurs from professionals. You don’t read a book like this if you want to
stay an amateur.

Maybe you’re muttering, “But I already know this!” Then skip it. But
don’t cheat yourself if you don’t.

You probably already know that a computer treats all data as zeros
and ones, and that a single zero or one is a bit. When a protocol specifies
a number of bits, it’s talking about the number as seen by the computer. A
32-bit number has 32 digits, each being either zero or one. You were prob-
ably introduced to binary math, or base 2, back in elementary school and
remembered it just long enough to pass the test. It’s time to dust off those
memories. Binary math is simply a different way to work with the numbers
we see every day.

We use decimal math, or base 10, every day to pay the pizza guy and bal-
ance the checkbook. Digits run from 0 to 9. When you want to go above the
highest digit you have, you add a digit on the left and set your current digit
to zero. This is the whole “carry the one” thing you learned many years ago
and now probably do without conscious thought. In binary math, the digits
run from 0 to 1, and when you want to go above the highest digit you have,
you add a digit on the left and set your current digit to 0. It’s exactly the same
as decimal math with eight fingers missing. As an example, Table 7-1 shows
the first few decimal numbers converted to binary.

Table 7-1: Decimal and Binary Numbers

Decimal Binary

0 0

1 1

2 10

3 11

4 100

5 101

6 110

7 111

8 1000

When you have a 32-bit number, such as an IP address, you have a string
of 32 ones and zeros. Ethernet MAC addresses are 48-bit numbers and have
48 ones and zeros.

Just for fun, Unix also uses hexadecimal numbers in some cases, such
as MAC addresses and netmasks. Hexadecimal digits are 4 bits long. The
binary number 1111, the full 4 bits, is equivalent to 15; this means that the
digits in hexadecimal math run from 0 to 15. At this point, a few of you

130 Chapter 7

are looking at the 2-digit number 15 that’s supposed to be a single digit
and wondering what I’m smoking and where you can get your own supply.
Hexadecimal math uses the letters A through F as digits for the numbers
10 through 15. When you count up to the last digit and want to add one,
you set the current digit to zero and add a digit to the left of the number.
For example, to count to 17 in hexadecimal, you say, “1, 2, 3, 4, 5, 6, 7, 8, 9,
A, B, C, D, E, F, 10, 11.” Take off a shoe and count along once or twice until
you get the idea.

Hexadecimal numbers are usually marked with a 0x in front. The
number 0x12 is the hexadecimal equivalent of decimal 18, while the num-
ber 18 is plain old 18. If a hex number is not marked by a leading 0x, it’s in
a place where the output is always in hexadecimal, such as MAC addresses.
The letters A to F are also a dead giveaway, but not entirely reliable; many
hex numbers have no letters at all, just as many decimal numbers have no
odd digits.

When you’re working with hexadecimal, decimal, and binary numbers,
the simplest thing to do is break out a scientific calculator. Today’s medium-
end or better calculators have functions to convert between the three systems,
as do most software calculators.

Network Stacks
A network stack is the software that lets a host communicate with other hosts
over the network. A host can run with an IPv4-only network stack, an IPv6-
only network stack, or a dual-stacked setup. FreeBSD enables both by default.

You’re probably familiar with an IPv4-only stack. Most hosts have run
on IPv4 for much of the past 30 years. An IPv4-only stack can communicate
only over IPv4. Today, an IPv4-only stack gets you access to most of the inter-
net, with a few deliberate exceptions. That will not be true in a few years.

Likewise, an IPv6-only stack can communicate only with IPv6 hosts. The
majority of large internet sites support IPv6, but you’ll find a few annoying
exceptions.3 Using only IPv6 will cut you off from some popular internet sites.

The most common server configuration these days is a dual-stack setup.
Client hosts try to use both IPv4 and IPv6, preferring one over the other.
The last few versions of Microsoft Windows have preferred IPv6.

3. I’m not going to name sites accessible only via IPv4, because if I do, those sites will add IPv6
half an hour after this book reaches the printer.

BI T By By T e s

Computer systems tend to work in bytes, where an 8-bit number is repre-
sented by a single character. The one exception is in the network stack,
where everything is in bits. Thus, we have a 5-megabyte file on a machine
with a 10-megabit network connection. Don’t confuse the two!

The Network 131

We’ll look at the more familiar IPv4 first and then use IPv4 as a refer-
ence to discuss IPv6.

IPv4 Addresses and Netmasks
An IP address is a unique 32-bit number assigned to a particular node on
a network. Some IP addresses are more or less permanent, such as those
assigned to vital servers. Others change as required by the network, such as
those used by dial-up clients. Individual machines on a shared network get
adjoining IP addresses.

Rather than expressing that 32-bit number as a single number, an IP
address is broken up into four 8-bit numbers, usually shown as decimal
numbers. While 203.0.113.1 is the same as 11001011.00000000.01110001.0
0000001 or the single number 11001011000000000111000100000001, the
four decimal numbers are easiest for our weak minds to deal with.

IP addresses are issued in chunks by internet service providers.
Frequently these chunks are very small—say, 16 or 32 IP addresses. If
your system is colocated on a server farm, you might only get a few IP
addresses out of a block.

A netmask, which might also be called a prefix length or slash, is a label
indicating the size of the block of IP addresses assigned to your local net-
work. The size of your IP block determines your netmask—or, your netmask
determines how many IP addresses you have. If you’ve done networking for
any length of time, you’ve seen the netmask 255.255.255.0 and know that
it’s associated with a block of 256 IP addresses. You might even know that
the wrong netmask prevents your system from working. In today’s world,
however, that simple netmask is becoming less and less common. Netmasks
made up of 255s and 0s are easy to look at but waste IP addresses.4 And
IPv4 addresses are an extremely scarce resource.

When you get a block of IP addresses for your server, it’ll probably look
something like 203.0.113.128/25. This isn’t a class in binary math, so I won’t
make you draw it out and do the conversion, but think of an IP address as
a string of binary numbers. On your network, you can change the bits on
the far right, but not the ones on the far left. The only question is, “Where
is the line that separates right from left?” There’s no reason for that bound-
ary to be on one of those convenient 8-bit lines that separate the decimal
versions of the address. A prefix length is simply the number of fixed bits
on your network. A /25 means that you have 25 fixed bits. You can play with
7 bits. You get a decimal netmask by setting the fixed bits to 1 and your net-
work bits to 0, as in the following example of a /25 netmask:

11111111.11111111.11111111.10000000

4. I could go into history here, but suffice it to say: if someone tries to explain Class A, Class B,
or Class C addresses to you, plug your ears and scream at them not to contaminate your brain
with information made obsolete more than two decades ago.

132 Chapter 7

A binary 11111111 is a decimal 255, while 1000000 is 128. Your netmask
is 255.255.255.128. It’s very simple, if you think in binary. You won’t have to
work with this every day, but if you don’t understand the underlying binary
concepts, the decimal conversion looks deranged. With practice, you’ll learn
to recognize certain strings of decimals as legitimate binary conversions.

What does all this mean in practice? First off, blocks of IP addresses are
issued in multiples of 2. If you have 4 bits to play with, you have 16 IP addresses
(2 × 2 × 2 × 2 = 16). If you have 8 bits to play with, you have 256 addresses
(28 = 256). If someone says that you have exactly 19 IP addresses, you’re
either sharing an Ethernet with other people or they’re wrong.

It’s not uncommon to see a host’s IP address with its netmask attached—
for example, 198.51.100.4/26. This gives you everything you need to get the
host on the local network. (Finding the default gateway is another problem,
but by convention, it’s most often the top or bottom address in the block.)

Computing Netmasks in Decimal
You probably don’t want to repeatedly convert between decimal and binary.
Not only is it uncomfortable; it also increases your chances of making an error.
Here’s a trick to calculate your netmask while remaining in decimal land.

You need to find how many IP addresses you have on your network.
This will be a multiple of 2 almost certainly smaller than 256. Subtract the
number of IP addresses you have from 256. This is the last number of your
netmask. You’ll still need to recognize legitimate network sizes. If your
IP address is 203.0.113.100/26, you’ll need to know that a /26 is 26 fixed
bits, or 64 IP addresses. Look at the last number of your IP address, 100.
It certainly isn’t between 0 and 63, but it’s between 64 and 127. The other
hosts on your IP block have IP addresses ranging from 203.0.113.64 to
203.0.113.127, and your netmask is 255.255.255.192 (256 – 64 = 192).

At this point, I should mention that netmasks frequently appear as hex
numbers. You might feel like giving up the whole thing as a bad job, but to
simplify your life, Table 7-2 shows netmasks, IP information, and related
goodness for /24 and smaller networks.

Table 7-2: Netmask and IP Address Conversions

Prefix Binary mask Decimal mask Hex mask Available IPs

/24 00000000 255.255.255.0 0xffffff00 256

/25 10000000 255.255.255.128 0xffffff80 128

/26 11000000 255.255.255.192 0xffffffc0 64

/27 11100000 255.255.255.224 0xffffffe0 32

/28 11110000 255.255.255.240 0xfffffff0 16

/29 11111000 255.255.255.248 0xfffffff8 8

/30 11111100 255.255.255.252 0xfffffffc 4

/31 11111110 255.255.255.254 0xfffffffe 2

/32 11111111 255.255.255.255 0xffffffff 1

The Network 133

Unusable IP Addresses
You now understand how slashes, netmasks, and IP address assignments work
together and how, for example, a /28 has 16 IP addresses. Unfortunately, you
can’t use all the IP addresses in a block. The first IP address in a block is the
network number, which is used for internal bookkeeping.

Traditionally, the last number in any block of IP addresses was called the
broadcast address. According to the original IP specifications, every machine
on a network was supposed to respond to a request for this address. This
allowed you to ping the broadcast address to quickly determine which IP
addresses were in use. For example, on a typical /24 network, the broadcast
address was x .y .z .255. In the late 1990s, however, this feature was trans-
formed into an attack technique and was disabled by default on almost
every operating system and most network appliances.5 If you need this fea-
ture, set the sysctl net.inet.icmp.bmcastecho to 1. In most environments, the
broadcast address is a waste of an IP address. In any case, you can’t assign
the first or the last IP address in a network to a device without causing net-
work problems. (Yes, this makes /31 networks useless.) Some systems fail
gracefully; others fail gracelessly. Go ahead and try it sometime—preferably
after hours, unless you want a good story to tell at your next job.

Assigning IPv4 Addresses
You might think that each computer on a network has an IP address,
but this isn’t strictly true. Every network interface has an IP address. Most
computers have only one network interface, so for them, the difference is
nonexistent. If you have multiple network cards, however, each card has
a separate IP address. You can also have multiple IP addresses on a single
card through aliasing. On the other hand, with special configuration you
can bond multiple cards into a single network interface, giving the com-
puter one virtual interface despite the many cards. While these distinctions
are small, remember them when troubleshooting.

The IP address 127.0.0.1 is always attached to every host’s loopback
interface. It can be reached only from the local machine.

IPv6 Addresses and Subnets
The original engineers of IPv4 thought that 4.29 billion IP addresses would
be enough for the whole world. Computers were expensive, after all, and
only military and educational systems connected to the internet. It’s not as
if every person in the world would one day own multiple networked devices.

Oops.
Unused IPv4 addresses are no longer available. The prices for used IPv4

addresses are increasing. Eventually, IPv4 addresses will be priced beyond

5. Except, for some reason, many embedded devices. Put your Internet of Things behind a
firewall, and don’t allow them general internet access!

134 Chapter 7

reach for most people. The world is unwillingly groaning toward IPv4’s
replacement—IP version 6.

Telecom networks and parts of the world outside North America already
use IPv6 pretty widely. Even if your network doesn’t use IPv6 today, one day
you’ll unexpectedly discover that you needed it the week before.

IPv6 Basics
Like IPv4, IPv6 is a network-layer protocol. TCP, UDP, ICMP, and
other protocols run atop it. Recall that IPv4 uses 32-bit addresses, usu-
ally expressed as four groups of decimal numbers from 0 to 255—for
example, 203.0.113.13. IPv6 uses 128-bit addresses, expressed as eight
groups of four hexadecimal characters separated by colons—for example,
2001:db8:5c00:0:90ff:bad:c0de:cafe.

A 128-bit address space is unimaginably huge, but let’s try to imagine it.
Count every human being that’s ever lived. Now count the number of cells
in each of them—not just in their body but also all the bacterial cells in
their bodies. IPv6 is roomy enough to assign each of those cells an address
space larger than the entirety of IPv4.

The good news is that you don’t need to relearn the basics of network-
ing. Hosts need an IP address, a netmask, and a default gateway. You can
almost—almost—substitute an IPv6 address for an IPv4 address and watch
everything just work. A web server doesn’t care whether it binds to port 80
on 203.0.113.13 or 2001:db8:5c00:0:90ff:bad:c0de:cafe. The server accepts
requests it receives and responds appropriately. That said, software does
need to change slightly because our web server must be able to log connec-
tions from both IPv4 and IPv6 addresses. These changes have wide-reaching
repercussions, and we’ll be discovering new edge cases for decades. But, in
general, once you understand the new rules for IPv6, all of your networking
knowledge is applicable.

Understanding IPv6 Addresses
As noted, IPv6 addresses are 128 bits, expressed as eight colon-delimited
groups of four hexadecimal characters each. As with decimal IP addresses,
you don’t need to display leading zeros in each group. The address 2001:db8:
5c00:0:90ff:bad:c0de:cafe could be written as 2001:0db8:5c00:0000:90ff:
0bad:c0de:cafe, but just as we wouldn’t write 203.000.113.013, we strip out
the leading zeros in an IPv6 address.

IPv6 addresses often contain long strings of zeros because of the
way IPv6 subnets. As I write this, the IPv6 address of Sprint’s website is
2600:0:0:0:0:0:0:0. When consecutive groups contain only zeros, they’re
replaced with two colons. You can display this IP address as 2600::. You can do
the double-colon substitution only once per address, however. Addresses like
2001::a::1 would be ambiguous. Does 2001::a::1 represent 2001:0:0:0:0:a:0:1,
2001:0:0:0:a:0:0:1, 2001:0:0: a:0:0:0:1, or 2001:0:a:0:0:0:0:0:1? No way to tell.

You’ve probably seen a port number added to an IPv4 address, such
as 203.0.113.13:80. Using this terminology with IPv6 addresses would
make them even uglier and confuse everyone. An IP address and port

The Network 135

combination like 2001:db8:5c00:0:90ff:bad:c0de:cafe:80 is not ambiguous,
but unless you read it very carefully, you might think it’s an IP address ending
in 80. If you’re expressing an IP and port combination, enclose the address in
square brackets, as in [2001:db8:5c00:0:90ff:bad:c0de:cafe]:80.

IPv6 Subnets
IPv6 addresses have colons every 16 bits, so the obvious and natural ways
to divide networks are at the /16, /32, /48, /64, /80, /96, and /112. The
original IPv6 standards recommend subnetting only on these boundaries
(repeating one of IPv4’s greatest mistakes), but that’s increasingly being
rejected in favor of IPv4-style subnetting anywhere. IPv6 subnets are always
expressed as a slash, also known as a prefix length, so you won’t see a net-
mask like ffff:ffff:ffff:ffff:: analogous to IPv4.

ISPs are usually issued a /32 or /48 and are expected to issue end-user
networks, such as a typical client, a /64 network. A /64 has 264 subnets, or
18,446,744,073,709,551,616 addresses. If your home or office runs out of
IP addresses, you need to stop networking individual blueberries.

When you subnet at 16-bit boundaries, each network has 65,536 subnets
of the next smaller size. A /32 contains 65,536 /48 networks, and a /48 con-
tains 65,536 /64 networks.

This is a long-winded way of explaining why I don’t provide handy
charts of IPv6 subnets and network size. Do an internet search for “IPv6
subnet calculator” to use one of the many on the internet.

Link-Local Addresses
Addresses beginning with fe8x: (where x is any hexadecimal character) are
local to their interface. Every interface has such link-local addresses that
are valid only on a specific local network. Even if an IPv6 network has no
router, hosts on the local directly attached network can find each other and
communicate using these local addresses. Link-local networks are always
/64 subnets. You’ll see identical IPv6 subnets on other interfaces and on
networks completely disconnected from your network. That’s okay. These
addresses are local to the link. For example, here’s a link-local address from
a test machine.

fe80::bad:c0de:cafe%vtnet0

The link-local address of this interface is fe80::bad:c0de:cafe. The trail-
ing %vtnet0 indicates that this address is local to the interface vtnet0 and
isn’t usable on any other interface on the machine. If your machine has
an interface vtnet1, and a host on that network tries to reach the address
fe80::bad:c0de:cafe, this machine will not respond. This particular address
is valid only for hosts on the network segment directly attached to interface
vtnet0.

You might note that the link-local address has a section in common with
the public IPv6 address on this interface. That’s because an autoconfigured

136 Chapter 7

IPv6 address is usually calculated from the interface’s physical address; it
doesn’t matter whether that autoconfigured address is public or local to
the link.

Assigning IPv6 Addresses
IPv6 clients on a /64 or larger network can normally autoconfigure their
network through router discovery. Router discovery resembles a stripped-
down DHCP service. The router broadcasts gateway and subnet informa-
tion, and the hosts configure themselves to use it.

Modern versions of router discovery include very basic DHCP-style
options, such as DNS servers. Not all IPv6 providers include these options
in their router discovery configuration, however. If you want to provide
sophisticated autoconfiguration for phones or diskless hosts, or if your pro-
vider doesn’t offer DNS information in their configuration, you’ll need to
set up an IPv6 DHCP server.

Servers should not use IPv6 autoconfiguration. A server usually needs a
static IP, even in IPv6.

Hosts on a network smaller than /64 must be manually configured.
The address ::1 always represents the local host and is assigned to the

loopback address.

TCP/IP Basics
Now that you have a simple overview of how the IP system works, let’s con-
sider the most common network protocols in more depth. The dominant
transport protocol on the internet is the Transmission Control Protocol
over Internet Protocol, or TCP/IP. Although TCP is a transport protocol
and IP is a network protocol, the two are so tightly intertwined that they’re
generally referred to as a single entity.

We’ll start with the simplest, ICMP, and proceed to UDP and TCP. All
of these protocols run over both IPv4 and IPv6. While the versions of each
protocol vary according to the underlying IP protocol, they behave essen-
tially the same.

ICMP
The Internet Control Message Protocol (ICMP) is the standard for trans-
mitting routing and availability messages across the network. Tools such
as ping(8) and traceroute(8) use ICMP to gather their results. IPv4 and
IPv6 have slightly different versions of ICMP, sometimes called ICMPv4
and ICMPv6.

While some people claim that you must block ICMP for security rea-
sons, ICMP is just as diverse as the better-understood protocols TCP and
UDP. Proper IPv4 network performance requires large chunks of ICMPv4.
If you feel you must block ICMP, do so selectively. For example, blocking

The Network 137

source quench messages breaks path maximum transmission unit (pMTU)
discovery, which is like faceplanting into a crate of broken glass and rusty
nails. If you don’t understand that last sentence, don’t block ICMP.

IPv6 dies without ICMPv6, as IPv6 doesn’t support packet fragmentation.
If you use IPv6, never block ICMPv6 as a whole. Blocking parts of ICMPv6
without destroying your network requires careful research and testing.

UDP
The User Datagram Protocol (UDP) is the most bare-bones data transfer
protocol that runs over IP. It has no error handling, minimal integrity veri-
fication, and no defense whatsoever against data loss. Despite these draw-
backs, UDP can be a good choice for particular sorts of data transfer, and
many vital internet services rely on it.

When a host transmits data via UDP, the sender has no way of knowing
whether the data ever reached its destination. Programs that receive UDP
data simply listen to the network and accept what happens to arrive. When
a program receives data via UDP, it cannot verify the source of that data—
while a UDP packet includes a source address, this address is easily faked.
This is why UDP is called connectionless, or stateless.

With all of these drawbacks, why use UDP at all? Applications that
use UDP most often have their own error-correction handling methods
that don’t mesh well with the defaults provided by protocols such as TCP.
For example, simple client DNS queries must time out within just a few
seconds or the user will call the helpdesk and whine. TCP connections
time out only after two minutes. Since the computer wants to handle its
failed DNS requests much more quickly, simple DNS queries use UDP. In
cases where DNS must transfer larger amounts of data (for example, for
zone transfers), it intelligently switches to TCP. Real-time streaming data,
such as video conferencing, also uses UDP. If you miss a few pixels of the
picture in a real-time video conference, retransmitting that data would
simply add congestion. You can’t go back in time to fill in those miss-
ing chunks of the picture, after all! You’ll find similar reasoning behind
almost all other network applications that use UDP.

Because the UDP protocol itself doesn’t return anything when you con-
nect to a port, there’s no reliable way to remotely test whether a UDP port is
reachable (although tools like nmap try to do so).

UDP is also a datagram protocol, meaning that each network transmission
is complete, self-contained, and received as a single integral unit. While the
application might not consider a single UDP packet a complete request, the
network does. TCP is entirely different.

TCP
The Transmission Control Protocol (TCP) includes such nifty features as
error correction and recovery. The receiver must acknowledge every packet
it gets; otherwise, the sender will retransmit any unacknowledged packets.

138 Chapter 7

Applications that use TCP can expect reliable data transmission. This makes
TCP a connected, or stateful, protocol, unlike UDP.

TCP is also a streaming protocol, meaning that a single request can be
split amongst several network packets. While the sender might transmit
several chunks of data one after the other, the recipient could receive them
out of order or fragmented. The recipient must keep track of these chunks
and assemble them properly to complete the network transaction.

For two hosts to exchange TCP data, they must set up a channel for that
data to flow across. One host requests a connection, the other host responds
to the request, and then the first host starts transmitting. This setup process
is known as the three-way handshake. The specifics are not important right
now, but you should know that this process happens. Similarly, once trans-
mission is complete, the systems must do a certain amount of work to tear
down the connections.

TCP is commonly used by applications—such as email programs, FTP
clients, and web browsers—for its fairly generic set of timeouts and trans-
mission features.

How Protocols Fit Together
You can compare the network stack to sitting with your family at a holiday
dinner. The datalink layer (ARP, in the case of IPv4 over Ethernet) lets you
see everyone else at the table. IP gives every person at the table a unique
chair, except for the three young nephews using piano bench NAT. ICMP
provides basic routing information, such as, “The quickest way to the peas
is to ask Uncle Chris to hand them to you.” TCP is where you hand someone
a dish and the other person must say, “Thanks,” before you let go. Finally,
UDP is like tossing a roll at Aunt Betty; she might catch it, it might bounce
off her forehead, or it could be snatched out of midair by the dog who has
watched for her opportunity since the meal began.

Transport Protocol Ports
Have you ever noticed that computers have too many ports? We’re going
to add TCP and UDP ports into the stew. Transport protocol ports permit one
server to serve many different services over a single transport protocol, mul-
tiplexing connections between machines.

When a network server program starts, it attaches, or binds, to one or
more logical ports. A logical port is just an arbitrary number ranging from
1 to 65535. For example, internet mail servers bind to TCP port 25. Each
TCP or UDP packet arriving at a system has a field indicating its desired
destination port. Each incoming request is flagged with a desired destina-
tion port number. If an incoming request asks for port 25, it’s connected to
the mail server listening on that port. This means that other programs can
run on different ports, clients can talk to those different ports, and nobody
except the sysadmin gets confused.

The /etc/services file contains a list of port numbers and the services
that they’re commonly associated with. It’s possible to run almost any

The Network 139

service on any port, but by doing so, you’ll confuse other internet hosts that
try to connect to your system. If someone tries to send you email, their mail
program automatically connects to port 25 on your system. If you run email
on port 77 and you have a web server on port 25, you’ll never get your email
and your web server will start receiving spam. The /etc/services file has a very
simple five-column format.

uqotd v17/wtcp xquote y#Quote of the Day

This is the entry for the qotd service u, which runs on port 17 v in the
TCP protocol w. It’s also known as the quote service x. Finally, we have a
comment y that provides more detail; apparently qotd stands for quote of
the day. Services are assigned the same port number in both TCP and UDP,
even though they usually run only on one and not the other—for example,
qotd has ports 17/tcp and 17/udp.

Many server programs read /etc/services to learn which port to bind to
on startup, while client programs read /etc/services to learn which port they
should try to connect to. If you run servers on unusual ports, you might
have to edit this file to tell the server where to attach to.

As in all standards, there are often good reasons for breaking the
rules. The SSH daemon, sshd, normally listens on port 22/tcp, but I’ve
run it on ports 23 (telnet), 80 (HTTP), and 443 (HTTPS) for various rea-
sons. Configuring this depends on the server program you’re using.

Reserved Ports

Ports below 1024 in both TCP and UDP are called reserved ports. These
ports are assigned only to core internet infrastructure and important ser-
vices such as DNS, SSH, HTTP, LDAP, and so on—services that should
legitimately be offered only by a system or network administrator. Only
programs with root-level privileges can bind to low-numbered ports. A
user can provide, say, a game server on a high-numbered port if the system
policy allows—but that’s a little different from setting up an official-looking
web page that’s visible to everyone and states that the main purpose of the
machine is to be a game server! The port assignment for these core proto-
cols is generally carved in stone.

You can view and change the reserved ports with the sysctls net.inet.ip
.portrange.reservedhigh and net.inet.ip.portrange.reservedlow.

Every so often, someone thinks that they can disable this “bind-only-by-
root” feature and increase their system’s security—after all, if your applica-
tion can be run as a regular user instead of root, wouldn’t that increase
system security? Most programs that run on reserved ports actually start
as root, bind to the port, and then drop privileges to a special restricted
user that has even less privilege than a regular user. These programs are
designed to start as root and frequently behave differently when run as a
regular user. A few programs, such as the Apache web server, are written so
they can be started safely by a non-root user, but others are not.

140 Chapter 7

Understanding Ethernet
Ethernet is extremely popular in corporate and home networks and is the
most common connection media for FreeBSD systems. Ethernet is a shared
network; many different machines can connect to the same Ethernet and
can communicate directly with each other. This gives Ethernet a great
advantage over other network protocols, but Ethernet has physical distance
limitations that make it practical only for offices, co-location facilities, and
other comparatively small networks.6

Many different physical media have supported Ethernet over the years.
Once upon a time, most Ethernet cables were thick chunks of coaxial cable.
Today, most are comparatively thin CAT6 cables with eight strands of very
thin wire inside them. You might also encounter Ethernet over optical fiber
or radio. For purposes of our discussion, we’ll assume that you’re working
with CAT6 or better cable, today’s most popular choice. No matter what
physical media you use, the theory of Ethernet doesn’t change—remember,
the physical layer is abstracted away.

Protocol and Hardware
Ethernet is a broadcast protocol, which means that every packet you send
on the network can be sent to every workstation on the network. (Note that
I said can be ; some Ethernet hardware limits recipients of these broadcasts.)
Either your network card or its device driver separates the data intended for
your computer from the data meant for other computers. One side effect of
Ethernet’s broadcast nature is that you can eavesdrop on other computers’
network traffic. While this can be very useful when diagnosing problems,
it’s also a security issue. Capturing clear-text passwords is trivial on an old-
fashioned Ethernet. A section of Ethernet where all hosts can communicate
directly with all other hosts without involving a router is called a broadcast
domain, or segment.

Ethernet segments are connected via hubs or switches. An Ethernet hub
is a central piece of hardware to physically connect many other Ethernet
devices. Hubs simply forward all received Ethernet frames to every other
device attached to the network. Hubs broadcast all Ethernet traffic that
they receive to every attached host and other attached hubs. Each host is
responsible for filtering out the traffic it doesn’t want. Hubs are old-school
Ethernet and rarely seen today.

Switches have largely supplanted hubs. A switch is like a hub, but it fil-
ters which traffic it sends to each host. It identifies the physical addresses of
attached devices and, for the most part, forwards frames only to the devices
they are meant for. Since each Ethernet host has a finite amount of band-
width, switching reduces the load on individual systems by decreasing the
amount of traffic each host must sort through.

6. Yes, Ethernet works over long distances if you have private fiber and multi-million-dollar
switches, but if you have those you know why you’re the exception.

The Network 141

Switch Failure

Switches fail, despite what Cisco would have you believe. Some failures are
obvious, such as those where the magic black smoke is leaking out of the
back of the box. When a switch loses its magic smoke, it stops working.
Others are more subtle and make it appear that the switch is still working.

Every switch manufacturer must decide how to handle subtle errors.
Either the switch can shut down until it is attended to, or it can attempt to
alert its manager and continue forwarding packets to the best of its abil-
ity. If you’re a vendor, the choice is obvious—you stumble along as best you
can so your customers don’t think your switches are crap. This means your
switch can start to act like a hub and you might not know about it. The bad
news is that if you were relying on the switch to prevent leakage of secure
information, you’re fated for disappointment. More than one switch has
failed on me in this way, so don’t be too surprised when it happens to you.

Installing a syslog server (see Chapter 21) and having your switches log
to it can mitigate this risk. While logging won’t prevent switch failure, it will
simplify listening to a dying switch when it tries to complain.

Ethernet Speed

Ethernet originally supported only a couple of megabits per second but has
expanded to handle tens-of-gigabits speeds. Most Ethernet cards are gigabit
speed, meaning they can handle a gigabit per second, but you’ll find a few
10Gbs or 100Gbs cards in high-speed applications. If a card is labeled giga-
bit, it doesn’t mean it can actually push that much traffic—I’ve seen gigabit
cards choke on a tenth that much bandwidth. Card quality is important
when you want to push bandwidth, and the quality of the entire computer is
important when pushing serious bandwidth.

Let the switch and the card negotiate their settings on their own through
autonegotiation. While some old hands might remember disabling autonego-
tiation on older Ethernet cards, gigabit and faster Ethernet requires autone-
gotiation to function.

MAC Addresses
Every Ethernet card has a unique identifier, a Media Access Control (MAC)
address. This 48-bit number is sometimes called an Ethernet address or physi-
cal address. When a system transmits data to another host on the Ethernet, it
first broadcasts an Ethernet request asking, “Which MAC address is respon-
sible for this IP address?” If a host responds with its MAC address, further
data for that IP is transmitted to that MAC address.

IPv4 uses the Address Resolution Protocol (ARP) to map IP addresses
to hosts. Use arp(8) to view your FreeBSD system’s knowledge of the ARP
table. The most common usage is the arp -a command, which shows all
of the MAC addresses and hostnames that your computer knows of.

142 Chapter 7

arp -a
gw.blackhelicopters.org (198.51.100.1) at 00:00:93:34:4e:78 on igb0 [ethernet]
sipura.blackhelicopters.org (198.51.100.5) at 00:00:93:c2:0f:8c on igb0
[ethernet]

This full listing of ARP information is known as the ARP table, or MAC
table. (The terms MAC and ARP are frequently used interchangeably, so don’t
worry about it too much.) Here we see that the host gw.blackhelicopters.org has
an IP address of 198.51.100.1 and a MAC address of 00:00:93:34:4e:78, and
that you can reach these hosts on the local system’s interface, igb0.

If a MAC address shows up as incomplete, the host cannot be contacted
on the local Ethernet. In this case, check your physical layer (the wire), the
remote system, and the configuration of both systems.

IPv6 uses Neighbor Discovery Protocol (NDP) to map IPv6 addresses
to MAC addresses. It’s a separate protocol from ARP to encompass router
discovery. Use ndp(8) to view the host’s MAC table and corresponding IPv6
addresses. The output deliberately resembles that of arp(1).

ndp -a
Neighbor Linklayer Address Netif Expire S Flags
fe80::fc25:90ff:fee8:1270%vtnet0 fe:25:90:e8:12:70 vtnet0 4s R R
www.michaelwlucas.com 00:25:90:e8:12:70 vtnet0 permanent R
fe80::225:90ff:fee8:1270%vtnet0 00:25:90:e8:12:70 vtnet0 permanent R

The output deliberately resembles that of arp(8) but is slightly more
tabular. The Neighbor column shows either the IPv6 address, the hostname,
or the link-local address of each neighbor. The Linklayer Address column
shows the MAC address of the neighbor. The Netif column displays the net-
work interface this host is attached to, while the Expire column shows when
the cached entry will expire. The S (state) column shows further informa-
tion about the entry. A state of R means the host is reachable, while an I
(incomplete) means the host is unreachable. The only Flags entry you’re
likely to see is R, indicating this host is advertising itself as a router. For
more states and flags, see ndp(8).

Why two separate commands? Both arp(8) and ndp(8) exist to map
IP addresses to MAC addresses. Some hosts might be available only via one
protocol or the other. IPv6-only hosts will not show up in your ARP table,
and IPv4-only hosts will not appear in the NDP table.

For both arp(8) and ndp(8), the -n flag turns off hostname lookups.
This is highly useful when you debug network issues and can’t get DNS
resolution.

Now that you know how the network works, configuring an internet
connection is pretty straightforward.

8
C o n f i g u r i n g n e t w o r k i n g

Now that you know enough networking
to be dangerous, you can configure a

network connection. While FreeBSD sup-
ports many different protocols, we’ll focus on

the nearly ubiquitous Ethernet connection, generally
delivered over CAT5 or CAT6 cables.1

We’ll start with the essentials for getting a host on the network and able
to access other internet hosts. Raw TCP/IP connectivity isn’t enough, how-
ever; you also need the ability to resolve host names to IP addresses, so we’ll
cover that next. Then we’ll talk about measuring network activity, perfor-
mance, VLANs, and aggregating links.

Before you can do any of that, though, you need some information.

1. Each connection technology traditionally uses up-to-date cables plugged into previous-
generation patch panels or vice versa. Those CAT6 cables in the CAT5 patch panel are part
of a long custom of sysadmin outrage.

144 Chapter 8

Network Prerequisites
If your network offers Dynamic Host Configuration Protocol (DHCP),
you can connect to the network as a client without knowing anything
about the network. A static IP address makes much more sense on a server,
however. While the installer will configure the network for you, eventu-
ally every server needs changes. Both IPv4 and IPv6 require the following
information:

•	 An IP address

•	 The netmask for that IP address and protocol

•	 The IP address of the default gateway

Armed with this information, attach your system to the network with
ifconfig(8) and route(8) and then make the configuration permanent in
/etc/rc.conf.

Configuring Changes with ifconfig(8)
The ifconfig(8) program displays the interfaces on your computer and lets
you configure them. Start by listing the existing interfaces on your system
by running ifconfig(8) without any arguments:

ifconfig
uem0: flags=8843<vUP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> metric 0 mtu 1500
 options=85259b<RXCSUM,TXCSUM,VLAN_MTU,VLAN_HWTAGGING,VLAN_HWCSUM,TSO4,
LRO,WOL_MAGIC,VLAN_HWFILTER,VLAN_HWTSO>
 inet w203.0.113.43 netmask 0xfffffff0 broadcast 198.51.100.47
 inet6 xfe80::225:90ff:fee8:1270%em0 prefixlen 64 scopeid 0x1
 inet6 y2001:db8::bad:c0de:cafe prefixlen 64
 ether z00:25:90:db:d5:94
 media: {Ethernet autoselect (1000baseTX <full-duplex>)
 status: |active

rl0: flags=8802<BROADCAST,SIMPLEX,MULTICAST> mtu 1500
 options=8<VLAN_MTU>
 ether 00:20:ed:72:3b:5f
 media: Ethernet autoselect (10baseT/UTP)
 status: }no carrier
~lo0: flags=8049<UP,LOOPBACK,RUNNING,MULTICAST> metric 0 mtu 16384
 options=600003<RXCSUM,TXCSUM,RXCSUM_IPV6,TXCSUM_IPV6>
 inet6 ::1 prefixlen 128
 inet6 fe80::1%lo0 prefixlen 64 scopeid 0x2
 inet 127.0.0.1 netmask 0xff000000
 nd6 options=21<PERFORMNUD,AUTO_LINKLOCAL>

Our first network interface is em0 u, or the first network card that
uses the em(4) driver. The em(4) man page reveals that this is an Intel
PRO/1000 card. You’ll then see basic information about this card v, includ-
ing that it is in the UP state, meaning it’s either working or trying to work.
It’s assigned the IPv4 address 203.0.113.43 w and the netmask 0xfffffff0 (or

Configuring Networking 145

255.255.255.240, per Table 7-2). This card has two IPv6 addresses, the link-
local address (beginning with fe80) x and the global IPv6 address y. You’ll
also see the MAC address z and the connection speed {. Finally, the status
entry shows that this card is active |: a cable is plugged in and we have a
link light.

The second card, rl0, has almost none of this information associated
with it. One key fact is the no carrier signal }: it’s not plugged in and there
is no link light. This card is not in use.

Finally we have the interface lo0 ~, the loopback. This interface has the
IPv4 address 127.0.0.1 and IPv6 address ::1 on every machine. This loopback
address is used when the machine talks to itself. This is a standard software
interface, which does not have any associated physical hardware. Do not
attempt to delete the loopback interface, and do not change its IP address—
things will break in an amusing way if you do so. FreeBSD supports other
software interfaces, such as disc(4), tap(4), gif(4), and many more.

Adding an IP to an Interface
The install process will configure any network cards you have working at
install time. If you didn’t configure the network for all of your cards during
the setup process, or if you add or remove network cards after finishing the
install, you can assign an IP address to your network card with ifconfig(8).
You need the card’s assigned IP address and netmask.

ifconfig interface-name inet IP-address netmask

For example, if your network card is em0, your IP address is
203.0.113.250, and your netmask is 255.255.255.0, you would type:

ifconfig em0 inet 203.0.113.250 255.255.255.0

Specify the netmask in dotted-quad notation as above or in hex format
(0xffffff00). Perhaps simplest of all is to use slash notation, like this:

ifconfig em0 inet 203.0.113.250/24

To configure an IPv6 address, add the inet6 keyword between the inter-
face name and the address.

ifconfig em0 inet6 2001:db8::bad:c0de:cafe/64

The ifconfig(8) program can also perform any other configuration
your network cards require, letting you work around hardware bugs in fea-
tures such as the various sorts of checksum offloading, like setting media
type and duplex mode for sub-gigabit interfaces. You’ll find supported
options in the man pages for the driver and ifconfig(8). Here, I disable
checksum offloading and TCP segmentation offloading on my em0 inter-
face, even while I set the IP address.

146 Chapter 8

ifconfig em0 inet 203.0.113.250/24 -tso -rxcsum

To make this persist across reboots, add an entry to /etc/rc.conf that
tells the system to configure the card at boot. An IPv4 entry has the form
ifconfig_interfacename="ifconfig arguments". For example, configuring
the idle rl0 card would require an entry much like this:

ifconfig_rl0 ="inet 203.0.113.250/24"

An IPv6 entry has the form ifconfig_interfacename_ipv6="ifconfig arguments".

ifconfig_rl0_ipv6="2001:db8::bad:c0de:cafe/64"

Once you have a working configuration for your interface, copy your
ifconfig(8) arguments into a /etc/rc.conf entry.

Testing Your Interface
Now that your interface has an IP address, try to ping the IPv4 address
of your default gateway. If you get a response, as shown in the following
example, you’re on the local network. Interrupt the ping with ctRL-C.

ping 203.0.113.1
PING 203.0.113.1 (203.0.113.1): 56 data bytes
64 bytes from 203.0.113.1: icmp_seq=0 ttl=64 time=1.701 ms
64 bytes from 203.0.113.1: icmp_seq=1 ttl=64 time=1.436 ms
^C
--- 203.0.113.1 ping statistics ---
2 packets transmitted, 2 packets received, 0% packet loss
round-trip min/avg/max/stddev = 1.436/1.569/1.701/0.133 ms

For IPv6, use ping6(8) instead of ping(8). If you use router discovery,
the default route will almost always be a link-local address.

ping6 2001:db8::1
PING6(56=40+8+8 bytes) 2001:db8::bad:c0de:cafe --> 2001:db8::1
16 bytes from 2001:db8::1, icmp_seq=0 hlim=64 time=0.191 ms
16 bytes from 2001:db8::1, icmp_seq=1 hlim=64 time=0.186 ms
16 bytes from 2001:db8::1, icmp_seq=2 hlim=64 time=0.197 ms
--snip--

If you don’t get any answers, your network connection isn’t working.
Either you have a bad connection (check your cables and link lights) or you
have misconfigured your card.

Set Default Route
The default route is the address where your system sends all traffic that’s
not on the local network. If you can ping the default route’s IPv4 address,
set it via route(8).

Configuring Networking 147

route add default 203.0.113.1

That’s it! You should now be able to ping any public IPv4 address on the
internet.

Adding the default IPv6 route is much the same, but you need to add
the -6 command line flag to change the IPv6 routing table.

route -6 add default 2001:db8::1

If you didn’t choose nameservers during the system install, you’ll have
to use the IP address rather than the hostname.

Once you have a working default router, make it persist across reboots by
adding the proper defaultrouter and ipv6_defaultrouter entries in /etc/rc.conf:

defaultrouter="203.0.113.1"
ipv6_defaultrouter="2001:db8::1"

Multiple IP Addresses on One Interface
A FreeBSD system can respond to multiple IP addresses on one interface.
This is especially useful for jails (see Chapter 22). Specify additional IPv4
addresses for an interface with ifconfig(8) and the keywords inet and alias.
The netmask on an IPv4 alias is always /32, regardless of the size of the net-
work address block the main address uses.

ifconfig em0 inet alias 203.0.113.225/32

IPv6 aliases use the actual prefix length (slash) of the subnet they’re
on. Be sure you use the inet6 keyword.

ifconfig em0 inet6 alias 2001:db8::bad:c0de:caff/64

Once you add an alias to the interface, the additional IP address appears
in ifconfig(8) output. The main IP always appears first, and aliases follow.

ifconfig fxp0
fxp0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500
 options=b<RXCSUM,TXCSUM,VLAN_MTU>
 inet6 fe80::225:90ff:fee8:1270%vtnet0 prefixlen 64 scopeid 0x1

u inet6 2001:db8::bad:c0de:cafe prefixlen 64
 inet6 2001:db8::bad:c0de:caff prefixlen 64
 inet 203.0.113.250 netmask 0xffffff00 broadcast 203.0.113.255

v inet 203.0.113.225 netmask 0xffffffff broadcast 203.0.113.255
 ether 00:02:b3:63:e4:1d
--snip--

Here we see our brand new IPv4 u and IPv6 v aliases. Hosts that ping
your aliased addresses will get a response from this server.

148 Chapter 8

Once you have the aliases working as you like, make them persist across
reboots by adding additional ifconfig statements in /etc/rc.conf:

ifconfig_em0_alias0="inet 203.0.113.225/32"
ifconfig_em0_alias1="inet6 2001:db8::bad:c0de:caff/64"

The only real difference between this entry and the standard rc.conf ’s
“here’s my IP address” entry are the alias0 and alias1 chunks. The alias
keyword tells FreeBSD that this is an aliased IP, and the 0 and 1 are unique
numbers assigned to each alias. Every alias set in /etc/rc.conf must have a
unique number, and this number must be sequential. If you skip a number,
aliases after the gap won’t be installed at boot. This is the most common
interface misconfiguration I’ve seen.

Many daemons, such as inetd(8) and sshd(8), can be bound to a single
address (see Chapter 20), so you can run multiple instances of the same
program on the same server using multiple addresses.

Renaming Interfaces
FreeBSD names its network interfaces after the device driver used by the
network card. This is a fine old tradition in the Unix world and common
behavior among most industrial operating systems. Some operating systems
name their network interfaces by the type of interface—for example, Linux
calls its Ethernet interfaces eth0, eth1, and so on. At times, it makes sense to
rename an interface, either to comply with an internal standard or to make
its function more apparent. For example, I have one device with 12 network
interfaces, each plugged into a different network. Each network has a name
such as test, QA, and so on. Renaming these network interfaces to match the
attached networks makes sense.

While FreeBSD is flexible on interface names, some software isn’t—it
assumes that a network interface name is a short word followed by a number.
This isn’t likely to change any time in the near future, so it’s best practice to
use a short interface name ending in a digit. Use ifconfig(8)’s name keyword
to rename an interface. For example, to rename em1 to test1, you would run:

ifconfig em1 name test1

A l i A se s A nd ou tgoing ConneC t ions

All connections from your FreeBSD system use the system’s real IP address. You
might have 2,000 addresses bound to one network card, but when you ssh
from that machine, the connection comes from the primary IP address. Keep
this in mind when writing firewall rules and other access-control filters. Jails
initiate all connections from the jail IP address, but we won’t cover jails until
Chapter 22.

Configuring Networking 149

Running ifconfig(8) without arguments shows that you have renamed
that interface.

--snip--
test1: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500
 options=b<RXCSUM,TXCSUM,VLAN_MTU>
--snip--

Make this change permanent with the ifconfig_interface_name option in
/etc/rc.conf.

ifconfig_em1_name="test1"

FreeBSD renames interfaces early in the boot process, before setting IP
addresses or other values. This means that any further interface configura-
tion must reference the new interface name rather than the old. Full con-
figuration of a renamed interface with IP addresses and aliases would look
something like this:

ifconfig_em1_name="dmz2"
ifconfig_dmz2="inet 203.0.113.2 netmask 255.255.255.0"
ifconfig_dmz2_alias0="inet 203.0.113.3"

DHCP
Very few networks use DHCP for everything, including servers. A DHCP
server will set the server’s IP address, netmask, nameservers, and default
gateway for you. If your network administrator configures servers via DHCP,
you can tell the network card to take its configuration via DHCP with the
following:

ifconfig_em0="DHCP"

Reboot!
Now that you have your network interfaces fully configured, be sure to
reboot to test any changes you made to /etc/rc.conf. If FreeBSD finds an
error in /etc/rc.conf, especially in network configuration, you’ll have prob-
lems accessing the system remotely. It’s much better to learn that you made
a typo under controlled conditions as opposed to the middle of your sleep-
ing hours.

If you feel like living dangerously, you can run service netif restart
with the interface name to reconfigure only a single interface.

service netif restart em0

Skip the interface name, and this will restart all interfaces. It’s not a per-
fect test, but it will catch a bunch of daftness. A reboot is always the best test.

150 Chapter 8

The Domain Name Service
The Domain Name Service, or DNS, is one of those quiet, behind-the-scenes ser-
vices that doesn’t get half the attention it deserves. Although most users have
never heard of it, DNS makes the internet as we know it work. Also called
name service, DNS provides a map between hostnames and IP addresses. It
also provides the reverse map, of IP addresses to hostnames. Without DNS,
web browsers and email programs couldn’t use the nice and convenient host-
names like www.michaelwlucas.com or www.nostarch.com; instead, you’d have
to browse the web by typing in appalling things like https://2001:19f0:5c00:9
041:225:90ff:fee8:1270. This would greatly reduce the internet’s popularity.2
To most end users, a DNS failure is an internet failure, end of story. While
we won’t discuss building your own authoritative nameserver, we must cover
configuring your server to use DNS.

A host that trawls the internet to dig up DNS mappings is called a
nameserver, or DNS server. DNS servers aren’t difficult to run, but most
individuals don’t need one. DNS servers are needed only by organizations
who run their own servers (and lunatics who have dozens of hosts in their
basement, like me). Nameservers come in two varieties, authoritative and
recursive.

Authoritative nameservers provide DNS mappings for the public to
find an organization’s nameservers. As the operator of michaelwlucas.com, I
must provide authoritative nameservers for that domain and let the public
query them. These authoritative nameservers answer queries only about the
domains I manage. Configuring an authoritative nameserver is beyond the
scope of this book.

Recursive nameservers service client requests. When you try to browse to
https://www.michaelwlucas.com, your local recursive nameserver searches the
internet for my authoritative nameserver. Once the recursive nameserver
retrieves the hostname-to-IP mapping, it returns that response to your cli-
ent. This book shows you how to use recursive nameservers and how to
enable your own recursive nameserver.

The system’s resolver is responsible for configuring how the host per-
forms DNS queries and relaying the responses to programs. Configuring
the resolver is a vital part of system administration. Even DNS servers need
a configured resolver, because the host won’t know it’s a nameserver unless
you tell it so. Configuring a resolver requires answering a few questions:

•	 Where does the server look for DNS information?

•	 What local overrides do you want?

•	 What are the local domain names?

•	 Which nameservers should be queried?

The answers to these questions are configured in /etc/nsswitch.conf and
/etc/resolv.conf.

2. Reducing the internet’s popularity might not be a bad thing, mind you . . .

Configuring Networking 151

Host/IP Information Sources
This should be easy. A server gets its host information from a nameserver,
right? I just spent a few paragraphs telling you that, didn’t I?

The real world isn’t quite that simple, though. Perhaps you have a
small home network with only three machines. You want each machine to
be able to find each other by hostname, but you don’t want to run a local
authoritative nameserver. Or maybe you’re on a large corporate network
where completing DNS changes takes weeks, and you have a couple test
systems that need to talk to each other. FreeBSD, like all Unix-like operat-
ing systems, can get information from both DNS and from the plaintext
hosts file /etc/hosts.

When FreeBSD needs to know the address of a host (or the hostname
of an address), by default the query goes first to the hosts file and then the
configured nameservers. This means that you can locally override nameserver
results, which is very useful for hosts behind a NAT or on large corporate
networks with odd requirements. In some cases, you might need to reverse
this order to query DNS first and the hosts file second. Set this order in
/etc/nsswitch.conf.

Each entry in /etc/nsswitch.conf is a single line containing the name of
the name service, a colon, and a list of information sources. Here’s the host-
name service lookup configuration:

hosts: files dns

The resolver queries the information sources in the order listed. If you
have an additional information source, such as nscd(8), list it here. The docu-
mentation sources for these add-ons should include the name of the service.

Local Names with /etc/hosts
The /etc/hosts file matches internet addresses to hostnames. Once upon
a time, before the Domain Name Service, the internet had a single hosts
file that provided the hostnames and IP addresses of every node on the
internet. Sysadmins submitted their host changes to a central maintainer,

n A me se rv iCe s w i tChing

The file /etc/nsswitch.conf is used not only by the resolver, but also by all other
name services. A networked operating system includes many different name
services. The TCP/IP ports in /etc/services are a name service as well as net-
work protocol names and numbers. Determining a user’s UID and GID requires
a different sort of name lookup (see Chapter 9). /etc/nsswitch.conf determines
ordering for all of these queries and more. We’re discussing only hostname
lookups here, but Chapter 20 covers more on name service switching.

152 Chapter 8

who issued a revised hosts file every few months. Sysadmins would then
download the hosts file and install it on all of their machines. This worked
fine when the whole internet had four systems on it, and was even accept-
able when there were hundreds of hosts. As soon as the internet began its
exponential growth, however, this scheme became totally unmaintainable.

While the hosts file is very effective, it works only on the machine it’s
installed on and must be maintained by the sysadmin. The public DNS
has largely supplanted /etc/hosts, but it’s still useful in environments where
you don’t want to run local authoritative DNS3 or you’re behind an IPv4
NAT device. Using the hosts file makes perfect sense if you have one or two
servers at home, or if someone else manages your authoritative nameservers.
Once you have enough hosts that the thought of updating the hosts file
makes you ill, it’s time to learn to build an authoritative nameserver.

Each line in /etc/hosts represents one host. The first entry on each line
is an IP address, and the second is the fully qualified domain name of the
host, such as mail.michaelwlucas.com. Following these two entries, you can list
an arbitrary number of aliases for that host.

For example, a small company might have a single server handling email,
serving FTP, web pages, and DNS, as well as performing a variety of other
functions. A desktop on that network might have a hosts file entry like this:

203.0.113.3 mail.mycompany.com mail ftp www dns

With this /etc/hosts entry, the desktop could find the server with either
the full domain name or any of the brief aliases listed. This won’t get you to
Facebook, however. For that, you need nameservice.

Configuring Nameservice
Tell your host how to query nameservers with the file /etc/resolv.conf. You
probably want to provide a local domain or a domain search list and then
list the nameservers.

Local Domain and Search List

If your organization has many machines, typing out complete hostnames can
quickly get old. If you’re doing maintenance and need to log into every web
server, by the time you get to www87.BertJWRegeerHasTooManyBlastedComputers
.com you’ll need treatment for impending carpal tunnel syndrome. You can
either provide a local domain or a list of domains to search on the first line
of /etc/resolv.conf.

The domain keyword tells the resolver which local domain to check,
by default, for all hostnames. All of my test hosts are in the domain
michaelwlucas.com, so I could set that as the default domain.

domain michaelwlucas.com

3. Because your life is still worth living.

http://www.michaelwlucas.com

Configuring Networking 153

Once you specify a local domain, the resolver will automatically
append the domain to any short hostname. If I type ping www, the resolver
will append the local domain and send ping(8) to www.michaelwlucas.com.
If I give a complete hostname, such as www.bertjwregeer.com, though, the
resolver doesn’t add the default domain.

Maybe I have more than one domain I’d like to search. Use the search
keyword to give a list of domain names to try, in order. Like domain, search
must be the first line of resolv.conf.

search michaelwlucas.com bertjwregeer.com mwl.io

When you use a brief hostname, such as www, the resolver appends the
first domain name in the search list. If there’s no answer, it repeats the query
with the second domain name, and then the third. If I run ping petulance,
the resolver searches for petulance.michaelwlucas.com, petulance.bertwjregeer.com,
and petulance.mwl.io. If no such host exists in any of these domains, the search
fails.

If you have neither domain nor search entries in /etc/resolv.conf, but
the machine’s hostname includes a domain name, the resolver uses the
local machine’s domain name.

The Nameserver List

Now that your resolver knows which domains to try, tell it which name-
servers to query. List each in /etc/resolv.conf on its own line, in order of
preference. Use the keyword nameserver and the DNS server’s IP address.
The resolver queries the listed nameservers in order. A complete resolv.conf
might look like this:

domain mwl.io
nameserver 127.0.0.1
nameserver 203.0.113.8
nameserver 192.0.2.8

This resolver is ready to rock.
Note the first nameserver entry, though. The address 127.0.0.1

is always attached to the local host. This machine is running a local
recursive nameserver. You can too!

Caching Nameserver
Your host needs to perform a DNS lookup every single time it must con-
tact a host. A busy server makes a whole bunch of queries, and by itself,
the resolver doesn’t cache any of these responses. A host needs to connect
to Google 500 times in a minute? That’s 500 DNS lookups. While setting
up an authoritative DNS server requires a specific skill set, configuring a
local recursive server requires only one line in /etc/rc.conf. This lets your
FreeBSD host cache its DNS responses while reducing network congestion
and improving performance.

http://michaelwlucas.com

154 Chapter 8

Enable the local nameserver with the rc.conf variable local_unbound_enable.

sysrc local_unbound_enable=YES
local_unbound_enable: NO -> YES

You can now start the local nameserver.

service local_unbound start

When you start the service the first time, unbound configures itself. It
extracts your system’s nameservers from /etc/resolv.conf and configures itself
to forward all queries to those nameservers. The setup process then edits
/etc/resolv.conf to point all queries at the local nameserver, running on the
IP address 127.0.0.1.

When your host makes a DNS query, the resolver queries unbound. The
local nameserver checks its cache to see whether it has a valid and unex-
pired answer for the query. If it doesn’t have a cached response, unbound
queries your preferred nameservers.

I recommend enabling local_unbound on every server that isn’t a DNS
server.

Network Activity
Now that you’re on the network, how can you see what’s going on? There
are several ways to look at the network, and we’ll consider each in turn.
Unlike many commercial operating systems, FreeBSD commands such as
netstat(8) and sockstat(1) give you more information about the network
than can possibly be healthy.

Current Network Activity
The general-purpose network management program netstat(8) displays
different information depending on the flags it’s given. One common ques-
tion people have is, “How much traffic is my system pushing right now?”
The netstat(8) -w (for wait) option displays how many packets and bytes
your system is processing. The -w flag takes one argument, the number of
seconds between updates. Adding the -d (for drop) flag tells netstat(8) to
include information about packets that never made it to the system. Here,
we ask netstat(8) to update its display every five seconds:

netstat -w 5 -d
 input (Total) output
 packets errs idrops bytes packets errs bytes colls drops
 u34 v0 w0 x44068 y23 z0 {1518 |0 }0
 33 0 0 42610 23 0 1518 0 0
--snip--

Nothing appears to happen when you enter this command, but in a
few seconds, the display prints a single line of information. The first three

Configuring Networking 155

columns describe inbound traffic, while the next three describe outbound
traffic. We see the number of packets received since the last update u, the
number of interface errors for inbound traffic since the last update v, and
the number of inbound dropped packets w. The input information ends
with the number of bytes received since the last update x. The next three
columns show the number of packets the machine transmitted since the
last update y, the number of errors in transmission since the last update z,
and how many bytes we sent {. We then see the number of network colli-
sions that have occurred since the last update |, and the number of packets
that have been dropped }. For example, in this display, the system received
34 packets u since netstat -w 5 -d started running.

Five seconds later, netstat(8) prints a second line describing the activity
since the first line was printed.

You can make the output as detailed as you want and run it as long as you
like. If you’d like to get updates every second, just run netstat -w 1 -d. If once
a minute is good enough for you, netstat -w 60 -d will do the trick. I find a
five-second interval most suitable when I’m actively watching the network,
but you’ll quickly learn what best fits your network and your problems.

Hit ctRL-C to stop the report once you’ve had enough.

What’s Listening on Which Port?
Another popular question is, “Which ports are open and what programs
are listening on them?” FreeBSD includes sockstat(1), a friendly tool to
answer this question. It shows both active connections and ports available
for client use.

The sockstat(1) program not only lists ports listening to the network,
but also any other ports (or sockets) on the system. Use the -4 flag to see
IPv4 sockets and -6 to view IPv6. Here’s trimmed sockstat(1) output from
a very small server:

sockstat -4
USER COMMAND PID FD PROTO LOCAL ADDRESS FOREIGN ADDRESS
mwlucas usshd 11872 4 tcp4 v203.0.113.43:22 w24.192.127.92:62937

x root sendmail 11433 4 tcp4 *:25 *:*
y www httpd 9048 16 tcp4 *:80 *:*
z root sshd 573 3 tcp4 *:23 *:*
{ root sshd 426 3 tcp4 *:22 *:*
| bind named 275 20 udp4 203.0.113.8:53 *:*
} bind named 275 20 tcp4 203.0.113.8:53 *:*

The first column gives us the username that’s running the program
attached to the port in question. The second column is the name of the com-
mand. We then have the process ID of the program and the file descriptor
number attached to the socket. The next column shows what transport proto-
col the socket uses—either tcp4 for TCP on TCP/IP version 4, or udp4 for UDP
on TCP/IP version 4. We then list the local IP address and port number, and
finally the remote IP address and port number for each existing connection.

156 Chapter 8

Take a look at our very first entry. I’m running the program sshd u. A
man page search takes you to sshd(8), the SSH daemon. The main sshd(8)
daemon forked a child process on my behalf to handle my connection, so
we see multiple instances of sshd(8) with different process IDs. I’m con-
nected to the local IP address 203.0.113.43 v on TCP port 22. The remote
end of this connection is at the IP address 24.192.127.92 w on port 62937.
This is an SSH connection from a remote system to the local computer.

Other available connections include Sendmail x, the mail server, run-
ning on port 25. Note that this entry doesn’t have any IP address listed as
the foreign address. This socket is listening for incoming connections. Our
httpd process y is listening for incoming connections on port 80.

The astute among you might notice that this server has two SSH
daemons available for incoming connections, one on port 23 z and one
on port 22 {. As /etc/services shows, SSH normally runs on port 22 while
port 23 is reserved for telnet. Anyone who telnets to this machine will
be connected to an SSH daemon, which won’t work as they expect. The
suspicious among you might suspect that this SSH server was set up to
waltz around firewalls that only filter traffic based on source and desti-
nation ports and not the actual protocol. (I have no comment on such
allegations.)

The last two entries are for a nameserver, named, awaiting incoming
connections on port 53. This nameserver is listening for both UDP | and
TCP } connections and is attached to the single IP address 203.0.113.8.

Port Listeners in Detail
While sockstat(1) provides a nice high-level view of network service avail-
ability, you can get a little more detailed information about individual
connections with netstat(8). To view open network connections, use
netstat(8)’s -a flag. The -n flag tells netstat(8) not to bother translating
IP addresses to hostnames; not only can this translation slow down the
output, it can cause ambiguous output. Finally, the -f inet option tells
netstat(8) to worry only about IPv4 network connections, while -f inet6
addresses IPv6. Here’s matching netstat output from the same machine we
just ran sockstat(1) on:

netstat -na -f inet
Active Internet connections (including servers)
Proto Recv-Q Send-Q Local Address Foreign Address (state)
tcp4 0 48 203.0.113.43.22 24.192.127.92.62937 ESTABLISHED
tcp4 0 0 *.25 *.* LISTEN
tcp4 0 0 *.23 *.* LISTEN
tcp4 0 0 *.80 *.* LISTEN
tcp4 0 0 *.22 *.* LISTEN
tcp4 0 0 203.0.113.8.53 *.* LISTEN
udp4 0 0 203.0.113.8.53 *.*

Here, we get no idea of what program is attached to any port. The first
entry in each column is the transport protocol used by the socket—mostly
TCP, but the last line shows UDP.

Configuring Networking 157

The Recv-Q and Send-Q columns show the number of bytes waiting to be
handled by this connection. If you see nonzero Recv-Q numbers for some
connection most of the time, you know that the program listening on that
port can’t process incoming data quickly enough to keep up with the net-
work stack. Similarly, if the Send-Q column keeps having nonzero entries,
you know that either the network or the remote system can’t accept data as
quickly as you’re sending it. Occasional queued packets are normal, but if
they don’t go away, you might want to investigate why things are slow. You
must watch your own system to learn what’s normal.

The Local Address is, as you might guess, the IP address and network
port number on the local system that the network connection is listen-
ing on. The network port appears at the end of the entry and is separated
from the IP address by a dot. For example, 203.0.113.43.22 is the IP address
203.0.113.43, port 22. If the entry is an asterisk followed by a period and
a port number, that means that the system is listening on that port on all
available IP addresses. The system is ready to accept a connection on that port.

The Foreign Address column shows the remote address and port number
of any connection.

Finally, the (state) column shows the status of the TCP handshake. You
don’t need to know all of the possible TCP connection states, so long as you
learn what’s normal. ESTABLISHED means that a connection exists and that
data is probably flowing. LAST_ACK, FIN_WAIT_1, and FIN_WAIT_2 mean that the
connection is being closed. SYN_RCVD, ACK, and SYN+ACK are all parts of connec-
tion creation (the three-way handshake from Chapter 7). LISTEN indicates
that the port is ready for incoming connections. In the preceding example,
one TCP connection is running and four are ready to accept clients. As
UDP is stateless, those connections list no state information.

By reading this output and combining it with information provided by
sockstat(1), you can learn exactly which programs are behaving well and
which are suffering bottlenecks.

If you’re not interested in listening sockets but only those with active
connections, use netstat(8)’s -b option instead of -a. Running netstat -nb
-f inet displays only connections with foreign systems.

You can also use netstat -T to display TCP retransmits and out-of-order
packets on individual connections. Retransmits and misordered packets are
symptoms of dropped packets.

Network Capacity in the Kernel
The FreeBSD kernel handles network memory by using mbufs. An mbuf is
a chunk of kernel memory used for networking. You’ll keep tripping across
mentions of mbufs throughout the FreeBSD network stack documentation,
so it’s important to have at least a vague idea of them.

FreeBSD automatically allocates network capacity at boot time based
on the amount of physical RAM in the system. We assume that if you have a
system with 64GB RAM, you want to use more memory for networking than
on a little box with 1GB RAM. View how FreeBSD uses its resources with
netstat -s and netstat -m. Let’s look at the shortest one first.

158 Chapter 8

To get a generic view of kernel memory used for networking, run netstat
-m. The output can be divided into two general categories: how much is used
and how many requests failed. The following output is trimmed to include
only a few examples of these, but they all follow the same general format:

netstat -m
--snip--
u32/372/404/v25600 mbuf clusters in use (current/cache/total/max)
--snip--
0/0/0 requests for mbufs wdenied (mbufs/clusters/mbuf+clusters)
--snip--

Here we see how many mbuf clusters are used u. You’d probably guess
that these are related to mbufs, and you’d be right. You don’t have to know
exactly what mbuf clusters are; the important thing is that you know how
many you can allocate v and can see that you’re under that limit.

Similarly, we can see how many different requests for mbufs the kernel
has denied w. This system hasn’t rejected any requests for mbufs, which
means that we aren’t having performance problems due to memory shortages.
If your system starts rejecting mbuf requests because it’s out of memory,
you’re in trouble. See “Optimizing Network Performance” next.

While netstat -m produces a dozen lines of output, netstat -s runs for
pages and pages. It provides per-protocol performance statistics. Much like
netstat -m, you can break up these statistics into categories of how much
was done and how many problems you had. Run both of these commands
occasionally on your systems and review the results so you know what passes
for normal on your servers and can recognize abnormal numbers when you
have problems.

Optimizing Network Performance
Now that you can see what’s going on, how could you improve FreeBSD’s
network performance? There’s a simple rule of thumb when considering
optimizing: don’t. Network performance is generally limited only by your
hardware. Many applications can’t process data as quickly as your network
can provide. If you think that you need to optimize your performance,
you’re probably looking in the wrong spot. Check Chapter 21 for hints on
investigating performance bottlenecks.

Generally speaking, network performance should be adjusted only
when you experience network problems. This means that you should have
output from netstat -m or netstat -s indicating that the kernel is having
resource problems. If the kernel starts denying requests for resources or
dropping connection requests, look at the hints in this section. If you have
issues or if you think you should be getting better performance, look at the
hardware first.

Configuring Networking 159

Optimizing Network Hardware
Not all network hardware is created equal. While anyone in IT hears this
frequently, FreeBSD’s open nature makes this obvious. For example, here’s
a comment from the source code of the rl(4) network card driver:

The RealTek 8139 PCI NIC redefines the meaning of 'low end.' This is
probably the worst PCI ethernet controller ever made, with the possible
exception of the FEAST chip made by SMC. The 8139 supports bus-master
DMA, but it has a terrible interface that nullifies any performance
gains that bus-master DMA usually offers.

This can be summarized as, “This card sucks and blows at the same
time. Buy another card.” While this is the most vitriolic comment that I’ve
seen in the FreeBSD source code, and this particular hardware is very hard
to find today, the drivers for certain other cards say the same thing in a
more polite manner. Optimizing network performance with low-end hard-
ware is like putting a high-performance racing transmission in your 1974
Gremlin. Replacing your cheap network card will probably fix your prob-
lems. Generally speaking, Intel makes decent network cards; they maintain
a FreeBSD driver for their wired network cards and provide support so that
the FreeBSD community can help maintain the drivers. (Wireless cards are
another story.) Similarly, many companies that build server-grade machines
make a point of using server-grade network cards. Some companies provide
a FreeBSD driver but do not provide documentation for their hardware.
This means that the driver probably works, but you’re entirely dependent
upon the vendor’s future fondness of FreeBSD for your updates. Companies
that specialize in inexpensive consumer network equipment are not your
best choice for high-performance cards—after all, the average home user
has no idea how to pick a network card, so they go by price alone. If in doubt,
check the FreeBSD-questions mailing list archives for recent network card
recommendations.

Similarly, switch quality varies wildly. The claim that a switch speaks
the protocol used in gigabit connections doesn’t mean that you can actu-
ally push gigabit speed through every port! I have a 100Mb switch that
bottlenecks at 15Mbps and a “gigabit” switch that seems to choke at about
50Mbps. I recommend that you think of a switch’s speed as a protocol or a
language: I could claim that I speak Russian, but 30 years after my studies
ceased, my speech bottlenecks at about three words a minute. My Russian
language interface is of terrible quality. Again, switches designed for home
use are not your best choice in a production environment.

If getting decent hardware doesn’t solve your problems, read on.

Memory Usage
FreeBSD uses the amount of memory installed in a system to decide how
much memory space to reserve for mbufs. Don’t adjust the number of
mbufs you create unless netstat -m tells you that you’re short on mbuf

160 Chapter 8

space. If you have an mbuf problem, the real fix is to add memory to your
machine. This will make FreeBSD recompute the number of mbufs created
at boot and solve your problem. Otherwise, you’ll just shift the problem to a
different part of the system or a different application. You might configure
gobs of memory for network connections and find that you’ve smothered
your database server. If you’re sure you want to proceed, though, here’s how
you do it.

Two sysctl values control mbuf allocation, kern.maxusers and kern.ipc
.nmbclusters. The first, kern.maxusers, is a boot-time tunable. Your system
automatically determines an appropriate kern.maxusers value from the sys-
tem hardware at boot time. Adjusting this value is probably the best way
to scale your system as a whole. In older versions of FreeBSD, kern.maxusers
preallocated memory for networking and refused to release it for other
tasks, so increasing kern.maxusers could badly impact other parts of the
system. Modern FreeBSD does not preallocate network memory, however,
so this is just an upper limit on networking memory. If kern.maxusers is too
small, you’ll get warnings in /var/log/messages (see Chapter 21).

The sysctl kern.ipc.nmbclusters specifically controls the number of mbufs
allocated by the system for data sitting in socket buffers, waiting to be sent
to or read by an application. Although this is runtime tunable, it’s best to
set it early at boot by defining it in /etc/sysctl.conf (see Chapter 6). If you set
this too high, however, you can actually starve the kernel of memory for
other tasks and panic the machine.

sysctl kern.ipc.nmbclusters
kern.ipc.nmbclusters: 25600

Mbufs are allocated in units called nmbclusters (sometimes called mbuf
clusters). While the size of an mbuf varies, one cluster is about 2KB. You can
use simple math to figure out how much RAM your current nmbcluster set-
ting requires and then calculate sensible values for your system and appli-
cations. This example machine has 25,600 nmbclusters, which means the
kernel can use up to about 50MB RAM for networking purposes. This is
negligible on my test laptop’s gig of RAM, but it might be unsuitable on an
embedded system.

To calculate an appropriate number of mbuf clusters, run netstat -m
when the server is really busy. The second line of the output will give you
the number of mbufs in use and the total number available. If your server at
its busiest doesn’t use nearly as many nmbclusters as it has available, you’re
barking up the wrong tree—stop futzing with mbufs and replace your hard-
ware already.4 For example:

u32/v372/w404/x25600 mbuf clusters in use (current/cache/total/max)

4. Some readers have already replaced their cruddy hardware before considering software
optimizations. These readers may perceive this comment as unwarranted. I sincerely,
wholeheartedly, and without reservation apologize to all three of you.

Configuring Networking 161

This system is currently using 32 nmbclusters u on this machine and
has cached 372 previously used nmbclusters v. With this total of 404 clus-
ters w in memory at this time, our capacity of 25,600 clusters x is 1.5 per-
cent utilized. If this is your real system load, actually reducing the number
of nmbclusters might make sense.

My personal rule of thumb is that a server should have enough mbufs to
handle twice its standard high load. If your server uses 25,000 nmbclusters
during peak hours, it should have at least 50,000 available to handle those
brief irregular peaks.

Maximum Incoming Connections
The FreeBSD kernel provides capacity to handle a certain number of incom-
ing new TCP connections. This doesn’t refer to connections that the server
previously received and is handling, but rather to clients who are attempting
to initiate connections simultaneously. For example, the web pages currently
being delivered to clients don’t count, but the incoming requests that have
reached the kernel but not the web server process do. It’s a very narrow win-
dow, but some sites do overflow it.

The sysctl kern.ipc.somaxconn dictates how many simultaneous connec-
tion attempts the system will try to handle. This defaults to 128, which
might not be enough for a highly loaded web server. If you’re running a
high-capacity server where you expect more than 128 new requests to be
arriving simultaneously, you probably need to increase this sysctl. If users
start complaining that they can’t connect, this might be your culprit. Of
course, very few applications will accept that many simultaneous new con-
nections; you’ll probably have to tune your app well before you hit this point.

Polling
Some gigabit cards can improve their performance with polling. Polling
takes the time-honored idea of interrupts and IRQs and boots it out the
window, replacing it with regular checks for network activity. In the classic
interrupt-driven model, whenever a packet arrives at the network card,
the card demands attention from the CPU by generating an interrupt.
The CPU stops whatever it’s doing and handles that data. This is grand,

onCe-in- A-l if e t ime v s. s tA ndA r d loA d

Always distinguish planning for once-in-a-lifetime events from planning for
normal load. When the US Government’s Affordable Care Act health insur-
ance registration site went live, millions of users immediately tried to sign
up. The first few days, the site was fiendishly slow. After a week, the hard-
ware handled the load without trouble. This was certainly correct capacity
planning.

162 Chapter 8

and even desirable, when the card doesn’t process a huge amount of traf-
fic. Once a system starts handling large amounts of data, however, the card
generates interrupts continuously. Instead of constantly interrupting, the
system is more efficient if the kernel grabs network data from the card at
regular intervals. This regular checking is called polling. Generally speak-
ing, polling is useful only if you push large amounts of traffic.

Polling isn’t available as a kernel module as of this writing, since it
requires modifications to device drivers. This also means that not all
network cards support polling, so be sure to check polling(4) for the
complete list. Enable polling by adding DEVICE_POLLING to your kernel con-
figuration. After your reboot, enable polling on a per-interface basis with
ifconfig(8).

ifconfig em0 polling

Similarly, disable polling with the argument -polling. The ifconfig(8)
command also displays if polling is enabled on an interface. As you can
enable and disable polling on the fly, enable polling when your system is
under a heavy load and see whether performance improves.

Polling is used only on older cards. 10GB cards and faster can’t poll.

Other Optimizations
FreeBSD has about 200 networking-related sysctls. You have all the tools you
need to optimize your system so greatly that it no longer passes any traffic
at all. Be very careful when playing with network optimizations. Many set-
tings that seem to fix problems actually fix only one set of problems while
introducing a whole new spectrum of issues.

Some software vendors (i.e., Samba) recommend particular network
sysctl changes. Try them cautiously, and watch for unexpected side effects
on other programs before accepting them as your new default. TCP/IP is a
terribly, terribly complicated protocol, and FreeBSD’s defaults and autotun-
ing reflect years of experience, testing, and sysadmin suffering.

Also remember that FreeBSD is over two decades old. Mailing list and
forum posts from more than a few years ago are probably not useful in net-
work tuning.

Network Adapter Teaming
As network servers become more and more vital to business, redundancy
becomes more important. We have redundant hard drives in a server and
redundant bandwidth into a data center, but what about redundant band-
width into a server? On a smaller scale, as you move around your office, you
might move your laptop between wired and wireless connections. It would
be really nice not to lose your existing SSH sessions because you unplugged
a cable.

Configuring Networking 163

FreeBSD can treat two network cards as a single entity, allowing you to
have multiple connections with a single switch. This is commonly called net-
work adapter teaming, bonding, or link aggregation. FreeBSD implements adapter
teaming through lagg(4), the link aggregation interface.

The kernel module lagg(4) provides a lagg0 virtual interface. You
assign physical interfaces to the lagg0 interface, making them part of the
aggregated link. While you could use lagg(4) with only one physical inter-
face, aggregating links only makes sense when you have two or more physi-
cal interfaces to assign to the aggregated link. The lagg(4) module allows
you to implement seamless roaming between wired and wireless networks,
failover, and several different aggregation protocols.

Aggregation Protocols
Not all network switches support all link aggregation protocols. FreeBSD
has basic implementation of some complicated high-end protocols and
also includes very basic failover setups. The three I recommend are Fast
EtherChannel, LACP, and failover. (There are more schemes, which you
can read about in lagg(4).)

Cisco’s Fast EtherChannel (FEC) is a reliable link aggregation protocol,
but it works only on high- to medium-end Cisco switches running particular
versions of Cisco’s operating system. If you have an unmanaged switch, Fast
EtherChannel is not a viable choice. Fast EtherChannel is complicated to
configure (on the switch), so I recommend FEC only when it is already your
corporate standard for link aggregation.

The Link Aggregation Control Protocol (LACP) is an industry standard for
link aggregation. The physical interfaces are bonded into a single virtual
interface with approximately the same bandwidth as all of the individual
links combined. LACP provides excellent fault tolerance, and almost all
switches support it. I recommend LACP unless you have a specific require-
ment for Fast EtherChannel or a switch that chokes when you use LACP.

If you do have a switch that chokes on LACP, use failover. The failover
method sends traffic through one physical interface at a time. If that inter-
face goes down, the connection fails over to the next connection in the
pool. While you don’t get aggregated bandwidth, you do get the ability to
attach your server to multiple switches for fault tolerance. Use failover to let
your laptop roam between wired and wireless connections.

t runking, t e A ming, A nd v l A ns

Some vendors use the word trunk to describe link aggregation. Other vendors
use the word trunk to describe one cable with multiple networks (VLANs).
FreeBSD avoids this argument by not using the word trunk. If someone starts
discussing trunks in your presence, ask them what kind they’re talking about.

164 Chapter 8

Configuring lagg(4)
The lagg interface is virtual, meaning there is no physical part of the
machine that you could point to and say, “That is interface lagg0.” Before
you can configure the interface, you must create it. FreeBSD lets you create
interfaces with ifconfig interfacename create, but you can also do this in /etc/
rc.conf with the cloned_interfaces statement.

Configuring a lagg(4) interface in rc.conf has three steps: creating the
interface, bringing up the physical interfaces, and aggregating them. Here,
we create a single lagg0 interface out of two Intel gigabit Ethernet cards,
em0 and em1.

cloned_interfaces="lagg0"
ifconfig_em0="up"
ifconfig_em1="up"
ifconfig_lagg0="laggproto lacp laggport em0 laggport em1 inet 203.0.113.1/24"

First, you list lagg0 as a cloned interface, so FreeBSD will create this
interface at boot. Then, bring interfaces em0 and em1 up, but don’t con-
figure them. Finally, tell the lagg0 interface what aggregation protocol to
use (LACP), what physical interfaces belong to it, and its network informa-
tion. These few lines of configuration give you a high-availability Ethernet
connection.

Virtual LANs
A virtual LAN, or VLAN, lets you get multiple Ethernet segments on a single
piece of wire. You’ll sometimes see VLANs called 802.1q, tagging, or a com-
bination of these terms. You can use these multiple networks by configuring
additional logical interfaces attached to a physical interface. The physical
wire can still carry only so much data, however, so all VLANs and the
regular network (or native VLAN) that share the wire use a common pool
of bandwidth. If you need a FreeBSD host on multiple Ethernet segments
simultaneously, this is one way to do it without running more cable.

VLAN frames that arrive at your network card are like regular Ethernet
frames, tagged with an additional header that says “This is part of VLAN
number whatever.” Each VLAN is identified by a tag from 1 to 4096. The
native VLAN arrives without any tagging whatsoever. The network often
(but not always) calls this VLAN 1 internally.

Configuring a VLAN on your FreeBSD host doesn’t magically connect the
host to the VLAN. The network must be configured to send those VLANs to
your host. You must work with the network team to get access to the VLANs.

Configuring VLAN Devices
Use ifconfig(8) to create VLAN interfaces. You must know the physical
interface and the VLAN tag.

ifconfig interface.tag create vlan tag vlandev interface

Configuring Networking 165

Here, I create an interface for VLAN 2 and attach it to the interface em0.

ifconfig em0.2 create vlan 2 vlandev em0

I can now configure interface em0.2 as I would a physical interface.

ifconfig em0.2 inet 192.0.2.236/28

In reality, I’d probably do all of this in a single command.

ifconfig em0.2 create vlan 2 vlandev em0 inet 192.0.2.236/28

That’s everything. Now use ifconfig(8) to display your new interface.

ifconfig em0.2
em0.2: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> metric 0 mtu 1500
 options=503<RXCSUM,TXCSUM,TSO4,LRO>
 ether 00:25:90:db:d5:94
 inet 198.22.65.236 netmask 0xffffff00 broadcast 255.255.255.240
 inet6 fe80::225:90ff:fedb:d594%em0.2 prefixlen 64 scopeid 0x6
 nd6 options=21<PERFORMNUD,AUTO_LINKLOCAL>

 u media: Ethernet autoselect (100baseTX <full-duplex>)
 status: active

 v vlan: 2 vlanpcp: 0 parent interface: em0
 w groups: vlan

This looks almost exactly like any other physical interface. The media
information u comes directly from the underlying interface. You’ll see a
label with VLAN information v and a note that this is grouped with the
other VLAN interfaces w.

Configuring VLANs at Boot
Configure VLANs at boot with rc.conf variables. First, use a vlan_ variable
tagged with the interface name to list the VLANs attached to that interface.
Here, I tell FreeBSD to enable VLAN 2 and 3 on interface em0 and assign
an IP configuration to each.

vlans_em0="2 3"
ifconfig_em0_2="inet 192.0.2.236/28"
ifconfig_em0_3="inet 198.51.100.50/24"

If the underlying interface has no configuration, you need to at least
bring it up. The VLAN interfaces won’t work unless the physical interface
is on.

ifconfig_em0="up"

You now have virtual LANs at boot. Congratulations!
Now that you have a working network, let’s get a little more local and

look at basic system security.

9
S e c u r i n g Y o u r S Y S t e m

Securing your system means ensuring that
your computer’s resources are used only by

authorized people for authorized purposes.
Even if you have no important data on your

system, you still have valuable CPU time, memory,
and bandwidth. Many folks who thought that their
systems were too unimportant for anyone to bother breaking into found
themselves an unwitting relay for an attack that disabled a major corpora-
tion. You don’t want to wake up one morning to the delightful sound of law
enforcement agents kicking in your door because your insecure computer
broke into a bank.

Sure, there are things worse than having some punk kid take over your
servers—say, having the neighborhood loan shark break both your legs.
Discovering that your organization’s web page now says, “Ha ha, you’ve been
r00ted!” is a decent competitor for second place. Even more comprehensible
intrusions cause huge headaches. Most of the actual intrusions I’ve been
involved with (not as an attacker, but as a consultant to the victim) have
originated from countries with government censorship, and traffic analysis

168 Chapter 9

showed that the intruders were actually just looking for unrestricted access
to news sites. While I fully sympathize with these people, when I’m depending
upon the stable operation of my servers to run my business, their intrusion
is unacceptable.

Over the last few years, taking over remote computers has become
much easier. Point-and-click programs for subverting computers can be
found through search engines. When one bright attacker writes an exploit,
several thousand bored teenagers with nothing better to do can download
it and make life difficult for the rest of us. Even if the data on your system is
worthless, you must secure the system’s resources.

Generally speaking, operating systems are not broken into; the
programs running on operating systems are. Even the most paranoiac,
secure-by-default operating system in the world can’t protect badly written
programs from themselves. Occasionally, one of those programs can inter-
act with the operating system in such a way as to actually compromise the
operating system. The most well-known of these are buffer overflows, where
an intruder’s program is dumped straight into the CPU’s execution space
and the operating system runs it. FreeBSD has undergone extensive audit-
ing to eliminate buffer overflows as well as myriad other well-understood
security issues, but that’s no guarantee that they’ve been eradicated. New
functions and programs appear continuously, and they can interact with
older functions and each other in unexpected ways.

FreeBSD provides many tools to help you secure your system against
attackers, both internal and external. While no one of these tools is suf-
ficient, all are desirable. Treat everything you learn about system security
as a tool in a kit, not as the answer to all your problems. For example, while
simply raising a system’s securelevel will not make your system secure, it can
help when combined with reasonable permissions, file flags, regular patch-
ing, password control, and all the other things that make up a good security
policy. We’ll cover more advanced security tools in Chapter 19, but without
the basic protections discussed here, those tools won’t help secure your system.

Who Is the Enemy?
We’ll arbitrarily lump potential attackers into four groups: script kiddies,
disaffected users, botnets, and skilled attackers. You’ll find a more detailed
classification in books dedicated to security, but that’s not what you’re here
for. These categories are easily explained, easily understood, and include
99 percent of all the attackers you’re likely to encounter.

Script Kiddies
The most numerous human attackers, script kiddies, are not sysadmins.
They’re not skilled. They download attack programs that work on a point-
and-click basis and go looking for vulnerable systems. They’re the equiva-
lent of purse snatchers, preying upon old ladies holding their bags just a
little bit too loosely. Fortunately, script kiddies are easy to defend against:
just keep your software up-to-date and follow good computing practices.

Securing Your System 169

Like locusts, script kiddies are easy to squash, but there are just so darned
many of them!

Disaffected Users
The second group, your own users, causes the majority of security problems.
Your organization’s employees are the people most likely to know where the
security gaps are, to feel that the rules don’t apply to them, and to have the
time to spend breaking your security. If you tell an employee that company
policy forbids him access to a computer resource, and if the employee feels
that he should have access to it, he’s likely to search for a way around the
restriction. Anyone who feels that he’s so fabulously special that the rules
don’t apply to him is a security risk. Worse, when an employee who knows all
the dirty laundry gets angry, bad things can happen. You might have all your
servers patched and a downright misanthropic firewall installed, but if any-
one who knows the password is Current93 can dial the back room modem,
you’re in trouble.

The best way to stop people like these is simply not to be sloppy. Don’t
leave projects insecurely half-finished or half-documented. When someone
leaves the company, disable his account, change all administrative pass-
words, inform all employees of that person’s departure, and remind them
not to share confidential knowledge with that person. Have a computer
security policy with real violation penalties and have HR enforce it. And
get rid of the unsecured modem, the undocumented telnet server running
on an odd port, or whatever hurried hack you put into place thinking that
nobody would ever find it.

Botnets
Botnets are more numerous than either of the above, but they’re not
human. They’re machines compromised by malware and controlled from
a central point. Botnets can include millions of machines. The malware
authors control the botnets and use them for anything from searching for
more vulnerable hosts to sending spam or breaking into secure sites. Most
botnets are composed of Windows and Linux machines, but there’s no rea-
son why FreeBSD operating systems can’t be assimilated into botnets.

Fortunately, botnet defense is much like script kiddie defense; keep-
ing your software patched and following good computing practices goes a
long way.

Motivated Skilled Attackers
The most dangerous group—skilled attackers—are competent system
administrators, security researchers, penetration specialists, and criminals
who want access to your specific resources. Computer penetration is a lucra-
tive criminal field these days, especially if the victim has resources that
can be used for distributed denial-of-service (DDos) attacks or mass spam
transmission. Compromising a web farm and turning it to evil is profitable.

170 Chapter 9

If you have valuable company secrets, you might be targeted by one of these
intruders. If one of these people really wants to break into your network,
he’ll probably get there.

Still, security measures that stop the first three groups of people change
the tactics of the skilled attacker. Instead of breaking into your computers
over the network, he’ll have to show up at your door dressed as a telco
repairman lugging a packet sniffer, or dumpster-dive searching for old
sticky notes with scribbled passwords. This dramatically increases his risk,
possibly making an intrusion more trouble than it’s worth. If you can make
the intruder’s break-in plan resemble a Hollywood script no matter how much
he knows about your network, your security is probably pretty good.

FreeBSD Security Announcements
The best defense against any attackers is to keep your system up to date.
This means you must know when to patch your system, what to patch, and
how. An outdated system is a script kiddie’s best friend.

The FreeBSD Project includes volunteers who specialize in auditing
source code and watching for security issues with both the base operating
system and add-on software. These developers maintain a very low-volume
mailing list, FreeBSD-security-notifications@FreeBSD.org, and subscribing is a
good idea. While you can monitor other mailing lists for general announce-
ments, the security notifications list is a single source for FreeBSD-specific
information. To subscribe to the security notifications mailing list, see the
instructions on http://lists.freebsd.org/. The FreeBSD security team releases
advisories on that mailing list as soon as they’re available.

H acke rS, in t rude rS, a nd r e l at e d Scum

You’ll frequently hear the word hacker used to describe people who break into
computers. This word has different meanings depending on the speaker. In the
technical world, a hacker is someone who’s interested in the inner workings of
technology. Some hackers are interested in everything; others have a narrow
area of specialization. In the open source community, hacker is a title of respect.
The main FreeBSD technical list is FreeBSD-hackers@FreeBSD.org. In the popular
media, however, a hacker is someone who breaks into computer systems, end
of story.

To reduce confusion, I recommend completely avoiding the word hacker.
In this book, I call people who break into computers intruders.* Technical wiz-
ards can be called by a variety of names, but they rarely object to “Oh Great
and Powerful One.”

* Two editions later, and my editor still won’t let me print what I call them in person.

Securing Your System 171

Read advisories carefully and quickly act on those that affect you, as you
can be certain that script kiddies are searching for vulnerable machines.
FreeBSD makes applying security patches pretty easy, as Chapter 18 discusses.

User Security
Remember when I said that your own users are your greatest security risk?
Here’s where you learn to keep the little buggers in line. FreeBSD has a
variety of ways to allow users to do their work without giving them free
rein on the system. We’ll look at the most important tools here, starting
with adding users in the first place.

Creating User Accounts
FreeBSD uses the standard Unix user management programs such as
passwd(1), pw(8), and vipw(8). FreeBSD also includes a friendly interac-
tive user-adding program, adduser(8). Only root may add users, of course.
Just type adduser on the command line to enter an interactive shell.

The first time you run adduser(8), it prompts you to set appropriate
defaults for all new user settings. Use the following example session to help
you determine appropriate defaults for your system.

adduser
u Username: xistence
v Full name: Bert Reger
w Uid (Leave empty for default):

The username u is the name of the account. Users on my systems
get a username of their first initial, middle initial, and last name. You can
assign usernames by whatever scheme you dream up. Here, I let the user
pick their own username, an indulgence I always later regret. The full
name v is the user’s real name. FreeBSD then lets you choose a numerical
user ID (UID) w. FreeBSD starts numbering UIDs at 1,000; while you can
change this, all UIDs below 1,000 are reserved for system use. I recommend
just pressing enteR to take the next available UID.

u Login group [xistence]:
v Login group is xistence. Invite xistence into other groups? []: www
w Login class [default]:
x Shell (sh csh tcsh nologin) [sh]: tcsh
y Home directory [/home/xistence]:
z Home directory permissions (Leave empty for default):

The user’s default group u is important—remember, Unix permissions
are set by owner and group. The FreeBSD default of having each user in
their own group is usually the most sensible way for most setups. Any of the
big thick books on system administration offers several grouping schemes—
feel free to use whatever matches your needs. You can add this user to other
groups v in addition to the primary group at this time, if appropriate.

172 Chapter 9

A login class w specifies what level of resources the user has access to.
We’ll talk about login classes later in this section.

The shell x is the command line environment. While the system
default is /bin/sh, I prefer tcsh.1 If you’re deeply attached to another shell,
feel free to use it instead. Knowledgeable users can change their own shells.

The home directory y is where the user’s files reside on disk. The user
and that user’s primary group own this directory. You can set custom per-
missions z on the directory if you want, probably so that other users can’t
view this user’s directory.

u Use password-based authentication? [yes]:
v Use an empty password? (yes/no) [no]:
w Use a random password? (yes/no) [no]: y
x Lock out the account after creation? [no]: n

The password options give you a certain degree of flexibility. If all of
your users are comfortable with key-based SSH authentication, perhaps you
can get away without using passwords. In the meantime, the rest of us are
stuck with passwords u.

Use an empty password v if you want the user to set his or her own
password via the console. Whoever connects to that account first gets to
set the password. This makes an empty password a good idea right up
there with smoking inside a hydrogen dirigible.

A random password w, on the other hand, is a good idea for a new
account. The random password generator FreeBSD provides is good
enough for day-to-day use. Random passwords are usually hard to remem-
ber, which encourages the user to change his password as soon as possible.

When an account is locked x, nobody can use it to log in. This is gener-
ally counterproductive.

After entering all this information, adduser spits everything back at
you for review and confirmation or rejection. Once you confirm, adduser
verifies the account setup and provides you with the randomly generated
password. It then creates the user’s home directory, copies the shell configu-
ration files from /etc/skel, and asks whether you want to set up another user.

Configuring Adduser: /etc/adduser.conf
Creating new users on some Unix systems requires you to manually edit /etc/
passwd, rebuild the password database, edit /etc/group, create a home direc-
tory, set permissions on that home directory, install dotfiles, and so on. This
makes handling your local customizations routine—if you set everything by
hand, you can manage your local account setup easily. The adduser(8) pro-
gram provides a set of sensible defaults. For sites with different requirements,

1. For interactive use, that is. Never, never, never program in any C shell. Read Tom
Christiansen’s classic paper “Csh Programming Considered Harmful” for a full
explanation.

Securing Your System 173

/etc/adduser.conf lets you set those requirements as defaults while retaining
the high degree of automation. To create adduser.conf file, run adduser -C and
answer the questions.

u Uid (Leave empty for default):
v Login group []:
w Enter additional groups []: staff
x Login class [default]: staff
y Shell (sh csh tcsh nologin) [sh]: tcsh
z Home directory [/home/]: /nfs/u1/home
{ Use password-based authentication? [yes]:
| Use an empty password? (yes/no) [no]:
} Use a random password? (yes/no) [no]: yes
~ Lock out the account after creation? [no]: no

You might want to start numbering UIDs somewhere other than 1,000.
If you want higher initial UIDs, enter it in the Uid space u. Don’t start
below 1,000.

The login group v is the default user group. An empty login group
means the user account defaults to having its own unique user group (the
FreeBSD default).

You can specify any additional user groups w that new accounts belong
to by default, as well as the login class x. I set both of these to staff so that
all new users get added to that group and assigned that class.

Choose a default shell y for your users.
Your home directory location z might vary from the standalone

FreeBSD standard. In this example, I’ve specified a typical style of NFS-
mounted home directories used when many users have accounts on many
machines.

Choose the default password behavior for new users. You can specify
whether users should use passwords at all { and whether the initial pass-
word should be empty | or random }.

Finally, dictate whether new accounts should default to being locked
or not ~.

You’ll find more configuration settings in adduser.conf(5). While you
can set account characteristics here, the format of this file is considered
internal to adduser(8). The setting names can change with any FreeBSD
release. To change adduser.conf, re-run adduser -C.

Editing Users
Managing users isn’t just about creating and deleting accounts. You’ll need
to change those accounts from time to time. While FreeBSD includes several
tools for editing accounts, the simplest are passwd(1), chpass(1), vipw(8),
and pw(8). These work on the tightly interrelated files /etc/master.passwd,
/etc/passwd, /etc/spwd.db, and /etc/pwd.db. We’ll start with the files and then
review the common tools for editing those files.

The files /etc/master.passwd, /etc/passwd, /etc/spwd.db, and /etc/pwd.db hold
user account information. Each file has a slightly different format and pur-
pose. The file /etc/master.passwd is the authoritative source of user account

174 Chapter 9

information and includes user passwords in encrypted form. Normal users
don’t have permission to view the contents of /etc/master.passwd. Regular users
need access to basic account information, however; how else can unprivi-
leged system programs identify users? The file /etc/passwd lists user accounts
with all privileged information (such as the encrypted password) removed.
Anyone can view the contents of /etc/passwd to get basic account information.

Many programs need account information, and parsing a text file is
notoriously slow. In this day of laptop supercomputers, the word slow isn’t
very meaningful, but this was a very real problem back when disco freely
roamed the earth. For that reason, BSD-derived systems build a database
file out of /etc/master.passwd and /etc/passwd. (Other Unix-like systems have
similar functionality in different files.) The file /etc/spwd.db is taken directly
from /etc/master.passwd and contains sensitive user information, but it can
be read only by root. The file /etc/pwd.db can be read by anyone, but it con-
tains the limited subset of information contained in /etc/passwd.

Any time any standard user management program changes the account
information in /etc/master.passwd, FreeBSD runs pwd_mkdb(8) to update
the other three files. For example, the three programs passwd(1), chpass(1),
and vipw(8) all allow you to make changes to the master password file, and
all three programs trigger pwd_mkdb to update the related files.

Changing a Password

Use passwd(1) to change passwords. A user can change his own password,
and root can change anyone’s password. To change your own password, just
enter passwd at the command prompt.

passwd
Changing local password for mwlucas
Old Password:
New Password:
Retype New Password:

When changing your own password, passwd(1) first asks for your
current password. This is to ensure that nobody else can change your
password without your knowledge. It’s always good to log out when you
walk away from your terminal, but when you don’t, this simple check in
passwd(1) prevents practical jokers from really annoying you. Then enter
your new password twice, and it’s done. When you’re the superuser and
want to change another user’s password, just give the username as an
argument to passwd.

passwd mwlucas
Changing local password for mwlucas
New Password:
Retype New Password:

Note that root doesn’t need to know the user’s old password; the root
user can change any user account on the system in any manner desired.

uSe r m a n age me n t a nd $e di tor

User management tools such as chpass and vipw (as well as many other sys-
tem management tools) bring up a text editor window where you make your
changes. These tools generally check the environment variable $EDITOR to see
which text editor you prefer. $EDITOR lets you default to vi, Emacs, or any other
editor installed. I recommend Vigor, a vi(1) clone with an animated-paperclip
help system that might make users of older Microsoft Office versions feel more
comfortable.

Securing Your System 175

Changing Accounts with chpass(1)

The account has more information associated with it than just the pass-
word. The chpass(1) utility lets users edit everything they can reach in
their account. For example, if I run chpass(1) as a regular user, I get an
editor with the following text:

#Changing user information for mwlucas.
Shell: /bin/tcsh
Full Name: Michael W Lucas
Office Location:
Office Phone:
Home Phone:
Other information:

I’m allowed to edit six informational fields in my account. The first,
my shell, can be set to any shell listed in /etc/shells (see “Shells and /etc/
shells” on page 178). I can change my full name; perhaps I want my full
middle name listed, or maybe I wish to be known to other system users
as Mr. Scabies. I can update my office location and office phone so my
coworkers can find me easily. This is another feature that was very useful
on the university campuses where BSD grew up and where system users
rarely had an idea of anyone’s physical location. Now that we have exten-
sive online directories and many more computers, it’s less useful. I gener-
ally set my home phone number to 911 (999 in the UK), and I put a little
bit of personal information in the Other space.

Also note what I can’t change as a regular user. The sysadmin sets my
home directory, and I may not change it even if the system has a new hard
drive with lots of empty space for my MP3 collection. My UID and GID
numbers, similarly, are assigned by the system or the sysadmin.

On the other hand, if I run chpass xistence, its heightened privileges
give me a very different view.

#Changing user information for xistence.
Login: xistence

u Password: 6D9b4FFD0kHK2sPSP$bXUFTQqV/QposXw2KTlswzpvoz4HBo8...
Uid [#]: 1001

information and includes user passwords in encrypted form. Normal users
don’t have permission to view the contents of /etc/master.passwd. Regular users
need access to basic account information, however; how else can unprivi-
leged system programs identify users? The file /etc/passwd lists user accounts
with all privileged information (such as the encrypted password) removed.
Anyone can view the contents of /etc/passwd to get basic account information.

Many programs need account information, and parsing a text file is
notoriously slow. In this day of laptop supercomputers, the word slow isn’t
very meaningful, but this was a very real problem back when disco freely
roamed the earth. For that reason, BSD-derived systems build a database
file out of /etc/master.passwd and /etc/passwd. (Other Unix-like systems have
similar functionality in different files.) The file /etc/spwd.db is taken directly
from /etc/master.passwd and contains sensitive user information, but it can
be read only by root. The file /etc/pwd.db can be read by anyone, but it con-
tains the limited subset of information contained in /etc/passwd.

Any time any standard user management program changes the account
information in /etc/master.passwd, FreeBSD runs pwd_mkdb(8) to update
the other three files. For example, the three programs passwd(1), chpass(1),
and vipw(8) all allow you to make changes to the master password file, and
all three programs trigger pwd_mkdb to update the related files.

Changing a Password

Use passwd(1) to change passwords. A user can change his own password,
and root can change anyone’s password. To change your own password, just
enter passwd at the command prompt.

passwd
Changing local password for mwlucas
Old Password:
New Password:
Retype New Password:

When changing your own password, passwd(1) first asks for your
current password. This is to ensure that nobody else can change your
password without your knowledge. It’s always good to log out when you
walk away from your terminal, but when you don’t, this simple check in
passwd(1) prevents practical jokers from really annoying you. Then enter
your new password twice, and it’s done. When you’re the superuser and
want to change another user’s password, just give the username as an
argument to passwd.

passwd mwlucas
Changing local password for mwlucas
New Password:
Retype New Password:

Note that root doesn’t need to know the user’s old password; the root
user can change any user account on the system in any manner desired.

uSe r m a n age me n t a nd $e di tor

User management tools such as chpass and vipw (as well as many other sys-
tem management tools) bring up a text editor window where you make your
changes. These tools generally check the environment variable $EDITOR to see
which text editor you prefer. $EDITOR lets you default to vi, Emacs, or any other
editor installed. I recommend Vigor, a vi(1) clone with an animated-paperclip
help system that might make users of older Microsoft Office versions feel more
comfortable.

176 Chapter 9

Gid [# or name]: 1001
Change [month day year]:
Expire [month day year]:
Class:
Home directory: /home/xistence
Shell: /bin/tcsh
Full Name: Bert Regeer
Office Location:
Office Phone:
Home Phone:
Other information:

As root, you can do anything you like to the poor user. Changing his
login to megaloser is only the start of the havoc you can wreak. You even get
access to the user’s hashed password u. Don’t alter this field, unless you’re
comfortable computing password hashes. Use passwd(1) to more safely and
reliably change the user’s password. You can also change the user’s home
directory, although chpass(1) doesn’t move the user’s files; you must copy
them by hand.

You can also set a date for password changes and account expiration.
Password expiration is useful if you’ve just changed a user’s password and
you want him to change it upon his first login. Account expiration is use-
ful when someone asks for an account but insists it’s needed only for a lim-
ited time. You can forget to go back to delete that account, but FreeBSD
never forgets. Both of these fields take a date in the form month day year,
but you need only the first three letters of the month. For example, to
make a user’s password expire on June 8, 2028, I would enter Jun 8 2028
in the Change space. Once the user changes his password, the password
expiration field is blanked out again, but only the system administrator
can extend an account expiration date.

The Big Hammer: vipw(8)

While chpass(1) is fine for editing individual accounts, what happens when
you must edit many accounts? Suppose your system has hundreds of users
and a brand new hard disk for the home partition. Do you really want to
run chpass(1) hundreds of times? That’s where vipw(8) comes in.

Directly edit /etc/master.passwd with vipw(8). When you finish your edits,
vipw(8) checks the password file’s syntax to be sure you haven’t ruined any-
thing. Then, it saves the new password file and runs pwd_mkdb(8). Although
vipw(8) can protect your password file from many basic mistakes, if you’re
clever, you can still muck things up. You must understand the format of the
password file to use vipw(8) properly.

If the information in /etc/master.passwd conflicts with information in
other files, /etc/master.passwd wins. For example, the primary group that
appears in /etc/master.passwd is correct, even if /etc/group doesn’t show the
user as a member. This “master.passwd is always correct” logic is deeply
ingrained throughout user management.

Securing Your System 177

Each line in /etc/master.passwd is a single account record, containing
10 colon-separated fields. These fields are the following:

Username
This field is either an account name created by the sysadmin or a user-
name created at install time to provide some system service. FreeBSD
includes users for system administration, such as root, daemon, games,
and so on. Each of these users owns a part of the base system. FreeBSD
also provides accounts for common services, such as the www user
reserved for use by web servers. Add-on software might add its own sys-
tem accounts as well.

Encrypted Password
The second field is the encrypted password. System users don’t have
a password, so you can’t log in as one of them. User accounts have a
string of random-looking characters here.

User ID
The third field is the user ID number, or UID. Every user has a unique UID.

Group ID
Similarly, the fourth field is the group ID number, or GID. This is the
user’s primary group. Usually this is identical to the UID, and the
group has the same name as the username.

User’s Class
The next field is the user’s class as defined in /etc/login.conf (see
“Restricting System Usage” on page 188).

Password Expiration
This field is the same as the password expiration date set via chpass(1),
but here the time gets stored as seconds from the epoch. Use date -j
and the +%s output format to generate epochal seconds from a real
date. To convert midnight, June 1, 2018, to epochal seconds, run date
-j 201806010000 '+%s'.

Account Expiration
This field enables you to make the account shut itself off on a certain
day. Just set the account expiration date as you would for password
expiration.

Personal Data
This field is also known as the gecos field for obscure historical reasons.
It contains the user’s real name, office number, work phone number,
and home phone number, all separated by commas. Do not use colons
in this field; /etc/master.passwd reserves colons as a field delimiter.

178 Chapter 9

User’s Home Directory
The ninth field is the user’s home directory. While this defaults to
/home/<username>, you can move this anywhere appropriate. You’ll
also need to move the actual home directory and its files when you
change this field. Users with a nonexistent home directory can’t log in
by default, although the requirehome setting in login.conf can change this.

User’s Shell
The final field is the user’s shell. If this field is empty, the system assigns
the user the boring old /bin/sh.

While chpass(1) lets you muck up individual user accounts, vipw(8)
unleashes you on the entire userbase. Be careful with it!

Removing a User

The rmuser(8) program deletes user accounts. You’ll be prompted for the
username you want to delete and asked whether you want to remove that
user’s home directory. That’s really all you have to do; destruction is much
easier than creation, after all.

Scripting with pw(8)

The pw(8) command provides a powerful command line interface to user
accounts. While useradd(8) walks you through setting up an account in a
friendly manner, pw(8) lets you specify everything on a single command
line. I find pw(8) cumbersome for day-to-day use, but if you manage many
user accounts, it’s invaluable.

One thing I do use pw(8) for is locking accounts. While a locked account
is active, nobody can log in to it. I’ve used this to great effect when a client
was behind on a bill; users call quite quickly when they can’t log in, and yet
their websites continue to come up and their email continues to accumulate.

pw lock xistence

When Bert apologizes, I’ll unlock his account.

pw unlock xistence

If you need scripts to manage your users, definitely read the pw(8)
man page.

Shells and /etc/shells
The shell is the program that provides the user’s command prompt. Different
shells behave differently and offer different shortcuts and features. Many
people are very attached to particular shells and complain bitterly if their
shell isn’t available on a system. The packages collection contains many
shells.

Securing Your System 179

The file /etc/shells contains a list of all legitimate user shells. When
you install a shell from a port or a package, it adds an appropriate entry
in /etc/shells. If you compile your own shell from source, without using a
FreeBSD port, you must list the shell by its complete path in /etc/shells.

The FTP daemon won’t allow a user to log in via FTP if his shell isn’t
listed in /etc/shells. If you use /sbin/nologin as an FTP-only user shell, you
must add it to this file, although a better way to handle such users is with
login classes, as discussed later in this chapter.

root, Groups, and Management
Unix security has been considered somewhat coarse because one superuser,
root, can do anything. Other users are lowly peons who endure the shackles
root places upon them. The problem is, root doesn’t have a wide variety of
shackles on hand and can’t individualize them very well. While there’s some
truth to this, a decent administrator can combine groups and permissions
to handle almost any problem securely.

The root Password
Certain actions require absolute control of the system, including manipulat-
ing core system files such as the kernel, device drivers, and authentication
systems. Such activities are designed to be performed by root.

To use the root password, you can either log in as root at a console
login prompt or, if you’re a member of the group wheel, log in as yourself
and use the switch user command su(1). (We’ll discuss groups later in this
section.) I recommend su; it logs who uses it and can be used on a remote
system. The command is very simple to use:

su
Password:
#

Next, check your current user ID with the id(1) command:

id
uid=0(root) gid=0(wheel) groups=0(wheel), 5(operator)
#

You now own the system—and I do mean own it. Consider every key-
stroke; carelessness can return your hard drive to the primordial state of
unformatted empty wasteland. And share the root password sparingly, if at
all, because anyone who has the root password can inflict unlimited damage
on the system.

Remember, only the users in the group wheel can use the root pass-
word to become root through su(1). Anyone can use the root password at
the system console, which is why physical protection of your system is vital.
If you give the root password to a regular user who doesn’t have physical

180 Chapter 9

access to the console, they can type su and enter the root password as many
times as they want, and it still won’t work.

This naturally leads to the question, “Who needs root access?” Much of
the configuration discussed in this book requires use of the root password.
Once you have the system running properly, you can greatly decrease or
discontinue use of the root password. For those remaining tasks that abso-
lutely require root privileges, I recommend the sudo package, and probably
my book Sudo Mastery (Tilted Windmill Press, 2013). One of the simplest
ways to reduce the need for root access is through the proper use of groups.

Groups of Users
Unix-like operating systems classify users into groups, each group consisting
of people who perform similar administrative functions. A sysadmin can
define a group called webmasters, add the accounts of the people editing
web pages to that group, and set the privileges on the web-related files so
that the members of that group can edit those files. She can also create a
group called email, add the email administrators to that group, and set the
permissions of mail-related files accordingly. Using groups in this manner is
a powerful and oft-neglected tool for system management.

Any user can identify the groups she belongs to with id(1). The preced-
ing example showed that the user root is in the groups wheel and operator.
Root is a special user, however, and can do anything she pleases. Here’s my
account, which is a little more realistic for an average user:

id
uid=1001(mwlucas) gid=1001(mwlucas) groups=1001(mwlucas),0(wheel),68(dialer),1
0001(webmaster)

My UID is 1001, and my username is mwlucas. My GID, primary group
ID, is 1001, and my primary group is named mwlucas as well. This is all pretty
standard for the first user on a system, and even in later users, the only thing
that changes is the numbers assigned to the account and primary group.
More interesting is what other groups I’m assigned to: in addition to my pri-
mary group, I’m in the groups wheel, dialer, and webmaster. Wheel members
may use the root password to become root, dialer members may use tip(1)
without becoming root, and webmaster members can edit the web files on the
local system. Each of these groups has special privileges on my system, and as
a member of those groups, I inherit those privileges.

Group information is defined in /etc/group.

/etc/group

The file /etc/group contains all group information except for the user’s pri-
mary group (which is defined with the user account in /etc/master.passwd).
Each line in /etc/group contains four colon-delimited fields: the group
name, the group password, the group ID number, and a list of members.

Securing Your System 181

Here’s a sample entry:

wheel:*:0:root,mwlucas,xistence

The group name is a human-friendly name for the group. This group
is named wheel. Group names are arbitrary; you can call a group of users
lackeys if you wish. Choose group names that give you an idea of what the
groups are for; while you might remember that your lackeys may edit the
company web page, will your coworkers understand that?

The second field, the group password, was a great idea that turned out
to be a security nightmare. Modern Unix-like systems don’t do anything with
the group password, but the field remains because old programs expect to
find something in this space. The asterisk is a placeholder to placate such
software.

The third field gives the group’s unique numeric group ID (GID).
Many programs use the GID rather than name to identify a group. The
wheel group has a GID of 0, and the maximum GID is 65535.

Last is a comma-delimited list of all users in the group. The users root,
mwlucas, and xistence are members of the group wheel.

Changing Group Memberships

If you want to add a user to a group, add his username to the end of the
line for that group. For example, the wheel group is the list of users that
may use the root password. Here, I add rwatson to the wheel group:

wheel:*:0:root,mwlucas,xistence,rwatson

Mind you, the odds of me convincing rwatson (leading security
researcher and ex–FreeBSD Foundation President) to assume sysadmin
duties on any of my systems range from negligible to nonexistent, but it’s
worth a try.

Creating Groups

To create a new group, you need only a name for the group and a group ID
number. Technically, you don’t even need a member for the group; some
programs run as members of a group, and FreeBSD uses the group permis-
sions to control those programs just as the users are controlled.

Traditionally, GIDs are assigned the next number up the list. GID is an
arbitrary number between 0 and 65535. Generally speaking, GIDs below
1000 are reserved for operating system usage. Programs that need a dedi-
cated group ID usually use one in this range. User accounts start numbering
their GIDs at 1001 and go up. Some special groups might start numbering at
65535 and go down.

182 Chapter 9

Using Groups to Avoid Root
In addition to being a security concern, the root password distribution
policy can cause dissension in any organization. Many sysadmins refuse
to share the root password with people who’re responsible for maintain-
ing part of the system but don’t offer an alternative and thereby prevent
people from doing their job. Other sysadmins hand out root to dang near
anyone who wants it and then complain when the system becomes unstable.
Both attitudes are untenable in the long run. Personally, I don’t want root
on your system. While having root privileges can be convenient, a lack of
responsibility when the system breaks is more convenient.

One common situation is where a junior sysadmin is responsible for
a particular portion of the system. I’ve had many DNS administrators work
under me;2 these people don’t ever install software, recompile the kernel,
or perform other sysadmin tasks. They only answer emails, update zone
files, and reload the named daemon. New sysadmins often believe they
need root access to do this sort of work. Nope. You can use groups.

Establishing your own groups, consisting of people who perform similar
administrative functions, lets you avoid distributing the root password and
still allow people to do their work. In this section, we’ll implement group-level
access control over nameserver files. The same principles apply to any files
you choose to protect. Mail and web configuration files are other popular
choices for group-based management.

System Accounts

FreeBSD reserves some user account names for integrated programs.
We discuss these unprivileged accounts in Chapter 19. For example, the
nameserver runs under the user account bind and the group bind. If an
intruder compromises the nameserver, she can access the system only with
the privileges of the user bind.

Don’t have users log in as these users. They’re not set up as interac-
tive accounts by design. What’s more, do not allow the group of the system
account user to own the files created for that function. Create a separate
user and group to own program files. That way, our hypothetical intruder
can’t even edit the files used by the DNS server, further minimizing poten-
tial damage. If the program regularly updates the files (e.g., a database’s
backend storage), you must give the program access rights, but chances are
that a human being doesn’t ever need to edit that file. Similarly, there’s no
reason a database should be able to edit its own configuration file.

Administrative Group Creation

The simplest way to create a group that owns files is to employ adduser(8)
to make a user that owns them and then to utilize that user’s primary group
as the group for the files. Because we already have a user called bind, we’ll

2. Some even survived the experience.

Securing Your System 183

create an administrative user dns. The username isn’t important, but you
should choose a name that everyone will recognize.

Give your administrative user a shell of nologin, which sets a shell of
/sbin/nologin. This prevents anyone from actually logging in as the adminis-
trative user.

If you want, you could specify a particular UID and GID for these sorts
of users. I’ve been known to choose UID and GID numbers that resemble
those used by their related service accounts. For example, the user bind
has a UID and GID of 53. I could give the user dns a UID of 10053 to make
it easily recognizable. At other times, I start numbering my administrative
groups at 65535 and work my way down. It doesn’t matter as long as I’m
completely consistent within an organization.

Do not add this administrative user to any other groups. Under no
circumstances add this user to a privileged group, such as wheel!

Every user needs a home directory. For an administrative user, a home
directory of /nonexistent works well. This user’s files are elsewhere in the
system, after all.

Lastly, let adduser(8) disable the account. While the shell prevents log-
ins, an extra layer of defense won’t hurt.

Now that you have an administrative user and a group, you can assign
ownership of files to that user. A user and a group own every file. You can
see existing file ownership and permissions with ls -l. (If you’ve forgotten
how Unix permissions work, read ls(1) and chmod(1).) Many sysadmins
pay close attention to file owners, somewhat less attention to worldwide
permissions, and only glance at the group permissions.

ls -l
total 3166
-rw-r----- 1 mwlucas mwlucas 79552 Nov 11 17:58 rndc.key
-rw-rw-r-- 1 mwlucas mwlucas 3131606 Nov 11 17:58 mwl.io.db

Here, I’ve created two files. The first file, rndc.key, can be read and writ-
ten by the user mwlucas. It can be read by anyone in the group mwlucas, but
no one else can do anything with it. The file mwl.io.db can be read or written
by the user mwlucas or anyone in the group mwlucas, but others can only read
the file. If you’re in the group mwlucas, you can edit the file mwl.io.db without
becoming root.

Change a file’s owner and group with chown(1). You must know the
name of the user and group whose ownership you want to change. In this
case, we want to change both files to be owned by the user dns and the
group dns.

chown dns:dns rndc.key
chown dns:dns mwl.io.db
ls -l
total 3166
-rw-r----- 1 dns dns 79552 Nov 11 17:58 rndc.key
-rw-rw-r-- 1 dns dns 3131606 Nov 11 17:58 mwl.io.db

184 Chapter 9

These files are now owned by the user dns and the group dns. Anyone
who is in the group dns can edit mwl.io.db without using the root password.
Finally, this file can be read by the user bind, who runs the nameserver.
Add your DNS administrators to the dns group in /etc/group, and abruptly
they can do their jobs.

The DNS administrators might think they need the root password for
restarting the nameserver program itself. However, this is easily managed
with rndc(8). Other tasks can be managed with cron jobs or with the add-
on program sudo(8).

If you don’t want an administrative user but only a group, use vigr(8) to
edit /etc/group.

Interesting Default Groups

FreeBSD ships with several default groups. Most are used by the system
and aren’t of huge concern to a sysadmin—you should know that they’re
there, but that’s different than working with them on a day-to-day basis. In
Table 9-1, I present for your amusement and edification the most useful,
interesting, and curious of the default groups. Adding your own groups
simplifies system administration, but the groups listed here are available
on every FreeBSD system.

Table 9-1: FreeBSD System Groups

Group name Purpose

audit Users who can access audit(8) information

authpf Users who can authenticate to the PF packet filter

bin Group owner of general system programs

bind Group for the BIND DNS server software

daemon Used by various system services, such as the printing system

_dhcp DHCP client operations

dialer Users who can access serial ports; useful for modems and tip(1)

games Owner of game files

guest System guests (almost never used)

hast Files used by hastd(8)

kmem Programs that can access kernel memory, such as fstat(1), netstat(1),
and so on

mail Owner of the mail system

mailnull Default group for sendmail(8) or other mail server

man Owner of uncompressed man pages

network Owner of network programs like ppp(8)

news Owner of the Usenet News software (probably not installed)

nobody Primary group for unprivileged user nobody, intended for use by NFS

nogroup Group with no privileges, intended for use by NFS

Securing Your System 185

Group name Purpose

operator Users that can access drives, generally for backup purposes

_pflogd Group for PF logging

proxy Group for FTP proxy in PF packet filter

smmsp Group for Sendmail submissions

sshd Owner of the SSH server (see Chapter 20)

staff System administrators (from BSD’s college roots, when users were
staff, faculty, or students)

sys Another system group

tty Programs that can write to terminals, like wall(1)

unbound Files and programs related to the unbound(8) DNS server

uucp Group for programs related to the Unix-to-Unix Copy Protocol

video Group that can access DRM and DRI video devices

wheel Users who may use the root password

www Web server programs (not files)

_ypldap Files needed by the LDAP-backed YP server ypldap(8)

I know very few people using either internet news or UUCP, and you
might think you could reuse those groups for other purposes. You’re really
better off creating a new group than risking confusion later, however. Group
ID numbers are not in short supply.

Tweaking User Security
You prevent any single user from utilizing too much memory, processor
time, or other system resources by setting limits on the account. Now that
even small computers have very fast processors and lots of memory, these
limits aren’t as important, but it’s still very useful in systems with dozens or
hundreds of users. You can also control where users may log in from.

Restricting Login Ability
FreeBSD checks /etc/login.access every time a user tries to log in. If login.access
contains rules that forbid logins from that user, the login attempt fails imme-
diately. This file has no rules by default, meaning that anyone who provides a
valid username and password has no restrictions.

The /etc/login.access file has three colon-delimited fields. The first either
grants (+) or denies (-) the right to log in; the second is a list of users or
groups; and the third is a list of connection sources. You can use an ALL or
ALL EXCEPT syntax, which allows you to make simple but expressive rules.
Rules are checked on a first-fit basis. When login(1) finds a rule where
the user and the connection source match, the connection is immediately
accepted or rejected, making rule order vital. The default is to allow logins.

186 Chapter 9

For example, to allow only members of the wheel group to log in from
the system console, you might try this rule:

+:wheel:console

The problem with this rule, however, is that it doesn’t actually deny
users login privileges. Since the default is to accept logins, and since all this
rule does is explicitly grant login privileges to the users in the wheel group,
nothing changes. Bert certainly isn’t in the wheel group, but if he tries to
log in, no rule denies him access.

You could try two rules like this:

+:wheel: console
-:ALL:console

This set of rules would achieve the desired effect but is longer than you
need. Use ALL EXCEPT instead.

-:ALL EXCEPT wheel: console

This rule rejects unwanted logins most quickly and runs less risk of
administrator error. As a rule, it’s best to build login.access lists by rejecting
logins, rather than permitting them. FreeBSD immediately rejects non-
wheel users at the console upon hitting this rule.

Change the default from “allow access” to “deny access” by adding a
final rule.

-:ALL:ALL

Any login request that doesn’t match an earlier permit rule gets denied.
The last field in login.access, the connection source, can use hostnames,

host addresses, network numbers, domain names, or the special values LOCAL
and ALL. Let’s see how they work.

Hostnames

Hostnames rely upon DNS or the hosts file. If you suspect that your name-
server might suffer an intrusion or attack, avoid hostnames; intruders can
give a hostname any IP address that they like and fool your system into
accepting the connection, and a nameserver failure could lock you out
completely. Still, it’s possible to use a rule like this:

-:ALL EXCEPT wheel:fileserver.mycompany.com

Users in the wheel group can log in from the fileserver, but nobody
else can.

Securing Your System 187

Host Addresses and Networks

Host addresses work like hostnames, but they’re immune to DNS failures or
spoofing.

-:ALL EXCEPT wheel:203.0.113.5

A network number is a truncated IP address, like this:

-:ALL EXCEPT wheel:203.0.113.

This network number allows anyone in the wheel group to log in from
a machine whose IP address begins with 203.0.113 and denies everyone else
access from those IP addresses.

LOCAL

The most complicated location is LOCAL, which matches any hostname with-
out a dot in it (generally, only hosts in the local domain). For example,
www.mwl.io thinks that any machine in the domain mwl.io matches LOCAL.
DNS spoofing can easily evade this filter. Although my desktop claims
that it has a hostname of storm.mwl.io, its IP address has reverse DNS that
claims it’s somewhere in my cable modem provider’s network. The host
www.mwl.io thinks that my desktop isn’t in the same domain and hence
isn’t local. As such, I can’t use the LOCAL verification method.

Similarly, anyone who owns a block of IP addresses can give their
addresses any desired reverse DNS. The LOCAL restriction is best avoided.

ALL and ALL EXCEPT

ALL matches everything, and ALL EXCEPT matches everything but what you
specify. These are the most useful connection sources, in my opinion. For
example, if you had a highly secure machine only accessible from a couple
of management workstations, you could have a rule like this:

-:ALL EXCEPT wheel:ALL EXCEPT 203.0.113.128 203.0.113.44

Tie It All Together

The point of these rules is to build a login policy that matches your real-
world policies. If you provide generic services but only allow your system
administrators to log on remotely, a one-line login.access prevents any other
users from logging in:

-:ALL EXCEPT wheel:ALL

This is great if you can live with a restriction this tight. On the other
hand, I’ve worked at several internet service providers that used FreeBSD

188 Chapter 9

to provide client services. Lowly customers weren’t allowed to log onto the
servers unless they had a shell account. System administrators could log in
remotely, as could the DNS and web teams (members of the dns and web-
masters groups). Only sysadmins could log onto the console, however.

-:ALL EXCEPT wheel:console
-:ALL EXCEPT wheel dns webmasters:ALL

Set this up in login.access once, and let group membership control all of
your remote logins forever after.

Restricting System Usage
You can provide more specific controls with login classes. Login classes,
managed through /etc/login.conf, define the resources and information pro-
vided for users. Each user is assigned a class, and each class has limits on
the system resources available. When you change the limits on a class, all
users get the new limits when they next log in. Set a user’s class when creat-
ing the user account, or change it later with chpass(1).

Class Definitions

The default login.conf starts with the default class, the class used by accounts
without any other class. This class gives the user basically unlimited access
to system resources and is suitable for application servers with a limited
number of users. If this meets your needs, don’t adjust the file at all.

Each class definition consists of a series of variable assignments that
define the user’s resource limits, accounting, and environment. Each vari-
able assignment in the class definition begins and ends with a colon. The
backslash character is a continuation character to indicate that the class
continues on the next line, which makes the file more readable. Here’s a
sample of the beginning of one class:

udefault:\
 v:passwd_format=wsha512:\
 :copyright=/etc/COPYRIGHT:\
 :welcome=/etc/motd:\
--snip--

This class is called default u. I’ve shown three of the dozens of variables
in this class. The variable passwd_format v, for example, is set to sha512 w.
These variable assignments and the class name describe the class, and you
can change the user’s experience on the system by assigning the user to
another class.

Some of login.conf ’s variables don’t have a value and instead change
account behavior just by being present. For example, the requirehome vari-
able takes effect just by being included in the class. If this value is present,
the user must have a valid home directory.

Securing Your System 189

 :requirehome:\

After editing login.conf, you must update the login database to make the
changes take effect.

cap_mkdb /etc/login.conf

This rebuilds the database file /etc/login.conf.db that’s used for fast look-
ups, much like /etc/spwd.db.

The default /etc/login.conf includes several example classes of users.
If you want an idea of what sort of restrictions to put on users for various
situations, check those examples. The following section offers ideas about
what can be set in a login class. For a complete listing of supported settings
in your version of FreeBSD, read man login.conf(5).

Resource Limits

Resource limits allow you to control how much of the system any one user
can monopolize at any one time. If you have several hundred users logged
in to one machine and one of those users decides to compile LibreOffice,
that person will consume far more than his fair share of processor time,
memory, and I/O. By limiting the resources one user can monopolize, you
can make the system more responsive for all users.

Table 9-2 defines the resource-limiting login.conf variables.

Table 9-2: Some login.conf Variables for Limiting Resource Use

Variable Description

cputime The maximum CPU time any one process may use
filesize The maximum size of any one file
datasize The maximum memory size of data that can be consumed by

one process
stacksize The maximum amount of stack memory usable by a process
coredumpsize The maximum size of a core dump
memoryuse The maximum amount of memory a process can lock
maxproc The maximum number of processes the user can have running
openfiles The maximum number of open files per process
Sbsize The maximum socket buffer size a user’s application can set

Note that resource limits are frequently set per process. If you permit
each process 200MB of RAM and allow each user 40 processes, you’ve just
allowed each user about 8GB of memory. Perhaps your system has a lot of
memory, but does it really have that much?

190 Chapter 9

Current and Maximum Resource Limits

In addition to the limits listed previously, you can specify current and maxi-
mum resource limits. Current limits are advisory, and the user can override
them at will. This works well on a cooperative system, where multiple users
willingly share resources but you want to notify those users who exceed
the standard resource allocation. Many users want to be good citizens, and
readily cooperate when they’re told they’re pushing their limits.3 Users can-
not exceed maximum limits.

If you don’t specify a limit as current or maximum, FreeBSD treats it as
a maximum limit.

To specify a current limit, add -cur to the variable name. To make a
maximum limit, add -max. For example, to set a current and a maximum
limit on the number of processes the user can have, use this input:

 --snip--
 :maxproc-cur: 30:\
 :maxproc-max: 60:\
 --snip--

One counterpart to resource limits is resource accounting. These days,
accounting isn’t as important as it was when today’s inexpensive computers
would cost millions of dollars, so we won’t discuss it in this book. It’s more
important to restrict a single user from consuming your system than to
bill for every CPU cycle someone uses. You should know that the capability
exists, however.

If you need more complicated resource restrictions, investigate rctl(8).

Class Environment

You can also define environment settings in /etc/login.conf. This can work
better than setting them in the default .cshrc or .profile because login.conf
settings affect all user accounts immediately upon their next login. Some
shells, such as zsh(1), don’t read either of these configuration files, so using
a class environment sets the proper environment variables for those users.

All of the environment fields recognize two special characters. A tilde (~)
represents the user’s home directory, while a cash symbol ($) represents the
username. Here are a few examples from the default class that illustrate this:

 :setenv=MAIL=u/var/mail/$,BLOCKSIZE=K,FTP_PASSIVE_MODE=YES:\
 :path=/sbin /bin /usr/sbin /usr/bin /usr/games /usr/local/sbin /usr/
local/bin /usr/X11R6/bin v~/bin:\

By using the $ character, the environment variable MAIL is set to
/var/mail/<username> u. Similarly, the last directory in the PATH variable
is the bin subdirectory in the user’s home directory v.

3. Sadly, shells don’t come with tachometers.

Securing Your System 191

Table 9-3 lists some common login.conf environment settings.

Table 9-3: Common login.conf Environment Settings

Variable Description

hushlogin If present, no system information is given out during login.
ignorenologin If present, these users can log in even when /var/run/nologin

exists.
manpath A list of directories for the $MANPATH environment variable.
nologin If present, the user cannot log in.
path A list of directories for the $PATH environment variable.
priority Priority (nice) for the user’s processes (see Chapter 21).
requirehome User must have a valid home directory to log in.
setenv A comma-separated list of environment variables and their

values.
shell The full path of a shell to be executed upon login. This

overrides the shell in /etc/master.passwd. The user’s $SHELL,
however, contains the shell from the password file, resulting
in an inconsistent environment. Playing games with this is an
excellent way to annoy your users.

term The default terminal type. Just about anything that tries to set
a terminal type overrides this.

timezone The default value of the $TZ environment variable.
umask Initial umask setting; should always start with 0, see builtin(1).
welcome Path to the login welcome message, usually /etc/motd.

Remember, changes to a class affect all users in that class. If a user
needs a change from the class settings, you’ll need to change their class.

Password and Login Control

Unlike the environment settings, many of which can be set in places other
than the login class, most login and authentication options can be con-
trolled only from the login class. Here are some common authentication
options:

passwd_format

This option sets the cryptographic hash used to store passwords in /etc/
master.passwd. The default is sha512, for SHA512 hashing. Other permis-
sible options are des (DES), blf (Blowfish), md5, and sha256 (SHA256).
DES and Blowfish are most useful when you want to share password
files between different Unix-like operating systems, but are very weak.
SHA256 is for compatibility with older password files, from before
SHA512 was the default.

192 Chapter 9

mixpasswordcase

If present, FreeBSD complains if the user changes his password to an
all-lowercase word. Despite the name, all-uppercase passwords satisfy
this option.

host.allow, host.deny
These values let users in this class use rlogin and rsh. Avoid them like the
fuzzy green meat your creepy roommate tried to feed you that one time.

times.allow

This option allows you to schedule when users may log in with a
comma-delimited list of days and times. Days are given as the first two
letters of the day’s name (Su, Mo, Tu, We, Th, Fr, and Sa). Time is in
standard 24-hour format. For example, if a user can log in only on
Wednesdays between 8 am and 5 pm, you’d use this entry:

 :times.allow=We8-17:\

times.deny

This option allows you to specify a time window when the user can’t log
in. Note that this does not kick off users who are already logged in. The
format is the same as for times.allow. If times.allow and times.deny over-
lap, times.deny takes precedence.

You can’t make that overworking developer go home, but you can keep
him from opening another terminal window.

File Flags
All Unix-like operating systems have the same filesystem permissions,
assigning read, write, and execute privileges for a file to the file’s owner,
its group, and all others. FreeBSD extends the permissions scheme with
file flags, which work with permissions to enhance your system’s security.

Many flags have different effects depending on the system securelevel,
which we’ll cover in the next section. Understanding securelevels requires
an understanding of file flags, while file flags rely on securelevels. For the
moment, just nod and smile when you encounter a mention of securelevels;
all becomes clear in the next few pages.

A few file flags are useful only in specialized cases. We’ll look only at
the most commonly useful flags. See chflags(1) for the complete list.

Many flags have multiple names; while only one name appears in ls(1)
output, you can use any name at the command line. These alternate names
exist because people got tired of getting an error when they typed sappend
instead of sappnd. Here, I show the flag’s primary name first and then the
user-friendly aliases.

Securing Your System 193

sappnd, sappend
This system-level, append-only flag can be set only by root. Files with
this flag can be added to but can’t be removed or otherwise edited.
This flag is particularly useful for log files. Setting sappnd on a user’s
.history file can be interesting if the account is compromised. Since a
common intruder tactic is to remove .history or symlink it to /dev/null
so that the admin can’t see what happened, sappnd ensures that script
kiddies cannot cover their tracks in this manner. It’s almost funny to
review the record of someone trying to remove a sappnd file; you can
almost see the attacker’s frustration grow as he tries various methods.4
This flag can’t be removed when the system is running at securelevel 1
or higher.

schg

Only root can set the system-level immutable flag. Files with this flag
set can’t be changed in any way. They can’t be edited, moved, replaced,
or overwritten. Basically, the filesystem itself prevents all attempts to
alter this file. The flag can’t be removed when the system is running at
securelevel 1 or greater.

sunlnk

Only root can set the system-level undeletable flag on a file. The file
can be edited or altered, but it can’t be deleted. This isn’t as secure as
the previous two flags because if a file can be edited, it can be emptied.
It’s still useful for certain circumstances, however. I’ve used it when a
program insisted on deleting its own log files upon a crash. It’s not gen-
erally useful to set on any standard system files, however. This flag can’t
be removed when the system is running at securelevel 1 or higher.

uappnd

This user-level, append-only flag can be set only by the file owner or
root. Like the system-level append-only flag sappnd, a file with this flag
set can be added to but not otherwise edited or removed. This flag is
most useful for logs from personal programs and the like; it’s primarily
a means to let users prevent accidental removal of their own files. The
owner or root can remove this flag.

uchg

This user-level, immutable flag can be set only by the owner or root.
Like the schg flag, this immutable flag prevents anyone from changing
the file. Again, root can override this, and it can be disabled by the user
at any securelevel. This flag helps prevent mistakes, but it’s not a way to
secure your system.

4. It’s not funny enough to balance out intruders penetrating your server, of course, but it can
provide a brief moment of joy in an otherwise ghastly day.

194 Chapter 9

uunlnk

This user-level, undeletable flag can be set only by the owner or root. A
file with this flag set can’t be deleted by the owner. Root can override
that, and the user can turn this flag off at any time, making this mostly
useless.

Setting and Viewing File Flags
Set flags with chflags(1). For example, to be sure that nothing replaces a
server’s kernel, you could do this:

chflags schg /boot/kernel/kernel

You’d need to remove this flag to perform system updates.
You can recursively change the flags on an entire directory tree with

the -R flag. For example, to make all of /bin directory immutable, run this
command:

chflags -R schg /bin

And boom! Your basic system binaries can’t be changed.
To see what flags are set on a file, use ls -lo.

ls -lo log
-rw-r--r-- 1 mwlucas mwlucas sappnd 0 Nov 12 12:37 log

The sappnd entry tells us that the system append-only flag is set on this
log. For comparison, if a file has no flags set, it looks like this:

ls -lo log
-rw-r--r-- 1 mwlucas mwlucas - 0 Nov 12 12:37 log

The hyphen in place of the flag name tells us that no flag has been set.
An out-of-the-box FreeBSD install doesn’t have many files marked

with flags, but you can flag anything you want. On one system that I fully
expected to be hacked, I went berserk with chflags -R schg in various system
directories to prevent anyone from replacing system binaries with trojaned
versions. It might not stop an attacker from getting in, but imagining their
frustration improved my mood.

To remove a file flag, use chflags and a no in front of the flag name.
For example, to unset the schg flag on your kernel, enter this command:

chflags noschg /boot/kernel/kernel

That said, you must be running at securelevel –1 to unset many flags. So,
without further ado, let’s discuss securelevels and what they mean to you.

Securing Your System 195

Securelevels
Securelevels are kernel settings that change basic system behavior to disal-
low certain actions. The kernel behaves slightly differently as you raise the
securelevel. For example, at low securelevels, file flags can be removed. A
file might be flagged immutable—but you can remove the flag, edit the
file, and reflag it. When you increase the securelevel, the file flag can’t be
removed. Similar changes take place in other parts of the system. Taken as
a whole, the behavior changes that result from increased securelevels either
frustrate or stop an intruder. Enable securelevels at boot with the rc.conf
option kern_securelevel_enable="YES".

Securelevels complicate system maintenance by imposing restrictions
on your behavior. After all, many system administration tasks are also
things intruders might do to cover their tracks. For example, at certain
securelevels, you can’t format or mount new hard drives while the system
is running. On the other hand, securelevels hamper intruders even more
than they hamper you.

Securelevel Definitions
Securelevels come in 5 degrees: –1, 0, 1, 2, and 3, with –1 being the lowest and
3 the highest. Once you enable securelevels with the kern_securelevel_enable
rc.conf option, you can set the securelevel at boot with the kern_securelevel
rc.conf variable. You can raise the securelevel at any time, not just at boot, but
you can’t lower it without rebooting into single-user mode. After all, if you
could lower the securelevel at any time, so could your intruder!

The effects of each securelevel vary depending on your FreeBSD release.
To get the latest information, read security(7).

Securelevel –1

The default provides no additional kernel security whatsoever. If you’re
learning FreeBSD and are frequently changing your configuration, remain
at securelevel –1 and use the built-in file permissions and other Unix safe-
guards for security. Flags like sappnd and schg will work, but chflags(1) can
easily remove the flags.

Securelevel 0

Securelevel 0 is used only during booting and offers no special features
over securelevel –1. When the system reaches multiuser mode, however,
the securelevel is automatically raised to 1. Setting kern_securelevel=0 in /
etc/rc.conf is effectively the same as setting kern_securelevel=1. Securelevel
0 is helpful if you have startup scripts that perform actions prohibited by
securelevel 1.

196 Chapter 9

Securelevel 1

At securelevel 1, the basic secure mode, things become interesting:

•	 System-level file flags may not be turned off.

•	 You can’t load or unload kernel modules (see Chapter 6).

•	 Programs can’t write directly to system memory via either /dev/mem
or /dev/kmem.

•	 Nothing can access /dev/io.

•	 You can’t enter the kernel debugger with the debug.kdb.enter sysctl.

•	 You can’t panic the system with the debug.kdb.panic sysctl.

•	 Mounted disks can’t be written to directly. (You can write files to disk;
you just can’t address the raw disk devices.)

The most obvious effect of securelevel 1 for ordinary users is that the
BSD-specific filesystem flags can’t be altered. If a file is marked system-level
immutable, and you want to replace it, too bad.

Securelevel 2

Securelevel 2 has all the behaviors of securelevel 1, with two additions:

•	 Disks can’t be opened for writing, whether mounted or not.

•	 You can’t alter system time by more than one second.

Both of these seem irrelevant to new sysadmins, but they provide
important security protections. Although Unix provides handy tools, like
text editors to write files, it’s also possible to bypass both those tools and
the actual filesystem to access the underlying ones and zeros on the hard
drive. Poking at the hard drive lets you change any file regardless of the file
permissions. The only time this commonly happens is when you install a
new hard drive and must create a filesystem on it. Normally, only the root
user can write directly to the disk in this manner. At securelevel 2, even root
can’t use newfs(8), zpool(8), and so on.

Similarly, another old hacker trick is to change the system time, edit a
file, and change the time back. That way, when the administrator looks for
files that might be causing trouble, the tampered file appears to have been
untouched for months or years and hence doesn’t seem an obvious source
of concern.

Securelevel 3

Securelevel 3 is the network secure mode. In addition to the settings of secure-
levels 1 and 2, you can’t adjust packet filter rules. The firewall on your host
is immutable. If you have a system with packet filtering or bandwidth man-
agement enabled and those rules are well tuned and unlikely to change,
you can use securelevel 3.

Securing Your System 197

Which Securelevel Do You Need?
The securelevel appropriate for your environment depends entirely upon
your situation. If you’ve just put a FreeBSD machine into production and are
still fine-tuning it, leave the securelevel at –1. Once your system is tuned, how-
ever, you can raise the securelevel. Most production systems run just fine at
securelevel 2.

If you use one of FreeBSD’s packet filtering or firewall packages, secure-
level 3 might look tempting. Be very sure of your firewall rules before you
enable this, however! Securelevel 3 makes it impossible to change your fire-
wall without disrupting your connection. Are you 100 percent certain that
none of your customers will ever call in to say, “Here’s a check. Now give me
more servers!”?

What Won’t Securelevels and File Flags Accomplish?
Consider a case where someone compromises a CGI script on your web
server, uses that to bootstrap into a shell, and then uses the shell to boot-
strap himself into root access.

If you’ve set the securelevel accordingly, perhaps this attacker will
become frustrated because not only can’t she replace your kernel with
her specially compiled one, she also can’t even load a kernel module. No
problem—she can still replace assorted system programs with trojaned
versions so that the next time you log in, your new version of login(1)
sends your password to an anonymous web-based mailbox or to an inter-
net newsgroup.

So, to protect your key files, you run around doing chflags schg -R /bin/*,
chflags schg -R /usr/lib, and so on. Fine. If you forget one file—say, some-
thing obscure like /etc/rc.bsdextended —your intruder can edit that file to
include chflags -R noschg /. She can then reboot your system late at night
when you might not notice. How often do you sit down and exhaustively
audit your /etc/rc files?

You think that your system is safe, with every file completely protected.
But what about /usr/local/etc/rc.d, the local program startup directory? The
system boot process tries to execute any executable file in this directory
that contains a line starting with #PROVIDE: (see Chapter 17 for why). Your
intruder could therefore do a lot of damage by placing a simple shell script
there. After all, /etc/rc raises the securelevel at the end of the boot process.
What if she were to create a shell script that kills the running /etc/rc before
it could raise the securelevel and then she turned around and ran his own
/var/.hidden/rc.rootkit to finish bringing the system up?

Of course, these are only a couple of possibilities. There are others,
limited only by your intruder’s creativity. Remember that system security is
a thorny problem with no easy solution. Once intruders have a command
prompt, it’s you against them. And if they’re any good, you won’t even notice
the penetration until it’s too late. By following good computing practices and
keeping your system up to date, you can stop them from intruding in the first
place. Do not allow securelevels to make you lazy!

198 Chapter 9

Living with Securelevels
If you’ve been liberal with the schg flag, you’ll soon find that you can’t
upgrade or patch your system conveniently. The fact is, the same condi-
tions that make intruders’ lives difficult can make yours a living hell if
you don’t know how to work with them.

If you’ve frozen /etc/rc.conf with schg, you must lower the securelevel to
change the programs running on your system. Of course, the securelevel
setting is in that file, so in order to edit it, you must take control of the sys-
tem before /etc/rc runs. That means you must boot into single-user mode
(as discussed in Chapter 4), mount your filesystems, run chflags noschg on
the files in question, and continue booting. You can even entirely disable
securelevels in /etc/rc.conf and work normally while the system runs or add
commands to /etc/rc.local so they take effect before the securelevel is set.
You’ll restore service more quickly that way but lose the protections of the
file flags.

After you’ve finished maintenance, you can raise (but not lower)
the securelevel by changing the kern.securelevel sysctl to your desired
securelevel.

sysctl kern.securelevel=3

Now that you can control file changes, let’s consider controlling access
to your system from the network.

Network Targets
Intruders normally break into applications that listen to the network,
not the operating system itself. An operating system may or may not help
defend a piece of software against network attacks, but the intrusion itself
starts with the application. One way to reduce the number of attacks that
can be carried out against your server is to identify all of the programs that
are listening to the network and disable any that aren’t strictly necessary.
FreeBSD provides sockstat(1) as an easy way to identify programs that are
listening to the network.

We cover sockstat in detail in Chapter 8; running sockstat -4 shows all
open IPv4 TCP/IP ports. Every network port you have open is a potential
weakness and a potential target. Shut down unnecessary network services
and secure those you must offer.

It’s a good idea to regularly review which ports are open on your systems
because you might learn something that surprises you. You might find that
some piece of software you’ve installed has a network component that you
weren’t aware of and that it’s been quietly listening to the network.

Once you know what’s running, how do you turn off what you don’t
need? The best way to close these ports is to not start the programs that
run them. Network daemons generally start in one of two places: /etc/
rc.conf or a startup script in /etc/rc.d. Programs that are integrated with
the main FreeBSD system, such as sendmail(8), sshd(8), and rpcbind(8),

Securing Your System 199

have flags in rc.conf to enable or disable them, as do many add-on pro-
grams. See Chapter 4 for details on enabling and disabling programs at
startup.

Network probes are strange in that you really don’t know when some-
one pokes at your hosts. To see how much of this goes on, set log_in_vain to 1 in
/etc/rc.conf on one of your public servers. This tells the kernel to log all connec-
tion attempts to closed ports. When someone checks your host for a nonex-
istent telnet, Squid, or database listener, the kernel logs the attempt to /var/
log/messages. Watch that log only long enough to realize clear down to your
marrow that the whole internet really is out to get you—and then disable
log_in_vain.

Putting It All Together
Once you have only the necessary network ports open and you know which
programs are using those ports, you know which programs you must be
most concerned about securing. If the FreeBSD security team sends out
an announcement of a problem with a service you don’t run, you can safely
delay implementing a fix until your next maintenance window. If, however,
the security team announces a hole in programs you’re using, you know
you have to implement a fix as soon as possible. If they announce a serious
security problem with a piece of network software you’re using, you know
you must act quickly. Simply being able to respond intelligently and quickly
to real risks helps protect you against most intruders. Tools such as file flags
and securelevels minimize the damage successful intruders can do. Finally,
using groups to restrict your own system administrators to particular sec-
tions of the system can protect your computers from both accidental and
deliberate damage.

Let’s shift gears now and talk storage.

Wor kS tat ion v S. Se rv e r Secur i t Y

Many companies I’ve seen have tightly secured servers but pay little attention
to workstation security. A prospective intruder doesn’t care whether a system
is a server or a workstation, however. Many servers and firewalls have special
rules for the sysadmin’s workstation. An intruder will happily penetrate a work-
station and try to leverage that into server access. While server security is key,
don’t neglect work stations—especially your workstation!

10
D i s k s , P a r t i t i o n i n g ,

a n D g E o M

A sysadmin can’t overemphasize the impor-
tance of managing disks and filesystems.

(Go ahead, try to emphasize it too much.
I’ll wait.) Your disks contain your data, making

reliability and flexibility paramount to the operating
system. FreeBSD supports a variety of filesystems and has many different
ways to handle them. In this chapter, we’ll consider the most common disk
tasks every sysadmin performs.

First, let’s discuss the most important thing to remember about storage
devices.

Disks Lie
Once upon a time, a sysadmin could make decisions about a disk based
on the information it provided. You could plug in a hard drive and query
it for the number of platters, cylinders, sectors, and more. Those days are
long, long past. Yes, you can perform the same query and get an answer,
but those answers don’t reflect any reality. Today, a disk is a magic box that

202 Chapter 10

regurgitates data on request. Some of those magic boxes contain spinning
platters. Others lack moving parts. The magic boxes provide numbered sec-
tors for storing bits and bytes. The relationship between those numbers and
the contents of the box? That’s magic: inscrutable and unknowable.

In previous books, including earlier editions of this one, I’ve discussed
the importance of proper data placement on the disk, but all of that knowl-
edge is completely obsolete. If you still retain any of that knowledge, discard
it in favor of something more useful, like the complete biographies of all
the actors who appeared in any role in classic Doctor Who.

As far as disk design goes, the only thing you need to know about is
logical block addressing (LBA). Each sector on a disk is assigned a number.
Filesystems call disk sectors by number. That’s it. Anything beneath LBA
is pure guesswork on your part.

Unfortunately, disks now have a new category of lies they tell: sector size.
Up through the 1990s, disk sector sizes varied from 128 bytes to 2KB. Even

the original IBM PC could understand different sector sizes on floppy disks.
In the early 2000s, though, manufacturers settled on 512-byte sectors.

Today’s hard drives are much larger, and the files are similarly larger. In the
last few years, the 512-byte sectors have mostly been replaced with 4,096-
byte sectors, called 4K drives. This sector size makes more sense for the type
of data we store today.

The problem is, operating systems like Windows XP know that a disk
sector always has been, and always will be, 512 bytes. These operating sys-
tems won’t tolerate hard drives that reported having 4KB sectors because
everybody knows there’s no such thing. If you manufacture 4K drives, what
do you do?

The same thing you always do.
You teach the hard drive to lie.
Best of all, different 4K drives lie in different ways. If the OS asks a

drive its sector size, most drives state that they have 512-byte sectors. Drives
that claim to have both 512-byte and 4KB sectors are probably 4K drives,
struggling to tell the truth. Very few admit to having solely 4KB sectors. To
complicate matters even more, some solid state drives have sectors as large
as 8KB or 16KB, or they support multiple sector sizes.

Both of FreeBSD’s main filesystems must know the sector size of the
underlying disk and the logical block address of that sector. If you use the
wrong sector size on your disk, performance suffers. I could go into long
detailed discussions of how this happens, but to keep it simple, always align
partitions on even megabyte boundaries. You might waste a few bytes here
and there, but that’s trivial compared to the truly appalling performance
you’ll get from having a filesystem misaligned with the disk.

Device Nodes
We touched briefly on device nodes in Chapter 4, but let’s consider them in
more detail here. Device nodes are special files that represent a hardware
device or an operating system feature. They’re used as logical interfaces to

Disks, Partitioning, and GEOM 203

provide features to user programs. By using a command on a device node,
sending information to a device node, or reading data from a device node,
you’re telling the kernel to perform an action. If the device node represents
a physical device, you’re acting on that device. These actions can be very
different for different devices—writing data to disk is very different than
writing data to a sound card. While you can expose device nodes anywhere,
the standard device nodes exist in /dev.

Before you can work with a disk or disk partition, you must know its
device name. FreeBSD disk device nodes come from the names of the device
driver for that type of hardware. Device driver names, in turn, often come
from the type of device and not the device’s role or function.

Table 10-1 shows the most common disk device nodes.

Table 10-1: Storage Device Nodes and Types

Device node Man page Description

/dev/ada* ada(4) ATA-style direct access disks (SATA, IDE, etc.)

/dev/cd* cd(4) Optical media drives (CD, Blu-Ray, etc.)

/dev/da* da(4) SCSI-style direct access disks (USB storage,
SAS, etc.)

/dev/md* md(4) Memory disks

/dev/mmcsd* mmcsd(4) MMC and SD memory cards

/dev/nvd* nvd(4) NVM express drives

/dev/vtbd* virtio_blk(4) Virtio-based virtual machine disk

/dev/xbd* xen(4) Xen virtual disks

Many RAID controllers present their RAID containers as SCSI devices,
so they show up as /dev/da device nodes. Others present their disks as “SCSI
plus special vendor topping,” so they get special device node names such
as /dev/raid (ATA RAID), /dev/mfid (certain LSI MegaRAID cards), and so
on. Check the man page for your RAID controller to see the device node it
presents.

The Common Access Method
The Common Access Method (CAM) is a standardized device driver architec-
ture originally written to support the complex command set of 20th-century
SCSI-2 disks. The idea was that standardizing based on this architecture
would simplify writing device drivers. Only FreeBSD and DEC OSF/1 actu-
ally shipped with CAM, however, and each filled in the specification’s gaps
differently.

FreeBSD 9 and later consolidates management of all physical disks that
support CAM in the CAM interface. Use camcontrol(8) to gather informa-
tion from disks and issue commands to them. The camcontrol(8) command
has a variety of subcommands that let you issue instructions to hard drives.

204 Chapter 10

What Disks Do You Have?
To identify a host’s storage devices, you can trawl /var/run/dmesg.boot look-
ing for disk device nodes or see which filesystems are mounted and back-
track from there. But the easiest way to identify your storage is to have
camcontrol(8) ask the CAM system what disks it sees. Let’s look at one of
my test systems:

camcontrol devlist
<ATA WDC WD1003FBYZ-0 1V03> at scbus0 target 0 lun 0 (pass0,da0)
<ATA WDC WD1003FBYZ-0 1V03> at scbus0 target 1 lun 0 (pass1,da1)
<ATA WDC WD1003FBYZ-0 1V03> at scbus0 target 2 lun 0 (pass2,da2)
<ATA WDC WD1003FBYZ-0 1V03> at scbus0 target 3 lun 0 (pass3,da3)

This output is broken up into three fields. The first gives the name of
the device, as reported by the device itself. This is usually a vendor and the
vendor’s model number.

The second section gives SCSI connection information. These drives
aren’t actually SCSI drives—they’re SATA connections managed via CAM.
But you now know which disk devices are plugged into which port on the
SATA controller.

Finally, in parentheses, we have the SCSI device and what we probably
want, the storage device node. This host has four disks, named da0, da1,
da2, and da3.

Non-CAM Devices
Generally speaking, everything except proprietary RAID controllers and
virtual disks support CAM.

RAID controllers have usually embraced and extended the CAM pro-
tocol, for what the manufacturer thought was a good reason at the time.
A protocol written in the early 1990s wasn’t sufficient for a 2010 RAID
controller. These controllers usually have their own control programs.
The RAID containers show up in devlist and some other camcontrol(8)
subcommands.

Similarly, virtual disks don’t respond to CAM commands. There’s no
disk to command there—you’re just writing blocks to a file. You can view
the disk with camcontrol devlist, but that’s about it.

For most applications, I recommend using FreeBSD’s RAIDZ or GEOM
RAID, rather than a hardware RAID controller.

The GEOM Storage Architecture
FreeBSD has an incredibly flexible storage infrastructure system called
GEOM (short for “disk geometry”). GEOM lives between device driver nodes
and the underlying hardware, handling data exchanged between them. From
this position, GEOM can arbitrarily transform input/output requests.

DE v icE con t rol Progr a Ms

Some storage devices have special features that aren’t addressed in the
generic CAM framework. RAID controllers often have vendor-specific fea-
tures, and FreeBSD includes many small programs to individually manage
these controllers. You’ll find programs like mfiutil(8) and mptutil(8) for older
LSI controllers, mpsutil(8) for newer LSI controllers, and so on. If you have a
nonvolatile memory express (NVMe) drive, check out nvmecontrol(8).

Disks, Partitioning, and GEOM 205

GEOM is built out of kernel modules, called GEOM classes, that let
you perform specific types of transformation or management. Disks have
a GEOM class that lets the kernel put data on the disk. But if you want to
encrypt your disks, that’s a GEOM class. Software-based RAID? A GEOM
class. FreeBSD implements all storage modifications as GEOM classes.

GEOM classes are stackable. They use the output of one class as the
input for another. You want to encrypt your hard drive and then mirror it
to another hard drive? Sure! Stack an encryption module on top of your
hard drive and then stack the drive-mirroring module on top of that. You
want to mirror that drive across the network? Add that GEOM class to the
stack. This flexible modularity makes GEOM one of FreeBSD’s most power-
ful features.

GEOM Autoconfiguration
When FreeBSD finds a new storage device, either at boot or when you plug
a new drive in, the GEOM subsystem checks the device for known formats,
like a master boot record, a BSD disklabel, or other metadata. GEOM also
checks for physical identifiers, such as the disk’s serial number. This is
called tasting.

When GEOM finds identifying information, it configures the device
as that metadata dictates. If a disk’s metadata says, “I’m part of a mirror
called garbage, along with two other disks,” GEOM looks for the other disks
and assembles the mirror. If GEOM can identify a storage device by format,
label, or other information, it starts the device, fires up an instance of the
GEOM class, makes the appropriate device nodes, and performs any other
configuration it understands.

If GEOM can’t identify any other metadata on the disk, such as on an
unformatted and unpartitioned disk, GEOM creates the device node for
the storage device and leaves it alone.

An instance of a GEOM class is called a geom. The gmirror(8) class
makes disks mirror each other, but the specific pair of mirrored disks
named garbage is a geom. Each disk in that mirror is also a geom.

What Disks Do You Have?
To identify a host’s storage devices, you can trawl /var/run/dmesg.boot look-
ing for disk device nodes or see which filesystems are mounted and back-
track from there. But the easiest way to identify your storage is to have
camcontrol(8) ask the CAM system what disks it sees. Let’s look at one of
my test systems:

camcontrol devlist
<ATA WDC WD1003FBYZ-0 1V03> at scbus0 target 0 lun 0 (pass0,da0)
<ATA WDC WD1003FBYZ-0 1V03> at scbus0 target 1 lun 0 (pass1,da1)
<ATA WDC WD1003FBYZ-0 1V03> at scbus0 target 2 lun 0 (pass2,da2)
<ATA WDC WD1003FBYZ-0 1V03> at scbus0 target 3 lun 0 (pass3,da3)

This output is broken up into three fields. The first gives the name of
the device, as reported by the device itself. This is usually a vendor and the
vendor’s model number.

The second section gives SCSI connection information. These drives
aren’t actually SCSI drives—they’re SATA connections managed via CAM.
But you now know which disk devices are plugged into which port on the
SATA controller.

Finally, in parentheses, we have the SCSI device and what we probably
want, the storage device node. This host has four disks, named da0, da1,
da2, and da3.

Non-CAM Devices
Generally speaking, everything except proprietary RAID controllers and
virtual disks support CAM.

RAID controllers have usually embraced and extended the CAM pro-
tocol, for what the manufacturer thought was a good reason at the time.
A protocol written in the early 1990s wasn’t sufficient for a 2010 RAID
controller. These controllers usually have their own control programs.
The RAID containers show up in devlist and some other camcontrol(8)
subcommands.

Similarly, virtual disks don’t respond to CAM commands. There’s no
disk to command there—you’re just writing blocks to a file. You can view
the disk with camcontrol devlist, but that’s about it.

For most applications, I recommend using FreeBSD’s RAIDZ or GEOM
RAID, rather than a hardware RAID controller.

The GEOM Storage Architecture
FreeBSD has an incredibly flexible storage infrastructure system called
GEOM (short for “disk geometry”). GEOM lives between device driver nodes
and the underlying hardware, handling data exchanged between them. From
this position, GEOM can arbitrarily transform input/output requests.

DE v icE con t rol Progr a Ms

Some storage devices have special features that aren’t addressed in the
generic CAM framework. RAID controllers often have vendor-specific fea-
tures, and FreeBSD includes many small programs to individually manage
these controllers. You’ll find programs like mfiutil(8) and mptutil(8) for older
LSI controllers, mpsutil(8) for newer LSI controllers, and so on. If you have a
nonvolatile memory express (NVMe) drive, check out nvmecontrol(8).

206 Chapter 10

GEOM vs. Volume Managers
Traditional volume managers expect you to do things their way, whether
that makes sense for your environment and hardware or not. If the volume
manager says that you create an encrypted disk mirror by encrypting the
individual drives and then mirroring on top of them, that’s what you do. It
might make more sense in your environment to mirror the drives and then
encrypt them, but if that’s not what the volume manager does, too bad.
Worse, some volume managers make poor choices and then implement
fixes sideways to minimize the consequences of those decisions.

GEOM differs from volume managers in that it assumes you know what
you’re doing. It gives you flexibility to arrange your storage in the manner
that best fits your hardware and benefits your use case. GEOM classes let
you easily insert new data transformations into your storage. You can’t, say,
add an encryption layer into your commercial volume manager.

Volume managers cover the most common cases for hardware that
existed at the time they were conceived. As time passes, though, that most
common case becomes increasingly uncommon. People continue to use
volume managers long after the hardware they were designed for becomes
obsolete. GEOM lets you evolve your designs with your hardware, environ-
ment, and application.

FreeBSD includes two software suites that look much like volume man-
agers: gvinum(8) and ZFS. Vinum was the FreeBSD volume manager in
the 1990s, and while gvinum(8) reimplements it as a GEOM class, its use
is strongly discouraged. ZFS is very powerful, as we saw in Chapter 5, but it
does have the “do it our way” ethos of a volume manager.

While you can theoretically stack GEOM modules forever, you must
consider your hardware resources. Mirroring a busy disk across a network
can require a dedicated network interface and an otherwise empty cross-
connect cable. Encrypting and decrypting data eats processor time and
memory. GEOM doesn’t prevent you from thrashing your disks; it merely
gives you new and interesting opportunities for doing so.

Providers, Consumers, and Slicers
Individual geoms are either consumers, providers, or both.

A provider offers services to another geom. If you’re mirroring two hard
drives, the geoms for the hard drive provide the disk to the mirror. A pro-
vider usually has a device node, such as /dev/ada1p1.

A consumer uses the provider’s services. A disk-mirror geom consumes
the underlying disk drives. The consumer part of a geom doesn’t need a
device node.

A geom can be both a provider and a consumer—indeed, every geom
in the middle of a stack must be both. A disk-mirror geom consumes the
underlying physical storage media, but it provides a mirrored disk for the
filesystem to live on.

Disks, Partitioning, and GEOM 207

FreeBSD treats all providers and consumers identically. A physical
hard drive is just another provider, exactly like a mirror or encryption
layer or import from the network. This characteristic lets you arbitrarily
stack GEOM classes.

A GEOM class that subdivides a class is called a slicer and is usually
responsible for managing partitions. The GEOM class that handles mas-
ter boot record (MBR) partitions is a slicer, as is the GUID Partition Table
(GPT) class. We discussed both of these partitioning methods in Chapter 2,
and we’ll go deeper into both in this chapter. Slicers must make sure that
disk partitions don’t overlap and that the partitions conform to the rules of
the partitioning scheme.

GEOM Control Programs
Many GEOM classes have a control program that lets you administer the
module or interrogate the device. Some widely used classes use geom(8),
while other classes use programs like gmirror(8) or geli(8). The disk GEOM
class talks to the physical storage media and provides consumers for upper
layers. That’s a really commonly used class. Here, I interrogate a host to see
what geoms of type disk it has and print out the information the disk offers
the operating system.

$ geom disk list
u Geom name: da0

Providers:
1. Name: da0

 v Mediasize: 1000204886016 (932G)
 w Sectorsize: 512
 x Mode: r2w2e3
 y descr: ATA WDC WD1003FBYZ-0
 z lunname: ATA WDC WD1003FBYZ-010FB0 WD-WCAW36478143
 { lunid: 50014ee25e60dab5
 | ident: WD-WCAW36478143
 } rotationrate: 7200
 ~ fwsectors: 63

 fwheads: 255

This hard drive provides a disk device called da0 u. The mediasize field
gives its size in bytes and converts it to a more convenient 932GB v.

This disk claims to have a sector size of 512 bytes w. Many disks lie about
their sector size. Check the drive manufacturer’s documentation to deter-
mine the actual sector size. Drives might offer a Stripesize value of 4,096 to
indicate that they’re actually 4K drives.

A GEOM class’s mode looks an awful lot like file permissions x, but it’s
really the number of GEOM classes reading from (r2) and writing to (w2)
the device, plus the number of devices that have requested exclusive access
to the device (e3).

The descr field y offers the drive’s model number.

208 Chapter 10

The lunname field z gives the model number plus the serial number.
Yes, it’s a combination of the descr and ident fields. The hard drive really,
really wants you to believe this is its name and identifier.

The lunid { gives the logical-unit-number (LUN) identifier, which
describes how this drive attaches to this host.

The disk’s ident | is the drive’s serial number.
The rotationrate } tells us how fast this drive spins. It’s a 7,200 RPM disk.

Nonspinning disks, like SSDs, have a rotationrate of 0.
The fwsectors and fwheads fields ~ give us the drive geometry. These are

examples of the lies mentioned in the beginning of this chapter. Even SSDs
offer these values.

Some drives offer less information. Virtual disks offer almost no infor-
mation, and anything they do say, you can’t trust. (While the VM system
might say this disk offers 32,212,254,720 512-byte sectors, who knows what
the actual disk beneath the virtual disk has?)

GEOM Device Nodes and Stacks
Many sysadmin tools expect to run on a disk or disk partition. Unix-like
systems offer disks and partitions as device nodes. GEOM offers device
nodes so that these tools remain compatible.

Most active GEOM modules have their own directory in /dev. Device
nodes within that directory represent the current providers of that mod-
ule. The directory is often, but not always, named after the GEOM module
using it. For example, the gmirror(8) class uses /dev/mirror.

The directory name might be changed to avoid ambiguity or overlaps.
The glabel (GEOM label) class uses /dev/label. The /dev/gpt directory contains
the labels stored on GPT partitions, where /dev/gptid contains the numeri-
cal identifiers integral to GPT partitions.

Some classes don’t create a directory and instead piggyback on existing
devices. The gnop(8) class creates a new node right next to the node it’s
attached to but appends .nop to the end of the device name.

Hard Disks, Partitions, and Schemes
While we discussed partitioning in Chapter 9, consider partitions from a
disk drive perspective. The first possible SATA disk on our first SATA con-
troller is called /dev/ada0. Subsequent disks are /dev/ada1, /dev/ada2, and
so on. If you also have SAS disks, they’ll start their numbering over at 0.

Disks get further divided into partitions. Even average consumer-grade
systems running Microsoft operating systems ship with multiple partitions
on the hard drive. Sysadmins chop huge disk arrays into smaller, more man-
ageable units with dedicated purposes—or perhaps they go the other way
and merge multiple disks into one monster partition.

A partitioning scheme is the system for organizing partitions on a disk.
The traditional master boot record (MBR) is one partitioning scheme.
Old Apple and SPARC hardware have their own schemes. Today, the

Disks, Partitioning, and GEOM 209

scheme used by most hardware and operating systems is GUID Partition
Tables (GPT). Each scheme has its own requirements for boot blocks, hard-
ware architecture, and partitions. This book discusses the MBR and GPT
schemes, but you should be aware that other schemes exist.

Each disk partition gets its own device node, created by adding some-
thing to the end of the underlying device node name. Here, I look at the
device node for a default FreeBSD install using UFS on a virtual disk:

ls /dev/vtbd0*
/dev/vtbd0 /dev/vtbd0p1 /dev/vtbd0p2 /dev/vtbd0p3

We have a device node for the disk itself and then three others ending
in p1, p2, and p3. What are those subdivisions? The p indicates that they’re
GPT partitions. In a default install, p1 is the boot partition, p2 is the swap
space, and p3 is the main filesystem.

Each partitioning scheme has its own device node extensions. We’ll
read about those later this chapter.

The Filesystem Table: /etc/fstab
FreeBSD, like most Unix-like operating systems, uses the file system table
/etc/fstab to map on-disk partitions to filesystems and swap space. While ZFS
doesn’t use /etc/fstab, every other FreeBSD filesystem can appear therein.
Each partition in use appears on a separate line, along with mounting and
management instructions.

/dev/gpt/rootfs / ufs rw 2 1
/dev/gpt/swapfs none swap sw 0 0
proc /proc procfs rw 0 0

The first field gives the GEOM provider name. This might be a physical
disk partition such as /dev/ada0p1 or perhaps a partition of a GEOM device
node. The first two lines here offer device nodes under /dev/gpt. They’re
GPT labels, which we’ll see later this chapter. Our third entry lists the word
proc rather than a device node: it’s the procfs(5) virtual filesystem, which
we’ll examine in Chapter 13.

The second field gives the directory where the filesystem is avail-
able, called the mount point. Every partition you can read or write files on
is attached to a mount point, such as /usr, /var, and so on. A few special
partitions, such as swap space (line 2 here), have a mount point of none.
You can’t read or write usable files to the swap space because they’re not
attached to the directory tree and because the system would overwrite
those files when it swapped.

Next, we have the filesystem type. The first line shows a type of ufs,
or Unix File System. The second line is defined as swap space, while the
third is type procfs. Other types include cd9660 (CD disks or images), nfs

210 Chapter 10

(Network File System mounts), and ext4fs (Linux filesystems). The filesys-
tem table tells FreeBSD how to mount this partition. Chapter 13 discusses
alternate filesystems.

The fourth field shows the mount(8) options used for this particular
partition. Each filesystem has its own mount options, but here are a few that
multiple filesystems use and that frequently appear in /etc/fstab:

ro The filesystem is mounted read-only. Not even root can write to it.

rw The filesystem is mounted read-write.

noauto FreeBSD won’t automatically mount the filesystem, neither
at boot nor when using mount -a. This option is useful for removable
media drives that might not have media in them at boot.

The fifth field is used to tell dump(8) what backup level is needed to
back up this filesystem. Dump is largely obsolete these days; people per-
form file-level backup with tar(1) or use more advanced backup software,
like Bacula (http://www.bacula.org/) or Tarsnap (https://www.tarsnap.com/).

The last field tells the FreeBSD boot process when to check filesystem
integrity. All the partitions with the same number get checked in parallel
with fsck(8). The root filesystem gets marked with a 1, meaning it’s checked
first. Only the root filesystem should get a 1. Any other partitions should get
a 2 or higher, meaning they get checked later. Swap, read-only media, and
logical filesystems don’t require integrity checking, so they get set to 0.

FreeBSD configures all filesystems found in /etc/fstab at boot. As the
system runs, though, the sysadmin can mount other filesystems. And she
can unmount ones listed there. That leads to our next question . . .

What’s Mounted Now?
If not all filesystems are mounted automatically at boot, and if the sysadmin
can add and remove mounted filesystems, how can you determine what’s
mounted right now? Use mount(8) without any options to see all mounted
filesystems.

mount
/dev/gpt/rootfs on / (ufs, local, journaled soft-updates)
devfs on /dev (devfs, local, multilabel)

This is a small UFS-based host. It has one disk partition and an instance
of devfs(5) (see Chapter 13). The word local means that the partition is on
a hard drive attached to this machine. The journaled soft-updates option
is a UFS feature we’ll discuss in Chapter 11. If you’re using NFS or SMB to
mount partitions, they’ll appear here.

More complicated hosts give larger results:

mount
base/ROOT/default on / (zfs, local, noatime, nfsv4acls)
base/tmp on /tmp (zfs, local, noatime, nosuid, nfsv4acls)

Disks, Partitioning, and GEOM 211

base/usr/home on /usr/home (zfs, local, noatime, nfsv4acls)
base/usr/ports on /usr/ports (zfs, local, noatime, nosuid, nfsv4acls)
procfs on /proc (procfs, local)
devfs on /dev (devfs, local, multilabel)
--snip--

This host uses many ZFS datasets, each with its own mount point.
The mount(8) output shows selected ZFS options, such as noatime and
nfsv4acls.

At the end of this output, we have a procfs(5) entry and one for a
devfs(5) mount. A working FreeBSD system needs devfs mounted at /dev
or it won’t work very well or for very long.

Disk Labeling
At the lowest level, operating systems identify disks by their physical attach-
ment to the system. Traditionally, the filesystem table says something like,
“Use the disk attached at ATA port 3 as the /var/log filesystem.” This worked
fine with less flexible hardware, but as hardware technology improved, such
connections became much more flexible. If you assign drive roles based on
the physical attachment, sometimes that attachment changes. I’ve had more
than one mainboard explode at an inconvenient hour, forcing a desperate
emergency replacement. Tracking which cable goes to which connecter
under such circumstances never goes well. In older versions of FreeBSD,
you needed to “wire down” devices so that a specific disk always showed up
as a specific device node. This is no longer needed.

Today, a sysadmin uses on-disk labels to refer to the disk by something
other than the physical attachment. A label identifies an instance of a geom.
Rather than telling FreeBSD that /var/www is on the disk attached to SATA
port 2, you declare that /var/www is on the disk labeled website. While the
former easily goes wrong, the latter is mostly immune to sleepy hardware
techs. One disk can have several labels simultaneously, if they’re different
types of label. FreeBSD automatically derives many labels from inherent disk
characteristics; the sysadmin can define others.

Most label types have a dedicated device node directory. Each GPT
partition has a globally unique identifier (GUID), and the autocreated labels
for those partitions live in /dev/gptid. Disks get unique disk IDs based on
their serial number, which gets entries in /dev/diskid. Manually created GPT
labels appear in /dev/gpt.

Use these labels as you would any other device name. If you label the
disk ada5 as stuff1, you can partition the disk stuff into stuff1p1 and stuff1p2,
use those partitions in configuration files, and more.

Not all labels come from GEOM. ZFS uses its own internal labeling
method for filesystems and pools. You can also add labels to UFS filesystems.

Don’t let swapped SATA cables ruin your weekend. Label everything.

212 Chapter 10

Viewing Labels
View labels with glabel(8), a shortcut for geom label. Here are parts of
a label from a small virtual machine. The labels on real hardware can
quickly become very complex.

$ glabel list
u Geom name: ada0p1

Providers:
v 1. Name: gptid/b9c0c7c5-5b66-11e7-8aec-080027739ff6

 Mediasize: 524288 (512K)
 Sectorsize: 512
--snip--

w Consumers:
1. Name: ada0p1
 Mediasize: 524288 (512K)
 Sectorsize: 512
 Stripesize: 0
 Stripeoffset: 20480
 Mode: r0w0e0

This host has a single geom u on the disk partition /dev/ada0p1. It pro-
vides an appallingly long label based on the GPT partition ID v. We’ll see a
bunch of information on the underlying disk, such as the number of sectors
on the disk, the sector size, and other information you might see in geom
disk list output. This information comes from the partition, however. The
physical drive information is passed up from the underlying disk.1

This drive has a single consumer w, the actual underlying partition.
We’re at the very bottom of this simple GEOM stack, right up against the
disk, so it’s consuming itself. If you add cryptographic layers or software
RAID, you’ll see what other device this geom consumes.

Sample Labels
Here are some examples of the kinds of labels you’ll see on most FreeBSD
systems.

Disk ID Labels

A physical machine offers labels not available on virtual machines.

Geom name: ada3
Providers:
1. Name: diskid/DISK-WD-WCAW36477141
--snip--

The drive ada3 provides a geom called diskid/DISK-WD-WCAW36477141.
The diskid geom is named after the hard drive’s serial number, based on

1. As this particular geom is part of a virtual drive, anything it says about the underlying
hardware is a bald-faced lie meant to reassure you.

Disks, Partitioning, and GEOM 213

information provided by the drive. You can remove the disk from this
machine and attach it to a completely different FreeBSD host, and that new
host will generate the exact same disk ID label. Using the diskid label in
your configurations guarantees that FreeBSD will use the exact disk you
intend. Here’s how you might list partition 3 on this disk in /etc/fstab:

/dev/diskid/DISK-WD-WCAW36477141p3 /usr/local ufs rw 2 2

 This disk could attach to the host as /dev/ada3 or /dev/ada300, and
FreeBSD would still mount this partition as /usr/local.

The problem with disk ID labels is that they’re painful to read and more
painful to type. I’m describing them because they can appear by default, but
I’d encourage you to choose a different label. Eliminate these labels from
your host by setting the tunable kern.geom.label.disk_ident.enable to 0 in /boot/
loader.conf.

GPT GUID Labels

Every GPT partition includes a GUID. FreeBSD can treat the GUID as a label.
Here, we see a GPT ID label for partition 1 on the disk attached as ada0:

Geom name: ada0p1
Providers:

u 1. Name: gptid/075e7b89-30ed-11e7-a386-002590dbd594
--snip--

This disk partition is conveniently available as /dev/gptid/075e7b89
-30ed-11e7-a386-002590dbd594 u. Much like disk serial numbers, GUIDs are
integral to the partition. You can move the disk to another host and still
get the same GPT ID. By using the GPT ID label in configurations like /etc/
fstab, you guarantee that FreeBSD uses this particular partition, rather than
partition 1, on whatever device happens to get assigned ada0 at system boot.

Using a GPT ID label makes sense when you have many automatically
configured disks, such as large storage arrays. On smaller systems, though,
the 128-bit GUID is annoyingly long. If you decide not to use these labels,
remove them from your system by setting the tunable kern.geom.label.gptid
.enable to 0 in /boot/loader.conf.

For most hosts, I recommend assigning GPT labels.

GPT Labels

GPT partitions let you manually assign a label name within the partition
table. I highly recommend doing so whenever possible. Here’s a partition
that I assigned a name:

Geom name: ada2p1
Providers:

u 1. Name: gpt/swap2
--snip--

214 Chapter 10

I’ve assigned the label swap2 u to partition 1 on disk ada2. This label
is physically stored on the disk partition. I can use this label in my configu-
rations just like any other device name. Using manually assigned labels is
much more manageable for small systems, as this /etc/fstab shows:

/dev/gpt/swap2 none swap sw 0 0

An assigned label is much more human-friendly than a long serial
number or GUID. If you have the choice, I encourage you to label GPT
partitions. We’ll assign labels when we partition disks.

GEOM Labels

In addition to spilling the standard labels on your system, the glabel(8)
command lets you configure GEOM labels. A GEOM label is specific to
FreeBSD’s GEOM infrastructure and appears in /dev/label. Use GEOM
labels with the glabel label command. Here, I apply the GEOM label root
to the GPT partition da0p1:

glabel label da0p1 root

There’s also a glabel create command, but those labels disappear at
system reboot.

GEOM Withering
A provider can have multiple labels. One partition might have a label based
on the disk ID of the underlying storage device (/dev/diskid/somethinglong), a
GPT ID (/dev/gptid/somethingevenlonger), a manually assigned label (/dev/gpt/
swap0), and a device node based on the underlying device’s attachment point
(/dev/ada0p1). While any number of processes can look at a disk device simul-
taneously, many disk operations—such as mounting a partition—require
exclusive, dedicated control of the device.

To prevent accessing geoms by multiple names, when you access a
device by one label, the kernel removes the unused labels. This is called
withering. If I, say, mount a swap partition using the GPT label /dev/gpt/
swap0, all the other labels for that partition disappear from /dev. Anyone
who tries to access the corresponding /dev/gptid partition will find that the
device node is missing.

Once all exclusive locks on a device are removed, the kernel de-withers
the other device labels. If I deactivate that swap space, the GPT ID and raw
device name reappear.

The gpart(8) Command
Like many operating systems, FreeBSD once had specific partitioning tools
for each partitioning scheme. Today, all disk partitioning functions, for
MBR and GPT alike, are included in the gpart(8) program. Embedded

Disks, Partitioning, and GEOM 215

devices with specialized storage might occasionally need older tools like
fdisk(8) and bsdlabel(8), but gpart(8) works perfectly well for servers and
desktops.

This common tool means you perform many functions the same way
no matter which partitioning scheme you’re using. For example, no matter
whether you’re working with the MBR or GPT scheme, you’ll need a way to
indicate a particular partition. Both schemes let you indicate a partition
with -i and the partition number.

Viewing and deleting partitions are great examples of common
functions.

Viewing Partitions
Use gpart show to see a brief summary of all GPT and MBR partitions on a
geom. Give the name of a geom as an argument to see only the partitions
on that geom. The output from gpart show doesn’t look that different from
fdisk(8) and other more traditional disk management tools. Here, I look
at a storage device by its traditional device node, but I could use diskid or
gptid or any other label:

$ gpart show ada0
u => 40 1953525088 ada0 GPT (932G)
v 40 1024 1 freebsd-boot (512K)
w 1064 984 - free - (492K)
x 2048 4194304 2 freebsd-swap (2.0G)
y 4196352 1949327360 3 freebsd-zfs (930G)
z 1953523712 1416 - free - (708K)

The first column gives the first block in the partition; the second, the
partition size in blocks. The third gives the partition number, while the
fourth gives the partition type. (We’ll discuss partition types later this
chapter: for the moment, just go with the flow.) At the end, we have the
disk size.

Our first partition begins on the disk’s sector number 40 and fills almost
two billion sectors u. The third field shows that this isn’t a partition on the
disk, but rather an entry for the entire disk. The fourth field gives the parti-
tioning scheme used. This is a GPT disk. The entire disk is about 932GB.

The second entry also starts on sector 40, and it fills 1,024 sectors v.
This is partition 1, and it’s of type freebsd-boot. If we want to boot off this
disk, we need a boot loader on this partition.

The third entry begins on sector 1,064 and fills 984 sectors w. Why
1,064? The first partition started on sector 40 and filled 1,024 sectors, so the
first (1,024 + 40) 1,064 sectors are filled with other partitions. But this parti-
tion doesn’t have a partition number, and its type is - free -. This partition
is aligned for disks with 4K sectors.

The fourth entry is swap space, according to the partition type x. It
begins on sector 2,048, is 4,194,304 sectors long, and is partition 2. You’ll
often see swap space near the beginning of a disk, a hangover from the

216 Chapter 10

days when partition placement on the disk impacted performance. If you’re
using a virtual machine, however, putting the swap near the beginning of
the disk leaves you room to expand a partition at the end of the disk.

The fifth entry is a FreeBSD ZFS filesystem, starting in sector 4,196,352
and going on for about 1.9 billion sectors y. This freebsd-zfs partition has
our data.

The very end of the disk has 1,416 free sectors z. There’s not quite
enough space to add space to the partition while still aligning the parti-
tion to the 1MB boundaries.

A MBR disk looks much like a GPT disk.

Other Views
Add command line flags to modify the output of gpart show.

You can assemble each partition’s device node from the underlying
device name and the partition number. If you want to see the device node
rather than the partition number, add the -p flag.

To replace the partition type with the partition label, use -l.
Here, I show both the device node and the labels on this disk:

$ gpart show -pl ada0
=> 40 1953525088 ada0 GPT (932G)
 40 1024 ada0p1 gptboot0 (512K)
 1064 984 - free - (492K)
 2048 4194304 ada0p2 swap0 (2.0G)
 4196352 1949327360 ada0p3 zfs0 (930G)
 1953523712 1416 - free - (708K)

The partition number now contains complete device names, like
ada0p3. Rather than the GPT partition type, you get the label applied to the
GPT partition, such as swap0 and zfs0.

To see the human-hostile GPT partition type rather than the name
FreeBSD presents, use -r. I mostly use this when examining disks from
other operating systems. It’s possible that FreeBSD will label multiple parti-
tion types as being type ntfs; while that’s good enough for most uses, if I’m
doing digital forensics, the precise partitioning scheme might be extremely
important.

To see a more detailed description of your GPT partitions, use gpart list.
This creates output much like glabel list or other GEOM class commands.

Removing Partitions
Maybe you screw up when creating your partitions and need to remove one.
No, you haven’t created partitions yet, in either MBR or GPT, but the pro-
cess you follow is the same either way. Delete partitions by number.

Take a look at the partition table in the previous section. We have par-
titions for boot, swap, and ZFS. Maybe you don’t want swap space on your
boot drive. Remove that partition with the gpart delete command. Use the
-i flag and the number of the partition you want to remove. The gpart show
command said the swap space was partition 2. Let’s remove it.

Disks, Partitioning, and GEOM 217

gpart delete -i 2 ada0
ada0p2 deleted

You can now resize your ZFS partition to use that space. How you resize
a partition varies with the partitioning scheme.

Scheming Disks
No, not the sort of scheming where the disk deliberately lies to you. We’re
talking about the disk’s partitioning scheme. Destruction is easier than cre-
ation, in both meatspace and with storage. Before you can partition a disk,
you need to assign it a partitioning scheme.

Removing the Disk Partitioning Scheme
You could go through and painstakingly delete every partition on the
disk and then obliterate the partitioning scheme. That’s a bunch of work,
though. It’s much simpler to just trash the entire disk partition table.

You can’t erase a disk with mounted partitions. Unmount those parti-
tions first, and remove them from any ZFS pools. Once the disk is truly
unused, erase any existing partitioning table with gpart destroy.

gpart destroy da3
da3 destroyed

If the command returns immediately, the disk had no partitions. It
might have had a partition scheme, but no partitions. If you get a “device
busy” error, either the disk is still in use or the disk has partitions. You could
methodically delete all existing partitions with gpart delete and then destroy
the partitioning scheme, but it’s easier to burn the existing scheme to the
ground by adding -F.

gpart destroy -F da3

This forcibly erases all partitions and the partitioning scheme. Running
gpart show da3 will show that there’s no partition table. You can now create
new disk partitions.

Assigning the Partitioning Scheme
Before you can create disk partitions, you need to mark the disk with the
type of partitioning scheme you’ll be using. Use gpart create with the -s flag
and the scheme, such as gpt or mbr. Here, I mark a disk as using the GPT
scheme:

gpart create -s gpt da3

218 Chapter 10

Use gpart show to verify that the disk now has a GPT partition table. You
can now add GPT partitions or recreate the partition table with MBR and
add those partitions. But we’ll start by diving deep into GPT.

The GPT Partitioning Scheme
The GUID Partition Table, or GPT, is the modern standard for hard drive
partitioning. This is the recommended standard for new installations. Always
use the GPT partitioning scheme unless you have a deeply compelling reason
not to, such as a lack of hardware support.

GPT supports disks up to 9.4ZB. One zettabyte is one billion terabytes.
While our technology will eventually outgrow 9.4ZB, I expect GPT will last
the rest of my career.

FreeBSD’s GPT implementation currently supports 128 partitions. Each
partition gets assigned a GUID, which is a 128-bit number displayed as 32
hexadecimal characters. While GUIDs aren’t guaranteed to be truly unique
across all of civilization, they’re certainly going to be unique within your
organization.

Most modern operating systems support GPT and its predecessor, the
master boot record (MBR). MBR-based systems put partition records in
the first sector on the disk. If a host supports only MBR, but the first sec-
tor of a disk contains something that isn’t an MBR, the system gets con-
fused and might refuse to boot. The GPT scheme puts a protective master
boot record (PMBR) in the first sector of every disk. The PMBR indicates
that the disk contains one MBR partition of type GPT. The second sector
contains the actual GUID Partition Table. GPT also puts a backup copy
of the partition table on the last sector of the disk so you can more easily
recover from damage.

GPT requires allocating a partition for bootstrap code. The PMBR boot
code searches the disk for a FreeBSD boot partition. This boot partition
must be larger than the boot code, smaller than 545KB, and reserved for
the FreeBSD boot loader. FreeBSD has two GPT boot loaders, gptboot(8)
and gptzfsboot(8). You must install one of these on the boot partition.

Use gptboot(8) to start UFS-based systems. At system boot, gptboot
searches for a FreeBSD partition marked with the bootme or bootonce attributes.

Use gptzfsboot(8) on systems running ZFS.
Use gpart(8) and its many subcommands to view, create, edit, and

destroy GPT partitions.

GPT Device Nodes
Each disk partition has a device node. GPT partition device nodes are an
extension of the geom they’re built on, indicated by the letter p and the par-
tition number. If you’ve created GPT partitions directly on the disk ada0,
the first partition will be /dev/ada0p1, the second /dev/ada0p2, and so on.

Many systems put their partitions on an upper-layer geom. One of my
systems uses SATA RAID and offers the disk as /dev/raid/r0. The partitions

Disks, Partitioning, and GEOM 219

on this drive are /dev/raid/r0p1, /dev/raid/r0p2, and so on. You might also
put partitions on a device by its GUID or disk ID, giving you partitions
like /dev/diskid/DISK-WD-WCAW36477062p1.

GPT Partition Types
When you create a GPT partition, you must mark it with a partition type. The
type indicates the partition’s intended use. FreeBSD makes decisions based
on the partition types, so assign them correctly.

Strictly speaking, a partition type is another 128-bit GUID. FreeBSD
marks GUIDs used as partition types with a leading exclamation point, such
as !516e7cb5-6ecf-11d6-8ff8-00022d09712b. These partition types are common
across all operating system, but most OSs provide human-friendly names
for these human-hostile GUIDs. This book uses the human-friendly names;
check gpart(8) for the human-hostile ones.

The most common partition types you’ll see on a FreeBSD system
include the following:

freebsd-boot FreeBSD boot loader

freebsd-ufs FreeBSD UFS filesystem

freebsd-zfs FreeBSD ZFS filesystem

freebsd-swap FreeBSD swap partition

efi An EFI system partition, used to boot from EFI

You might also see these GPT partition types. Don’t use them in modern
FreeBSD, but know that their presence might help you identify just what that
weird disk is and how to crack it open.

freebsd A GPT partition that’s divided into bsdlabel(8) partitions

freebsd-vinum A partition controlled by gvinum(8)

mbr A partition subdivided into MBR partitions

ntfs A partition containing a Microsoft NTFS filesystem

fat16, fat32 Partitions containing FAT

For a complete listing of recognized partition types, see gpart(8).

Creating GPT Partitions
Partitioning disks is easy: figure out which partitions you want, create them,
and go. The tricky part is living with your partitioning. Before creating par-
titions, decide what you’re going to do with this disk. How much space do
you have? How do you want to divide it? Before you start creating partitions,
write down exactly what you want to achieve.

Here, I’m manually partitioning a 1TB disk for a UFS FreeBSD install.
It’ll need a 512KB boot partition (type freebsd-boot) and 8GB for swap (type
freebsd-swap). The other partitions will be type freebsd-ufs: 5GB for root, 5GB
for /tmp, 100GB for /var, and the rest for /usr. I’ll label each partition for its
intended role.

220 Chapter 10

Create partitions with gpart(8). Use the -t flag to specify the partition
type, -s to give the size, and -l to assign a GPT label to the new partition.
I’ll start with the boot partition.

gpart add -t freebsd-boot -l boot -s 512K da3
da3p1 added

Use gpart show to check your work. Add the -l flag to see the GPT label.

gpart show -l da3
=> 40 1953525088 da3 GPT (932G)
 40 1024 1 boot (512K)
 1064 1953524064 - free - (932G)

This disk has one partition, a 512K partition labeled boot. The com-
mand succeeded. Now add the swap space.

gpart add -a 1m -t freebsd-swap -s 8g -l swap da3
da3p2 added

This command is much like the one to add the boot partition: we give
the partition type, size, and label.

Hang on, though—what’s this -a 1m thing? The -a flag lets you set a par-
tition alignment, enabling you to set where partitions can begin and end
relative to the beginning of the disk. Remember back at the beginning of
this chapter when I discussed that misaligning a filesystem with the physical
sectors on a 4K disk could cause problems? The -a 1m tells gpart to create
partition on an even multiple of 1MB from the beginning of the disk. You’ll
have some empty space between partitions 1 and 2, as we saw in “Viewing
Partitions” on page 215 in this chapter, but that’s okay. That gives you
room to change that partition to support UEFI if necessary (see “Unified
Extensible Firmware Interface and GPT” on page 222 later this chapter).

Retain that 1MB alignment as you create the 5GB root and /tmp parti-
tions and the 100GB /var partition.

gpart add -a 1m -t freebsd-ufs -s 5g -l root da3
da3p3 added
gpart add -a 1m -t freebsd-ufs -s 5g -l tmp da3
da3p4 added
gpart add -a 1m -t freebsd-ufs -s 100g -l var da3
da3p5 added

When you create the last partition, don’t give a size. This tells gpart to
make the partition as large as possible.

gpart add -a 1m -t freebsd-ufs -l usr da3
da3p6 added

You have partitioned the disk, and it’s ready for your install.

Disks, Partitioning, and GEOM 221

Resizing GPT Partitions
On second thought, perhaps having a huge /usr partition isn’t wise. A /usr
partition of 100GB or so would have all the room you might desire for oper-
ating system files, while leaving several hundred gigabytes for an isolated
/home partition. I trust most of my users, but a few2 are just the sort to dump
/dev/random into a file until they absorb all available space. Here, I’ll resize
/usr to create space for /home.

Use gpart resize to change the size of a partition. You must know the
target partition’s partition number. Running gpart show da3 tells us that /usr
is partition 6. Use the -i flag and the partition number to resize a partition.

gpart resize -i 6 -s 100g -a 1m da3
da3p6 resized

Run gpart show to see the new disk size.

gpart show da3
--snip--
 247465984 209715200 6 freebsd-ufs (100G)
 457181184 1496343944 - free - (714G)

This disk has 714GB free at the end. We can now create a spacious /home
for all our troublesome users.

Each partition is assigned specific sectors on the disk. You can’t increase
the size of a partition if there’s no free space on either side of the partition.
While this sample disk has a bunch of free space after partition 6, you can’t
use it to increase the size of partitions 1 through 5. You must delete and rec-
reate partitions.

Changing the size of a partition doesn’t change the size of the filesystem
on that partition. Shrinking a partition with a filesystem will chop off part
of the filesystem. Increasing the partition size won’t expand the filesystem.
Both UFS and ZFS have tools to handle increased partition sizes, but you
must handle that as a separate process.

Changing Labels and Types
You can modify a GPT partition’s type or GPT label with the gpart modify
command. Give the partition number with -i. Use -l to give the new label.
Here, I change the GPT label on partition 2 of disk vtbd0:

gpart modify -i 2 -l rootfs vtbd0

Similarly, change the type of partition with -t:

gpart modify -i 2 -t freebsd-zfs vtbd0

2. Bert.

222 Chapter 10

The disk’s GPT table now declares that partition 2 is labeled rootfs and
is of type freebsd-zfs.

Booting on Legacy Hardware
Older hardware expects to see a master boot record at the start of the disk
and won’t recognize a GPT partition table. FreeBSD uses a protective MBR
(PMBR) to give legacy hardware a recognizable partition table and help
that hardware boot a GPT-partitioned disk. A bootable disk formatted with
GPT needs both a protective MBR and a GPT boot loader.

Install a PMBR with the gpart bootcode command and the -b flag.
FreeBSD provides a PMBR as /boot/pmbr.

gpart bootcode -b /boot/pmbr da3
bootcode written to da3

This disk will no longer confuse hosts that look for an MBR.
You also need a boot loader. UFS hosts need the gptboot boot loader,

while ZFS hosts need gptzfsboot. For convenience, FreeBSD provides a copy
of each in the /boot directory. These copies are not the on-disk boot loader,
only the version of the bootloaders needed for that version of FreeBSD.
Install the selected boot loader with the -p flag to gpart bootcode. Use the
-i option to tell gpart(8) which partition to copy the boot loader to. The
sample disk we used in the last section had partition 1 as type freebsd-boot, so
we’ll use that.

gpart bootcode -p /boot/gptboot -i 1 da3
partcode written to da3p1

You can combine -p and -b into a single command.

Unified Extensible Firmware Interface and GPT
The Unified Extensible Firmware Interface (UEFI) is a newer standard for boot-
ing amd64 hardware without using BIOS emulation. FreeBSD 10 and later
have early support for UEFI booting to UFS, while FreeBSD 11 can boot
ZFS off of UEFI.

UEFI uses a partition of type efi, which must be 800KB or larger. Create
an efi partition on a new disk with gpart create.

gpart create -s gpt da0
gpart add -t efi -s 800K da0

FreeBSD provides an efi partition as /boot/boot1.efifat. Copy that to the
new boot partition with dd(1).

dd if=/boot/boot1.efifat of=/dev/da0p1

Partition the rest of the disk as you desire.

Disks, Partitioning, and GEOM 223

An efi partition is actually a FAT filesystem with a very specific directory
hierarchy. Feel free to mount the file boot1.efifat and explore it.

Expanding GPT Disks
We’ve seen how to expand a partition, but what about a disk? Expanding
disks often happens with virtual hosts. Expand a virtual disk, and gpart(8)
will complain that the disk’s GPT is invalid. GPT and GEOM store informa-
tion in the first and last sectors of the disk. Expanding a virtual disk means
adding sectors. The new last sector will be empty. Create a new metadata
block for the last sector with gpart recover.

gpart recover vtbd0

You can now create or expand partitions on the expanded virtual disk.
Now that you have a handle on GPT partitions, let’s look at MBR and

see why GPT seemed like such an improvement.

The MBR Partitioning Scheme
Old hardware, or new but small hardware, might need master boot record
partitioning on its disks. Intel-style hardware has used MBR partitions for
decades, and millions of devices running a plethora of operating systems
use it. The MBR scheme works only on disks of 2TB or smaller. Larger disks
must use GPT partitioning.

What Is the Master Boot Record?
The master boot record (MBR) is a file that takes up the first 512 bytes of a tra-
ditional disk, also known as Sector 0. The MBR contains partition informa-
tion and a boot loader to allow the BIOS to find the operating system. The
term MBR might refer to the actual first sector on the disk or the partition
scheme used by that format.

A master boot record describes four primary partitions, called slices in the
BSD community. Each slice description includes the disk sectors included
in the partition and the type of filesystem expected on that slice. If a disk
has only one slice on it, the MBR still lists four slices, but three of those
slices have no sectors assigned to them. While the MBR format supports
a linked list of up to 20 extended partitions, FreeBSD doesn’t need them
thanks to BSD labels.

One of the four primary slices is considered active. When the system
powers on, the bootstrap code looks for the active slice and tries to boot it.

The MBR sector also contains bootstrap code. You don’t need to allo-
cate space specifically for a boot loader. In FreeBSD, the bootstrap code
finds and executes the kernel. FreeBSD includes two different boot loaders,
mbr and boot0. The mbr loader is for a host with a single operating system.

224 Chapter 10

If you have multiple operating systems installed on your hardware, use the
boot0 loader—or, better still, dedicate your host to FreeBSD and virtualize
the other operating systems.

The main function of a slice is to contain a bsdlabel(8) partition.

BSD Labels
BSD existed before either the MBR or the IBM PC. BSD used its own disk
partition format, called a disklabel. Now that labeling disks is much more
common, disklabels are also called BSD labels or bsdlabels. (If you want to
start a spirited discussion, ask a room of FreeBSD developers which is more
correct.) BSD systems had several partitions including at least / (root), /usr,
/var, /tmp, and swap space, plus separate partitions for whatever actual work
the system did.

When BSD was ported to the i386 platform, they could have switched
disks to using MBR partitions. With extended MBR partitions, one disk could
have had up to 24 partitions. Disklabel partitions were embedded throughout
the kernel, however, often in icky places that nobody dared touch. The port-
ing group decided to treat an MBR slice as a BSD disk and to partition each
slice with a BSD disklabel. Sysadmins needed to create MBR partitions and
then nest disklabel partitions inside those MBR partitions.3

This worked but also made the word partition ambiguous. Does partition
mean an MBR partition or a disklabel partition? FreeBSD dusted off the
word slices for MBR partitions. Each MBR slice will have its own disklabel,
listing the BSD partitions contained within the slice. If you come from a
Linux or Microsoft Windows background, the MBR partitions you’re famil-
iar with are called slices over here.

You can’t label slices or disklabel partitions. These formats have no
space for labels. Instead, label the ZFS or UFS filesystem on the partition.

It’s possible to skip slicing a disk, instead installing a disklabel directly
on the hard drive. Some hardware refused to boot from such disks, so
they’re called dangerously dedicated. With the advent of GPT, dangerously
dedicated disks aren’t really used any more.

MBR Device Nodes
Every disk, slice, and partition has a device node. The slice device node is
an extension of the underlying disk, and the partition device node is an
extension of the device’s node. Here are the device nodes on disk ada0 of
an MBR-based system:

/dev/ada0 /dev/ada0s1a /dev/ada0s1d
/dev/ada0s1 /dev/ada0s1b /dev/ada0s1e

3. In the quarter century since then, the BSD community has spent innumerable work-hours
explaining and then justifying that decision. Learn from our pain. Don’t port your OS to
commodity hardware.

Disks, Partitioning, and GEOM 225

The first subdivision of the disk is the slice. Device nodes indicate a
slice with the letter s and a number from 1 to 4. The first slice is s1, the
second is s2, and so on. Unused MBR partitions don’t get device nodes.
Here, /dev/ada0s1 is slice 1 on the disk.

The second layer of subdivision is the disklabel partition inside the slice.
Each partition has a unique device node name created by adding a letter to
the slice’s device node. Here, we have four disklabel partitions, /dev/ada0s1a
through /dev/ada0s1e. Traditionally, the node ending in a (/dev/ada0s1a) is
the root partition, while the node ending in b (/dev/ada0s1b) is swap space.

Note that the list of device nodes doesn’t use the letter c. The c parti-
tion represents the entire slice. These days, you run disk partitioning tools
on the slice entry rather than the disklabel for the slice.

Assign partitions d through h any way you like. A default disklabel can
have up to seven usable partitions. With up to four slices on each drive,
you can have up to 28 partitions on a drive. A disklabel can support up to
20 partitions, but you must indicate you want extra partitions when first cre-
ating the label.

MBR and Disklabel Alignment
Slices have their own disk sector and filesystem block alignment issues.
Traditionally, MBR partitions end on a cylinder boundary. Cylinder bound-
aries don’t mean anything on modern hardware, but even newer drives
provide them as a comforting lie for older or less capable hardware. If you
create MBR partitions that don’t end on a cylinder boundary, and you put
that disk in a machine that requires respecting cylinder boundaries, the
machine will have some sort of nervous breakdown. A disk you slice today
could theoretically find its way into an older system. FreeBSD therefore
arranges slices so that they end on cylinder boundaries. Cylinder boundar-
ies not only can but probably do conflict with 4K disk sector sizes. If noth-
ing else, the MBR itself takes up the first cylinder, or sixty-three 512-byte
sectors!

Fortunately you rarely write to slice tables, and the performance of writ-
ing slice tables is rarely an issue. If you align your disklabel partitions within
a slice to 1MB boundaries, you’ll lose a few sectors between the slice parti-
tion table and the disklabel partition, but you’ll have proper performance.

So: align disklabel partitions. Don’t align slices.

Creating Slices
Use gpart(8) to manage MBR slices. To create a slice, you need a partition
type and a size. FreeBSD slices use type freebsd. If you don’t specify a size,
gpart(8) uses all available space. On an empty disk, this dedicates the whole
disk to a single slice.

Here, I erase the existing partitioning, tell the disk to use the MBR
scheme, and create a single FreeBSD slice:

gpart destroy -F ada3
gpart create -s mbr ada3

226 Chapter 10

gpart add -t freebsd ada3
ada3s1 added

Run gpart show and you’ll see that this disk now has a single slice. Add
the -p flag to see the slice’s device node.

gpart show -p ada3
=> 63 1953525105 ada3 MBR (932G)
 63 1953525105 ada3s1 freebsd (932G)

Our slice ada3s1 is now ready for disklabel partitions.
To create multiple slices, specify a size with -s. A common configuration

for small embedded systems is to put three slices on a disk. Two smaller slices
contain different versions of the operating system, while the third contains
any data. Here, I divide this 1TB disk into two 150GB slices and give the rest
to a third slice:

gpart add -s 150g -t freebsd ada3
ada3s1 added
gpart add -s 150g -t freebsd ada3
ada3s2 added
gpart add -t freebsd ada3
ada3s3 added

Removing Slices
Use gpart delete to remove unwanted slices. Give the slice number with -i.
Here, I remove the third, larger slice from our multislice disk created in the
last section:

gpart delete -i 3 ada3
ada3s3 deleted

Activating Slices
The active slice is the one that the BIOS tries to boot. Set the active slice
with the -a active flag. Use -i to give the number of the active slice.

gpart set -a active -i 1 ada3

Change which slice gets booted by setting a different active slice.
The boot disk also needs a boot loader. While the MBR boot loader is

different from the GPT or UEFI boot loaders, it uses the same gpart(8) -b
flag. FreeBSD provides a copy of the MBR boot loader as /boot/mbr.

gpart bootcode -b /boot/mbr ada3

Slice 1 on disk ada3 is now bootable. Now that you’ve sliced your disk,
you can create BSD labels inside the slices.

Disks, Partitioning, and GEOM 227

BSD Labels
Creating BSD label (or disklabel) partitions inside a slice is much like creat-
ing slices or GPT partitions. You must tell the storage device the scheme to
be used, create and remove partitions until you’re satisfied with them, and
install a boot loader.

Creating a BSD Label
Where GPT and MBR specifically provide space for partition tables, you
must create a BSD label and write it to the beginning of the slice. As with
any scheme, use -s and the name of the scheme. Install this scheme on the
slice, not on the disk.

Suppose you want to create a BSD label on the slice ada3s1. Use the
BSD scheme.

gpart create -s bsd ada3s1
ada3s1 created

This is a default disklabel, with room for 8 disklabel partitions. You can
increase the number of partitions, up to 20, by using the -n flag. Here, I
create a whole bunch of partitions on ada3s3, the large partition.

gpart create -n 20 -s bsd ada3s3
ada3s3 created

There are no actual disklabel partitions on this slice; there’s merely a
label that can contain disklabel partitions. Now that the label exists, you
can create those partitions.

Creating BSD Label Partitions
Before blindly entering partitioning commands, plan how to partition the
disk. Figuring things out on paper beforehand is much easier than figur-
ing them out at the command line. I’m going to partition the first 150GB
slice on this disk for UFS filesystems. This slice will get 5GB partitions for
/ (root), swap, and /tmp. The rest will go to /usr. Why no /var? I’ll dedicate
the big slice, ada3s3, to /var. I don’t need to add a boot partition because
MBR disks don’t need one.

To create a disklabel partition, you must specify the type with -t and
the size with -s—exactly as you would for GPT partitions. FreeBSD UFS file-
systems are of type freebsd-ufs. Let’s start with the root partition.

gpart add -t freebsd-ufs -s 5g -a 1m ada3s1
ada3s1 added

To view this partition, you must give gpart show the slice device, not the
disk device. Using the disk device displays the slices.

228 Chapter 10

gpart show ada3s1
=> 0 314572800 ada3s1 BSD (150G)
 0 1985 - free - (993K)
 1985 10485760 1 freebsd-ufs (5.0G)
 10487745 304085055 - free - (145G)

The third line of output shows our 5GB partition.
At the very beginning of this slice, we have 1,985 free blocks, or 993KB.

I requested that the partition be aligned to 1MB boundaries, so gpart wasted
a bit of space to meet that request. I’ll happily lose that 993KB, rather than
halve the system’s performance.

Now create the swap partition of type freebsd-swap.

gpart add -t freebsd-swap -s 5g -a1m ada3s1
ada3s1b added

The 5GB /tmp comes next. Then, I dump the rest of the space into a
partition for /usr by omitting the size.

gpart add -t freebsd-ufs -s 5g -a1m ada3s1
ada3s1d added
gpart add -t freebsd-ufs -a1m ada3s1
ada3s1e added

A gpart show reveals our disklabel partitions have wasted 63 blocks, or
32KB, at the end of the disk. Watch me not care.

These partitions are now ready to receive filesystems. We discuss UFS in
Chapter 11.

Assigning Specific Partition Letters
On a traditional BSD label, the a partition is for the root filesystem, while b
is for swap. The c partition represents the entire slice. This isn’t mandatory,
but I recommend not using any of these letters for any other purpose.

Why is this important? I once added a hard drive to a server so that we
had more space for a database. We moved the database software to parti-
tion a and the actual data to partition b.4 When I went on vacation a few
months later, the system ran short on virtual memory. I got a call from a
sysadmin who had found and activated the unconfigured swap space on the
new drive—but now the database data was missing. Yes, the company lost
several customers and many thousands of dollars of revenue, which is sad—
but more importantly, it ruined one day of my vacation and cast a shadow
over the rest. This was unacceptable.

Don’t bother fighting these traditions, especially on a decreasingly
common disk format. Don’t use the letters a, b, or c for partitions other
than those decreed by the Berkeley elders.

4. Experienced sysadmins should start to feel sympathetic dread right about here.

Disks, Partitioning, and GEOM 229

The gpart program is designed to work with partition numbers, not
letters. When you’re creating disklabels, however, gpart add maps index
numbers onto letters. Partition 1 is a, partition 2 is b, and so on. By specify-
ing a partition index when you create the partition, you assign the letter to
the partition.

If you don’t specify a partition number, gpart add assigns partition letters
starting with a. You might assign your first partition number 18, but if you
don’t specify a number for the next partition, it’ll wind up getting partition
a. To avoid using a, b, or c, use a number for every partition you create. You
can use letters only up to the number of disklabel slots the partition has. A
standard disklabel can use only letters a through h, while a 20-partition label
can use a through t.

On my three-slice system, I want to put /var on ada3s3. I want to use a
letter other than a, b, or c, so I randomly pick index 18. It’s almost exactly
the same as the partition for /usr, but we’re adding it to a different slice.

gpart add -t freebsd-ufs -a 1m -i 18 ada3s3
ada3s3r added

To see that disklabel partition, you’ll need to run gpart show ada3s3. Add
-p to see the device name.

gpart show -p ada3s3
=> 0 1324379505 ada3s3 BSD (632G)
 0 1985 - free - (993K)
 1985 1324376064 ada3s3r freebsd-ufs (632G)
 1324378049 1456 - free - (728K)

What do you know? The 18th letter of our alphabet is R.
With partitions, we can start to look at filesystems.

11
T h e U n i x F i l e S y S T e m

FreeBSD’s filesystem, the Unix File System
(UFS), is a direct descendant of the file-

system shipped with BSD 4.4. One of the
original UFS authors still develops the FreeBSD

filesystem and has added many nifty features in recent
years. FreeBSD is not the only operating system to still
use the 4.4 BSD filesystem or a descendant thereof. A Unix vendor that
doesn’t specifically tout its “improved and advanced” filesystem is probably
running a UFS derivative.

UFS’s place as the primordial filesystem has given it leave to extend ten-
drils throughout FreeBSD. Many UFS concepts underlie FreeBSD’s support
for other filesystems, from ZFS to optical disks. Even if you have no inten-
tion of ever using UFS, you must understand the basics of UFS to under-
stand how FreeBSD manages filesystems.

Like the rest of Unix, UFS is designed to handle the most common situ-
ations effectively while reliably supporting unusual configurations. FreeBSD

232 Chapter 11

ships with UFS configured to be as widely useful as possible on relatively
modern hardware, but you can choose to optimize a particular filesystem
for trillions of small files or a half-dozen 1TB files if you must.

What we call UFS today is actually UFS version 2, or UFS2. Primordial
UFS can’t handle modern disk sizes.

UFS is best suited for smaller systems, or applications that can’t handle
the overhead of ZFS. Many people prefer UFS for virtual machines. I dis-
cuss choosing a filesystem in Chapter 2.

UFS Components
UFS is built of two layers, one called the Unix File System and the other the
Fast File System (FFS). UFS handles items like filenames, attaching files to
directories, permissions, and all of those petty details users care about. FFS
does the real work in getting files written to disk and arranging them for
quick access. The two work together to provide data storage.

The Fast File System
FFS is built of superblocks, blocks, fragments, and inodes.

A superblock records the filesystem’s characteristics. It contains a magic
number that identifies the filesystem as UFS, as well as filesystem geometry
information the kernel uses to optimize writing and reading files. A UFS
filesystem keeps many backup copies of the superblock, in case the primary
gets damaged.

Blocks are segments of disk that contain data. FreeBSD defaults to 32KB
blocks. FFS maps blocks onto specific sectors on the underlying disk or
GEOM provider. Every stored file gets broken up into 32KB chunks, and
each chunk is stored in its own block.

Not all files are even multiples of 32KB, so FFS stores the leftovers
in fragments. The standard is one-eighth of the block size, or 4KB. For
example, a 39KB file would fill one block and two fragments. One of those
fragments has only 3KB in it, so fragments do waste disk space—but they
waste far less space than using full blocks everywhere.

How UFS Uses FFS
UFS allocates certain FFS blocks as inodes, or index nodes, to map blocks and
fragments to files. An inode contains each file’s size, permissions, and the
list of blocks and fragments containing each file. Collectively, the data in an
inode is known as metadata, or data about data.

Each filesystem has a certain number of inodes, proportional to the file-
system size. A modern disk probably has hundreds of thousands of inodes on
each partition, enough to support hundreds of thousands of files. If you have
a truly large number of very tiny files, however, you might need to rebuild
your filesystem to support additional inodes. Use df -i to see how many
inodes remain free on your filesystem.

The Unix File System 233

Theoretically, it was possible to run UFS on a storage layer other than
FFS. That’s how many log-based or extent-based filesystems work. Over
decades of development, though, UFS features like journaling and soft
updates have so greatly entangled FreeBSD’s UFS and FFS that separating
the two is no longer realistic or even vaguely plausible.

Vnodes
Inodes and blocks worked perfectly if the only filesystem you used was UFS
and all your hard drives were permanently attached. These days, we rou-
tinely swap disks between different machines and even different operating
systems. You probably need to read optical media and flash disks on your
desktop, and servers might even need to accept hard drives formatted for a
different operating system.

FreeBSD uses a storage abstraction layer—the virtual node, or vnode—to
mediate between filesystems and the kernel. You’ll never directly manipu-
late a vnode, but the FreeBSD documentation frequently refers to them.
Vnodes are a translation layer between the kernel and whatever filesystem
you’ve mounted. If you’re an object-oriented programmer, think of a vnode
like a base class that all storage classes inherit. When you write a file to a
UFS filesystem, the kernel addresses the data to a vnode that, in turn, is
mapped to a UFS inode and FFS blocks. When you write to a FAT32 file-
system, the kernel addresses data to a vnode that’s mapped to a specific
part of the FAT32 filesystem. Use inodes only when dealing with UFS file-
systems, but use vnodes when dealing with any filesystem.

Mounting and Unmounting Filesystems
The mount(8) program’s main function is attaching filesystems to a host’s
filesystem tree. While FreeBSD mounts every filesystem listed in /etc/fstab
at boot time, you must understand how mount(8) works. If you’ve never
played with mounting before, boot your FreeBSD test machine into the
single-user mode (see Chapter 4) and follow along.

In single-user mode, FreeBSD has mounted the root partition read-only.
On a traditional Unix-like system, the root partition contains just enough of
the system to perform basic setup, get core services running, and find the rest
of the filesystems. Other filesystems aren’t mounted, so their content is inac-
cessible. The current FreeBSD installer puts everything in the root partition,
so you’d get the basic operating system, but any special filesystems, network
mounts, and so on would be empty. You might need to mount other file-
systems to perform your system maintenance.

Mounting Standard Filesystems
To manually mount a filesystem listed in /etc/fstab, such as /var or /usr, give
mount(8) the name of the filesystem you want to mount.

mount /media

234 Chapter 11

This mounts the partition exactly as listed in /etc/fstab, with all the
options specified in that file. If you want to mount all the partitions listed
in /etc/fstab, except those labeled noauto, use mount’s -a flag.

mount -a

When you mount all filesystems, filesystems that are already mounted
don’t get remounted.

Special Mounts
You might need to mount a filesystem at an unusual location or mount
something temporarily. I most commonly mount disks manually when
installing a new disk. Use the device node and the desired mount point. If
my /var/db partition is /dev/gpt/db and I want to mount it on /mnt, I would run:

mount /dev/gpt/db /mnt

Unmounting a Partition
When you want to disconnect a filesystem from the system, use umount(8)
to tell the system to unmount the partition. (Note that the command is
umount, not unmount.)

umount /usr

You cannot unmount filesystems that are in use by any program. If you
cannot unmount a partition, you’re probably accessing it somehow. Even a
command prompt in the mounted directory prevents you from unmounting
the underlying partition. Running fstat | grep /usr (or whatever the parti-
tion is) can expose the blocking program.

UFS Mount Options
FreeBSD supports several mount options that change filesystem behavior.
When you manually mount a partition, you can specify any mount option
with -o.

mount -o ro /dev/gpt/home /home

You can also specify mount options in /etc/fstab (see Chapter 10).
Here, I use the ro option on the /home filesystem, just as in the preceding
command line.

/dev/gpt/home /home ufs ro 2 2

The mount(8) man page lists all of the UFS mount options, but here
are the most commonly used ones.

The Unix File System 235

Read-Only Mounts

If you want to look at the contents of a disk but disallow changing them,
mount the partition read-only. You cannot alter the data on the disk or write
any new data. In most cases, this is the safest and the most useless way to
mount a disk.

Many system administrators want to mount the root partition, and per-
haps even /usr, as read-only to minimize potential system damage from an
intruder or malicious software. This maximizes system stability but vastly
complicates maintenance. If you use an automatic deployment system, such
as Ansible or Puppet, and habitually redeploy your servers from scratch
rather than upgrading them, read-only mounts might be a good fit for you.

Read-only mounts are especially valuable on a damaged computer.
While FreeBSD won’t let you perform a standard read-write mount on a
damaged or dirty filesystem, it will perform a read-only mount if the file-
system isn’t too badly fubar. This gives you a chance to recover data from a
dying disk.

To mount a filesystem read-only, use either the rdonly or ro option. Both
work identically.

Synchronous Mounts

Synchronous (or sync) mounts are the old-fashioned way of mounting filesys-
tems. When you write to a synchronously mounted disk, the kernel waits to
see whether the write is actually completed before informing the program.
If the write didn’t complete successfully, the program can choose to act
accordingly.

Synchronous mounts provide the greatest data integrity in the case of a
crash, but they’re also slow. Admittedly, “slow” is relative today, when even a
cheap disk outperforms what was the high end several years ago. Consider
using synchronous mounting when you wish to be truly pedantic on data
integrity, but in almost all cases, it’s overkill.

To mount a partition synchronously, use the option sync.

Asynchronous Mounts

While asynchronous mounts are pretty much supplanted by soft updates (see
“Soft Updates” on page 237), you’ll still hear about them. For faster data
access at higher risk, mount your partitions asynchronously. When a disk
is asynchronously mounted, the kernel writes data to the disk and tells the
writing program that the write succeeded without waiting for the disk to
confirm that the data was actually written.

Asynchronous mounting is fine on disposable filesystems, such as memory
file systems that disappear at shutdown, but don’t use it with important data.
The performance difference between asynchronous mounts and noasync with
soft updates is minuscule. (I’ll cover noasync in the next section.)

To mount a partition asynchronously, use the option async.

236 Chapter 11

Combining Sync and Async

FreeBSD’s default UFS mount option combines sync and async mounts as
noasync. With noasync, data that affects inodes is written to the disk syn-
chronously, while actual data is handled asynchronously. Combined with
soft updates (see later in this chapter), a noasync mount creates a very
robust filesystem.

As noasync mounts are the default, you don’t need to specify it when
mounting, but when someone else does, don’t let it confuse you.

Disable Atime

Every file in UFS includes an access-time stamp, called the atime, which
records when the file was last accessed. If you have a large number of files
and don’t need this data, you can mount the disk noatime so that UFS doesn’t
update this timestamp. This is most useful for flash media or disks that suffer
from heavy load, such as Usenet news spool drives. Some software uses the
atime, though, so don’t disable it blindly.

Disable Execution

Your policy might say that certain filesystems shouldn’t have executable
programs. The noexec mount option prevents the system from executing any
programs on the filesystem. Mounting /home noexec can help prevent users
from running their own programs, but for it to be effective, also mount /tmp,
/var/tmp, and anywhere else users can write their own files noexec as well.

A noexec mount doesn’t prevent a user from running a shell script or
an interpreted script in Perl or Python or whatever. While the script might
be on a noexec filesystem, the interpreter usually isn’t.

Another common use for a noexec mount is when you have a filesystem
that contains binaries for a different operating system or a different hard-
ware architecture and you don’t want anyone to execute them.

Disable Suid

Setuid programs allow users to run programs as if they’re another user. For
example, programs such as login(1) must perform actions as root but must
be run by regular users. Setuid programs obviously must be written care-
fully so that intruders can’t exploit them to get unauthorized access to your
system. Many system administrators habitually disable all unneeded setuid
programs.

The nosuid option disables setuid access from all programs on a file-
system. As with noexec, script wrappers can easily evade nosuid restrictions.

Disable Clustering

FFS optimizes reads and writes on the physical media by clustering. Rather
than scattering a file all over the hard drive, it writes out the whole thing

The Unix File System 237

in large chunks. Similarly, it makes sense to read files in larger chunks. You
can disable this feature with the mount options noclusterr (for read cluster-
ing) and noclusterw (for write clustering).

Disable Symlinks

The nosymfollow option disables symlinks, or aliases to files. Symlinks are
mainly used to create aliases to files that reside on other partitions. To
create an alias to another file on the same partition, use a regular link
instead. See ln(1) for a discussion of links.

Aliases to directories are always symlinks; you cannot use a hard link
for those.

UFS Resiliency
UFS dates from the age when a power loss meant data loss. After decades of
use and debugging, UFS almost never loses data, especially when compared
with other open source filesystems. UFS achieves this resiliency by careful
integrity checking, especially after an unexpected shutdown like a power
failure.

The point of resiliency isn’t to verify the data on disk—UFS is pretty
good at that. It’s to speed integrity verification and filesystem recovery after
that unexpected shutdown. The size of modern disks means that verifica-
tion can take a long time without additional resiliency. An integrity check
of a 100MB filesystem is much faster than the same integrity check of a
multiterabyte filesystem! Adding resiliency improves recovery times.

UFS offers several ways to improve the resilience of a UFS filesystem,
such as soft updates and journaling. Before creating a filesystem, choose
one that fits your needs.

Soft Updates
Soft updates is a technology used to organize and arrange disk writes so
that filesystem metadata remains consistent at all times, giving nearly the
performance of an async mount with the reliability of a sync mount. That
doesn’t mean that all data will be safely written to disk—a power failure at
the wrong moment can still lose data. The file being written to disk at the
exact millisecond the power dies can’t get to the disk no matter what the
operating system does. But what’s actually on the disk will be internally
consistent. Soft updates lets UFS quickly recover from failure.

You can enable and disable soft updates when mounting or creating the
filesystem.

As filesystems grow, soft updates show their limits. Multiterabyte file-
systems still need quite a while to recover from an unplanned shutdown.
The original soft updates journaling paper (http://www.mckusick.com/softdep/
suj.pdf) mentions that a 92 percent full 14-drive array with a deliberately
damaged filesystem needed 10 hours for integrity checking. You’ll need a
journal well before then.

238 Chapter 11

Soft Updates Journaling
A journaling filesystem records any changes outside the actual filesystem.
Changes get quickly dumped to storage and then inserted into the filesystem
at a more leisurely pace. If the system dies unexpectedly, the filesystem auto-
matically recovers any changes from the journal. This vastly reduces the
requirement for rebuilding filesystem integrity at startup. When you install
FreeBSD, it defaults to creating UFS partitions with soft update journaling.

Rather than recording all transactions, the soft updates journal
records all metadata updates so that the filesystem can always be restored
to an internally consistent state. Benchmarks show that journaling adds
only a tiny amount of load to soft updates. It does add I/O overhead, how-
ever, as the system must dump all changes to the journal and then replay
them into the filesystem. It vastly reduces recovery time, however. That
14-drive array that needed 10 hours for integrity checking? It needed less
than one minute to recover from the same damage using the journal.

Soft updates with journaling is very powerful. Why wouldn’t you always
use journaling? Soft updates journaling disables UFS snapshots. If you
need UFS snapshots, you can’t journal. If you need snapshots, though,
you’re probably better off using ZFS anyway. FreeBSD’s version of dump(8)
uses UFS snapshots to back up live filesystems. Only us old Unix hands use
dump any more, and that’s mostly because we already know it, but if your
organization mandates using dump(8), you need another resiliency option.

GEOM Journaling
FreeBSD can also journal at the GEOM level with gjournal(8). Like any
other filesystem journal, gjournal records filesystem transactions. At boot,
FreeBSD checks the journal file for any changes not yet written to the file-
system and makes those changes, ensuring a consistent filesystem. Gjournal
predates soft updates journaling.

While soft updates journals only metadata, gjournal journals all file-
system transactions. You’re less likely to lose data in a system failure, but
everything gets written twice, which impacts performance. If you’re using
gjournal, though, don’t use any type of soft updates. You should also mount
the filesystem async. You can use snapshots on a gjournaled filesystem.

Gjournal uses 1GB of disk per filesystem. You can’t just turn it on and
off—you must have space for the journal. You can use a separate partition
for the journal or include the gigabyte in the partition if you leave space for
it. If you decide to add gjournal to an existing partition, you need to find
the space somewhere.

Should you use gjournal or soft updates journaling? I recommend
using soft updates journaling if at all possible. If that isn’t an option, use
plain soft updates. Use GEOM journaling if you need UFS snapshots,
including dump(8) on snapshots. Personally, I no longer use gjournal.

The Unix File System 239

Creating and Tuning UFS Filesystems
In the last chapter, we partitioned and labeled your disks. Now let’s put a
filesystem on those partitions. Create UFS filesystems with newfs(8), using a
device node as the last argument. Here, I create a filesystem on the device
/dev/gpt/var:

newfs /dev/gpt/var
/dev/gpt/var: u51200.0MB (104857600 sectors) vblock size 32768, wfragment size 4096
 using x82 cylinder groups of 626.09MB, 20035 blks, 80256 inodes.
super-block backups (for fsck_ffs -b #) at:
y192, 1282432, 2564672, 3846912, 5129152, 6411392, 7693632, 8975872,
--snip--

The first line repeats the device node and prints the partition’s size u,
along with the block v and fragment sizes w. You’ll get filesystem geometry
information x, a relic of the days when disk geometry bore some relation-
ship to the hardware. Finally, newfs(8) prints a list of super-block backups y.
The larger your filesystem, the more backup superblocks you get.

If you want to use soft updates journaling, add the -j flag. To use soft
updates without journaling, add the -U flag. After you’ve created the file-
system, you can enable and disable soft updates journaling, and plain soft
updates, with tunefs(8).

UFS Labeling
Device nodes can change, but labels remain constant. Best practice is to
label GPT partitions, but you can’t label MBR partitions. UFS filesystems on
an MBR can use a UFS label with the -L flag.

newfs -L var /dev/ada3s1d

The labels appear in /dev/ufs. Use them in /etc/fstab and other configu-
ration files to avoid disk renaming mayhem. You can’t apply UFS labels to
non-UFS filesystems.

If you’re using UFS on GPT partitions, choose either GPT or UFS labels.
Thanks to withering, you’ll see only one label at a time and probably con-
fuse yourself.

Block and Fragment Size
UFS’s efficiency is proportional to the number of blocks and fragments
read or written. Generally, FreeBSD can read a 10-block file in half the time
it needs to read a 20-block file. The FreeBSD developers chose the default
block and fragment sizes to accommodate the widest variety of files.

If you have a special-purpose filesystem that overwhelmingly contains
either large or small files, you might consider changing the block size when
creating the filesystem. While you can change the block size of an existing

240 Chapter 11

filesystem, it’s a terrible idea. Block sizes must be a power of 2. The assump-
tion that a fragment is one-eighth the size of a block is hardcoded in many
places, so let newfs(8) compute the fragment size from the block size.

Suppose I have a filesystem dedicated to large files, and I want to increase
the block size. The default block size is 32KB, so the next larger block size
would be 64KB. Specify the new block size with -b.

newfs -b 64K -L home /dev/da0s1d

If you’re going to have many small files, you might consider using a
smaller block size. One thing to watch out for is a fragment size smaller
than the underlying disk’s physical sector size. FreeBSD defaults to 4KB
fragments. If your disk has 4KB sectors, don’t use a smaller fragment size.
If you’re absolutely certain that your disk has 512-byte physical sectors, you
can consider creating a filesystem with a 16KB (or even 8KB) block size and
the corresponding 2KB or 1KB fragment size.

In my sysadmin career, I have needed1 a custom block size only twice.
Don’t use one until you experience a performance issue.

Using GEOM Journaling
Before using gjournal(8), decide where you’re putting the 1GB journal.
If possible, I’d recommend including that gigabyte in the filesystem parti-
tion. That means if you want a 50GB filesystem, put it in a 51GB partition.
Otherwise, use a separate partition.

Load the geom_journal kernel module with gjournal load or in /boot/
loader.conf before performing any gjournal operations.

To create a gjournal provider while including the partition in the
journal, use the gjournal label command.

gjournal label da3p5

If you want to have a separate provider be the journal, add that pro-
vider as a second argument.

gjournal label da3p5 da3p7

These commands run silently if successful. They create a new device
node with the same name as your journaled device, but with .journal added
to the end. Running gjournal label da3p5 creates /dev/da3p5.journal. From
this point on, do all work on the journaled device node.

Create your new UFS filesystem on the journaled device. Use the -J flag
to tell UFS it’s running on top of gjournal. Do not enable any sort of soft
updates, including soft updates journaling. It seems to work for a time . . .
then it doesn’t.

1. I used a custom block size several times, but most often I didn’t need it and it hurt
performance.

The Unix File System 241

Mount your gjournal filesystems async. The normal warnings that apply
to async mounts don’t apply to gjournal, however. The gjournal GEOM
module handles the verification and integrity checking normally managed
by the filesystem.

/dev/da3p5.journal /var/log ufs rw,async 2 2

The documentation says that you can convert an existing partition to
use gjournal, provided that you have a separate partition for the journal
and that the last sector of the existing filesystem is empty. In practice, I find
that the last sector of the existing filesystem is always full, but if you want to,
try to read gjournal(8) for the details.

Tuning UFS
You can view and change the settings on each UFS filesystem by using
tunefs(8). This lets you enable and disable features; plus, you can adjust
how UFS writes files, manages free space, and uses filesystem labels.

View Current Settings

View a filesystem’s current settings with the -p flag and the partition’s cur-
rent mount point or underlying provider.

tunefs -p /dev/gpt/var
tunefs: POSIX.1e ACLs: (-a) disabled

u tunefs: NFSv4 ACLs: (-N) disabled
v tunefs: MAC multilabel: (-l) disabled
w tunefs: soft updates: (-n) enabled
x tunefs: soft update journaling: (-j) enabled
y tunefs: gjournal: (-J) disabled

tunefs: trim: (-t) disabled
tunefs: maximum blocks per file in a cylinder group: (-e) 4096
tunefs: average file size: (-f) 16384
tunefs: average number of files in a directory: (-s) 64

z tunefs: minimum percentage of free space: (-m) 8%
tunefs: space to hold for metadata blocks: (-k) 6408
tunefs: optimization preference: (-o) time

{ tunefs: volume label: (-L)

Many of the available settings relate to specific security functionality
we don’t cover. Topics like MAC restrictions v and all the different types
of ACL u fill entire books. But we can see that this filesystem uses soft
updates w and soft updates journaling x, though it doesn’t use gjournal y.
We get the minimum amount of free space z. At the end, we have the non-
existent UFS label {. We get a bunch of information on filesystem geom-
etry and block size.

Use tunefs(8) to change any of these settings on an unmounted file-
system. Conveniently, tunefs(8) shows the command line flag to address
each. I normally boot into single-user mode before changing a filesystem’s
settings.

242 Chapter 11

You might notice that you can adjust all sorts of filesystem internals,
such as block arrangements and filesystem geometry. Don’t. In over two
decades of FreeBSD use, I have never seen anyone improve their situation
by twiddling these knobs. I have repeatedly seen people twiddle these
knobs and ruin their day.

But let’s look at the settings you might actually need to enable and disable.

Soft Updates and Journaling

Use the -j flag to enable or disable soft updates journaling on a filesystem.
This automatically enables soft updates.

tunefs -j enable /dev/gpt/var
Using inode 5 in cg 0 for 33554432 byte journal
tunefs: soft updates journaling set

To disable soft updates journaling, use the disable keyword.

tunefs -j disable /dev/gpt/var
Clearing journal flags from inode 5
tunefs: soft updates journaling cleared but soft updates still set.
tunefs: remove .sujournal to reclaim space

A soft updates journal on a nonjournaled filesystem can only confuse
matters. Mount the filesystem and remove the .sujournal file in the filesys-
tem’s root directory. Note that turning off journaling leaves soft updates
still in place. Use -n enable and -n disable to turn soft updates (without jour-
naling) on and off.

Minimum Free Space

UFS holds back 8 percent of each partition so that it has space to rear-
range files for better performance. I discuss this further in “UFS Space
Reservations” on page 249. If you want to change this percentage, use the
-m flag. Here, I tell the filesystem to reserve only 5 percent of the disk.

tunefs -m 5 /dev/gpt/var
tunefs: minimum percentage of free space changes from 8% to 5%
tunefs: should optimize for space with minfree < 8%

You should now have more usable disk space. Also, UFS will run more
slowly because it always packs the filesystem as tightly as possible.

SSD TRIM

Solid-state disks use wear-leveling to extend their lifespan. Wear-leveling
works best if the filesystem notifies the SSD when each block is no longer in
use. The TRIM protocol handles this notification. Enable TRIM support on
your SSD-backed filesystem with the -t flag.

The Unix File System 243

tunefs -t enable /dev/gpt/var
tunefs: issue TRIM to the disk set

For the best results, enable TRIM for every partition on a solid-state
drive. Enable TRIM at filesystem creation with newfs -E.

Labeling UFS Filesystems

You can apply a UFS label to an existing filesystem with the -L flag.

tunefs -L scratch /dev/ada3s1e

Don’t mix UFS and GPT labels—you’ll only confuse yourself.

Expanding UFS Filesystems
Your virtual machine runs out of space? Make the disk bigger, and expand
the last partition to cover that space, as discussed in Chapter 10. But what
about the filesystem on that partition? That’s where growfs(8) comes in.

The growfs(8) command expands an existing UFS filesystem to fill the
partition it’s in. Give growfs one argument, the filesystem’s device node. Use
labels if you like.

growfs /dev/gpt/var
It's strongly recommended to make a backup before growing the file system.
OK to grow filesystem on /dev/gpt/var from 50.0GB to 100GB? [Yes/No] uyes
super-block backups (for fsck_ffs -b #) at:
 19233792, 20516032, 21798272, 23080512, 24362752,
--snip--

When growfs(8) requests confirmation u, you must enter the full word
yes. Any other answer, including a plain y like many other programs accept,
cancels the operation. Confirm the operation and growfs(8) will add addi-
tional blocks, superblocks, and inodes as needed to fill the partition.

If you don’t want the filesystem to fill the entire partition, you can spec-
ify a size with -s. Here, I expand this same partition to 80GB.

growfs -s 80g /dev/gpt/var

I strongly encourage you to make filesystems the same size as the under-
lying partitions, unless you’re looking to make your coworkers slap you.2

UFS Snapshots
You can take an image of a UFS filesystem at a moment in time; this is called
a snapshot. You can snapshot a filesystem, erase and change some files, and

2. Again.

244 Chapter 11

then copy the unchanged files from the snapshot. Tools like dump(8) use
snapshots to ensure consistent backups. UFS snapshots are not as powerful or
flexible as ZFS snapshots, but they’re a solid, reliable tool within their limits.

UFS snapshots require soft updates but are incompatible with soft
updates journaling. Each filesystem can have up to 20 snapshots.

Snapshots let you get at the older version of an edited or removed file.
Access the contents of a snapshot by mounting the file as a memory device.
I’ll discuss memory devices in Chapter 13.

Taking and Destroying Snapshots
Create snapshots with mksnap_ffs(8). This program assumes you want to
make a snapshot of the filesystem your current working directory is in. Give
the snapshot location as an argument. Snapshots traditionally go in the
.snap directory at the filesystem root. If you’re using a tool that automati-
cally creates and removes snapshots, like dump(8), check there for your
snapshot files. If you don’t like that location, though, you can put them any-
where on the filesystem you’re taking the snapshot of. Here, I took a snap-
shot of the /home filesystem:

cd /home
mksnap_ffs .snap/beforeupgrade

Snapshots use disk space. You can’t take a snapshot of a full filesystem.
A snapshot is just a file. Remove the file and you destroy the snapshot.

Finding Snapshots
Snapshots are files, and you can put them anywhere on the filesystem. This
means it’s easy to lose them. Use find(1) with the -flags snapshot option to
find all snapshots on a filesystem.

find /usr -flags snapshot
/usr/.snap/beforeupgrade
/usr/.snap/afterupgrade
/usr/local/testsnap

There’s my stray snapshot!

Snapshot Disk Usage
A snapshot records the differences between the current filesystem and the
filesystem as it existed when the snapshot was taken. Every filesystem change
after taking a snapshot increases the size of the snapshot. If you remove a
file, the snapshot retains a copy of that file so you can recover it later.

This means deleting data from a filesystem with snapshots doesn’t actu-
ally free up space. If you have a snapshot of your /home partition and you
delete a file, the deleted file gets added to the snapshot.

The Unix File System 245

Make sure that filesystems with snapshots always have plenty of free
space. If you try to take a snapshot and mksnap_ffs(8) complains that it
can’t because there’s no space, you might already have 20 snapshots of that
filesystem.

UFS Recovery and Repair
Everything from faulty hardware to improper systems administration3 can
damage your filesystems. All of UFS’s resilience technologies are designed
to quickly restore data integrity, but nothing can completely guarantee
integrity.

Let’s discuss how FreeBSD keeps each UFS filesystem tidy.

System Shutdown: The Syncer
When you shut down a FreeBSD system, the kernel synchronizes all its
data to the hard drive, marks the disks clean, and shuts down. This is done
by a kernel process called the syncer. During a system shutdown, the syncer
reports on its progress in synchronizing the hard drive.

You’ll see odd things from the syncer during shutdown. The syncer
walks the list of vnodes that need synchronizing to disk, allowing it to sup-
port all filesystems, not just UFS. Thanks to soft updates, writing one vnode
to disk can generate another dirty vnode that needs updating. You can see
the number of buffers being written to disk rapidly drop from a high value
to a low value and perhaps bounce between zero and a low number once or
twice as the system really, truly synchronizes the hard drive.

If the syncer doesn’t get a chance to finish, or if the syncer doesn’t run
at all thanks to your ham-fisted fumbling, you get a dirty filesystem.

Dirty Filesystems
No, disks don’t get muddy with use (although dust on a platter will quickly
damage it, and adding water won’t help). A dirty UFS partition is in a kind
of limbo; the operating system has asked for information to be written to
the disk, but the data is not yet completely on the physical media. Part of the
data blocks might have been written, the inode might have been edited but
the data not written out, or any combination of the two. Live filesystems are
almost always dirty.

If a host with dirty filesystems fails—say, due to a panic or Bert tripping
over the power cable, the filesystem is still dirty when the system boots again.
The kernel refuses to mount a dirty filesystem.

Cleaning the filesystem restores data integrity but doesn’t necessarily
mean that all your data is on the disk. If a file was half-written to disk when
the system died, the file is lost. Nothing can restore the missing half of the
file, and the half on disk is essentially useless.

3. It’s probably sysadmin error, but you’ll probably blame the hardware.

246 Chapter 11

Journaled filesystems should automatically recover when FreeBSD tries
to mount them. If the filesystem can’t recover, or if you don’t have a journal,
you’ll need to use the legendary fsck(8).

File System Checking: fsck(8)
The fsck(8) program examines a UFS filesystem and tries to verify that
every file is attached to the proper inodes and in the correct directory. It’s
like verifying a database’s referential integrity. If the filesystem suffered
only minor damage, fsck(8) can automatically restore integrity and put the
filesystem back in service.

Repairing a damaged filesystem takes time and memory. A fsck(8) run
requires about 700MB of RAM to analyze a 1TB filesystem. Most computer
systems have fairly proportional memory and storage systems: very few hosts
have 512MB RAM and petabytes of disk. But you should know it’s possible
to create a UFS filesystem so large that the system doesn’t have enough
memory to repair it.

Manual fscks Runs

Occasionally this automated fsck-on-reboot fails to work. When you check
the console, you’ll be looking at a single-user mode prompt and a request to
run fsck(8) manually.

Start by preening the filesystem with fsck -p. This automatically corrects
a bunch of less severe errors without asking for your approval. Preening
causes data loss only rarely. This is frequently successful, but if it doesn’t
work, it will ask you to run a “full fsck.”

If you enter fsck at the command prompt, fsck(8) verifies every block
and inode on the disk. It finds any blocks that have become disassociated
from their inodes and guesses how they fit together and how they should
be attached. However, fsck(8) might not be able to identify which directory
these files belong in.

Then, fsck(8) asks whether you want to perform these reattachments.
If you answer n, it deletes the damaged files. If you answer y, it adds the lost
file to a lost+found directory in the root of the partition, with a number as
a filename. For example, the lost+found directory on your /usr partition
is /usr/lost+found. If there are only a few files, you can identify them manu-
ally; if you have many files and are looking for particular ones, tools such as
file(1) and grep(1) can help you identify them by content.

If you answer n, those nuggets of unknown data remain detached from
the filesystem. The filesystem remains dirty until you fix them by some
other means.

Trusting fsck(8)

If fsck(8) can’t figure out where a file goes . . . can you? If not, you really
have no choice but to trust fsck(8) to recover your system or restore from
backup.

The Unix File System 247

A full fsck(8) run inspects every block, inode, and superblock, and iden-
tifies every inconsistency. It asks you to type y or n to approve or reject every
single correction. Any change you reject you must fix yourself, through some
other means. You might spend hours at the console typing y, y, y.

So I’ll ask again: if fsck(8) can’t fix a problem, can you?
If you can’t, consider fsck -y. The -y flag tells fsck(8) to reassemble

these files as best it can, without prompting you. It assumes you answer all
its questions “yes,” even the really dangerous ones. Using -y automatically
triggers -R, which tells fsck(8) to retry cleaning each filesystem until it
succeeds or it’s had 10 consecutive failures. It’s cure or kill. You do have
backups, right?

You can set your system to try fsck -y automatically on boot. I don’t rec-
ommend this, however, because if there’s the faintest chance my filesystem
will wind up in digital nirvana, I want to know about it. I want to type the
offending command myself and feel the trepidation of hearing my disks
churn. Besides, it’s always unpleasant to discover that your system is trashed
without having the faintest clue how it got that way. If you’re braver than I,
set fsck_y_enable="YES" in rc.conf.

Avoiding fsck -y

What options do you have if you don’t want to use fsck -y? Well, fsdb(8) and
clri(8) allow you to debug the filesystem and redirect files to their proper
locations. You can restore files to their correct directories and names. This
is difficult,4 however, and is recommended only for Secret Ninja Filesystem
Masters.

Background fsck

Background fsck gives UFS some of the benefits of a journaled filesystem
without actually requiring journaling. You must be using soft updates

4. In the first edition of this book, I said using fsdb(8) and clri(8) was like climbing Mount
Everest in sandals and shorts. Really, it’s like you’re carrying your climbing guide too, except
he’s a chubby author who eats too much gelato and wears a heavy coat because Everest is even
colder than his native Michigan. And he’s live-tweeting your every misstep.

Da nge r!

Running fsck -y is not guaranteed safe. At times, when running -current or
when doing other daft things, I’ve had fsck -y migrate the entire contents of a
filesystem to lost+found. Recovery becomes difficult at that point. Having said
that, in a production system running FreeBSD-stable with a standard UFS file-
system, I’ve never had a problem.

248 Chapter 11

without journaling to use background fsck. (Soft updates with journaling
is far, far preferable to background fsck.) When FreeBSD sees that a back-
ground fsck is in process after a reboot, it mounts the dirty disk read-write.
While the server is running, fsck(8) runs in the background, identifying
loose bits of files and tidying them up behind the scenes.

A background fsck actually has two major stages. When FreeBSD finds
dirty disks during the initial boot process, it runs a preliminary fsck(8)
assessment of the disks. The fsck(8) program decides whether the damage
can be repaired while the system is running or whether a full single-user
mode fsck run is required. Most frequently, fsck thinks it can proceed and
lets the system boot. After the system reaches single-user mode, the back-
ground fsck runs at a low priority, checking the partitions one by one. The
results of the fsck process appear in /var/log/messages.

You can expect performance of any applications requiring disk activity
to be lousy during a background fsck. The fsck(8) program occupies a large
portion of the disk’s possible activity. While your system might be slow, it will
at least be up.

You must check /var/log/messages for errors after a background fsck. The
preliminary fsck assessment can make an error, and perhaps a full single-
user mode’s fsck on a partition really is required. If you find such a mes-
sage, schedule downtime within a few hours to correct the problem. While
inconvenient, having the system down for a scheduled period is better than
the unscheduled downtime caused by a power outage and the resulting
single-user mode’s fsck -y.

Forcing Read-Write Mounts on Dirty Disks
If you really want to force FreeBSD to mount a dirty disk read-write without
using a background fsck, you can. You won’t like the results. At all. But, as
it’s described in mount(8), some reader will think it’s a good idea unless
they know why. Use the -w (read-write) and -f (force) flags to mount(8).

Mounting a dirty partition read-write corrupts data. Note the absence
of words like might and could from that sentence. Also note I didn’t use
recoverable. Mounting a dirty filesystem may panic your computer. It might
destroy all remaining data on the partition or even shred the underlying
filesystem. Forcing a read-write mount of a dirty filesystem is seriously bad
juju. Don’t do it.

Background fsck, fsck -y, Foreground fsck, Oy Vey!
All these different fsck(8) problems and situations can occur, but when
does FreeBSD use each command? FreeBSD uses the following conditions
to decide when and how to fsck(8) on a filesystem:

•	 If the filesystem is clean, it is mounted without fsck(8).

•	 If a journaled filesystem is dirty at boot, FreeBSD recovers the data
from the journal and continues the boot. A journaled filesystem rarely
needs fsck(8).

The Unix File System 249

•	 If a filesystem without soft updates is dirty at boot, FreeBSD runs fsck(8)
on it. If the filesystem damage is severe, FreeBSD stops checking and
requests your intervention. You can either run fsck -y or manually
approve each correction.

•	 If a filesystem with soft updates is dirty at boot, FreeBSD performs a
very basic fsck(8) check. If the damage is mild, FreeBSD can use a back-
ground fsck(8) in multiuser mode.

•	 If the damage is severe, or you don’t want background fsck(8), FreeBSD
interrupts the boot and requests a manual fsck(8).

Consider the recovery path when configuring your UFS filesystems.

UFS Space Reservations
A UFS filesystem is never quite as large as you think it should be. UFS holds
back 8 percent of the filesystem space for on-the-fly optimization. Only root
can write over that limit. That’s why a filesystem can seem to use more than
100 percent of the available space. Why 8 percent? That number’s the result
of many years of experience and real-world testing. That 8 percent holdback
isn’t a big deal on average filesystems, but as the filesystem grows, it can be
considerable. On a 1PB disk array, UFS holds 80TB in reserve.

UFS behaves differently depending on how full a filesystem gets. On an
empty filesystem, it optimizes for speed. Once the filesystem hits 92 percent
full (85 percent of the total size, including the 8 percent reserve), it switches
to optimize space utilization. Most people do the same thing—once you
mostly fill up the laundry hamper, you can jam more dirty clothes in, but it
takes a little more time and effort. UFS fragments files to use space more
effectively. Fragments reduce disk performance. As free space shrinks, UFS
works harder and harder to improve space utilization. A full UFS filesystem
runs at about one-third the normal speed.

You might want to use tunefs(8) to reduce the amount of disk space
FreeBSD holds in reserve. It won’t help as much as you think. Reducing the
reserve to 5 percent or less tells UFS to always use space optimization and
pack the filesystem as tightly as possible.

Increasing the reserved space percentage doesn’t improve performance.
If you increase the reserved space percentage so that your filesystem appears
full, regular users won’t be able to write files.5

The reserved space can confuse tools such as NFS. Some other operat-
ing systems that can mount UFS over NFS see that a filesystem is 100 per-
cent full and tell the user they can’t write files, despite local clients being
able to write files. Remember this when troubleshooting.

The best thing to do is to keep your partition from filling up.

5. One could increase the reserved space percentage to make a filesystem appear extra full,
thus emphasizing your manager’s urgency in ramming the new disk through Purchasing. But
that would be wrong.

250 Chapter 11

How Full Is a Partition?
To get an overview of how much space each UFS partition has left, use
df(1). This lists the partitions on your system, the amount of space each
uses, and where it’s mounted. (Don’t use df(1) with ZFS; we’ll discuss why
in the next chapter.)

The -h and -H flags tell df(1) to produce human-readable output rather
than using blocks. The small -h uses base 2 to create a 1,024-byte megabyte,
while the large -H uses base 10 for a 1,000-byte megabyte. Typically, network
administrators and disk manufacturers use base 10, while system adminis-
trators use base 2. Either works so long as you know which you’ve chosen.
I’m a network administrator, so you get to suffer through my prejudices in
these examples, despite what my tech editor thinks.

df -H
u Filesystem Size Used Avail Capacity Mounted on
v /dev/gpt/root 1.0G 171M 785M 18% /

devfs 1.0k 1.0k 0B 100% /dev
/dev/gpt/var 1.0G 64M 892M 7% /var
/dev/gpt/tmp 1.0G 8.5M 948M 1% /tmp

w /dev/gpt/usr 14G 13.8G 203M 98% /usr

The first line shows us column headers u for the provider name, the
size of the partition, the amount of space used, the amount of space avail-
able, the percent of space used, and the mount point. We can see that the
partition labeled /dev/gpt/root v is only 1GB in size but has only 171MB on
it, leaving 785MB free. It’s 18 percent full and mounted on /.

If your systems are like mine, disk usage somehow keeps growing for no
apparent reason. Look at the /usr partition w here. It’s 98 percent full. You
can identify individual large files with ls -l, but recursively doing this on
every directory in the system is impractical.

$BlOCKSi Z e

One annoying thing about FreeBSD’s disk utilities, including df(1), is that they
default to providing information in 512-byte blocks. Blocks were fine with tiny
disks that used 512-byte physical blocks, but it’s not a useful measurement
today. The environment variable $BLOCKSIZE controls what unit df(1) provides
output in. The default .cshrc and .profile set $BLOCKSIZE to 1KB, which makes
df(1) show kilobytes instead of blocks.

The Unix File System 251

The du(1) program displays disk usage in a single directory. Its initial
output is intimidating and can scare off inexperienced users. Here, we use
du(1) to find out what’s taking up all the space in my home directory:

cd $HOME
du
1 ./bin/RCS
21459 ./bin/wp/shbin10
53202 ./bin/wp
53336 ./bin
5 ./.kde/share/applnk/staroffice_52
6 ./.kde/share/applnk
--snip--

This goes on and on, displaying every subdirectory and giving its size in
blocks. The total of each subdirectory is given—for example, the contents of
$HOME/bin totals 53,336 blocks, or roughly 53MB. I could sit and let du(1)
list every directory and subdirectory, but then I’d have to dig through much
more information than I really want to. And blocks aren’t that convenient a
measurement, especially not when they’re printed left-justified.

Let’s clean this up. First, du(1) supports an -h flag much like df. Also,
I don’t need to see the recursive contents of each subdirectory. We can
control the number of directories we display with du’s -d flag. This flag
takes one argument, the number of directories you want to explicitly list.
For example, -d0 goes one directory deep and gives a simple subtotal of the
files in a directory.

du -h -d0 $HOME
 14G /home/mwlucas

I have 14 gigs of data in my home directory? Let’s look a layer deeper
and identify the biggest subdirectory.

du -h -d1
 38K ./bin
 56M ./mibs
--snip--
 13G ./startrekgifs
--snip--

Apparently I must look elsewhere for storage space, as the data in my
home directory is too important to delete. Maybe I should just grow the
virtual disk under this host.

If you’re not too attached to the -h flag, you can use sort(1) to find the
largest directory with a command like du -kxd 1 | sort -n.

252 Chapter 11

Adding New UFS storage
No matter how much planning you do, eventually your hard drives will fill
up. You’ll need to add disks. Before you can use a new hard drive, you must
partition the drive, create filesystems, mount those filesystems, and move
data to them.

Give the design of your new disk partitioning and filesystems as much
thought as you did the initial install. It’s much easier to partition disks cor-
rectly at install than to go back and repartition disks with data on them.

Partitioning the Disk
While you can partition the disk any way you like, I recommend that new
disks use the same partitioning scheme as the rest of the host. Having one
disk partitioned with MBR and one with GPT is annoying. I’ll use GPT for
this example.

Decide how you want to divide the disk. This is a 1TB disk. 100GB will
go to an expanded /tmp. I’ll dedicate 500GB to my new database partition.
The remaining space gets partitioned off but labeled emergency. I won’t put a
filesystem in that space; it’s there in case I need to do a full memory dump
or have to put some files somewhere. I’m putting it right next to the data-
base partition so I can grow the database partition if needed. I could leave
the emergency space unpartitioned, but I want it to have a GPT label so that
my fellow sysadmins realize this free space isn’t accidental.

Start by destroying any partitioning scheme on the disk and creating a
GPT scheme.

gpart destroy -F da3
da3 destroyed
gpart create -s gpt da3
da3 created

Now create your 100GB /tmp and 500GB data partitions, and dump the
rest into the emergency partition.

gpart add -t freebsd-ufs -l tmp -s 100g da3
da3p1 added
gpart add -t freebsd-ufs -l postgres -s 500g da3
da3p2 added

BaCK Up, BaCK Up, BaCK Up!

Before doing anything with disks, be sure that you have a complete backup.
A single dumb fat-finger mistake can destroy your system! While you rarely
plan to reformat your root filesystem, if it happens, you want to recover really,
really quickly.

The Unix File System 253

gpart add -t freebsd-ufs -l emergency da3
da3p3 added

Check your work with gpart show.

gpart show -lp da3
=> 40 1953525088 da3 GPT (932G)
 40 209715200 da3p1 tmp (100G)
 209715240 1048576000 da3p2 postgres (500G)
 1258291240 695233888 da3p3 emergency (332G)

Create filesystems on each partition.

newfs -j /dev/gpt/tmp
newfs -j /dev/gpt/postgres

As /tmp gets emptied at every boot, I would prefer not to use soft updates
journaling on /tmp. Instead, I’d mount /tmp async and run newfs /dev/gpt/tmp
at boot. Many times, newfs(8) is faster than rm(1).

Configuring /etc/fstab
Now tell /etc/fstab about your filesystems. We discuss the format of /etc/fstab
in Chapter 10.

/dev/gpt/postgres /usr/local/etc/postgres ufs rw 0 2
/dev/gpt/tmp /tmp ufs rw 0 2

FreeBSD will recognize the filesystems at boot, or you can mount these
new partitions at the command line. Don’t reboot or mount the partitions
just yet, though. First you’ll want to move files to those filesystems.

Installing Existing Files onto New Disks
Chances are that you intend your new disk to replace or subdivide an exist-
ing partition. You’ll need to mount your new partition on a temporary mount
point, move files to the new disk, then remount the partition at the desired
location. While /tmp doesn’t have any files, if we’re installing a new database
filesystem, we presumably have database files to put there.

Before moving files, shut down any process using them. You cannot
successfully copy files that are being changed as you copy them. If you’re
moving your database files, shut down your database. If you’re moving your
mail spool, shut down all of your mail programs. This is a big part of why I
recommend doing all new disk installations in single-user mode.

Now mount your new partition on a temporary mount point. That’s
exactly what /mnt is for.

mount /dev/gpt/postgres /mnt

254 Chapter 11

Now you must move the files from their current location to the new disk
without changing their permissions. This is fairly simple with tar(1). You
can simply tar up your existing data to a tape or a file and untar it in the
new location, but that’s kind of clumsy. Pipe one tar into another to avoid
the middle step.

tar cfC - /old/directory . | tar xpfC - /tempmount

If you don’t speak Unix at parties, this looks fairly stunning. Let’s dis-
mantle it. First, we go to the old directory and tar up everything. Then, pipe
the output to a second command, which extracts the backup in the new
directory. When this command finishes, your files are installed on their new
disk. For example, to move /usr/local/etc/postgres onto a new partition tempo-
rarily mounted at /mnt, you would do the following:

tar cfC - /usr/local/etc/postgres . | tar xpfC - /mnt

Check the temporary mount point to be sure that your files are actu-
ally there. Once you’re confident that the files are properly moved, remove
the files from the old directory and mount the disk in the new location. For
example, after duplicating your files from /usr/local/etc/postgres, you’d run:

rm -rf /usr/local/etc/postgres
umount /mnt
mount /usr/local/etc/postgres

You can now resume normal operation. I recommend rebooting to
verify that everything comes back exactly as you intended.

Stackable Mounts
Maybe you don’t care about your old data; you want to split an existing
filesystem only to get more space and you intend to recover your data
from backup. That’s fine. All FreeBSD filesystems are stackable. This is an
advanced idea that’s not terribly useful in day-to-day system administration,
but it can bite you when you try to split one partition into two.

Suppose, for example, that you have data in /usr/src. See how much space
is used on your disk, and then mount a new empty partition on /usr/src. If you
look in the directory afterward, you’ll see that it’s empty.

Here’s the problem: the old filesystem still has all its original data on
it. The new filesystem is mounted “above” the old filesystem, so you see only
the new filesystem. The old filesystem has no more free space than before
you moved the data. If you unmount the new filesystem and check the
directory again, you’ll see the data miraculously restored! The new file-
system obscured the lower filesystem.

The Unix File System 255

Although you can’t see the data, data on the old filesystem still takes
up space. If you’re adding a filesystem to gain space, and you mount a new
filesystem over part of the old, you won’t free any space on your original
filesystem. The moral is: even if you’re restoring your data from backup,
make sure that you remove that data from your original disk to recover
disk space.

Now that you can talk UFS, let’s explore ZFS.

12
T h e Z F i l e S y S T e m

Most filesystems are, in computing terms,
ancient. We discard 5-year-old hardware

because it’s painfully slow, but we format the
replacement’s hard drive with a 40-year-old file-

system. While we’ve improved those filesystems and
made them more robust, they still use the same basic
architecture. And every time a filesystem breaks, we curse and scramble to
fix it while desperately wishing for something better.

ZFS is something better.
It’s not that ZFS uses revolutionary technology. All the individual pieces

of ZFS are well understood. There’s no mystery to hashes or data trees or
indexing. But ZFS combines all of these well-understood principles into
a single cohesive, well-engineered whole. It’s designed with the future in
mind. Today’s hashing algorithm won’t suffice 15 years from now, but ZFS is
designed so that new algorithms and techniques can be added to newer ver-
sions without losing backward compatibility.

This chapter won’t cover all there is to know about ZFS. ZFS is almost
an operating system on its own, or perhaps a special-purpose database.

258 Chapter 12

Entire books have been written about using and managing ZFS. You’ll learn
enough about how ZFS works to use it on a server, though, and understand
its most important features.

While ZFS expects to be installed directly on a disk partition, you can
use other GEOM providers as ZFS storage. The most common example is
when you do an install with encrypted disks. FreeBSD puts a geli(8) geom
on the disk and installs ZFS atop that geom. This chapter calls any storage
provider a “disk,” even though it could be a file or an encrypted provider or
anything else.

If you’ve never worked with ZFS before, install a ZFS-based FreeBSD
system on a virtual machine and follow along. The installer automatically
handles prerequisites, like setting zfs_load=YES in loader.conf and zfs_enable=YES
in rc.local; all you need concern yourself with is the filesystem.

ZFS blends a whole bunch of well-understood technologies into a com-
bination volume manager and filesystem. It expects to handle everything
from the permissions on a file down to tracking which blocks on which stor-
age provider get which information. As the sysadmin, you tell ZFS which
hardware you have and how you want it configured, and ZFS takes it from
there.

ZFS has three main components: datasets, pools, and virtual devices.

Datasets
A dataset is defined as a named chunk of ZFS data. The most common
dataset resembles a partitioned filesystem, but ZFS supports other types
of datasets for other uses. A snapshot (see “Snapshots” on page 271) is a
dataset. ZFS also includes block devices for virtualization and iSCSI targets,
clones, and more; all of those are datasets. This book focuses on filesystem
datasets. Traditional filesystems like UFS have a variety of small programs
to manage filesystems, but you manage all ZFS datasets with zfs(8).

View your existing datasets with zfs list. The output looks a lot like
mount(8).

zfs list
NAME USED AVAIL REFER MOUNTPOINT

u zroot 4.71G 894G 88K none
v zroot/ROOT 2.40G 894G 88K none

W h aT Doe S Z F S S Ta nD For?

The Z File System. Yes, seriously. Once upon a time, it meant Zettabyte File
System, but that acronym has been retconned away.

The Z File System 259

w zroot/ROOT/2018-11-17 8K 894G 1.51G /
x zroot/ROOT/default 2.40G 894G 1.57G /
y zroot/usr 1.95G 894G 88K /usr
z zroot/usr/home 520K 894G 520K /usr/home

--snip--

Each line starts with the dataset name, starting with the storage pool—
or zpool—that the dataset is on. The first entry is called zroot u. This entry
represents the pool’s root dataset. The rest of the dataset tree dangles off this
dataset.

The next two columns show the amount of space used and available.
The pool zroot has used 4.71GB and has 894GB available. While the avail-
able space is certainly correct, the 4.71GB is more complicated than it looks.
The amount of space a dataset shows under USED includes everything on
that dataset and on all of its children. A root dataset’s children include all
the other datasets in that zpool.

The REFER column is special to ZFS. This column shows the amount of
data accessible on this specific dataset, which isn’t necessarily the same as
the amount of space used. Some ZFS features, such as snapshots, share data
between themselves. This dataset has used 4.71GB of data but refers to only
88KB. Without its children, this dataset has only 88KB of data on it.

At the end, we have the dataset’s mount point. This root dataset doesn’t
have a mount point; it’s not mounted.

Look at the next dataset, zroot/ROOT v. This is a dataset created for
the root directory and associated files. That seems sensible, but if you look
at the REFER column, you’ll see it also has only 88KB of data inside it, and
there’s no mount point. Shouldn’t the root directory exist?

The next two lines explain why . . . sort of. The dataset zroot/ROOT
/2018-11-17 w has a mountpoint of /, so it’s a real root directory. The next
dataset, zroot/ROOT/default x, also has a mountpoint of /. No, ZFS doesn’t
let you mount multiple datasets at the same mount point. A ZFS dataset
records a whole bunch of its settings within the dataset. The mount point
is one of those settings.

Consider these four datasets for a moment. The zroot/ROOT dataset is
a child of the zroot dataset. The zroot/ROOT/2018-11-17 and zroot/ROOT/
default datasets are children of zroot/ROOT. Each dataset has its children’s
space usage billed against it.

Why do this? When you boot a FreeBSD ZFS host, you can easily choose
between multiple root directories. Each bootable root directory is called
a boot environment. Suppose you apply a patch and reboot the system, but
the new system won’t boot. By booting into an alternate boot environment,
you can easily access the defective root directory and try to figure out the
problem.

The next dataset, zroot/usr y, is a completely different child of zroot. It
has its own child, zroot/usr/home z. The space used in zroot/usr/home gets
charged against zroot/usr, and both get charged against its parent, but their
allocation doesn’t affect zroot/ROOT.

260 Chapter 12

Dataset Properties
Beyond some accounting tricks, datasets so far look a lot like partitions. But
a partition is a logical subdivision of a disk, filling very specific LBAs on a
storage device. Partitions have no awareness of the data on the partition.
Changing a partition means destroying the filesystem on it.

ZFS tightly integrates the filesystem and the lower storage layers. It can
dynamically divide storage space between the various filesystems as needed.
Where partitions control the number of available blocks to constrain disk
usage, datasets can use quotas for the same effect. Without those quotas,
though, if a pool has space, you can use it.

The amount of space a dataset can use is a ZFS property. ZFS supports
dozens of properties, from the quotas property that controls how large a
dataset can grow to the mounted property that shows whether a dataset is
mounted.

Viewing and Changing Dataset Properties

Use zfs set to change properties.

zfs set quota=2G zroot/usr/home

View a property with zfs get. You can either specify a particular prop-
erty or use all to view all properties. You can list multiple properties by
separating them with commas. If you specify a dataset name, you affect
only that dataset.

zfs get mounted zroot/ROOT
NAME PROPERTY VALUE SOURCE
zroot/ROOT mounted no -

Here, we have the dataset’s name, the property, the property value,
and something called source. (We’ll talk about that last one in “Property
Inheritance” on page 261.)

My real question is, which dataset is mounted as the root directory? I
could check the two datasets with a mount point of /, but when I get dozens
of boot environments, that will drive me nuts. Check a property for a data-
set and all of its children by adding the -r flag.

zfs get -r mounted zroot/ROOT
NAME PROPERTY VALUE SOURCE
zroot/ROOT mounted no -
zroot/ROOT/2018-11-17 mounted no -
zroot/ROOT/default mounted uyes -

Of the three datasets, only zroot/ROOT/default u is mounted. That’s our
active boot environment.

The Z File System 261

Property Inheritance

Many properties are inheritable. You set them on the parent dataset and
they percolate down through the children. Inheritance doesn’t make sense
for properties like mount points, but it’s right for certain more advanced fea-
tures. While we’ll look at what the compression property does in “Compression”
on page 273, we’ll use it as an example of inheritance here.

zfs get compression
NAME PROPERTY VALUE SOURCE
zroot compression lz4 local
zroot/ROOT compression lz4 inherited from zroot
zroot/ROOT/2018-11-17 compression lz4 inherited from zroot
zroot/ROOT/default compression lz4 inherited from zroot
zroot/tmp compression lz4 inherited from zroot
--snip--

The root dataset, zroot, has the compression property set to lz4. The
source is local, meaning that this property is set on this dataset. Now look at
zroot/ROOT. The compression property is also lz4, but the source is inherited
from zroot. This dataset inherited this property setting from its parent.

Managing Datasets
ZFS uses datasets much as traditional filesystems use partitions. Manage
datasets with zfs(8). You’ll want to create, remove, and rename datasets.

Create Datasets

Create datasets with zfs create. Create a filesystem dataset by specifying the
pool and the dataset name. Here, I create a new dataset for my packages.
(Note that this breaks boot environments, as we’ll see later this chapter.)

zfs create zroot/usr/local

Each dataset must have a parent dataset. A default FreeBSD install has
a zroot/usr dataset, so I can create a zroot/usr/local. I’d like to have a dataset
for /var/db/pkg, but while FreeBSD comes with a zroot/var dataset, there’s no
zroot/var/db. I’d need to create zroot/var/db and then zroot/var/db/pkg.

Note that datasets are stackable, just like UFS. If I have files in my
/usr/local directory and I create a dataset over that directory, ZFS will
mount the dataset over the directory. I will lose access to those files. You
must shuffle files around to duplicate existing directories.

Destroying and Renaming Datasets

That new zroot/usr/local dataset I created? It hid the contents of my /usr/local
directory. Get rid of it with zfs destroy and try again.

zfs destroy zroot/usr/local

262 Chapter 12

The contents of /usr/local reappear. Or, I could rename that dataset
instead, using zfs rename.

zfs rename zroot/usr/local zroot/usr/new-local

I like boot environments, though, so I’m going to leave /usr/local
untouched. Sometimes you really need a /usr/local dataset, though . . .

Unmounted Parent Datasets

As a Postgres user, I want a separate dataset for my Postgres data. FreeBSD’s
Postgres 9.6 package uses /var/db/pgsql/data96. I can’t create that dataset
without having a dataset for /var/db, and I can’t have that without breaking
boot environment support for packages. What to do?

The solution is to create a dataset for /var/db, but not to use it, by set-
ting the canmount dataset property. This property controls whether or not
a dataset can be mounted. FreeBSD uses an unmounted dataset for /var
for exactly this reason. New datasets automatically set canmount to on, so you
normally don’t have to worry about it. Use the -o flag to set a property at
dataset creation.

zfs create -o canmount=off zroot/var/db

The dataset for /var/db exists, but it can’t be mounted. Check the con-
tents of your /var/db directory to verify everything’s still there. You can now
create a dataset for /var/db/postgres and even /var/db/pgsql/data96.

zfs create zroot/var/db/postgres
zfs create zroot/var/db/postgres/data96
chown -R postgres:postgres /var/db/postgres

You have a dataset for your database, and you still have the files in
/var/db itself as part of the root dataset. Now initialize your new Postgres
database and go!

As you explore ZFS, you’ll find many situations where you might want
to set properties at dataset creation or use unmounted parent datasets.

Moving Files to a New Dataset

If you need to create a new dataset for an existing directory, you’ll need to
copy the files over. I recommend you create a new dataset with a slightly dif-
ferent name, copy the files to that dataset, rename the directory, and then
rename the dataset. Here, I want a dataset for /usr/local, so I create it with a
different name.

zfs create zroot/usr/local/pgsql-new

Copy the files with tar(1), exactly as you would for a new UFS partition
(see Chapter 11).

The Z File System 263

tar cfC - /usr/local/pgsql . | tar xpfC - /usr/local/pgsql-new

Once it finishes, move the old directory out of the way and rename the
dataset.

mv /usr/local/pgsql /usr/local/pgsql-old
zfs rename zroot/usr/local/pgsql-new zroot/usr/local/pgsql

My Postgres data now lives on its own dataset.

ZFS Pools
ZFS organizes its underlying storage in pools, rather than by disk. A ZFS
storage pool, or zpool, is an abstraction of the underlying storage devices,
letting you separate the physical medium and the user-visible filesystem on
top of it.

View and manage a host’s ZFS pools with zpool(8). Here, I use zpool
list to see the pools from one of my hosts.

zpool list
NAME SIZE ALLOC FREE EXPANDSZ FRAG CAP DEDUP HEALTH ALTROOT
zroot 928G 4.72G 923G - 0% 0% 1.00x ONLINE -
jail 928G 2.70G 925G - 0% 0% 1.00x ONLINE -
scratch 928G 5.94G 922G - 0% 0% 1.00x ONLINE -

This host has three pools: zroot, jail, and scratch. Each has its own line.
The SIZE column shows us the total capacity of the pool. All of these

pools can hold 928GB. The ALLOC column displays how much of each pool
is in use, while FREE shows how much space remains. These disks are pretty
much empty, which makes sense as I installed this host only about three
hours ago.

The EXPANDSZ column shows whether the underlying storage providers
have any free space. When a pool has virtual device redundancy (which we’ll
discuss in the next section), you can replace individual storage devices in the
pool and make the pool larger. It’s like swapping out the 5TB drives in your
RAID array with 10TB drives to make it bigger.

The FRAG column shows how much fragmentation this pool has. You’ve
heard over and over that fragmentation slows performance. ZFS minimizes
the impact of fragmentation, though.

The CAP column shows what percentage of the available space is used.
The DEDUP column shows whether this pool uses deduplication. While

many people trumpet deduplication as a ZFS feature, it’s not as useful as
you might hope.

The HEALTH column displays whether the pool is working well or the
underlying disks have a problem.

264 Chapter 12

Pool Details
You can get more detail on pools, or on a single pool, by running zpool
status. If you omit the pool name, you’ll see this information for all of your
pools. Here, I check the status of my jail pool.

zpool status jail
 pool: jail
 state: ONLINE
 scan: none requested
config:

 NAME STATE READ WRITE CKSUM
 jail ONLINE 0 0 0
 mirror-0 ONLINE 0 0 0
 gpt/da2-jail ONLINE 0 0 0
 gpt/ada2-jail ONLINE 0 0 0

errors: No known data errors

We start with the pool name. The state is much like the HEALTH column;
it displays any problems with the pool. The scan field shows information on
scrubs (see “Pool Integrity and Repair” on page 273).

We then have the pool configuration. The configuration shows the lay-
out of the virtual devices in the pool. We’ll dive into that when we create our
pools.

Pool Properties
Much like datasets, zpools have properties that control and display the
pool’s settings. Some properties are inherently informational, such as the
free property that expresses how much free space the pool has. You can
change others.

Viewing Pool Properties
To view all of a pool’s properties, use zpool get. Add the property all to view
every property. You can add a pool name to include only that pool.

zpool get all zroot
NAME PROPERTY VALUE SOURCE
zroot size 928G -
zroot capacity 0% -
zroot health ONLINE -
zroot guid 7955546176707282768 default
--snip--

Some of this information gets pulled into commands like zpool status
and zpool list. You can also query for individual properties across all pools
by using the property name.

The Z File System 265

zpool get readonly
NAME PROPERTY VALUE SOURCE
zroot readonly off -
jail readonly off -
scratch readonly off -

Unlike dataset properties, most pool properties are set when you create
or import the pool.

Virtual Devices
A virtual device (VDEV) is a group of storage devices. You might think of a
VDEV as a RAID container: a big RAID-5 presents itself to the operating
system as a huge device, even though the sysadmin knows it’s really a bunch
of smaller disks. The virtual device is where ZFS’s magic happens. You can
arrange pools for different levels of redundancy or abandon redundancy
and maximize space.

ZFS’s automated error correction takes place at the VDEV level. Everything
in ZFS, from znodes (index nodes) to data blocks, is checksummed to verify
integrity. If your pool has sufficient redundancy, ZFS will notice that data
is damaged and restore it from a good copy. If your pool lacks redundancy,
ZFS will notify you that the data is damaged and you can restore from backup.

A zpool consists of one or more identical VDEVs. The pool stripes data
across all the VDEVs, with no redundancy. The loss of a VDEV means the
loss of the pool. If you have a pool with a whole bunch of disks, make sure
to use redundant VDEVs.

VDEV Types and Redundancy
ZFS supports several different types of VDEV, each differentiated by the
degree and style of redundancy they offer. The common mirrored disk,
where each disk copies what’s on another disk, is one type of VDEV. Piles of
disks with no redundancy is another type of VDEV. And ZFS includes three
different varieties of sophisticated parity-based redundancy, called RAID-Z.

Using multiple VDEVs in a pool creates systems similar to advanced
RAID arrays. A RAID-Z2 array looks an awful lot like RAID-6, but a ZFS
pool with two RAID-Z2 VDEVs resembles RAID-60. Mirrored VDEVs work
like RAID-1, but multiple mirrors in a pool behave like RAID-10. In both of
these cases, ZFS stripes the data across the VDEV with no redundancy. The
individual VDEVs provide the redundancy.

Choose your VDEV type carefully.

Striped VDEVs

A VDEV composed of a single disk is called a stripe and has no redundancy.
Losing the disk means losing your data. While a pool can contain multiple
striped VDEVs, each disk is its own VDEV. Much like RAID-0, losing one
disk means losing the whole pool.

266 Chapter 12

Mirror VDEVs

A mirror VDEV stores a complete copy of all the VDEV’s data on every disk.
You can lose all but one of the drives in the VDEV and still access your data.
A mirror can contain any number of disks.

ZFS can read data from all of the mirrored disks simultaneously, so
reading data is fast. When you write data, though, ZFS must write that data
to all of the disks simultaneously. The write isn’t complete until the slowest
disk finishes. Write performance suffers.

RAID-Z

RAID-Z spreads data and parity information across all of the disks, much
like conventional RAID. If a disk in a RAID-Z dies or starts giving corrupt
data, RAID-Z uses the parity information to recalculate the missing data. A
RAID-Z VDEV must contain at least three disks and can withstand the loss
of any single disk. RAID-Z is sometimes called RAID-Z1.

You can’t add or remove disks in a RAID-Z. If you create a five-disk
RAID-Z, it will remain a five-disk RAID-Z forever. Don’t go thinking you
can add an additional disk to a RAID-Z for more storage. You can’t.

If you’re using disks over 2TB, there’s a nontrivial chance of a second
drive failing as you repair the first drive. For large disks, you should prob-
ably consider RAID-Z2.

RAID-Z2

RAID-Z2 stripes parity and data across every disk in the VDEV, much
like RAID-Z1, but doubles the amount of parity information. This means
a RAID-Z2 can withstand the loss of up to two disks. You can’t add or
remove disks from a RAID-Z2. It is slightly slower than RAID-Z.

A RAID-Z2 must have four or more disks.

RAID-Z3

Triple parity is for the most important data or those sysadmins with a whole
bunch of disks and no time to fanny about. You can lose up to three disks in
your RAID-Z3 without losing data. As with any other RAID-Z, you can’t add
or remove disks from a RAID-Z3.

A RAID-Z3 must have five or more disks.

Log and Cache VDEVs

Pools can improve performance with special-purpose VDEVs. Only adjust
or implement these if performance problems demand them; don’t add
them proactively.1 Most people don’t need them, so I won’t go into details,
but you should know they exist in case you get unlucky.

1. Proactively adding a performance-boosting SLOG or L2ARC is a valid solution for
administrative problems, like soothing the boss.

The Z File System 267

The Separate Intent Log (SLOG or ZIL) is ZFS’s filesystem journal. Pending
writes get dumped to the SLOG and then arranged more properly in the
primary pool. Every pool dedicates a chunk of disk space for a SLOG, but
you can use a separate device for the SLOG instead. You need faster writes?
Install a really fast drive and dedicate it to the SLOG. The pool will dump
all its initial writes to the fast disk device and then migrate those writes to
the slower media as time permits. A dedicated fast SLOG will also smooth
out bursty I/O.

The Level 2 Adaptive Replacement Cache (L2ARC) is like the SLOG but for
reads. ZFS keeps the most recently accessed and the most frequently accessed
data in memory. By adding a really fast device as an L2ARC, you expand the
amount of data ZFS can provide from cache instead of calling from slow disk.
An L2ARC is slower than memory but faster than the slow disk.

RAID-Z and Pools

You can add VDEVs to a pool. You can’t add disks to a RAID-Z VDEV. Think
about your storage needs and your hardware before creating your pools.

Suppose you have a server that can hold 20 hard drives, but you have
only 12 drives. You create a single RAID-Z2 VDEV out of those 12 drives,
thinking that you’ll add more drives to the pool later if you need them. You
haven’t even finished installing the server, and already you’ve failed.

You can add multiple identical VDEVs to a pool. If you create a pool
with a 12-disk VDEV, and the host can hold only another 8 disks, there’s no
way to create a second identical VDEV. A 12-disk RAID-Z2 isn’t identical to
an 8-disk RAID-Z2. You can force ZFS to accept the different VDEVs, but
performance will suffer. Adding a VDEV to a pool is irreversible.

Plan ahead. Look at your physical gear. Decide how you will expand
your storage. This 20-drive server would be fine with two 10-disk RAID-Z2
VDEVs, or one 12-disk pool and a separate 8-disk pool. Don’t sabotage
yourself.

Once you know what sort of VDEV you want to use, you can create a pool.

Managing Pools
Now that you understand the different VDEV types and have indulged in
planning your storage, let’s create some different types of zpools. Start by
setting your disk block size.

ZFS and Disk Block Size
Chapter 10 covered how modern disks have two different sector sizes,
512 bytes and 4KB. While a filesystem can safely assume a disk has 4KB
sectors, if your filesystem assumes the disk has 512-byte sectors and the
disk really has 4KB sectors, your performance will plunge. ZFS, of course,
assumes that disks have 512-byte sectors. If your disk really has 512-byte
sectors, you’re good. If you’re not sure what size the physical sectors are,
though, err on the side of caution and tell ZFS to use 4KB sectors. Control

268 Chapter 12

ZFS’s disk sector assumptions with the ashift property. An ashift of 9 tells
ZFS to use 512-byte sectors, while an ashift of 12 indicates 4KB sectors.
Control ashift with the sysctl vfs.zfs.min_auto_ashift.

sysctl vfs.zfs.min_auto_ashift=12

Make this permanent by setting it in /etc/sysctl.conf.
You must set ashift before creating a pool. Setting it after pool creation

has no effect.
If you’re not sure what size sectors your disks have, use an ashift of 12.

That’s what the FreeBSD installer does. You’ll lose a small amount of perfor-
mance, but using an ashift of 9 on 4KB disks will drain system performance.

Now create your pools.

Creating and Viewing Pools
Create a pool with the zpool create command.

zpool create poolname vdevtype disks...

If the command succeeds, you get no output back.
Here, I create a pool named db, using a mirror VDEV and two GPT-

labeled partitions:

zpool create db mirror gpt/zfs3 gpt/zfs4

The structure we assign gets reflected in the pool status.

zpool status db
--snip--
config:

 NAME STATE READ WRITE CKSUM
 db ONLINE 0 0 0

 u mirror-0 ONLINE 0 0 0
 v gpt/zfs3 ONLINE 0 0 0
 w gpt/zfs4 ONLINE 0 0 0

--snip--

The pool db contains a single VDEV, named mirror-0 u. It includes
two partitions with GPT labels, /dev/gpt/zfs3 v and /dev/gpt/zfs w. All of
those partitions are online.

If you don’t include a VDEV name, zpool(8) creates a striped pool with
no redundancy. Here, I create a striped pool called scratch:

zpool create scratch gpt/zfs3 gpt/zfs4

The Z File System 269

The pool status shows each VDEV, named after the underlying disk.

--snip--
 NAME STATE READ WRITE CKSUM
 garbage ONLINE 0 0 0
 gpt/zfs3 ONLINE 0 0 0
 gpt/zfs4 ONLINE 0 0 0
--snip--

Creating any type of RAID-Z looks much like creating a mirror. Just use
the correct VDEV type.

zpool create db raidz gpt/zfs3 gpt/zfs4 gpt/zfs5

The pool status closely resembles that of a mirror, but with more disks
in the VDEV.

Multi-VDEV Pools
When you’re creating a pool, the keywords mirror, raidz, raidz2, and raidz3
all tell zpool(8) to create a new VDEV. Any disks listed after one of those
keywords goes into creating a new VDEV. To create a pool with multiple
VDEVs, you’d do something like this:

zpool create poolname vdevtype disks... vdevtype disks...

Here, I create a pool containing two RAID-Z VDEVs, each with three
disks:

zpool create db raidz gpt/zfs3 gpt/zfs4 gpt/zfs5 raidz gpt/zfs6 gpt/zfs7
gpt/zfs8

A zpool status on this new pool will look a little different.

--snip--
 NAME STATE READ WRITE CKSUM
 db ONLINE 0 0 0

 u raidz1-0 ONLINE 0 0 0
 gpt/zfs3 ONLINE 0 0 0
 gpt/zfs4 ONLINE 0 0 0
 gpt/zfs5 ONLINE 0 0 0

 v raidz1-1 ONLINE 0 0 0
 gpt/zfs6 ONLINE 0 0 0
 gpt/zfs7 ONLINE 0 0 0
 gpt/zfs8 ONLINE 0 0 0
--snip--

This pool contains a VDEV called raidz1-0 u with three disks in it.
There’s a second VDEV, named raidz1-1 v, with three disks in it. It’s very
clear that these are identical pools. Data gets striped across both VDEVs.

270 Chapter 12

Destroying Pools
To destroy a pool, use zpool destroy and the pool name.

zpool destroy db

Note that zpool doesn’t ask whether you’re really sure before destroy-
ing the pool. Being sure you want to destroy the pool is your problem, not
zpool(8)’s.

Errors and -f
If you enter a command that doesn’t make sense, zpool(8) will complain.

zpool create db raidz gpt/zfs3 gpt/zfs4 gpt/zfs5 raidz gpt/zfs6 gpt/zfs7
invalid vdev specification
use '-f' to override the following errors:
mismatched replication level: both 3-way and 2-way raidz vdevs are present

The first thing you see when reading the error message is “use -f to
override this error.” Many sysadmins read this as “-f makes this problem go
away.” What ZFS is really saying, though, is “Your command line is a horri-
ble mistake. Add -f to do something unfixable, harmful to system stability,
and that you’ll regret as long as this system lives.”

Most zfs(8) and zpool(8) error messages are meaningful, but you have
to read them carefully. If you don’t understand the message, fall back on
the troubleshooting instructions in Chapter 1. Often, reexamining what
you typed will expose the problem.

In this example, I asked zpool(8) to create a pool with a RAID-Z VDEV
containing three disks and a second RAID-Z VDEV containing only two
disks. I screwed up this command line. Adding -f and proceeding to install
my database to the new malformed db pool would only ensure that I have
to recreate this pool and reinstall the database at a later date.2 If you find
yourself in this situation, investigate zfs send and zfs recv.

Copy-On-Write
In both ordinary filesystems and ZFS, files exist as blocks on the disk.
When you edit a file in a traditional filesystem, the filesystem picks up the
block, modifies it, and sets it back down in the same place on the disk. A
system problem halfway through that write can cause a shorn write : a file
that’s 50 percent the old version, 50 percent the new version, and probably
100 percent unusable.

ZFS never overwrites the existing blocks in a file. When a file changes,
ZFS identifies the blocks that must change and writes them to a new chunk

2. Probably after several meetings about why the database server is sooo blasted slow.

The Z File System 271

of disk space. The old version is left intact. This is called copy-on-write (COW).
With copy-on-write, a short write might lose the newest changes to the file,
but the previous version of the file will remain intact.

Never corrupting files is a great benefit to copy-on-write, but COW
opens up other possibilities. The metadata blocks are also copy-on-write,
all the way up to the uberblocks that form the root of the ZFS pool’s data
tree. ZFS creates snapshots by tracking the blocks that contain old versions
of a file. While that sounds simple, the details are what will lead you astray.

Snapshots
A snapshot is a copy of a dataset as it existed at a specific instant. Snapshots
are read-only and never change. You can access the contents of a snapshot
to access older versions of files or even deleted files. While snapshots are
read-only, you can roll the dataset back to the snapshot. Take a snapshot
before upgrading a system, and if the upgrade goes horribly wrong, you can
fall back to the snapshot. ZFS uses snapshots to provide many features, such
as boot environments (see “Boot Environments” on page 276). Best of all,
depending on your data, snapshots can take up only tiny amounts of space.

Every dataset has a bunch of metadata, all built as a tree from a top-
level block. When you create a snapshot, ZFS duplicates that top-level block.
One of those metadata blocks goes with the dataset, while the other goes
with the snapshot. The dataset and the snapshot share the data blocks
within the dataset.

Deleting, modifying, or overwriting a file on the live dataset means allo-
cating new blocks for the new data and disconnecting blocks containing the
old data. Snapshots need some of those old data blocks, however. Before dis-
carding an old block, ZFS checks to see whether a snapshot still needs it. If a
snapshot needs a block, but the dataset no longer does, ZFS keeps the block.

So, a snapshot is merely a list of which blocks the dataset used at the
time the snapshot was taken. Creating a snapshot tells ZFS to preserve those
blocks, even if the dataset no longer needs those blocks.

Creating Snapshots
Use the zfs snapshot command to create snapshots. Specify the dataset by its
full path, then add @ and a snapshot name. I habitually name my snapshots
after the date and time I create the snapshot, for reasons that will become
clear by the end of this chapter.

I’m about to do maintenance on user home directories, removing old
stuff to free up space. I’m pretty sure that someone will whinge about me
removing their files,3 so I want to create a snapshot before cleaning up.

zfs snapshot zroot/usr/home@2018-07-21-13:09:00

3. If someone is so daft as to request an account on my systems, I treat them with all the
respect they deserve: none.

272 Chapter 12

I don’t get any feedback. Did anything happen? View all your snapshots
with the -t snapshot argument to zfs list.

zfs list -t snapshot
NAME USED AVAIL REFER MOUNTPOINT
zroot/usr/home@2018-07-21-13:09:00 u0 v- w4.68G x-

The snapshot exists. The USED column shows that it uses zero disk
space u: it’s identical to the dataset it came from. As snapshots are read-
only, available space v shown by AVAIL is just not relevant. The REFER column
shows that this snapshot pulls in 4.68GB of disk space w. If you check, you’ll
see that’s the size of zroot/usr/home. Finally, the MOUNTPOINT column shows that
this snapshot isn’t mounted x.

This is an active system, and other people are logged into it. I wait a
moment and check my snapshots again.

zfs list -t snapshot
NAME USED AVAIL REFER MOUNTPOINT
zroot/usr/home@2018-07-21-13:09:00 u96K - 4.68G -

The snapshot now uses 96KB u. A user changed something on the
dataset, and the snapshot gets charged with the space needed to maintain
the difference.

Now I go on my rampage, and get rid of the files I think are garbage.

zfs list -t snapshot
NAME USED AVAIL REFER MOUNTPOINT
zroot/usr/home@2018-07-21-13:09:00 1.62G - 4.68G -

This snapshot now uses 1.62GB of space. Those are files that I’ve deleted
but that are still available in the snapshot. I’ll keep this snapshot for a little
while to give the users a chance to complain.

Accessing Snapshots
Every ZFS dataset has a hidden .zfs directory in its root. It won’t show up
in ls(1); you have to know it exists. That directory has a snapshot directory,
which contains a directory named after each snapshot. The contents of
the snapshot are in that directory.

For our snapshot zroot/usr/home@2018-07-21-13:09:00, we’d go to
/usr/home/.zfs/snapshot/2018-07-21-13:09:00. While the .zfs directory
doesn’t show up in ls(1), once you’re in it, ls(1) works normally. That
directory contains every file as it existed when I created the snapshot,
even if I’ve deleted or changed that file since creating that snapshot.

Recovering a file from the snapshot requires only copying the file from
the snapshot to a read-write location.

The Z File System 273

Destroying Snapshots
A snapshot is a dataset, just like a filesystem-style dataset. Remove it with
zfs destroy.

zfs destroy zroot/usr/home@2017-07-21-13:09:00

The space used by the snapshot is now available for more junk files.

Compression
Snapshots aren’t the only way ZFS can save space. ZFS uses on-the-fly com-
pression, transparently inspecting the contents of each file and squeezing its
size if possible. With ZFS, your programs don’t need to compress their log
files: the filesystem will do it for you in real time. While FreeBSD enables
compression by default at install time, you’ll use it more effectively if you
understand how it works.

Compression changes system performance, but probably not in the way
you think it would. You’ll need CPU time to compress and decompress data
as it goes to and from the disk. Most disk requests are smaller than usual,
however. You essentially exchange processor time for disk I/O. Every server
I manage, whether bare metal or virtual, has far, far more processor capac-
ity than disk I/O, so that’s a trade I’ll gleefully make. The end result is that
using ZFS compression most often increases performance.

Compression works differently on different datasets. Binary files are
already pretty tightly compressed; compressing /usr/bin doesn’t save much
space. Compressing /var/log, though, often results in reducing file size by a
factor of six or seven. Check the property compressratio to see how effectively
compression shrinks your data. My hosts write to logs far more often than
they write binaries. I’ll gleefully accept a sixfold performance increase for
the most common task.

ZFS supports many compression algorithms, but the default is lz4. The
lz4 algorithm is special in that in quickly recognizes incompressible files.
When you write a binary to disk, lz4 looks at it and says, “Nope, I can’t help
you,” and immediately quits trying. This eliminates pointless CPU load. It
effectively compresses files that can be compressed, however.

Pool Integrity and Repair
Every piece of data in a ZFS pool has an associated cryptographic hash
stored in its metadata to verify integrity. Every time you access a piece of
data, ZFS recomputes the hash of every block in that data. When ZFS dis-
covers corrupt data in a pool with redundancy, it transparently corrects that
data and proceeds. If ZFS discovers corrupt data in a pool without redun-
dancy, it gives a warning and refuses to serve the data. If your pool has iden-
tified any data errors, they’ll show up in zpool status.

274 Chapter 12

Integrity Verification
In addition to the on-the-fly verification, ZFS can explicitly walk the entire
filesystem tree and verify every chunk of data in the pool. This is called
a scrub. Unlike UFS’s fsck(8), scrubs happen while the pool is online and
in use. If you’ve previously run a scrub, that will also show up in the pool
status.

 scan: scrub repaired 0 in 8h3m with 0 errors on Fri Jul 21 14:17:29 2017

To scrub a pool, run zpool scrub and give the pool name.

zpool scrub zroot

You can watch the progress of the scrub with zpool status.
Scrubbing a pool reduces its performance. If your system is already

pushing its limits, scrub pools only during off hours. You can cancel a
scrub4 with the -s option.

zpool scrub -s zroot

Run another scrub once the load drops.

Repairing Pools
Disks fail. That’s what they’re for. The point of redundancy is that you
can replace failing or flat-out busted disks with working disks and restore
redundancy.

Mirror and RAID-Z virtual devices are specifically designed to recon-
struct the data lost when a disk fails. They’re much like RAID in that regard.
If one disk in a ZFS mirror dies, you replace the dead disk, and ZFS copies
the surviving mirror onto the new disk. If a disk in a RAID-Z VDEV fails,
you replace the busted drive, and ZFS rebuilds the data on that disk from
parity data.

In ZFS, this reconstruction is called resilvering. Like other ZFS integ-
rity operations, resilvering takes place only on live filesystems. Resilvering
isn’t quite like rebuilding a RAID disk from parity, as ZFS leverages its
knowledge of the filesystem to optimize repopulating the replacement
device. Resilvering begins automatically when you replace a failed device.
ZFS resilvers at a low priority so that it doesn’t interfere with normal
operations.

Pool Status
The zpool status command shows the health of the underlying storage hard-
ware in the STATE field. We’ve seen a couple examples of healthy pools, so
let’s take a look at an unhealthy pool.

4. Note that I have enough self-respect not to say “scrub a scrub.” Barely enough, but enough.

The Z File System 275

zpool status db
 pool: db
 state: uDEGRADED
status: One or more devices could not be opened. Sufficient replicas exist for
 the pool to continue functioning in a degraded state.
action: Attach the missing device and online it using 'zpool online'.
 see: http://illumos.org/msg/ZFS-8000-2Q
 scan: none requested
config:

 NAME STATE READ WRITE CKSUM
 db DEGRADED 0 0 0
 vmirror-0 DEGRADED 0 0 0
 gpt/zfs1 ONLINE 0 0 0
 w14398195156659397932 xUNAVAIL 0 0 0 ywas /dev/gpt/zfs3

errors: No known data errors

The pool state is DEGRADED u. If you look further down the output, you’ll
see more DEGRADED entries and an UNAVAIL x. What exactly does that mean?

Errors in a pool percolate upward. The pool state is a summary of the
health of the pool as a whole. The whole pool shows up as DEGRADED because
the pool’s virtual device mirror-0 v is DEGRADED. This error comes from an
underlying disk being in the UNAVAIL state. We get the ZFS GUID w for this
disk, and the label used to create the pool y.

ZFS pools show an error when an underlying device has an error. When
a pool has a state other than ONLINE, dig through the VDEV and disk listings
until you find the real problem.

Pools, VDEVs, and disks can have six states:

ONLINE The device is functioning normally.

DEGRADED The pool or VDEV has at least one provider missing,
offline, or generating errors more quickly than ZFS tolerates. Redundancy
is handling the error, but you need to address this right now.

FAULTED A faulted disk is corrupt or generating errors more quickly
than ZFS can tolerate. A faulted VDEV takes the last known good copy
of the data. A two-disk mirror with two bad disks faults.

UNAVAIL ZFS can’t open the disk. Maybe it’s been removed, shut off,
or that iffy cable finally failed. It’s not there, so ZFS can’t use it.

OFFLINE This device has been deliberately turned off.

REMOVED Some hardware detects when a drive is physically
removed while the system is running, letting ZFS set the REMOVED
flag. When you plug the drive back in, ZFS tries to reactivate the disk.

Our missing disk is in the UNAVAIL state. For whatever reason, ZFS
can’t access /dev/gpt/zfs3, but the disk mirror is still serving data because it
has a working disk. Here’s where you get to run around to figure out where
that disk went. How you manage ZFS depends on what you discover.

276 Chapter 12

Reattaching and Detaching Drives

Unavailable drives might not be dead. They might be disconnected. If you
wiggle a drive tray and suddenly get a green light, the disk is fine but the
connection is faulty. You should address that hardware problem, yes, but in
the meantime, you can reactivate the drive. You can also reactivate delib-
erately removed drives. Use the zpool online command with the pool name
and the GUID of the missing disk as arguments. If the disk in my example
pool were merely disconnected, I could reactivate it like so:

zpool online db 14398195156659397932

ZFS resilvers the drive and resumes normal function.
If you want to remove a drive, you can tell ZFS to take it offline with

zpool offline. Give the pool and disk names as arguments.

zpool offline db gpt/zfs6

Bringing disks offline, physically moving them, bringing them back
online, and allowing the pools to resilver will let you migrate large storage
arrays from one SAS cage to another without downtime.

Replacing Drives

If the drive isn’t merely loose but flat-out busted, you’ll need to replace it
with a new drive. ZFS lets you replace drives in several ways, but the most
common is using zpool replace. Use the pool name, the failed provider, and
the new provider as arguments. Here, I replace the db pool’s /dev/gpt/zfs3
disk with /dev/gpt/zfs6 :

zpool replace db gpt/zfs3 gpt/zfs6

The pool will resilver itself and resume normal operation.
In a large storage array, you can also use successive zpool replace opera-

tions to empty a disk shelf. Only do this if your organization’s operation
requirements don’t allow you to offline and online disks.

Boot Environments
ZFS helps us cope with one of the most dangerous things sysadmins do.
No, not our eating habits. No, not a lack of exercise. I’m talking about
system upgrades. When an upgrade goes well, everybody’s happy. When
the upgrade goes poorly, it can ruin your day, your weekend, or your job.
Nobody likes restoring from backup when the mission-critical software
chokes on the new version of a shared library. Nobody likes to restore
from backup.

Through the magic of boot environments, ZFS takes advantage of snap-
shots to let you fall back from a system upgrade with only a reboot. A boot

The Z File System 277

environment is a clone of the root dataset. It includes the kernel, the base
system userland, the add-on packages, and the core system databases.
Before running an upgrade, create a boot environment. If the upgrade
goes well, you’re good. If the upgrade goes badly, though, you can reboot
into the boot environment. This restores service while you investigate how
the upgrade failed and what you can do to fix those problems.

Boot environments do not work when a host requires a separate boot
pool. The installer handles boot pools for you. They appear when combin-
ing UEFI and GELI, or when using ZFS on an MBR-partitioned disk.

Using boot environments requires a boot environment manager. I recom-
mend beadm(8), available as a package.

pkg install beadm

You’re now ready to use boot environments.

Viewing Boot Environments
Each boot environment is a dataset under zroot/ROOT. A system where
you’ve just installed beadm should have only one boot environment. Use
beadm list to view them all.

beadm list
BE Active Mountpoint Space Created

 udefault vNR w/ x2.4G y2018-05-04 13:13

This host has one boot environment, named default u, after the dataset
zroot/ROOT/default.

The Active column v shows whether this boot environment is in use.
An N means that the environment is now in use. An R means that this
environment will be active after a reboot. They appear together when
the default environment is running.

The Mountpoint column w shows the location of this boot environ-
ment’s mount point. Most boot environments aren’t mounted unless they’re
in use, but you can use beadm(8) to mount an unused boot environment.

The Space column x shows the amount of disk space this boot environ-
ment uses. It’s built on a snapshot, so the dataset probably has more data
than this amount in it.

The Created column y shows the date this boot environment was
created. In this case, it’s the date the machine was installed.

Before changing the system, create a new boot environment.

Creating and Accessing Boot Environments
Each boot environment needs a name. I recommend names based on the
current operating system version and patch level or the date. Names like
“beforeupgrade” and “dangitall,” while meaningful in the moment, will
only confuse you later.

278 Chapter 12

Use beadm create to make your new boot environment. Here, I check the
current FreeBSD version, and use that to create the boot environment name:

freebsd-version
11.0-RELEASE-p11
beadm create 11.0-p11
Created successfully

I now have two identical boot environments.

beadm list
BE Active Mountpoint Space Created
default NR / 12.3G 2015-04-28 11:53
11.0-p11 - - 236.0K 2018-07-21 14:57

You might notice that the new boot environment already takes up
236KB. This is a live system. Between when I created the boot environ-
ment and when I listed those environments, the filesystem or its metadata
changed.

The Active column shows that we’re currently using the default boot
environment and that we’ll be using that on the next boot. If I change my
installed packages or upgrade the base system, those changes will affect the
default environment.

Each boot environment is available as a snapshot under zroot/ROOT. If
you want to access a boot environment read-write, use beadm mount to tempo-
rarily mount the boot environment under /tmp. Unmount those environ-
ments with beadm umount.

Activating Boot Environments
Suppose you upgrade your packages and the system goes belly-up. Fall back
to an earlier operating system install by activating a boot environment and
rebooting. Activate a boot environment with beadm activate.

beadm activate 11.0-p11
Activated successfully
beadm list
BE Active Mountpoint Space Created
default N / 12.4G 2015-04-28 11:53
11.0-p11 R - 161.8M 2018-07-21 14:57

The default boot environment has its Active flag set to N, meaning it’s
now running. The 11.0-p11 environment has the R flag, so after a reboot it
will be live.

Reboot the system and suddenly you’ve fallen back to the previous oper-
ating system install, without the changes that destabilized your system. That’s
much simpler than restoring from backup.

The Z File System 279

Removing Boot Environments
After a few upgrades, you’ll find that you’ll never fall back to some of the exist-
ing boot environments. Once I upgrade this host to, say, 12.2-RELEASE-p29,
chances are I’ll never ever reboot into 11.0-p11 again. Remove obsolete boot
environments and free up their disk space with beadm destroy.

beadm destroy 11.0-p11
Are you sure you want to destroy '11.0-p11'?
This action cannot be undone (y/[n]): y
Destroyed successfully

Answer y when prompted, and beadm will remove the boot environment.

Boot Environments at Boot
So you’ve truly hosed your operating system. Forget getting to multiuser
mode, you can’t even hit single -user mode without generating a spew of
bizarre error messages. You can select a boot environment right at the
loader prompt. This requires console access, but so would any other
method of rescuing yourself.

The boot loader menu includes an option to select a boot environment.
Choose that option. You’ll get a new menu listing every boot environment
on the host by name. Choose your new boot environment and hit enteR.
The system will boot into that environment, giving you a chance to figure
out why everything went sideways.

Boot Environments and Applications
It’s not enough that your upgrade failed. It might take your application data
with it.

Most applications store their data somewhere in the root dataset.
MySQL uses /var/db/mysql, while Apache uses /usr/local/www. This means
that falling back to an earlier boot environment can revert your application
data with the environment. Depending on your application, you might want
that reversion—or not.

If an application uses data that shouldn’t be included in the boot envi-
ronment, you need to create a new dataset for that data. I provided an
example in “Unmounted Parent Datasets” on page 262 earlier this chapter.
Consider your application’s need and separate out your data as appropriate.

While ZFS has many more features, this covers the topics every sysadmin
must know. Many of you would find clones, delegations, or replication useful.
You might find the books FreeBSD Mastery: ZFS (Tilted Windmill Press, 2015)
and FreeBSD Mastery: Advanced ZFS (Tilted Windmill Press, 2016) by Allan
Jude and yours truly helpful. You’ll also find many resources on the internet
documenting all of these topics.

Now let’s consider some other filesystems FreeBSD administrators find
useful.

13
F o r e i g n F i l e s y s t e m s

FreeBSD supports a variety of filesystems
other than ZFS and UFS. You’ll need to

be able to interoperate with other hosts by
using optical media, flash drives, and the like.

Additionally, FreeBSD uses the special-purpose file-
system devfs(5) to manage device nodes. Jail users
might need the process filesystem procfs(5). For extremely fast storage that
doesn’t need to survive a reboot, you can use system RAM as a filesystem.
You can mount filesystems over the network, using either the Unix-style
Network File System or Microsoft’s Common Internet File System (CIFS).
And no matter how hard you try to avoid it, sometimes you’re stuck mount-
ing ISO images.

Using any of these requires a deeper understanding of mounting
filesystems.

282 Chapter 13

FreeBSD Mount Commands
We saw mount(8) earlier when discussing UFS filesystems, but you’ll also
use it to attach other filesystems to the directory tree. The mount(8) com-
mand assumes that any local partitions use UFS. If you try to mount a non-
UFS filesystem, you’ll get an error.

mount /dev/cd0 /media
mount: /dev/cd0: Invalid argument

The device node /dev/cd0 represents an optical drive. I put a CD in the
drive just for this test, so it should work. Trying to mount it gives an error,
though. To mount a UFS filesystem, you need the device node and a mount
point. Mounting foreign filesystems means adding the filesystem type with
-t. CDs use the ISO 9660 filesystem, which FreeBSD calls cd9660. Here, I
specify the filesystem to mount that CD on /cdrom:

mount -t cd9660 /dev/cd0 /media

I can now go to the /media directory and view the contents. Simple
enough, eh?

Many filesystems have their own custom variant of the mount(8) com-
mand. Get a full list by running apropos mount_. Yes, you need the trailing
underscore; all of the mount(8) variants use that as a separator. You’ll find
mount_cd9660(8), mount_msdosfs(8), mount_nfs(8), and more. Always
use mount -t on filesystems without such a command.

Apply mount options with the -o flag. You’ll need to check each mount
command’s man page to see what mount options the filesystem supports.
Separate multiple mount options with commas. Here, I mount a FAT32 drive
at device node /dev/da1 read-only, assigning the owner and group to user bert:

mount -t msdosfs -o ro,-gbert,-ubert /dev/da1 /media

You can unmount any mounted filesystem with umount(8):

umount /media

The umount(8) command doesn’t care about the filesystem type. It just
tries to disconnect the disk partition from the filesystem. It does care about
whether someone is using the filesystem, however, and refuses to unmount
it if even one process uses it. If you have an idle terminal with a shell prompt
in the filesystem, umount(8) will refuse to unmount the filesystem.

If you’re constantly connecting and disconnecting filesystems, investi-
gate autofs(5) to handle these mounts automatically.

Supported Foreign Filesystems
Here are some of the most commonly used foreign filesystems, along with a
brief description of each and the appropriate mount command.

Foreign Filesystems 283

FAT (MS-DOS)

FreeBSD includes extensive support for FAT, the DOS/Windows 9x File
Allocation Table filesystem, commonly used on removable media and some
dual-boot systems. This support covers the FAT12, FAT16, and FAT32 vari-
eties. You can format a thumb drive with a non-FAT filesystem, however, so
don’t blindly assume that all thumb drives use FAT. As the most common
use for a thumb drive these days is transferring files between machines,
however, most are FAT32. The mount type is msdosfs (mount -t msdosfs).

If you handle a lot of FAT32 disks, investigate the mtools package, a
collection of programs for working with FAT filesystems that offer greater
flexibility than the default FreeBSD tools.

ISO 9660

ISO 9660 is the standard filesystem for CDs and is occasionally used on
DVDs. FreeBSD supports reading and writing CDs if you have a CD burner.
Just about every CD you encounter is formatted with ISO 9660. The mount
command is mount -t cd9660.

The cdrtools package, in /usr/ports/sysutils/cdrtools, contains many helpful
tools for working with CD images, including tools that build an ISO image
from files on disk.

UDF

UDF, or Universal Disk Format, is a replacement for ISO 9660. You’ll find
UDF on some DVDs and Blu-Ray disks and on a few thumb drives larger
than the 32GB supported under FAT32. As the capacity of removable
media increases, you’ll see more and more UDF filesystems. The mount
command is mount -t udf.

EXT

The standard Linux filesystems—EXT2, EXT3, and EXT4—support many
of the same features as UFS. FreeBSD can safely read from and write to
EXT2 and EXT3 filesystems without any problems but can mount EXT4
filesystems only as read-only.

Mounting Linux filesystems is most useful for disaster recovery, dual-
boot systems, or system migrations. Despite the name, mount -t ext2fs sup-
ports mounting all versions of EXT.

Linux filesystem users might find the tools in /usr/ports/sysutils/e2fsprogs
useful. They let you fsck(8) and assess Linux filesystems, among other things.

Permissions and Foreign Filesystems
Permissions of a filesystem depend on the filesystem features and the per-
son who mounts it. FreeBSD tries to support features that aren’t too differ-
ent from those in UFS or ZFS.

Consider the Linux filesystem, EXT. EXT stores permissions in the
filesystem and lets the kernel map them to UIDs. Since EXT permissions

284 Chapter 13

behave much like UFS permissions and all the necessary permissions infor-
mation is available within the filesystem, FreeBSD respects the permissions
on these filesystems. EXT doesn’t support BSD file flags, however, so you
can’t assign those flags to a file on EXT.

FAT has no permissions system. Even if you mount your FAT32 thumb
drive in your FreeBSD host, you can’t apply permissions to files.

By default, only root can mount filesystems, and root owns all non-Unix
filesystems. If that’s not your preference, you can use the -u and -g flags to
set the user ID and group ID of the owner when you’re mounting a FAT32,
ISO 9660, or UDF filesystem. For example, if you’re mounting a FAT32 USB
device for the user xistence and want him to be able to edit the contents, use
this command:

mount -t msdosfs -u xistence -g xistence /dev/da5 /mnt

The user xistence now owns the files on the device.
You might get sick of mounting media for your users, especially in a

facility with dozens of machines. To let users mount filesystems, set the
sysctl vfs.usermount to 1. Users can then mount any device they have permis-
sion to access on any mount point they own. While xistence couldn’t mount
the removable device on /media, he could mount it on /home/xistence/media.

Using Removable Media
You must be able to manage any removable media that might wander in
through the door of your data center. Here, we’ll discuss optical disks and
flash drives.

I recommend not plugging removable media willy-nilly into your pro-
duction servers—for security reasons if nothing else. Who knows what’s
actually on that vendor’s USB device? Worse, you can order “USB killer”
devices that deliberately damage hardware. Mount suspicious devices on a
disposable workstation, examine the contents, and then copy the desired
data over to the FreeBSD machine. This isn’t guaranteed to be safe, as
the many USB interfaces can inject data into the hardware beneath the
OS layer, but it’s as safe as you’ll get. Removable media is just too easy for
certain applications, however, and of course the rules change when it’s my
personal USB device.

Using the device requires a filesystem type, a device node, and a mount
point.

Figuring out a removable drive’s filesystem can require a bit of trial
and error. CDs use the ISO 9660 filesystem, while DVDs and Blu-Rays use
either a UDF or a combination of ISO 9660 and UDF. When in doubt, try
CD9660 first. USB devices and floppy disks are usually FAT32. While it was
once expected that large USB devices would use UDF, most of them still use
FAT32. Run fstyp(8) on a device node to help identify the filesystem on it,
or try gpart show on the disk’s device node.

Foreign Filesystems 285

Removable devices can have a different device node each time you plug
them in. Optical drives are a little easier to identify in that most hosts have
very few optical drives. If you have one optical drive, it’s /dev/cd0. USB devices
appear as the next available unit of /dev/da. When you insert a USB device, a
message giving the device node and type appears on the console and in /var/
log/messages, or you could check camcontrol devlist for the new device.

FreeBSD provides a /media mount point for general removable media
mounts. You can create additional mount points as you like—they’re just
directories. For miscellaneous short-term mounts, FreeBSD offers /mnt.

So, to mount your FAT32 USB device /dev/da0 on /media, run:

mount -t msdosfs /dev/da0 /media

Occasionally, you’ll find a thumb drive with a partition table. These
devices will insist you mount /dev/da0s1 or /dev/da0p1 rather than /dev/da0.
The device’s formatting dictates this, not anything in FreeBSD. The gpart
show command can help you figure out which partitions are on a device and
what filesystem is on each partition.

Ejecting Removable Media
To disconnect removable media from your FreeBSD system, first unmount
the filesystem. Your optical drive won’t open until you unmount the disk.
You can pull a USB flash drive from its port, but doing so while the filesys-
tem is mounted might damage data on the device. Use umount(8) just as
you would for any other filesystem:

umount /media

On many optical drives, camcontrol eject opens the drive tray.

Removable Media and /etc/fstab
You can update /etc/fstab with entries for removable media to make system
maintenance a little easier. If a removable filesystem has an entry in /etc/
fstab, you can drop both the filesystem and the device name when mounting
it. This means that you don’t have to remember the exact device name or
filesystem to mount the device.

When listing removable media in /etc/fstab, be sure to include the noauto
flag. Otherwise, whenever you don’t have the removable media in place,
your boot will stop in single-user mode because a filesystem is missing.

Here’s an /etc/fstab’s entry for an optical drive:

/dev/cd0 /cdrom cd9660 ro,noauto 0 0

While I’m sure you’ve already memorized the meaning of every column
in /etc/fstab, we’ll remind you that this entry means, “Mount /dev/cd0 on
/cdrom, using the ISO 9660 filesystem. Mount it as read-only, and don’t
mount it automatically at boot.”

286 Chapter 13

Here’s a similar entry for a thumb drive. I use the large option to sup-
port filesystems larger than 128GB, as discussed in mount_msdosfs(8).

u/dev/da0 /media msdosfs rw,noauto,large 0 0

FreeBSD doesn’t provide these by default, but I find having them to be
much easier on systems where I use removable media regularly. Confirm
that your next available da device is /dev/da0 u, as trying to mount a hard
drive that’s already mounted won’t work.

Formatting FAT32 Media
Thumb drives use the FAT32 filesystem but always come preformatted. As
thumb drives have a limited number of reads and writes directly proportional
to their cheapness, do not reformat them capriciously.1 Only reformat thumb
drives when their filesystem becomes corrupt. Use newfs_msdos(8) to create
a FAT32 filesystem.

newfs_msdos /dev/da0

You’ll get a couple lines of output, and you have a new filesystem.

Creating Optical Media
FreeBSD will let you bundle up a bunch of files into an image suitable
for burning onto a CD, DVD, or Blu-Ray, using either CD 9660 or UDF
formats. You can burn either image onto disk. FreeBSD supports creat-
ing ISOs natively, but you’ll need programs from the cdrtools package to
create UDF.

In either case, start by putting all of the files and directories you want
to burn into a single directory. The image will contain these files and direc-
tories exactly as you arrange them. Remember, optical disk images are
read-only. You can’t update an image; you can only create a new image, so
be sure you have everything exactly as you want it. Later this chapter, you’ll
learn to mount these images with mdconfig(8).

In both of these examples, we’re creating an image from the files con-
tained in /home/xistence/cdfiles.

Creating ISOs

Use makefs(8) to create an ISO.

makefs u-t cd9660 v-o allow-deep-trees,rockridge wimage.iso xsource-files

Start by using -t u to specify the type of filesystem to create—in this
case, CD 9660. The -o flag v lets you specify filesystem-specific options. You

1. While formatting a flash drive touches comparatively few sectors and is probably easier on
your drive than copying a large file to it, if I didn’t include this warning, I’d get complaint
letters. So here it is.

Foreign Filesystems 287

can get a whole list of options from the makefs(8) man page, but the ones
shown here suffice for most images. We then need the filename w for the
created image and the source directory x for those files.

To make an image containing the files in /home/xistence/cdfiles as
bert.iso, run:

makefs -t cd9660 -o allow-deep-trees,rockridge bert.iso /home/xistence/cdfiles

Bert can now wastefully burn his ISO to physical media.

Creating a UDF

Creating a UDF requires using mkisofs(1) from the cdrtools package. Give
the destination image file with -o. Enable the Joliet and Rock Ridge exten-
sions with -J and -R, respectively. (I’m not going to go into what each of
these do, but if you want your ISO to behave like a disk from this millen-
nium, you need them.) Add the -udf and -iso-level 3 flags.2

mkisofs -R -J -udf -iso-level 3 -o bert.udf /home/xistence/cdfiles

You now have a UDF image based on what’s in /home/xistence/cdfiles.
Whichever format you create, I encourage you to mount it and double-

check your work before burning a physical disk. If you’re lucky, you’ll
remember the stuff you forgot to include on the image.

Burning ISOs to Optical Media

Use cdrecord(1) from the cdrtools package to burn ISO images to the disk.
Give the image file as an argument.

cdrecord bert.iso

Depending on the drive speed and image size, this might take a while.
The cdrecord(1) program defaults to using /dev/cd0. If you have addi-

tional optical drives, use the -dev flag to give an alternate device name.

cdrecord -dev=cd9 bert.iso

You now have a flimsy plastic disk that you’ll use twice before flinging it
into the landfill. Congratulations!

Burning UDF to Optical Media

While you can use cdrecord(1) to burn UDF images to media, the
growisofs(1) command from the dvd+rw-tools package is generally
recommended. You’ll need the -dvd-compat and -Z flags. Then, specify
the device and the image file.

2. Yes, Bert put his files in a directory called cdfiles. I’m not totally sure he knows the differ-
ence between UDF and ISO 9660.

288 Chapter 13

growisofs -dvd-compat -Z /dev/burner=image.udf

Suppose I want to burn bert.udf to the Blu-Ray in /dev/cd0.

growisofs -dvd-compat -Z /dev/cd0=bert.udf

UDF files can be huge. Go make some tea. Eventually, you’ll have a
burned disk.

Writing Images to Thumb Drives
USB thumb drives have increasingly supplanted optical disks, thanks in
part to their reusability. FreeBSD supports writing disk images to thumb
drives with dd(1).

Be very certain which device node is your thumb drive and which is
your system hard drive. Thumb drives show up as /dev/da devices, exactly
like many hard drives. Overwriting the wrong hard drive is embarrassing.3

The dd(1) command looks confusing at first glance.

dd uif=inputfile vof=outputdevice wbs=1M xconv=sync

The if= argument u gives the file you want to copy. The of= argument v
is the device node to copy to. The bs= flag w gives the amount to copy at
one time. Without this, dd(1) copies in 512-byte increments. The conv= argu-
ment x gives dd(1) instructions about how to convert the incoming file. In
this case, sync tells dd(1) to synchronize the size of the incoming and outgo-
ing buffer. To burn bertimage.udf to thumb drive /dev/da9, I would run:

dd if=bert.udf of=/dev/da9 bs=1m conv=sync

Wait a bit, and you’ll have an imaged thumb drive. Other uses of dd(1)
might not need the conv= flag, but always use bs.

Now let’s look at some other filesystems you might find useful.

Memory Filesystems
In addition to putting filesystems on disks or partitions, FreeBSD lets you
create partitions from files, pure RAM, and a combination of the two. One
of the most popular uses of this feature is for memory filesystems, or memory
disks. Reading and writing files to and from memory is much faster than
accessing files on disk, which makes a memory-backed filesystem a huge
optimization for certain applications. As with everything else in memory,
however, you lose the contents of your memory disk at system shutdown.

3. It’s also a sysadmin rite of passage, so don’t feel too bad when it happens. Just feel bad
enough never to do it again.

Foreign Filesystems 289

FreeBSD supports two different memory-backed disks: tmpfs (pro-
nounced “temp f s”) and memory disks. While they have similar concepts
behind them, the underlying code is completely different, and they serve dif-
ferent roles. Use tmpfs(5) for memory-backed filesystems on long-running
systems. Memory disks are more flexible but better suited for short-term use
or mounting disk images.

tmpfs
The tmp in tmpfs(5) doesn’t mean “temporary.” It literally means tmp, as in
/tmp. Use tmpfs for a speedy memory-backed /tmp and similar filesystems.
Don’t deploy tmpfs everywhere you see a path with tmp in it, though. While
/tmp is supposed to be cleared at every boot, /var/tmp is supposed to survive
a reboot. You might use tmpfs for application lock files and other ephem-
eral data where vastly increased speed would improve application perfor-
mance. While tmpfs has a troubled history, as of FreeBSD 10, it’s widely
deployed and considered ready for production.

Create a tmpfs by mounting it.

mount -t tmpfs tmpfs /tmp

If your system has the sysctl vfs.usermount set to 1, users can create and
mount tmpfs filesystems.

tmpfs Options

A tmpfs defaults to the size of the system’s available RAM plus the available
swap space. Repeatedly copying a file to /tmp could exhaust system memory.
This would be bad. Set a maximum size for your tmpfs with the size option.

mount -o size=1g -t tmpfs tmpfs /tmp

Control the ownership and permissions on a tmpfs with the uid, gid,
and mode options. An actual /tmp directory needs to be world-writable with
the sticky bit set, so be sure to use the option mode=1777.

If the tmpfs is for a specific user, even an unprivileged user that runs
only a single application, assign that user ownership of the tmpfs.

tmpfs at Boot

Now that you can set a maximum size and the proper permissions, it’s okay
to use /etc/fstab to automatically create a tmpfs at boot.

tmpfs /tmp tmpfs rw,mode=1777,size=1G 0 0

For more complicated memory-backed disks, consider a traditional
memory disk.

290 Chapter 13

Memory Disks
A memory disk is an ephemeral storage device. Despite the name, a memory
disk isn’t always a chunk of memory being treated as a disk. It can be such a
device, but it might instead use a file or swap space or some other backing
store. No matter what, the memory disk disappears at system shutdown.

Memory Disk Types

Memory disks come in four types: malloc-backed, swap-backed, vnode-
backed, and null.

Malloc-backed memory disks are pure memory. Even if your system runs
short on memory, FreeBSD won’t swap out the malloc-backed disk. Much
like tmpfs(5), using a large malloc-backed disk is a great way to exhaust sys-
tem memory. Malloc-backed disks are most useful for swapless embedded
devices.

Swap-backed memory disks are mostly memory, but they also access
the system swap partition. If the system runs out of memory, it moves the
least recently used parts of memory to swap, as discussed in Chapter 21.
Swap-backed disks are usually the best compromise between speed and
performance.

Vnode-backed memory disks are files on disk. While you can use a file
as backing for your memory disk, this is mostly useful for mounting disk
images and testing.

A null memory disk discards everything sent to it. Any writes are suc-
cessful, while any reads return zero. If I didn’t mention null memory disks,
someone would write to complain, but I’m not giving a disk guaranteed to
lose all data any more coverage than this.

Once you know what you want to do, use mdmfs(8) to perform the
action.

Creating and Mounting Memory Disks

The mdmfs(8) utility is a handy frontend for several programs, such as
mdconfig(8) and newfs(8). It handles the drudgery of configuring devices
and creating filesystems on those devices, and makes creating memory disks
as easy as possible. You need to know only the size of the disk you want to
use, the type of the memory disk, and the mount point.

Swap-backed memory disks are the default. Just tell mdmfs(8) the size of
the disk and the mount point. Here, we create a 48MB swap-backed memory
disk on /home/mwlucas/test:

mdmfs -t -s 48m md /home/mwlucas/test

The -s flag gives the size of the disk. If you run mount(8) without any
arguments, you’ll see that you now have the memory disk device /dev/md0
mounted on that directory.

The -t flag enables TRIM, which we’ll discuss in the following section,
“Memory Disk Headaches.”

Foreign Filesystems 291

To create and mount a malloc-backed disk, add the -M flag.
To mount a vnode-backed memory disk, use the -F flag and the path to

the image file.

mdmfs -F diskimage.file md /mnt

The md entry we’ve been using all along here means, “I don’t care what
device name I get; just give me the next free one.” You can also specify a par-
ticular device name if you like. Here, I declare I want disk device /dev/md9 :

mdmfs -F diskimage.file md9 /mnt

Memory Disk Headaches

Traditional swap-backed memory disks never returned used memory to the
system. Once you wrote to a memory disk, that memory was used up. If you
needed a larger memory disk, you had to permanently allocate memory for
it. This was one reason FreeBSD included tmpfs(5).

If the filesystem on the memory disk supports TRIM, however, FreeBSD
now returns unused memory to the system. TRIM is not an acronym but
rather a protocol for telling a disk which sectors are no longer in use. UFS,
the default memory disk format, supports TRIM. Enable TRIM in mdmfs
with the -t flag. If you’re using a different filesystem on a memory disk,
though, be sure it’s strictly temporary.

To free the memory from a memory disk, shut down the memory disk.

Memory Disk Shutdown

To remove a memory disk, you must unmount the partition and destroy the
disk device. Destroying the disk device frees the memory used by the device,
which is useful when your system is heavily loaded. To find the disk device,
run mount(8) and find your memory disk partition. Somewhere in the out-
put, you’ll find a line like this:

/dev/md41 on /mnt (ufs, local, soft-updates)

Here, we see memory disk /dev/md41 mounted on /mnt. Let’s unmount
it and destroy it.

uumount /mnt
mdconfig v-d w-u 41

Unmounting with umount u is done exactly as with other filesystems. The
mdconfig(8) call is a new one, however. Use mdconfig(8) to directly manage
memory devices. The -d flag v means destroy, and the -u flag w gives a device
number. The above destroys the device /dev/md41, or the md device num-
ber 41. The memory used by this device is now freed for other uses.

292 Chapter 13

Memory Disks and /etc/fstab

If you list memory disks in /etc/fstab, FreeBSD automatically creates them at
boot time. These entries look more complicated than the other entries but
aren’t too bad if you understand the mdmfs(8) commands we’ve been using
so far.

We’re allowed to use md as a device name to indicate a memory disk.
Choose the mountpoint just as for any other device, and use the filesystem
type mfs. Under Options, list rw (for read-write) and the command line
options used to create this device. If this is a long-term mount, add -t to
enable TRIM. To create our 48MB filesystem mounted at /home/mwlucas/
test, use the following /etc/fstab entry:

md /home/mwlucas/test mfs rw,-s48m,-t 0 0

Looks easy, doesn’t it? The only problem is that the long line messes up
your nice and even /etc/fstab entry’s appearance. Well, they’re not the only
things that will make this file ugly, as we’ll soon see.

Mounting Disk Images
You can use mdmfs(8) to view UFS disk images, but most often you want
to examine the contents of an ISO or UDF file without burning it to disk.
(FreeBSD’s tar(1) can access the contents of an ISO, but not a UDF.) Just
attach a memory disk to a file with the mdconfig(8) command’s -a flag.
Here, I attach Bert’s ISO to a memory device:

mdconfig u-a -t vvnode -f w/home/mwlucas/bert.iso
xmd0

We tell mdconfig(8) to attach u a vnode-backed v memory device to
the file specified w. The mdconfig(8) command responds by telling us the
device x it’s attached to. Now we just mount the device with the proper
mount command for the filesystem:

mount -t cd9660 /dev/md0 /mnt

I can now verify that the ISO contains Bert’s files, so he doesn’t get to
whine that the ISO is busted.

One common mistake people make at this point is mounting the image
without specifying the filesystem type. You might get an error, or you might
get a successful mount that contains no data—by default, mount(8) assumes
that the filesystem is UFS!

When you’re done accessing the data, be sure to unmount the image
and destroy the memory disk device just as you would for any other memory
device. While vnode-backed memory disks don’t consume system memory,
leaving unused memory devices around will confuse you months later when
you wonder why they appear in /dev. If you’re not sure what memory devices
a system has, use mdconfig -l to view all configured md(5) devices.

Foreign Filesystems 293

mdconfig -l
md0 md1

I have two memory devices? Add the -u flag and the device number to
see what type of memory device it is. Let’s see what memory device 1 (/dev/
md1) is:

mdconfig -l -u 1
md1 vnode 456M /slice1/usr/home/mwlucas/iso/omsa-51-live.iso

I have an ISO image mounted on this system? Wow. I should probably
reboot some month. Nah, that’s too much work; I’ll just unmount the file-
system and destroy the memory device.

Filesystems in Files
One trick used in embedded systems is building complete filesystem
images on a local file. In the previous section, we saw how we could use
memory disks to mount and access CD disk images. You can use the same
techniques to create, update, and access UFS disk images.

To use a filesystem in a file, you must create a file of the proper size,
attach the file to a memory device, place a filesystem on the device, and
mount the device.

Creating an Empty Filesystem File

Use truncate(1) to create an empty file for a filesystem. These files are sparse
files: they’re labeled as having a certain size but don’t actually take up any
space until you put something in them. An empty sparse file takes up one file-
system block and grows when you put stuff in it. This means you can create
an image for a disk of any size but use up only an amount of space equal to
the stuff you put in the image.

Use the -s option and the file size to create an image file. Here, I create
a 1GB file:

truncate -s 1G filesystem.file

The resulting file claims to be pretty large.

ls -l filesystem.file
-rw-r--r-- 1 mwlucas mwlucas 1073741824 Aug 11 11:31 filesystem.file

But if you check the disk usage, you’ll see something different.

du filesystem.file
1 filesystem.file

This 1GB file uses one block on the disk.

294 Chapter 13

Sparse files never shrink. They can only grow. If you erase a bunch of
files from your disk image, the image file still needs that space.

Also, not all filesystems support sparse files. UFS and ZFS do. If you’re
trying to create a sparse file on a FAT32 filesystem, you’re probably solving
the wrong problem.

Creating the Filesystem on the File

To get a filesystem on the file, first associate the file with a device with a
vnode-backed memory disk. We did exactly this in the last section:

mdconfig -a -t vnode -f filesystem.file
md0

Now, let’s make a filesystem on this device. This is much like creating a
UFS filesystem on a thumb disk with the newfs(8) command. Soft updates
journaling is exactly as useful on file-backed filesystems as on disk-backed
ones, so enable them with -j.

newfs -j /dev/md0
/dev/md0: 1024.0MB (2097152 sectors) block size 32768, fragment size 4096
 using 4 cylinder groups of 256.03MB, 8193 blks, 32896 inodes.
 with soft updates
super-block backups (for fsck_ffs -b #) at:
 192, 524544, 1048896, 1573248
Using inode 4 in cg 0 for 8388608 byte journal
newfs: soft updates journaling set

The newfs(8) program prints out basic information about the disk,
such as its size, block and fragment sizes, and the inode count.

Now that you have a filesystem, mount it:

mount /dev/md0 /mnt

Congratulations! You now have a 1GB file-backed filesystem. Copy files
to it, dump it to tape, or use it in any way you would use any other filesys-
tem. But in addition to that, you can move it just like any other file.

File-Backed Filesystems and /etc/fstab

You can mount a file-backed filesystem automatically at boot with the proper
entry in /etc/fstab, much like you can automatically mount any other memory
disk. You simply have to specify the name of the file with -F and use -P to tell
the system not to create a new filesystem on this file but just to use the one
already there. Here, we mount the file-backed filesystem we created on /mnt
automatically at boot time.

md /mnt mfs rw,-P,-F/home/mwlucas/filesystem.file 0 0

Foreign Filesystems 295

I told you we’d see /etc/fstab entries uglier than the one for generic
memory disks, didn’t I?

devfs
devfs(5) is a dynamic filesystem for managing device nodes. Remember,
in a Unix-like operating system, everything is a file. This includes physical
hardware. Almost all devices on the system have a device node under /dev.
You’ve seen a bunch of device nodes for disks, but you’ll also see keyboards
(/dev/ukbd0 or /dev/kbd0), the console (/dev/console), sound mixers (/dev/
mixer0), and more. You’ll also find device nodes for logical devices, like the
random number generator (/dev/random), terminal sessions (/dev/ttyv0),
and so on.

Once upon a time, the sysadmin was responsible for making these
device node files. Lucky sysadmins managed an operating system that
came with a shell script to handle device node creation and permissions.
If the OS authors hadn’t provided such a shell script, or if the server had
unusual hardware not included in that shell script, the sysadmin had to
create the node with animal sacrifices and mknod(8). If any little thing
went wrong, the device wouldn’t work. The other option was to ship the
operating system with device nodes for every piece of hardware imagin-
able. Sysadmins could be confident—well, mostly confident—that the
desired device nodes were available, somewhere, buried within the thou-
sands of files under /dev.

Of course, the kernel knows exactly what characteristics each device
node should have. With devfs(5), FreeBSD simply asks the kernel what
device nodes the kernel thinks the system should have and provides
exactly those—and no more. This works well for most people. You and
I are not “most people,” however. We expect odd things from our com-
puters. Perhaps we need to make device nodes available under differ-
ent names, change device node ownership, or configure our hardware
uniquely. FreeBSD breaks the problem of device node management into
three pieces: configuring devices present at boot, global availability and
permissions, and configuring devices that appear dynamically after boot
with devd(8).

/dev at Boot
When device nodes were permanent files on disk, the sysadmin could sym-
link to those nodes or change their permissions without worrying that his
changes would vanish. With an automated, dynamic device filesystem, this
assurance disappears. (Of course, you no longer have to worry about occult
mknod(8) commands either, so you’re better off in the long run.) The device
node changes could include, for example:

•	 Making device nodes available under different names

•	 Changing ownership of device nodes

•	 Concealing device nodes from users

296 Chapter 13

At boot time, devfs(8) creates device nodes in accordance with the
rules in /etc/devfs.conf.

devfs.conf

The /etc/devfs.conf file lets you create links, change ownership, and set per-
missions for devices available at boot. Each rule has the following format:

action realdevice desiredvalue

The valid actions are link (create a link), perm (set permissions), and own
(set owner). The realdevice entry is a preexisting device node, while the last
setting is your desired value. For example, here we create a new name for a
device node:

ulink vcd0 wcdrom

We want a symbolic link u to the device node /dev/cd0 v (an optical
drive), and we want this link to be named /dev/cdrom w. If we reboot with
this entry in /etc/devfs.conf, our optical drive /dev/cd0 also appears as /dev/
cdrom, as many desktop multimedia programs expect.

To change the permissions of a device node, give the desired permis-
sions in octal form as the desired value:

perm cd0 666

Here, we set the permissions on /dev/cd0 (our CD device, again) so that
any system user can read or write to the device. Remember, changing the
permissions on the /dev/cdrom link won’t change the permissions on the
device node, just the symlink.

Finally, we can also change the ownership of a device. Changing a
device node’s owner usually indicates that you’re solving a problem the
wrong way and that you may need to stop and think. FreeBSD happily lets
you mess up your system if you insist, however. Here, we let a particular user
have absolute control of the disk device /dev/da20 :

own da20 xistence:xistence

De v ice m a n age me n t a nD se rv e rs

For the most part, device node management on servers works without any
adjustment or intervention. The place I most often need to muck with device
nodes is on laptops and the occasional workstation. FreeBSD’s device node
management tools are very powerful and flexible, and include support for
things I wouldn’t expect to use in a century. We’ll touch only upon the basics.
Don’t think that you must master devfs(5) to get your server running well!

Foreign Filesystems 297

This might not have the desired effect, however, as some programs still
think that you must be root to carry out operations on devices. I’ve seen more
than one piece of software shut itself down if it’s not run by root, without even
trying to access its device nodes. Changing the device node permissions won’t
stop those programs’ complaints when they’re run by a regular user.

Configuration with devfs.conf(5) solves many problems, but not all. If
you want a device node to simply be invisible and inaccessible, you must use
devfs rules.

Global devfs Rules
Every devfs(5) instance behaves according to the rules defined in devfs.rules.
The devfs rules apply to both devices present at boot and devices that appear
and disappear dynamically. Rules allow you to set ownership and permissions
on device nodes and make device nodes visible or invisible. You cannot create
symlinks to device nodes with devfs rules.

Similar to /etc/rc.conf and /etc/defaults/rc.conf, FreeBSD uses /etc/devfs
.rules and /etc/defaults/devfs.rules. Create an /etc/defvs.rules for your custom
rules and leave the entries in the defaults file alone.

devfs Ruleset Format

Each set of devfs rules starts with a name and a ruleset number between
square brackets. For example, here’s a devfs rule from the default
configuration:

[udevfsrules_hide_all=v1]
wadd hide

The first rule in devfs.rules is called devfs_hide_all u and is ruleset
number 1 v. This ruleset contains only one rule w.

Once you have a set of devfs rules you like, enable them at boot in /etc/
rc.conf. Here, we activate the devfs ruleset named laptoprules:

devfs_system_rulesets="laptoprules"

Remember, devfs rules apply to the devices in the system at boot and
the devices configured dynamically after startup.

Ruleset Content

All devfs rules (in files) begin with the word add, to add a rule to the rule-
set. You then have either a path keyword and a regex of device names, or a
type keyword and a device type. At the end of the rule, you have an action,
or a command to perform. Here’s an example of a devfs rule:

add path da* user mwlucas

This rule assigns the user mwlucas ownership of all device nodes with a
node name beginning with da. This is probably a bad idea.

298 Chapter 13

Devices specified by path use standard shell regular expressions. If
you want to match a variety of devices, use an asterisk as a wildcard. For
example, path ada1s1 matches exactly the device /dev/ada1s1, but path ada*s*
matches every device node with a name beginning with ada, a character, the
letter s, and possibly more characters. You could tell exactly what devices
are matched by a wildcard by using it at the command line.

ls /dev/ada*s*

This lists all MBR slices and partitions on your SATA hard drives, but
not the devices for the entire drive.

The type keyword indicates that you want the rule to apply to all devices
of a given type. Valid keywords are disk (disk devices), mem (memory devices),
tape (tape devices), and tty (terminal devices, including pseudoterminals).
The type keyword is rarely used exactly because it’s so sweeping.

If you include neither a path nor a type, devfs applies the action at the
end of the rule to all device nodes. In almost all cases, this is undesirable.

The ruleset action can be any one of group, user, mode, hide, and unhide.
The group action lets you set the group owner of the device, given as an addi-
tional argument. Similarly, the user action assigns the device owner. Here,
we set the ownership of da disks to the username desktop and the group usb:

add path da* user desktop
add path da* group usb

The mode action lets you assign permissions to the device in standard
octal form.

add path da* mode 664

The hide keyword lets you make device nodes disappear, and unhide
makes them reappear. Since no program can use a device node if the
device is invisible, this is of limited utility except when the system uses
jail(8). Hiding and unhiding makes the most sense when including rules
in rules.

Including Rules in Rules

As in so many parts of systems administration, making devfs rules modu-
lar so they can be reused is a good way to reduce problems. The default
jail rules show exactly how FreeBSD’s devfs supports reuse, through the
include keyword.

Here’s the start of the default configuration:

u [devfsrules_hide_all=1]
v add hide

w [devfsrules_unhide_basic=2]
x add path log unhide
y add path null unhide

Foreign Filesystems 299

z add path zero unhide
{ add path crypto unhide

--snip--

Rule number one, devfsrules_hide_all u, conceals all device nodes v.
Rule number two, devfsrules_unhide_basic w, contains only a series of

unhide statements. This rule does nothing but unhide critical Unix device
nodes, like /dev/log x, /dev/null y, /dev/zero z, /dev/crypto {, and so on.
Most processes won’t run without these devices. These device nodes are
already exposed in a standard system, so why would you need a rule just to
unhide them? Similarly, ruleset number three, devfsrules_unhide_login, does
nothing but unhide device nodes for logged-in users.

The last ruleset leverages all of these.

[devfsrules_jail=4]
add include $devfsrules_hide_all
add include $devfsrules_unhide_basic
add include $devfsrules_unhide_login
add path zfs unhide

This ruleset, devfsrules_jail, uses include statements to pull in the previ-
ous rulesets by reference. The last statement also unhides /dev/zfs, allowing
ZFS tools to work within jails.

If you want to make additional device nodes available within all of
your jails, you could add that device node to the jails ruleset. Or you could
define a new ruleset and use it for all your jails. Better still, you could define
a ruleset for just the jails that absolutely need that device and assign that
ruleset to those jails.

To finish up, let’s look at dynamic devices.

Dynamic Device Management with devd(8)
Hot-swappable hardware is now routine. FreeBSD’s devfs dynamically
creates new device nodes when this hardware is plugged in and erases the
nodes when the hardware is removed, making using these dynamic devices
much simpler. The devd(8) daemon takes this a step further by letting you
run userland programs when hardware appears and disappears.

FreeBSD’s default configuration, /etc/devd.conf, handles most modern
hardware just fine. If you need to customize devd(8), put your configura-
tion files under /usr/local/etc/devd/ to simplify upgrades. You could also add
different rules files for different types of devices if you find your devd(8)
configuration becoming very complicated.

devd Configuration

You’ll find four types of devd(8) rules: attach, detach, nomatch, and notify.
The attach rules are triggered when matching hardware is attached to

the system. When you plug in a network card, an attach rule configures the
card with an IP address and brings up the network.

300 Chapter 13

The detach rules are triggered when matching hardware is removed
from the system. detach rules are uncommon, as the kernel automatically
marks resources unavailable when the underlying hardware disappears, but
you might find uses for them.

The nomatch rules are triggered when new hardware is installed but not
attached to a device driver. These devices don’t have device drivers in the
current kernel.

devd(8) applies notify rules when the kernel sends a matching event
notice to userland. For example, the console message that a network inter-
face has come up is a notify event. Notifications generally appear on the
console or in /var/log/messages.

Rules also have priority, with 0 being the lowest. Only the highest match-
ing rule is processed, while lower-priority matching rules are skipped. Here’s
a sample devd(8) rule:

unotify v0 {
 match "system" w"IFNET";
 match "subsystem" x"!usbus[0-9]";
 match "type" y"ATTACH";
 action z"/etc/pccard_ether $subsystem start";
};

This is a notify rule u, which means it activates when the kernel sends
a message to userland. As a priority 0 rule v, this rule can be triggered
only if no rule of higher priority matches the criteria we specify. This rule
is triggered only if the notification is on the network system IFNET w (net-
work) and only if the subsystem x doesn’t match the expression usbus[0-9].
It excludes USB network cards. The notification type is ATTACH y—in other
words, this matches only when someone plugs in a network interface. If all
three of these matches hit, devd(8) runs a command to configure the net-
work interface z.

Read the devd(8) man page to see about all the options you can put
in rules. If you want to automatically mount a particular USB flash disk
on a certain mount point, you can do that by checking the serial number
of every USB device you put in. If you want to configure Intel network
cards differently than Atheros network cards, you can do that by checking
the vendor. Whatever you need to write a rule for, it’s probably in there
somewhere.

Miscellaneous Filesystems
FreeBSD supports several lesser-known filesystems. Most of them are useful
only in bizarre circumstances, but bizarre circumstances arise daily in sys-
tem administration.

The process filesystem, procfs(5), contains lots of information about
processes. It’s considered a security risk and is officially deprecated on mod-
ern FreeBSD releases. You can learn a lot about processes from a mounted

Foreign Filesystems 301

process filesystem, however. A few older applications still require a process
filesystem mounted on /proc; if a server application requires procfs, try to
find a similar application that does the job without requiring it.

If you’re using Linux mode (see Chapter 17), you might need the Linux
process filesystem linprocfs(5). Much Linux software requires a process file-
system, and FreeBSD suggests installing linprocfs at /compat/linux/proc when
you install Linux mode. I’d recommend installing linprocfs only if a piece
of software complains it’s not there.

The file descriptor filesystem fdesc(5) offers a filesystem view of file
descriptors for each process. Some software, notably Java and the popular
Bash shell, requires fdescfs(5). It’s less of a security risk than procfs, but still
undesirable. You’ll get instructions on mounting fdescfs(5) when you install
a package that requires it.

Now that we’ve talked about local filesystems, let’s look at the network.

The Network File System
A network filesystem allows accessing files on another machine over the
network. The two most commonly used network filesystems are the original
Network File System (NFS) implemented in Unix and the CIFS (aka SMB)
filesystem popularized by Microsoft Windows. We’ll touch on both of these,
but start with the old Unix standard of NFS.

Sharing directories and partitions between Unix-like systems is perhaps
the simplest Network File System you’ll find. FreeBSD supports the Unix
standard Network File System out of the box. Configuring NFS intimidates
many junior sysadmins, but after setting up a file share or two, you’ll find it
not so terribly difficult.

NFS wasn’t designed as a secure protocol. Do not put NFS servers on the
internet without a packet filter or firewall. Merely restricting access at the
NFS level is completely inadequate—you must prevent random hosts from
poking at the host’s remote procedure call (RPC) services. Restrict access to
the host by IP address as well as port number.

Additionally, standard NFS isn’t encrypted. Anyone with a packet
sniffer and access to your wire can see all filesystem activity. Once you
deploy Kerberos, you can encrypt NFS, but Kerberos requires its own book.

Each NFS connection uses a client-server model. One computer is the
server; it offers filesystems to other computers. This is called NFS export-
ing, and the filesystems offered are called exports. The clients can mount
server exports in a manner almost identical to that used to mount local
filesystems.

One interesting thing about NFS is its statelessness. NFS doesn’t keep
track of the condition of a connection. You can reboot an NFS server and
the client won’t crash. It won’t be able to access files on the server’s export
while the server is down, but once it returns, you’ll pick up right where
things left off. Other network file sharing systems aren’t always so resilient.
Of course, statelessness also causes problems; for example, clients can’t
know when a file they currently have open is modified by another client.

302 Chapter 13

nF s in t e rope r a bil i t y

Every NFS implementation is slightly different. You’ll find minor NFS varia-
tions between Solaris, Linux, BSD, and other Unix-like systems. NFS should
work between them all but might require the occasional tweak. If you’re hav-
ing problems with another Unix-like operating system, check the FreeBSD-net
mailing list archive; the issue has almost certainly been discussed there.

Both NFS servers and clients require kernel options, but the various NFS
commands dynamically load the appropriate kernel modules. FreeBSD’s
GENERIC kernel supports NFS, so this isn’t a concern for anyone who
doesn’t customize their kernel.

NFS is one of those topics that has entire books written about it. We’re
not going to go into the intimate details about NFS, but rather focus on
getting basic NFS operations working. If you’re deploying complicated NFS
setups, you’ll want to do further research. Even this basic setup lets you
accomplish many complicated tasks.

NFS Versions
Modern NFS comes in three versions: NFSv2, NFSv3, and NFSv4. FreeBSD
can transparently autodetect and interoperate with versions 2 and 3.

NFSv2 is rather minimal, dating from the time when people were
delighted to get file sharing working at all.

NFSv3 contains many incremental improvements over and much better
performance than NFSv2. Most of these improvements don’t even require
special configuration.

NFSv4 is an entirely different and highly complex protocol that breaks
many of the long-standing rules of NFS. It was deliberately designed to
resemble Microsoft’s file sharing. Understanding NFSv4 requires under-
standing filesystem extended ACLs, synchronizing user IDs across the net-
work, and other headaches.

When people say “NFS” they almost always mean NFSv2 or NFSv3.
Some folks call these protocols “traditional NFS.” Someone who means
NFSv4 usually says “NFSv4.”

 This book sticks with the commonly deployed NFSv2 and NFSv3. I
devote a couple chapters to NFSv4 and related topics in FreeBSD Mastery:
Specialty Filesystems (Tilted Windmill Press, 2016).

Configuring the NFS Server
Turn on NFS server support with the following rc.conf options. While not all
of these options are strictly necessary for all environments, turning them all
on provides the broadest range of NFS compatibility and decent out-of-the-
box performance.

Foreign Filesystems 303

u nfs_server_enable="YES"
v rpcbind_enable="YES"
w mountd_enable="YES"
x rpc_lockd_enable="YES"
y rpc_statd_enable="YES"

First, tell FreeBSD to load the nfsserver.ko u kernel module. Everything
will fail if the kernel doesn’t support NFS. The rpcbind(8) v daemon maps
remote procedure calls (RPCs) into local network addresses. Each NFS client
asks the server’s rpcbind(8) daemon where it can find a mountd(8) daemon
to connect to. The mountd(8) w daemon listens to high-numbered ports
for mount requests from clients. Enabling the NFS server also starts nfsd(8),
which handles the actual file request. NFS ensures smooth file locking with
rpc.lockd(8) x, and rpc.statd(8) y monitors NFS clients so that the NFS
server can free up resources when the host disappears.

While you can start all of these services at the command line, if you’re
just learning NFS, it’s best to reboot your system after enabling the NFS
server. Once NFS is running, the output of sockstat(1) will show rpc.lockd,
rpc.statd, nfsd, mountd, and rpcbind listening. If you don’t see all of these dae-
mons listening to the network, check /var/log/messages for errors.

The NFS server is designed to seamlessly interoperate a whole bunch
of different NFS implementations. While it should transparently auto-
negotiate connections, you might find that you need to tweak your NFS
server nfsd(8) to best fit your clients. Tune nfsd(8) at startup with the
rc.conf option nfs_server_flags.

NFS can run over TCP or UDP. UDP is the traditional NFS transport
protocol. TCP works better over lossy networks and can better cope with
irregular network speeds. FreeBSD offers both protocols but defaults to
using TCP mounts. Some clients behave better with one protocol or the
other. You can explicitly enable only TCP with -t and only UDP with -u.

The NFS server defaults to listening to all IP addresses on a machine.
When a server has multiple IP addresses, replies to a UDP request can come
from any of those addresses. This can confuse NFS clients. If your NFS server
has multiple IP addresses and you have clients that prefer UDP, tell the NFS
server to use only a single address with -h and the server IP.

While nfsd(8) works well, highly loaded servers might need additional
nfsd(8) processes. While FreeBSD starts four nfsd(8) processes by default,
you can start additional processes with the -n flag and the desired number
of processes.

This rc.conf entry tells NFS to use only UDP, bind to the IP address
198.51.100.71, and run six instances of nfsd(8).

nfs_server_flags="-uh 198.51.100.71 -n 6"

Before you start tweaking server behavior, though, you really should
have some exports.

304 Chapter 13

Configuring NFS Exports
Now tell your server what it can share, or export. You could export all direc-
tories and filesystems on the entire server, but any competent security
administrator would have a (justified) fit. As with all server configura-
tions, permit as little access as possible while still letting the server fulfill its
role. For example, in most environments, clients have no need to remotely
mount the NFS server’s root filesystem.

FreeBSD lets you configure exports through two different paths. The
traditional method is the file /etc/exports. A ZFS-based server can configure
exports through each dataset’s sharenfs property. The server will create the
ZFS exports file /etc/zfs/exports based on these properties. Both exports files
have the same format.

Choose one method of managing your NFS exports. Either edit /etc/
exports, or use zfs(8). Using both methods simultaneously might merely con-
fuse you but will probably break everything. If you use the ZFS method, never
edit /etc/zfs/exports by hand. Stick with one method.

No matter which method you choose, though, /etc/exports must exist.
If you manage NFS through zfs(8), I recommend creating a one-line /etc/
exports that contains only a comment telling people to use zfs(8).

Exports Entries

So how do you configure an export? I’ll start with the exports file /etc/
exports, but most everything also applies to using ZFS. I’ll discuss the dif-
ferences in “Managing NFS with zfs(8)” on page 308, but understanding
those limitations requires understanding /etc/exports.

Each exports entry has up to three parts:

•	 Directories or partitions to be exported (mandatory)

•	 Options on that export

•	 Clients that can connect

Each combination of clients and a disk device can only have one line in
the exports file. This means that if /usr/ports and /usr/home are on the same
partition and you want to export both of them to a particular client, they
must both appear in the same line. You can’t export /usr/ports and /usr/home
to one client with different permissions. You don’t have to export the entire
disk device, mind you; you can export a single directory within a partition.
This directory cannot contain either symlinks or double or single dots.

NFS mounts don’t cross partitions. If a host has separate UFS partitions
for /usr and /usr/src, exporting /usr doesn’t automatically export /usr/src.

Of the three parts of the /etc/exports entry, only the directory is man-
datory. An exports line cannot contain symlinks or periods. To export my
home directory to every host on the internet, I could use an /etc/exports
line consisting entirely of:

/home/mwlucas

Foreign Filesystems 305

This has no options and no host restrictions. Such an export would be
foolish, of course, but I could do it.4

After editing the exports file, tell mountd(8) to reread it:

service mountd reload

Any problems with mountd(8) appear in /var/log/messages. The log
messages are generally enigmatic: while mountd(8) informs you that a line
is bad, it usually doesn’t say why. The most common errors I experience
involve symlinks. Use pwd(1) in a directory to get a directory’s actual path.

NFS and Users

NFSv2 and NFSv3 identify users by UID. (NFSv4 uses usernames because
it assumes you’ve synchronized usernames across the entire network.) For
example, on my laptop, the user mwlucas has the UID of 1001. On the NFS
server, mwlucas also has the UID 1001. This makes my life easy, as I don’t
have to worry too much about file ownership; I have the same privileges on
the server as on my laptop.

This can be a problem on a large network, where users have root on
their own machines. The best way around this is to create a central reposi-
tory of authorized users via Kerberos. On a small network or on a network
with a limited number of NFS users, this usually isn’t a problem; you can
synchronize /etc/master.passwd on your systems or just assign the same UID
to each user on each system.

The root user is handled slightly differently, however. An NFS server
doesn’t trust root on other machines to execute commands as root on the
server. After all, if an intruder breaks into an NFS client, you don’t want the
server to automatically go down with it. NFS defaults to mapping requests
from a client’s root account to the UID and GID of –2 on the server. This is
where the highly unprivileged nobody account originated.

The authors of many other server programs thought the nobody account
was a great idea, so they appropriated nobody for their own use. Multiple
security entities simultaneously running as nobody creates security issues.
FreeBSD’s packages create unprivileged users for all applications that need
one. I consider the nobody user tainted and suggest you don’t permit its use.

You can map requests from root to any other username. For example,
you might say that all requests from root on a client will run as the nfsroot
user on the server. With careful use of groups, you could allow this nfs-
root user to have limited file access. Use the maproot option to map root to
another user. Here, we map UID 0 (root) on the client to UID 5000 on the
server:

/usr/home/mwlucas -maproot=5000

4. Why is there no safeguard against shooting yourself in the foot like this? Well, Unix feels
that anyone dumb enough to do this doesn’t deserve to be its friend. Various people keep
trying to put Unix in therapy for this type of antisocial behavior, but it just isn’t interested.

306 Chapter 13

If you really want root on the client to have root privileges on the
server, use -maproot to map root to UID 0. This might be suitable on your
home network or on a test system.

You can’t arbitrarily remap user accounts to each other. In complex
environments, be sure you synchronize user accounts and UIDs on all
machines on your network.

NFS users can belong to no more than 16 groups. Some operating sys-
tems can break that limit, but they violate the NFS protocols in doing so. If
a user can’t access files with group-based access control, check the number
of groups that they’re in.

Remember to restart mountd(8) after editing the exports file.

Exporting Multiple Directories

A standard FreeBSD UFS install puts all the files on one partition. You
might want to export multiple directories on that partition. List all direc-
tories on the same partition on the same line in /etc/exports, right after the
first exported directory, separated by spaces. Here’s a sample /etc/exports
with multiple exports:

/usr/home/mwlucas /usr/src /var/log /usr/ports/distfiles -maproot=nfsroot

Clients can mount any of these directories, and requests from root get
mapped to nfsroot.

There are no identifiers, separators, or delimiters between the parts of
the line. Yes, it would be easier to read if we could put each shared direc-
tory on its own line, but we can’t—they’re all on the same partition. The
FreeBSD team could rewrite this so that it had more structure, but then
FreeBSD’s /etc/exports would be incompatible with that from any other Unix.

Perhaps you want clients to be able to mount any directory on a parti-
tion. Allow this with the -alldirs option. I wouldn’t do this on a host with a
single partition.

/home -alldirs

You can only specify a partition mount point with -alldirs.

Long Lines

As with many other configuration files, you can use a backslash to break a
single line of configuration into multiple lines. You might find the preced-
ing configuration more readable as:

/usr/home/mwlucas \
 /usr/src \
 /usr/obj \
 /usr/ports/distfiles \
 -maproot = 5000

Foreign Filesystems 307

Once your exports line gets long enough, this style suddenly gets more
readable than the alternative.

Restricting Clients

To allow only particular clients to access an NFS export, list them at the
end of the /etc/exports entry. Here, we restrict our preceding share to one IP
address:

/usr/home/mwlucas /usr/src /usr/obj /usr/ports/distfiles \
 -maproot=5000 203.0.113.200

You can also restrict file shares to clients on a particular network by
using the -network and -mask qualifiers:

/usr/home/mwlucas /usr/src /usr/obj /usr/ports/distfiles \
 -maproot=5000 -network 203.0.113 -mask 255.255.255.0

This lets any client with an IP address beginning in 203.0.113 access
your NFS server. I use a setup much like this to upgrade clients quickly. I
build a new world and kernel on the NFS server and then let the clients
mount those partitions and install the binaries over NFS.

To export to an IPv6 network, include the slash in the address.

/usr/home/mwlucas -network 2001:db8:bad:c0de::/64

You can also list hostnames rather than IP addresses, but this creates
a dependency on name resolution. If you lose DNS, you’d lose file sharing.
Also, the NFS server looks up the IP address of each host when you start
mountd. Changing a client’s IP means reloading both DNS and mountd(8).
If you must list hostnames, put them at the end of the line.

/usr/home/mwlucas www1 www2 www3

Assigning NFS on a per-host basis is more labor. Assign NFS permis-
sions as broadly as possible without compromising security.

Combinations of Clients and Exports

Each line in /etc/exports specifies exports from one partition to one network,
address, or set of hosts. Different hosts require entirely different export state-
ments. You can change the options for each if you wish.

/usr/home/mwlucas /usr/src /usr/obj /usr/ports/distfiles \
 -maproot=5000 203.0.113.200
/usr -maproot=0 203.0.113.201

Here, I’ve exported several subdirectories of /usr to the NFS client at
203.0.113.200. The NFS client at 203.0.113.201 gets to mount the whole of
/usr and may even do so as root.

308 Chapter 13

NFS and Firewalls

NFS is famous for not liking firewalls. The dynamic port assignment of ser-
vices like mountd(8), rpc.lockd(8), and rpc.statd(8) makes packet filtering
nearly impossible. You can use the -p flag to assign each of these services a
specific TCP port. Here, I use rc.conf entries to nail mountd(8) to port 4046,
rpc.lockd(8) to 4045, and rpc.statd(8) to 4047:

mountd_flags="-r -p 4046"
rpc_lockd_flags="-p 4045"
rpc_statd_flags="-p 4047"

I can use these ports in my packet filter rules, providing some protec-
tion to my NFS server.

Managing NFS with zfs(8)

Using zfs(8) to manage NFS has advantages and disadvantages. You can
configure NFS on a per-dataset basis, and you don’t need to manually restart
mountd(8) after each change. Command line configuration is easier to auto-
mate, and many folks find it easier to type as well.

Use the sharenfs property to enable, disable, and configure NFS exports.
Set this property to on to globally share a dataset and all its descendants. This
is equivalent to listing the dataset on its own in /etc/exports. Anyone in the
world can mount this dataset or any of its children, with no restrictions and
no options, unless you have other access control, such as a firewall.

zfs set sharenfs=on zroot/home

Similarly, set it to off to unshare the dataset.
You probably want some NFS options on an export, though. Set sharenfs

to the desired options for the dataset. This example sets a maproot user and
restricts clients to my local network. Put the options in quotes.

zfs set sharenfs="-network 203.0.113.0/24 -maproot=nfsroot" zroot/home

The problem with using ZFS to manage your NFS exports is that all
permitted hosts get the same options. That is, if most of your hosts need
to mount /home with -maproot=nfsroot but you have one host that needs
root to mount that dataset as root, you can’t use ZFS properties. Similarly,
you can define only one permitted network with ZFS properties.

Enabling the NFS Client
Configuring the NFS client is much simpler. In /etc/rc.conf, put:

nfs_client_enable="YES"

You can reboot or run service nfsclient start. Either starts NFS client
functions.

Foreign Filesystems 309

Show Available Mounts

One obvious question for an NFS client to ask would be, “What can I mount
from that server?” The showmount(8) command lists all exports available
to a client. Give the -e flag and the name of the NFS server. Here, I ask the
storm server what exports it offers:

showmount -e storm
Exports list on storm:
/usr/home 203.0.113.0

This client is allowed to mount /usr/home under the rule that permits
the network 203.0.113.0.

Running showmount(8) doesn’t offer any server-side options, like
-maproot. These details aren’t readily available to clients, although touch(1)
lets you easily test for read-only exports.

Mounting Exports

Now you can mount directories or filesystems exported by NFS servers.
Instead of using a device name, use the NFS server’s hostname and the
directory you want to mount. For example, to mount the /home/mwlucas
directory from my storm server onto the /mnt directory, I would run:

mount storm:/usr/home/mwlucas /mnt

Afterward, test your mount with df(1).

df -h
Filesystem Size Used Avail Capacity Mounted on
--snip--
storm:/usr/home 891G 2.7G 888G 0% /mnt

The NFS-mounted directory shows up as a normal partition, and I can
read and write files on it as I please.

NFS Mount Options

FreeBSD uses conservative NFS defaults so that it can interoperate with any
other Unix-like operating system. You can use mount options to adjust how
FreeBSD mounts NFS exports. Use these options at the command line with
-o or add them to an /etc/fstab entry.

If you need to access a UDP-only NFS server, use the mount option udp
to use UDP rather than the default TCP.

Programs expect the filesystem not to disappear, but when you’re using
NFS, it’s possible that the server will vanish from the network. This makes
programs on the client trying to access the NFS filesystem hang forever. By
making your NFS mount interruptible, you’ll be able to interrupt processes
hung on unavailable NFS mount with ctRL-C. Set interruptibility with intr.

310 Chapter 13

By using a soft mount, FreeBSD will notify programs that the file they
were working on is no longer available. What programs do with that infor-
mation depends on the program, but they’ll no longer hang forever. Enable
soft mounts with the soft option.

If you want a read-only mount, use the ro mount option.
Putting everything together, I might mount my home directory as an

interruptible soft mount.5

mount -o soft,intr storm:/usr/home/mwlucas /mnt

I could add this to /etc/fstab as follows:

storm:/usr/home/mwlucas /mnt nfs rw,soft,intr 0 0

While NFS is pretty straightforward for simple uses, you can spend
many hours adjusting, tuning, and enhancing it. If you wish to build a com-
plicated NFS environment, don’t rely entirely on this brief introduction but
spend time with a good book on the subject.

Now, let’s look at reading Windows shares.

The Common Internet File System
If you’re on a typical office network, the standard network file shar-
ing protocol is Microsoft’s Common Internet File System (CIFS). You might
know CIFS as Server Message Block (SMB), “Network Neighborhood,”
or “Why can’t I mount that drive?” While originally provided only by
Microsoft Windows systems, this protocol has become something of
a pseudostandard.

FreeBSD includes the smbutil(8) program to find, mount, and use
CIFS shares as a CIFS client. FreeBSD doesn’t include a CIFS server in the
base system, but the open source CIFS server Samba (https://www.samba.org/)
works well on FreeBSD.

Use FreeBSD’s CIFS support to interoperate with existing Microsoft
infrastructure. Don’t deploy CIFS to support Unix-like systems.

Prerequisites
Before you begin working with Microsoft file shares, gather the following
information about your Windows network:

•	 Workgroup or Windows domain name

•	 Valid Windows username and password

•	 IP address of the Windows DNS server

5. For Bert, of course, I’d add the read-only option.

Foreign Filesystems 311

Kernel Support
FreeBSD uses several kernel modules to support CIFS. The smbfs.ko module
supports basic CIFS operations. The libmchain.ko and libiconv.ko modules pro-
vide supporting functions and load automatically when you load smbfs.ko. You
can compile these statically in your kernel as:

options NETSMB
options LIBMCHAIN
options LIBICONV
options SMBFS

You can load these automatically at boot time with a boot/loader.conf entry.

smbfs_load=YES

You can now configure CIFS.

Configuring CIFS
CIFS relies on a configuration file, either $HOME/.nsmbrc or /etc/nsmb.conf.
All settings in /etc/nsmb.conf override the settings in user home directories.
The configuration file is divided into sections by labels in square brackets.
For example, settings that apply to every CIFS connection are in the [default]
section. Create your own sections to specify servers, users, and shares, in one
of the following formats:

[servername]
[servername:username]
[servername:username:sharename]

Information that applies to an entire server goes into a section named
after the server. Information that applies to a specific user is kept in a user-
name section, and information that applies to only a single share is kept in
a section that includes the sharename. You can lump the information for all
the shares under a plain [servername] entry if you don’t have more specific
per-user or per-share information.

Configuration entries use the values from the CIFS system—for example,
Bert’s Windows username is bertjw, but his FreeBSD username is xistence, so I
use bertjw in nsmb.conf.

nsmb.conf Keywords
Specify a nsmb.conf configuration with keywords and values under the appro-
priate section. For example, servers have IP addresses and users don’t, so
you would use only an IP address assignment in the server section. To use a
keyword, assign a value with an equal sign, as in keyword=value. Here are the
common keywords; for a full list, see nsmb.conf(5).

312 Chapter 13

workgroup=string

The workgroup keyword specifies the name of the Windows domain or work-
group you want to access. This is commonly a default setting used for all
servers.

workgroup=MegaCorp

addr=a.b.c.d

The addr keyword sets the IP address of a CIFS server. This keyword can
appear only under a plain [servername] label. You shouldn’t need this if you
have working CIFS name resolution, but reality sometimes disagrees.

nbns=a.b.c.d

The nbns keyword sets the IP address of a NetBIOS (WINS) nameserver.
You can put this line in the default section or under a particular server. If
you have Active Directory (which is based on DNS), you can use DNS host-
names. Adding a WINS server won’t hurt your configuration, however, and
helps in testing basic CIFS setup.

password=string

The password keyword sets a clear-text password for a user or a share. If you
must store passwords in /etc/nsmb.conf, be absolutely certain that only root
can read the file. Storing a password in $HOME/.nsmbrc is a bad idea on a
multiuser system.

You can scramble your Windows password with smbutil crypt, generating
a string that you can use for this keyword. The scrambled string has double
dollar signs ($$) in front of it. While this helps prevent someone accidentally
discovering the password, a malicious user can unscramble it easily.

smbutil crypt superSecretPassword
$$1624a53302a6d

If the server needs access to a CIFS share to do its routine job, don’t use
your account. Ask the Windows team for an account for your server so that
problems with your account won’t interrupt the server’s functions.

Sample Configuration

Here, I build an nsmb.conf allowing Bert access to his files on the corporate
CIFS fileserver.

[default]
nbns=203.0.113.12
workgroup=BigCorp
[FILESERVER:bertjw]
password=$$1624a53302a6d

Foreign Filesystems 313

With this configuration, Bert should be able to access whatever CIFS
shares those tyrannical Windows admins permit.

CIFS Name Resolution
Before FreeBSD can mount a CIFS share, it needs to identify the host
the share is on. While Microsoft has used DNS for decades now, typical
Windows environments often support a whole panoply of legacy protocols.
Verify that smbutil(1) can find CIFS servers with smbutil lookup.

smbutil lookup fileserver1
Got response from 203.0.113.12
IP address of ntserv1: 203.0.113.4

If this works, you have basic CIFS functionality.

Other smbutil(1) Functions
You can view shares on a host at the command line. Start by logging into
your host.

smbutil login //unix@fileserver1
Password:

So, our configuration is correct. Let’s see what resources this server
offers with smbutil’s view command.

smbutil view //unix@fileserver1
Password:
Share Type Comment

IPC$ pipe Remote IPC
ADMIN$ disk Remote Admin
C$ disk Default share
unix disk
4 shares listed from 4 available

You’ll get a list of every shared resource on the CIFS server. Now,
assuming you’re finished, log out of the server.

smbutil logout //unix@fileserver

Mounting a Share
Now that you’ve finished investigating, mount a share with mount_smbfs(8).
The syntax is as follows:

mount_smbfs //username@servername/share /mount/point

314 Chapter 13

I have a share on this Windows box called MP3 that I want to access
from my FreeBSD system. To mount this as /home/mwlucas/smbmount, I would
do this:

mount_smbfs //unix@fileserver1/MP3 /home/mwlucas/smbmount

The mount(8) and df(1) programs show this share attached to your
system, and you can access documents on this server just as you could any
other filesystem. Use umount(8) to disconnect from the server.

Other mount_smbfs Options
mount_smbfs includes several options to tweak the behavior of mounted
CIFS filesystems. Use the -f option to choose a different file permission
mode and the -d option to choose a different directory permission mode.
For example, to set a mount so that only I could access the contents of the
directory, I would use mount_smbfs -d 700. This would make the FreeBSD per-
missions far more stringent than the Windows privileges, but that’s perfectly
all right with me. I can change the owner of the files with the -u option and
the group with the -g option.

Microsoft filesystems are case insensitive, but Unix-like operating
systems are case sensitive. CIFS defaults to leaving the case as it finds it,
but that may not be desirable. The -c flag makes mount_smbfs(8) change
the case on the filesystem: -c l changes everything to lowercase and -c u
changes everything to uppercase.

nsmb.conf Options
Here are samples of nsmb.conf entries for different situations. They all
assume they’re part of a configuration where you’ve already defined a work-
group, NetBIOS nameserver, and a username with privileges to access the
CIFS shares.

Unique Password on a Standalone System

You’d use something like the following if you have a machine named desktop
with a password-protected share. Many standalone Windows systems have
this sort of password-protection feature.

[desktop:shareusername]
password=$$1789324874ea87

Accessing a Second Domain

In this example, we’re accessing a second domain named development.
This domain has a username and password different from those at our
default domain.

Foreign Filesystems 315

[development]
workgroup=development
username=support

CIFS File Ownership
Ownership of files between Unix-like and Windows systems can be prob-
lematic. For one thing, your FreeBSD usernames probably won’t map to
Windows usernames, and Unix has a very different permissions scheme
compared to Windows.

Since you’re using a single Windows username to access the share, you
have whatever access that account has to the Windows resources, but you
must assign the proper FreeBSD permissions for that mounted share. By
default, mount_smbfs(8) assigns the new share the same permissions as
the mount point. In our earlier example, the directory /home/mwlucas/
smbmount is owned by the user mwlucas and has permissions of 755. These
permissions say that mwlucas can edit what’s in this directory but nobody
else can. Even though FreeBSD says that this user can edit those files,
Windows still might not let that particular user edit the files it’s sharing out.

Serving CIFS Shares
Just as FreeBSD can access CIFS shares, it can also serve them to CIFS
clients with Samba. You can find several recent versions of Samba in the
packages collection. The Samba website at http://www.samba.org/ contains
many useful tutorials. Serving CIFS shares from FreeBSD is much more
complicated than accessing them, so we’ll end our discussion here before
this book grows even thicker.

We’ve now finished our tour of FreeBSD filesystems. While I’ve spent a
few chapters on the topic, FreeBSD has several additional filesystems options,
an automounter, and even Filesystem in Userspace (FUSE) support for access-
ing NTFS, Linux’s extfs, and more. It has special iSCSI support and special
filesystems like nullfs(5) that make managing jails at scale very powerful. If
I spend any more time on filesystems, though, you’ll track me down and use
a blunt instrument to express your displeasure, so let’s proceed to some of
FreeBSD’s advanced security features.

14
E x p l o r i n g / E t c

The /etc directory contains the basic config-
uration information needed to boot a Unix-

like system. Every time I get saddled with an
unfamiliar system, one of the first things I do

is scope out /etc. The fastest way to go from a junior
sysadmin to a midgrade one is to read /etc and the
associated man pages. Yes, all of it. Yes, this is a lot
of reading. Understanding /etc means that you understand how the system
hangs together. As you progress as a sysadmin, you’re going to pick up this
information piecemeal anyway, so you might as well take the easier route
and master this part of your toolkit at the beginning.

I discuss many /etc files in chapters where they’re most important, such
as /etc/services in Chapter 7 and /etc/fstab in Chapter 10. Also, some files are
of only historical interest or are gradually being removed. This chapter
covers important /etc files that don’t quite fit anywhere else.

318 Chapter 14

/etc Across Unix Species
Different Unix-like systems use different /etc files. In many cases, these files
are simply renamed or restructured files from primordial BSD. The first
time I encountered an IBM AIX system, for example, I went looking for a
BSD-style /etc/fstab. It wasn’t there. A little hunting led me to /etc/filesystems,
which is an IBM-specific /etc/fstab. Apparently IBM felt that a file named for
an abbreviation of filesystem table was confusing, so they renamed the file.
Knowing this information existed somewhere in /etc, and knowing which
files it obviously wasn’t in, greatly shortened my search.

Even radically different FreeBSD systems have almost identical /etc
directories. While some add-on programs insert their own files here, you
can expect certain files to be on every FreeBSD system you encounter.

Remember that /etc is the heart of FreeBSD and that changes to these
files can damage or destroy your system. While having to manually recover
a scrambled filesystem can turn an adequate sysadmin into a pretty good
one, it’s one of the least pleasant ways to get there.

/etc/adduser.conf
This file lets you configure the defaults for new users. See Chapter 9 for
details.

/etc/aliases
This file lets you configure system-wide email forwarding. We cover it in
Chapter 20.

/etc/amd.map
FreeBSD has the ability to automatically mount and unmount NFS file-
systems upon demand through the automounter daemon, amd(8). The
automounter daemon is very old, however, and has largely been replaced by
autofs(5) and automountd(8). Automounting is mostly useful for worksta-
tions, so we won’t go into it.

/etc/auto_master
The auto_master file configures FreeBSD’s modern automounting service. It
lets you configure mount options, determine how long an automounted file-
system should remain mounted, and so on. See auto_master(5), autofs(5),
and automountd(8) for details.

Exploring /etc 319

/etc/blacklistd.conf
FreeBSD includes an automated blacklist daemon, blacklistd(8), that’s
comparable to fail2ban and similar programs. Programs that link against
libblacklist(3) can direct blacklistd(8) to block intrusive hosts at the fire-
wall. We configure blacklistd(8) in Chapter 19.

/etc/bluetooth, /etc/bluetooth.device.conf, and /etc/defaults/
bluetooth.device.conf

FreeBSD supports Bluetooth, a standard for short-range wireless communica-
tion. Unlike 802.11, Bluetooth is designed for short-range but high-level ser-
vices, such as voice communications. This book is about servers, so we won’t
cover Bluetooth, but you should know that your FreeBSD laptop can attach to
your Bluetooth-equipped cellphone and connect to the internet if you desire.

/etc/casper
The Capsicum security system lets programmers add sandboxing and secu-
rity capabilities to their software. The /etc/casper directory contains sample
capsicum(4) configurations.

/etc/crontab and /etc/cron.d
The cron(8) daemon lets users schedule tasks. See Chapter 20 for examples
and details.

/etc/csh.*
The /etc/csh.* files contain system-wide defaults for csh and tcsh. When a
user logs in with either of these shells, the shell executes any commands
it finds in /etc/csh.login. Similarly, when the user logs out, /etc/csh.logout is
executed. You can place general shell configuration information in /etc/
csh.cshrc.

Per-shell configuration is prone to errors, and you’ll have to maintain
identical settings for any other shells. I recommend putting necessary
environment variables in a login class (see “Restricting System Usage”
on page 188).

/etc/ddb.conf
The kernel debugger configuration utility ddb(8) reads ddb.conf for instruc-
tions. We’ll use this in Chapter 24 to prepare kernel crash dumps on small
systems.

320 Chapter 14

/etc/devd.conf
The device daemon devd(8) is best known for managing detachable hard-
ware, such as USB, PCCard, and Cardbus devices. When you insert a USB
network card into your laptop, devd(8) notices the arrival and fires up
the appropriate system processes to configure the card as per /etc/rc.conf.
More generally, it’s a state change daemon and can react on link up/down
events, notify you about CPU overheating, process suspend/resume events,
and more. We discuss devd(8) briefly in Chapter 13, but if you think you
need to edit /etc/devd.conf on a server, you’re probably doing something
wrong.

/etc/devfs.conf, /etc/devfs.rules, and /etc/defaults/devfs.rules
FreeBSD manages device nodes through devfs(5), a virtual filesystem
that dynamically provides device nodes as hardware boots, appears, and
disappears. See Chapter 13 for more information.

/etc/dhclient.conf
Many operating systems give you very basic DHCP client configuration with
no way to fine-tune or customize it; you either use it or you don’t. In most
cases, an empty /etc/dhclient.conf file gives you full DHCP client functionality,
but it won’t work correctly in all situations. Perhaps your network is having
trouble or you’re at a conference where some script kiddie thinks it’s fun
to set up a second DHCP server and route everyone’s traffic through his
machine so he can capture passwords.

Your server better not be configured via DHCP (unless it’s diskless), so
we won’t go into any depth on this. You should be aware that you can con-
figure FreeBSD’s DHCP client functionality, however.

/etc/disktab
Once upon a time, hard disks were rare and exotic creatures that came in
only a few varieties. In /etc/disktab, you’ll find low-level descriptions of many
different kinds of disks, from the 360KB floppy disk to a Panasonic 60MB
laptop hard drive. (Yes, laptops came with 60MB hard drives, and we were
durned happy to have them.)

Today, this file is mostly used for removable media, such as 1.44MB
floppy disks and zip disks. While I described formatting flash drives in
Chapter 13, this file contains the descriptions needed to format other
removable media. If you want to put a filesystem on your LS 120 disk or
zip drive, you’ll find the necessary label here at the beginning of an entry.

Editing /etc/disktab is useful only if you have multiple identical hard
drives that you want to partition and format in exactly the same way. If you
need to make your own entries, read disktab(5).

Exploring /etc 321

/etc/dma/
The Dragonfly Mail Agent (DMA) stores its configuration in /etc/dma/. We
discuss DMA in Chapter 20.

/etc/freebsd-update.conf
This file is used by freebsd-update(8) when getting binary updates for your
server. See Chapter 18 for details.

/etc/fstab
See Chapter 10 for a discussion on the filesystem table, /etc/fstab.

/etc/ftp.*
The FTP daemon ftpd(8) uses these files to determine who may access the
system via FTP and what access they have upon a successful connection.
Unless you’re running a large FTP site, you should be using sftp(1) instead.

/etc/group
Assigning users to groups is covered in painful detail in Chapter 9.

/etc/hostid
Certain software expects every host to have a universally unique ID, or
UUID. If you’re running on real hardware, this UUID is burned into the
mainboard and is accessible via kenv(8). Virtual hosts can generate a UUID
from software. The /etc/hostid file contains that UUID.

/etc/hosts
This file contains host-to-IP mappings, as discussed in Chapter 8.

/etc/hosts.allow
The /etc/hosts.allow file controls who can access the daemons compiled with
TCP Wrappers support. Learn about it in Chapter 19.

/etc/hosts.equiv
The /etc/hosts.equiv file is used by the r-services (rlogin, rsh, etc.) to let
trusted remote systems log in or run commands on the local system

322 Chapter 14

without providing a password or even logging in. Hosts listed in this file are
assumed to have performed user authentication on a trusted system, so the
local system doesn’t have to bother reauthenticating the user.

Such blatant trust is very convenient on friendly networks, much as leav-
ing the doors of your Manhattan townhouse unlocked saves you the trouble
of digging out your door keys every time you get home. There’s no such thing
as a friendly network.1 A single disgruntled employee can largely destroy a
corporate network with this service, and a machine using the r-services is
pretty much dog meat for the first script kiddie who wanders by. In fact, /etc/
hosts.equiv and its related services have bitten even top-notch security experts
who thought they could use it safely. I suggest leaving this file empty and per-
haps even making it immutable (see Chapter 9).

/etc/hosts.lpd
The /etc/hosts.lpd file is one of the simplest files in /etc. Hosts listed here, each
on its own line, may print to the printer(s) controlled by this machine. While
you can use hostnames, that would allow DNS issues to choke printing, so
use IP addresses instead.

Unlike most other configuration files, /etc/hosts.lpd doesn’t accept
network numbers or netmasks; you must list individual hostnames or IP
addresses.

We configure FreeBSD as a printer client in Chapter 20.

/etc/inetd.conf
inetd(8) handles incoming network connections for smaller daemons that
don’t run frequently. See the section on inetd in Chapter 20.

/etc/libmap.conf
FreeBSD’s linker lets you substitute one shared library for another. We
discuss this in Chapter 17.

/etc/localtime
This file contains local time zone data, as configured by tzsetup(8). It’s
a binary file, and you can’t edit it with normal tools. tzsetup(8) actually
copies this file from a subdirectory of /usr/share/zoneinfo. If your time zone
changes, you’ll need to upgrade FreeBSD to get the new time zone files and
then rerun tzsetup(8) to configure time correctly.

We discuss time in Chapter 20.

1. You think your home network is friendly? Oh, really. You really trust every device on it?
Media players? Tablets? Televisions? The kids’ toys? Your networked stove would stab you in
the back as soon as look at you.

Exploring /etc 323

/etc/locate.rc
locate(1) finds all files of a given name. For example, to find locate.rc, enter
the following:

locate locate.rc
/etc/locate.rc
/usr/share/examples/etc/locate.rc
/usr/src/usr.bin/locate/locate/locate.rc
/var/db/etcupdate/current/etc/locate.rc

You’ll see that a file called locate.rc can be found in four places: in the
main /etc directory, the system examples directory, the system source code,
and a copy retained by etcupdate(8).

As part of periodic(8)’s weekly run (see Chapter 21), your FreeBSD sys-
tem scans its disks, builds a list of everything it finds, and stores that list in
a database. The list-building program, locate.updatedb(8), takes its settings
from /etc/locate.rc. The following variables in this file all change how your
locate.updatedb(8) builds your locate database:

•	 TMPDIR contains the temporary directory used by locate.updatedb(8),
and defaults to /tmp. If you’re short on space in /tmp, change this path
to a place where you have more room.

•	 While you can change the location of the database itself with the FCODES
variable, this affects other parts of FreeBSD that expect to find that
database in its default location. Be prepared for odd results, especially
if you leave an old locate database in the default location of /var/db/
locate.database.

•	 The SEARCHPATHS variable gives the directory where you want to start
building your database. This defaults to /, the whole disk. To index
only a portion of your disk, set that value here.

•	 PRUNEPATHS lists directories you don’t want to index. This defaults to
excluding temporary directories that traditionally contain only short-
lived files.

•	 The FILESYSTEMS variable lists the types of filesystems you want to index.
By default, locate.updatedb(8) indexes only UFS (FreeBSD) and ext2fs
(Linux) filesystems. Listing NFS (see Chapter 13) filesystems is a bad
idea: all of your servers simultaneously indexing the fileserver will bottle-
neck either the network or the fileserver.

/etc/login.*
You can control who may log into your system—and what resources those
users may access—by using /etc/login.access and /etc/login.conf. See Chapter 9
for instructions.

324 Chapter 14

/etc/mail
Most of the contents of /etc/mail are dedicated to Sendmail. The two excep-
tions are the aliases(5) file and mailer.conf(5). We discuss both in Chapter 20.

/etc/mail.rc
While FreeBSD uses most .rc files for system startup, the /etc/mail.rc file is
used to configure mail(1).

/etc/mail/mailer.conf
FreeBSD allows you to choose any mail server program you like via /etc/
mail/mailer.conf, as covered in Chapter 20.

/etc/make.conf
To make, or compile, a program is to build it from source code into machine
language. We’ll discuss building software in detail in Chapter 17. The /etc/
make.conf contains settings that control how the building process works,
letting you set options that directly affect software builds. Remember, any-
thing you add to make.conf affects all software built on the system, including
system upgrades. This may cause upgrade failures.2 Many of the options
from make.conf are useful only to developers.

If you’re interested in setting options that affect only system upgrades,
use /etc/src.conf instead.

Here are some common features set in make.conf. Any values set here
require the same syntax used by make(1). If you insist on trying to optimize
software builds, follow the examples in make.conf(5) or in the software’s
documentation. Best of all, though, don’t muck with make at all.

CFLAGS
This option specifies optimization settings for building nonkernel pro-
grams. Many other Unix-like operating systems suggest compiling software
with particular compiler flags, or CFLAGS. This practice is actively discour-
aged on FreeBSD. System components that require compiler flags already
have that specified in the software configuration, and add-on software has
that configuration set for it separately. While people might recommend
other settings for CFLAGS, custom options aren’t supported by the FreeBSD
Project.

2. Having weird crap in make.conf during a system upgrade will make people laugh at you
when you ask for help. But commercial software support techs do that, too, so you’re prob-
ably used to it.

Exploring /etc 325

In general, FreeBSD code is expected to compile most correctly out
of the box. The only thing that adding compiler options can do is impair
your performance. If you build FreeBSD or ports with nonstandard flags
and have problems, remove those flags and build it again.

COPTFLAGS
The COPTFLAGS optimizations are used only for building the kernel. Again,
settings other than the defaults can build a nonworking kernel.

CXXFLAGS
CXXFLAGS tells the compiler what optimizations to use when building C++
code. Be sure to use the += syntax when using CXXFLAGS so that you add your
instructions to those specified in the software. Everything that I said earlier
about CFLAGS applies equally well to CXXFLAGS.

/etc/master.passwd
This file contains the confidential core information for all user accounts, as
discussed in Chapter 9. Protect it.

/etc/motd
The message of the day (motd) file is displayed to users when they log in. You can
place system notices in this file or other information you want shell users to
see. The welcome option in /etc/login.conf (see Chapter 9) can point users to
different motd files, so you can have separate messages for each login class.

/etc/mtree
mtree(1) builds directory hierarchies with permissions set according to a
predefined standard. The /etc/mtree directory stores that standard for the
FreeBSD base system. The FreeBSD upgrade process uses mtree records
to install the system correctly. If you damage file or directory permissions
in your base system, you can use mtree(1) to restore them to the defaults.
While you don’t generally need to edit these files, they can be useful if you
muck too much with your system. Diskless systems use these files to build
memory-based /var filesystems. We’ll use this information in Chapter 19 to
inspect system security.

/etc/netconfig
If you’re accustomed to SVR4-derived operating systems, you might expect
to configure various parts of networking in /etc/netconfig. FreeBSD uses this
file only for RPC code, though. I mention it only to keep old Solaris hands
from thinking changes here will help them.

326 Chapter 14

/etc/netstart
This shell script is designed specifically for bringing up the network while
in single-user mode. Having a network in single-user mode is terribly use-
ful for any number of reasons, from mounting NFS shares to connecting
to remote machines in order to verify configurations. Just run /etc/netstart.
This script has no effect when in full multiuser mode.

/etc/network.subr
This shell script isn’t intended for human use; rather, other network con-
figuration scripts use the subroutines defined herein to support common
functions.

/etc/newsyslog.conf
This file configures the rotation and deletion of log files. See Chapter 21 for
more information.

/etc/nscd.conf
The nscd(8) service caches the results of name service lookups to optimize
system performance. It’s useful if you’re running LDAP, but for hostname
lookups, you’re better off running a local caching resolver.

/etc/nsmb.conf
FreeBSD’s Windows file-share mounting system uses /etc/nsmb.conf to define
access to Windows systems, as described in Chapter 13.

/etc/nsswitch.conf
Name Service Switching is covered in Chapters 8 and 20.

/etc/ntp/, /etc/ntp.conf
Keeping correct time on your host simplifies . . . well, everything. The time
daemon ntpd(8) uses these files, as Chapter 20 illustrates.

/etc/opie*
One-time Passwords In Everything (OPIE) is a one-time password system derived
from S/Key. While still used in a few places, it’s no longer very popular.

Exploring /etc 327

You can read opie(4) if you’re interested. For the most part, OPIE has been
largely replaced by systems like Kerberos, Google Authenticator, and other
PAM plug-ins.

/etc/pam.d/*
Pluggable Authentication Modules (PAM) allow the sysadmin to use different
authentication, authorization, and access control systems. If you’re using
Kerberos, LDAP, or some other centralized authentication system, you’ll
need to configure PAM. PAM, unfortunately, fills an entire book on its own.
If you’re trapped into going anywhere near PAM, permit me to recommend
my book PAM Mastery (Tilted Windmill Press, 2016).

/etc/passwd
This file contains user-visible account information. We talk about the pass-
word files in Chapter 9.

/etc/pccard_ether
This script starts and stops removable network cards, such as Cardbus
cards and USB Ethernet. Its name is just a leftover of history, when the
only cards available were PC Cards. For the most part, devd(8) runs this
script as needed, as discussed in Chapter 13.

/etc/periodic.conf and /etc/defaults/periodic.conf
The system’s regular maintenance jobs that create those annoying mails
to root are run by periodic(8), which just runs shell scripts stored in /etc/
periodic and /usr/local/etc/periodic. Every one of these scripts can be enabled
or disabled in /etc/periodic.conf.

periodic(8) runs programs either daily, weekly, or monthly. Each set of
programs has its own settings—for example, daily programs are configured
separately from monthly programs. These settings are controlled by entries
in /etc/periodic.conf. While we show examples from only the daily scripts, you’ll
find very similar settings for the weekly and monthly scripts.

daily_output=”root”
If you want the status email to go to a user other than root, list that user’s
name here. Unless you have a user whose job it is to specifically read peri-
odic email, it’s best to leave this at the default and forward root’s email to
an account you read. You could also give a full path to a file if you prefer
and even have newsyslog(8) rotate the periodic log (see Chapter 19).

328 Chapter 14

daily_show_success=”YES”
With this set to YES, the daily message includes information on all successful
checks.

daily_show_info=”YES”
When set to YES, the daily message includes general information from the
commands it runs.

daily_show_badconfig=”NO”
When set to YES, the daily message includes information on periodic com-
mands it tried to run but couldn’t. These messages are generally harmless
and involve subsystems that your system just doesn’t support or include.

daily_local=”/etc/daily.local”
You can define your own scripts to be run as part of the daily, weekly, and
monthly periodic(8) jobs. These default to /etc/daily.local, /etc/weekly.local,
and /etc/monthly.local, but you can place them anywhere you like.

Each script in the daily, weekly, and monthly subdirectories of /etc/
periodic has a brief description at the top of the file, and most have configu-
ration options in /etc/defaults/periodic.conf. Skim through these quickly, look-
ing for things that are of interest to you. The defaults enabled are sensible
for most circumstances, but there’s extra functionality you can enable with
a simple setting in /etc/periodic.conf. For example, if you use GEOM-based
disk features, you’ll find the daily GEOM status messages useful. Since any-
thing I could list here would be obsolete before I could deliver this manu-
script, let alone before the book reaches you, I won’t go into detail about
the various scripts.

/etc/pf.conf, /etc/pf.os
We cover the basics of the PF packet filter in Chapter 19.

One less-known feature of PF is its ability to identify operating systems
by the packets they send. The /etc/pf.os file contains TCP fingerprints for
different operating systems, allowing you to write firewall rules such as
“Show FreeBSD users my real home page, but show Windows users a page
suggesting that they get a real operating system.” See pf.os(5) for more
information. I encourage you to peruse this file, if only to drive home how
all these network stacks behave so differently.

/etc/phones
Modem users can store phone numbers for remote modems in /etc/phones,
aliasing them so that they can just type home instead of the full phone number.
Only tip(1) and cu(1) use this file, however, so it’s not as useful as you might
think.

Exploring /etc 329

/etc/portsnap.conf
Portsnap provides updates for the ports tree, as discussed in Chapter 18.

/etc/ppp/
FreeBSD supports outbound modems with ppp(8). Read the man page for
more information.

/etc/printcap
This file contains printer configuration information. Printing on Unix-like
systems can be very complicated, especially with the vast variety of printers
you can use. Making your FreeBSD machine send print jobs to a print server
isn’t hard at all, however. We cover the topic in Chapter 20.

/etc/profile
The /etc/profile files contain the default account configuration information
for the /bin/sh shell, much like /etc/csh.* for csh and tcsh users. Whenever
a /bin/sh user logs in, he inherits what’s in this file. Users can override /etc/
profile with their own .profile. Bash and other sh derivatives also use this file.

While tcsh is the standard FreeBSD shell, sh and derivatives (particu-
larly bash) are quite popular. Keep settings in /etc/profile and /etc/csh.login
synchronized to ease troubleshooting in the future—or, better still, set nec-
essary environment variables in a login class (see Chapter 9) so that they
affect any shell the user needs.

/etc/protocols
In Chapter 7, we discussed network protocols. The /etc/protocols file lists the
various network protocols you might encounter. Remember, a TCP or UDP
port number isn’t the same as a protocol number.

/etc/pwd.db
This is the database version of the /etc/passwd file. It contains public infor-
mation about user accounts, as discussed in Chapter 9.

/etc/rc*
Whenever your system boots to the point where it can execute userland
commands, it runs the shell script /etc/rc. This script mounts all filesystems,

330 Chapter 14

brings up the network interfaces, configures devfs(5), finds and catalogs
shared libraries, and performs all the other tasks required to set up a system.
We discussed the FreeBSD startup system in Chapter 4.

Different systems have radically different startup tasks. A terminal
server with three 48-port serial cards works completely differently from a
web server. Instead of a single monolithic /etc/rc script that handles every
task, FreeBSD segregates each startup process into a separate shell script
that addresses a specific need.

Additionally, you’ll find a few scripts directly under /etc, such as /etc/
rc.firewall and /etc/rc.initdiskless. These scripts were split out on their own
years before the current startup system came along, and remain in their his-
torical locations because there isn’t anything to be gained by moving them.

/et/regdomain.xml
Wireless cards are subject to different regulatory rules depending on where
in the world they’re used. The cards read regdomain.xml to learn which fre-
quencies they may use and how strongly they’re allowed to transmit. Edit
this at your own risk.

/etc/remote
This file contains machine-readable configurations for connecting to remote
systems over serial lines. Today, this is of interest only if you use your system
as a serial client—for example, if you want to connect to a serial console.
We discuss serial consoles in Chapter 4.

/etc/resolv.conf
This file lets you set nameservers, domain search order, and more DNS client
settings. See Chapter 8 for the details.

/etc/rpc
Remote Procedure Calls (RPC) is a method for executing commands on a remote
computer. Much like TCP/IP, RPC has service and port numbers, and /etc/rpc
contains a list of these services and their port numbers. The most common
RPC consumer is NFS, discussed in Chapter 13.

/etc/security/
This directory contains configuration information for the audit(8) security
utility.

Exploring /etc 331

/etc/services
This file contains a list of network services and their associated TCP/IP
ports. We discussed /etc/services in Chapter 7.

/etc/shells
This file contains the list of all legitimate user shells, as discussed in
Chapter 9.

/etc/skel/
In /etc/skel/, you’ll find shell dotfiles that get copied to the new user accounts.

/etc/snmpd.config
FreeBSD includes a basic SNMP implementation, which we discuss in
Chapter 20.

/etc/spwd.db
This file contains the confidential database of the user password file
/etc/master.passwd. See Chapter 9 for all the inglorious detail.

/etc/src.conf
This file contains machine instructions for building FreeBSD from source.
It’s a parallel of make.conf for the source tree alone. Values set in /etc/make
.conf affect building FreeBSD from source as well, though; the difference is
that /etc/src.conf affects only building FreeBSD but not ports and packages.
See Chapter 18 for all your upgrading needs.

/etc/ssh/
Configure the Secure Shell software suite (SSH) in /etc/ssh. This includes
the client ssh(1) and the server sshd(8). Chapter 20 touches on sshd(8).

/etc/ssl/
FreeBSD includes the OpenSSL cryptographic software. Chapter 19 dis-
cusses a few basic uses and configuration. The /etc/ssl directory contains
most OpenSSL information.

332 Chapter 14

/etc/sysctl.conf
This file contains information on which kernel sysctls are set during the
boot process. See Chapter 6.

/etc/syslog.conf, /etc/syslog.conf.d/
This file controls which data goes into your system logs and where those
logs are stored. See Chapter 21.

/etc/termcap, /etc/termcap.small
This file contains the settings and capabilities of different terminal types.
In the age when terminals came in dozens of different types and vendors
released new terminals on an almost daily basis, understanding this file was
vital. Now that the world has largely converged on vt100 as a standard, how-
ever, the default configuration is suitable for almost everyone.

The termcap file is a symlink to /usr/share/misc/termcap. This file might
not be available in single-user mode. FreeBSD offers the /etc/termcap.small
file to provide terminal information in single-user mode.

/etc/ttys
This file contains all of the system terminal devices (the windows contain-
ing a command prompt). The name is a relic of the time when terminals
were physical teletypes, but today most users use the virtual terminals gen-
erated by telnet or SSH.

We’ll use this file to set up serial logins in Chapter 23.

/etc/unbound/
FreeBSD ships with the Unbound DNS client. The configuration informa-
tion goes in /etc/unbound/. Chapter 20 covers setting up Unbound as a local
DNS resolver.

/etc/wall_cmos_clock
This isn’t a vital file, but as I went to the trouble of digging up what it does,
you get to learn about it. If this file exists, FreeBSD’s time-keeping routines
have determined that the hardware’s CMOS clock keeps a time other than
Coordinated Universal Time (UTC). If the file is missing, the CMOS clock
is set to some other time. It’s documented in adjkerntz(8).

Exploring /etc 333

/etc/zfs/
FreeBSD’s ZFS uses this directory to store NFS integration information. We
discuss NFS in Chapter 13.

If you can crawl through all of /etc, you’ll be better prepared than most
sysadmins. Now let’s add some software to your server.

15
M a k i n g Y o u r S Y S t e M u S e f u l

A basic FreeBSD install includes exactly
enough to make the system run, plus a

few extra bits that Unix systems tradition-
ally include. You can decide whether to install

additional programs or source code. While FreeBSD
has grown over the years, a complete base install fills
about a gigabyte—much less disk space than either a
Windows or a commercial Linux install.

The advantage to this sparseness is that it includes only necessary
system components. Debugging becomes much simpler when you know
that no shared library you’ve never even heard of, and would never use,
can be responsible for your problems. The downside is that you must
decide what functions you do need and select software to provide those
functions. FreeBSD simplifies add-on software installation through ports
and packages.

336 Chapter 15

Ports and Packages
FreeBSD supports two different ways to install add-on software. Everything
starts with the Ports Collection, but most users will prefer preconfigured
packages.

FreeBSD has a system for building add-on software called the Ports
Collection, or just ports. Ports let you start with raw source code from the
program vendor and build the software in exactly the way you need,
enabling and disabling features as you need. Ports are fast and easy for
the experienced user but require a certain amount of Unix expertise
and can intimidate the new user.

Packages are the result of building ports, using the options the port
maintainer thinks will be most useful to the widest variety of people, and
bundling them up in a lump to make them easily installable. The FreeBSD
Project has a whole farm of systems that do nothing but build all the ports,
bundle them up, and make them available for users to download and install.
Packages let you quickly install, uninstall, and upgrade add-on software.

FreeBSD’s highly flexible packaging system is called package, pkg(8), or
just plain pkg. Package information gets stored in SQLite databases, which
lets you perform arbitrary queries on package data. During development,
pkg was called pkgNG. That name’s been gone for years now but lingers on
in some old docs and third-party software. Don’t let the name confuse you.1

We’ll start by discussing managing systems with pkg(8) and then pro-
ceed to customizing software with ports.

Packages
Packages are precompiled software from the Ports Collection, bundled up
for a particular version of FreeBSD. The FreeBSD Project offers several sets
of packages in a public repository, updated every few days. Packages are the

1. For decades, I threatened violence on anyone who named their software NG, or Next
Generation. The name’s designed to go obsolete. I’ve reluctantly concluded that I just don’t
have enough violence to go around.

in t e r ne t a dv ice S t ickS a round for e v e r

Forums and mailing list archives contain many recommendations to skip
packages and proceed directly to ports. This is no longer true; packages
are preferable for both technical reasons and your own peace of mind.
The older package system, pkg_tools, had serious limitations.

Ignore any recommendations that mention tools like pkg_add(8), pkg_
delete(8), pkg_create(8), and so on. It’s extremely obsolete.

Making Your System Useful 337

simplest way to install add-on software. Any software without legal restric-
tions on its distribution is probably available as a package.

Legal restrictions? Software can have any license terms, including
some really odd ones. The license of some software prohibits distribu-
tion in any form other than source code. FreeBSD can’t legally package
that. Other software can legally be distributed only in precompiled form.
FreeBSD usually packages such software, distributing it as the precom-
piled binary plus FreeBSD-specific packaging information.

Packages are built on the oldest supported release of each major
FreeBSD version. Packages for all versions of FreeBSD 12 are built on the
oldest supported release of FreeBSD 12, FreeBSD 13 packages are built on
the oldest supported version of FreeBSD 13, and so on. This helps reduce,
identify, and contain ABI incompatibilities.

If you need to build your own package repository, investigate the Ports
Collection (see Chapter 16) and the add-on package poudriere.

Package Files
Ultimately, packages contain files. Those files might be binary programs,
documentation, configuration files, or anything else the software might
need. These files are considered part of the operating system. Don’t edit
them manually.

The one odd case is when a package contains a sample configuration
file. If a program needs a configuration file, the package should include a
sample. You’ll need to edit the configuration to fit your needs—that’s what
configuration files are for.

FreeBSD reconciles this by installing the package’s configuration files
with the suffix .sample. Our web server configuration file appears as some-
thing like httpd.conf.sample.

If there’s no production configuration file, the package installation also
copies the sample file into place. That file is yours to edit.

If you upgrade a package, pkg(8) compares the current production file
to the old sample file. If the sample is identical to the production version,
the upgrade replaces the production file. If the files differ in any way, pkg
updates only the sample file. It’s your job to merge any desirable changes
into your production configuration. Note that the package upgrade always
replaces the sample configuration, so if an old sample is important, you
need to make a point to hang on to it.

Introducing pkg(8)
Unlike the older packaging system, pkg(8) is a single program with a whole
flock of subcommands. You’ll use the same program to install, uninstall,
and investigate packages. All changes to installed packages must be run as
root. Here’s how you’d install a vital program desired by all right-thinking
sysadmins:

pkg install emacs

338 Chapter 15

Those of you clinging to irrational biases against superior text proces-
sors probably want to remove it.

pkg delete emacs

All package operations use the pkg(8) command.
While the pkg(8) man page documents the base pkg functions, each

subcommand has its own man page, named pkg- and the subcommand.
Examples include pkg-install(8) and pkg-delete(8). You can also use the
pkg help command and the name of the subcommand to get assistance—for
example, pkg help install.

FreeBSD doesn’t ship with pkg(8) installed. You need to install it . . . as
a package. No, wait, don’t scream—it’s much better than it sounds.

Installing pkg(8)
FreeBSD ships with a very simple package manager in /usr/sbin/pkg,
pkg(7). It has barely enough brains to find FreeBSD’s current package
manager. It installs that new package manager and surrenders all respon-
sibility for package management to it. This gives FreeBSD the flexibility
to update the package manager with the packages.

The first time you try to install a package, pkg(8) prompts you to install
the package manager. I found I needed the dmidecode package on a new
server, so I can get an RMA on a bad power supply from the manufacturer.
(Don’t worry about how I found the dmidecode package—just go with me
for the moment.)

pkg install dmidecode

FreeBSD runs pkg(8) and finds that no package management is
installed yet.

The package management tool is not yet installed on your system.
Do you want to fetch and install it now? [y/N]: y

The default answer appears in capital letters. If I hit n and enteR, pkg
terminates. If I hit y and enteR, FreeBSD bootstraps the system.

u Bootstrapping pkg from pkg+http://pkg.FreeBSD.org/FreeBSD:12:amd64/quarterly, please wait...
v Verifying signature with trusted certificate pkg.freebsd.org.2013102301... done
w Installing pkg-1.10.0_2...

Extracting pkg-1.10.0_2: 100%
x Updating FreeBSD repository catalogue...

meta.txz : 100% 944 B 0.9kB/s 00:01
packagesite.txz : 100% 6 MiB 2.0MB/s 00:03
Processing entries: 100%
FreeBSD repository update completed. 26059 packages processed.
All repositories are up to date.
Updating database digests format: 100%

Making Your System Useful 339

The installation starts by downloading the current pkg tools from a
FreeBSD mirror u. It then checks the digital signature on the downloaded
file v. The tools are extracted and installed w. Pkg then downloads and
installs the catalog of available packages x.

The packaging system is now installed. To smooth things out, the stub
pkg(8) that ships with FreeBSD tells the newly installed packaging system to
install the program you really wanted. In this case, our new pkg(8) installs
dmidecode for you.

You can install the packaging system on its own, without adding other
packages, by running pkg bootstrap—but seriously, nobody does that at the
command line. Running pkg bootstrap does nothing when the packaging
system is already installed, so it’s useful for setup scripts.

Common pkg Options
While each pkg subcommand has unique features, a few command options
work across almost all of them.

In its default configuration, pkg prompts you for confirmation before
doing anything. Tell pkg to take action without prompting you with the -y flag.

On the other hand, maybe you want pkg to show you what it would do
if you ran a command, but not actually do anything. Perform a dry run by
using the -n flag. For example, a package install using -n would show the
names of every package to be installed, including dependencies. There’s no
risk that the system would install the packages, however. Dry runs can help
you prepare for changes during a maintenance window.

Many pkg operations produce a bunch of output. Reduce the amount
of output with -q.

The -a flag usually applies a command to all installed packages.
Finally, pkg usually refuses to do pointless things or things that dam-

age the system. The -f flag forces pkg to do what you said. Forcing package
activities is usually, but not always, a bad idea. For example, you might need
-f to forcibly reinstall a damaged package.

Configuring pkg(8)
The pkg(8) program is designed to be highly flexible. While each subcom-
mand has a whole bunch of options, you can establish customized but con-
sistent behavior for most programs with the configuration file, /usr/local/
etc/pkg.conf.

The pkg.conf file contains commented-out defaults for pkg(8). It’s a
great place to look to see how the system behaves when you haven’t mucked
with it at all. The configuration is written in UCL (see Chapter 2). Variables
can be set to an integer; a string, such as a file path; or a Boolean value,
like YES or NO. YES, ON, and TRUE are synonyms, as are NO, OFF, and FALSE. All are
case-insensitive.

#PKG_DBDIR = "/var/db/pkg";
#PKG_CACHEDIR = "/var/cache/pkg";
#PORTSDIR = "/usr/ports";

340 Chapter 15

#INDEXDIR = "";
--snip--

FreeBSD runs perfectly well with an empty pkg.conf. The default config-
uration contains a whole bunch of commented-out entries and quite a few
aliases. You might consider these example settings as you proceed.

Most pkg operations offer a yes/no dialog, showing the default as a
capital letter. Being conservative, pkg normally defaults to NO. Change that
default to YES with the DEFAULT_ALWAYS_YES option.

You can make a pkg command assume you’ll answer yes to everything
by adding the -y flag. If you get tired of typing -y, make pkg assume you
always answer yes by setting the ASSUME_ALWAYS_YES flag to YES.

As I’m lazy but not reckless, I prefer these pkg.conf settings:

DEFAULT_ALWAYS_YES = true;
ASSUME_ALWAYS_YES = false;

If installing a package runs amok, you might want debugging output.
Setting DEBUG_LEVEL turns on debugging output. This variable accepts an
integer from 0 (no debugging) to 4 (complete debugging).

Many packages include scripts as part of their installation procedure.
Turn on debugging for each script by setting DEBUG_SCRIPTS to YES.

Any pkg.conf settings are also usable as environment variables.
Environment variables override anything in the configuration file.
You could install a package with debugging like this:

 # env DEBUG_LEVEL=4 pkg upgrade

All of the options are documented in pkg.conf(5). Not all of the
options have a commented-out entry, though. If a sample of an option
doesn’t exist but you want it, add it. We’ll examine many of them in the
following sections.

Finding Packages
Now that you have a package manager installed, you can install packages.
Sysadmins familiar with a variety of Unix-like operating systems know that
different operating systems assign different names to packaged versions of
the same software. A package for the Apache web server on FreeBSD will
have a completely different name than the packaged Apache on illumos or
even different Linux distributions. Before you can install anything, you’ll
need to figure out what it’s called.

Suppose the client wants to run WordPress on Apache. Your job isn’t
to question the client’s choice in web servers; your job is to build and sup-
port the web server. First, find Apache with the pkg search command. You’ll
need to provide a text string for pkg to perform a case-insensitive search.

Making Your System Useful 341

pkg search apache
apache-ant-1.9.7 Java- and XML-based build tool
apache-forrest-0.9 Tool for rapid development of small sites
apache-mode.el-2.0 Emacs major mode for editing Apache configuration files
--snip--

I deliberately picked an annoying example; FreeBSD has 50-odd pack-
ages related to the Apache web server. Fortunately, each search result lists a
one-line package description. It’s pretty easy to flip through the results until
you find the actual web servers.

--snip--
apache22-2.2.31_1 Version 2.2.x of Apache web server with prefork MPM
apache22-event-mpm-2.2.31_1 Version 2.2.x of Apache web server with event MPM
apache22-itk-mpm-2.2.31_1 Version 2.2.x of Apache web server with itk MPM
apache22-peruser-mpm-2.2.31_1 Version 2.2.x of Apache web server with peruser MPM
apache22-worker-mpm-2.2.31_1 Version 2.2.x of Apache web server with worker MPM
apache24-2.4.25_1 Version 2.4.x of Apache web server
--snip--

Six different versions of Apache. First, look at the package names.
When a piece of software comes in multiple versions, the major version
number gets integrated into the package name. Apache 2.2 is a very dif-
ferent beast than Apache 2.4, so the packages are named apache22 and
apache24. The actual version number follows. Our first Apache 2.2 package
is actually for Apache 2.2.31. The trailing _1 is the package version number,
which means that this an updated package. The included software hasn’t
changed, but the package has been altered somehow. Package version num-
bers get bumped for two reasons. When the source port changes in a way
that has a material impact on the package, the version number is increased.
When an ABI change in a required shared library demands recompiling
the package, that also merits a version bump.

Apache 2.2 comes in five different packages. People familiar with
Apache probably remember that this version of Apache could use differ-
ent Multi-Processing Modules (MPMs), but the MPM had to be selected
at compile time. I have blissfully forgotten everything I ever knew about
MPMs, so rather than fuss with them, I’ll choose to install the Apache 2.4
package, apache24.

Package Searching Options

Some searches can generate hundreds of results. Try searching for Perl,
and you’ll get about 150 packages. Perl modules all begin with the string
p5-; FreeBSD has packages for over 5,200 Perl modules! Use command line
options to trim or adjust the search results. While pkg-search(8) lists many
options, here are some of the most common.

342 Chapter 15

•	 Make a search case-sensitive with -C.

•	 If you know exactly which package you want, and you only want to see
whether it’s available for your system, use the -e flag to search for an
exact match. Your search term must include the package version num-
ber, though.

•	 If you need to highly customize your searches and your search results,
investigate the -L, -S, and -Q flags in pkg-search(8).

Examining Found Packages

Perhaps you’re not sure whether a package is what you really want.
You might look up details on the package from a third-party site, like
FreshPorts (https://www.freshports.org/), but that would require leaving
your terminal, and I can’t countenance that. Use the -R flag to examine
the repository catalog’s metadata for the package. This metadata is a
subset of the full package manifest built into each package.

pkg search -R apache24
name: "apache24"
origin: "www/apache24"
version: "2.4.25_1"
comment: "Version 2.4.x of Apache web server"
maintainer: "apache@FreeBSD.org"
www: "http://httpd.apache.org/"
--snip--

The package manifest includes fields for the package name, the port
the package is built from, the software version, the package repository,
dependencies, and more. It’s rarely enough used and subject to change,
so we won’t discuss it in detail, but scrolling through this information pro-
vides more details about the software inside the package.

One important detail here is the www field, which gives the website the
original software comes from. This is the Apache web server, not a fork or
some other project using that name.

The default format for this raw manifest is YAML, or “YAML Ain’t
Markup Language.” It’s yet another syntax for formatting configuration
files, but it’s fairly human-readable. Use the --raw-format flag to choose an
alternate format. Other supported formats include json and json-compact.

pkg search -R --raw-format json-compact apache24

If you want to automatically parse package information, this is how you
grab the raw data.

Installing Software
Use pkg’s install subcommand and the name of a package to install a pack-
age. You don’t need to give the complete package name.

Making Your System Useful 343

pkg install apache24

The first thing that happens is that pkg checks to see whether its local
copy of the package database is the same as that on the package server.
You’ll either get a message like “Updating FreeBSD repository catalogue”
or be told that the “FreeBSD repository is up to date.”

The system then checks for any packages that your chosen package
requires. Read the dependency list. Is there anything here you don’t want
installed on this host? Does the list give you a reason not to install the
package?

The following 8 package(s) will be affected (of 0 checked):
New packages to be INSTALLED:
 apache24: 2.4.25_1
 libxml2: 2.9.4
--snip--
Number of packages to be installed: 8

As a final warning, pkg tells you how much disk space and bandwidth
the installation requires. You then get prompted to change your mind.

The process will require 139 MiB more space.
33 MiB to be downloaded.

Proceed with this action? [y/N]:

Enter y, and pkg fetches the package from the repository and installs it
to your system.

The install subcommand assumes that you’re either giving the com-
plete name of a package or the name of a package without the package
version number. You can request the apache24 package and pkg will
figure out that the current package is apache24-2.4.25_1. You can also
use the name of the port the package was built from, as in pkg install
www/apache24.

In the last section, our package search turned up five different Apache 2.2
packages, each a slightly different variant. If you ask pkg install to grab the
apache22 package, it installs the version named apache22 plus a package
version number. If you want a variant, such as apache22-event-mpm, specify
the full package name in the install command.

Some packages include installation messages. These messages might
be helpful instructions, warnings, caveats, or anything else relevant. If the
package creator felt a chunk of information sufficiently important enough
to spend her precious time composing a message about it, then the least you
can do is read it. You might use script(1) to record this information or run
pkg info --pkg-message and the package name to show it again.

344 Chapter 15

Fetching Packages

FreeBSD installs packages by downloading them over the internet. You
might want to download packages in one location to install them else-
where or at another time. Use the pkg fetch command to download but
not install packages. Fetching packages makes the most sense when com-
bined with -d, which makes pkg fetch grab all the dependencies as well as
the named package.

pkg fetch -d apache24

You’ll see the normal repository update messages, followed by a notice
of what pkg will download.

New packages to be FETCHED:
 apache24-2.4.25_1 (5 MiB: 14.25% of the 33 MiB to download)
 libxml2-2.9.4 (821 KiB: 2.43% of the 33 MiB to download)
--snip--

Verify that what pkg plans to download matches what you expect, and
then hit y to proceed. The packages are downloaded to the package file
cache.

To install a downloaded package, run pkg install normally. The instal-
lation process uses the cached files rather than the downloaded ones.

Those of you who read man pages might notice the -a flag, which
downloads the entire package repository. Don’t use that. The -a option
is intended for public repository mirrors. Average sysadmins who mirror
the entire repository waste bandwidth and slow down the system for every-
one. Generous people donate FreeBSD’s package server bandwidth. Don’t
waste it. You might need a whole bunch of packages. With dependencies,
you might need hundreds or even thousands of packages. You don’t need
tens of thousands of packages. Download only what you need.

Download Timing

Any tool that accesses the internet needs to set a maximum length of time
to try to download files. You can customize pkg’s download behavior with
two pkg.conf settings.

If a download fails, pkg tries again. The FETCH_RETRY option controls how
many times pkg retries a download. The default is three, which means that
it tries to download one time and retries up to three more times.

Downloads happen fairly quickly on most modern internet connections.
If your uplink isn’t quite so modern, you might need to increase the amount
of time pkg will spend on a single download attempt. The FETCH_TIMEOUT set-
ting controls how long pkg waits for any one file to download. The default,
30, limits downloads to 30 seconds. If you’re downloading LibreOffice over
a 33.6 modem, you’ll want to increase this setting and consider having files
shipped to you on a removable drive via the Pony Express.

Making Your System Useful 345

The Package Cache
The ability to download packages and install them later implies that pkg(8)
sticks those packages somewhere on the disk for later consumption. The
package cache, /var/cache/pkg, contains the original package files down-
loaded from the internet. While you can administer FreeBSD hosts for years
without futzing with the cache, here are a few things you should know.

Cleaning the Cache

What with upgrades, new packages, removed packages, and the gleeful
randomness of system administration, the cache directory can fill up. My
web server has only a few packages but somehow has accumulated 1.7GB
of old package files. The pkg clean command removes any cached packages
that have been replaced by newer versions, as well as any package files that
are no longer in the repository. You’ll get a list of all the files that will get
removed, plus a chance to proceed or quit.

pkg clean
The following package files will be deleted:
 /var/cache/pkg/php56-mbstring-5.6.26.txz
 /var/cache/pkg/mod_php56-5.6.21-c80f5ce183.txz
--snip--

If you’ve never cleaned the package cache on a long-running system,
the list will be pretty long. At the prompt, hit y to proceed.

If you want to remove all cached packages, use the -a flag.
Remember that pkg clean removes package files that are no longer

available in the package repository. If you depend on a package that’s been
removed from the repository, back up that file outside the cache before a
thoughtless cleaning removes it forever. You could also try pkg-create(8) to
rebuild a package from its installed components.

If you want to clean the package cache automatically after each package
install or upgrade, set the pkg.conf option AUTOCLEAN to true. I find autocleaning
too aggressive, as sometimes the new bugs in an upgraded package compel
me to revert to the older version. We cover upgrading packages at the end of
this chapter.

Moving the Cache

You might want the package cache located elsewhere on the filesystem. Use
the pkg.conf option PKG_CACHEDIR to set a new package cache directory.

Why move the cache directory? Many server farms share a package
cache across multiple machines. You can safely share a package cache
between hosts running the same FreeBSD major release and hardware
architecture. Verify that your NFS configuration uses locking, and set the
pkg.conf option NFS_WITH_PROPER_LOCKING.

346 Chapter 15

Package Information and Automatic Installs
After a while, you’ll forget which packages you’ve installed on a system. Get
the complete list of installed software with pkg info.

pkg info
gettext-runtime-0.19.8.1_1 GNU gettext runtime libraries and programs
indexinfo-0.2.6 Utility to regenerate the GNU info page index
--snip--

If you want more information about an installed package, use pkg info
and the package name. This shows the package manifest and installation
details in a human-friendly report.

pkg info apache24
apache24-2.4.25_1
Name : apache24
Version : 2.4.25_1
Installed on : Tue Mar 14 16:56:14 2017 EDT
Origin : www/apache24
Architecture : freebsd:12:x86:64
--snip--

When was the package installed? Was the package installed on this
machine built from the Ports Tree with certain options enabled? What’s the
license? What shared libraries does every program in the package require?
Answer all these and more with pkg info and the package name.

The pkg info subcommand has many other features. We’ll see some of
them, such as locking status, later this chapter. The pkg-info(8) man page
has the complete details.

Automatic Packages

Look back at the sample pkg info output. I deliberately installed a few
different programs on this system, but I’m pretty sure I never knowingly
installed anything about GNU info pages or gettext.

I did install those programs. I merely didn’t pay much attention to what
they were because I was more concerned about installing the package that
required them. They’re dependencies.

FreeBSD records whether you requested a package be installed or it
was brought along as a dependency. Packages installed as dependencies
are called automatic packages. Packages you requested are just packages,
although they’re sometimes called nonautomatic packages.

You might want to know which packages you requested to be installed
and which were dragged along as dependencies. That’s when things get
tricky.

Querying the Package Database

The pkg tools can’t cover every possible contingency a sysadmin might
face. The simplest way to get some information is to interrogate the

Making Your System Useful 347

installed package database. While you could use raw SQLite, that would
mean you’d need to become intimate with the database’s innards. Most
sysadmins don’t have that kind of time, especially when that database
might change any time. FreeBSD insulates from that with the pkg query
subcommand. A complete survey of package queries would fill a chapter,
but here’s a quick overview.

Anything you might want to get out of the package database has a conve-
nient representation in pkg query. The catch is, everything than anyone might
possibly want to extract from the package database is in pkg query, as a quick
perusal of pkg-query(8) shows. The query and command structure is deliber-
ately designed for use in scripts, but we’ll use it interactively now and then.

Run queries by using patterns. A pattern is a variable that has an assigned
meaning, represented by a percent sign and a letter. For example, %n con-
tains the package name, %o contains the port the package was built from,
and %t contains the timestamp indicating when the package was installed.

Running pkg query and giving a pattern produces that value for every
installed package. As %n represents the package name, here’s how you’d get
a list of everything on the system:

pkg query %n
apache24
apr
--snip--

We don’t get the extra information pkg info shows—but maybe that’s
what you want.

You can request multiple items in a single query. The %v pattern repre-
sents the package version, while %c represents the comment. Here, I sepa-
rate the package name and version with a dash but put a tab between the
version and the comment. Using the shell tab character \t means I must
quote the pkg query argument.

pkg query "%n-%v\t%c"
apache24-2.4.25_1 Version 2.4.x of Apache web server
apr-1.5.2.1.5.4_2 Apache Portability Library
--snip--

r e Mot e Que r ie S

Use pkg-query(8) to search the database of installed packages. If your data-
base of packages available in the repository is up to date, though, you can
search it using pkg-rquery(8). The database of available packages doesn’t
contain all the metadata of an installed package, however, so not all patterns
are available.

348 Chapter 15

You know, this looks an awful lot like the output of pkg info. When a
pkg command queries or manipulates the package database, it uses these
exact same patterns. You have the same visibility into the packaging system
that the rest of the tools do.

If you want to get a pattern for a specific package, give the package name
as a final argument. Here, I get the port the apache24 package came from:

pkg query %o apache24
www/apache24

We do have a middle ground between asking all the packages and spe-
cific packages, however.

Evaluations in Queries

Here’s one last nifty package querying feature. Many—not all, but many—
patterns are available as variables. A command can evaluate those variables
and take action based on the results. Use the -e command line option to
evaluate a variable with using a logical operator. A complete list of logical
operators appears in pkg-query(8).

Evaluation breaks down into “if this is true, do that.” The test goes
inside quotes. Here’s an example:

pkg query -e '%a = 0' %n

This query goes down the whole list of installed packages. The -e
shows we’re evaluating a variable for each package. The statement inside
the quotes, %a = 0, means we’re testing the value of %a in that package. If %a
equals 0, the query evaluates to true and pkg query prints out the contents
of %n. If %a equals anything except 0, the statement is false and pkg query pro-
ceeds to the next package without doing anything.

We already know that %n contains the package name. The variable %a
contains pkg’s record of whether or not the package was automatically
installed. If you requested this particular package, it’s set to 0. If a package
was originally installed as a dependency, it’s set to 1. So: if a package is not
a dependency, print the name. This query prints nonautomatic packages.

pkg query -e '%a = 0' %n
apache24
dmidecode
pkg
youtube_dl

A couple things stand out here. First, I didn’t deliberately ask pkg to
install pkg(8). I requested dmidecode, and pkg bootstrapped itself. The
pkg suite itself is always considered a nonautomatic package, though.

Second: who installed youtube_dl on this box?
To find out which packages were installed as dependencies, evaluate

whether %a is set to 1.

= or ==?

You’ll see the examples using double equal signs, as if pkg query were a
programming language. My examples use a single equal sign. Surely there’s
some subtle difference between the two and special conditions under which
you should use each?

Nope!
You can use either single or double equal signs, as your muscle memory

prefers.

Making Your System Useful 349

Realistically, though, I’m not going to bother remembering how to run
this query on all my hosts. I need a simple way to make pkg(8) remember it
for me.

Pkg Command Aliases

You can define aliases for pkg subcommands in pkg.conf. This lets you, say,
create aliases to show automatic and nonautomatic commands. I could do
something similar in my shell, but it wouldn’t show up as pkg(8) subcom-
mands and I’m easily confused.

At the bottom of pkg.conf, you’ll find a section labeled ALIAS.

ALIAS : {
 all-depends: query %dn-%dv,
 annotations: info -A,
--snip--
 }

An alias is a single word for the alias name, either a colon or an equal
sign, and then the pkg command to run. If you run pkg all-depends, pkg(8)
looks in pkg.conf and runs pkg query %dn-%dv. Every alias ends in a colon to
indicate that the aliases list continues on the next line.

Many of the aliases in the default configuration represent hangovers
from the pkg_add aeon, created for us old timers. The existing aliases are
a great place to find sample queries and searches, though. And searching
through the aliases turns up this fine entry:

noauto = "query -e '%a == 0' '%n-%v'",

This alias, noauto, runs a pkg query command to evaluate %a and print
the package’s name and version number if it’s 0. It prints packages that
weren’t automatically installed. I added a very similar alias to print auto-
matic packages.

auto = "query -e '%a == 1' '%n-%v'",

When you find yourself repeatedly running complex commands, add
aliases.

You know, this looks an awful lot like the output of pkg info. When a
pkg command queries or manipulates the package database, it uses these
exact same patterns. You have the same visibility into the packaging system
that the rest of the tools do.

If you want to get a pattern for a specific package, give the package name
as a final argument. Here, I get the port the apache24 package came from:

pkg query %o apache24
www/apache24

We do have a middle ground between asking all the packages and spe-
cific packages, however.

Evaluations in Queries

Here’s one last nifty package querying feature. Many—not all, but many—
patterns are available as variables. A command can evaluate those variables
and take action based on the results. Use the -e command line option to
evaluate a variable with using a logical operator. A complete list of logical
operators appears in pkg-query(8).

Evaluation breaks down into “if this is true, do that.” The test goes
inside quotes. Here’s an example:

pkg query -e '%a = 0' %n

This query goes down the whole list of installed packages. The -e
shows we’re evaluating a variable for each package. The statement inside
the quotes, %a = 0, means we’re testing the value of %a in that package. If %a
equals 0, the query evaluates to true and pkg query prints out the contents
of %n. If %a equals anything except 0, the statement is false and pkg query pro-
ceeds to the next package without doing anything.

We already know that %n contains the package name. The variable %a
contains pkg’s record of whether or not the package was automatically
installed. If you requested this particular package, it’s set to 0. If a package
was originally installed as a dependency, it’s set to 1. So: if a package is not
a dependency, print the name. This query prints nonautomatic packages.

pkg query -e '%a = 0' %n
apache24
dmidecode
pkg
youtube_dl

A couple things stand out here. First, I didn’t deliberately ask pkg to
install pkg(8). I requested dmidecode, and pkg bootstrapped itself. The
pkg suite itself is always considered a nonautomatic package, though.

Second: who installed youtube_dl on this box?
To find out which packages were installed as dependencies, evaluate

whether %a is set to 1.

= or ==?

You’ll see the examples using double equal signs, as if pkg query were a
programming language. My examples use a single equal sign. Surely there’s
some subtle difference between the two and special conditions under which
you should use each?

Nope!
You can use either single or double equal signs, as your muscle memory

prefers.

350 Chapter 15

Uninstalling Packages
We’ve all installed software only to rip it out in disgust. The only differ-
ence is what, exactly, disgusted us. Uninstall packages with the pkg delete
subcommand. It’s also available as pkg remove. That extraneous youtube_dl
package? Let’s remove it from the system.

pkg delete youtube_dl
Checking integrity... done (0 conflicting)

The removal process makes sure that nothing terrible has happened
to the package, that nobody else needs it, and that its removal won’t do ter-
rible things that the package system can predict.2

You’ll then get a list of packages to be removed and how much space
they’ll free up. At the end is a final chance to say no.

Proceed with deinstalling packages? [Y/n]: y

[1/1] Deinstalling youtube_dl-2017.02.11...
[1/1] Deleting files for youtube_dl-2017.02.11: 100%

The package is deleted from your system.

Removing Dependencies

If you remove a package that other packages depend on, pkg removes the
depending packages as well.

pkg delete trousers
--snip--
Installed packages to be REMOVED:
 trousers-0.3.14_1
 gnutls-3.5.9
 emacs-nox11-25.1,3
--snip--

The gnutls package needs trousers, and emacs-nox11 needs gnutls.
Removing trousers breaks both of them, so pkg figures you clearly don’t
want them on your system either.

If you really want to delete a package that other packages depend on,
add the -f flag.

Read the warnings from pkg delete very carefully!

Autoremoval

Leaving unnecessary software installed on a host increases the security risks
and sysadmin workload. On a long-running system, you don’t always know
which software to remove. Removing software you chose to install is easy,

2. Removal might do terrible things, but nothing that the package system can predict.

Making Your System Useful 351

but that software might have brought along dependencies that you never
really paid attention to. Or maybe a new version of a package has fewer or
different dependencies than the previous version.

I removed the youtube_dl package from my test system. That leaves me
with other packages I deliberately installed and their dependencies. It also
leaves the packages youtube_dl depended on but that nothing else needs.
The pkg autoremove subcommand identifies packages that were installed as
dependencies but are no longer required by any other package. It offers to
remove these no longer needed. I strongly recommend performing a dry
run before removing unneeded dependencies, simply to give your feeble
human brain a chance to look at the list twice.

pkg autoremove

Pkg runs a database query to identify unneeded dependencies and
proposes them for removal.

Installed packages to be REMOVED:
 python27-2.7.13_1
 readline-6.3.8
 rtmpdump-2.4.20151223
 librtmp-2.4.20151223
--snip--

Study this list carefully. It’s not uncommon for a piece of nonpackaged
software to need a package that was brought in elsewhere. You probably don’t
need the video processing tools rtmpdump and librtmp without youtube_dl,
but an awful lot of software needs a Python interpreter. Do you really want to
blow that away?

If you really can remove all these packages, answer y and proceed. If
one of those dependencies has become critical, though, change your data-
base to tell it so.

Changing the Package Database
Thinking of changing the package database outside of pkg(8)? Don’t.
You will only cause yourself pain, and your pleas for assistance will be met
either with derisive laughter or suggestions to blow away all your packages
and start over.

There are a couple circumstances where pkg(8) supports altering the
package database, though. That’s when you can use pkg set. The pkg-set(8)
subcommand lets you correctly adjust a few sensible values within the data-
base without corrupting the data. The most common is when you want to
make an automatic package no longer automatic.

The -A flag to pkg set lets you change a package’s automatic setting.
Setting this flag to 1 means that the package was installed automatically, as
a dependency, while a 0 means that the package was specifically requested
by the user.

352 Chapter 15

In the previous section, the list of four packages to be deleted by pkg
autoremove included Python. I want to keep Python—not just this time, but
any time I perform autoremovery in the future. The simple way to do that is
to change Python from automatic to nonautomatic.

pkg set -A 0 python27
Mark python27-2.7.13_1 as not automatically installed? [Y/n]: y

Python is now a nonautomatic package. The results of pkg autoremove
now look different.

pkg autoremove -n
--snip--
Installed packages to be REMOVED:
 rtmpdump-2.4.20151223
 librtmp-2.4.20151223
--snip--

Only two packages instead of four? Apparently Python needs readline.
I’m glad that pkg figured that out for me because I can’t be bothered to
remember it.

We’ll cover pkg set more as needed.

Locking Packages
Some software is like a subway’s electrified rail. Touching it causes suffering
or death.

My favorite example is the remote file synchronization program rsync(8).
Rsync has been around for decades, and its internal protocol has changed
over time. Many embedded and legacy systems use rsync, but it’s never been
upgraded. I’ve spent many painful hours debugging why a current rsync can’t
communicate with that on a 20th-century embedded phone switch control-
ler. It turned out that an rsync point release dropped support for the very old
protocol supported by the phone switch. Upgrading the phone switch wasn’t
possible, so I needed the rsync package on my host to never upgrade. Never.

That’s where locking packages comes in.
When you lock a package, pkg won’t upgrade, downgrade, uninstall,

or reinstall it. It applies the same rules to the package’s dependencies and
the programs it depends on. The host responsible for fetching the phone
switch files needed to have its rsync package locked. Use pkg lock to lock a
package.

pkg lock rsync
rsync-3.1.2_6: lock this package? [Y/n]: y
Locking rsync-3.1.2_6

This package is now nailed in place.
To show all the locked packages on the system, use the -l flag. This

shows only the packages you’ve deliberately locked, not the dependents or
dependencies.

Making Your System Useful 353

pkg lock -l
Currently locked packages:
rsync-3.1.2_6

Use the pkg unlock command to remove the lock.

pkg unlock rsync
rsync-3.1.2_6: unlock this package? [Y/n]: y
Unlocking rsync-3.1.2_6

To lock or unlock all packages on the system, use the -a flag. You’ll get
a confirmation prompt for every package, so if you really want to affect all
the packages, add the -y flag.

pkg unlock -a
apache24-2.4.25_1: already unlocked
apr-1.5.2.1.5.4_2: already unlocked
--snip--
rsync-3.1.2_6: unlock this package? [Y/n]: y
Unlocking rsync-3.1.2_6
--snip--

Package locking doesn’t prevent someone with root access from muck-
ing with the files contained in a package.

On a related note, Chapter 22 covers using jails to contain really old
software.

Package Files
Files installed by a package are considered system files, and you shouldn’t
manually edit them. Before you can edit those files, you must know what
files came with the package. Use pkg info -l and the package name to see
the complete list. (It’s also available as pkg list, thanks to a pkg.conf alias.)

pkg info -l rsync
rsync-3.1.2_6:
 /usr/local/bin/rsync
 /usr/local/etc/rc.d/rsyncd
 /usr/local/etc/rsync/rsyncd.conf.sample
--snip--

Another possibility is that you want to know which package a file came
from. Use the pkg which command. I normally use this when I’ve found a
weird library and want to know where it came from.

pkg which libp11-kit.so
/usr/local/lib/libp11-kit.so was installed by package p11-kit-0.23.5

My question is now, “What is p11-kit?” But that’s progress.

354 Chapter 15

Package Integrity
While you shouldn’t alter package files, eventually, someone does. You can
use pkg to discover those alterations and undo the damage.

The pkg-check(8) tool includes features for identifying damage to pack-
ages and package dependencies. Developers can also use pkg-check(8) to
check the bundled packages built from ports and distributed to end users,
but that’s a whole separate problem.

File Corruption

Verify that a package’s files are unaltered with pkg check -s and the package
name. When my locked rsync package stops synchronizing files from the
finicky remote server, one thing I verify is the package integrity.

pkg check -s rsync
Checking rsync: 0%
rsync-3.1.2_6: checksum mismatch for /usr/local/bin/rsync
Checking rsync: 100%

Either the disk is failing or someone has mucked with my rsync(1)
binary. As this system uses self-healing ZFS, there’s gonna be a paddling.

You could uninstall and reinstall the package, but that might trigger
changes depending on which packages require the package you’re updat-
ing. Also, as discussed earlier, this particular package is special. I don’t
want pkg to upgrade the package to the newest version. Instead, I want to
force pkg to reinstall the current package from the package cache. Use
the -f flag to pkg install. While it updates the repository database, it rein-
stalls the cached package. If the package is locked, you must unlock it first.

pkg unlock -y rsync
Unlocking rsync-3.1.2_6
pkg install -fy rsync
--snip--
[1/1] Reinstalling rsync-3.1.2_6...
[1/1] Extracting rsync-3.1.2_6: 100%
pkg lock -y rsync

My precious rsync is restored.
Check the integrity of all your packages by running pkg check -saq. It

produces no output unless something has changed, so you could schedule
it via cron (see Chapter 20).

Dependency Problems

If someone really tries, they can delete packages that other packages depend
on. Use the -d flag of pkg check to identify and fix missing dependencies.

pkg check -d emacs-nox11
Checking emacs-nox11: 100%
emacs-nox11 has a missing dependency: gnutls

Making Your System Useful 355

emacs-nox11 is missing a required shared library: ulibgnutls.so.30
--snip--
>>> Try to fix the missing dependencies? [Y/n]: y

The first thing to note is that when pkg check identifies a missing
dependency, it tries to correct it. Answer y at the prompt to reinstall the
dependency.

Note that this pkg check run shows us a missing library, libgnutls
.so.30 u. The dependency check doesn’t actually search for all the files
in all of the packages. It knows that this library is missing only because the
package that includes it is gone. If you manually remove the library, the
dependency check won’t find it. You need to check package file integrity,
as earlier.

If you want to check all package dependencies with pkg check -d, don’t
give it a package name. You could add -a to explicitly check all packages,
but that’s not necessary. If you add the -q flag, this command produces out-
put only when it finds a problem. Adding -q also tells pkg check to attempt to
resolve any dependency problems it finds, without user intervention.

The combination means that while I can run this check as a scheduled
job, I’m less comfortable with my host reinstalling a missing dependency.
Think about your system installing packages without your attention before
automating dependency corrections.

The pkg check subcommand includes several other useful options, such
as -B to rebuild shared library dependencies and -r to manually recompute
the checksum of an installed package. Read pkg-check(8) for details.

Package Maintenance
The package system includes several maintenance scripts intended to be
run from periodic(8). Enable these in /etc/periodic.conf, as discussed in
Chapter 20. Each adds to the daily, weekly, or security status emails.

To have the daily maintenance check package checksums and replace
damaged packages, as with pkg check -saq, set daily_status_security_pkg
_checksum_enable to YES.

To determine whether installed packages have security vulnerabilities
published in the FreeBSD package security system, as discussed in Chapter 19,
set daily_status_security_pkgaudit_enable to YES.

If you want FreeBSD to back up the installed packages and the package
database every day, set daily_backup_pkg_enable to YES.

To be notified of changes in the installed packages, set daily_status_pkg
_changes_enable to YES.

Finally, you can check for obsolete packages each week by setting
weekly_status_pkg_enable to YES.

Package Networking and Environment
FreeBSD’s package system is designed to work for a normal network
attached to the internet. That’s something of a cruel joke because no
network is normal. You can adjust pkg’s behavior to fit your network.

356 Chapter 15

The most common change is the need for a proxy server. Pkg uses
fetch(3) to download package files, which takes any special networking
configuration through environment variables. Set environment variables
in the PKG_ENV section of pkg.conf. Each variable needs the variable name, a
colon, and the value. Here, I set the HTTP_PROXY environment variable to my
network proxy:

pkg_env : {
 HTTP_PROXY: "http://proxy.mwl.io/"
}

See fetch(3) for the complete list of proxy environment settings.
Some networks have separate bandwidth for different network stacks.

I’ve been on more than one network that has better IPv6 connectivity than
IPv4, or the other way. Direct pkg to use one network protocol or the other
with the IP_VERSION setting in pkg.conf. You can set this to 4, 6, or let the host
autoselect with the default of 0.

Finally, the pkg.conf NAMESERVER setting lets you override the name servers
given in /etc/resolv.conf. Put an IPv4 or IPv6 address here. You can use a host-
name here, but pkg will look up that hostname using the default system
nameservers.

Package Repositories
You might want to use packages other than those provided by the FreeBSD
Project. Maybe you build your own packages, as discussed in Chapter 16.
Perhaps you have access to an experimental package repository. Or maybe
you want to switch which set of official packages you’re using.

Pkg supports package repositories, or repos, which are named collections
of packages. You can add, remove, enable, and disable repositories.

Normal repositories are very simple, but in rare cases, they can get
quite complicated. We won’t go into the edge cases of configuring your own
repositories, but the basics will take you quite far.

Repository Configuration
Configure each repository in its own file. Official FreeBSD repositories
belong in /etc/pkg. Configure repositories in UCL format (see Chapter 2).
FreeBSD ships with the repo FreeBSD enabled. You’ll find the configura-
tion file in /etc/pkg/FreeBSD.conf.

FreeBSD: {
u url: "pkg+http://pkg.FreeBSD.org/${ABI}/quarterly",
v mirror_type: "srv",
w signature_type: "fingerprints",
x fingerprints: "/usr/share/keys/pkg",
y enabled: yes

}

Making Your System Useful 357

This repository, named FreeBSD, supports the FreeBSD repo. When you
decide to set up your own repository, give it a meaningful name.

The mirror_type entry v tells pkg whether this repository is hosted on a
normal website. Setting mirror_type to NONE tells pkg to use fetch to get pack-
ages using the standard network methods, like HTTP, FTP, or even a file path.

Millions of machines run FreeBSD and need access to the package
repository. A single web server can’t keep up. By setting mirror_type to srv,
you tell pkg to check DNS for an SRV record. SRV records are used to direct
high-availability services, like VoIP and Active Directory.

The url entry u shows the internet site where this repository can be
found. I’m sure you’ve seen http URLs before, but what about this pkg+http
thing? It ties the request to the SRV record used to direct pkg requests, as
set by mirror_type.

The package system can verify downloaded packages with public keys
or cryptographic hash fingerprints w. You’ll need to tell pkg where to find
the keys or hashes, though x.

Finally, you must explicitly enable or disable y each repository.

Repository Customization
You can add and remove repositories as needed. As /etc/pkg is reserved for
official FreeBSD repositories, you’ll need another directory. The traditional
location is /usr/local/etc/pkg/repos. If you want to use a different directory,
you’ll need to set a location in pkg.conf with the REPO_DIRS option. You’ll see
commented-out examples for the defaults.

#REPOS_DIR [
"/etc/pkg/",
"/usr/local/etc/pkg/repos/",
#]

The local repository directory doesn’t exist by default, so you’ll need to
create it.

mkdir -p /usr/local/pkg/repos

Put your own repository configurations in that directory.
FreeBSD searches for packages in directory order, checking directories

in the order given in REPOS_DIR. The obvious implication is that the default
FreeBSD repo can’t be disabled or overridden. That’s not quite true, but the
reason is a little tricky.

Repository Inheritance
You can split a repository’s configuration between multiple files. Entries in
later files overwrite the entries in earlier files.

To see how this works, consider the default repository, called FreeBSD.
If you have all of your custom repositories configured in /usr/local/etc/pkg/
repos, pkg finds the FreeBSD repo first.

358 Chapter 15

But now create a /usr/local/etc/pkg/repos/FreeBSD.conf file. Define the
FreeBSD repo in there, but include only a single configuration statement.

FreeBSD: { enabled: no }

Pkg finds the repo named FreeBSD first in /etc/pkg/FreeBSD.conf. This
configuration defines the defaults for this repo. It finds the second configu-
ration later. The second configuration overrides only one option, but that
option turns off the repository.

While disabling the FreeBSD repository is an extreme case for folks
who don’t run their own repository, there’s good reason to make minor
changes to the repo, as we’ll see next.

Package Branches
FreeBSD’s packages are built from the Ports Collection (see Chapter 16).
The Ports Collection attempts to bring tens of thousands of different soft-
ware suites to FreeBSD. These different programs all have their own release
schedules, and the Ports Collection evolves continuously in an effort to keep
up with them. As you can imagine, the Ports Collection has a whole bunch of
churn. Most of us who run servers want stability. When most sysadmins con-
sider “stability,” the word churn isn’t what comes to mind.

Most of us don’t need the very latest software on our servers. Most of the
time, I’m fine if my database server is a minor point release or two behind; I
care only that it keeps working. I’m certainly not going to upgrade my servers
just because MySQL or nginx or PHP has a new software version. That way
lies the madness of constant upgrades.

I do want security and stability updates, however. The database server
being a little older doesn’t bother me. The database server occasionally
losing its brain and sending all my data to the bit bucket, or offering every-
thing to a Detroit hacking crew, bothers me a whole bunch.

The FreeBSD package system’s quarterly branches try to strike a middle
ground between the world’s constant churning software and a sysadmin’s
peace of mind. Every January, April, July, and October, the Ports crew forks
the Ports Collection into a quarterly branch. The quarterly branch receives
only security and stability updates, while the main Ports Collection charges
merrily ahead.

The FreeBSD Project builds two sets of packages for each release. The
quarterly packages are built from the quarterly Ports Collection. The latest
packages are built from the bleeding-edge packages.

Some of you prefer the most current packages, despite the churn.
That’s okay. Switching is simple. You need override only one entry in the
FreeBSD repository. Create a new repository file, /usr/local/etc/pkg/repos/
FreeBSD.conf, just as in the last section. Rather than disabling the default
repository, though, we’re going to override the package source. Change
the “quarterly” and the end of the URL to “latest.”

FreeBSD: { url: "pkg+http://pkg.FreeBSD.org/${ABI}/latest" }

Making Your System Useful 359

Welcome to the churn!
It’s strongly recommended to run pkg update -f after changing reposito-

ries in order to force pkg to download the latest repository catalogs.
Switching package collections doesn’t necessarily mean you need to

reinstall everything. If your old packages work, use them. If weird prob-
lems appear, though, reinstall all of your packages with a command like
pkg upgrade -fa. Even packages that have the same version as those in the
other package collection might be subtly different.

Upgrading Packages
As much as we might wish it were otherwise, you can’t set up a new system
and ignore it. Either stability bugs appear or some clever jerk figures out a
security exploit. (Chapter 19 discusses auditing package security.) Sometimes
you must upgrade your third-party software. With FreeBSD’s original packag-
ing system, pkg_add, package upgrades risked a certain degree of heartache.
With pkg(8), you still risk heartache—but it’s from the newer versions of the
software, not the packaging system itself.

Before upgrading packages, back up your system. Then, use the upgrade
subcommand to have pkg(8) upgrade all your packages. I recommend run-
ning a dry run first, with -n.

pkg upgrade -n
--snip--
Checking for upgrades (2 candidates): 100%
Processing candidates (2 candidates): 100%
The following 1 package(s) will be affected (of 0 checked):

Installed packages to be UPGRADED:
 ca_root_nss: 3.29.1 -> 3.29.3

Number of packages to be upgraded: 1

335 KiB to be downloaded.

Carefully look at the list of packages to be upgraded. Are there any
large jumps? Do you need to look at any release notes? How intrusive is
this likely to be? Does the upgrade remove any packages that you want, like
X.org or your text editor? Should you wait until Sunday at 3 am and have
your flunky do it?3 Studying the upgrade and considering the risks of each
package upgrade might not reduce the amount of work you need to do, but
it will reduce the amount of downtime and the amount of time people yell
at you.

Once you’re comfortable with what will change, run the upgrade.

pkg upgrade -y

3. The answer to “Should I make my flunky do it?” is always “yes.”

360 Chapter 15

You’ll see very similar messages about the packages to be upgraded and
then notifications of the download and install process. Finally, pkg displays
the installation message for every upgraded package.

Even the world’s most flexible packaging system won’t always meet your
needs. FreeBSD makes customizing add-on software very easy through the
Ports Collection, where we’ll go next.

16
C u s t o m i z i n g s o f t w a r e

w i t h P o r t s

Packages provide the most common config-
urations of the most desirable programs. If

you’re building a generic web server, chances
are that the official FreeBSD package of nginx

or lighttpd or whatever your preferred web server is
will suffice. If you have a special environment or less
common needs, that’s where the Ports Collection comes in. The Ports
Collection is a tool for easily building customized versions of many software
packages. It combines dependency, licensing, maintainer, and all other soft-
ware information in a standard machine- and human-readable format. Ports
let you set system options like “forbid third-party GPL-licensed code” (useful
for embedded vendors), “add LDAP to everything,” or “disable X11.”

In the long term, ports are best managed with the poudriere package-
building system. Before you can use poudriere, though, you must under-
stand how ports work. I’d encourage you to explore ports on a test system.
Rather than deploying ports on your individual servers, though, use

362 Chapter 16

poudriere to build your own package repository. Manage your servers
entirely with packages. Never use the ports tree on a production server
other than your package builder.

Before we dive into ports, let’s talk about building software in general.

Making Software
Traditional software building is complicated because source code must be
processed very specifically to create a workable, running program—let alone
one that works well! It’s a completely different process than using, say, a
JavaScript compiler. While programmers could include installation instruc-
tions with each program, full of lines like Now type ar cru .libs/lib20_zlib
_plugin.a istream-zlib.o zlib-plugin.o, this would be downright sadistic. While
Unix admins might seem to approve of sadism, they categorically disapprove
of cruelty directed at themselves; if something can be automated, it will be.

The main tool for building software is make(1). When run, make
looks in the current directory for a file called Makefile, which is full of
instructions much like that horrid example in the previous paragraph. It
reads the instructions and carries them out, automating the installation
process no matter how complicated it might be. You don’t really have to
know the internals of a Makefile, so we’re not going to dissect one.

Each Makefile includes one or more targets, or sets of instructions to carry
out. For example, typing make install tells make(1) to check the Makefile for a
target called install and, if found, execute it. A target’s name usually relates
to the process to be carried out, so you can safely assume that make install
installs the software. You’ll find targets to install, configure, and uninstall
most software. make(1) handles a huge variety of functions, some of which
far outstrip the creators’ original intents. But that’s part of the fun of Unix!

Source Code and Software
Source code is the human-readable instructions for building the actual
machine code that makes up a runnable program. You’ve probably been
exposed to source code in some form. If you’ve never seen it, take a look
at a few files under /usr/src or at https://svnweb.freebsd.org/. Even a neophyte
sysadmin needs to recognize source code two tries out of three.

Once you have source code for a program, you build (or compile) the
program on the type of system you want to run it on. (Building software for
a foreign platform via cross-compiling demands is more complicated when
it’s possible.) If the program was written for an operating system that’s suffi-
ciently similar to the platform you’re building it on, it works. If your platform
is too different from the original, it fails. Once you’ve successfully built the
software on your system, you can copy the resulting program (or binary) to
other identical systems, and it should run.

Some programs are sufficiently well written that they can be compiled
on many different platforms. A few programs specifically include support
for widely divergent platforms; for example, the Apache web server can be

Customizing Software with Ports 363

compiled on both Windows and Unix-like systems. This represents heroic
effort by the software authors, and even so, you must run a few scripts and
configure your environment precisely by the directions before building on
Windows.

Generally speaking, if you can build a program from source, it will prob-
ably run. It might not run correctly, it might not do anything you expected,
but it runs. A sufficiently experienced sysadmin can use the source code and
error messages to learn why a program won’t build or run. In many cases, the
problem is simple and can be fixed with minimal effort. This is one reason
why access to source code is important.

Back when every sysadmin was a programmer, debugging software
absorbed a major part of the admin’s time. Every Unix-like system was
slightly different, so every sysadmin had to understand his platform, the
platform the software was designed for, and the differences between the
two before he could hope to make a piece of code run. The duplication of
effort was truly horrendous.

Over the years, programmers developed tools such as autoconf to
help address these cross-platform issues. Not every program used these
tools, and when they broke, the sysadmin was kicked back to square one.
Sysadmins had to edit the source code and Makefiles just to have a chance
of making the programs work. And working isn’t nearly the same as working
well, let alone working correctly.

The FreeBSD Ports Collection was designed to simplify this process for
FreeBSD users.

The Ports Collection
The Ports Collection, also called the ports tree or simply ports, contains an auto-
mated system for compiling software on FreeBSD.

The basic idea behind the ports system is that if source code must be
modified to run on FreeBSD, the modifications should be automated. If
you need other software to build this program from source code or to run
the software, those dependencies should be documented and tracked. If
you’re going to automate the changes, you might as well record what the
program includes so you can easily install and uninstall it. And since you
have a software-building process that produces exactly the same result each
time, and you’ve recorded everything that the process creates, you can copy
the binaries and install them on any similar system.

In addition to the information needed to create the packages, the Ports
Collection contains legal restrictions on building the software, security infor-
mation, licensing details, and more.

Ports interoperate with packages. The Ports Collection is used to create
packages. You can install some software from ports and some from packages
as you need, freely mixing where you install software from. You’ll need to use
the same version of the Ports Collection used to build your packages, either
a quarterly branch or the latest version. Most ports users want the latest soft-
ware, so we’ll focus on that.

364 Chapter 16

Ports
A port is a set of instructions on how to apply fixes to, or patch, a set of
source code files and then build and install those files. A port contains a
complete record of everything necessary to create the finished software.
This frees sysadmins from struggling to install programs and lets them
struggle to configure them.

Ports Tree Installation

If you followed the installation instructions in Chapter 3, you installed the
ports tree in /usr/ports. In that directory, you should find several files and
a couple dozen directories. If you don’t have anything in /usr/ports, you
apparently can’t follow instructions. That’s okay—I can’t either—but you
must install the ports tree to continue.

FreeBSD supports a couple different ways to get the ports tree. You
can check it out using svn(1) or download a copy off the web. The recom-
mended method for sysadmins is to use portsnap(8) to download the latest
(nonquarterly) version of the ports tree.

portsnap auto
Looking up portsnap.FreeBSD.org mirrors... 6 mirrors found.
Fetching snapshot tag from your-org.portsnap.freebsd.org... done.
Fetching snapshot metadata... done.
Updating from Mon Oct 17 15:59:41 EDT 2018 to Mon Mar 20 14:13:53 EDT 2019.
Fetching 5 metadata patches... done.
Applying metadata patches... done.
Fetching 5 metadata files... done.
Fetching 10202 patches.
(700/10202) 6.86%

Here, portsnap searches for a mirror of the portsnap files, cryptograph-
ically verifies the integrity of those files on the portsnap server, downloads
the files, and verifies the integrity of the download itself.

You now have all the latest versions of all FreeBSD ports. To update an
existing Ports Tree to the latest version, run portsnap auto again.

If you wish to schedule a regular portsnap update run via cron(1),
use the portsnap cron update command instead of portsnap auto. This tells
portsnap to update the ports tree at some random time within 60 minutes
of the command running. This helps distribute the load on the FreeBSD
portsnap server. Schedule a portsnap run at some point between 5 am and
5:59:59 am in root’s crontab with an entry like this:

0 5 * * * /usr/sbin/portsnap cron update

This kicks off the actual update at a random time between 5 am and
6 am, which is much more effective than 1 out of 24 portsnap users hitting
the download server simultaneously at 5 am.

Customizing Software with Ports 365

Ports Tree Contents

Most of the directories you see here are software categories. Each category
contains a further layer of directories, and each of those directories is a
piece of software. FreeBSD has over 28,000 ports as I write this, so using the
directory tree and categorizing software properly is vital. Of the files and
directories in this category that aren’t software categories, the major ones
are described here.

The CHANGES file lists changes made to the FreeBSD ports infrastruc-
ture. It’s primarily of use to the FreeBSD ports developers and people inter-
ested in the internals of the Ports Collection.

The CONTRIBUTING.md file exists for FreeBSD source code mirrors on
GitHub. All FreeBSD source code is mirrored on GitHub for people’s con-
venience, but FreeBSD doesn’t use Git internally. GitHub users traditionally
check CONTRIBUTING.md for information on how to contribute—which,
in FreeBSD’s case, is “go to the FreeBSD website.” (Work on automatically
feeding GitHub pull requests into the FreeBSD PR system is ongoing as I
write this.)

COPYRIGHT contains the licensing information for the Ports
Collection as a whole. While each individual piece of software supported
by the Ports Collection has its own copyright and licensing information,
the Ports Collection is licensed under the two-clause BSD license.

The GIDs file contains a list of all the group IDs used by software in the
Ports Collection. Many pieces of software in the collection expect to run as
an unprivileged user. If each port gets to create a random user, the user-
names, user IDs, and group IDs will overlap. Instead, ports that need an
unprivileged GID reserve one in this file. This file records GIDs assigned to
Ports Collection. GIDs aren’t actually assigned in /etc/passwd until used.

Your /usr/ports has an INDEX file with a suffix named after the version of
FreeBSD you’re running. This FreeBSD 12 system has /usr/ports/INDEX-12.
The ports system’s search and description features use this index. The index
is generated locally and not stored in Subversion.

The Keywords directory contains information for the Universal
Configuration Language system, discussed in Chapter 23.

LEGAL describes the legal restrictions on any software in the Ports
Collection. Some pieces of software have specific limitations on them—
such as no commercial use, no redistribution, no monetary gain, and so
on. Individual ports also list these restrictions; this is just a master list built
from all the ports.

MOVED lists all the ports that have been renamed, moved from one cate-
gory to another, or removed, along with the reason why. Automated manage-
ment tools such as portmaster(8) use this list to find the new home of moved
ports. Why move a port? When I started with FreeBSD, it had one category
for X Windows software. The category grew ridiculously huge, so the ports
team split it, and split it again, until we reached 2017’s nine categories.

The Makefile contains high-level instructions for the whole Ports
Collection. You’ll only use this if you want to build every port in the entire
Ports Collection. You’d be better off using poudriere as discussed in “Private
Package Repositories” on page 381 than just running make here.

366 Chapter 16

The Mk subdirectory contains the logic that drives make(1) in fetching
source files from the internet, patching them, building them, and install-
ing them. Many types of programs expect to integrate together, and these
files ensure that different parts of the same tool are built and installed in a
compatible manner. Some features, like LDAP and Emacs, can touch many
ports. This directory contains Makefiles like bsd.ldap.mk and bsd.emacs.mk for
exactly these functions.

Beneath the Mk subdirectory, you’ll find Uses. This directory contains
broadly used Makefiles for other widely used functions or software suites. For
example, the KDE and GNOME desktop suites include dozens or hundreds
of smaller programs, and each must be built correctly to interoperate. If
you look in Uses, you’ll see the files gnome.mk and kde.mk dedicated to con-
figuration of these programs, as well as files for GSSAPI, Lua, Varnish, and
many other software families.

If you really want to learn how the Ports Collection works, read every-
thing in /usr/ports/Mk and /usr/ports/Mk/Uses. It’s highly educational, even
though the nature of supporting all these different programs means the
Makefiles are as tangled as a yarn basket attacked by a horde of crazed kittens.

The README file contains a high-level introduction to the Ports
Collection.

The Templates directory contains skeleton files used by other portions of
the Ports Collection.

The Tools directory contains programs, scripts, and other automation,
mostly used by ports developers.

The UIDs file contains unprivileged user IDs used by ports in the sys-
tem. Much like the GIDs file, this helps the ports developers avoid conflicts
between unprivileged users required by ported software.

UPDATING contains notes for use when upgrading your software.
Updates that require special intervention appear here in reverse date
order. Before updating your software, check this file for important notes
that affect you.

The distfiles directory contains the original source code for ported soft-
ware. When a port downloads a chunk of source code, that source code is
kept under /usr/ports/distfiles.

All the other directories are categories of ports. The following shows the
contents of the ports/arabic directory, where software specific to the Arabic
language is kept. Much software elsewhere in the Ports Collection supports
Arabic, but this category is for software focused on Arabic—such as fonts,
translations of certain types of documents, and so on. This category isn’t use-
ful for most people, but it has the serious advantage of being small enough to
fit in this book. Some ports categories have hundreds of entries.1

Makefile ae_fonts_ttf kacst_fonts libitl
Makefile.inc arabtex kde4-l10n libreoffice
ae_fonts_mono aspell khotot

1. 28,000 ports. 62-odd categories. Some categories have 9 members. You do the math.

Customizing Software with Ports 367

This Makefile contains instructions for all the ports in the directory.
They’re more specific than the global Makefile in /usr/ports, but not as spe-
cific as individual port Makefiles. The file Makefile.inc contains meta-instruc-
tions for the ports in this directory. All the other directories are individual
software packages. We’ll dissect one of those directories in “Installing a
Port” on page 371.

Individual ports are often called by their directory in the Ports
Collection. The gnuplot graphing program might be called math/
gnuplot, as its port can be found at /usr/ports/math/gnuplot.

The Ports Index
The ports index file contains a list of all ports that build on a particular
FreeBSD release. On FreeBSD 13, this is /usr/ports/INDEX-13. The Ports
Collection uses the index for several purposes, including searching the
whole ports tree.

The index file describes each port on a single line, with fields separated
by pipe symbols (|). While this is convenient for system tools, it’s not par-
ticularly human-readable. Run make print-index in /usr/ports to get a longer,
much more intelligible index. This index is filled with entries like this:

Port: p5-Archive-Extract-0.80
Path: /usr/ports/archivers/p5-Archive-Extract
Info: Generic archive extracting mechanism
Maint: perl@FreeBSD.org
Index: archivers perl5
B-deps: perl5-5.24.1
R-deps: perl5-5.24.1
E-deps:
P-deps:
F-deps:
WWW: http://search.cpan.org/dist/Archive-Extract/

The index starts with the port’s name and the full path to the port direc-
tory. Info gives a very brief description of the port. The Maint heading lists the
port’s maintainer, a person or team who has assumed responsibility for this
software’s integration into the Ports Collection. The Index space lists every
category where this port might be filed. The first category listed is the direc-
tory where it appears in the Ports Collection. In this case, the port appears in
the archivers directory.

We then have dependencies. B-deps lists the build dependencies—that is,
other software that must be installed to build this port. R-deps lists runtime
dependencies, software needed for this to actually run. This is a Perl module,
so it needs a Perl interpreter. Some software must be extracted or decom-
pressed by particular tools, specified in E-deps. The P-deps field lists any depen-
dencies for patching the software—rare pieces of software must be patched
with a certain tool. The F-deps field is similar, specifying fetch dependencies—
that is, any special software that must be used to download the software.

Finally, the WWW space gives the home page of the software.

368 Chapter 16

Searching the Index
The Ports Collection includes tools to search the index. If you want a par-
ticular program, you might be better off finding the ports directory with
pkg search or even locate -i. Reserve searching the Ports Collection to
answer questions like “What ports use SNMP?”

If you know the name of a piece of software, search INDEX for it with
make search. Here, I look for ports with names that include net-snmp:

cd /usr/ports
make search name=net-snmp

u Port: net-snmp-5.7.3_12
Path: /usr/ports/net-mgmt/net-snmp
Info: Extendable SNMP implementation
Maint: zi@FreeBSD.org
B-deps: perl5-5.24.1
R-deps: perl5-5.24.1
WWW: http://net-snmp.sourceforge.net/

Port: p5-Net-SNMP-6.0.1_1rt: p5-Net-SNMP-365-3.65
--snip--

As of this writing, FreeBSD has several ports with net-snmp in their
name. The first is the current standard net-snmp software collection u.
Others include Perl libraries that use SNMP over the network but otherwise
have nothing to do with the net-snmp suite, old versions of net-snmp that
are no longer supported, and Tcl/Tk interfaces to net-snmp. The fields in
the description are taken straight from the INDEX file.

If you don’t need this much detail, try make quicksearch to get only the
port, path, info, and (if applicable) notes on reasons why it’s not there
anymore.

Key Searches

You can also search using any of the fields in the port description as a key.
Remove any hyphens from the key name. You want all the ports that have a
runtime dependency on Perl?

make quicksearch rdeps=perl5

You can combine multiple search terms in one query. Suppose you want
all the programs with Apache in the name but with a runtime dependency
on Python.

make quicksearch name=apache rdeps=python

Exclude a word from the search results by putting an x in front of the
key. Here, we look for everything that has a runtime dependency on Python
but doesn’t have Apache in the name:

make quicksearch xname=apache rdeps=python

Customizing Software with Ports 369

These by-field searches don’t work for all software, however. For
example, if you’re looking for the Midnight Commander file manager,
you might search for it by name.

make search name=midnight
#

Well, that was less than helpful. Search all the fields for a match with
the term key.

This scans more fields and returns more hits. If you’re searching for a
common word, however, the key search can provide far too much informa-
tion. Trim the output with quicksearch.

make quicksearch key=midnight

This returns every port with the string midnight in its description, name,
or dependencies. We’ll quickly learn that Midnight Commander can be
found under /usr/ports/misc/mc.

Other Ways to Browse the Ports Collection

If you prefer using a web browser, build an HTML index. Just go to /usr/ports
and, as root, type make readmes to generate a README.html file with the index
of your ports tree and a HTML file in every port. You can click through vari-
ous categories and even view detailed descriptions of every port.

If none of these options work, try the FreeBSD Ports Tree search at
http://www.freebsd.org/cgi/ports.cgi. Also, the FreshPorts search engine at
http://www.freshports.org/ provides a separate but very nice search function.

Between the web browser and the search engine, you should be able
to find a piece of software to meet your needs. Finding the port you need
might well be the most difficult part of working with ports.

Legal Restrictions
While most of the software in the Ports Collection is free for any use, some of
it has a more restrictive license. The /usr/ports/LEGAL file lists legal restric-
tions on the contents of the Ports Collection. The most common restriction
is a prohibition on redistribution; the FreeBSD Project doesn’t include such
software on its FTP sites or on a CD image but provides instructions on how
to build it.

Legal restrictions appear in places you might not expect. You can’t
download a compiled, ready-to-go package for Oracle Java, and the FreeBSD
Project can’t redistribute the Java source code. FreeBSD can and does distrib-
ute instructions on how to build the Oracle Java source code on FreeBSD,
but the user must go to the Oracle site and download the code themselves.
Fortunately, OpenJDK has supplanted Oracle Java for most software, and
FreeBSD has a high-quality package for it.

Similarly, some pieces of software prohibit commercial use or embed-
ding in commercial products. A few cannot be exported from the United

370 Chapter 16

States, thanks to Department of Commerce rules restricting the export
of cryptography.2 If you’re building FreeBSD systems for redistribution,
export, or commercial use, you need to check this file.

Fortunately, most of the software in the Ports Collection is free for
either commercial or noncommercial use. These restricted packages are
the exception, not the norm.

What’s In a Port?
Installing software from ports takes longer than using packages, and the
Ports Collection requires a live internet connection. In exchange, the Ports
Collection can produce more optimal results than packages. Let’s take a
look at a port. Here’s the innards of dns/bind911, version 9.11 of the ISC
BIND nameserver:

Makefile files pkg-help
distinfo pkg-descr pkg-plist

The Makefile contains the basic instructions for building the port. If
you read this file, you’ll quickly find that it’s only a few hundred lines long.
That’s not a huge amount of instructions for such a complicated piece of
software, and most Makefiles are much shorter. Most of that file is dedicated
to customizations that are only rarely used. There’s almost no information
about BIND itself in here and not much about how to build software on
FreeBSD. Most of the FreeBSD ports system’s Makefiles are in /usr/ports/Mk.

The distinfo file contains checksums for the various files the port down-
loads so that your system can be sure that the file transferred without error
and that nobody tampered with the file before you got it.

The files directory contains all the add-on files and patches required to
build this port on FreeBSD. BIND 9.11 takes a dozen patches. Most of these
patches aren’t required for building, as the ISC supports their DNS servers on
FreeBSD. They provide integration only into the FreeBSD package system.

The file pkg-descr contains a lengthy description of the software.
A few ports include a pkg-help file that offers additional details on how

to use the port.
Some ports (not this one) have a pkg-message file that contains a tem-

plate used to create the package’s installation message.
Finally, the pkg-plist file is a list of all the files installed (the “packing

list”). The port installs only the files listed in the packing list. Some ports
(such as Python-related ones) use an automatically generated packing list,
so don’t be surprised if the packing list is missing.

Combined, these files comprise the tools and instructions needed to
build the software.

2. Most of this nonexportable software is available from non-US sources and can be
downloaded anywhere in the world. Meanwhile, ex-KGB cryptographers without these
regulations will happily provide strong crypto to anyone at low, low rates. Mind you, they
charge extra for crypto without obvious backdoors.

Customizing Software with Ports 371

Installing a Port
If you’re familiar with source code, you’ve probably already noticed that a
port contains very little actual source code. Sure, there are patches to apply
to the source code and scripts to run on the source code, but no source
code for the software! You might rightly ask just how building software
from source is supposed to work without source code?

When you activate a port, FreeBSD automatically downloads the
appropriate source code from an included list of sites. The port then
checks the downloaded code for integrity errors, extracts the code to a
temporary working directory, patches it, builds it, installs everything, and
records the installation in the package database. If the port has depen-
dencies, and those dependencies are not installed, it interrupts the build
of the current port to build the dependencies from source. To trigger all
this, you just go into the port directory and type:

make install

You’ll see lots of text scroll down your terminal as the port carries out
its work, and you’ll get your command prompt back when it finishes.

As you grow more experienced in building from source, however, you’ll
find that this all-in-one approach isn’t appropriate for every occasion. Not
to worry; the Ports Collection provides the ability to take the port-build-
ing process exactly as far as you like because make install actually runs a
whole series of subcommands. If you specify one of these subcommands,
make(1) runs all previous commands as well as the one you specify. For
example, make extract runs make config, make fetch, make checksum, make depends,
and make extract. These subcommands are, in order:

make config

Many ports have optional components. Running make config lets you select
which of those options you wish to support in this port. The options you
select are saved in /var/db/ports for future builds of the port. These options

Por t s a nd ProduC t ion

I would strongly encourage you to build your own package repository with
poudriere and manage your servers’ ports from that repository. Upgrading
ports directly installed on a host is annoying and difficult. Tools like port-
master and portupgrade are obsolete at this moment, and while they might
get updated or rewritten, poudriere is the eternal method. You have been
warned. Explore ports on a disposable test system.

372 Chapter 16

affect how the port is built—for example, if you choose to build a pro-
gram with net-snmp support, you’re adding a dependency on net-snmp.
We discuss make config in more detail in “Port Customization Options” on
page 373 later in this chapter.

make fetch

Once you’ve configured the port, the system searches a preconfigured list
of internet sites for the program source code. The port’s Makefile might list
the authoritative download site for the file, or it might use one of several
authoritative lists provided by the Ports Collection. When the port finds
the source code, it downloads it. The original, downloaded source code is
called a distfile and is stored in /usr/ports/distfiles.

If the port requires a particular program to fetch a distfile, the port
installs that program as part of make fetch.

make checksum

The make checksum step computes the distfile’s cryptographic hash and com-
pares it to that recorded in the port’s distinfo file. Files can be corrupted in
any number of ways: during download, by malicious intruders on a down-
load site, or sheer random what-the-heck. Checksum verification detects file
damage from any cause and stops the build if the files are corrupt.

This step makes no effort to determine why or how the file was cor-
rupted. For the port’s purposes, it doesn’t matter whether the source code
was corrupted during download or some malicious intruder put his back-
door code into the distfile before you downloaded it. Either way, don’t waste
time building it, and certainly don’t install it!

foot-shoot ing me t hod #839:

ignor ing t he CheCksum

Software authors, especially free software authors, sometimes make minor
changes to their code but don’t change the software version or the filename
of the distfile. The FreeBSD port rightfully notices this problem and doesn’t
work after such a change. If you’re absolutely certain that the distfile hasn’t
been compromised or corrupted, you can override this check with make NO
CHECKSUM=yes install.

I highly recommend consulting the software’s original author—not
the port maintainer—before doing so. Checking with the author ensures
that you’re not installing compromised software and also helps educate
the software author about the importance of version numbers and release
engineering.

Customizing Software with Ports 373

make depends

A lot of software is built on top of other software. While FreeBSD includes
make(1) and a compiler, some software can be compiled only with a par-
ticular compiler or demands a certain version of make. Maybe the distfile
is distributed compressed with a rarely used algorithm. Perhaps it needs
a third-party library that doesn’t come with FreeBSD. At the make depends
stage, the port checks for missing dependencies and attempts to resolve
them by building the ports.

Dependencies can have their own dependencies. The make depends
recursively processes dependencies until the port has everything it needs
to build, install, and run.

make extract

Once FreeBSD has the port distfiles, it must uncompress and extract them.
Most source code is compressed with something like gzip(1), bzip(1), or
xz(1), and collated with tar(1). This command creates a work subdirectory
in the port and extracts the tarball there. If the port requires a particular
program to extract the distfile, it will install it now.

make patch

This command applies any patches in the port to the extracted source
code in the work subdirectory. If the port requires a special patch pro-
gram instead of the base system’s patch(1), the port installs it now.

make configure

Next, FreeBSD checks to see whether the software has a configure script.
This isn’t the same as the make config step performed by the port. If the
software came with its own configure script, the port runs it. Some ports
interrupt the build at this stage to prompt you for information, but most
run silently.

make build

This step compiles the checked, extracted, patched, and configured soft-
ware. Ports that don’t compile anything might have an empty step here.
Some ports exist only to conveniently package a bunch of other ports.

make install

Finally, make install installs the software and tells the package system to
record its presence.

Port Customization Options
Many software packages have extensive custom-build features. While
enabling these features isn’t hard for any individual piece of software,
there’s no universal method for defining them. With one piece of software,

374 Chapter 16

you might have to edit the original software’s Makefile ; with another, you
may have to offer flags to the configure script. Learning how to make
these changes takes time and can be an annoyance. The FreeBSD Ports
Collection offers two ways to consistently configure these options on your
system.

The newer, prettier method is supported by make config. This brings
up a dialog box much like those you saw when you first installed FreeBSD.
For example, the popular access control system sudo (http://www.sudo.ws/)
includes support for LDAP, auditing, and, most vitally, insulting the user
when they enter their password incorrectly. If you go to /usr/ports/security/
sudo and type make config, you’ll see a menu much like the one shown in
Figure 16-1.

Use the spacebar to select options you like and the arrows and taB key
to move around. Hit enteR over either OK or Cancel to finish. The port
records your desired options in /var/db/ports/<category>_<portname>/options.
When you have to rebuild or upgrade the port, the port reuses those same
options unless you run make config to change them or make rmconfig to blow
them away.

Figure 16-1: Port configuration

Customizing at the Command Line

Sometimes you don’t want a pretty arrow-select menu but a proper sysadmin
interface of words on a command line. The Ports Collection lets you skip
the menu and give all the configuration options in the make(1) command.
Before you can do that, you’ll want to turn off the pretty menu. Set the envi-
ronment variable BATCH=1 on the command line to turn off the menu. Here,
we build the port with the default configuration, exactly as the FreeBSD
package cluster does:

make BATCH=1 install

Now that you’ve ditched the annoying menu, see what configure options
the port supports. The make pretty-print-config command displays the current
settings in an easily readable format. Let’s check out security/sudo.

Customizing Software with Ports 375

make pretty-print-config
+AUDIT -DISABLE_AUTH -DISABLE_ROOT_SUDO +DOCS -INSULTS -LDAP +NLS -NOARGS_
SHELL -OPIE -SSSD

Each of these represents a configuration option. Options marked with
a plus are turned on, while those flagged with a minus are turned off.
What do these options mean? Running make showconfig displays all the port’s
options and what they do.

make showconfig
===> The following configuration options are available for sudo-1.8.19p2:
 AUDIT=on: Enable BSM audit support
 DISABLE_AUTH=off: Do not require authentication by default
 DISABLE_ROOT_SUDO=off: Do not allow root to run sudo
 DOCS=on: Build and/or install documentation
 INSULTS=off: Enable insults on failures
--snip--

While sudo supports LDAP and SSD and all sorts of complicated infor-
mation sources, what I truly need is for sudo to insult the user any time he
enters an incorrect password. I want the INSULTS option. Use the WITH envi-
ronment variable on the command line to set the option. Option names are
case-sensitive. Here, I set the option and check the configuration again:

make WITH=INSULTS pretty-print-config
+AUDIT -DISABLE_AUTH -DISABLE_ROOT_SUDO +DOCS +INSULTS -LDAP +NLS -NOARGS_
SHELL -OPIE -SSSD

The INSULTS option is now set.
Use quotation marks to enable multiple options.

make WITH="INSULTS LDAP" pretty-print-config

Similarly, use WITHOUT to turn off an option.

make WITH=INSULTS WITHOUT="AUDIT NLS" pretty-print-config

If you leave the menu enabled when building the port, the make config
graphical menu appears, but with your selected options set. Remember,
turn the menu off with the BATCH variable.

Using Customizations Globally

You build ports to get specific features in your software. Often, you want
that feature in all the ports that support it. Consider LDAP for a moment.
If your enterprise uses LDAP, you probably want all of your software to use
it. You’ll want LDAP to be the default.

FreeBSD stores settings used for every run of make in /etc/make.conf.
Here’s where you’d enable LDAP or LibreSSL or other customizations that

376 Chapter 16

should appear across the system. Put any options you want applied globally in
make.conf. Unlike the command line, make.conf uses the variables OPTIONS_SET
and OPTIONS_UNSET.

Here, I want the options LDAP and INSULTS enabled on every port:

OPTIONS_SET=INSULTS LDAP

A make.conf setting has no effect on a port that doesn’t support the
option. Many ports don’t know anything about LDAP. I don’t know whether
any ports other than sudo include an optional feature to insult my users,
but if the feature’s available, I need it.

Why use separate options in make.conf as opposed to the command
line? Precedence. Options applied using WITH override options set using
OPTIONS_SET. In this example, I’ve enabled insults globally. If for some
unfathomable reason I needed a particular port not to insult the user,3 I
could use WITHOUT=INSULTS on the command line when building the port to
override the global default.

/etc/make.conf and Single Ports

Perhaps you want to build a particular port with a specific option, but you
don’t want to specify it on the command line. Use the port category, an
underscore, the port name, another underscore, and the SET variable in
/etc/make.conf.

security_sudo_SET=INSULTS

While the port should cache the configuration, this would provide
additional protection against fat-finger mistakes.

Setting Default Versions

FreeBSD supports dozens of port customization choices. Not all of them
are sensible as port options, though. Some options must be used across the
entire ports collection to be effective. The most common example is the
SSL library. You can build all of your ports with the base system SSL library,
and things will work fine. You can build all the ports with an external SSL
library and, again, the software works. Building some ports with the base
system SSL and some with a third-party SSL leads to catastrophe. The same
applies to, say, different versions of the PostgreSQL database server and the
Python interpreter. Different SSL libraries combined with different data-
base server versions creates the sort of debacle I really enjoy handing off to
a junior sysadmin who desperately needs an unforgettable lesson in how
shared libraries work.

The Ports Collection uses the DEFAULT_VERSIONS variable to list critical
software that should be used as the default. This replaces older variables

3. Some software is sufficiently insulting by its nature and doesn’t need additional help.

Customizing Software with Ports 377

like DEFAULT_MYSQL_VER and WITH_BDB_VER. The only way to get the complete list
of variables is to trawl through /usr/ports/Mk/. The file bsd.default-versions.mk,
bsd.apache.mk, and the files under Mk/Uses are notably useful.

Here, I’m telling the Ports Collection always to build ports with LibreSSL
instead of the base system’s OpenSSL library and to use Python 3.7.

DEFAULT_VERSIONS += ssl=libressl
DEFAULT_VERSIONS += python=python3.7

I list each default version on a separate line and use the += syntax to tell
the ports system to add this to the list.

I recommend setting default versions before building your first port.
Otherwise, you’ll wind up rebuilding ports so that they link against your
preferred libraries.

Don’t mix prebuilt packages with ports built using an alternate
DEFAULT_VERSIONS. Programs built from packages will use the default librar-
ies, while your ports will use your preferred libraries. If your system works
afterword, it will be only by sheer accident.

Front-Loading Recursion

Sometimes the interactivity in building a port isn’t the problem. Recursion
is the problem.

Suppose you’re building a big port, such as LibreOffice or GNOME.
These ports had dozens or even hundreds of dependencies. Many of these
ports require interactive configuration. Perhaps you decide to launch a KDE
build before going to bed, thinking that you’ll wake up with the latest window
manager or at least an amusing error message. Instead, you’ll rise to discover
a dependency’s make config menu that’s been patiently awaiting your attention
since 30 seconds after you walked away.

The point of building software from ports is that you can customize it.
For these big builds, though, you really want to do all the customizations up
front. That’s where make config-recursive comes in.

The make config-recursive walks through the tree of required ports and
runs make config on each and every one of them. You’ll spend a few minutes
selecting options in each port or just hitting OK on the ones you don’t care
about. Once you finish the recursive config, though, you can safely run make
install on the port you actually want and go off to do other things. You’ll
return to an installed port or a build failure.

Changing a port’s build options can add or remove dependencies. If
you decide to enable, say, SNMP support in LibreOffice,4 the port will need
the proper SNMP library. The port for that library will need configuring.
Re-run make config-recursive until none of your decisions change.

The ports system caches all your configuration choices. To remove that
cache for a port and all its dependencies, run make rmconfig-recursive.

4. I haven’t looked to see whether LibreOffice can support SNMP, but I see no reason why it
wouldn’t.

378 Chapter 16

If bandwidth timing is the problem, you can download all the distfiles
required for all the dependencies with make fetch-recursive. This is useful
if you’re in a place like Antarctica, where build time and server cooling is
unlimited but you have internet only a few hours a day.

Packaged Dependencies

Some software has hundreds of dependencies, and you probably don’t want
to build all of them. While I might want a custom Emacs build, I probably
don’t want to build gmake and the latest GNU C compiler from source. The
make missing command displays missing dependencies. You can use that com-
mand to pick and choose what you want to build.

If you don’t want to build any dependencies from source but install
them all from packages instead, you can feed make missing into a pkg command.

pkg install -Ay $(make -DBATCH missing)

If a package is available, it’ll be installed. The only things you’ll need to
install from ports are those available only from ports.

Port Flavors

Some ports have complicated dependencies. While you can build Ansible
with Python 2 or Python 3, an Ansible package that works with Python 2 is
very different than one for Python 3. Flavors is a mechanism for expressing
these possibilities within a single port, and was very recently introduced
into the Ports Collection. Flavors are not yet pervasive throughout the ports
system, but at the time I write this, they’ve been implemented for Python,
Perl, Qt, and Emacs. You can expect to see them more and more frequently.

To see if a port supports any flavors, go to the port directory and run
make -V FLAVORS. Here, I see what flavors of the popular Python packaging
toolkit Setuptools are available.

cd /usr/ports/devel/py-setuptools
make -V FLAVORS
py27 py36 py35 py34

My current ports tree supports Python 2.7, 3.6, 3.5, and 3.4.
To build Setuptools for a specific Python version, give the flavor on the

command line.

make FLAVOR=py34 install clean

If you don’t specify a flavor, the port gets built with the current default
Python. To set the default Python for your system, set DEFAULT_VERSIONS in
make.conf.

Customizing Software with Ports 379

Building Packages
You can create a package from an installed port. You can then copy your
customized port to other machines and install it.

Before creating the package, create the directory /usr/ports/packages.
The ports system puts built packages in that directory. Without a packages
directory, the package winds up in the port directory and you wind up with
package files scattered all over your filesystem.

Use make package to create a package. If you want to package not only
the current port but all its dependencies, run make package-recursive.

People who need a whole bunch of customized ports should consider
setting up their own repositories with poudriere (discussed later this chap-
ter), but one-off package builds are okay if you have special circumstances
or you like saving trouble for later.

Uninstalling and Reinstalling Ports
While you can use pkg remove to uninstall a port, you can also uninstall a
port from the port directory. Running make deinstall in the port directory
removes the program from the system but leaves the port compiled and
ready to reinstall.

After uninstalling a port, the compiled program and source files still
live under the work subdirectory in the port. Running make reinstall rein-
stalls the compiled program. You can uninstall and reinstall as many times
as you like.

Tracking Port Build Status
How does the Ports Collection keep track of what’s already been done? If
you can run make extract and then make install, how does FreeBSD know
what it has already finished? The Ports Collection uses hidden files (files
with a name beginning with a dot), or cookies, to track completed steps. See
those files by listing all the files in the port’s work directory:

cd /usr/ports/security/sudo/work
ls -a
ls -a
--snip--
.PLIST.flattened
.PLIST.mktmp
.PLIST.objdump
.PLIST.setuid
.PLIST.writable
.build_done.sudo._usr_local
.configure_done.sudo._usr_local
.extract_done.sudo._usr_local
.install_done.sudo._usr_local
.license-catalog.mk
--snip--

380 Chapter 16

The file .configure_done.sudo._usr_local indicates that the make configure
step is complete.

On more than one occasion, after multiple make install/deinstall cycles,
I’ve had a port refuse to reinstall itself. That’s generally caused by the hidden
file indicating that the install has finished. Remove that file, and the reinstall
can proceed.

Cleaning Up Ports
Ports can take up a lot of disk space. Programs with many dependencies,
like GNOME, KDE, and LibreOffice, can take dozens of gigabytes! Much of
this resides in the port’s work directory, where the port puts the source code
files and all the intermediate parts of the completed binaries. Once the
port is installed, though, you no longer need those files.

Remove the port’s working files with make clean. This erases the work
directory of the current port and all dependencies, so be sure you’re happy
with your new program before doing this. You can also clean a port imme-
diately upon install by running make install clean.

You might also want to remove the original distfiles, stored in /usr/
ports/distfiles. The make distclean command removes the distfiles for
the current port and all dependencies.

To clean the entire ports tree, run make clean -DNOCLEANDEPENDS directly
under /usr/ports. The -DNOCLEANDEPENDS is optional, but it prevents the default
recursive cleaning. Without it, you’ll clean some popular ports dozens or
hundreds of times. While there are faster ways to remove every work direc-
tory in the ports tree, this one is directly supported by the FreeBSD Project.

Read-Only Ports Tree
Many people dislike having temporary files and even packages in /usr/ports.
You can move the various working directories to other parts of the filesystem
to keep your /usr/ports read-only except for updates.

Use the WRKDIRPREFIX option in make.conf to build ports in a separate
directory. Many people will set this to a location like /usr/obj.

The PACKAGES option sets a new package directory other than /usr/ports/
packages.

Finally, DISTDIR sets a location to store distfiles other than /usr/ports/
distfiles.

On a related note, it’s possible to build ports and packages without
being root, provided the permissions on these directories are set so that
the builder can write to these directories. Only root can install software,
however.

Changing the Install Path
Many environments have standards for how add-on software gets installed.
I’ve been in organizations where /usr/local is reserved for files specific to
that machine and software installs in that directory are forbidden. Instead,
software installs must go in /opt or some other mandated location.

Customizing Software with Ports 381

Set an alternate installation location with the LOCALBASE and PREFIX vari-
ables. You could do this on the command line, but if you’re complying with
an organization standard, use make.conf instead. Whichever you use, start by
building pkg(8) itself.

cd /usr/ports/ports-mgmt/pkg
make LOCALBASE=/opt PREFIX=/opt install

The port installs all of its files under this directory. For example, pro-
grams that normally go into /usr/local/bin end up in /opt/bin.

Not every port can handle changing LOCALBASE and PREFIX from /usr/local.
Some software has hardcoded dependencies on /usr/local, while others have
undiscovered bugs. If a port chokes on changing the install path, file a PR
(see Chapter 24). Consider taking a look at the port to figure out why it
choked. Submitting fixes like this is one of the easiest ways to get involved
with FreeBSD.

Private Package Repositories
Packages are great, until you need customized versions; then you need
ports. Similarly, ports are great until you have dozens of machines that
all need customized ports. What’s easy to build on one host is difficult to
maintain on several and impossible across a large server farm. When you
outgrow ports, you need packages. Customized packages, that is.

The FreeBSD project uses poudriere (pronounced poo-DRE-er) for build-
ing packages. Why poudriere? It’s French for powderkeg. The successor to the
“tinderbox” tool,5 poudriere is a collection of shell scripts that leverage exist-
ing FreeBSD infrastructure, such as jails and tmpfs and the Ports Collection.

Building packages that work across multiple systems is different than
building software that works on the local host. Anything managed by
human beings accumulates cruft. Once my desktop is more than a few
months old, I’m pretty confident that some minor change I’ve made will
make it subtly different than any newly installed system. Maybe I saved a
shared library after an upgrade. Perhaps I installed something by hand and
forgot about it. Gremlins could have tampered with the linker, I don’t know.
The important thing is, my host isn’t pristinely identical to every other host
running what’s supposed to be the same operating system. A port built and
packaged on this host might include dependencies, libraries, or who knows
what that will keep it from working on other hosts.

Poudriere evades this problem by building everything in jails it man-
ages itself. A poudriere can build packages for any supported FreeBSD
release older than the host it runs on. You can’t, say, build packages for
13.0-RELEASE on a 12.4-RELEASE host, because the kernel lacks the nec-
essary interfaces.

5. I expect the successor tool to be called detonation in Japanese, and then we’ll have smoking
crater in Aramaic.

382 Chapter 16

With poudriere, you can build packages on one host and distribute
them among all of your servers. While poudriere includes many advanced
features, getting a basic repository running isn’t hard at all.

Poudriere Resources
Package building takes system resources. You can restrict how many pro-
cessors poudriere uses during builds, which helps reduce its memory use.
While poudriere itself is only a few megabytes, however, the jails and build
environments can take up a whole lot of disk space. The official poudriere
docs recommend allocating at least 4GB of disk for each jail and 3GB of
disk space for the ports tree. I normally use about 1GB for each using ZFS,
but I encourage you to err on the side of following the recommendations.

Poudriere leverages ZFS clones and snapshots to build jails, vastly
reducing the needed disk space and, increasingly, performance. You can
run poudriere on UFS, but it will use more space and run more slowly.

Of greater concern is the space needed to build the ports. My web
servers run only a few dozen pieces of software, and many of these are
tiny. Poudriere needs only a few gigabytes of disk to build them. If you’re
building hundreds or thousands of packages, you need a whole bunch
of disk. How much? Well, are you building GnuPG or are you building
LibreOffice? To get an estimate, build but don’t clean all of your packages
using ports, and then see how big /usr/ports gets.

Each host should use only one package repository. Yes, it’s technically
possible to build your local packages and install them alongside packages
from the official FreeBSD repository. The problem is that packages are
interdependent. You could have your host check your repository first and
then fall back to the official repository. The official repository updates
every few days, however. The time between updates varies with the hard-
ware available in the build cluster, but a few days is a good guess. Are the
updates to your poudriere perfectly synchronized with the official reposi-
tory’s slightly irregular updates? Is your ports tree exactly identical to the
one used on the ports cluster? Packages are meant to work as an integrated
collection, not a pile of stuff from two different collections. Ask any Linux
administrator for their horror stories about packages installed from mul-
tiple repositories and then commit to building all your own packages. Plan
your disk usage accordingly.

Finally, start by building your packages on a host of the same archi-
tecture that you intend to install them on. If you’re building packages for
arm64 systems, use an arm64 host for poudriere. You can build i386 pack-
ages on amd64, but amd64 hardware is literally designed to run i386 code.
Once you’re comfortable with poudriere, you can use the qemu-user-static
package to cross-build packages for slow platforms.

Can you add poudriere to an existing production host? Maybe. A few
poudriere runs on a test system will provide insight into the resources your
environment needs.

Customizing Software with Ports 383

Installing and Configuring Poudriere
Poudriere has no build options, so install it from packages.

pkg install poudriere

Configure poudriere in /usr/local/etc. You’ll find a directory for configur-
ing specific package builds, poudriere.d, but we’ll start with the generic con-
figuration file, poudriere.conf. Here’s where you’ll tell poudriere how to behave.
While you can customize directories and paths, we’ll stick with the defaults.

You must tell poudriere where to download FreeBSD install files from
by setting the FREEBSD_HOST variable. If you don’t have a local install mirror,
use the default of download.freebsd.org.

FREEBSD_HOST=https://download.FreeBSD.org

Poudriere includes ZFS-aware features. ZFS isn’t necessary for poudriere,
of course, but if it’s run on ZFS, it will create, clone, and destroy datasets as
needed. Running on UFS won’t hinder poudriere, but copying files is slower
than cloning. If you’re using UFS, uncomment the NO_ZFS=yes configuration
option. That’s it.

ZFS users need to specify the ZFS pool poudriere will use. My main
operating install might be on the pool zroot, but that pool’s on a pair of
flash SATADOMs that I don’t want to abuse too badly. I have a scratch pool
specifically for churning data. Set ZPOOL in poudriere.conf.

ZPOOL=scratch

Before your first poudriere run, create a /usr/local/poudriere dataset.
You’ll be happier.

All of poudriere’s work files get put under /usr/local/poudriere. If you’re
using a separate ZFS pool, the mount points for the datasets on that pool
get set to various locations under /usr/local/poudriere. On UFS, it’s a direc-
tory like any other.

My examples run on ZFS because I can. Poudriere’s output might look
slightly different on UFS systems, but the commands you run are identical
no matter the underlying filesystem.

We’ll look at a few poudriere customizations later, but this will get you
started. Now create jails for your packages.

Poudriere Jail Creation
Poudriere can create jails from a whole bunch of different sources. You can
download from a few different sources, build from a source tree, and more.
Read poudriere(8) for a full list. Here, I’ll install three different jails from
my three favorite methods: from the internet, from an install image, and

384 Chapter 16

from my custom-built /usr/src and /usr/obj. All the installation commands
use the same general syntax. Some installation methods will add a new
option, but everything starts with these.

poudriere jail -c -j jailname -v version

The jail subcommand tells poudriere to work on a jail. The -c flag
means create, and -j lets you assign a name to the jail. A jail can have any
name that doesn’t include a period. I name my poudriere jails after the
architecture and release, substituting a dash for any dots. This gives me
jails like amd64-12-0, amd64-11-4, and so on. The -v flag takes one argu-
ment, the FreeBSD version from uname -r but without any patch level
information. If your hosts are currently running 12.3-RELEASE-p20, just
use 12.3-RELEASE. The patch level will change in subsequent poudriere
runs—yes, poudriere applies security patches to jails.

Install Jail from Network

The default jail install grabs the FreeBSD software from the download site
specified in poudriere.conf. FreeBSD’s main download site is geographically
load balanced, so there’s no need to use any other site unless you have your
own mirror. Here, I create a jail called amd64-11-1 for building 11.1 packages:

poudriere jail -c -j amd64-11-1 -v 11.1-RELEASE
[00:00:00] ====>> Creating amd64-11-1 fs... done
[00:00:01] ====>> Using pre-distributed MANIFEST for FreeBSD 11.1-RELEASE amd64
[00:00:01] ====>> Fetching base.txz for FreeBSD 11.1-RELEASE amd64
--snip--

Poudriere goes to the website and starts downloading the distribution
files. Once it has all the files locally, it copies /etc/resolv.conf into the jail and
runs freebsd-update to get all the latest security patches. The poudriere run
ends with:

[00:04:21] ====>> Recording filesystem state for clean... done
[00:04:21] ====>> Jail amd64-11-1 11.1-RELEASE-p1 amd64 is ready to be used

You can now configure this jail.

Install Jail from Media

Downloading from the internet is fine, but what if you have the install media
locally? Why redownload what you already have sitting on an ISO or a mem-
ory stick image? Extract those distribution files onto your local hard drive
and you can use them for as many jails as you need. For an ISO, use tar(1).

tar -xf ../FreeBSD-11.0-RELEASE-amd64-disc1.iso usr/freebsd-dist

Customizing Software with Ports 385

A memory stick image is slightly more complicated; sadly, libarchive
can’t open disk images yet. You must attach the image to a memory device
and mount it.

mdconfig -at vnode -f FreeBSD-11.0-RELEASE-amd64-memstick.img
md0

If you try to mount /dev/md0, you’ll get an error. It’s not a filesystem; it a
partitioned disk image. Identify the partitions on the disk.

gpart show md0
=> 3 1433741 md0 GPT (700M)
 3 1600 1 efi (800K)
 1603 125 2 freebsd-boot (63K)
 1728 1429968 3 freebsd-ufs (698M)
 1431696 2048 4 freebsd-swap (1.0M)

Partition 3 is a UFS filesystem. That looks promising.6 Mount it.

mount /dev/md0p3 /mnt

The distribution files are now available in /mnt/usr/freebsd-dist. I could
copy them out or just install from their current location.

Here, I create a jail for building FreeBSD 11.0 packages. It’ll be called
amd64-11-0 and use the files from the mounted memory stick. Use the -m
flag to specify where poudriere should grab the files from.

poudriere jail -c -j amd64-11-0 -v 11.0-RELEASE -m url=file:///mnt/usr/freebsd-dist/

Note that the argument to -m is a URL. I could specify a website here,
but file:// is a perfectly valid type of URL. On a Unix host, a file:// URL
has a third slash to indicate the filesystem root.

Install Jail from a Local Build

I run -current and regularly build from source. I want to build packages for
my custom build, so the jail needs a version of FreeBSD that matches my
host. The easy way to get that is to install from the same /usr/src you built
the host from. (You could also use Subversion to download a fresh copy
of the source code you used to build this system, but that requires under-
standing Subversion.) Use -m to give the location to a source directory.

poudriere jail -c -j amd64-current -v 12.0-CURRENT -m src=/usr/src

[00:00:00] ====>> Copying /usr/src to /usr/local/poudriere/jails/amd64-
current/usr/src...
--snip--

6. I’m not entirely sure why the installer has a 1MB swap partition, but whatever.

386 Chapter 16

Poudriere runs make installworld on the prebuilt world in /usr/obj to
create your jail. It won’t run freebsd-update because -current doesn’t sup-
port it.

We’ll use the amd64-current jail in all future examples.

Viewing Jails

To see all the jails poudriere has set up, run poudriere jail -l. The output
is very wide, so I can’t reproduce it in this book, but you’ll see the jail’s
name, the installed version of FreeBSD, the hardware architecture, the
method used to install, the timestamp of the installation, and the path
to the jail.

Install a Poudriere Ports Tree
Poudriere can use different ports trees for different builds. You might use a
quarterly ports branch for one host, the current ports tree for another, and
last year’s ports tree for a third. (You need to use Subversion to extract par-
ticular ports trees from the FreeBSD mirrors, so we won’t cover them.) The
possibility of supporting multiple ports trees means you must assign a name
to each ports tree you do install. Multiple jails can share a ports tree. The
default is the current ports tree.

Use the poudriere ports subcommand for all ports-related actions. The
-c flag tells poudriere to create a ports tree, and the -p flag lets you assign
the name.

poudriere ports -cp head
[00:00:00] ====>> Creating head fs... done
[00:00:00] ====>> Extracting portstree "head"...
Looking up portsnap.FreeBSD.org mirrors... 6 mirrors found.
--snip--

Poudriere leverages portsnap(8), which we discussed earlier this chapter.
If you install multiple ports trees, view them with poudriere ports -l.

Configuring Poudriere Ports
The whole point of building a port is to customize it. You don’t need to
build the whole ports tree as packages, though—not unless you’re running
the FreeBSD package building cluster or something analogous! You have to
tell poudriere which ports to build. Once you have that list, you might need
specific options for certain ports, but you might also need global options.
You’d normally use /etc/make.conf to set those options, but you don’t want
poudriere to use the system’s settings. Poudriere needs an isolated make.conf.
Similarly, you might use make config to set up a port, but how can you do that
in poudriere?

Customizing Software with Ports 387

The Package List

Start by defining the list of packages you want poudriere to build. This list
usually goes in the file /usr/local/etc/poudriere.d/pkglist, although you can put
it anywhere you want. Specify each port by its category and directory. To
build poudriere itself, use an entry like this:

ports-mgmt/poudriere

The difficult part here is establishing a base package set. You have
to build all the packages the host needs. A host might need dozens or
hundreds of packages. Do you really need all of those packages? How
did all of those packages get on this system anyway?

Remember, you probably didn’t choose to install all of those packages.
You installed an application like Emacs or Apache or LibreOffice, and that
application dragged in all those dependencies. You care only about those
dependencies as they affect the software you want. If LibreOffice loses a
dependency, you don’t want poudriere to build that dependency anymore.
Poudriere automatically builds and packages dependencies. All you need to
specify is the application you want, and let poudriere do the rest.

Use pkg-query(8) to get a list of all the nonautomatically installed soft-
ware on one of your production systems.

pkg query -e '%a=0' %o
www/apache24
shells/bash
sysutils/beadm
--snip--

Use this as a base for your package list. Review it for unneeded stuff.
Get a similar list from your other production hosts. Use them to assemble
your repository’s package list.

Poudriere make.conf

Poudriere assembles a unique make.conf for each jail from files in /usr/local/
etc/poudriere.d/. The file /usr/local/etc/poudriere.d/make.conf contains the global
make.conf options that you want set for all of your jails. Other make.conf files
can override those settings, as discussed in poudriere(8), but we’ll focus on
per-jail make.conf files.

Suppose I want LDAP everywhere across my enterprise. Poudriere’s /usr/
local/etc/poudriere.d/make.conf would contain:

OPTIONS_SET=LDAP

Hosts running my custom FreeBSD build all use LibreSSL, though. I
would create a separate make.conf just for that jail, named amd64-current-
make.conf. It would contain the LibreSSL configuration.

388 Chapter 16

DEFAULT_VERSIONS += ssl=libressl

More specific files override general files. Settings in the per-jail files
override poudriere’s global make.conf. I could turn off LDAP on this one
jail even as I enable LibreSSL.

Running make config

Use poudriere options to run make config for your jail. Each combination of
jail and ports tree can have its own unique port options, so you need to
specify them on the command line. You must specify the jail with -j, the
name of the ports tree with -p, and the package file with -f.

poudriere options -j amd64-current -p head -f pkglist

Poudriere figures out which ports actually get built and all their depen-
dencies. It runs you through make config for every one of them.

Take note of the options you select; should some of those go into the
global or per-jail make.conf ? Setting them as defaults can save you trouble in
future poudriere runs.

You can now build your package repository.

Running Poudriere
The poudriere bulk subcommand builds packages in bulk. Use -j to specify
the jail, -p to give the ports tree name, and -f to specify the package list file.
(Yes, those are the same flags as configuring a port; it’s like the poudriere
designers wanted to be consistent or something.)

poudriere bulk -j amd64-current -p head -f pkglist

Poudriere fires up the jail, mounts all the ports, copies the various con-
figuration files into the jail, decides what order to build stuff in, and starts
building. You’ll see the name of each port as it starts building.

Some of those port builds might run quite a while. Hit ctRL-T to get the
current status, or check the logs to see the current status.

At the end of the build, you’ll see the list of any ports that get built and a
list of ports that failed to build. Here are the results from an itty-bitty pkglist:

[00:04:56] ====>> Built ports: ports-mgmt/pkg devel/pkgconf security/libressl
[00:04:56] ====>> Failed ports: www/obhttpd:build

The ports pkg, pkgconf, and libressl built fine. They might not run, but
the ports collection could build and package them. The obhttpd package did
not build, however. If this package is critical, I’ll want to fix this problem
before letting my clients use this repository.

Let’s look at the problems first and then examine the repository.

Customizing Software with Ports 389

Problem Ports

After the list of ports that gets built, you’ll see a message pointing out where
to find the logs.

[00:04:56] ====>> Logs: /usr/local/poudriere/data/logs/bulk/amd64-current-
head/2018-10-10_15h05m43s

The logs go in a directory named after the jail and the ports tree, with
a subdirectory by date. If you don’t want to type out the date, there’s a con-
venient latest that takes you straight to the most recent log directory.

cd /usr/local/poudriere/data/logs/bulk/amd64-current-head/latest

You won’t find only logs here; you’ll find a website. If you configure your
web server to serve up /usr/local/poudriere/data, you can use a web browser
to check poudriere builds (as well as to serve repositories to clients). The
logs subdirectory here contains poudriere’s build logs for every port. If you
don’t want to sort through those, the logs/errors subdirectory contains only
the logs for the failed builds.

Now you need to do something terribly radical: read the error log.
Perhaps poudriere couldn’t fetch the distfile. Maybe the host ran out of
disk space. Perhaps something truly weird happened. Or, maybe, the port
is actually broken with the build options you chose. Not all ports are built
with all options all the time; it’s very easy for a port maintainer to miss
that a rarely used function is busted. Remember, though, that poudriere is
FreeBSD’s official port-building mechanism. If a port fails to build under
poudriere, it’s busted and you should consider filing a bug (see Chapter 24).

Package Repository

Find your completed packages under /usr/local/poudriere/data/packages.
Each combination of jail and ports tree gets its own subdirectory. I build
this set of packages on the jail amd64-current using the ports tree head, so
my new repository is in /usr/local/poudriere/data/packages/amd64-current-head.
You’ll find the catalogs as the various .txz files and the Latest subdirectory
for the most recent packages.

Congratulations. You have a private package repository. Now to get
your clients to use it.

Using the Private Repository
The easiest way to use a private repository is on the poudriere host itself.
Local repository configurations for pkg(8) go in /usr/local/etc/pkg/repos.
That directory doesn’t exist by default, so create it.

mkdir -p /usr/local/etc/pkg/repos

390 Chapter 16

Create a FreeBSD.conf file therein. Local repository configurations aug-
ment or override the system defaults—that’s built into UCL. We need to add
one setting to the default repository configuration in /etc/pkg/FreeBSD.conf.

FreeBSD: {
 enabled: no
}

This leaves the file /etc/pkg/FreeBSD.conf untouched but sets enabled to no
for the repository named FreeBSD. The default repository is no more.

Now create a separate configuration file for our custom repository. I’m
naming this repository amd64-current, after the jail.

amd64-current: {
 url: "file:///usr/local/poudriere/data/packages/amd64-current-head",
 enabled: yes,
}

Your host is now ready to use those packages. You’ll want to forcibly
reinstall all the current packages to stop using the FreeBSD repository’s
versions and use your local versions.

pkg install -fy

The pkg(8) program will download the repository catalog, but the
download will look a little different than usual.

--snip--
Updating amd64-current repository catalogue...
Fetching meta.txz: 100% 260 B 0.3kB/s 00:01
Fetching packagesite.txz: 100% 17 KiB 17.4kB/s 00:01
Processing entries: 100%
amd64-current repository update completed. 62 packages processed.
--snip--

Compared to the official repository catalog, this catalog is pretty tiny.
It extracts the catalog and metadata in one second. The last line shows that
this repository has only 62 packages. You’re using the new repository. Install
your custom packages!

Remote Custom Repositories

The whole point of a package repository is that you build packages once
and deploy them everywhere. You could use a read-only NFS export to
provide packages to your local machines, but the internet loves to abuse
publicly accessible NFS servers. The pkg.conf file defines the repository loca-
tion with a URL. While I used a file for the URL, there’s no reason this
repository can’t use a website instead. Install a web server on your package

Customizing Software with Ports 391

builder, and have it offer the contents of /usr/local/poudriere/data/packages to
your other servers. Then give the other hosts that should use that repo their
own repository configuration.

amd64-current: {
 url: "https://pkg.mwl.io/amd64-current-head",
 enabled: yes,
}

All our machines now get an identical set of customized ports. This
change gets my flunky Bert out of building ports on a dozen machines and
into polishing my car.

All Poudrieres, Large and Small
Poudriere performs pretty well by default but has a couple options that can
help on small and large systems.

Small Systems
If you have a resource-constrained host, you don’t want to let poudriere run
amok. Here’s a couple poudriere.conf options to restrain it.

Generally speaking, if you can build a port on a host, poudriere can
build that port. What you don’t want is for multiple simultaneous poudriere
runs to overwhelm the host. Poudriere normally runs the same number of
simultaneous processes as the number of processors in the host. Use the
PARALLEL_JOBS option to limit the number of parallel builds.

PARALLEL_JOBS=1

Other restrictions, like reducing the amount of memory a poudriere
build can use, are less useful than you might think. A piece of software
takes as much memory to build as it requires. Building LibreOffice with
only 1GB of RAM will not end well.

Remember that you can also globally deprioritize poudriere runs with
nice(1), as discussed in Chapter 21.

Large Systems
Poudriere can take advantage of beefy systems to accelerate builds. You
can’t speed up the disk, but you can take advantage of memory to use
tmpfs(5) for critical parts of the build. Set the USE_TMPFS option to use
memory for the working directory.

USE_TMPFS=yes

You can use tmpfs(5) for parts of the build beyond the working direc-
tory, but few of us have that much memory. Read the poudriere.conf.sample for
details.

392 Chapter 16

If you build many package repositories, investigate poudriere’s cache
(https://ccache.samba.org/) support. You’ll use about 5GB of disk space per
jail but save a whole bunch of time rebuilding packages.

Updating Poudriere
New ports get added all the time, with new options. Other software projects
continually release new versions, and the FreeBSD port is correspondingly
updated. You’ll want those new versions on your servers. If you build your
ports with poudriere, updating is pretty simple. You’ll need to update your
jail and your ports tree. Before updating either, though, make sure poudriere
.conf is set up to handle updates.

Poudriere has two options for handling dependency changes. You’ll want
to enable both. CHECK_CHANGED_DEPS tells poudriere not to trust earlier depen-
dency calculations and perform those checks again. This catches changes
in underlying Perl, Python, and so on. Similarly, CHECK_CHANGED_OPTIONS tells
poudriere to verify each port’s options. Setting this to verbose tells poudriere
to show you any changes.

CHECK_CHANGED_OPTIONS=verbose
CHECK_CHANGED_DEPS=yes

Now you can update your jails and the ports tree. Use the -u flag to
update the jail. Give the jail name with -j. Here, I update poudriere’s
amd-11-1 jail.

poudriere jail -j amd64-11-1 -u

For jails installed from official media, poudriere runs freebsd-update(8)
and applies any missing security patches. If you installed from source,
poudriere repeats the install process.

Similarly, update the ports tree with -u. Specify the name of the ports
tree with -p.

poudriere ports -p head -u

/usr /Por t s/uPdat ing

Before updating your ports, check /usr/ports/UPDATING for any special notes
that might affect your environment. An unexpected change in the default ver-
sion of Python or Perl can ruin your whole day.

Customizing Software with Ports 393

You’ll see poudriere use portsnap(8) to grab the latest updates. Now
you can build the new version of the package repository, exactly as you did
the first time.

poudriere bulk -j amd64-current -p head -f pkglist

Poudriere determines what needs updating and what must be rebuilt
and proceeds accordingly. Once the build is complete, your clients can
upgrade their packages from the repository.

More Poudriere
Poudriere has many more features than what I cover here. You can crypto-
graphically sign your packages with the PKG_REPO_SIGNING_KEY variable. Package
sets let you define different build options for different repositories. You want
to build an experimental package run with the latest Python? Look at pack-
age sets. You can blacklist ports so that they’re never built, even if called as a
dependency. See poudriere(8) for all kinds of nifty stuff.

Between ports and poudriere, you can now customize software any way
you need. If you really want to get into the nitty-gritty of the Ports Collection,
check out the FreeBSD Porter’s Handbook on https://www.freebsd.org/. The
rest of us will move on to some of FreeBSD’s advanced software features.

17
A d v A n c e d S o f t w A r e

M A n A g e M e n t

FreeBSD offers unique features that help
system administrators better meet users’

needs. Knowing how the system really works
helps you make better decisions. For example, while
multiple processors, multicore processors, and hard-
ware threads can all increase system performance,
they don’t always help as much as you might think. Knowing how different
types of multiprocessing affect different types of workloads tells you where
you can improve performance and where you can’t.

For your programs to start at boot and stop cleanly at shutdown, you
must be able to create and edit proper startup and shutdown scripts. While
some programs stop nicely when you just kill the operating system under
them, others (for example, databases) demand a gentler shutdown. Starting
and stopping system services cleanly is an excellent habit to develop, so we’ll
learn more about the FreeBSD startup and shutdown scripts.

396 Chapter 17

Under normal circumstances, you’ll never need to know how FreeBSD’s
linking and shared library support works, but we’ll discuss them anyway.
Why? Because normal circumstances are, oddly, quite rare in the computer
business.

Finally, FreeBSD can run Linux software with the Linux compatibility
layer, as well as software written for other hardware architectures.

Using Multiple Processors: SMP
If you have a desktop or server built in the last 10 years, it almost certainly
has multiple processors. Some of those processors are for dedicated pur-
poses, such as the graphics processor in your video card. Modern oper-
ating systems use symmetric multiprocessing (SMP), or multiple identical
general-purpose processors. Modern hardware includes many different
dedicated-purpose processors, such as the graphics card and server remote
management and so on, but the hardware presented to the operating sys-
tem has identical processors.

SMP systems have many advantages over single processors, and it’s not
just the obvious “more power!” If you think about it at the microscopic
level, in very small timeframes, a CPU can do only one thing at a time.
Every process on the computer competes for processor time. If the CPU is
performing a database query, it isn’t accepting the packet that the Ethernet
card is trying to deliver. Every fraction of a second kernel directs the CPU
to perform a context switch and work on another request. This happens so
often and so quickly that the computer appears to be doing many things at
once—much as a television picture appears to be moving when it’s really
just showing individual pictures one after the other very quickly.

My desktop has cwm providing window management, Firefox with eighty
bajillion tabs, and LibreOffice accepting my typing. There’s a whole bunch of
terminal windows attached to SSH sessions. Network interrupts are arriving;
the screen is displaying text; the MP3 player is streaming Nurse With Wound
to Stereohenge. The computer’s “seamless multitasking” only appears seam-
less to my feeble brain. In reality, the computer merely switches from one
task to another very quickly. One millisecond, it’s sending another sliver of
sound to my headphones, and the next, it’s updating text on the screen.

With multiple processors, your computer really can perform multiple
operations simultaneously. This is very useful—but system complexity
skyrockets.

Kernel Assumptions
To understand SMP and the problems associated with it, we must delve into
the kernel. All operating systems face the same challenges when supporting
SMP, and the theory here is applicable across a wide variety of platforms.
What follows is a gross simplification. Kernel design is a tricky subject, and
it’s almost impossible for any description to do it justice. Nevertheless, here’s
a rough stab at it.

Advanced Software Management 397

FreeBSD divides CPU utilization into time slices. A time slice is the
length of time one CPU spends doing one task. One process can use the
CPU either for a full-time slice or until there’s no more work for it to do, at
which point the next task may run. The kernel uses a priority-based system
to allocate time slices and to determine which programs may run in which
time slices. If a process is running, but a higher-priority process presents
itself, the kernel allows the first process to be interrupted, or preempted. This
is commonly referred to as preemptive multitasking.

Although the kernel is running, it isn’t a process. Any process has
certain data structures set up by the kernel, and the kernel manipulates
those data structures as it sees fit. You can consider the kernel a special
sort of process, one that behaves very differently from all other processes.
It can’t be interrupted by other programs—you can’t type pkill kernel and
reboot the system. Way back in the day, the kernel might have been called
the control process or monitor.

The kernel has special problems, not faced by other parts of the system.
Imagine that you have a program sending data over the network. The kernel
accepts data from the program and places it in a chunk of memory to be
handed to the network card. If the computer can do only one thing at a
time, nothing happens to that piece of memory or that network card until
the kernel gets back to that task. If you have multiple processors, however, the
computer can perform multiple tasks simultaneously. What if two different
CPUs, both working on kernel tasks, direct your network card to perform
different actions at the same time? The network card behaves much as you
do when you have your boss screaming in one ear and your spouse in the
other; nothing you do can satisfy either of them. What if one CPU allocates
memory for a network task, while the other CPU allocates that same memory
for a file system task? The kernel becomes confused, and the results will not
please you.

Unix-like kernels designed for a single processor declare that the kernel
is nonpreemptive and can’t be interrupted. This simplifies kernel manage-
ment because everything becomes completely deterministic: when a part of
the kernel allocates memory, it can count on that memory being unchanged
when it executes the next instruction. No other part of the kernel will alter
that chunk of memory. When the computer could do only one thing at a
time, this was a safe assumption. Start doing many things at once, however,
and this assumption blows apart.

SMP: The First Try
The first implementation of SMP support in FreeBSD was very simple
minded. Processes were scattered between the CPUs, achieving a rough
balance, and there was a lock on the kernel. Before a CPU would try to
run the kernel, it would check to see whether the lock was available. If the
lock was free, the CPU held the lock and ran the kernel. If the lock wasn’t
free, the CPU knew that the kernel was being run elsewhere and went on
to handle something else. This lock was called the Big Giant Lock (BGL), or

398 Chapter 17

later just Giant. Under this system, the kernel could know that data wouldn’t
change from under it. Essentially, Giant guaranteed that the kernel would
run on only one CPU, just as it always had.

This strategy worked kind of adequately for two CPUs. You could run a
medium-level database and a web server on a twin-CPU machine and feel
confident that the CPU wouldn’t be your bottleneck. If one CPU was busy
serving web pages, the other would be free to answer database queries. But
if you had an eight-CPU machine, you were in trouble; the system would
spend a lot of time just waiting for Giant to become available!

This simplistic SMP technique is neither efficient nor scalable. The stan-
dard textbooks on SMP rarely mention this method because it’s so clunky.
Some other SMP-handling methods are worse, however. For example, several
early versions of Microsoft’s server OS dedicated one processor to the user
interface and the other to everything else. This technique also rarely appears
in the textbooks, although it does help your mouse appear more responsive.

Today’s SMP
Once you have a lock on the kernel, though, you can divvy up that lock.
FreeBSD has fragmented Giant into many smaller locks, and now every part
of the kernel uses the smallest possible lock to perform its tasks. Initially, the
locks were implemented on core kernel infrastructure, such as the scheduler
(the part of the kernel that says which tasks may have which time slices), the
network stack, the disk I/O stack, and so on. This immediately improved
performance because while one CPU was scheduling tasks, the other could
be processing network traffic. Then, locks were pushed lower into the various
kernel components. Each part of the network stack developed its own lock,
then each part of the I/O subsystem, and so on—allowing the kernel to use
multiple processors to do multiple things simultaneously. These separate ker-
nel subprocesses are called threads.

Each type of locking has its own requirements. You’ll see references
to many different locks such as mutexes, sx locks, rw locks, spin mutexes,
semaphores, read-mostly locks, and more. Each has its own benefits and
drawbacks, and each must be carefully applied within the kernel.

Fine-grained locking is a lot harder than it sounds. Lock too finely, and
the kernel spends more time processing locks than pushing data. Lock too
coarsely, and the system wastes time waiting for locks to become available.
Locking sufficient for a 2-processor system stalls and chokes a 32-processor
system, and what works for the 32-core host is totally inadequate for the new
192-core systems. Lock adjustment and tuning has taken years, is still ongo-
ing, and will continue forever.

While every part of the kernel uses the smallest lock currently possible,
sometimes that lock is the Giant lock. Unplugging a USB device means grab-
bing Giant for a fraction of a second as the kernel says, “Hold everything! I’m
reconfiguring the hardware!” A few device drivers still use Giant, as do cer-
tain tricky parts of the virtual memory stack, the sysctl handlers, and so on.

Advanced Software Management 399

SMP Problems: Deadlocks and Lock Order Reversals

All of these kernel locks have complicated rules for their use, and they
interact with each other in myriad ways. The rules protect against unex-
pected lock interactions. Suppose that kernel thread A needs resources Y
and Z, kernel thread B also needs Y and Z, but B needs Z before it needs Y.
If A locks Y while B locks Z, then A winds up waiting for Z while B waits for
Y. Neither thread can proceed until the missing resource is freed. This dead-
lock (also called a deadly embrace) will destabilize the system, probably bring-
ing it down. Proper locking avoids this problem, among others.

You might see a console message warning of a lock order reversal, mean-
ing that locks have been applied out of order. While this kernel notice isn’t
always an omen of impending doom, it’s important to pay attention.

The WITNESS kernel option specifically watches for locking order and lock
ordering violations. This option is enabled by default on FreeBSD-current
(see Chapter 18), and if you report a problem with your system, the develop-
ment team might ask you to enable it. The WITNESS option makes the kernel
inspect every action it takes for locking order violations, which reduces system
performance. You can enable and disable WITNESS with the debug.witness.watch
sysctl. Running WITNESS, reading the messages, and acting on them is an excel-
lent way to help improve FreeBSD, however.

Handling Lock Order Reversals

When you get one of these lock order reversal (LOR) messages, copy the
LOR message in its entirety. In addition to appearing on the console, such
messages are logged to /var/log/messages for your convenience. Once you
have the lock order message, search the FreeBSD-current mailing list for
the first few lines of your LOR message to see whether someone has already
filed it. If you find your LOR on the mailing lists, read the message and
take the recommended action. There’s no need to post a “me too” message
on the mailing list unless a developer recently and specifically requested
notification of further LORs of that type.

If you have a new LOR, congratulations! Discovering a new LOR isn’t as
satisfying as discovering a new insect species—you don’t get to name your
LOR, for one thing—but it does help the FreeBSD Project. Email your report
to the FreeBSD-current mailing list. Provide full details on your system, espe-
cially the work being performed at the time the LOR appeared. You might be
asked to file a bug report, as discussed in Chapter 24.

Processors and SMP
You’ll see three different types of multiprocessor systems: multiple cores,
multiple packages, and hardware threads. You need to understand the dif-
ferences among them, as the different processor types have a direct impact
on system and application behavior.

The basic unit in processors is the CPU core. Each CPU core consists of a
set of resources like execution units, registers, cache, and so on. Once upon
a time, a core was the same thing as a processor.

400 Chapter 17

A CPU package is the chip socketed or soldered to your mainboard. It’s
what many people think of as “a CPU” or “a processor.” That expensive part
you can accidentally crush underfoot? That’s a package. Each package con-
tains one or more cores. Prior to SMP, one package had only one core in it.
These days, most packages have at least two cores, and the upper number
keeps increasing. CPU cores within the same package can communicate
with each other relatively quickly.

Some hosts have more than one package. Multiple packages give you
multiple groups of multiple cores, giving you the chance for even more
parallelism. Communication between packages is slower than communica-
tion between cores on the same package. Also, each package usually has
its own memory controller. CPU cores in one package will take longer to
retrieve data in memory attached to a different package. Yes, this means a
16-core package will perform better than two 8-core packages. In reality,
though, very little software is so heavily threaded that it can take advantage
of the difference.

Lastly some CPU cores can try to make more efficient use of their exe-
cution resources by being able to run more than one thread at a time. This
is referred to as hardware threading, Simultaneous Multi-Threading (SMT) or (if
you’re Intel) HyperThreading. The additional threads are sometimes called
virtual processors or virtual cores. The virtual processor isn’t a full-fledged
CPU, however; for example, it’s available only when the first CPU is waiting
for something. FreeBSD’s default scheduler, sched_ule(4), is aware of which
cores are real and which are virtual, and schedules work appropriately.

Hardware threading presents a variety of potential security problems.
A task running on one virtual processor can capture data such as crypto-
graphic keys from a task running on another virtual processor using a
variety of subtle timing attacks. It’s not a script-kiddie-friendly attack, but
if you don’t trust your users, you can disable hardware threads by setting
the boot-time tunable machdep.hyperthreading_allowed to 0.

Using SMP

Remember that multiple processors don’t necessarily make the system faster.
One processor can handle a certain number of operations per second. A
second processor just means that the computer can handle twice as many
operations per second, but those operations aren’t necessarily any faster.

Think of the number of CPUs as the lanes on a road. If you have one
lane, you can move one car at a time past any one spot. If you have four
lanes, you can move four cars past that spot. Although the four-lane road
won’t allow those cars to reach their destination more quickly, there’ll be a
lot more of them arriving at any one time. If you think this doesn’t make a
difference, contemplate what would happen if someone replaced your local
freeway with a one-lane road. CPU bandwidth is important.

While one CPU can do only one thing at a time, one process can run
on only one CPU at a time. Many programs can’t perform work on mul-
tiple processors simultaneously. Threaded programs are an exception, as
we’ll see later in this chapter. Some programs work around this limitation

Advanced Software Management 401

by simultaneously running multiple processes and letting the operating
system scatter them between processors as needed. The popular Apache
web server has done this for many years. Threaded programs are specifi-
cally designed to work with multiple processors without spawning mul-
tiple processes. Many threaded programs simply create a whole bunch of
threads to process data and scatter those threads across CPUs, which is a
simple, if not always effective, way to handle parallelism. Other programs
don’t handle multiple CPUs at all.

If you find that one of your CPUs is 100 percent busy while the others
are mostly idle, you’re running a program that doesn’t handle multiple
CPUs in any way. Chapter 21 dives into performance issues, but not much
can be done to help such a program.

SMP and make(1)

The make(1) program, which is used to build software, can start multiple
processes. If your program is cleanly written, you can use multiple processes
to build it. This doesn’t help for small programs, but when you’re building
a large program, such as FreeBSD itself (see Chapter 18) or LibreOffice,
using multiple processors can really accelerate the work. Use make(1)’s -j
flag to tell the system how many processes to start simultaneously. A good
choice is the number of processors or cores in the system plus one. For
example, on a dual-processor system with two cores on each processor, I
would run five processes to build a program.

make -j5 all install clean

Some programmers don’t design their Makefiles correctly, so their pro-
grams can’t handle being built with the -j flag. If a build gives you trouble,
stop using -j and try again—or, better still, figure out the problem and file
a bug report with the author.

Threads, Threads, and More Threads
One word you’ll hear in various contexts is thread. Some CPUs support
HyperThreading. Some processes have threads. Some parts of the kernel
run as threads. My pants have many many threads (although some have
fewer than my wife thinks necessary for those pants to be worn in public).
What are all these threads, and what do they mean?

In most contexts, a thread is a lightweight process. Remember, a process
is a task on the system, a running program. Processes have their own pro-
cess ID in the system and can be started, stopped, and generally managed
by the user. Threads are pieces of a process, but they’re managed by the
process and can’t be directly addressed by the user. A process can do only
one thing at a time, but individual threads can act independently. If you
have a multiprocessor system, one process can have threads running on
multiple processors simultaneously.

402 Chapter 17

Any threaded program needs to use a threading library that tells the appli-
cation how to use threads on that operating system by interacting with the
kernel. Threading libraries implement threading in different ways, so using
particular libraries can impact application performance.

Similarly, a kernel thread is a subprocess within the kernel. FreeBSD
has kernel threads that handle I/O, network, and so on. Each thread has its
own functions, tasks, and locking. The threading within the kernel doesn’t
use any userland libraries.

Hardware threads are virtual CPU cores, as discussed in “"Using
Multiple Processors: SMP" on page 396. While you need to understand
what hardware is and how it impacts your system, hardware threads aren’t
really part of threading.

Startup and Shutdown Scripts
The service(8) command is a frontend to the system startup and shutdown
scripts. These scripts are known as rc scripts after /etc/rc, the script that man-
ages the multiuser boot and shutdown process. While the main rc scripts
are in /etc/rc.d, scripts in other locations manage add-on software. Ports
and packages install startup scripts, but if you install your own software,
you’ll need to create your own rc script. If you’ve never used shell scripts
before, read carefully. Shell scripting isn’t hard, and the best way to learn
is by reading examples and making your own variations on those examples.
Additionally, changing an existing package’s startup or shutdown process
requires understanding how the startup scripts function.

During boot and shutdown, FreeBSD checks /usr/local/etc/rc.d for addi-
tional shell scripts to be integrated into the startup/shutdown process. (You
can define additional directories with the local_startup rc.conf variable, but
for now we’ll assume that you have only the default directory.) The startup
process specifically looks for executable shell scripts and assumes that any
script it finds is a startup script. It executes that script with an argument of
start. During shutdown, FreeBSD runs those same commands with an argu-
ment of stop. The scripts are expected to read those arguments and take
appropriate actions.

rc Script Ordering
For decades, Unix-like operating system encoded service startup order in
the startup scripts. That got really annoying, really quickly. Many, but not
all, Unixes have moved on from this. Similarly, FreeBSD’s rc scripts arrange
themselves in order. Each rc script identifies what resources it needs before it
can start. The rc system uses that information to sort the scripts into order.
This is performed by rcorder(8) at boot and at shutdown, but you can do this
by hand at any time to see how it works. Just give rcorder(8) the paths to your
startup scripts as arguments.

rcorder /etc/rc.d/* /usr/local/etc/rc.d/*
/etc/rc.d/growfs

Advanced Software Management 403

/etc/rc.d/sysctl
/etc/rc.d/hostid
/etc/rc.d/zvol
/etc/rc.d/dumpon
/etc/rc.d/ddb
/etc/rc.d/geli
/etc/rc.d/gbde
--snip--

The rcorder(8) program sorts all the scripts in /etc/rc.d and /usr/local/
etc/rc.d into the order used at system boot, using markers within the scripts
themselves. If your rc scripts have any ordering errors, such as deadlocked
scripts, those errors appear at the beginning of your rcorder(8) output.

A Typical rc Script
The rc script system is pretty simple—while scripts can get complicated, the
complexity comes from the program the script runs, not the rc system. The
script that starts the NFS server has a whole bunch of dependencies and
requirements. The script for a simpler daemon, like timed(8), illuminates
the rc system.

#!/bin/sh

u # PROVIDE: timed
v # REQUIRE: DAEMON
w # BEFORE: LOGIN
x # KEYWORD: nojail shutdown

y . /etc/rc.subr

z name="timed"
{ desc="Time server daemon"
| rcvar="timed_enable"
} command="/usr/sbin/${name}"

~ load_rc_config $name
run_rc_command "$1"

The PROVIDE label u tells rcorder(8) the official name of this script. This
script is called timed, after timed(8).

The REQUIRE label v lists other scripts that must run before this script
runs. Scripts that need timed to run before they can start list timed in
REQUIRE. This script can run any time after the DAEMON script has been run.

The BEFORE label w lets you specify scripts that should run after this one.
This script should run before the LOGIN script. Both /etc/rc.d/LOGIN and /etc/
rc.d/timed specify that they have to run after DAEMON, but the BEFORE label lets
you set additional ordering requirements.

The KEYWORD command x lets the startup system select only certain
startup scripts. The timed(8) script includes nojail and shutdown. Jails don’t
run this script, even if enabled. This script gets run at system shutdown.

404 Chapter 17

The /etc/rc.subr file y contains the rc script infrastructure. Every rc
script must include it.

While the script has a name, the program run by the script might have
a separate name z. Most often, though, an rc script officially called timed
will run the program timed.

The description field { provides a brief description of the service the
script provides, exactly as you’d expect.

The rcvar statement | lists the rc.conf variable that toggles this script.
The command } identifies exactly which command this script should

run—after all, you might have multiple commands of the same name on
your system, just in different directories.

The last two actions the script takes are to load ~ the configuration for
this service from /etc/rc.conf and then actually run the command.

While this might look intimidating, it’s not really that hard in practice.
Start your customized rc script by copying an existing one. Set the com-
mand name to that of your command and change the path appropriately.
Decide what the script must have run before it: Do you need the network to
be running? Do you need particular daemons to be started already, or do
you need to run your program before certain daemons? If you really don’t
know, have your script run at the very end by using a REQUIRE statement with
the name of the last script run on your system. By looking through other
rc scripts that provide similar functions, you’ll learn how to do almost any-
thing in a startup script.

With this simple script, you can enable, disable, and configure your
program by adding information to /etc/rc.conf. For example, if your cus-
tom daemon is named tracker, the startup script will look for variables
tracker_enable and tracker_flags in /etc/rc.conf and use them each and
every time you run the startup script.

Special rc Script Providers
You might have noticed the services named DAEMON in our example and
thought, “That’s odd. I don’t know of any system processes called DAEMON.”
That’s because it’s not a process. The rc system has a few special providers
that define major points in the boot process. Use these to make writing rc
scripts easier.

The FILESYSTEMS provider guarantees you that all local filesystems
are mounted as defined in /etc/fstab.

The NETWORKING provider appears after all network functions are
configured. This includes setting IP addresses on network interfaces, PF
configuration, and so on.

The SERVERS provider means that the system has enough basic func-
tionality to support basic servers, such as named(8) and the NFS support
programs. Remote filesystems aren’t mounted yet.

The DAEMON provider ensures all local and remote filesystems are
mounted, including NFS and CIFS, and that more advanced network func-
tions, such as DNS, are operational.

Advanced Software Management 405

At LOGIN, all network system services are running and FreeBSD is
beginning to start up services to support logins via the console, FTP dae-
mons, SSH, and so forth.

By using one of these providers in a REQUIRE statement in your custom rc
script, you can specify roughly when you want your custom program to run
without going too far into nitty-gritty details.

Vendor Startup/Shutdown Scripts
Perhaps you’re installing a complicated piece of software, and the vendor
doesn’t support FreeBSD’s rc system. This isn’t a problem. Most vendor-
supplied scripts expect to get a single argument, such as start or stop.
Remember that at boot time, FreeBSD runs each rc script with an argu-
ment of start, and at system shutdown, it runs the scripts with an argument
of stop. By adding PROVIDE and REQUIRE statements as comments to this ven-
dor script and confirming that it accepts those arguments, you can make
the script run at the proper time in the startup and shutdown process.

Use of the rc system features in management scripts isn’t mandatory. At
the tail end of the boot process, FreeBSD runs /etc/rc.local. Add your local
commands there. You can’t use service(8) to manage anything in rc.local,
however.

Debugging Custom rc Scripts
Local scripts, such as those installed by the Ports Collection, are run by
/etc/rc.d/localpkg. If your custom script is causing problems, you might try
running the localpkg script with debugging to see how your script is inter-
acting with the rc system. The best way to do this is to use debugging.

/bin/sh -x /etc/rc.d/localpkg start

This attempts to start every local daemon on your server again, which
might not be desirable on a production system. Try it on a test system first.
Also, remember that the -x debugging flag isn’t passed on to the child scripts;
you’re debugging the system startup script /etc/rc.d/localpkg itself, not the local
scripts. Run your script with the -x flag to debug it.

Managing Shared Libraries
A shared library is a chunk of compiled code that provides common func-
tions to other compiled code. Shared libraries are designed to be reused
by as many different programs as possible. For example, many programs
must generate hashes, or cryptographic checksums, on pieces of data. If
every program had to include its own hashing code, programs would be
harder to write and more unpleasant to maintain. What’s more, programs
would have interoperability problems if they implemented hashes slightly
differently, and program authors would need to learn an awful lot about
hashes to use them. By using a shared library (in this example, libcrypt),

406 Chapter 17

the program can access hash generation functions without any compatibil-
ity and maintenance problems. This reduces the average program size, both
on disk and in memory, at a cost in complexity.

Shared Library Versions and Files
Shared libraries have a human-friendly name, a version number, and an asso-
ciated file. The human-friendly name is usually (but not always) similar to
the associated file. For example, version 1 of the shared library called libjail is
in the file /lib/libjail.so.1. On the other hand, version 11 of the main Kerberos
library is in the file /usr/lib/libkrb5.so.11. Version numbering starts at 0.

Historically, when changes to the library made it incompatible with
earlier versions of the library, the version number was incremented. For
example, libjail.so.0 became libjail.so.1. The FreeBSD team doesn’t bump
these versions except at the beginning of a release cycle (see Chapter 18).
Each library also has a symlink for the library name without a version,
pointing to the latest version of the library. For example, you’ll find that
/usr/lib/libwres.so is actually a symlink pointing to /usr/lib/libwres.so.10. This
makes compiling software much easier, as the software has to look only for
the general library file rather than a specific version of that library.

FreeBSD’s main libraries support symbol versioning, which lets shared
libraries support multiple programming interfaces. With symbol versioning,
a shared library provides every program with the version of the library the
program requires. If you have a program that requires version 2 of a library,
version 3 will support the functions just as well.

Just because FreeBSD supports symbol versioning doesn’t mean that all
the software in the Ports Collection supports it. You must be alert for library
version problems.

Attaching Shared Libraries to Programs
So, how does a program get the shared libraries it needs? FreeBSD uses
ldconfig(8) and rtld(1) to provide shared libraries as needed but also offers
a few human-friendly tools for you to adjust and manage shared library
handling.

The rtld(1) is perhaps the simplest program to understand, at least
from a sysadmin’s perspective. Whenever a program starts, rtld(8) checks
to see what shared libraries the program needs. The rtld(8) program
searches the library directories to see whether those libraries are available
and then links the libraries with the program so everything works. You can’t
do very much at all with rtld(1) directly, but it provides the vital glue that
holds shared libraries together.

The Library Directory List: ldconfig(8)

Instead of searching the entire hard drive for anything that looks like a
shared library every time any dynamically linked program is run, the system
maintains a list of shared library directories with ldconfig(8). (Older versions
of FreeBSD built a cache of actual libraries on a system, but modern versions

Advanced Software Management 407

just keep a list of directories to check for shared libraries.) If a program
can’t find shared libraries that you know are on your system, this means
ldconfig(8) doesn’t know about the directory where those shared libraries
live.1 To see the libraries currently found by ldconfig(8), run ldconfig -r.

ldconfig -r
/var/run/ld-elf.so.hints:
 search directories: /lib:/usr/lib:/usr/lib/compat:/usr/local/lib:/usr/
local/lib/perl5/5.24/mach/CORE
 0:-lcxxrt.1 => /lib/libcxxrt.so.1
 1:-lalias.7 => /lib/libalias.so.7
 2:-lrss.1 => /lib/librss.so.1
 3:-lkiconv.4 => /lib/libkiconv.so.4
 4:-lpjdlog.0 => /lib/libpjdlog.so.0
--snip--

With the -r flag, ldconfig(8) lists every shared library in the shared
library directories. We first see the list of directories searched and then the
individual libraries in those directories. My main mail server has 170 shared
libraries; my main web server, 244; my desktop, 531.

If a program dies at startup with a complaint that it can’t find a shared
library, that library won’t be on this list. Your problem then amounts to
installing the desired library into a shared library directory or adding the
library directory to the list of directories searched. You could just copy every
shared library you need to /usr/lib, but this makes system management very
difficult—much like with a filing cabinet where everything is filed under
P for paper. Adding directories to the shared library list is a better idea in
the medium to long term.

Adding Library Directories to the Search List

If you’ve added a new directory of shared libraries, you must add it to the list
ldconfig(8) searches. Check these ldconfig(8) entries in /etc/defaults/rc.conf:

ldconfig_paths="/usr/lib/compat /usr/local/lib /usr/local/lib/compat/pkg"
ldconfig_local_dirs="/usr/local/libdata/ldconfig"

The ldconfig_paths variable lists common locations for libraries. While
out-of-the-box FreeBSD doesn’t have the directory /usr/local/lib, most systems
grow one shortly after install. Similarly, libraries for compatibility with older
versions of FreeBSD go in /usr/lib/compat. The location for storing old ver-
sions of libraries installed by packages is /usr/local/lib/compat/pkg. The /lib
and /usr/lib directories get searched by default, but the paths in this variable
are common locations for shared libraries.

Ports and packages use the ldconfig_local_dirs variable to get their
shared libraries into the search list without just dumping everything into

1. Or, perhaps, the libraries you believe are on your system aren’t the same as the libraries that
actually are on your system. Never rule out your own failure until you conclusively identify the
problem!

408 Chapter 17

/usr/local/lib. Packages can install a file in this directory. The file is named
after the package and contains a list of directories with the libraries
installed by the package. The ldconfig program checks these directories
for files, reads the paths in the files, and treats those as additional library
paths. For example, the Perl 5 package installs shared libraries in /usr/
local/lib/perl5/5.24/mach/CORE. The port also installs a file called /usr/
local/libdata/ldconfig/perl5, containing only a single line with this path in it.
The ldconfig startup script adds the directories in these files to its list of
places to check for shared libraries.

ldconfig(8) and Weird Libraries

Shared libraries have a couple of edge cases that you should understand
and many more that you really don’t have to worry about. These include
libraries for different binary types and libraries for other architectures.

FreeBSD supports two different formats of binaries, a.out and ELF.
System administrators don’t need to know the details of these binary types,
but you should know that ELF binaries are the modern standard and became
FreeBSD’s standard in version 3.0, back in 1998. Older versions of FreeBSD
used a.out. Programs compiled as one type can’t use shared libraries of the
other type. While a.out binaries have largely vanished, the cost of supporting
them is so low that this support has never been removed. ldconfig(8) main-
tains separate directory lists for a.out and ELF binaries, as you can see from
the output of /etc/rc.d/ldconfig. You’ll find separate configuration options for
ldconfig(8) with a.out libraries in rc.conf. It’s barely conceivable that you’ll
need an a.out program.

Another odd case is when you’re running 32-bit binaries on a 64-bit
FreeBSD install. This is most common when you’re running the amd64
install and want to use a program from an older version of FreeBSD. 64-bit

/uSr /loc A l /l ib v S. Pe r-Por t l ibr A ry dir ec tor ie S

Isn’t /usr/local/lib specifically for libraries installed by ports and packages?
Why not just put all your shared libraries into that directory? Most ports do
exactly that, but sometimes having a separate directory makes maintenance
simpler. For example, I have Python 2.7 installed on my laptop, and /usr/
local/lib/python27 includes 647 files! Dumping all those into /usr/local/lib
would overwhelm my non-Python libraries and make it harder for me to find
the files installed by ports with only one or two shared libraries.

To get your directory of shared libraries into the search list, either add
it to the ldconfig_paths in /etc/rc.conf or create a file listing your directory
in /usr/local/libdata/ldconfig. Either works. Once you add the directory, the
libraries in that directory are immediately available.

Advanced Software Management 409

binaries cannot use 32-bit libraries, so ldconfig(8) keeps a separate direc-
tory list for them. You’ll find options to configure those directories in rc.conf
as well. Don’t mix your 32-bit and 64-bit libraries!

A few hardware platforms, such as ARM, have special versions of librar-
ies for soft floating-point operations. You’ll find rc.conf options for those as
well, pointing to a third set of directories.

In short, don’t mix unusual libraries with the standard libraries. The
results will confuse FreeBSD, which will in turn upset you.

LD_LIBRARY_PATH and LD_PRELOAD
While FreeBSD’s built-in shared library configuration system works well
if you’re the sysadmin, it won’t work if you’re just a lowly user without root
access.2 Also, if you have your own personal shared libraries, you probably
don’t want them to be globally available. Sysadmins certainly won’t want to
take the risk of production programs linking against random user-owned
libraries! Here’s where LD_LIBRARY_PATH comes in.

Every time rtld(1) runs, it checks the environment variable LD_LIBRARY_PATH.
If this variable has directories in it, it checks these directories for shared
libraries. Any libraries in these directories are included as options for the
program. You can specify any number of directories in LD_LIBRARY_PATH. For
example, if I want to do some testing and use libraries in /home/mwlucas/lib
and /tmp/testlibs for my next run of a program, I’d just set the variable like this:

setenv LD_LIBRARY_PATH /home/mwlucas/lib:/tmp/testlibs

You can set this automatically at login by entering the proper command
in .cshrc or .login.

Similarly, the LD_PRELOAD environment variable lets you load a particular
library first. You have test your custom libc by giving the full path to it in
LD_PRELOAD. When rtld(1) runs, it takes the library from LD_PRELOAD and
ignores later libraries that offer the same symbols.

2. While most readers of this book will be sysadmins, you can tell your users to buy this book
and read this section. They won’t, but maybe they’ll shut up and leave you alone.

l d_ e n v ironMe n t vA r i A bl e S A nd Secur i t y

Using LD_LIBRARY_PATH or LD_PRELOAD is not secure. If you point this variable
to an overly acces sible directory, your program might link against whatever
anyone put in there. The LD_LIBRARY_PATH variable overrides the shared library
directory list, so if someone can put arbitrary files in your library directory,
they can take over your program. For this reason, setuid and setgid programs
ignore these variables.

410 Chapter 17

What a Program Wants
Lastly, there’s the question of what libraries a program requires to run
correctly. Get this information with ldd(1). For example, to discover what
libraries Emacs needs, enter this command:

ldd /usr/local/bin/emacs
/usr/local/bin/emacs:
 libtiff.so.5 => /usr/local/lib/libtiff.so.5 (0x800a78000)
 libjpeg.so.8 => /usr/local/lib/libjpeg.so.8 (0x800cf1000)
 libpng16.so.16 => /usr/local/lib/libpng16.so.16 (0x800f63000)
 libgif.so.7 => /usr/local/lib/libgif.so.7 (0x80119d000)
 libXpm.so.4 => /usr/local/lib/libXpm.so.4 (0x8013a6000)
 libgtk-3.so.0 => /usr/local/lib/libgtk-3.so.0 (0x801600000)
--snip--

This output tells us the names of the shared libraries Emacs requires and
the locations of the files that contain those libraries. If your program can’t
find a necessary library, ldd(1) tells you so. The program itself announces
the name of the first missing shared library when you try to run it, but ldd(1)
gives you the complete list so that you can use a search engine to find all miss-
ing libraries.

Between ldconfig(8) and ldd(1), you should be fully prepared to man-
age shared libraries on your FreeBSD system.

Remapping Shared Libraries
Occasionally, you’ll find a piece of software that you want to run with par-
ticular shared libraries not used by the rest of the system. For example,
FreeBSD’s standard C library is libc. You could have a second copy of libc
with special functions provided just for a particular program, and you could
make only that program use the special libc while using the standard libc
for everything else. FreeBSD allows you to change any shared library any
application gets. This sounds weird, but it’s terribly useful in all sorts of
edge cases. Developers use this feature to test code on a small scale before
pushing it out to their whole system. Use /etc/libmap.conf and files in /usr/
local/etc/libmap.d/ to tell rtld(1) to lie to client programs.

While libmap.conf entries are useful for developing software, you can also
use them to globally replace libraries. Some video card drivers installed via
package require you use their driver rather than certain system libraries. A
few Nvidia drivers want to provide libGL graphics functions. Don’t overwrite
the libGL package that everything depends on: instead, remap that library.
You can configure library substitution for the whole system, for individual
program names, or for the program at a specific full path.

A libmap file (either libmap.conf or a file in /usr/local/etc/libmap.d/) has
two columns. The first column is the name of the shared library a program
requests; the second is the shared library to provide instead. All changes
take place the next time the program is executed; no reboot or daemon

Advanced Software Management 411

restart is required. For example, here we tell the system, whenever any pro-
gram requests libGL, to offer it the Nvidia version of the library instead.
These global overrides must appear first in libmap.conf :

libGL.so libGL-NVIDIA.so
libGL.so.1 libGL-NVIDIA.so.1

“May I have libGL.so.1?”
“Certainly, here’s libGL-NVIDIA.so.1.”
Globally remapping libraries is a rather bold step that might get you

talked about by other sysadmins, but remapping libraries on a program-by-
program basis is much less ambitious and more likely to solve more prob-
lems than it creates. Simply specify the desired program in square brackets
before the remapping statements. If you specify the program by its full path,
the remap will work only if you call the program by its full path. If you give
only the name, the remap will work whenever you run any program of that
name. For example, here we remap emacs(1) so that it uses Nvidia’s library
instead of the system library when called by its full path:

[/usr/local/bin/emacs]
libGL.so libGL-NVIDIA.so
libGL.so.1 libGL-NVIDIA.so.1

How can you prove this worked? Well, check ldd(1):

ldd /usr/local/bin/emacs | grep libGL
 libGL.so.1 => /usr/local/lib/libGL-NVIDIA.so.1 (0x80ad60000)

You can see that when /usr/local/bin/emacs requests libGL.so.1, rtld(1)
attaches it to libGL-NVIDIA.so.1 instead. We specified the full path to the
Emacs binary, however, so we need to call the program by its full path. Try
to use ldd(1) on Emacs without calling it by its full path:

cd /usr/local/bin
ldd emacs | grep libGL
 libGL.so.1 => /usr/local/lib/libGL.so.1 (0x0x8056fa000)

By going to /usr/local/bin and running ldd(1) directly on Emacs without
having to specify the full path, rtld doesn’t see the full path to the emacs(1)
binary. /etc/libmap.conf says to use Nvidia’s library only for the full path
of /usr/local/bin/emacs. When plain naked emacs requests libGL.so.1, it gets
what it asked for.

If you want to have a program use the alternate library no matter
whether it’s called by full path or base name, just give the program name
in square brackets rather than the full name:

[emacs]
libGL.so libGL-NVIDIA.so
libGL.so.1 libGL-NVIDIA.so.1

412 Chapter 17

Similarly, you can choose an alternate library for all of the programs in
a directory by listing the directory name followed by a trailing slash. In this
/usr/local/etc/libmap.d/oracle file, we force all programs in a directory to use
an alternate library:

[/opt/oracle/bin/]
libc.so.7 libc-special.so.2

Using libmap.conf lets you arbitrarily remap shared libraries. Developers
use this feature to test code. Ports use this to override libraries for certain
programs. You’ll find a use for it too.

Running Software from the Wrong OS
Traditional software is written for a particular OS and runs only on that
OS. Many people built healthy businesses changing software so that it
would run on another system, a process called porting. As an administra-
tor, you have a few different ways to use software written for a platform
other than FreeBSD. The most effective is to recompile the source code to
run natively on FreeBSD. If this isn’t possible, you can run nonnative soft-
ware under an emulator, such as Wine, or by reimplementing the applica-
tion binary interface (ABI) of the software’s native platform.

Recompilation
Many FreeBSD packages are actually ports of software originally designed
for other platforms. (That’s why it’s called the Ports Collection.) Software
written for Linux, Solaris, or other Unix-like operating systems can fre-
quently be recompiled from source code with little or no modification and
run flawlessly on FreeBSD. By simply taking the source code and building it
on a FreeBSD machine, you can run foreign software natively on FreeBSD.

Recompiling works best when the platforms are similar. Unix-like
platforms should be fairly similar, no? FreeBSD and Linux, for example,
provide many similar system functions; both are built on the standard
C functions, both use similar tools, both use the GCC compiler, and so
on. Over the years, though, the various Unix-like operating systems have
diverged. Each version of Unix has implemented new features, new librar-
ies, and new functions, and if a piece of software requires those functions,
it won’t build on other platforms. The POSIX standard was introduced,
in part, to alleviate this problem. POSIX defines the minimal acceptable
Unix and Unix-like operating systems. Software written using only POSIX-
compliant system calls and libraries should be immediately portable to any
other POSIX-compliant operating system, and most Unix vendors comply
with POSIX. The problem is ensuring that developers comply with POSIX.
Many open source developers care only about having their software run
on their preferred platform. Much Linux-specific software is not only not

Advanced Software Management 413

POSIX-compliant but also contains a bunch of unique functions commonly
called Linuxisms. And POSIX-only code doesn’t take advantage of any spe-
cial features offered by the operating system.

In all fairness, FreeBSD also has FreeBSDisms, such as the hyper-
efficient data-reading system call kqueue(2). Other Unix-like operating
systems use select(2) and poll(2) instead or implement their own system
calls. Application developers ask themselves whether they should use
kqueue(2), which would make their software blindingly fast on FreeBSD
but useless everywhere else, or they should use select(2) and poll(2) to
allow their software to work everywhere, albeit more slowly. The developer
can invest more time and support kqueue(2), select(2), poll(2), and any
other OS-specific variant equally, but while this pleases users, it rather sucks
from the developer’s perspective.

FreeBSD takes a middle road. If a piece of software can be recompiled
to run properly on FreeBSD, the ports team generally makes it happen.
If the software needs minor patches, the ports team includes the patches
with the port and sends them to the software developer as well. Most soft-
ware developers gladly accept patches that would allow them to support
another operating system. Even though they might not have that OS avail-
able to test, or they might not be familiar with the OS, a decent-looking
patch from a reputable source is usually accepted.

Emulation
If software would require extensive redesign to work on FreeBSD, or if the
source code is simply unavailable, we can try emulation. An emulator trans-
lates system and library calls for one operating system into the equivalent
calls provided by the local operating system, so programs running under
the emulator think they’re running on their native system. Translating all
these calls creates additional system overhead, however, which impacts the
program’s speed and performance.

FreeBSD supports a wide variety of emulators, most of which are in the
Ports Collection under /usr/ports/emulators. In most cases, emulators are
useful for education or entertainment. If you have an old Commodore 64
game that you’ve had an itch to play again, install /usr/ports/emulators/frodo.
(Be warned: Mounting that C64 floppy on a modern FreeBSD system will
teach you more about disks than humanity was meant to know.) There’s a
Nintendo GameCube emulator in /usr/ports/emulators/dolphin-emu, a PDP-11
emulator in /usr/ports/emulators/simh, and so on.

Emulators, though way cool, aren’t really useful for servers, so we won’t
cover them in any depth.

ABI Reimplementation
In addition to recompiling and emulating, the final option for running for-
eign programs is the one FreeBSD is best known for: application binary interface
(ABI) reimplementation. The ABI is the part of the kernel that provides services
to programs, including everything from managing sound cards to reading
files to printing on the screen to starting other programs. As far as programs

414 Chapter 17

are concerned, the ABI is the operating system. By completely implementing
the ABI of a different operating system on your native operating system and
providing the userland libraries used by that operating system, you can run
nonnative programs as if they were on the native platform.

While ABI reimplementation is frequently referred to as emulation, it
isn’t. When implementing ABIs, FreeBSD isn’t emulating the system calls but
rather providing native implementations for the application. No program
runs to translate the system calls to their FreeBSD equivalents, and there’s no
effort to translate userland libraries into FreeBSD ones. By the same token, it
would be incorrect to say, “FreeBSD implements Linux.” When this technique
was created, there was no one word to describe it, and even today there isn’t
really a good description. You can say that FreeBSD implements the Linux
system call interface and includes support for directing a binary to the appro-
priate system call interface, but that’s quite a mouthful. You’ll most often
hear it referred to as a mode, as in “Linux mode.”

The problem with ABI reimplementation is overlap. Many operating
systems include system calls with generic names, such as read, write, and so
on. FreeBSD’s read(2) system call behaves very differently from Microsoft’s
read() system call. When a program uses the read() call, how can FreeBSD
know which version it wants? You can give your system calls different names,
but then you’re violating POSIX and confusing the program. FreeBSD works
around this by providing multiple ABIs and controlling which ABI a program
uses through branding.

Binary Branding
Operating systems generally have a system function that executes pro-
grams. When the kernel sends a program to this execution engine, it
runs the program.

Decades ago, the BSD (Unix at the time) program execution system call
was changed to include a special check for programs that began with #!/bin/
sh and to run them with the system shell instead of the execution engine.
BSD took this idea to its logical extreme: its execution engine includes a list
of different binary types. Each program’s binary type directs it to the correct
ABI. Thus, a FreeBSD system can implement multiple ABIs, keep them sepa-
rate, and support programs from a variety of different operating systems.

The nifty thing about this system is that there’s minuscule overhead. As
FreeBSD must decide how to run the program anyway, why not have it decide
what ABI to use? After all, binaries for different operating systems all have
slightly different characteristics, which FreeBSD can use to identify them.
FreeBSD just makes this process transparent to the end user. A binary’s iden-
tification is called its branding. FreeBSD binaries are branded FreeBSD, while
binaries from other operating systems are branded appropriately.

Supported ABIs
As a result of this ABI redirection, FreeBSD can run Linux binaries as if they
were compiled natively. Older versions of FreeBSD could also run OSF/1,

Advanced Software Management 415

SCO, and SVR4 binaries, but the demand for these platforms has dramati-
cally decreased.3 If you need one of these, you might try running an older
version of FreeBSD on a virtual machine.

Linux mode, also known as the Linuxulator, is quite thorough because
Linux’s source code is available and its ABI is well documented. In fact,
Linux mode works so well that many programs in the Ports Collection rely
on it.

Installing and Configuring the Linuxulator
While ABI reimplementation solves one major issue, programs require
more than just the ABI. Without shared libraries, supporting programs,
and the rest of the userland, most programs won’t run properly. No matter
which ABI you use, you must have access to the userland for that platform.

If you want to use a piece of Linux software available in the Ports
Collection, install the port. That automatically installs any userland
dependencies.

If you’re looking to run an arbitrary piece of Linux software, you must
install a Linux userland first. FreeBSD usually has a couple different Linux
userlands available as packages. To see what’s available, search the package
database for linux_base.

pkg search linux_base
linux_base-c6-6.9_2 Base set of packages needed in Linux mode (Linux CentOS 6.9)
linux_base-c7-7.3.1611_6 Base set of packages needed in Linux mode (Linux CentOS
7.3.1611)

This version of FreeBSD has two Linux userlands: one based on
CentOS 6.9 and one based on CentOS 7.3. The Linux distribution might
change in the future, depending on Linux’s direction.

Check to see what versions of Linux your software runs on. Install the
most appropriate userland for your application. FreeBSD installs Linux
userlands under /usr/compat/linux.

The port also loads the Linux mode kernel module. To load that module
automatically at boot, use this rc.conf entry:

linux_enable="YES"

That’s it! Linux mode isn’t a proper service, as you can’t restart it or get
the status, so you can’t configure it with service(8). Run /etc/rc.d/abi start
to activate Linux mode without rebooting.

Before we dive into running a Linux program, let’s explore the user-
land a bit.

3. OSF/1 is tied to defunct hardware (the awesome Alpha processor), while SVR4 is now so
ancient nobody uses the feature any more. SCO Unix is hiding somewhere in shame.

416 Chapter 17

The Linuxulator Userland

Just as the linux.ko kernel module provides the Linux ABI, the Linuxulator
requires a very minimal Linux userland. Take a look under /usr/compat/
linux and you’ll see something much like the following:

ls
bin etc lib64 proc selinux sys var
dev lib opt sbin srv usr

Looks a lot like the contents of FreeBSD’s / directory, doesn’t it? If you
poke around a bit, you’ll find that, generally speaking, the contents of /usr/
compat/linux are comparable to your core FreeBSD installation. You’ll find
many of the same programs in both.

One thing Linux devotees immediately notice about any linux_base
port is that its contents are minimal compared to a typical Linux install.
That’s because each Linux-based package installs only what it requires to
run. FreeBSD’s Linux packages impose the minimalist BSD philosophy on
Linux software.

Whenever possible, programs in Linux mode try to stay under /usr/
compat/linux, which is somewhat like a weak jail (see Chapter 22). When
you execute a Linux binary that calls other programs, the Linux ABI first
checks for the program under /usr/compat/linux. If the program doesn’t
exist there, Linux mode looks in the main system. For example, suppose
you have a Linux binary that calls ping(8). The ABI first searches under /
usr/compat/linux/ for a ping program; as of this writing, it’ll find none.
The ABI then checks the main FreeBSD system, finds /sbin/ping, and uses
it. The Linuxulator makes heavy use of this fallback behavior to reduce
the size of the Linux mode’s userland.

Alternatively, suppose a Linux binary wants to call sh(1). The Linux
ABI checks under /usr/compat/linux, finds /usr/compat/linux/bin/sh, and
executes that program instead of the FreeBSD native /bin/sh.

linprocfs and tmpfs

Linux uses a process filesystem, or procfs. FreeBSD eliminated procfs as a
default decades ago as a security risk, but some Linux programs will require
it. Using Linux software that requires procfs means accepting the inherent
risks. FreeBSD makes a Linux procfs available as linprocfs(5).

To enable linprocfs(5), add the following to /etc/fstab after installing
the Linuxulator:

linproc /compat/linux/proc linprocfs rw 0 0

FreeBSD loads filesystem kernel modules on demand, so enter mount
/compat/linux/proc to activate linprocfs(5) without rebooting.

Many Linux programs also expect /dev/shm for shared memory. FreeBSD
can emulate this with tmpfs(5).

tmpfs /compat/linux/dev/shm tmpfs rw,mode=1777 0 0

Advanced Software Management 417

Enter mount /compat/linux/dev/shm, and the shared memory device is ready.

Testing Linux Mode

Now that you have some idea what’s installed in Linux mode, testing Linux
functionality is easy. Run the Linux shell and ask it what operating system
it’s running on:

/usr/compat/linux/bin/sh
sh-4.1# uname -a
Linux storm 2.6.32 FreeBSD 12.0-CURRENT #0 r322672: Fri Aug 17 16:31:34 EDT
2018 x86_64 x86_64 x86_64 GNU/Linux
sh-4.1#

When we ask what type of system this command prompt is running on,
this shell responds that it’s a Linux system running on top of a Linux 2.6.32
kernel called FreeBSD. Pretty cool, eh?

Remember, however, that Linux mode isn’t a complete Linux userland.
You can’t cross-compile software in the default Linuxulator install. You can
perform only very basic tasks.

Identifying and Setting Brands

Branding software binaries is easier than branding cattle, but not nearly
as adventurous. Most modern Unix-like binaries are in ELF format, which
includes space for a comment. That’s where the brand lives. FreeBSD
assigns each program an ABI by the brand on that binary. If a binary has
no brand, it’s assumed to be a FreeBSD binary.

View and change brands with brandelf(1):

brandelf /bin/sh
File '/bin/sh' is of brand 'FreeBSD' (9).

No surprise there. This is a FreeBSD binary, so it’ll be executed under
the FreeBSD ABI. Let’s try a Linux binary:

brandelf /usr/compat/linux/bin/sh
File '/usr/compat/linux/bin/sh' is of brand 'Linux' (3).

See the brands FreeBSD supports with the -l flag.

brandelf -l
known ELF types are: FreeBSD(9) Linux(3) Solaris(6) SVR4(0)

If you have a foreign program that won’t run, check its branding. If it
isn’t branded or is branded incorrectly, you’ve probably discovered your prob-
lem: FreeBSD is trying to run the program under the native FreeBSD ABI.
Change this by setting the brand manually with brandelf -t. For example, to
brand a program Linux, do this:

brandelf -t Linux /usr/local/bin/program

418 Chapter 17

The next time you try to run the program, FreeBSD will run it under
the Linux ABI and the Linux userland, and the program should work as
expected.

You can also use sysctls to set a fallback brand. All FreeBSD binaries get
branded properly, but random programs you copy to your host might not
be. Unbranded binaries get treated with the chosen fallback brand. The
sysctl kern.elf32.fallback_brand gives a fallback brand for 32-bit hosts, while
kern.elf64.fallback_brand sets the fallback brand for 64-bit hosts. This sysctl
takes the brand’s numerical identifier, which for Linux is 3.

sysctl kern.elf64.fallback_brand=3

You should now be able to run Linux programs without any further
configuration. All that’s left are the minor annoyances and peccadilloes
of Linux mode. Sadly, there’s a few of those, as we’ll illustrate next.

Using Linux Mode
Many Linux programs are available only as ports. The Ports Collection is
smart enough to realize that a piece of software needs Linux mode and
chooses the appropriate pieces of Linux to install. One popular choice is
Skype. Installing this port triggers installation of the proper Linux userland.

The downside of having a minimal Linux userland is that any port
will have a whole bunch of dependencies. Some of those will be FreeBSD
binaries, others Linux. I recommend using the port’s make missing com-
mand to display missing dependencies, or even to auto-install dependen-
cies from packages as discussed in Chapter 16. Once all the required
packages are installed, once you have linprocfs and the Linux shared
memory device installed, and once all the kernel modules are loaded,
installing Skype is as easy as make install clean.

Debugging Linux Mode
Linux mode isn’t Linux, and nowhere is this clearer than when a program
breaks. Many programs have cryptic error messages, and Linux mode can
obscure them further. You need tools that can dig past the error messages
and see what’s really going wrong.

Linux Mode and truss(1)

The best tool I’ve ever found for debugging Linux mode is truss(1), the
FreeBSD system call tracer. Some people have told me that using truss(1)
for this is like putting the 12-cylinder engine from a Mack truck into a
Volkswagen Beetle, but after much thought and careful consideration, I’ve
decided that I don’t care. It works. Once you learn about truss(1), you’ll
wonder how you ever lived without it.4

4. Until you discover dtrace(1), that is.

Advanced Software Management 419

The truss(1) program identifies exactly which system calls a program
makes and the results of each call. Remember, system calls are a program’s
interface to the kernel. When a program tries to talk to the network, open a
file, or even allocate memory, it makes a system call. This makes truss(1) an
excellent way to see why a program is failing. Programs make a lot of system
calls, which means that truss(1) generates a huge amount of data, making
debugging with truss(1) a good candidate for script(1).

So let’s run Skype.

$ skype
Segmentation fault (core dumped)

Here’s the good news: The program runs! The bad news is, it chokes
on something. The most common errors I find are missing libraries, files,
and directories, but which is it? The output of truss(1) can tell me. Start a
script(1) session, run the program under truss(1), and end the script.

Your script file will be hundreds or thousands of lines long; how can
you possibly find the problem? Search for a relevant part of your error mes-
sage or for the string ERR. In this case, I searched for the string directory
and found this near the end of the output:

$ truss skype
--snip--
linux_open("/usr/local/Trolltech/Qt-4.4.3-static/lib/tls/i686/sse2/libasound.so.2",0x0,00)
ERR#-2 'No such file or directory'
linux_stat64("/usr/local/Trolltech/Qt-4.4.3-static/lib/tls/i686/sse2",0xffffb248) ERR#-2 'No
such file or directory'
linux_open("/usr/local/Trolltech/Qt-4.4.3-static/lib/tls/i686/libasound.so.2",0x0,00) ERR#-2
'No such file or directory'
--snip--

Aha! Skype can’t find needed libraries. The package maintainer
might have missed these, or perhaps I’ve screwed up somehow. Check to
see whether the libraries exist on your host. If not, you’ll need to install
them. Perhaps a port exists. Or I might need to install the Linux package.

Installing Linux Packages

If a port doesn’t exist for the Linux libraries or software you need, you have
a couple choices. One is to create a port for that software. Ports are a great
way to be involved with the FreeBSD community. If your goal is to get the
software up and running so you can get on with your day, however, you’ll
need to install the appropriate Linux software from the source RPM. Be
warned, though: once you install something outside of the Ports Collection,
you’ll need to maintain it by hand.

Find the RPM for the software you want. Be sure that the package version
matches that installed in linux_base. It’s no good to find a CentOS 8 pack-
age for your missing libraries if your FreeBSD host uses CentOS 7.3.1611.
Download the RPM.

420 Chapter 17

Suppose my life has taken a horrible turn5 and I need to run Supermin
in Linux mode. I find and download the package file, and then I install it
with tar(1). FreeBSD’s libarchive-based tar can crack open RPM files as well
as it does everything else.

cd /compat/linux
tar -xf /home/mwl/supermin-5.1.16-4.el7.x86_64.rpm

Now I get to find the next missing dependencies. Once I have the whole
list of dependencies, I’ll write a port to save others this tedium.

Running Software from the Wrong Architecture or Release
When you run FreeBSD’s amd64 platform, you’ll eventually find some piece
of software that’s available only for i386 platforms. If your kernel has the
COMPAT_FREEBSD32 option (already in GENERIC), FreeBSD/amd64 can run all
FreeBSD/i386 software. What you can’t do is use FreeBSD/amd64 shared
libraries for FreeBSD/i386 software. If you want to run a complicated 32-bit
program on a 64-bit computer, you must provide 32-bit versions of the nec-
essary libraries. This is well supported; if you check rc.conf, you’ll find the
ldconfig(8)’s options ldconfig32_paths and ldconfig_local32_dirs. These options
are specifically for telling your amd64 system where to find 32-bit libraries.
FreeBSD includes 32-bit libraries on the installation media.

Additionally, FreeBSD can run software from older versions of FreeBSD.
The GENERIC kernel includes all the system calls, but you’ll still need the
base system libraries. These libraries are available as packages, one for each
major FreeBSD release. Each package is named compat, followed by a version
number, and ending in x. If you must run a FreeBSD 8 binary, install the
compat8x package. The compat packages include 64-bit and 32-bit libraries.

If you need to run binaries that aren’t i386 or amd64, you can even use
binmiscctl(8) to automatically fire up the proper emulator whenever you
run a non-x86 binary.

While there’s always more to learn about software management, you now
know enough to scrape by. Let’s go on and learn about upgrading FreeBSD.

5. Again.

coMMe rci A l l inu x Sof t wA r e A nd l inu x Mode

Remember, commercial software vendors don’t support their Linux software in
FreeBSD’s Linux mode. If you’re in an industrial environment with service-level
agreements and run the risk of paying penalties, think very carefully before
using Linux mode. The main benefit of commercial software is having someone
to blame when it breaks, but FreeBSD’s Linux mode eliminates that benefit.

18
U p g r a d i n g F r e e B S d

Upgrading servers is perhaps the most
annoying task in the system administrator’s

routine. I can manage unexplained behavior
on my desktop after an upgrade, but when my

whole organization or hundreds of customers depend
on one server, even thinking of touching that system
makes my bowels churn. Any operating system upgrade can expand your
burgeoning gray hair collection. Even very experienced sysadmins, faced
with a choice between upgrading a critical system in-place and jabbing red-
hot needles into their own eyes, frequently have to sit down and consider
their choices. Virtualized and orchestrated cloud systems might seem less
troublesome, but even with these, preparing for an upgrade can cause sleep-
less nights. Remember, despite all its benefits, automation is a wonderful way
to go wrong at scale.

One of FreeBSD’s greatest strengths is its upgrade procedure. FreeBSD
is designed as a monolithic operating system, not a collection of packages.
(Even if FreeBSD migrates to providing the base system as packages, it will
remain designed and built as a monolithic entity.) I’ve had hosts running

422 Chapter 18

through five different major releases of FreeBSD and innumerable patch
levels in between without reinstalling the system. I decommission FreeBSD
systems only when they are so old that the risk of hardware failure keeps me
awake at night.1 While I might worry about applications running on top of
the operating system, even upgrading across major FreeBSD releases doesn’t
worry me anymore.

FreeBSD Versions
Why is upgrading FreeBSD a relatively simple matter? The key is FreeBSD’s
development method. FreeBSD is a continually evolving operating system.
If you download the current version of FreeBSD in the afternoon, it’ll be
slightly different from the morning version. Developers from around the
world continually add changes and improvements, which makes the tra-
ditional strict release numbering used by less open software impractical.
At any given moment, you can get several different versions of FreeBSD:
releases, -stable, -current, and snapshots.

Releases
FreeBSD issues major and minor releases. A major release has a version
number like 11.0, 12.0, 13.0, or so on. Each major release includes large
features not found in earlier major releases. Sweeping changes appear
only in major releases.

A minor release is an updated version of a major release. You’ll see
minor releases like 12.1-RELEASE, 12.2-RELEASE, 12.3-RELEASE, and
so on. (Most people drop the word release from these names.) These minor
releases add small features and bug fixes to the major release. You might get
new functions or programs, but only if they don’t interfere with the existing
functions. Unexpected, disruptive changes are avoided.

You’ll also see patch levels. Thanks to freebsd-update(8), patching a
release is quick and easy. Patch numbers are given as numbers after the
release. This means you’ll see FreeBSD versions like 12.1-RELEASE-p20,
11.4-RELEASE-p9, 13.0-RELEASE-p31, and so on.

Users are expected to closely track their major release by upgrading
through successive minor releases, much like other operating systems.

FreeBSD-current
FreeBSD-current, also called -current or HEAD, is the bleeding-edge,
latest version of FreeBSD, which contains code that’s making its first pub-
lic appearance. While the developers have test servers and post patches
for review before applying, that’s still much less exposure than the wide
userbase of FreeBSD-current. FreeBSD-current is where much initial peer
review takes place; at times, current undergoes radical changes that give
experienced sysadmins migraines.

1. “In the data center, nobody can hear your power supply scream.”

Upgrading FreeBSD 423

FreeBSD-current is made available for developers, testers, and inter-
ested parties, but it’s not intended for general use. Support for user ques-
tions about -current is very slim because the developers simply don’t have
time to help a user fix his web browser while thousands more critical prob-
lems demand attention. Users are expected to help fix these problems or to
patiently endure them until someone else fixes them.

To make matters worse, -current’s default settings include assorted
debugging code, special warnings, and related developer features. These
make -current run slower than any other version of FreeBSD. You can dis-
able all this debugging, but if you do so, you won’t be able to file a proper
trouble report when you have a problem. This means that you’re even more
out on your own. Check out the file /usr/src/UPDATING on a -current system
for debugging details.

If you can’t read C and shell code, don’t feel like debugging your OS,
don’t like computer functions failing arbitrarily, or just don’t like being left
hanging until your problem annoys someone who can fix it, -current isn’t for
you. The brave are certainly welcome to try -current, as is anyone willing to
devote a large amount of time to learning and debugging FreeBSD or anyone
who needs a lesson in humility. You’re not forbidden to use -current; you’re
just on your own. FreeBSD-current isn’t always the bleeding edge, but some-
times it might be the why-are-my-fingers-suddenly-little-wiggling-stumps?
edge. You’ve been warned.

To run -current, you really must read the FreeBSD-current@FreeBSD.org and
svn-src-head@FreeBSD.org mailing lists. These are high-traffic lists with hun-
dreds of warnings, alerts, and comments a day. If you’re reading this book,
you probably shouldn’t post on these lists; just read and learn. If someone dis-
covers that the newest filesystem patches transform hard drives into zombie
minions of Cthulhu, this is where the information will be made available.

-current Code Freezes

Every 12 to 18 months, FreeBSD-current goes through a month of code
freeze, during which no noncritical changes are permitted and all known
critical problems are being fixed. The goal is to stabilize FreeBSD’s latest
and greatest and to polish off the rough corners. At the end of the code
freeze (or shortly after), -current becomes the .0 version of a new FreeBSD
major release. For example, FreeBSD 12.0 was -current at one point, as
was FreeBSD 13.0. When a new major release happens, the -current ver-
sion number gets incremented. The release of FreeBSD 17.0 means that
-current will be called FreeBSD 18.

Once the .0 major release escapes into the wild, development work
branches into two lines: FreeBSD-current and FreeBSD-stable.

FreeBSD-stable
FreeBSD-stable (or just -stable) is the “bleeding edge for the average user,”
containing some of the most recent peer-reviewed code. Sysadmins famil-
iar with Linux know -stable as a “rolling release.” You’ll find a version of
FreeBSD-stable for each major release.

424 Chapter 18

Once a piece of code is thoroughly tested in -current, it might be merged
back into -stable. The -stable version is the one that’s mostly safe to upgrade
to at almost any time; you might think of it as FreeBSD-beta.

Three or four times a year, the Release Engineering team asks the
developers to focus on resolving outstanding problems with -stable rather
than making major changes. The Release Engineering team cuts several
release candidates from this code and offers each for public testing. When
the FreeBSD team is satisfied with the results of its own and the commu-
nity’s testing, the result is given a release number. The development team
then returns their attention to their regular projects.2

How does this work in practice? Consider FreeBSD 13. Once 13.0
comes out, developers will start merging bug fixes and additions to the
13-stable version. Users who want to help test the new FreeBSD release
can run 13-stable. After a few months of merging features and some test-
ing, 13-stable will become 13.1. After 13.1 comes out, that development
track reverts to 13-stable. FreeBSD 13.1, 13.2, and 13.3 are just points on
the continuum of FreeBSD 13-stable.

FreeBSD-stable is expected to be calm and reliable, requiring little user
attention.

As -stable ages, the differences between -stable and -current become
greater and greater, to the point where it becomes necessary to branch a
new -stable off of -current. The older -stable is actively maintained for sev-
eral months while the new -stable is beaten into shape. Some users upgrade
to the new version of -stable immediately, others are more cautious. After
a release or two of the new -stable, the older -stable is obsoleted and the
developers encourage users to migrate to the new version. After some time,
the older stable will receive only critical bug fixes, and finally, it’ll be aban-
doned entirely. You can see how this works in Figure 18-1.

improvements improvements

FreeBSD-current FreeBSD-current

FreeBSD-stable 13 FreeBSD-stable 14

13.0

13.1

13.2

13.3

14.0

14.1
14.2

14.3
14...

Figure 18-1: FreeBSD development branches

Each release really should have a little dangling tail off to the side for
patch levels, but that makes the diagram really confusing.

Users of FreeBSD-stable must read the FreeBSD-stable@FreeBSD.org mail-
ing list. While this mailing list has a moderate level of traffic and a fair amount
of question-and-answer exchanges that really should be on -questions@,

2. No, “annoying users” isn’t a regular project for FreeBSD developers. It’s a fringe benefit.
Entirely different.

Upgrading FreeBSD 425

important messages from developers generally have a subject beginning
with HEADS UP. Look for those messages; they generally mean that a
change in the system can ruin your day if you don’t know about it.

Merging from -current

The phrase merged from -current (MFC) means that a function or subsystem
has been backported from FreeBSD-current into FreeBSD-stable (or,
rarely, into an errata branch). Not all features are MFC’d, however. The
point of FreeBSD-current is that it’s where major changes take place, and
many of those changes require months of testing and debugging. Those
large changes can’t be backported, as they’d badly impact the -stable users
who expect a stable codebase.

Sometimes, features that seem “obvious MFC candidates” can’t be
merged. Sometimes the kernel infrastructure changes to support new
drivers and features, and that infrastructure can’t be safely merged.
New drivers that require such infrastructure can’t be MFC’d. This hap-
pens most often with video and wireless network drivers.

Select new drivers, bug fixes, and minor enhancements can be MFC’d—
but that’s about it. The FreeBSD Project makes it a point not to MFC large
changes that could break user applications.

Snapshots
Every month or so, the FreeBSD Release Engineering team releases snap-
shots of -current and -stable and makes them available on an FTP site.
Snapshots are just points along the development branch; they undergo no
special packaging or testing. Snapshots don’t receive the same attention to
quality that releases do, but they’re intended as a good starting point for
people interested in running -current or -stable. There’s only modest qual-
ity control, and many developers have no idea that a snapshot has come
out until it appears on the FTP servers. You’ll find bugs. You’ll find errors.
You’ll experience issues that will turn your mother’s hair white, assuming
you haven’t done that to the poor woman already.

T he S Ta Bil i T y oF -S Ta Bl e

The word stable describes the code base, not FreeBSD itself. Running code
from a random point along a stable branch doesn’t guarantee that your system
will be stable, only that the underlying code won’t change radically. The API
and ABI are expected to remain unchanged. While the developers take pains
to ensure that -stable remains, well, stable, mistakes can and do happen. If this
risk worries you, stick with a patched release.

426 Chapter 18

FreeBSD Support Model
With FreeBSD 11.0, the Project’s support model changed to more closely
resemble that used by other commercial and noncommercial operating
systems.

Each major release is supported with security and stability patches for
five years after the first release. If FreeBSD 13 is released on January 1, 2021,
support will end on January 1, 2026.

Each minor release is supported for three months after the release of
the next minor release. Support for FreeBSD 12.3 will end three months
after the release of FreeBSD 12.4. This gives you three months to schedule
an upgrade.

A loss of official support doesn’t mean that you can’t continue to run
unsupported versions. However, you’ll need to examine each security
announcement, determine whether it affects your environment, and create
your own patches. You’re better off running the upgrade.

The whole point of FreeBSD minor releases is that they’re minimally
intrusive. Upgrading from FreeBSD 12.3 to 12.4 should have a similar
impact to applying Windows updates or going from Centos 8.1 to 8.2.
Applications should continue to run just fine.

The last FreeBSD minor release of a version gets supported and
patched out to the five-year mark. If FreeBSD 12.5 is the last release of
FreeBSD 12, it’ll get security patches out until five years after the release
of FreeBSD 12.0.

Testing FreeBSD
Each version and release of FreeBSD is tested in a variety of ways. Individual
developers check their work on their own hardware and ask each other to
double-check their work. If the work is sufficiently complicated, they might
use the official FreeBSD Phabricator system (https://reviews.FreeBSD.org/)
or even a private source code repository to offer their work to a broader
community before committing it to -current. Analysis companies have
donated analysis software to the FreeBSD team so that the source code
can be automatically audited, tested, and debugged on an ongoing basis,
catching many errors before they have a chance to affect real-world users.
Corporations such as Sentex, EMC, Netflix, and iX Systems provide testing
for the Project. Several highly regarded FreeBSD developers have made
testing a major issue within the Project. They now have an automated
Kyua testing framework.

Ultimately, however, a volunteer project with a few hundred developers
can’t purchase all computer hardware ever made, nor can they run that hard-
ware under all possible loads. The FreeBSD Project as a whole relies on com-
panies and people that use FreeBSD to test the software.

The most useful testing comes from users who have real-world equip-
ment and real-world testbeds with real-world workloads. Sadly, most of
these users perform testing when they put a release CD into the computer,

Upgrading FreeBSD 427

run an install, and fire up the system. At that point, it’s too late to benefit
the release. Any bugs you find might help the next release, but in the mean-
time, a patch might fix your problem.

The solution here is obvious—test FreeBSD on your real-world work-
loads before the release is cut. Requests for testing of new -stable releases
appear on FreeBSD-stable@FreeBSD.org. By testing a -stable or -current, you’ll
get even better value from FreeBSD.

Which Version Should You Use?
-current, -stable, releases, snapshots—the head spins. Yes, this seems com-
plicated, but it ensures specific quality levels. Users can rest assured that a
release is as reliable as possible and has survived extensive testing and peer
review. The same users know that the nifty new features in -stable and -current
are available—if they’re willing to assume the risk inherent in each version.
So, which version should you use? Here are my suggestions:

Production
If you’re using FreeBSD in a production setting, install the most recent
minor release. When the next minor release comes out, upgrade to it.

Staging
If you need to know what’s coming in the next FreeBSD minor release
and how it’ll affect your production environment, track -stable in your
staging environment.

Test
The question here is what you want to test. The Project appreciates test-
ing on both -current and -stable. If you’re in doubt, start by running
-stable.

Development
Operating system developers, people with too much spare time and too
little excitement, and utter fools should run -current. When -current
destroys your MP3 collection, debug the problem and submit a patch to
fix it.

Hobby
If you’re a hobbyist, run any version! Just keep in mind the limitations
of the branch you choose. If you’re just learning Unix, I’d recommend
-release. Once you have your feet under you, upgrade to -stable. While
-current is far more steady than it was 20 years ago, if you think a chance
of an adrenaline-boosting system failure makes your day more exciting,
that’s where to go. The high-stakes gamblers running -current welcome
like-minded company.

428 Chapter 18

Upgrade Methods
FreeBSD provides two ways to upgrade: binary updates and building from
source.

FreeBSD supports binary updates through freebsd-update(8). This is very
similar to the binary update services offered for Windows, Firefox, and other
commercial software. (The software author states that freebsd-update(8) was
named after Windows Update.) You can use FreeBSD Update to upgrade
across major releases, minor releases, and patch levels.

Upgrading from source code means downloading the FreeBSD source
code, building the programs that make up FreeBSD, and installing them to
your hard drive. For example, if you have the source code for FreeBSD 13.1,
you can upgrade to that version. This requires more effort to set up and
use, but it gives you much more flexibility. Upgrade from source when
tracking -stable or -current.

Binary Updates
Many operating systems offer binary updates, where users can download
new binaries for their operating system. FreeBSD provides a similar pro-
gram through freebsd-update(8), allowing you to easily upgrade your
system.3 You can’t track -stable or -current with freebsd-update(8), only
releases. For example, if you installed FreeBSD 12.0, freebsd-update(8)
can upgrade you to 12.0-p9, 12.1, or 13.0, but not 12-stable or 14-current.

If you have a custom kernel, you must build updates to your kernel
from source instead of relying upon the update service. Similarly, if
you’ve upgraded a host from source (discussed later this chapter), run-
ning freebsd-update(8) overwrites your custom binaries with default ones.

Configure updates in /etc/freebsd-update.conf.

3. Various FreeBSD developers have spent the last several releases working toward packaging
the base system so that the packaging tools can handle upgrades. I expect that the release of
this book will prompt them to immediately solve the remaining problems and obsolete this
section.

proT ec T yoUr daTa !

Chapter 5 is called “Read This Before You Break Something Else!” for good
reason. Upgrades can destroy your data. Back up your system before attempt-
ing any sort of upgrade! I upgrade my desktop every week or so, just for fun
(see my earlier comment about adrenaline junkies running -current). But before
I upgrade, I make sure that all my important data is safely cached on another
machine. Copy your data to tape, file, or whatever, but don’t run an upgrade
without a fresh backup. You’ve been warned.

Upgrading FreeBSD 429

/etc/freebsd-update.conf
Updating with freebsd-update(8) is designed to be seamless for the aver-
age user, and changing its configuration is rarely advisable. You might have
unusual circumstances, however, so here are the most useful options you’ll
find in this file:

KeyPrint 800...

KeyPrint lists a cryptographic signature for the update service. If the
FreeBSD Update service suffered a security breach, the FreeBSD
Project would need to repair the breach and issue new cryptographic
keys. In this case, the breach would be announced on the security
announcements mailing list (and would also be big news in the IT
world). In other words, there’s no reason to change this in normal
use. (Building your own customized FreeBSD and distributing it via
freebsd-update(8), while both possible and practical, is considered
abnormal use.)

ServerName update.freebsd.org

The ServerName tells freebsd-update(8) where to fetch its updates from.
While the FreeBSD Project does provide the tools to build your own
updates, there’s really no need to do so. If you have enough servers that
you’d consider building your own update server, you probably also have
a proxy server that can cache the official updates.

Components src world kernel

By default, FreeBSD Update provides the latest patches for the source
code in /usr/src, the userland (world), and the GENERIC kernel. You
might not need all of these components, however. While the userland
is mandatory, you might have a custom kernel. Remove the kernel state-
ment to make freebsd-update(8) ignore the kernel. Custom kernel users
could also copy the GENERIC kernel to /boot/GENERIC. The update will
update the GENERIC kernel but leave your custom kernel alone. Or, you
can remove the kernel entry and save yourself the warning. If you don’t
have the source code installed on your machine, freebsd-update realizes
that and doesn’t try to patch it, but you could eliminate the src entry and
save the software the trouble. You could also choose to receive only por-
tions of the source code update, as described in freebsd-update.conf(5).

UpdateIfUnmodified /etc/ /var/ /root/ /.cshrc /.profile

The updates include changes to configuration files in /etc. If you have
modified these files, however, you probably don’t want freebsd-update(8)
to overwrite them. Similarly, /var is very fluid, designed for customization
by the sysadmin; you don’t want FreeBSD Update to muck with your set-
tings. FreeBSD Update applies patches to files in the directories listed in
UpdateIfUnmodified only if they’re unchanged from the default.

430 Chapter 18

MergeChanges /etc/ /boot/device.hints

Updating to a new release can change configuration files. The update
process will give you a chance to merge changes into files that appear in
the MergeChanges locations.

MailTo root

If you schedule a run of FreeBSD Update (as described later in this
chapter), freebsd-update(8) sends an email of the results to the
account listed in MailTo.

KeepModifiedMetadata yes

Perhaps you’ve modified the permissions or owner of a system file
or command. You probably don’t want freebsd-update(8) to change
those permissions back. With KeepModifiedMetadata set to yes, freebsd-
update(8) leaves your custom permissions and ownership unchanged.

See freebsd-update.conf(5) for more possibilities.

Running freebsd-update(8)
Updating your system with binary updates has two stages: downloading the
updates and applying them. The process looks slightly different if you’re
applying patches versus if you’re crossing major releases.

If you’re using ZFS, always create a new boot environment before
upgrading or patching!

Updating to the Latest Patch Level

To download the latest patches to your chosen release, run freebsd-update
fetch. Here, I’m updating a FreeBSD 11.0 host to the latest patchlevel.

freebsd-update fetch

You’ll see the program finding the download sources for the patches,
comparing cryptographic keys for those download sources, and eventu-
ally downloading patches into /var/db/freebsd-update. Inspecting the system
might take a couple minutes, depending on the speed of your storage.

Occasionally, you’ll see a message similar to this:

The following files will be removed as part of updating to 11.0-RELEASE-p12:
u /boot/kernel/hv_ata_pci_disengage.ko
v /usr/share/zoneinfo/America/Santa_Isabel
w /usr/share/zoneinfo/Asia/Rangoon

We’re updating a .0 release, the first version of a major FreeBSD release,
straight to 11.0-RELEASE-p12, so there’s a few accumulated patches. Why
would such a patchset start by removing files?

The time zone files are pretty straightforward. Between the release
of FreeBSD 11.0 and the present time, Santa Isabel v and Rangoon w

Upgrading FreeBSD 431

changed their time zones. Sadly, nations don’t coordinate their time zones
with FreeBSD releases. Removing those time zones from the system simpli-
fies life for sysadmins in those countries and doesn’t hurt the rest of us.

But they’re also removing a kernel module u. Why would that happen?
A little research on the FreeBSD mailing lists shows that this module should
never have been shipped with 11.0, and you really shouldn’t be using it. This
sort of change is rare but can happen right after a major release.

You’ll then see files added as part of this patchset, if any.

The following files will be added as part of updating to 11.0-RELEASE-p12:
/usr/share/zoneinfo/Asia/Barnaul
/usr/share/zoneinfo/Asia/Famagusta
/usr/share/zoneinfo/Asia/Tomsk
--snip--

It seems sysadmins in Rangoon are quite busy this summer.
Almost all patches alter existing files on the system. You’ll see those next.

The following files will be updated as part of updating to 11.0-RELEASE-p12:
/bin/freebsd-version
/boot/gptboot
/boot/gptzfsboot
/boot/kernel/cam.ko
/boot/kernel/hv_storvsc.ko
--snip--

If your release is nearing its End of Life, you’ll get a notice like this:

WARNING: FreeBSD 11.0-RELEASE-p1 is approaching its End-of-Life date.
It is strongly recommended that you upgrade to a newer
release within the next 1 month.

If the release has gone past End of Life, the notice gets more . . .
emphatic.

To install the downloaded files, run freebsd-update install:

freebsd-update install
Installing updates... done.

If the update requires any more steps, you’ll see them here. Reboot
your system, and you’ll see that you’re running the newest patchlevel.

Updating Releases

This FreeBSD 11.0-p12 machine is within a month of End of Life? Let’s update
it with freebsd-update upgrade. Specify the target release with the -r flag.

freebsd-update -r 11.1-RELEASE upgrade

The hardest part of this is to remember that -RELEASE is part of the
version name.

432 Chapter 18

The upgrade will inspect your system and present its conclusions.

The following components of FreeBSD seem to be installed:
kernel/generic world/base world/lib32

The following components of FreeBSD do not seem to be installed:
kernel/generic-dbg world/base-dbg world/doc world/lib32-dbg

Does this look reasonable (y/n)? y

Remember the install process, when you selected FreeBSD components
to set up on your new host? That’s what freebsd-update is checking for. You
could have added or removed components, though, so take a look at the
list. If it looks right, hit y to continue.

The update will more carefully scrutinize the system, comparing all
existing files to the new release, and then start downloading.

Fetching 10697 patches.....10....20....30....40....50....60....70....80....90

Go make a cup of tea. Depending on your host’s bandwidth, you should
return to see:

Applying patches...

You tea’s probably too hot. Let it cool a bit.

Fetching 236 files...

More downloading? Fine, enjoy your tea and watch the program work.

Attempting to automatically merge changes in files... done.

The following files will be removed as part of updating to 11.1-RELEASE-p1:
/usr/include/c++/v1/__undef___deallocate
/usr/include/c++/v1/tr1/__undef___deallocate
/usr/include/netinet/ip_ipsec.h
--snip--

You can search the mailing list archives and the FreeBSD source code
tree to learn why each of these files was removed.

The minor release will include new features backported from -current.
Those probably involve adding files to the system.

The following files will be added as part of updating to 11.1-RELEASE-p1:
/boot/kernel/amd_ecc_inject.ko
/boot/kernel/bytgpio.ko
/boot/kernel/cfiscsi.ko
/boot/kernel/cfumass.ko
--snip--

Upgrading FreeBSD 433

None of these new features should interfere with existing functions, but
perusing the list might give you some interesting reading.

An upgrade should change just about every file on the system, as we’ll
see next.

The following files will be updated as part of updating to 11.1-RELEASE-p1:
/.cshrc
/.profile
/COPYRIGHT
/bin/[
/bin/cat
--snip--

Eventually you’ll get to:

To install the downloaded upgrades, run "/usr/sbin/freebsd-update install".

Who are you to ignore instructions?
Up until this point, the update process has only downloaded files and

done comparisons in temporary staging areas. The operating system hasn’t
been touched. If you feel comfortable proceeding, run the installation.

freebsd-update install
src component not installed, skipped
Installing updates...
Kernel updates have been installed. Please reboot and run
"/usr/sbin/freebsd-update install" again to finish installing updates.

Why reboot between parts of the update? New userland programs might
require new kernel features. Installing a nonfunctional version of the reboot
command results in needing to power cycle the host, which would earn you
an embarrassing punch on your geek card.

reboot

Once the machine comes back up, complete the userland upgrade.

freebsd-update install
src component not installed, skipped
Installing updates...
Completing this upgrade requires removing old shared object files.
Please rebuild all installed 3rd party software (e.g., programs
installed from the ports tree) and then run "/usr/sbin/freebsd-update
install" again to finish installing updates.

What madness is this?
The update process works hard not to leave you with a damaged sys-

tem or dysfunctional software. If freebsd-update removes older versions of
shared libraries required by your add-on software, it won’t run. The update

434 Chapter 18

pauses so you have a chance to upgrade your software. We discuss upgrad-
ing packages and ports later this chapter. Upgrades along a -stable branch
don’t normally need to remove old cruft.

This last run of freebsd-update removes old shared libraries and such.

freebsd-update install

Your upgrade is now complete. As with any time you perform wide-
ranging system maintenance, reboot one last time to verify everything
starts cleanly.

Reverting Updates
You thought the upgrade would go easily. They always have before. But this
time, you were wrong. Some subtle interaction between the new patches and
your software has done brung you low. If you’re using boot environments,
this is the time to revert to your previous install. If you’re not, remove the
most recently installed upgrade with freebsd-update’s rollback command.

freebsd-update rollback
Uninstalling updates... done.

A rollback is much faster than installing patches. There’s no need to
inspect the system; freebsd-update just reads the log of its previous actions
and undoes everything.

Scheduling Binary Updates
Best practice would say to download and apply updates at a consistent
time on a regular schedule, such as on your monthly maintenance day.
The freebsd-update program includes specific support for this to avoid
flooding the download servers with requests every hour, on the hour. The
freebsd-update cron command tells the system to download the updates at a
random point in the next hour. Put this command in /etc/crontab to down-
load updates during that one-hour window. This helps reduce the load on
the download servers. You’ll get an email when the system has updates, so
you can schedule a reboot at your convenience.

Optimizing and Customizing FreeBSD Update
Two common questions about FreeBSD Update concern the custom builds
of FreeBSD and distributing updates locally.

Many people build their own versions of FreeBSD for internal use.
Frequently, this is just a version of FreeBSD with various sections cut out,
but some companies use extensive modifications. If you have deleted files
from your FreeBSD install, freebsd-update(8) won’t attempt to patch them.

Similarly, many companies like to have internal update servers for patch
management. The FreeBSD Update system is specifically designed to work with
caching web proxies. While all the files are cryptographically signed and veri-
fied, they’re transmitted over vanilla HTTP so that your proxy can cache them.

Upgrading FreeBSD 435

Upgrading via Source
Another way to update your system is to build it from source code. FreeBSD
is self-hosting, meaning that it includes all the tools needed to build FreeBSD.
You don’t need to install any compilers or development toolkits. The only
thing you need to build a new FreeBSD from source code is the newer
source code.

When a developer releases improvements to FreeBSD, the changes are
made available worldwide within minutes. The FreeBSD master source
code server tracks the source code, all changes made to that code, and the
author of those changes. Developers can check in new code, and users
can check out the latest versions through Subversion (SVN). FreeBSD has a
simple SVN client, svnlite(1), that suffices for all source code operations.
It’s a standard Subversion client built without any of the complicated
options svn(1) supports. Many people find svnlite(1) perfectly adequate
for all their non-FreeBSD Subversion needs.

Upgrading from source requires console access. You won’t always need it,
but recovering from a bad build might require intervention at the keyboard.
Test your serial console, Java app, or IPMI console before installing your
home-built operating system version. In my experience, the only upgrades
that require console access are those where I don’t have console access.4

Which Source Code?
Every FreeBSD release ships with the source code used to build the system
you’re installing. If you didn’t choose to install the source when installing
the system, you’ll find it on the install media in /usr/freebsd-dist/src.txz. If you
did install the source code, you’ll find it in /usr/src.

Unfortunately, this version of the source code lacks the version control
tags needed to build FreeBSD. It’s for reference only. You’ll need to use
svnlite(1) to download a version of the code with those tags intact.

4. Note that the while CVS is gone, CTM is still alive. More than one FreeBSD developer
begged me not to document it, so I won’t. I await your bank transfers, gentlemen.

cSUp, c V SUp, c V S, SUp, a nd c T M?

Documentation on the internet unfortunately survives well past reason and
rises to sow confusion at the worst possible time. Undead FreeBSD documenta-
tion and third-party tutorials might mention using a tool called CVS or CVSup
for source code updates. These tools were replaced in 2013. Any mention
of these programs indicates you’re reading old docs. If you see a mention of
CTM, you’re reading docs that predate CVS.4

436 Chapter 18

Is your copy of source code in /usr/src suitable for building FreeBSD?
Ask svnlite(1).

svnlite info /usr/src
svn: E155007: '/usr/src' is not a working copy

The “not a working copy” error means that any source code here can’t
be used with Subversion.

The svnlite(1) command to grab source code looks like so.

svnlite checkout usvn.freebsd.org/vrepository/wbranch xlocaldir

The mirror u is a FreeBSD Subversion mirror. The mirror svn.FreeBSD
.org is a geo-routed alias for the closest subversion mirror.

The repository v is the group of code you’re working with. You can
get a complete list of current repositories at https://svnweb.FreeBSD.org/. The
main Project repositories include base, for the operating system; doc, for
documentation; and ports, for the Ports Collection.

The branch w is the version of FreeBSD you want. For the very latest
stumpy-fingered -current, use head. To get a stable version, use the branch
stable/ followed by the major release. FreeBSD 12-stable would be stable/12.
To get a release plus all current patches, use releng/ and the release number.
The fully patched FreeBSD 12.2 would be at releng/12.2.

If you have trouble figuring out which branch you need, wander through
https://svnweb.freebsd.org/. The branch literally tells svnlite(1) which subdi-
rectory to grab from this site.

Finally, the localdir x is the local directory where I want to put the
source code.

This host is running FreeBSD 11.1. I want to be adventuresome and
move up to FreeBSD 11-stable. Here’s how I’d do that:

svnlite checkout https://svn0.us-east.FreeBSD.org/base/stable/11 /usr/src/
Error validating server certificate for 'https://svn0.us-east.freebsd.org:443':
 - The certificate is not issued by a trusted authority. Use the
 fingerprint to validate the certificate manually!
Certificate information:
 - Hostname: svnmir.ysv.FreeBSD.org
 - Valid: from Jul 29 22:01:21 2013 GMT until Dec 13 22:01:21 2040 GMT
 - Issuer: svnmir.ysv.FreeBSD.org, clusteradm, FreeBSD.org, CA, US(clusteradm@FreeBSD.org)
 - Fingerprint: 1C:BD:85:95:11:9F:EB:75:A5:4B:C8:A3:FE:08:E4:02:73:06:1E:61
(R)eject, accept (t)emporarily or accept (p)ermanently? p

What fresh madness is this? We try to get the FreeBSD source code and
instead get a certificate error?

Compare the certificate fingerprint shown to the server’s fingerprint on
the FreeBSD.org website. If it matches, permanently accept the certificate
by entering p. Filenames of source code files will stream past your terminal.

Once svnlite(1) finishes, take a look in /usr/src.

Upgrading FreeBSD 437

ls /usr/src/
COPYRIGHT cddl sbin
LOCKS contrib secure
MAINTAINERS crypto share
Makefile etc sys
Makefile.inc1 gnu targets
Makefile.libcompat include tests
ObsoleteFiles.inc kerberos5 tools
README lib usr.bin
README.md libexec usr.sbin
UPDATING release
bin rescue

This is the top directory of the FreeBSD source tree, which contains all
the code needed to build your chosen FreeBSD version.

Updating Source Code
So you built FreeBSD yesterday? Cool. But now you want to build today’s
version.

The good news is, Subversion needs only to update the code you’ve
downloaded, not download the whole source code tree. The better news
is, the source code records where you got it from and what branch it’s sup-
posed to be from in the .svn directory. This makes updating much simpler
than the initial download.

FreeBSD has integrated the Subversion commands into the source
code. All you’ll need to do is tell the system that it may call svnlite(1) for
updates by setting SVN_UPDATE in /etc/src.conf.

echo 'SVN_UPDATE=yes' >> /etc/src.conf

Now run make update to get the latest source code.

cd /usr/src
make update

You’ll see the same sorts of updates flow past. These updates will be
much quicker than the original download, though.

Building FreeBSD from Source
Once you have the latest source code, look at /usr/src/UPDATING. The
beginning of this file lists, in reverse chronological order, any warnings
and special notices about changes to FreeBSD that are of special interest to
people who build from source. These notes tell you whether you must take
any particular actions before rebuilding your system or whether any major
system functionality has changed. If you want your system to work after the
upgrade, follow these instructions exactly.

438 Chapter 18

The end of the UPDATING file gives the official instructions for building
FreeBSD from source. The procedure described in this book has been used
since FreeBSD 6-current, which changed only slightly from 5-current, but I
still recommend double-checking the instructions herein against those in
UPDATING.

If you use a custom kernel, also examine the new GENERIC or NOTES
kernel configuration files for any new options or interesting kernel changes.

If you hang around the FreeBSD community for a while, you’ll hear
all sorts of stories about special methods people use for building FreeBSD.
You’ll hear anecdotal evidence that one method is faster, more efficient,
or somehow mystically “better” than the standard. While you are certainly
free to use any build method that strikes your fancy, the only method sup-
ported by the FreeBSD Project is that documented at the end of /usr/src/
UPDATING. If you follow some other procedure and have trouble, you’ll be
referred to the documented procedure.

Build the World
First, build the new userland:

cd /usr/src
make buildworld

The make buildworld command builds from source the basic tools
needed to build the system compiler and then builds the compiler and
associated libraries. Finally, it uses the new tools, compiler, and libraries
to build all the software included in a core FreeBSD install. (This is much
like building a car starting with the instruction, “Dig iron ore out of the
ground.”) The buildworld places its output under /usr/obj. It can take any-
where from one to several hours, depending on your hardware. You can
continue working normally as the buildworld runs, if your hardware is
robust enough; while the build consumes system resources, it won’t take
any of your attention.

When the buildworld finishes, confirm that it completed without errors.
If the build ends with a bunch of messages like those you see during a failed

cUS ToMi z ing yoUr F r e e BSd BUil d

Remember back in Chapter 16 when we discussed /etc/make.conf ? FreeBSD
uses a separate file to handle customizations for building FreeBSD itself. While
settings in /etc/make.conf affect all software built on the system, anything in
/etc/src.conf affects only building FreeBSD from source.

pa r a l l e l M a ke Wor l d

Experienced sysadmins have probably used the -j flag of make(1) to increase
build speed. This starts multiple build processes and allows the system to take
advantage of multiple CPUs. If you have a multi-CPU system or if your CPU
has multiple cores, -j can work when building FreeBSD. A reasonable number
of builds to start is one more than the number of CPUs you have. For example,
if you have an eight-core processor, you can reasonably use nine build pro-
cesses by running make -j9 buildworld && make -j9 kernel.

The FreeBSD Project doesn’t officially support -j for upgrades, even though
many developers use it. If your build fails when using -j, try without -j before
complaining.

Upgrading FreeBSD 439

kernel compile, do not proceed with the upgrade. If you can’t figure out
why the build failed, go to Chapter 1 to see how you can get help. Never
attempt to install a damaged or incomplete upgrade.

Build, Install, and Test a Kernel
The best way to test your upgrade is to build a new GENERIC kernel. This
separates problems in your custom kernel from general FreeBSD issues.
The impetuous are certainly welcome to upgrade straight to their custom
kernel configuration, but if your kernel fails, you’ll need to try a GENERIC
kernel. Be sure to compare your custom kernel to the new GENERIC con-
figuration, however, to catch any alterations your custom setup needs. You
can use the Subversion history at https://svnweb.FreeBSD.org/ to compare the
kernel configurations of different releases.

By default, the kernel upgrade process builds a GENERIC kernel. If
you want to upgrade straight to a custom kernel, use the variable KERNCONF
to tell make(1) the kernel name. You can set KERNCONF on the command
line, in /etc/make.conf, or in /etc/src.conf.

You can build a new kernel in one of two ways. The make buildkernel com-
mand builds a new kernel but doesn’t install it. Follow a make buildkernel with
a make installkernel to install the kernel. The make kernel command runs
these two commands right after each other. Use the one that best matches
your schedule. For example, if I’m doing a system upgrade at work dur-
ing my Sunday maintenance window, I might run make buildworld and make
buildkernel during the preceding week to save a few hours of my precious
weekend. I don’t want to install that kernel before the maintenance day,
however—if the machine has a problem on Friday and needs a reboot, I
want to boot the old production kernel and not the new, upgraded ker-
nel. On Sunday morning, when I’m ready to actually upgrade, I run make
installkernel. On the other hand, using make kernel makes sense when
upgrading my desktop. So, to upgrade with my custom kernel, I’d run:

make KERNCONF=THUD kernel

The end of the UPDATING file gives the official instructions for building
FreeBSD from source. The procedure described in this book has been used
since FreeBSD 6-current, which changed only slightly from 5-current, but I
still recommend double-checking the instructions herein against those in
UPDATING.

If you use a custom kernel, also examine the new GENERIC or NOTES
kernel configuration files for any new options or interesting kernel changes.

If you hang around the FreeBSD community for a while, you’ll hear
all sorts of stories about special methods people use for building FreeBSD.
You’ll hear anecdotal evidence that one method is faster, more efficient,
or somehow mystically “better” than the standard. While you are certainly
free to use any build method that strikes your fancy, the only method sup-
ported by the FreeBSD Project is that documented at the end of /usr/src/
UPDATING. If you follow some other procedure and have trouble, you’ll be
referred to the documented procedure.

Build the World
First, build the new userland:

cd /usr/src
make buildworld

The make buildworld command builds from source the basic tools
needed to build the system compiler and then builds the compiler and
associated libraries. Finally, it uses the new tools, compiler, and libraries
to build all the software included in a core FreeBSD install. (This is much
like building a car starting with the instruction, “Dig iron ore out of the
ground.”) The buildworld places its output under /usr/obj. It can take any-
where from one to several hours, depending on your hardware. You can
continue working normally as the buildworld runs, if your hardware is
robust enough; while the build consumes system resources, it won’t take
any of your attention.

When the buildworld finishes, confirm that it completed without errors.
If the build ends with a bunch of messages like those you see during a failed

cUS ToMi z ing yoUr F r e e BSd BUil d

Remember back in Chapter 16 when we discussed /etc/make.conf ? FreeBSD
uses a separate file to handle customizations for building FreeBSD itself. While
settings in /etc/make.conf affect all software built on the system, anything in
/etc/src.conf affects only building FreeBSD from source.

pa r a l l e l M a ke Wor l d

Experienced sysadmins have probably used the -j flag of make(1) to increase
build speed. This starts multiple build processes and allows the system to take
advantage of multiple CPUs. If you have a multi-CPU system or if your CPU
has multiple cores, -j can work when building FreeBSD. A reasonable number
of builds to start is one more than the number of CPUs you have. For example,
if you have an eight-core processor, you can reasonably use nine build pro-
cesses by running make -j9 buildworld && make -j9 kernel.

The FreeBSD Project doesn’t officially support -j for upgrades, even though
many developers use it. If your build fails when using -j, try without -j before
complaining.

440 Chapter 18

Again, do not attempt to install a kernel that didn’t successfully com-
pile. If your make buildkernel errors out and dies, fix that problem before
proceeding.

Once you have a new kernel installed, reboot your computer into single-
user mode. Why single-user mode? The userland might expect different
kernel interfaces than the new kernel provides. While /usr/src/UPDATING
should list all of these, no document can cover all possible changes and their
impact on third-party software. Such changes happen rarely on -stable but
unpredictably on -current. If you update your host every week, your userland
might have a problem on the new kernel. If you haven’t updated the host
for a year, you get a year’s worth of changes dumped on you simultaneously.
While many people get away with installing the upgrades in full multiuser
mode, single-user mode is safest.

If your system runs correctly in single-user mode with the new kernel,
proceed. Otherwise, fully document the issue and boot the old kernel to
restore service while you solve the problem.

Prepare to Install the New World
Beware, grasshopper! This is the point of no return. You can easily back
out a bad kernel—just boot the older, known good one. Once you install a
freshly built world, you can’t revert it out without recovering from backup
or using a ZFS boot environment. Confirm that you have a good backup
before proceeding, or at least recognize that the first irrevocable step is
happening right now.

If your new kernel works, proceed to installing your freshly built user-
land. First, confirm that your system can install the new binaries. Each new
version of FreeBSD expects that the old system supports all the necessary
users, groups, and privileges that the new version requires. If a program must
be owned by a particular user and that user doesn’t exist on the system, the
upgrade will fail. That’s where mergemaster(8) comes in.

mergemaster(8)

The mergemaster program compares the existing configuration files under
/etc to the new files in /usr/src/etc, highlights the differences between them,
and either installs them for you, sets them aside for evaluation, or even lets
you merge two different configuration files into one. This is extremely use-
ful during upgrades. You run mergemaster once before installing the new
world to ensure that your system can install the new binaries, and you run it
once after installing the new world to synchronize the rest of /etc with your
new world.

Start with mergemaster(8)’s prebuildworld mode, using the -Fp flags.
The -F flag automatically installs any files that differ only by version con-
trol information. The -p flag compares /etc/master.passwd and /etc/group
and highlights any accounts or groups that must exist for an installworld
to succeed.

Upgrading FreeBSD 441

mergemaster -Fp

u *** Creating the temporary root environment in /var/tmp/temproot
 *** /var/tmp/temproot ready for use

v *** Creating and populating directory structure in /var/tmp/temproot

 *** Beginning comparison

These initial messages, all preceded by three asterisks, are mergemaster
explaining what it’s doing. We start with a temporary root directory u in
/var/tmp/temproot so mergemaster can install a pristine set of configuration
files v to compare with the installed files. After that, mergemaster shows its
first comparison.

u *** Displaying differences between ./etc/group and installed version:

--- /etc/group 2017-09-01 11:12:49.693484000 -0400
+++ ./etc/group 2017-09-01 13:22:15.849816000 -0400
@@ -1,6 +1,6 @@

v -# $FreeBSD: releng/11.1/etc/group 294896 2016-01-27 06:28:56Z araujo $
w +# $FreeBSD: stable/11/etc/group 294896 2016-01-27 06:28:56Z araujo $

 #
x -wheel:*:0:root,mwlucas
y +wheel:*:0:root

 daemon:*:1:
 kmem:*:2:
 sys:*:3:
@@ -33,4 +33,3 @@
 hast:*:845:
 nogroup:*:65533:
 nobody:*:65534:

z -mwlucas:*:1001:

One vital piece of information is the file being compared, and merge-
master displays the filename u up front. We’re examining /etc/group on the
installed system and comparing it to a new /etc/group.

We then see the two different versions of the file being compared, the
installed file first v and the upgraded version of the file second w. Notice
the minus and plus signs at the beginning of these lines. A minus sign indi-
cates that a line is from the currently installed file, while a plus sign shows
that a line is from the version in /usr/src.

This is nicely illustrated by the next two lines mergemaster shows. The
first group listed, marked by a minus sign, is for the current wheel group x.
The second line is the password entry y for the out-of-the-box upgrade.
This host’s wheel group has a user that’s not in the default install. I want to
keep my account there.

At the end of the listing, there’s a group with a minus sign in front
of it z. This group exists on the local system, but not in the source code.
That’s perfectly expected.

None of the changes here are relevant, this time.

442 Chapter 18

Once mergemaster displays all the changes in this file, it displays my
options.

 Use 'd' to delete the temporary ./etc/group
 Use 'i' to install the temporary ./etc/group
 Use 'm' to merge the temporary and installed versions
 Use 'v' to view the diff results again

 Default is to leave the temporary file to deal with by hand

How should I deal with this? [Leave it for later] d

I have four choices. I can delete the temporary /etc/group with d. If I
want to throw away my current configuration and install one straight from
the source code, I can install it with i. If I need some of both the old and
new versions, I can use m. And if I wasn’t paying attention, I can see the com-
parison again with v.

The new /etc/group has no changes I need. I delete it, letting merge-
master go to the next file, /etc/passwd.

The mergemaster display of the password file starts off much like the
groups file. Yes, the root password has changed—I’d hope so! There’s an
extra entry for my account. But in the middle of the display, there’s an entry
like this:

_pflogd:*:64:64::0:0:pflogd privsep user:/var/empty:/usr/sbin/nologin
u +_dhcp:*:65:65::0:0:dhcp programs:/var/empty:/usr/sbin/nologin

uucp:*:66:66::0:0:UUCP pseudo-user

The line for the user _dhcp u is preceded by a plus sign, and there’s no
corresponding _dhcp entry with a minus sign. The user _dhcp exists in the
downloaded source code, but not on the currently running system. If a new
user appears in the default FreeBSD configuration, it’s because a program
or files in the new system expect to be owned by that user.

Installing the new world will fail if this user isn’t present.
I can’t replace my current /etc/passwd, as it contains active user accounts.

I can’t throw away the new /etc/passwd because it has users I need in it. I
guess I have to merge the two files together.

How should I deal with this? [Leave it for later] m

When merging files, mergemaster splits your command window in half
with sdiff(1). The left side displays the beginning of the currently installed
file, while the right side shows the new version. Only the sections that differ
are shown. Pick the side you want in your new master.passwd file.

$FreeBSD: releng/11.1/etc/master.passwd 299 | # $FreeBSD: stable/11/etc/master.passwd 29936

This line displays the version control information from both copies of
/etc/passwd. On the left, we have the version of this file from the releng/11.1
branch, or 11.1. On the right, we have the version from stable/11, or 11-stable.

Upgrading FreeBSD 443

Future mergemaster runs will use the version information (among other
tools) to determine whether a file needs updating, so our merged file
needs the correct version number. Choose between the left (l) and right
(r) column. I want the entry on the right, so I enter r.

Mergemaster displays the next difference.

root:6fD7a5caQtkZbG93E$wGfw5G2zNORLq8qxlT8z | root::0:0::0:0:Charlie &:/root:/bin/csh

I’ve changed my root password, and I want to keep it. Enter l to keep
the left-hand version.

 > _dhcp:*:65:65::0:0:dhcp programs:/var/empty:/

In this next example, there’s no entry in the current file and the new user
_dhcp is in the new file. We need the user _dhcp to complete the installworld,
so enter r to choose the right-hand entry and get the next difference.

mwlucas:1zxU7ddkN$9GUEEVJH0r.owyAwU0NFX1:10 <

And here’s my account. If I want to log on as myself after the upgrade,
I better enter l.

Once we walk through every difference in the file, mergemaster pres-
ents our next choices:

 Use 'i' to install merged file
 Use 'r' to re-do the merge
 Use 'v' to view the merged file
 Default is to leave the temporary file to deal with by hand

 *** How should I deal with the merged file? [Leave it for later]

Viewing the merged file is always a good idea, unless you already know
you screwed up and want to do it over. Review your merged file with v, and
if it looks correct to you, install it with i.

*** You installed a new master.passwd file, so make sure that you run
 '/usr/sbin/pwd_mkdb -p /etc/master.passwd'
 to rebuild your password files

 Would you like to run it now? y or n [n]y

You need to rebuild the password database only if you want your new
user account to work. Enter y.

You can now install your new userland.

Installing the World
Still in single-user mode, you can install your brand new FreeBSD with make
installworld. You’ll see numerous messages scroll down the screen, mostly
including the word install.

444 Chapter 18

cd /usr/src
make installworld

You now have a new userland to go with your shiny new kernel.
Congratulations!

Obsolete Files

Installing all the new programs isn’t quite enough, though. An update can
remove programs and files from the base system. To see what’s obsoleted,
run make check-old.

make check-old
>>> Checking for old files
/usr/include/sys/ksyms.h
/usr/lib/clang/4.0.0/include/sanitizer/allocator_interface.h
/usr/lib/clang/4.0.0/include/sanitizer/asan_interface.h
/usr/lib/clang/4.0.0/include/sanitizer/common_interface_defs.h
--snip--

This lists every part of the system that was once installed on your system
but is no longer required. Confirm that you’re no longer using these pro-
grams; if you are, either preserve the existing unsupported program or find
an alternative.

A little later in the output, you’ll see the shared libraries that are now
obsolete:

>>> Checking for old libraries
/lib/libzfs.so.2
/usr/lib/debug/lib/libzfs.so.2.debug
/usr/lib/libarchive.so.6
/usr/lib/debug/usr/lib/libarchive.so.6.debug
/usr/lib/libmilter.so.5
--snip--

Finally, you might see a list of directories that are no longer required.
Removing a directory is fairly rare, compared to removing a file.

If you’re not specifically using any of the old programs or directories,
delete them with make delete-old. make(1) prompts you with the name of
each file and asks you to confirm that you want to delete the file.

make delete-old
>>> Removing old files (only deletes safe to delete libs)
remove /usr/include/sys/ksyms.h? y
remove /usr/lib/clang/4.0.0/include/sanitizer/allocator_interface.h? y
remove /usr/lib/clang/4.0.0/include/sanitizer/asan_interface.h?

This is stupid. There’s dozens of these files. And I’m going to delete
every single one. Fortunately, every real Unix includes tools to automate
stupidity.

Upgrading FreeBSD 445

yes | make delete-old

All of these files go away. Or, if you want to use FreeBSD’s built-in
options, use the BATCH_DELETE_OLD_FILES flag.

make -DBATCH_DELETE_OLD_FILES delete-old

I find yes(1) easier, though.

Obsolete Shared Libraries

Obsolete shared libraries require more care. Many third-party programs
link against shared libraries. If you delete the shared library, the program
won’t run. This can be really, really annoying if you, say, delete the library
required by your mission-critical application. The only way to restore ser-
vice is to recompile the program or replace the shared library. We discuss
shared libraries in Chapter 17. If none of your programs require the library,
you can delete it. Identifying every program that requires a library is a royal
pain, however.

For example, check the list of obsolete shared libraries above. One of
the entries is libzfs.so.2. Looking in /lib, I see that we now have libzfs.so.3.
Perhaps I shouldn’t need two different versions of the ZFS library. This host
uses ZFS, though, and I have a whole bunch of ZFS utilities installed. If I
remove the old version of libzfs, there’s a chance one of those programs won’t
work anymore. The presence of these obsolete library versions doesn’t hurt
anything in the short term; you can bring your system back on line with the
old libraries in addition to the new ones and reinstall your add-on software in
a more leisurely manner. We’ll update your ports later in this chapter.

If you believe that none of the libraries listed as old are important and
you can safely delete them, back up each before removing it. By just copying
the library to an old-libs directory somewhere, you’ll make recovery much
simpler when you find out that your mission-critical software doesn’t work
anymore.

You can also copy old libraries into /usr/lib/compat so that your pro-
grams will continue to run but the old libraries will be safely out of the
way. The problem here is that we both know perfectly well that you’re
never going to go clean up those libraries.

I prefer to back up the libraries and then remove them from the live
system. When I find a program doesn’t work, I temporarily copy the missing
library from the backup into a compat directory. The added annoyance ticks
me off enough to solve the real problem, so I can delete the compat library.

make check-old-libs | grep '^/' | tar zcv -T - -f /root/old-libs.tgz

Once you have the libraries backed up, delete them all. You can use the
BATCH_DELETE_OLD_FILES option here, but once again, I find yes(1) easier to type.

yes | make delete-old-libs

446 Chapter 18

If by some chance removing these libraries breaks pkg(8), run pkg-static
install -f pkg to fix pkg(8) itself or pkg-static upgrade -f to reinstall all
packages.

Another option is to use the libchk package to identify programs linked
against old libraries.

mergemaster Revisited

We’re almost there! While we already updated the passwords and group
information in /etc, we must update the rest of the files. mergemaster has
many special functions, all documented in its man page. I’m going to spe-
cifically recommend the two that I find notably useful.

When a file is added to the base FreeBSD install, there’s no need to
compare it to anything. The -i option makes mergemaster automatically
install new files in /etc. I’ll get a list of automatically installed files at the
end of the mergemaster run.

Another set of files that I don’t really care about are files that I haven’t
edited. For example, FreeBSD has dozens of startup scripts in /etc/rc.d. If I
haven’t edited a startup script, I just want to install the newest version of the
script. The -U flag tells mergemaster to automatically update any base system
file that I haven’t edited.

mergemaster -iU

The mergemaster program examines every file in /etc and compares
it to that in the base distribution of FreeBSD. This works exactly the same
way as in your preinstallation mergemaster run, so we’re not going to walk
through it here. You should be familiar with the customizations you’ve
made to your system, so nothing should surprise you. If anything looks
unfamiliar, refer to Chapter 14.

Reboot, and your base system is fully upgraded!

Customizing Mergemaster
Once you’ve run mergemaster a few times you’ll realize that certain files
always annoy you. Mergemaster will always complain about your custom-
ized /etc/motd and /etc/printcap. You’ll probably wind up typing -F or -U every
single time. You can set your preferred options in $HOME/.mergemasterrc, as
documented in mergemaster(8). While you should read the man page for
the complete list, here are the options I use most often.

Ignoring Files

Certain files you don’t want mergemaster to even bother examining. Your
organization’s /etc/motd will never match that in the FreeBSD distribu-
tion. Neither will your custom printer configuration, your snmpd.conf, or
your tailored sshd_config. To have mergemaster skip these files, list them in
IGNORE_FILES.

Upgrading FreeBSD 447

IGNORE_FILES='/etc/motd /etc/printcap'

I don’t list the password or group file here because sometimes FreeBSD
introduces new users.

Auto Install New Files

If you want mergemaster to automatically install files present in the new ver-
sion of FreeBSD but not on the system yet, set AUTO_INSTALL.

AUTO_INSTALL=yes

This is equivalent to the -i flag.

Autoupdate Unchanged Files

Different versions of FreeBSD have similar files. Some files are almost iden-
tical, differing only by the line containing version control information. You
can tell mergemaster to automatically update files that differ only by the
version control information by using the FREEBSD_ID option.

FREEBSD_ID=yes

This is the same as the -F flag.

Autoupdate Unedited Files

You can tell mergemaster to update files that haven’t been edited since they
were installed. The FreeBSD team changes /etc/ files when it wants to change
how the system behaves. While many of those changes might be irrelevant to
you, a few might give you trouble. If you want to blindly update everything
you haven’t touched, set AUTO_UPGRADE.

AUTO_UPGRADE=yes

This is equivalent to the -U option.

Update Databases

FreeBSD builds databases from /etc/master.passwd, /etc/services, and so on.
If you update these files, you also need to update the corresponding data-
bases. Mergemaster asks you at the end of each run if you want to run these
updates. Tell mergemaster always to run the updates by setting RUN_UPDATES.

RUN_UPDATES=yes

You can find other options in mergemaster(8).

448 Chapter 18

Upgrades and Single-User Mode
According to the instructions, several parts of the upgrade must be done in
single-user mode. Many users consider this an annoyance or even a handi-
cap. FreeBSD programs are just files on disk, aren’t they? Common sense
says that you can just copy them to the disk, reboot, and be done with it.

Here’s yet another instance where your common sense is trying to
ruin your month. On rare occasions, the FreeBSD team needs to make
some low-level changes in the system that require running the install
in single-user mode. You can have conflicts where vital programs won’t
run when installed in multiuser mode. This is rare, but if it happens with
/bin/sh, you’re in a world of hurt. You have a very straightforward recovery
route if that happens: remove the hard drive from the server, mount it
in another machine, boot the other machine, and copy your data off the
destroyed system before formatting and reinstalling. Or, you can boot
from the installation media and demonstrate your amazing sysadmin
skills.5

Running in multiuser mode can cause other upgrade problems, such
as subtle races, symbol issues, and innumerable other headaches. You can
choose to upgrade in multiuser mode, but don’t complain if your system
has a problem.

It’s perfectly safe to build your new world in multiuser mode. You can
even build and install your new kernel in multiuser mode. Once you start
installing the userland, however, you must be in single-user mode and run-
ning on your upgraded kernel.

Shrinking FreeBSD
What’s the point of having all this source code if you can’t customize your
operating system? FreeBSD not only gives you the source code; it provides
ready-to-turn knobs to easily customize your FreeBSD build.

These options can be set in either /etc/make.conf (see Chapter 16) or
/etc/src.conf. Settings in src.conf apply only to building the FreeBSD source,

5. This is the voice of experience. Don’t do it. Really.

nF S a nd Upgr a de S

Have a lot of machines to update? Look at NFS, which we discussed in
Chapter 13. Build world and all your kernels on a central, fast machine,
and then export /usr/src and /usr/obj from that system to your other clients.
Running make installkernel and make installworld from those NFS exports
saves build time on all your other machines and guarantees that you have the
same binaries on all your FreeBSD boxes.

Upgrading FreeBSD 449

while make.conf ’s settings apply to all source code building. The full list of
src.conf options are documented in src.conf(5), but they all follow a standard
pattern.

Each of these options starts with either WITHOUT_ or, in a few cases, WITH_
and then names a specific subsystem. For example, the WITHOUT_BHYVE option
turns off building or installing the bhyve(8) hypervisor. The WITHOUT_INETD
option turns off building the inetd(8) daemon (see Chapter 20). The
WITHOUT_INET6 option turns off IPv6. If you want to shrink your FreeBSD
install, chop out everything you don’t need.

The build system checks to see whether any of these variables are defined
to any value at all. This means that even if you set one of these to NO, the mere
presence of the option activates the option. Don’t go copying all of these to
src.conf and setting them all to NO because you’ll disable building a great big
bunch of the system.

In most cases, adding these WITHOUT_ options includes the removed sys-
tems in the make delete-old checks. If you decide that your system doesn’t
need bhyve(8), for example, the upgrade not only doesn’t build a new
bhyve binary but also offers to remove the existing one from the installed
system. If you’re not building a piece of software, you’re better off removing
it entirely as opposed to leaving the old version lingering on the system.

Packages and System Upgrades
Operating system upgrades are great, except for the part where nobody
cares.6 Base operating system updates are necessary, but most people don’t
really care about using the base system. They care about using software that
runs on the base system. And that software is prone to the same flaws as
every other program. You need to upgrade it. Chapter 15 discusses upgrad-
ing packages in general, but let’s talk about what happens when you upgrade
the operating system underneath the packages.

The common issues with packages and system upgrades normally boil
down to shared libraries. If you’re upgrading FreeBSD major releases—
say, from FreeBSD 12 to FreeBSD 13—you’ll need to reinstall all of your
packages.

Start by upgrading pkg(8) itself, using the -f flag to pkg upgrade. If the
upgrade broke pkg(8) itself, you’ll need to use pkg-static(8). This contains
key pkg(8) functions, but it’s a static binary.

pkg-static upgrade -f pkg

This will bootstrap you into the current package tools. Now you can
force a redownload and reinstall of all packages.

pkg upgrade -f

6. Unless things go wrong. Then everybody cares—a lot.

450 Chapter 18

Once you’ve upgraded everything you built from packages, rebuild any-
thing you built from ports. I really hope you installed your ports via poudri-
ere, though.

Updating Installed Ports
If you use portsnap to update your ports tree, anything you install from
now on will be the latest version. But what about your previously installed
applications? FreeBSD tracks all sorts of dependency information between
add-on packages, and often updating one program will impact dozens
of others. This is a royal pain to manage. Wouldn’t it be nice to just say,
“Update my Apache install,” and have FreeBSD manage the dependencies
for you? There’s a few ways to solve this issue.

The best way is not to use the ports tree on a production host. Build
a private repository with poudriere instead (see Chapter 16), and have all
of your hosts pull from that. This is a change from traditional FreeBSD
sysadmin practice.

Maybe you have the ports tree installed locally and use one or two
custom ports atop a bunch of packages. If you have a single port installed,
rebuild it, uninstall the package, and install the new port. This is terrible
for complicated ports with many dependencies but works fine for hosts with
one or two ports.

Some of us have been around a long time, though, and feel like we live
between those solutions. Our hosts feel too small to run poudriere, but we
need custom ports. FreeBSD doesn’t include an official tool for updating a
system managed largely by ports, but people have written add-on tools, such
as portupgrade and portmaster. The problem with these tools is that they’re
maintained outside of FreeBSD. If they can’t upgrade a port but the normal
build process works, the tool users are responsible for fixing the problems.
That’s true of all parts of FreeBSD, but the base system has a wider base of
users than any add-on tool.

As I write this, though, FreeBSD’s ports infrastructure is changing to
support multiple versions of a single package. These tools haven’t been
updated to accommodate the new infrastructure. I expect one of them
will be, but I can’t say which that will be. Chapter 16 recommended using
only packages in production. This is why.

Now that you can update your system and installed software, let’s look
at some of FreeBSD’s more interesting security features.

19
A d v A n c e d S e c u r i t y F e A t u r e S

FreeBSD includes a variety of tools for
securing network traffic and users. Some

of these tools are invisible to sysadmins but
work behind the scenes to increase security,

such as the sandboxing API capsicum(4). Packet filter-
ing lets you control who can access your system. You
can also use blacklisting to block network addresses that keep poking at
your host. In addition, FreeBSD has a whole bunch of optional security
features you can enable either in the installation process or later. In this
chapter, we’ll examine these tools and techniques, look at monitoring your
system’s security, and discuss how to react if you suffer an intrusion.

Let’s start with a core security topic: unprivileged users.

452 Chapter 19

Unprivileged Users
An unprivileged user is a specific user for a specific task. He has only the
rights necessary to perform that limited task. Many programs run as
unprivileged users or use unprivileged users to perform specific duties.

“Only the rights needed to perform its duties” sounds like every user
account, doesn’t it? That’s true, but the account used by the least privileged
human being still has more rights than many programs need. Anyone with
shell access has a home directory. The normal user may create files in their
home directory, run text editors, or process email. Your average shell user
needs these minimal privileges, but programs do not. By having a program,
particularly a network daemon, run as a very restricted user, you control the
amount of damage an intruder can do to either the program or the user.

FreeBSD includes several unprivileged users. Take a look at /etc/passwd
and you’ll see accounts like audit, bind, uucp, and www. These are all unpriv-
ileged accounts for use by specific server daemons. See what they have in
common.

Unprivileged users don’t have normal home directories. Many have
a home directory of /nonexistent, while others, such as sshd, have a special
home directory such as /var/empty. Having a home directory where you may
not write or read files makes the account less flexible but good enough for
a server daemon. These users do own files on the system, but they usually
can’t write to those files.

Similarly, nobody should ever log into these accounts. If the account
bind is reserved for the DNS system, nobody should actually log into the
system as that user! Such an account must have a user shell that specifically
denies logging in, like /usr/sbin/nologin. How does all this enhance system
security? Let’s look at an example.

Whatever web server you’re using, it generally runs under the unprivi-
leged account www. Suppose that an intruder discovered a security flaw in
the version of the web server program you’re using and can make the web
server execute arbitrary code. This is among the worst types of security
problems, where an intruder can make the server program do absolutely
anything within its power. What is within this program’s power?

The intruder probably wants a command prompt on the system.
A command prompt on a Unix-like system is the door to so much more
access, after all. The unprivileged user has an assigned shell that specifi-
cally disallows logins. This really annoys intruders and requires them to
work much harder to reach that command prompt.

If she’s really clever, though, the nologin shell won’t stop the intruder.
Let’s assume that through clever trickery she makes the web server execute
a simple shell, such as /bin/sh, and offer her the prompt. She’s in and can
wreak untold damage . . . or can she?

She has no home directory and doesn’t have permissions to create one.
That means that any files she wants to store must go in a globally accessible
directory, such as /tmp or /var/tmp, increasing her visibility. The Apache con-
figuration file is owned by root or by your web server administration group,
and the www user isn’t part of that group. The intruder might have a path

Advanced Security Features 453

into the web server, but she can’t reconfigure it. She can’t change the website
files, as the www user doesn’t own them. The www user doesn’t have access
to anything on the system except the web server itself. A sufficiently skilled
intruder can make the web server serve up different pages or redirect to
another site, at least until a reboot. Penetrating the application running on
the server, or the host itself, requires another whole set of security breaches.

An unprivileged user doesn’t solve all security problems, mind you. Our
compromised www user can view web application source files. If your appli-
cation is badly written or has database passwords hardcoded into hidden
files, you’re still in a lot of trouble. Still, if you’ve kept your system updated
and all your packages up-to-date, an intruder will have a very hard time
penetrating FreeBSD itself.

The nobody Account
For years, system administrators used the account nobody as a generic
unprivileged user. They’d run web servers, proxy servers, and whatever
else as nobody. This was better than running those programs as root, but
not as good as having separate users for each daemon. If an intruder suc-
cessfully penetrated one of these programs, he had access to them all.
Our hypothetical web server intruder would abruptly have access not only
to the web server but also to whatever other programs run as that same
user! If you’re using NFS, remember that NFS defaults to mapping remote
root accounts to nobody. The whole point of using unprivileged users is to
minimize the possible damage from a successful intrusion.

While you might test with the nobody account, never deploy production
services with it. Use separate unprivileged accounts liberally.

A Sample Unprivileged User
Here are parameters useful for a generic unprivileged user:

Username Assign a username related to the user’s function. For
example, the default user for web servers is www.

Home directory Unprivileged users should deliberately not have a
home directory, so use /nonexistent. Do not create a /nonexistent direc-
tory either; the whole point is that it doesn’t exist!

Shell Unpriviliged users must not have a shell that can execute com-
mands, so use /usr/sbin/nologin.

UID/GID Choose a special range of user and group IDs for unprivi-
leged users.

Full name Assign a name describing the user’s function.

Password Use chpass(1) to assign the user a single asterisk as their
encrypted password. This disables the account password. (Note that
chpass(1) stands for change password file, not change password!)

These settings make your unprivileged user very unprivileged indeed.
You can set all of this easily with adduser(8), giving the account no pass-
word, the correct home directory, and an appropriate shell.

454 Chapter 19

Many ports and packages have assigned unprivileged users and groups,
listed in /usr/ports/UIDs and /usr/ports/GIDs. Don’t be afraid to add more.
Use UIDs above 1,000, so as not to conflict with those assigned by packages
and FreeBSD’s core.

Network Traffic Control
Sysadminis must have the ability to control traffic to and from their systems.
Unwanted visitors must be stopped while legitimate users get access. FreeBSD
provides a variety of tools that allow you to control outside access to your sys-
tems, including TCP wrappers, packet filtering, and blacklisting.

The TCP wrappers, or simply wrappers, control access to network dae-
mons. While the program must be written to support TCP wrappers, most
modern software has supported wrappers for many years. Wrappers are
fairly simple to configure and don’t require much networking knowledge.
As access controls go, however, wrappers are fairly limited. Wrappers do let
you do interesting things with connections and with daemons offering con-
nections, though, which is why we’ll discuss it.

Packet filtering controls which traffic the system allows to pass through
it and which traffic it rejects. Most firewalls are packet filters with a pretty
GUI on top, but you can use FreeBSD packet filtering and proxy software
to build a solid firewall in and of itself. A rejected connection request never
reaches any userland program; it’s blocked in the network stack. Packet fil-
tering can control access to any program, service, or network port but does
require more networking knowledge.

Blacklisting is useful when you want a program to be able to decide to
stop listening to a remote host. The most common tool for blacklisting is
fail2ban (https://www.fail2ban.org/), which is flexible but requires much
special configuration. FreeBSD includes blacklistd, an easier-to-configure
blacklisting tool that requires integration with programs that use it.

Which should you use? For basic TCP/IP access control, I recommend
always using a packet filter. Only use TCP wrappers if you need their spe-
cific features. I discuss blocking and allowing connections with TCP wrap-
pers only as a prerequisite to those advanced features. If you want a service
to block clients after a certain number of failed connection attempts, con-
sider blacklistd.

With wrappers or packet filtering, you must decide whether you want a
default accept or default deny traffic control policy.

Default Accept vs. Default Deny
One of the essential decisions in any security policy is between default
accept and default deny. A default accept security stance means that you
allow any type of connection except what you specifically disallow. A
default deny stance means that you allow connections only from specified
parts of the internet and/or to specified services and that you refuse all

Advanced Security Features 455

other connections. The default is used unless you make a specific rule
dictating otherwise. Once you’ve chosen your default security stance, you
create exceptions one way or another to either provide or block services as
necessary. The choice is really between whether you offer services to the
world (default accept) or only to a select few (default deny).

For example, company policy might dictate that the intranet web server
must be accessible only from within the company. If so, adopt a default deny
stance and explicitly list who may access the server. Alternatively, if you have
a public website but want to block certain parts of the internet from access-
ing it for whatever reason, adopt a default accept stance.

I always recommend a default deny stance. If you don’t make a choice,
however, you’ve chosen default accept.

Choosing a default doesn’t mean that the default must be implemented
without exceptions. My public web servers have a default deny security stance,
but I specifically allow the world to access the websites. The machine rejects
attempts to connect to other programs unless they come from one of a few
specified IP addresses. This is a perfectly acceptable default deny stance.

Different security tools implement these stances in different ways. For
example, with TCP wrappers, the first matching rule is applied. If your last
rule denies everything, you’ve established a policy that says, “Unless I’ve spe-
cifically created a rule earlier to permit this traffic, block it.” On the other
hand, with the PF packet filter, the last matching rule applies. If your first
rule says, “Block all traffic,” you’ve implemented a policy that says, “Unless I
specifically create a later rule to permit this traffic, block it.”

Both default accept and default deny annoy the sysadmin. If you have a
default accept policy, you’ll spend your time continually plugging holes. If
you choose a default deny policy, you’ll spend your time opening access for
people. You’ll repeatedly apologize for either choice. With default deny, you’ll
say things like, “I’ve just activated service for you. I apologize for the incon-
venience.” With default accept, you’ll say things like, “. . . and that’s why the
intruders were able to access our internal accounting database and why we
lost millions of dollars.” In the latter case, “I apologize for the inconvenience”
really doesn’t suffice.

TCP Wrappers
Remember from Chapter 7 that network connections are made to various
programs that listen for connection requests. When a program is built with
TCP wrappers support, the program checks the incoming request against
the wrappers configuration. If the wrappers configuration says to reject the
connection, the program immediately drops the request. Despite the name,
TCP wrappers work with both TCP and UDP connections. Wrappers are a
long-running Unix standard that have been incorporated into FreeBSD.
Individual programs might or might not work with wrappers; while just
about everything in the base FreeBSD system does, some third-party soft-
ware doesn’t.

456 Chapter 19

TCP wrappers are implemented as a shared library, called libwrap. As
seen in Chapter 17, shared libraries are small chunks of code that can be
shared between programs. Any program that links with libwrap may use the
TCP wrappers functions.

Wrappers most commonly protect inetd(8), the super server that handles
network requests for smaller programs. We’ll discuss inetd in Chapter 20.
While our examples cover inetd(8), you can protect any other program that
supports wrappers in exactly the same way. While wrappers help protect
inetd(8), make sure inetd(8) doesn’t offer any unnecessary services, just as
you do for the main system.

Configuring Wrappers
Wrappers check each incoming connection request against the rules in
/etc/hosts.allow, in order. The first matching rule is applied, and processing
stops immediately. This makes rule order very important. Each rule is on a
separate line and is made up of three parts separated by colons: a daemon
name, a client list, and a list of options. Here’s a sample rule:

ftpd : all : deny

The daemon name is ftpd; the client list is all, meaning all hosts; and
the option is deny, telling wrappers to reject all connections. Nobody can
connect to the FTP server on this host unless an earlier rule explicitly
grants access.

In the early examples, I refer to only two options: accept and deny.
They allow and reject connections, respectively. We’ll discuss the addi-
tional options later.

Daemon Name

The daemon name is the program’s name as it appears on the command
line. For example, inetd(8) starts the ftpd(8) program when it receives
an incoming FTP request. The Apache web server starts a program called
httpd, so if your version of Apache supports wrappers, give the daemon
name as httpd. (Note that Apache doesn’t run out of inetd, but it can sup-
port wrappers anyway.) One special daemon name, ALL, matches all dae-
mons that support wrappers.

If your system has multiple IP addresses, you can specify, as part of the
daemon name, different wrapper rules for each IP address that a daemon
listens on:

ftpd@203.0.113.1 : ALL : deny
ftpd@203.0.113.2 : ALL : accept

In this example, we have two daemon names, ftpd@203.0.113.1 and
ftpd@203.0.113.2. Each has a separate TCP wrapper rule.

Advanced Security Features 457

The Client List

The client list is a list of specific IP addresses, network address blocks, host-
names, domain names, and keywords, separated by spaces. Hostnames and
IP addresses are simple: just list them.

ALL : netmanager.absolutefreebsd.com 203.0.113.5 : allow

With this rule at the top of /etc/hosts.allow, wrappers allow my net-
manager machine and any host with an IP address of 203.0.113.5 to con-
nect to any service on this host. (I could block this access by other means,
mind you.)

Specify network numbers in the client list with a slash between the
IP address and the netmask, as discussed in Chapter 7. For example, if
script kiddies attack your server from a bunch of addresses that begin with
192.0.2, you could block them like this:

ALL : 192.0.2.0/255.255.255.0 : deny

You can also use domain names in client lists by prefacing them with a
dot. This works through reverse DNS, which means that anyone who con-
trols the DNS server for a block of addresses can evade this restriction.

ALL : .mycompany.com : allow

If you have a long list of clients, you can even list them in a file and put
the full path to the file in the client space in /etc/hosts.allow. I’ve been on net-
works with large numbers of widely scattered hosts, such as an ISP or corpo-
rate network environment with network management workstations scattered
across the world. Each workstation shared the same wrapper rules as every
other workstation and appeared on half a dozen lines in hosts.allow. By main-
taining a single file with a workstation list, I could centralize all changes.

In addition to specifically listing client addresses and names, wrappers
provide several special client keywords to add groups of clients to your list.
Table 19-1 shows the keywords and their usage.

Most of the client keywords listed in Table 19-1 require a working DNS
server. If you use these keywords, you must have a very reliable DNS service,
and you must remember the vital link between DNS and the rest of your
programs. If your DNS server fails, daemons that use wrappers and those
keywords can’t identify any hosts. This means that everything matches your
UNKNOWN rule, which probably denies the connection. Also, broken DNS on
the client end can deny remote users access to your servers, as your DNS
servers won’t be able to get proper information from the client’s servers.
Finally, if you use DNS-based wrapping extensively, an intruder needs only
to overload your nameserver or otherwise interrupt your nameserver to
create a very effective denial-of-service attack against your network.

458 Chapter 19

Table 19-1: TCP Wrapper Keywords

Keyword Usage

ALL This matches every possible host.
LOCAL This matches every machine whose hostname does not include a dot.

Generally, this means machines in the local domain. Machines on the
other side of the world who happen to share your domain name are
considered “local” under this rule.

UNKNOWN This matches machines with unidentifiable hostnames or user
names. As a general rule, any host making an IP connection has
a known IP address. Tracing hostnames, however, requires DNS,
and tracking usernames requires identd(8). Be very careful using this
option because transitory DNS issues can make even local hostnames
unresolvable and most hosts don’t run identd(8) by default. You don’t
want a service to become unusable just because your nameserver
was misconfigured—especially if that machine is your nameserver!

KNOWN This matches any host with a determinable hostname and IP address.
Be very careful using this, as DNS outages can interrupt service.

PARANOID This matches any host whose name does not match its IP address.
You might receive a connection from a host with an IP address of
192.168.84.3 that claims to be called mail.michaelwlucas.com. Wrap
pers turn around and check the IP address of mail.michaelwlucas
.com. If wrappers get a different IP address, the host matches this
rule. Sysadmins who do not have time to maintain their DNS are the
most likely to have unpatched, insecure systems.

TCP wrappers provide additional keywords, but they’re not as useful
or secure as these. For example, it’s possible to allow connections based on
the username on the remote machine. You don’t want to rely on a client
username on a remote machine, however. For example, if I set up wrappers
to allow only someone with a username of mwlucas to connect to my home
system, someone could easily add an account of that name to his FreeBSD
system and get right in. Also, this relies on the same rarely used identd(1)
protocol that was mentioned earlier. You can find a few other obscure key-
words of similar usefulness in hosts_access(5).

The ALL and ALL EXCEPT Keywords

Both daemon names and client lists can use the ALL and ALL EXCEPT key-
words. The ALL keyword matches absolutely everything. For example, the
default hosts.allow starts with a rule that permits all connections, from all
locations, to any daemon:

ALL : ALL : accept

This matches all programs and all clients. You can limit this by giving a
specific name to either the client list or the daemon list.

ALL : 203.0.113.87 : deny

In this example, we reject all connections from the host 203.0.113.87.

Advanced Security Features 459

Categorically blocking access to all hosts isn’t that great an idea, but
remember that TCP wrappers follow rules in order and quit when they
reach the first matching rule. The ALL keyword lets you set a default stance
quite easily. Consider the following ruleset:

ALL : 192.168.8.3 192.168.8.4 : accept
ftpd : ALL : accept
ALL : ALL : deny

Our workstations 192.168.8.3 and 192.168.8.4 (probably the sysadmin’s
workstations) may access anything they want. Anyone in the world may access
the FTP server. Finally, we drop all other connections. This is a useful default
deny stance.

Use the ALL EXCEPT keyword to compress rules. ALL EXCEPT allows you to
list hosts by exclusion; what isn’t listed matches. Here, we write the same
rules with ALL EXCEPT:

ALL : 192.168.8.3 192.168.8.4 : accept
ALL EXCEPT ftpd : ALL : deny

Of course, this rule relies on having a default accept policy that permits
the FTP connection later.

Some people find rules more clear when written with ALL, others prefer
ALL EXCEPT. The important thing to remember is that the first matching rule
ends the check, so be careful slinging ALL around.

It’s a good idea to allow any connections from the local host; you’re
likely to discover a number of programs that break when they can’t talk to
the local machine. Put a rule like this early in your hosts.allow:

ALL : localhost : allow

Options

We’ve already seen two options: allow and deny. While allow permits the con-
nection, deny blocks it. The first rule in the default hosts.allow applies to all
daemons and clients, and it matches and allows all possible connections.
This rule can’t be first in your hosts.allow if you want to wrap your services,
but it’s a good final rule in a default accept security stance. Similarly, an
ALL:ALL:deny rule is a good final rule in a default deny security stance. TCP
wrappers support other options besides the simple allow and deny, however,
giving you a great deal of flexibility.

Long ruL e S

If you’re using a lot of options, wrapper rules can get very long. To help keep
rules readable, the hosts.allow file can use the backslash (\) followed by a
return as a linecontinuation character.

460 Chapter 19

Logging

Once you’ve decided to accept or reject the connection attempt, you can
also log the connection. Suppose you want to permit but specifically log all
incoming requests from a competitor. Similarly, you might want to know
how many connections your server rejects because of DNS problems when
using the PARANOID client keyword. Logging is good. More logging is better.
Disk space is cheaper than your time.

The severity option sends a message to the system log, syslogd(8). You
can configure syslogd to direct these messages to an arbitrary file based on
the syslogd facility and level you choose (see Chapter 21).

sshd : ALL : severity local0.info : allow

This example permits all SSH connections but also logs them using the
local0 facility.

Twisting

The twist option allows you to run arbitrary shell commands and scripts
when someone attempts to connect to a wrapped TCP daemon and returns
the output to the remote user. The twist option works properly only with
TCP connections. (Remember, UDP is connectionless; there’s no connec-
tion to return the response over, so you must jump through very sophisti-
cated and annoying hoops to make twist work with UDP. Also, protocols
that transmit over UDP frequently don’t expect such a response and aren’t
usually equipped to receive or interpret it. Using twist with UDP isn’t worth
the trouble.) The twist option takes a shell command as an argument and
acts as a deny-plus-do-this rule. You must know basic shell scripting to use
twist; very complicated uses of twist are possible, but we’ll stick with the
simple ones.

The twist option is useful for a final rule in a default deny stance. Use
twist to return an answer to the person attempting to connect as follows:

ALL : ALL : twist /bin/echo "You cannot use this service."

If you want to deny just a particular service to a particular host, you can
use more specific daemon and client lists with twist:

sendmail : .spammer.com : twist /bin/echo \
 "You cannot use this service, spam-boy."

This isn’t effective against spam, but it might make you feel better. Legit
customers that encounter rude messages might trigger meetings, however.

If you’re feeling friendly, you can tell people why you’re rejecting their
connection. The following twist rejects all connections from people whose
hostname doesn’t match their IP address and tells them why:

ALL : PARANOID : twist /bin/echo \
 "Your DNS is broken. When you fix it, try again."

Advanced Security Features 461

Using twist holds the network connection open until the shell com-
mand finishes. If your command takes a long time to finish, you could find
that you’re holding open more connections than you like. This can impact
system performance. A script kiddie can use twist to overload your system,
creating a very simple DoS attack. Make twist simple and quick-finishing.

Spawning

Like twist, the spawn option denies the connection and runs a specified
shell command. Unlike twist, spawn doesn’t return the results to the client.
Use spawn when you want your FreeBSD system to take an action upon a con-
nection request but you don’t want the client to know about it. Spawned com-
mands run in the background. The following example allows the connection
but logs the client’s IP address to a file:

ALL : PARANOID : spawn (/bin/echo %a >> /var/log/misconfigured) \
 : allow

Wait a minute—where did the %a come from? TCP wrappers support
several variables for use in twist and spawn commands, so you can easily cus-
tomize your responses. This particular variable, %a, stands for client address.
It expands into the client’s IP address in the shell command before the
command is run. Table 19-2 lists other variables.

Table 19-2: Variables for twist and spawn Scripts

Variable Description

%a Client address.
%A Server IP address.
%c All available client information.
%d Name of the daemon connected to.
%h Client hostname, or IP address if hostname not available.
%H Server hostname, or IP address if hostname not available.
%n Client hostname, or UNKNOWN if no hostname is found. If the hostname

and the IP address don’t match, this returns PARANOID.
%N Server hostname, but if no hostname is found, this returns either

UNKNOWN or PARANOID.
%p Daemon’s process ID.
%s All available server information.
%u Client’s username.
%% A single % character.

Use these variables anywhere you’d use the information they represent
in a shell script. For example, to log all available client information to a file
whenever anyone connects to a wrapped program, you could use this:

ALL : ALL : spawn (/bin/echo %c >> /var/log/clients) : allow

462 Chapter 19

Spaces and backslashes are illegal characters in shell commands and
might cause problems. While neither appears in hostnames under normal
circumstances, the internet is almost by definition not normal. TCP wrappers
replace any character that might confuse the command shell with an under-
score (_). Check for underscores in your logs; they might indicate possible
intrusion attempts or just someone who doesn’t know what they’re doing.

Wrapping Up Wrappers
Let’s take all the examples given so far in this section and build a complete
/etc/hosts.allow to protect a hypothetical network system. We must first inven-
tory the network resources this system offers, the IP addresses we have on the
network, and the remote systems we wish to allow to connect.

While these requirements are fairly complicated, they boil down to a
very simple ruleset:

#reject all connections from hosts with invalid DNS and from our competitor
ALL : PARANOID 198.51.100.0/24 : deny
#localhost can talk to itself
ALL : localhost : allow
#our local network may access portmap, but no others
portmap : ALL EXCEPT 203.0.113.0/24 : allow
#allow SSH, pop3, and ftp, deny everything else
sshd, POP3, ftpd : ALL : allow
ALL : ALL : deny

You can find many more commented-out examples in /etc/hosts.allow or
in hosts_allow(5) and hosts_access(5).

Packet Filtering
To control access to networked programs that don’t support TCP
wrappers, or whenever your needs exceed what wrappers provide, use
one of FreeBSD’s kernel-level packet filtering tools. If you need a packet
filter, it’s best to entirely replace your TCP wrappers implementation with
packet filtering. Using both tools at once on the same machine will simply
confuse you.

A packet filter compares every network packet that enters the system to a
list of rules. When a rule matches the packet, the kernel acts based upon that
rule. Rules can tell the system to allow, drop, or alter the packet. You can’t use
the nifty options provided by TCP wrappers, however; instead of spitting a
comparatively friendly rejection message back at the client, the connection is
severed at the network level before the client even reaches the application.

While the idea of packet filtering is straightforward enough, your first
implementation will be a complete nightmare—er, I mean, a “valuable
learning experience.” Be prepared to spend hours experimenting and
don’t be discouraged by failures. In my experience, it’s ignorance of basic
TCP/IP that causes grief with packet filtering, rather than the packet filter
itself. Trying to filter network traffic without understanding the network is

Advanced Security Features 463

frustrating and pointless. The only way to really understand TCP/IP is to
do real work with it, however. Go study Chapter 7 again. If that doesn’t suf-
fice, dig into the books recommended there.

FreeBSD suffers from a wealth of packet filters: IPFW, IP Filter, and PF.
IPFW is the primordial FreeBSD packet filtering software. It’s tightly

integrated with FreeBSD; in fact, the generically named files /etc/rc.firewall
and /etc/rc.firewall6 are purely for IPFW. While quite powerful and very popu-
lar with more experienced FreeBSD administrators, it’s a little difficult for a
beginner.

The second packet filter, IP Filter, is not a FreeBSD-specific firewall
program but is supported on several Unix-like operating systems. It’s pri-
marily the work of one individual, Darren Reed, who has by heroic effort
developed the overwhelming majority of the code and ported it to all those
operating systems. IP Filter is most useful if you want to share one firewall
configuration among multiple operating systems.

We’ll focus on the imaginatively named PF, or packet filter. PF originated
in OpenBSD and was designed to be featureful, flexible, and easy to use.
The average FreeBSD administrator can use PF to achieve almost any effect
possible with the other two packet filters.

n o t e For in-depth discussion of PF, you might check out Peter N. M. Hansteen’s The
Book of PF (No Starch Press, 2014) or my book Absolute OpenBSD (No Starch
Press, 2013), which contains several chapters about PF. You might also look at the
online PF FAQ, but that has fewer haiku.

Enabling PF
PF includes the packet filtering kernel module, pf.ko, and the userland pro-
gram pfctl(8). Before using PF, you must load the kernel module. The sim-
plest way is to enable PF in rc.conf:

pf_enable="YES"

PF defaults to the accept all stance, which means that you won’t lock
yourself out of your server merely by enabling the firewall.

Default Accept and Default Deny in Packet Filtering
The security stances (default accept and default deny) are critical in packet
filtering. If you use the default accept stance and want to protect your sys-
tem or network, you need numerous rules to block every possible attack.
If you use the default deny stance, you must explicitly open holes for every
little service you offer. In almost all cases, default deny is preferable; while it
can be more difficult to manage, its increased security more than makes up
for that difficulty.

When using a default deny stance, it’s very easy to lock yourself out
of remotely accessing your machine. When you have an SSH connection
to a remote machine and accidentally break the rule that allows SSH
access, you’re in trouble. Everybody does this at least once, so don’t be too

464 Chapter 19

embarrassed when it happens to you. The point is, it’s best not to learn
about packet filtering on a remote machine; start with a machine that you
can console into so you can recover easily. I’ve cut my own access many
times, generally because I’m not thinking straight when solving an unre-
lated packet filtering problem. Without a remote console or IPMI, the only
fix is to kick myself as I climb into the car, drive to the remote location, and
apologize profusely to the people I’ve inconvenienced as I fix the problem.
Fortunately, as I grow older, this happens less and less.1

Still, in almost all circumstances, a default deny stance is correct. As a
new administrator, the only way you can reasonably learn packet filtering
is if you have convenient access to the system console. If you’re not entirely
confident in your configuration, don’t set up a packet filtering system across
the country unless you have remote console and power access, a competent
local administrator, or a serial console.

Basic Packet Filtering and Stateful Inspection
Recall from Chapter 7 that a TCP connection can be in a variety of states,
such as opening, open, closing, and so on. For example, every connection
opens when the client sends a SYN packet to the server to request connection
synchronization. If the server is listening on the requested port, it responds
with a SYN-ACK, meaning, “I’ve received your request, and here’s basic infor-
mation for our connection.” The client acknowledges receipt of the informa-
tion with an ACK packet, meaning, “I acknowledge receipt of the connection
information.” Each part of this three-way handshake must complete for a
connection to occur. Your packet filtering ruleset must permit all parts of the
handshake, as well as the actual data transmission, to occur. Allowing your
server to receive incoming connection requests is useless if your packet filter
rules don’t permit transmitting that SYN-ACK.

In the early 1990s, packet filters checked each packet individually. If
a packet matched a rule, it was allowed to pass. The system didn’t record
what it had previously passed and had no idea whether a packet was part
of a legitimate transaction or not. For example, if a packet arrived marked
SYN-ACK with a destination address inside the packet filter, the packet
filter generally decided that the packet had to be the response to a packet it
had previously approved. Such a packet had to be approved to complete the
three-way handshake. As a result, intruders forged SYN-ACK packets and
used them to circumvent seemingly secure devices. Since the packet filter
didn’t know who had previously sent a SYN packet, it couldn’t reject illegiti-
mate SYN-ACK packets. Once an intruder gets packets inside a network, he
can usually trigger a response from a random device and start to worm his
way in.

Modern packet filters use stateful inspection to counteract this problem.
Stateful inspection means keeping track of every connection and its current
condition. If an incoming SYN-ACK packet appears to be part of an ongo-
ing connection, but nobody sent a corresponding SYN request, the packet is

1. Instead, I order flunkies to drive in, fix the problem, and apologize for me. Problem solved.

Advanced Security Features 465

rejected. While this complicates the kernel, writing stateful inspection packet
filter rules is easier than writing old-fashioned rules. The packet filter must
track many, many possible states, so this is harder to program than it might
seem—especially when you add in problems such as packet fragmentation,
antispoofing, and so on.

PF performs stateful inspection by default. You don’t need to specify it
in a rule.

If you’ve started to think, “Hey, packet filtering sounds like a firewall,”
you’re right, to a point. The word firewall is applied to a variety of network
protection devices. Some of these devices are very sophisticated; some lose
intelligence contests to cinderblocks. These days, the term firewall is noth-
ing more than a marketing buzzword with very little concrete meeting. The
word firewall is like the word car : do you mean a rusty 1972 Gremlin with
a 6-horsepower engine and an exhaust system that emits enough fumes to
breach the Kyoto Accords, or a shiny Tesla Roadster with a 500-horsepower
engine, a fancy tricolor paintjob, and the Stereo System of The Apocalypse?
Both have their uses, but one is obviously designed for performance. While
the Gremlins of firewalls might have their place, it’s preferable to get the
best you can afford.

Having said that, FreeBSD can be made as solid a firewall as you desire.
Packet filtering is only the beginning. The packages collection contains
a variety of application proxies that can let your FreeBSD system go up
against Checkpoint or a PIX and come out on top—for tens of thousands
of dollars less.

Configuring PF
Configure PF in /etc/pf.conf. This file contains statements and rules whose
formats vary with the features they configure. Not only is the rule order
extremely important but also the order in which features are configured. If
you try to do stateful inspection before you reassemble fragmented packets,
for example, connections won’t work properly.

The default /etc/pf.conf has the sample rules in the proper order, but if
you’re in the slightest danger of becoming confused, I suggest that you put
large comment markers between the sections, in capital letters if necessary.
(Use hash marks to comment pf.conf.) The features must be entered in this
exact order:

1. Macros

2. Tables

3. Options

4. Packet normalization

5. Bandwidth management

6. Translation

7. Redirection

8. Packet filtering

466 Chapter 19

Yes, PF does more than just filter packets. It’s a general-purpose TCP/IP
manipulation tool. We won’t cover all of its features here; go read Peter’s book.

Macros

A macro lets you define variables to make writing and reading rules easier.
For example, here are macros to define your network interface and your IP
address:

interface="em0"
serveraddr="203.0.113.2"

Later in your rules, you may describe your network interface as $interface
and your server’s IP address as $serveraddr. This means that if you renumber
your server or change your network card, making one change in your pf.conf
fully updates your rules.

Sometimes you’ll want a rule to refer to “all IP addresses currently on
this interface.” You don’t care which address the traffic arrives at, you just
want either to accept or reject traffic to that interface. PF provides short-
hand for this. Enclose the interface name in parentheses, as we’ll see later.
(You can use the interface name without parentheses, but then PF won’t
notice any IP changes since the last reload or restart.)

Tables and Options

PF can store long lists of addresses through tables. That’s a more sophisti-
cated use of PF than we’re going to use, but you should know the capability
exists.

Similarly, PF has a variety of options that control network connection
timing, table sizes, and other internal settings. The default settings are gen-
erally adequate for normal (and most abnormal) use.

Packet Normalization

TCP/IP packets can be broken up in transit, and processing these shards of
data increases system load and the amount of work your server must do both
to serve the request and filter the packets. A system must reassemble these
fragments before handing them on to your client software, while deciding
what to do with any other random crud that arrives. PF refers to this reas-
sembly as scrubbing. For example, to reassemble all fragments coming in your
network interface, drop all fragments too small to possibly be legitimate, and
otherwise sensibly sanitize your incoming data stream, use the following rule:

scrub in

This affects all packets entering the computer.
While scrubbing seems like a “nice to have,” it’s actually quite impor-

tant since PF filters are based on whole packets. Fragments are much more
difficult to filter and require special handling unless reassembled. Not
scrubbing your traffic causes connectivity problems.

Advanced Security Features 467

Bandwidth, Translation, and Redirection

PF includes other features vital for firewalls and performs other functions
normally associated with network devices. Through queueing, PF can
control how much traffic the host transmits on a per-IP or even per-port
basis. PF includes a whole bunch of features to support Network Address
Translation (NAT) and port redirection, two critical firewall features. The
support exceeds that found in many commercial offerings.

All of this would fill another book. Literally. Peter Hansteen wrote The
Book of PF. Go read that and build a firewall. Every sysadmin should build
a firewall out of a raw operating system at least once in her life. Even if you
revert to using a commercial offering, a little embedded device, or a product
like pfSense or OPNsense, you’ll learn a whole bunch.2

Small-Server PF Rule Sample
Here’s a sample set of PF rules for protecting a small internet server. Start
from here and edit this to match your server’s requirements.

u ext_if="em1"
v set skip on lo0
w scrub in

x block in
y pass out

z pass in on $ext_if proto tcp from any to ($ext_if) port {22, 53, 80, 443}
{ pass in on $ext_if proto udp to ($ext_if) port 53
| pass in on $ext_if inet proto icmp to ($ext_if) icmp-type { unreach, redir,
 timex, echoreq }

We start by defining a macro for our interface name u so that if we
change network cards, we won’t need to rewrite all our rules.

The second line instructs PF not to filter on the lo0 interface v. The
loopback interface is local to the machine. The only host that can commu-
nicate over it is the local machine.

Then, we scrub incoming traffic w, reassembling packets into a coher-
ent whole and throwing away what can’t be reassembled.

Now that we have a sensible stream of incoming data, we can filter it.
This policy starts by blocking all incoming traffic x, setting a default deny
policy. Everything not explicitly permitted is forbidden.

Outbound traffic gets a default allow policy y.
The final three rules in this policy address TCP, UDP, and ICMP. They

have a similar format, which we’ll dissect shortly.
First, we permit TCP traffic to ports 22, 53, 80, and 443 z.
Next, we permit UDP traffic to port 53 {. If this host offered more ser-

vices than DNS, we’d have a longer list of ports.

2. After learning these things, your own screams might wake you up at night for a few years.
But you’ll get over it.

468 Chapter 19

The final rule allows vital ICMP traffic to our host and permits the host
to respond |.

Let’s take a closer look at the TCP rule.

upass invon $ext_ifwproto tcpxfrom anyyto ($ext_if)zport {22, 53, 80, 443}

This host has a default deny policy on inbound traffic, so with the pass
in statement u, we’re carving out an exception to that policy.

The next chunk of the rule specifies which interface this rule applies
to v. This rule applies to the interface defined by the macro $ext_if, or em1.

Then, we specify a protocol w. This rule applies to TCP connections.
You can write PF rules that apply only to specific source or destination

addresses. This rule applies to traffic from any host x. You can drop this
part of the rule if you’re permitting any source address.

We then specify a destination address y. The destination is the inter-
face name in parentheses, which means “any IP address on this interface.”

Lastly, define the ports this rule applies to z. The braces allow
you to group several entities together. The filter permits connections to
port 22 (ssh), 53 (DNS), 80 (HTTP), and 443 (HTTPS). You could specify
a port by its name (from /etc/services), but I find numbers to be more reliable.
Editing /etc/services shouldn’t break your firewall! Deploying a new TCP
service on this host requires only adding a port to the list and reloading the
firewall rules.

The UDP rule is very slightly different.

pass in on $ext_ifuproto udp to ($ext_if)vport 53

The most obvious change is defining UDP protocol instead of TCP u.
One less obvious change is that this rule drops the source address. It applies
to packets from any address. This packet filter allows only one port, 53 v.
Rules with a single port don’t need braces.

The ICMP rule looks a little tricky, but it’s really just the same.

pass in on $ext_if inetuproto icmp to ($ext_if)vicmp-typew{ unreach, redir, timex echoreq }

Specifying that this rule applies to ICMP is straightforward u. And this
rule also doesn’t list a source address, so it applies to traffic from anywhere.

Where the TCP and UDP rules specify a destination port, this ICMP
rule lists an icmp-type v. ICMP doesn’t have ports, but it does have different
types of traffic. For our purposes, though, ICMP types are much like ports.
Types have numerical codes, but the names are easier.

This rule specifies four different types of ICMP traffic w.
Taken as a whole, this rule permits ICMP traffic that’s generally neces-

sary for proper internet functioning. Your environment might need other
ICMP types. Your organization’s security policy might specify what ICMP
you can and cannot pass. But these four are a reasonable combination for
an internet-facing server.

Advanced Security Features 469

This simple policy defines basic rules for communicating with our server.
While it’s not perfect, it can raise barriers for intruders. That jerk who broke
into your web server and started a command prompt on port 10000? If your
firewall rules don’t allow incoming connections on that port, all their hard
work will be wasted. Such a tragedy.

Managing PF
Manage PF with pfctl(8). If your rules have no errors, pfctl(8) runs silently;
it produces output only when you have errors. You’ll want to test, activate,
view, and remove rules.

Testing Rules

As a firewall error can cause you much grief, it’s best to check your rules
before activating them. While a rule check only parses the file, checking for
grammatical errors in the rules themselves, activating rules with grammati-
cal errors either leaves your system unprotected, locks you out, or both. Use
the -n flag to check a file for problems and -f to specify the PF rules file.

pfctl -nf /etc/pf.conf

If you get errors, fix them and try again.

Activating Rules

Once your syntax check runs silently, activate the new rules by removing
the -n flag.

pfctl -f /etc/pf.conf

Changing PF configuration is very quick. This means you can have sev-
eral PF configurations for different times or situations. Perhaps you want
to allow access only to certain services at certain parts of the day; you could
schedule a pfctl(8) run to install appropriate rules for those times. Or maybe
you have separate rules for disaster situations and want to install a special
ruleset when you lose your internet connection. Using pfctl(8) makes all
these configurations simple.

View Rules

If you want to see the rules currently running on your firewall, use pfctl -sr.

pfctl -sr
scrub in all fragment reassemble
block drop in all
pass in on em1 proto tcp from any to (em1) port = ssh flags S/SA keep state
pass in on em1 proto tcp from any to (em1) port = domain flags S/SA keep state
pass in on em1 proto tcp from any to (em1) port = http flags S/SA keep state
pass in on em1 proto tcp from any to (em1) port = https flags S/SA keep state
pass in on em1 proto udp from any to (em1) port = domain keep state

470 Chapter 19

pass in on em1 inet proto icmp from any to (em1) icmp-type unreach keep state
pass in on em1 inet proto icmp from any to (em1) icmp-type redir keep state
pass in on em1 inet proto icmp from any to (em1) icmp-type timex keep state
pass in on em1 inet proto icmp from any to (em1) icmp-type echoreq keep state
pass out all flags S/SA keep state

You can write PF rules in exactly the format shown here.
Note that while we specified multiple TCP ports in the configuration

file, in the packet filter each TCP and UDP port gets its own rule. Likewise,
each ICMP type gets its own rule.

Removing Rules

Finally, remove all rules from your running configuration with the -Fa
(flush all) flags. (You could use flags other than a to remove parts of your
firewall config, but that can leave your system in an inconsistent state.)

pfctl -Fa

You’ll see PF systematically erase all rules, NAT configurations, and
anything else in your configuration. Do not manually clear the configura-
tion before loading a new configuration; just load the new rules file to erase
the old rules.

PF is terribly powerful, very flexible, and can abuse TCP/IP in almost
any way you like (and some ways you won’t like). We’ve barely scratched
the surface. Check out some of the resources listed at the start of “Packet
Filtering” on page 462 to explore PF in depth.

Blacklistd(8)
Sometimes you want more thoughtful packet filtering than a simple allow
or deny permits. I often have SSH servers open to the public internet so
that I can log in from anywhere. I do rather resent botnets thinking that
I’d be sufficiently daft to permit logins without a password, though. That’s
where blacklistd(8) comes in.

Blacklistd lets a daemon report, “Hey, this IP address is bugging
me.” Once blacklistd receives a sufficient number of complaints about an
address, it tells the firewall to block that address. Those bots eternally
poking at your SSH server? They’re history.

This sort of blacklisting is only marginally useful against distributed
botnets like the Hail Mary Cloud, but even then, you might be able to con-
figure sensitivity to block out the most annoying clients. It all depends on
just how intrusive each botnet member is.

To use blacklistd, you must set up the packet filter to accept input from
blacklistd, set tolerance levels for each service, and configure the service to
use blacklistd.

Advanced Security Features 471

PF and Blacklistd
PF handles dynamic rules through anchors. You can use pfctl(8) to edit an
active anchor, letting you insert rules at a specific point in the policy. Add
the blacklistd anchor to your rules right before your first block and pass
statements. Using the policy from the previous section, your rules would
look like this:

--snip--
anchor "blacklistd/*" in on $ext_if
block in
pass out
--snip--

You must include the quotes around the anchor name, and you must
specify the interface.

The packet filter is now ready for dynamic blacklisting.

Configuring Blacklistd
Blacklistd gets its configuration from /etc/blacklistd.conf. While most of its
configuration goes in this file, you can also modify the service’s behavior
with command line options.

Start by enabling blacklistd in /etc/rc.conf.

sysrc blacklistd_enable=YES
blacklistd_enable: NO -> YES

The daemon won’t start until you either reboot or start it manually, so
you can configure it now.

/etc/blacklistd.conf

Blacklistd rules each support a single service, port, or group of addresses.
Put your rules into /etc/blacklistd.conf, one rule per line. Blacklistd rules
come in two groups, local and remote.

Local blacklistd rules apply to items local to the machine running black-
listd. This is where you set rules for the local SSH service, or port 99, or any-
thing else local. The section of local rules is prefaced with [local].

Remote blacklistd rules apply to items not local to the machine. Here,
you might define rules like “this block gets reduced tolerance” or “disable
these addresses for shorter times” or “never block these addresses.” The
section of remote rules gets prefaced with [remote]. We’ll talk about local
rules first and then the additions supported by remote rules.

Here’s a sample blacklistd.conf entry:

[local]
ssh stream * * * 3 24h

472 Chapter 19

The first line is a [local] statement. Every rule that appears after this
applies to the local machine, until we hit a [remote] entry.

Each rule has seven fields. The first four fields identify traffic to be black-
listed, while the last three fields define the blacklist behavior. An asterisk (*)
is a wildcard, saying anything matches this field.

The first field is the location. For local rules, this gives the network port
that this rule applies to. Entries like ssh and ftp are slightly deceiving. They
don’t apply to the programs named sshd and ftpd, but rather to the network
ports listed in /etc/services. While you can list a specific IP address and port
in local rules, blacklistd ignores the address. Only the port applies. The
sample rule blocks on ssh, or port 22.

The second field gives the socket type. TCP sockets use type stream,
while UDP sockets need dgram. At this time, all services that support black-
listd use TCP. You can safely use an asterisk here to say “any socket type.”
Our sample rule uses stream, so it’s for TCP connections.

The third field defines the protocol. Supported options include tcp, udp,
tcp6, udp6, or numeric, or you can just use a wildcard and say “any protocol.”
The only reason not to use a wildcard here is if you want to specifically
match only one version of IP, such as using a different blacklist setting for
TCP over IPv4 than for TCP over IPv6.

The fourth field gives the owner of the daemon complaining about the
traffic. This can be a wildcard, a username, or a UID. Again, wildcards are
the most common entry here. For blacklisting purposes, I don’t care which
user runs the server running on port 22; I care that it gets protected from
random poking.

The fifth field, the packet filter rule name, is the first entry that deter-
mines how the block works. Blacklistd defaults to putting all blocks under
an anchor called blacklistd, which we put into pf.conf in the previous section.
If you want separate blacklists to use different anchors, you can define an
anchor name in this field; otherwise, just use the wildcard for the default.

If you start a name with a hyphen (-), it means “use an anchor with the
default name prepended.”

ssh stream * * -ssh 3 24h

This entry adds any new blacklist rules to an anchor called blacklistd-ssh.
Using a slash (/) in the name field and the length of the netmask tells

blacklistd to block entire subnets using prefix notation.

22 stream tcp * */24 3 24h

When one host in a network misbehaves, we block everything in the
adjoining /24. A /24 means very different things in IPv4 versus IPv6. Be
sure to specify which protocol this rule applies to!

The sixth column, nfail, sets the number of login failures needed to
blacklist the remote IP. Here, a wildcard means never. Our example rule
sets a limit of 3, which is how many chances OpenSSH gives you to log in
on one connection.

Advanced Security Features 473

The last column, disable, says how long to blacklist the host for. The
default unit is seconds, but you can use m, h, and d for minutes, hours, and
days, respectively. Our example rule is set to 24 hours.

So, with this rule in place, failing to authenticate to SSH three times
will result in the client being blocked for 24 hours.

Once you have local rules set up, you can configure remote rules.

blacklistd.conf Remote Rules

Use remote rules to specify how blacklistd varies its behavior depending
on the remote host. Each of the fields in a remote rule is the same as that
in the local rules, but how blacklistd uses them changes. Here’s a sample
remote rule:

[remote]
203.0.113.128/25 * * * =/25 = 48h

The address column is an IP (either IPv4 or IPv6) address, a port, or
both. This lets you set special rules for a specific remote address range. Our
sample rule applies to the address range 203.0.113.128/25.

The type, protocol, and owner columns are interpreted identical to the
local rules.

The name column gets interesting. The equal sign in a remote rule
means “use the value from the local rule you’re matching.” This rule says
to take the firewall rule name entry and add the network prefix /25 (a
255.255.255.128 netmask) to it. If a connection from this address range
gets blacklisted, it will affect the entire subnet. If you put a PF anchor name
here, the blacklistd adds rules for this address block to the named anchor.
A wildcard reverts to the default table.

The nfail column lets you set a custom number of failures for this
address. Maybe you want to offer that one customer that just can’t figure
out how to type their password the first 30 times extra attempts to fail.
Setting this column to an asterisk disables blocking.

The disable column lets you set a custom block time for this address
block. Using a wildcard here disables blocking.

Remote rules let you enforce stricter limits on people you don’t like,
while telling blacklistd(8) never to blacklist your office.

You can now start blacklistd. It won’t do anything, though, because pro-
grams don’t know they should complain to it. But once you configure them,
it’ll be ready.

Configuring Blacklistd Clients
FreeBSD includes a few blacklistd-aware clients. The two you’re most likely
to use are ftpd(8) and sshd(8).

To enable blacklistd in your SSH server, add the following line to /etc/
ssh/sshd_config.

UseBlacklist yes

474 Chapter 19

Restart sshd.
Enable blacklisting in ftpd(8) with the -B command line option, either

in /etc/inetd.conf or in the standalone process’s /etc/rc.conf flags.

ftpd_flags="-B"

These programs will now whinge to blacklistd(8) any time someone
fails to log in.

Managing Blacklistd
Blacklisting annoying clients that have no right to poke at your services
cuts down on the amount of log analysis you need to do, but you’ll probably
want to see exactly what the blacklist is blocking. You want blacklistctl(8).

The blacklistctl(8) program has only one function: to display addresses
and networks blocked by blacklistd. You always want the blacklistctl dump
command.

By default, blacklistctl dump shows hosts that are in the list of can-
didates to be blocked but are not yet blocked. Add the -b flag to see all
blocked hosts.

blacklistctl dump -b
 address/ma:port id nfail last access
 203.0.113.128/25:22 OK 6/3 2018/08/28 16:30:09

Here, we see that the address range 203.0.113.128/25 attempted 6 out
of 3 permitted login attempts. How did it achieve this? SSH lets a client try
multiple logins on a single TCP/IP connection. Blacklisting doesn’t stop a
live connection. The last time the guilty host attempted to access this ser-
vice was at the date shown in last access.

You might find the time remaining more useful than the time of last
access. Add the -r flag.

blacklistctl dump -br
 address/ma:port id nfail remaining time
 203.0.113.128/25:22 OK 4/3 36s

Too soon, this subnet will be free to harass and harry my innocent SSH
server. Maybe I need to increase the blacklist duration.

De-Blacklisting
Despite your best efforts, one day you’ll need to pull an address from the
blacklist before it expires naturally. The blacklistctl(8) program offers no
way to do this: you must manually delete the address from the PF table.
Doing so requires understanding how blacklistd manages addresses inside PF.

Each blocked port has a child anchor inside the blacklistd anchor. This
anchor is named after the port. The child anchor that blocks port 22 would

Advanced Security Features 475

be called blacklistd/22. Inside that child anchor, you’ll find a table containing
the blocked addresses. The table is named port, followed by the port number.
Hosts that can no longer connect to port 22 appear in a table called port22.

Here, I use the packet filter control program pfctl(8) to examine the con-
tents of the port22 table inside child anchor blacklistd/22. I’m not going to
explain all of this; just substitute your table and child anchor names. (Read
Hansteen’s The Book of PF to let anchors drag you under. Far, far under.)

pfctl -a blacklistd/22 -t port22 -T show
--snip--
 203.0.113.128/25
--snip--

Yes, our problem address is in there. Removing it requires a fairly
arcane pfctl(8) command.

pfctl -a blacklistd/22 -t port22 -T delete 203.0.113.128/25

The blacklist is maintained in a database outside of PF, though, so the
blacklisted address will still show up in blacklistctl(8). That database entry
will eventually expire harmlessly. If the host misbehaves again, it will get
blocked again.

Public-Key Encryption
Many server daemons rely upon public-key encryption to ensure confi-
dentiality, integrity, and authenticity of communications. Many different
internet services also use public-key encryption. You need a basic grasp of
public-key encryption to run services like secure websites (https) and secure
POP3 mail (pop3ssl). If you’re already familiar with public-key encryption,
you can probably skip this section. If not, gird your loins for a highly com-
pressed introduction to the topic.

Encryption systems use a key to transform messages between readable
(cleartext) and encoded (ciphertext) versions. Although the words cleartext
and ciphertext include the word text, they aren’t restricted to text; they can also
include graphics files, binaries, and any other data you might want to send.

All cryptosystems have three main purposes: integrity, confidentiality,
and nonrepudiation. Integrity means that the message hasn’t been tam-
pered with. Confidentiality means that the message can be read only by the
intended audience. And nonrepudiation means that the author can’t later
claim that he or she didn’t write that message.

Older ciphers relied on a single key, and anyone with the key could
both encrypt and decrypt messages. You might have had to do a lot of work
to transform the message, as with the Enigma engine that drove the Allies
nuts during World War II, but the key made the transformation possible. A
typical example is any code that requires a key or password. The one-time
message pads popular in spy novels are the ultimate single-key ciphers,
impossible to break unless you have that exact key.

476 Chapter 19

Unlike single-key ciphers, public-key (or asymmetric) encryption sys-
tems use two keys: a private key and a public key. Messages are encrypted
with one key and decrypted with the other, and digital signatures ensure
the message isn’t tampered with en route. The math to explain this is
really quite horrendous, but it does work—just accept that really, really
large numbers behave really, really oddly. Generally, the key owner keeps
the private key secret but hands the public key out to the world at large,
for anyone’s use. The key owner uses the private key, while everyone else
uses the public key. The key owner can encrypt messages that anyone can
read, while anyone in the public can send a message that only the key
owner can read.

Public-key cryptography fills our need for integrity, confidentiality,
and nonrepudiation. If an author wants anyone to be able to read his mes-
sage, while ensuring that it isn’t tampered with, he can encrypt the mes-
sage with his private key. Anyone with the public key (that is, the world)
can read the message, but tampering with the message renders it illegible.
(Depending on the use, he might choose to sign the message digitally
instead.)

Encrypting messages this way also ensures that the author of the mes-
sage has the private key. If someone wants to send a message that can be
read only by a particular person, he can encrypt the message with the
desired audience’s public key. Only the person with the matching private
key can read the message.

This works well so long as the private key is kept private. Once the pri-
vate key is stolen, lost, or made public, the security is lost. A careless person
who has his private key stolen could even find others signing documents for
him. Be careful with your keys, unless you want to learn that someone used
your private key to order half a million dollars’ worth of high-end graphics
workstations and have them overnighted to an abandoned-house maildrop
in inner-city Detroit.3

The standard toolkit for all of these operations is OpenSSL.

3. This really happened. And before you ask, no, I wasn’t the recipient! A friend gave me
my high-end graphics workstations. Really. And they’re long obsolete now anyway. Plus, the
statute of limitations is a thing.

W h y ope nSSL?

For many years, OpenSSL was the only choice for an encryption library.
Today’s newer alternatives, although probably more reliable, don’t meet
FreeBSD’s longterm support model. The most obvious replacement, LibreSSL,
supports each release for only one year. Until an encryption toolkit is both
reliable and can be upgraded throughout the course of a FreeBSD release’s
lifespan, OpenSSL won’t be replaced.

Advanced Security Features 477

OpenSSL
FreeBSD includes the OpenSSL toolkit for handling public-key cryptog-
raphy. OpenSSL lets you perform a full range of encryption operations.
While many programs use OpenSSL functionality, the sysadmin doesn’t
need OpenSSL directly very often.

While OpenSSL works fine out of the box, I find it worthwhile to set a
few defaults to make my life easier down the road. Configure OpenSSL with
the file /etc/ssl/openssl.cnf. Almost all of the settings in this file are correct
as they are, and you shouldn’t change them unless you’re a cryptographer.
The few things useful to change are the defaults for generating crypto-
graphic signatures. Each default value is marked by the string _default.
You’d be most interested in the following settings for common OpenSSL
operations, which I’ve adjusted to fit my needs:

u countryName_default = US
v stateOrProvinceName_default = Michigan
w 0.organizationName_default = Burke and Hare Word Mine, LLC

The countryName_default u is the two-letter code for your nation—
in my case, US. The stateOrProvinceName_default v is the name of your
local state and can be of any length. I would set this to Michigan. The
0.organizationName_default field w is your company name. If I’m buying a
signed certificate, I’d put the same thing here that I want to appear on the
certificate. If I’m just testing how programs work with SSL and don’t have
a real company name, I might use the name of the company I work for or
something that I make up.

The following values don’t show up in openssl.cnf, but if you set them,
they appear as defaults in the OpenSSL command prompts. I find these
useful, even though they change more frequently than the previous defaults—
they remind me of the correct format of these answers, if nothing else.

u localityName_default = Detroit
v organizationalUnitName_default = Pen-Monkey Division
w commonName_default = www.michaelwlucas.com
x emailAddress_default = mwlucas@michaelwlucas.com

The localityName_default u is the name of your city. The organizational
UnitName_default v is the part of your company this certificate is for. One of
the most commonly misunderstood values in OpenSSL, commonName_default w,
is the hostname of the machine this certificate is for, as it appears in reverse
DNS. Remember, reverse DNS isn’t necessarily the same as the hostname!
Your web server might have a nice friendly name, but the hosting company
might assign it a totally different name in reverse DNS. Finally, emailAddress
_default x is the email address of the site administrator.

These values all show up in prompts in the OpenSSL command as
default choices. Setting them in the configuration file will save you annoy-
ance later.

478 Chapter 19

Certificates
One interesting thing about public-key encryption is that the author and
the audience don’t have to be people. They can be programs. Secure Shell
(SSH) and the Secure Sockets Layer (SSL) are two different ways programs
can communicate without fear of intruders listening in. Public-key cryptog-
raphy is a major component of the digital certificates used by secure websites
and secure mail services. When you open Firefox to buy something online,
you might not realize that the browser is frantically encrypting and decrypt-
ing web pages. This is why your computer might complain about “invalid
certificates;” someone’s public key has either expired or the certificate is
self-signed. Today’s protocols encrypt and decrypt with Transport Layer
Security (TLS) and use TLS certificates.

Many companies, such as VeriSign, provide a public-key signing service.
These companies are called Certificate Authorities (CAs), as they provide TLS
certificates. Other companies that need a certificate signed provide proof
of their identity, such as corporate papers and business records, and those
public-key signing companies sign the applicant’s certificate with their CA
certificate. By signing the certificate, the CA says, “I have inspected this
person’s credentials and he, she, or it has proven their identity to my satis-
faction.” They’re not guaranteeing anything else, however. A TLS certificate
owner can use the certificate to run a website that sells fraudulent or dan-
gerous products or use it to encrypt a ransom note. Signed TLS certificates
guarantee certain types of technical security, not personal integrity or even
unilateral technical security. Certificates don’t magically apply security
patches for you.

Web browsers and other certificate-using software include certificates
for the major CAs. When the browser receives a certificate signed by a CA,
it recognizes the certificate as legitimate. Essentially, the web browser says,
“I trust the Certificate Authority, and the Certificate Authority trusts this
company, so I will trust the company.” So long as you trust the CA, every-
thing works.

The package ca_root_nss contains the CA certificates recognized by the
Mozilla Project. If a piece of software fails attempting to validate certifi-
cates, make sure you installed this package.

SSL v S. t L S

You hear about SSL all the time, but it’s most often incorrect. Today, Transport
Layer Security (TLS) has mostly replaced SSL. Most uses of the term SSL are
lingering remnants. Generally speaking, internetfacing sites should use TLS
version 1.1 or better. TLS version 1.0 is only weakly protected. Traffic secured
by any version of the SSL protocol isn’t secured.

Advanced Security Features 479

Most CAs are big commercial companies. No matter the size of your
organization, though, I encourage you to investigate Let’s Encrypt (https://
www.letsencrypt.org/). Let’s Encrypt is a CA that provides free, globally valid
TLS certificates.

Using a certificate that’s not signed by any CA is perfectly fine for test-
ing. It might also suffice for applications within a company, where you can
install the certificate in the client web browser or tell your users to trust the
certificate. We’ll look at both ways.

Both uses of the certificate require a host key.

TLS Host Key

Both signed and self-signed certificates require a private key for the host.
The host key is just a carefully crafted random number. The following com-
mand creates a 2,048-bit host key and places it in the file host.key:

openssl genrsa 2048 > host.key

You’ll see a statement that OpenSSL is creating a host key and dots cross-
ing the screen as key generation proceeds. In only a few seconds, you’ll have
a file containing a key. The key is a plaintext file that contains the words BEGIN
RSA PRIVATE KEY and a bunch of random characters.

Protect your host key! Make it owned by root and readable only by root.
Once you place your certificate in production, anyone who has that key can
use it to eavesdrop on your private communications.

chown root host.key
chmod 400 host.key

Place this host key in a directory with the same permissions that we
placed on the key file itself.

Create a Certificate Request

You need a certificate request for either a signed or self-signed certificate.
We don’t do much with OpenSSL, so we won’t dissect this command. Go to
the directory with your host key and enter this verbatim:

openssl req -new -key host.key -out csr.pem

In response, you’ll see instructions and then a series of questions.
By hitting enteR, you’ll take the default answers. If you’ve configured
OpenSSL, the default answers are correct.

u Country Name (2 letter code) [US]:
v State or Province Name (full name) [Michigan]:
w Locality Name (eg, city) [Detroit]:
x Organization Name (eg, company) [Burke and Hare Word Mine, LLC]:
y Organizational Unit Name (eg, section) [Pen-Monkey Division]:

480 Chapter 19

z Common Name (eg, YOUR name) [www.michaelwlucas.com]:
{ Email Address [mwlucas@michaelwlucas.com]:

The two-letter code for the country u is defined in the ISO 3166 stan-
dard, so a quick web search will find this for you. If you don’t know the
state v and city w you live in, ask someone who occasionally leaves the
server room. The organization name x is probably your company, and you
list the department or division name y as well. If you don’t have a company, list
your family name or some other way to uniquely identify yourself, and for a
self-signed certificate, you can list anything you want. Different CAs have dif-
ferent standards for noncorporate entities, so check the CA’s instructions.

The common name z is frequently misunderstood. It’s not your name;
it’s the name of the server as shown in reverse DNS. You must have a server
name here, or the request will be useless.

I suggest using a generic email address { rather than an individual’s
email address. In this case, I am michaelwlucas.com, so I might as well use
my address. You don’t want your organization’s certificates tied to an indi-
vidual who might leave the company for whatever reason.

Please enter the following 'extra' attributes
to be sent with your certificate request

u A challenge password []:
v An optional company name []:

The challenge password u is also known as a passphrase. Again, keep
this secret because anyone with the passphrase can use your certificate. Use
of a certificate passphrase is optional, however. If you use one, you must
type it when your server starts. That means that if your web server crashes,
the website won’t work until someone enters the passphrase. While pass-
phrase use is highly desirable, this might be unacceptable. Hit enteR to use
a blank passphrase.

You’ve already entered quite a few company names, so a third v is prob-
ably unnecessary.

Once you return to a command prompt, you’ll see the file csr.pem in the
current directory. It looks much like your host key, except that the top line
says BEGIN CERTIFICATE REQUEST instead of BEGIN RSA PRIVATE KEY.

Submit csr.pem to your Certificate Authority, who will return the actual
certificate. I recommend saving the certificate in a file named after the
host, such as www.mwl.io.crt. This signed certificate is good for any TLS ser-
vice, including web pages, pop3ssl, or any other TLS-capable daemon.

Some CAs require you use an intermediate certificate with your cert.
While most daemons have a configuration option to specify an intermedi-
ate certificate, if yours doesn’t, you can append the signed certificate to the
end of the intermediate cert.

Sign a Certificate Yourself

A self-signed certificate is technically identical to a signed certificate, but it’s
not submitted to a Certificate Authority. Instead, you provide the signature

Advanced Security Features 481

yourself. Most customers won’t accept a self-signed certificate on a produc-
tion service, but it’s perfectly suitable for testing. To sign your own CSR, run
the following:

openssl x509 -req -daysu365 -in csr.pem -signkey host.key \
-outvselfsigned.crt
Signature ok
subject=/C=US/ST=Michigan/L=Detroit/O=Burke and Hare Word Mine, LLC/OU=Pen-
Monkey Division/CN=michaelwlucas.com/emailAddress=mwlucas@michaelwlucas.com
Getting Private key
#

That’s it! You now have a self-signed certificate good for 365 days u in
the file selfsigned.crt v. You can use this key exactly like a signed certificate,
so long as you’re willing to ignore the warnings your application displays.

If you sign your own certificates, client software generates warnings
that the “certificate signer is unknown.” This is expected—after all, people
outside my office have no idea who Michael W. Lucas is or why he’s signing
web certificates. For some reason, people trust Symantec and other big-
company CAs. I’m trusted by the people who know me,4 but not trusted
by the world at large. For this reason, don’t use self-signed certificates any-
where the public will see them because the warnings will confuse, annoy, or
even scare them away.

But before you go drop any amount of money on a CA certificate, defi-
nitely check out Let’s Encrypt. It really will change your system administra-
tion practice.

TLS Trick: Connecting to TLS-Protected Ports
I said we wouldn’t do much with OpenSSL, and that’s correct. There’s one
facility the software offers that’s too useful to pass up, however, and once you
know it, you’ll use this one trick at least once a month and be glad you have it.

Throughout this book, we test network services by using telnet(1) to con-
nect to the daemon running on that port and issuing commands. This works
well for plaintext services such as SMTP, POP3, and HTTP. It doesn’t work
for encrypted services such as HTTPS. You need a program to manage the
encryption for you when you connect to these services. OpenSSL includes
the openssl s_client command, which is intended for exactly this sort of client
debugging. While you’ll see a lot of cryptographic information, you’ll also get
the ability to issue plaintext commands to the daemon and view its responses.
Use the command openssl s_client -connect with a hostname and port num-
ber, separated by a colon. Here, we connect to the secure web server at www
.absolutefreebsd.com:

openssl s_client -connect www.michaelwlucas.com:443
CONNECTED(00000003)
depth=2 O = Digital Signature Trust Co., CN = DST Root CA X3

4. Well, most of them, anyway. Quite a few. A few, at least. Oh, never mind.

482 Chapter 19

verify return:1
depth=1 C = US, O = Let's Encrypt, CN = Let's Encrypt Authority X3
--snip--

You’ll see lots of stuff about chains of trust and limitations of liability,
as well as lines and lines of the random-looking digital certificates. After
all that, however, you’ll see a blank line with no command prompt. You’re
speaking directly to the server daemon. As this is a web server, let’s try an
HTTP command:

GET /

The system responds with:

HTTP/1.1 400 Bad Request

The HTTP protocol has changed since the last time I tried this, I guess.
But I’m definitely connected to the web server. The network works.

Some of you are probably wondering why we encrypt the service if it’s
so easy to talk to the encrypted service. The encryption doesn’t protect the
daemon; it protects the data stream between the client and the server. TLS
encryption prevents someone from eavesdropping your network conversa-
tion in transit—it doesn’t protect either the server or the client. TLS can’t
save you if someone breaks into your desktop.

From this point on, I’ll assume that you understand this OpenSSL com-
mand and what happens when we use it.

Global Security Settings
FreeBSD supports many optional security settings. These settings change
basic FreeBSD behavior, making it differ from the common Unix experi-
ence. Some other operating systems provide these settings by default, how-
ever, so they’re not unique to FreeBSD.

h A r dWA r e cry p togr A phic Suppor t

Most modern hardware has builtin encryption acceleration. Unfortunately,
FreeBSD doesn’t include it in the default configuration. Hardware crypto
acceleration reduces load on the CPU and probably accelerates encryption.
The aesni(4) kernel module activates access to Intel’s hardware cryptographic
accelerator. A driver for the new AMD accelerator is in development. Inkernel
drivers affect only encryption that happens in the kernel, such as for encrypted
disks and IPSec.

Advanced Security Features 483

Should you turn all these features on in the name of improved security?
There’s no universally correct answer here. If restricting access to part of
the system to the root account means that you’ll need to give more people
root access, maybe you shouldn’t impose that restriction. A couple of these
should be activated on all systems, though.

Install-Time Options
The FreeBSD installer provides an option for enabling each of these set-
tings on first boot. You can enable and disable them later with the given
sysctl setting.

Many of these features are especially useful on servers that don’t have
many users. If your application server doesn’t have unprivileged users other
than those used by applications, you should probably enable features that
restrict unprivileged users. If you have unprivileged users, though, consider
the situation more closely. Most of my unprivileged users5 shouldn’t be
looking at server processes or other users, so I lock them down.

Hiding Other UIDs’ Processes
Normally, commands like ps -ax display all processes running on the
system. When you set the sysctl security.bsd.see_other_uids to 0, users
can see only their own processes. Root can see all processes, no matter
how you set this.

Hiding Other GIDs’ Processes
Similarly, users can normally see processes owned by other groups.
Disable that ability by setting the sysctl security.bsd.see_other_gids to 0.
Again, root can see every process, no matter how this is set.

Hiding Jailed Processes
Users on a host can usually see all processes running in jails. By setting
security.bsd.see_jail_proc to 0, unprivileged nonjailed users can’t see
jailed processes. This feature appeared in FreeBSD 12.

Hide Message Buffer
Unprivileged users can normally see the system message buffer,
available through dmesg(8). Disable that access by setting the sysctl
security.bsd.unprivileged_read_msgbuf to 0.

Disable Process Debugging
A debugger can tell users a whole bunch of useful information. Setting
security.bsd.unprivileged_proc_debug to 0 disallows unprivileged users
from using the debugger on processes.

Randomize Process IDs
Traditional Unix systems create process IDs in sequential order, allow-
ing attackers a chance at guessing what the next PID will be. Randomize

5. Hi, Brad and Lucy!

484 Chapter 19

process IDs by setting the sysctl kern.randompid to a random large inte-
ger. If you set it to 1, the kernel picks a fresh random number between
100 and 1,123 at each boot.

Clean /tmp
All sensible Unix-like systems clean /tmp at boot to dispose of temporary
files. Somewhere in the last few years, FreeBSD turned this behavior off
by default. You might use tmpfs(5) for /tmp, which gets destroyed at every
power-down. If your /tmp is on disk, though, well . . . as you’re all sensible
and wholesome sysadmins, always set clear_tmp_enable to YES in /etc/rc.conf.

Disable Syslogd Networking
By default, syslogd(8) creates a half-open socket on UDP port 514.
Nobody can connect to this socket; it’s used only as a placeholder so
nothing else binds to that port. Some people consider this half-open
socket problematic. I’d say it’s a feature; you don’t want something else
binding to port 514, claiming to be syslogd, and sending either worri-
some or falsely soothing messages to your logging host. But to disable
that half-open socket, set syslogd_flags to -ss in /etc/rc.conf.

Disable Sendmail
A default FreeBSD install doesn’t accept email from the network, but
it does run a sendmail(8) daemon to sent outgoing messages. To com-
pletely disable sending mail from this host, set sendmail_enable to NONE in
/etc/rc.conf.

Disabling outbound mail won’t prevent the daily, weekly, and monthly
maintenance tasks from running. It’ll prevent you from receiving the out-
put of those messages unless you log directly onto the host, however. For
people with multiple hosts, disabling outbound mail is unwise. Disabling
Sendmail makes sense if you use an alternative mail agent, such as dma(8)
(see Chapter 20).

Secure Console
Most Unix systems consider the physical console secure. Anyone who has
access to the physical machine can do anything to the host that they want,
including changing the root password. By changing all of the /etc/ttys entries
that say secure to insecure, you tell FreeBSD to demand the root password
even in single-user mode.6 This won’t prevent someone from physical access
gaining access to your operating system, but it’ll mean that they’ll have to do
slightly more work to subvert your machine. Very slightly more work.

Nonexecutable Stack and Stack Guard
One basic exploit mitigation technique is the nonexecutable stack. Once a
program is loaded into memory, each page of memory allocated to that pro-
gram should be either writable or executable, but not both.

6. Yes, changing secure to insecure improves security. Go figure.

Advanced Security Features 485

A common exploit technique is to trick a program into writing informa-
tion to memory and then executing that memory. An attacker might con-
vince a program to write to a chunk of memory, but with the nonexecutable
stack, the kernel won’t execute it.

The stack defaults to nonexecutable on modern versions of FreeBSD.
The only reason to disable this is if you have a badly written program that
relies on executing and writing the same chunk of memory. Most such defec-
tive software has been rightfully purged from the open source ecosystem in
the last 15 years. If you’re very unlucky and can’t avoid running a program
that can’t handle a nonexecutable stack, you can disable this by setting the
sysctls kern.elf32.nxstack (for 32-bit programs) or kern.elf64.nxstack (for
64-bit programs) to 0.

Related to the nonexecutable stack, a stack guard page adds a random-
sized shred of extra memory between parts of a program’s memory allo-
cation. This makes it harder for an attacker to guess memory addresses.
FreeBSD allocates a stack guard page by default, but you can turn it off by
setting the sysctl security.bsd.stack_guard_page to 0.

Other Security Settings
Most of FreeBSD’s other kernel-level security settings are available in
the security.bsd sysctl tree. More get added every few months. Run sysctl
-d security.bsd to display your hosts’ available options. I’ve described many
of these earlier in this section, but you might find some of the others use-
ful. Options include disabling the root account’s privileges (security.bsd
.suser_enabled), allowing nonroot users to set an idle priority (security.bsd
.unprivileged_idprio), and blocking unprivileged users from using mlock(2)
(security.bsd.unprivileged_mlock). Take a look at the current options and see
what might be useful.

Preparing for Intrusions with mtree(1)
One of the worst things to happen to a sysadmin is something that makes
him think that his system could’ve been penetrated. If you find mysterious
files in /tmp or extra commands in /usr/local/sbin, or if things “ just don’t
feel right,” you’ll be left wondering whether someone has compromised
your system. The worst thing about this feeling is that there’s no way to
prove it hasn’t happened. A skilled attacker can replace system binaries with
her own customized versions, so that her actions are never logged and your
attempts to find her will fail. Having Sherlock Holmes examine your server
with a magnifying glass is useless when the magnifying glass has been pro-
vided by the criminal and includes the special criminal-cloaking feature!
People have even hijacked the system compiler so that freshly built binaries

486 Chapter 19

include the hijacker’s backdoor.7 What makes matters worse is that comput-
ers do weird things all the time. Operating systems are terribly complicated,
and applications are worse. Maybe that weird file in /tmp is something your
text editor barfed up when you hit the keys too fast, or perhaps it’s a leftover
from a sloppy intruder.

The only way to recover a compromised system is to reinstall it from
scratch, restore the data from backup, and hope that the security hole that
led to the compromise is fixed. That’s a thin hope, and doubt is so easy to
acquire that many sysadmins eventually stop caring or lie to themselves
rather than live with the constant worry.

Most intruders change files that already exist on the system. FreeBSD’s
mtree(1) can record the permissions, size, dates, and cryptographic check-
sums of files on your system. (While freebsd-update(8) includes similar
features, and you don’t have to gather data beforehand, it covers only the
base system.) If you record these characteristics when your system is freshly
installed, you have a record of what those files look like intact. When an
intruder changes those files, a comparison will highlight the differences.
When you have even the vaguest feeling you’ve been hacked, you can check
that same information on the existing files to see whether any have changed.

Running mtree(1)
The following command runs mtree(1) across your root partition and
stores SHA512 and SHA256 cryptographic checksums, placing them in
a file for later analysis:

mtreeu-xv-icw-K sha512x-K sha256y-p /z-X /home/mwlucas/mtree-exclude >{/tmp/mtree.out

While you can use mtree(1) across the entire server, most people use
-x u to run it once per partition. You don’t want to record checksums on
frequently changing files, such as the database partition on your database
server. Collecting checksums on NFS mounts has the twin features of run-
ning really slowly and increasing network congestion. The -ic flag v tells
mtree to print its results to the screen, with each subsequent layer in the
filesystem indented. This format matches the system mtree files in /etc/mtree.
The -K flag accepts several optional keywords; in this case, we want to gen-
erate SHA512 checksums w and SHA256 checksums x. The -p flag y tells
mtree which partition to check. Almost every partition has files or direc-
tories that change on a regular basis and that you therefore don’t want to
record checksums for. Use -X z to specify an exclusion file, a file containing
a list of paths not to match. Finally, redirect the output of this command to
the file /tmp/mtree.out {.

7. I’d say intruder here except that the person in question was Ken Thompson, one of the
creators of Unix and C. He had a miraculous ability to log into any Unix system, anywhere
in the world, including systems developed years after he stopped working on Unix. Search
out Thompson’s paper “Reflections on Trusting Trust.”

Advanced Security Features 487

mtree(1) Output: The Spec File
mtree(1)’s output is known as a specification, or spec. While this specifica-
tion was originally intended for use in installing software, we’re using it to
verify a software install. Your spec starts with comments showing the user
who ran the command, the machine the command ran on, the filesystem
analyzed, and the date. The first real entry in the spec sets the defaults for
this host and begins with /set.

/set type=file uid=0 gid=0 mode=0755 nlink=1 flags=uarch

The mtree(1) program picked these settings as defaults based on its
analysis of the files in the partition. The default filesystem object is a file,
owned by UID 0 and GID 0, with permissions of 0755, with one hard link
and the user archive flag. After that, every file and directory on the system
has a separate entry. Here’s the entry for the root directory:

u. vtype=dirwnlink=19xtime=1504101311.033742000

This file is the dot (.) u, or the directory we’re in right now. It’s a direc-
tory v, and it has 19 hard links w to it. This directory was modified
1,504,101,311.033742000 seconds into Unix epochal time x. The Unix
epoch began January 1, 1970.

In some ways, the entry for the directory is rather boring. An intruder
can’t realistically replace the directory itself, after all! Here’s an entry for an
actual file in the root directory:

.cshrc mode=0644 nlink=2usize=950 time=1499096179.000000000 \
v sha256digest=20d2a78c9773c159bac1df5585227c7b64b6aab6b77bccadbe4c65f1be474e8c \
w sha512=24d4330e327f75f10101cd7c0d6a5e59163336ade5b9eb04b0d96ea43d221c5eea4c71a89dfe85a...

We see the filename and the same mode, link, and time information
as in the root directory, but also get the file size u. Additionally, there’s the
SHA256 v and SHA512 w cryptographic hashes computed from the files.

While it’s theoretically possible for an intruder to craft a file that
matches a particular cryptographic hash, and while cryptographers are
constantly trying to find practical ways to create files that match arbitrary
SHA256 and SHA512 checksums, it’s extremely unlikely that an intruder
can create a fake file that matches both checksums, contains his backdoor,

e poch A L SecondS A nd r e A L dAt e S

Don’t feel like counting seconds since the epoch began? To convert epochal
seconds into normal dates, run date -r seconds. Cut off the fraction at the end
of mtree’s time, however; date(1) likes only whole seconds.

488 Chapter 19

and still functions well enough that the system owner won’t immediately
notice a problem. By the time this happens, we will have additional check-
sum algorithms resistant to those methods and will switch to them.

The Exclusion File
The exclusion file (given with -X) lists filesystems you don’t want mtree(1)
to analyze. Lots of filesystems will change without malicious intervention.
Log files and user home directories should change. Directories like /tmp and
/var/db/entropy better change on a functional system. List each directory you
don’t want checked on its own line in the exclusion file, with a leading dot.

./tmp

./var/db/entropy

./var/log

./usr/home

Wait a day or so, and then run mtree(1) again to generate a new spec file.
Differences between the two mtree files will let you improve your exclusion
file. You’ll do the exact same thing when you suspect a system intrusion.

Saving the Spec File
The spec file contains the information needed to verify the integrity of
your system after a suspected intrusion. Leaving the spec file on the server
you want to verify means that an intruder can edit the file and conceal his
wrongdoing. You must not save the file on the system itself! Now and then
someone will suggest that you checksum the mtree spec file but keep it on
the server. That’s not useful; if someone tampers with the mtree file and the
checksum, how would you know? Or worse—if someone tampered with the
spec file and you caught it, you couldn’t tell what change had been made!
Copy your spec file to a safe location, preferably on an offline media, such
as a flash drive or an optical disk.

Finding System Differences
When something raises your suspicions and you begin to think that you
might have suffered an intrusion, create a new mtree spec file and compare
it with the “known good” spec file you stored offline. Use mtree(1) to check
for differences between spec files.

mtree -f mtree.suspect -f mtree.good > mtree.differences

Every entry in the file is something that has changed. My exclusion file
is finely tuned, eliminating files I expect to have changed. This particular
run generates two lines of output.

 bin/sh fileusize=161672
v sha256digest=a4a85ca3563d8f3bda449711c6b591b37093e668fc136f8829eb188b955f56ab

Advanced Security Features 489

w sha512=011793e3e6cacd99b4261e0a0f3a0b9bd6a6842f3ccd55da1ce2070b568e3c49ae7b0e51d33bb59eff...
 bin/sh file size=x10489808
y sha256digest=45856525d4251b43d68df1429cf1fe0f4adb6640f06d7f995aace5b7ca0c03c2
z sha512=a4f0e83e5fb12d615721fd7d57cb6a120068d1aa71fc305b7b86927391f33bec822cf14ce8a8a9db14...

The file /bin/sh u has changed size x between mtree runs. This isn’t
good. Also, note the two different SHA256 hashes v y and the two differ-
ent SHA512 hashes w z. Don’t hit the panic button yet, but start asking your
fellow sysadmins pointed, hard questions. If you can’t get a good answer as to
why this binary changed, you might look for your installation media.

Or, perhaps you need to update your exclusion file. But if /bin/sh
changed, probably not.

Monitoring System Security
So, you think your server is secure. Maybe it is . . . for now.

Unfortunately, there’s a class of intruders with nothing better to do
than to keep up on the latest security holes and try them out on systems
they think might be vulnerable. Even if you read FreeBSD-security religiously
and apply every single patch, you still might get hacked one day. While
there’s no way to be absolutely sure you haven’t been hacked, the following
hints will help you find out when something does happen:

•	 Be familiar with your servers. Run ps -axx on them regularly, and learn
what processes normally run on them. If you see a process you don’t
recognize, investigate.

•	 Examine your open network ports with netstat -na and sockstat. What
TCP and UDP ports should your server be listening on? If you don’t rec-
ognize an open port, investigate. Perhaps it’s innocent, but it might be
an intruder’s backdoor.

•	 Unexplained system problems are hints. Many intruders are ham-fisted
klutzes with poor sysadmin skills, who use click-and-drool attacks. They’ll
crash your system and think that they’re the cyber incarnation of Samuel
L. Jackson.

•	 Truly skilled intruders not only clean up after themselves but also
ensure that the system has no problems that might alert you. Therefore,
systems that are unusually stable are also suspicious.

•	 Unexplained reboots might indicate someone illicitly installing a new
kernel. They might also be a sign of failing hardware or bad configura-
tion, so investigate them anyway.

•	 FreeBSD sends you emails every day giving basic system status informa-
tion. Read them. Save them. If something looks suspicious, investigate.
Look at old messages to see when something has changed.

I particularly recommend the lsof package to increase your familiar-
ity with your system. The lsof program lists all open files on your system.
Reading lsof(8) output is an education in and of itself; you probably had no

490 Chapter 19

idea that your web server opened so much crud. Seeing strange files open
indicates either that you’re not sufficiently familiar with your system or that
someone’s doing something improper.

Package Security
The FreeBSD Project provides a database of security vulnerabilities in the
ports and packages system. This database is made available in Vulnerability
and eXposure Markup Language (VuXML). When someone volunteers to main-
tain a port, they’re also volunteering to watch out for security problems
with that port.

An internet-connected FreeBSD host with pkg(8) installed downloads
the latest VuXML file during the periodic(8) run (see Chapter 21) and stores
it in /var/db/pkg/vuln.xml. It then compares the installed packages with that
database. If one of your packages has a vulnerability, you’ll be notified in the
daily status email. (You are reading your daily status emails, right?)

If your packages are insecure, upgrade them as per Chapter 15.
If need be, you can set a different location to fetch the vuln.xml file with

the VULNXML_SITE option in pkg.conf. You might do this if you maintain your
own package repository and vulnerability databases.

If You’re Hacked
After all this, what do you do if your system is hacked? There’s no easy
answer. Huge books are written on the subject. Here are a few general
suggestions, however.

First and foremost: A hacked system can’t be trusted. If someone has
gained root access on your internet server, he could have replaced any
program on the system. Even if you close the hole he broke in through, he
could have installed a hacked version of login(8) that sends your username
and password to an IRC channel somewhere every time you log in. Do not
trust this system. An upgrade can’t cleanse it, as even freebsd-update(8)
and the compiler are suspect.

While rootkit-hunting software might help you verify the presence of
intruders, nothing can verify that the intruder isn’t there. Feel free to write
FreeBSD-security@FreeBSD.org for advice. Describe what you’re seeing and why
you think you’re hacked. Be prepared for the ugly answer, though: com-
pletely reinstall your computer from known secure media, and restore your
data from backup. You did read Chapter 5, right?

Good security practices reduce your chances of being hacked, just as
safe driving reduces your chances of being in a car wreck. Eventually you’ll
total your wheels anyway and wonder why you bothered. Good luck!

20
S m a l l S y S t e m S e r v i c e S

Even a server with a very narrowly defined
role, such as a dedicated web server, needs

a variety of small “helper” services to handle
basic administrative issues. In this chapter, we’ll

discuss some of those services, such as time synchroni-
zation, sending mail, DHCP services, scheduling tasks,
and so on. We’ll start by securing your remote connec-
tions to your FreeBSD server with SSH.

Secure Shell
One of Unix’s great strengths is its ease of remote administration. Whether
the server is in front of you or in a remote, barricaded laboratory in a sub-
terranean, maximum-security installation surrounded by vicious guard
dogs mentored by a megalomaniacal weasel named Ivan, if you have net-
work access to the machine, you can control it.

492 Chapter 20

For many years, telnet(1) was the standard way to access a remote
server. As a remote administration protocol, however, telnet has one
crushing problem: everything sent over most versions of telnet is unen-
crypted. Anyone with a packet sniffer, attached anywhere along your con-
nection, can steal your username, your password, and any information
you view in your telnet session. When you use telnet, the best password-
selection scheme in the world can’t protect your username and password.
Intruders place illicit packet sniffers anywhere they can; I’ve seen them on
small local networks and global enterprise networks, in law firms handling
sensitive government work, on home PCs, and on internet backbones. The
only defense against a packet sniffer is to handle your authentication cre-
dentials and data in such a way that a packet sniffer can’t make sense of
them. That’s where SSH, or secure shell, comes in.

SSH behaves much like telnet in that it provides a highly configu-
rable terminal window on a remote host. But unlike telnet, SSH encrypts
everything you send across the network. SSH ensures not only that your
passwords can’t be sniffed but also that the commands you enter and their
output are encrypted. While telnet does have a few minor advantages over
SSH in that it requires less CPU time and is simpler to configure, SSH’s
security advantages utterly outweigh them. SSH also has many features that
telnet doesn’t have, such as the ability to tunnel arbitrary protocols through
the encrypted session. SSH runs on every modern variant of Unix and even
on Microsoft Windows.

SSH encrypts and authenticates remote connections via public-key
cryptography. The SSH daemon offers the server’s public key to clients
and keeps the private key to itself. The client and server use the crypto-
graphic key to negotiate a cryptographically secure channel between
them. Since both public and private keys are necessary to complete this
transaction, your data is secure; even if someone captures your SSH
traffic, they can see only encrypted garbage.

To use SSH, you must run an SSH server on your FreeBSD machine and
an SSH client on your workstation.

The SSH Server: sshd(8)
The sshd(8) daemon listens for SSH requests coming in from the network on
TCP port 22. To enable sshd at boot, add the following line to /etc/rc.conf :

sshd_enable="YES"

Once this is set, you can use the /etc/rc.d/sshd script or service sshd sub-
commands to start and stop SSH. Stopping the SSH daemon doesn’t termi-
nate SSH sessions that are already in use; it only prevents the daemon from
accepting new connections.

Unlike unencrypted protocols we look at, sshd is difficult to test by
hand. One thing you can do is confirm that sshd is running by using nc(1)
to connect to the SSH TCP port.

Small System Services 493

nc localhost 22
SSH-2.0-OpenSSH_7.2 FreeBSD-20160310

We connect to port 22, and get an SSH banner back. We can see that
the daemon listening on this port calls itself SSH version 2, implemented in
OpenSSH 7.2, on FreeBSD, version 20160310. You can get all this informa-
tion from a simple nc(1) connection, but it’s the last free information sshd
offers. Unless you’re capable of encrypting packets by hand, on the fly, this
is about as far as you can go. Press ctRL-C to leave nc(1) and return to the
command prompt.

SSH Keys and Fingerprints
The first time you start sshd(8), the program realizes that it has no
encryption keys and automatically creates them. The initializing sshd
process creates three pairs of keys: an RSA key, an ECDSA key, and an
ED25519 key.

The key files ending in .pub contain the public keys for each type of
key. These are the keys that sshd hands to connecting clients. This gives
the connecting user the ability to verify that the server he’s connecting to
is really the server he thinks it is. (Intruders have tricked users into log-
ging into bogus machines in order to capture their usernames and pass-
words.) Take a look at one of these public-key files; it’s pretty long. Even
when a user is offered the chance to confirm that the server is offering the
correct key, it’s so long that even the most paranoid users won’t bother to
verify every single character.

Fortunately, SSH allows you to generate a key fingerprint, which is a
much shorter representation of a key. You can’t encrypt traffic or negoti-
ate connections with the fingerprint, but the chances of two unrelated keys
having the same fingerprint are negligible. To generate a fingerprint for a
public key, enter the command ssh-keygen -lf keyfile.pub.

ssh-keygen -lf /etc/ssh/ssh_host_rsa_key.pub
2048 SHA256:tEcBfgXctTfaaEF9d5QK3oYUwr5Tb/cuIr3MNxV4wwE root@bert (RSA)

The first number, 2048, shows the number of bits in the key. 2048 is
standard for an RSA key in 2018, but as computing power increases, I
expect this number to increase. The string starting with tEcB and end-
ing with wwE is the fingerprint of the public key. While it’s long, it’s much
shorter and much more readable than the actual key. Copy this key finger-
print from the original server to a place where you can access it from your
client machines. If a human needs to verify the fingerprint, try a web page
or a paper list. If your SSH clients support SSHFP records and your DNS
zones support DNSSEC, you can use DNS instead. Use this key to confirm
your server’s identity the first time you connect, or use one of the other
key distribution methods.

494 Chapter 20

Configuring the SSH Daemon
While sshd comes with a perfectly usable configuration, you might want to
tweak the settings once you learn all the features sshd(8) offers. The con-
figuration file /etc/ssh/sshd_config lists all the default settings, commented
out with a hash mark (#). If you want to change the value for a setting,
uncomment the entry and change its value.

We won’t discuss all the available sshd options; that would take a rather
large book of its own. Moreover, OpenSSH advances quickly enough to make
that book obsolete before it hits the shelves. Instead, we’ll focus on some of
the more common desirable configuration changes people make.

After changing the SSH daemon’s configuration, restart the daemon
with /etc/rc.d/sshd restart or service sshd restart.

VersionAddendum FreeBSD-20170902

The VersionAddendum appears in the server name when you connect to
sshd’s TCP port. Some people recommend changing this to disguise the
operating system version. Identifying a computer’s operating system is
simple enough, however, by using fingerprinting techniques on packets
exchanged with the host, so this isn’t generally worth the time. (On the
other hand, if changing VersionAddendum to DrunkenBadgerSoftware amuses
you, proceed.)

Port 22

sshd(8) defaults to listening to TCP port 22. If you want, you can change
this to a nonstandard port. If you want sshd to listen to multiple ports (for
example, port 443 in addition to port 22), you can include multiple Port
entries on separate lines:

Port 22
Port 443

Changing the port isn’t useful as a security measure. It can be useful to
reduce log chatter. I freely admit to having a small SSH server that listens
on a variety of popular TCP ports specifically to bypass useless network
security devices. But it doesn’t make SSH any more secure.

ListenAddress 0.0.0.0

sshd defaults to listening for incoming requests on all IP addresses on the
machine. If you need to restrict the range of addresses to listen on (for
example, on a jail server), you can specify it here:

ListenAddress 203.0.113.8

If you want sshd to listen on multiple addresses, use multiple
ListenAddress lines.

Small System Services 495

SyslogFacility AUTH and LogLevel INFO

These two settings control how sshd(8) logs connection information. See
Chapter 21 for more information on logging.

LoginGraceTime 2m

This controls how long a user has to log in after getting connected. If an
incoming user connects but doesn’t successfully log in within this time
window, sshd drops the connection.

PermitRootLogin no

Do not let people log into your server as root. Instead, they should SSH in
as a regular user and become root with su(1). Allowing direct root logins
eliminates any hope you have of identifying who misconfigured your sys-
tem and allows intruders to cover their tracks much more easily.

MaxAuthTries 6

This is the number of times a user may attempt to enter a password during
a single connection. After this number of unsuccessful attempts to log in,
the user is disconnected.

AllowTcpForwarding yes

SSH allows users to forward arbitrary TCP/IP ports to a remote system. If
your users have shell access, they can install their own port forwarders, so
there’s little reason to disable this.

X11Forwarding yes

Unix-like operating systems use the X11 (or X) protocol to display graphical
programs. In X, the display is separated from the physical machine. You can
run, say, a web browser on one machine and display the results on another.

As X has had a checkered security history, many admins reflexively
disable X forwarding. Denying X forwarding over SSH doesn’t disable X
forwarding in general, however. Most users, if denied SSH-based X forward-
ing, just forward X over unencrypted TCP/IP using either X’s built-in net-
work awareness or a third-party forwarder, which in most circumstances is
far worse than allowing X over SSH. If your sshd server has the X libraries
and client programs installed, a user can forward X one way or another; it’s
best to let SSH handle the forwarding for you. If you don’t have the X soft-
ware installed, then X11Forwarding has no effect.

Banner /some/path

The banner is a message that’s displayed before authentication occurs. The
most common use for this option is to display legal warnings. The default is
not to use a banner.

496 Chapter 20

Subsystem sftp /usr/libexec/sftp-server

SSH allows you to securely copy files from one system to another with scp(1).
While scp works well, it’s not very user-friendly. The sftp server provides an
FTP-like interface to file transfer, reducing the amount of time you must
spend on user education but still maintaining solid security.

Managing SSH User Access
By default, anyone with a legitimate shell can log into the server. Using the
configuration variables AllowGroups, DenyGroups, AllowUsers, and DenyUsers,
sshd(8) lets you define particular users and groups that may or may not
access your machine.

When you explicitly list users who may SSH into a machine, any user
who isn’t listed can’t SSH in.

For example, the AllowGroups option lets you restrict SSH access to users
in specified groups defined in /etc/group (see Chapter 9). If this option is set
and a user isn’t in any of the allowed groups, he can’t log in. Separate mul-
tiple groups with spaces:

AllowGroups wheel webmaster dnsadmin

If you don’t want to give a whole group SSH access, you can list indi-
vidual users with AllowUsers. By using AllowUsers, you disallow SSH access for
everyone except the listed users.

The DenyGroups list is the opposite of AllowGroups. Users in the specified
system groups can’t log in. The listed group must be their primary group,
meaning it must be listed in /etc/master.passwd and not just /etc/group. This
limitation makes DenyGroups less useful than it seems at first; you can’t define
a general group called nossh and just add users to it, unless you make it their
primary group as well. Explicitly listing allowed groups is a much more use-
ful policy.

Finally, the DenyUsers variable lists users who may not log in. You can use
this to explicitly forbid certain users who are in a group that is otherwise
allowed.

These four different settings make it possible for a user to be in mul-
tiple groups simultaneously. For example, one user might be in a group
listed in AllowGroups and a group listed in DenyGroups. What then? The SSH
daemon checks these values in the order: DenyUsers, AllowUsers, DenyGroups,
and AllowGroups. The first rule that matches wins. For example, suppose Bert
is a member of the wheel group. Here’s a snippet of sshd_config :

DenyUsers: bert
AllowGroups: wheel

Bert can’t SSH into this machine because DenyUsers is checked before
AllowGroups.

Small System Services 497

SSH Clients
Of course, FreeBSD comes with the SSH client, as do most Unix-like operat-
ing systems. If possible, use the included SSH client—it’s part of OpenSSH,
developed by a subset of the OpenBSD team, and it’s not only the most
popular implementation but also the best. If you’ve been sentenced to run
a Microsoft operating system, I recommend PuTTY, which is free for com-
mercial or noncommercial purposes and has excellent terminal emulation.
Microsoft is integrating a fork of OpenSSH into Windows, but it’s still in
beta as I write this.

This is a FreeBSD book, so we’ll focus on FreeBSD’s OpenSSH client.
You can configure the client in a variety of ways, but the most common
configuration choices available simply disable the functions offered by the
server. If you’re really interested in tweaking your client’s behavior, read
ssh_config(5).

To connect to another host with SSH, type ssh hostname. In response,
you’ll see something like this:

ssh mwl.io
The authenticity of host 'mwl.io (203.0.113.221)' can't be established.
ECDSA key fingerprint is SHA256:ZxOWglg4oqcZKHOLv5tfqPlAwDW6UGVbiTvjfAjMc4E.
No matching host key fingerprint found in DNS.
Are you sure you want to continue connecting (yes/no)? yes

Your client immediately retrieves the public key from the host you’re
connecting to and checks its own internal list of SSH keys for a matching
key for that host. If the key offered by the server matches the key the client
has in its list, the client assumes you’re talking to the correct host. If the
client doesn’t have the host key in its list of known hosts, it presents the key
fingerprint for your approval.

The fingerprint presented by the SSH client should be identical to
the fingerprint you generated on your server. If the fingerprint isn’t iden-
tical, you’re connecting to the wrong host and you need to immediately
disconnect. If it matches, accept the key and continue. Once you accept the
fingerprint, the key is saved under your home directory in .ssh/known_hosts.

If you’re building a new server on your local network for your private
use, perhaps you don’t have to manually compare the key fingerprints. You
should still copy the key fingerprint, however, since you’ll eventually want
to connect from a remote location and will need to verify the key. If many
people will connect to a server, it’s generally okay to put the fingerprint
on a web page. You must decide how much security you need. I strongly
encourage you to err on the side of caution.

Accept the host key, and you’ll be allowed to log into the server. While
using a private key with a passphrase is preferable to using passwords, a
password with SSH is still better than telnet.

498 Chapter 20

Copying Files over SSH

The SSH client is fine for command line access, but what about moving files
from one system to another? SSH includes two tools for moving files across
the network: scp(1) and sftp(1).

scp(1) is “secure copy” and is ideal for moving individual files. scp takes
two arguments: first, the file’s current location; then, the desired location.
The desired location is specified as <username>@<hostname>:<filename>.
Suppose I want to copy the file bookbackup.tgz from my local system to the
remote server mwl.io, giving the remote copy a different name. I’d run:

scp bookbackup.tgz mwlucas@mwl.io:bookbackup-january.tgz

If you want to give the new copy the same name, you can leave off the
filename in the second argument:

scp bookbackup.tgz mwlucas@mwl.io:

scp(1) also lets you copy files from a remote system to your local system:

scp mwlucas@mwl.io:bookbackup-january.tgz bookbackup.tgz

If you don’t want to change the filename on the local system, you can
use a single dot as the destination name:

scp mwlucas@mwl.io:bookbackup.tgz .

Finally, if your username on the remote system is the same as your local
username, you can delete the username and the @ sign. For example, to
back up my work, I just use:

scp bookbackup.tgz mwl.io:

While this looks complicated, it’s quite useful for quickly moving indi-
vidual files around the network.

If you like interactive systems or if you don’t know the precise name of
the file you want to grab from a remote server, sftp(1) is your friend. sftp(1)
takes a single argument, the username and server name, using scp’s syntax
for a remote server:

sftp mwlucas@mwl.io
Connecting to bewilderbeast...
Password:
sftp> ls

The sftp(1) client looks much like a standard command line FTP client;
it supports the usual FTP commands, such as ls (list), cd (change directory),
get (download a file), and put (upload a file). One important difference is
that sftp(1) doesn’t require a choice between ASCII and binary transfers; it
just transfers the file as is.

Small System Services 499

With SSH, scp, and sftp, you can completely eliminate cleartext pass-
words from your network.

While SSH is the most common sysadmin tool, we’ve just brushed its
surface. Time you spend mastering SSH will pay itself back several fold. You
can find several good tutorials online and a few decent books, including my
own SSH Mastery (Tilted Windmill Press, 2018).

Email
Running an email server has become vastly more complicated in the last
few years. Coping with the spam, viruses, and random crud that arrives on
a mail server requires a specialized skill set, and the amount of that crud
balloons every year. Think carefully before you deploy a mail server. Every
host needs some sort of mail client, however. FreeBSD includes two software
suites that can be used for managing local mail and forwarding mail to the
mail server: Sendmail and the Dragonfly Mail Agent.

Sendmail is the great-granddaddy of mail programs. It can be a server, a
client, a filter, and an arbitrary mail spindler. If you want to exchange mail
with sites so isolated that they communicate once a day over UUCP over a
dialup line, and also exchange mail with the latest commercial mail servers,
Sendmail is a solid choice. For most of us, though, the Swiss Army Car
Crusher of Email is overkill.

The Dragonfly Mail Agent (DMA) comes from Dragonfly BSD. It’s a very
minimal mail client that can deliver mail on the local host or forward it
to a mail server. It’s exactly what your average host needs to forward daily
status mails to the minion tasked with reading them, to send reports from
your application to the application administrator, and to forward all those
annoying reports your WordPress security plugin wants you to read.

We’ll spend some time with DMA. Before we can go there, though, let’s
talk about how FreeBSD copes with the world’s multiplicity of mail servers.

mailwrapper(8)
For decades, Sendmail was the only mail server available for Unix-like sys-
tems. As such, huge amounts of software expects every server to have /usr/
sbin/sendmail and expects it to behave exactly like Sendmail. What makes

Ope nSSH pa SS wOr dS a nd Ke yS

To truly secure your system, use key-based SSH authentication. Creating keys
isn’t hard, but deploying them in a way that best suits your environment is
more complicated than I can fit in here. Eliminating SSH passwords is the
single greatest security improvement you can make in your network.

500 Chapter 20

matters worse, Sendmail behaves differently when called by different names.
The program mailq(1) is a hard link to sendmail(8), but as it has a different
name, it behaves differently. So do newaliases(1), send-mail(8), hoststat(8),
and purgestat(8).1

As clients expect to find Sendmail, any replacement mail server must
precisely emulate Sendmail, down to this multiname behavior. Using a dif-
ferent mail server isn’t as easy as erasing the Sendmail binaries and replac-
ing them with something else. But people try.

As a result, sysadmins exploring unfamiliar Unix systems might have
no idea what /usr/sbin/sendmail really is! If someone previously installed
several different mail servers in an effort to find something less ghastly than
Sendmail, you’ll have to resort to detective work and dogged persistence to
identify your so-called sendmail(8).

FreeBSD does an end-run around all this confusion by using a separate
mailwrapper(8) program. The mail wrapper directs requests for Sendmail
to the preferred mail server, installed elsewhere.

Configure mailwrapper(8) in /etc/mail/mailer.conf. This file contains
a list of program names, along with the paths to the actual programs to
be called. Here’s the default mailer.conf directing everything to good old
sendmail(8):

sendmail /usr/libexec/sendmail/sendmail
send-mail /usr/libexec/sendmail/sendmail
mailq /usr/libexec/sendmail/sendmail
newaliases /usr/libexec/sendmail/sendmail
hoststat /usr/libexec/sendmail/sendmail
purgestat /usr/libexec/sendmail/sendmail

Each of these six “programs” in the left column is a name that other
programs might use for Sendmail. The right column gives the path to
the program that should be called instead. Here, we see that Sendmail is
installed as /usr/libexec/sendmail/sendmail. If you use an alternative mailer,
you must edit mailer.conf to point to the proper path to the mailer programs.
Most alternative mailers use separate programs for each of these functions
because the cost of disk space has plunged since Sendmail’s birth. When
you install an alternative mailer from a package or port, the post-install
message usually provides instructions on exactly how to update mailer.conf
for your installation. Follow those instructions if you want the new mail
server to work. If you install a different mail server without using a package,
you need to edit mailer.conf yourself.

The Dragonfly Mail Agent
The Dragonfly Mail Agent (DMA) can deliver mail locally and send mail
to another server. It can’t receive mail over the network. Where most mail

1. These links are leftovers from the days when disk space was really, really expensive. They
made great sense in the 1980s. Consider this the next time you create any software.

Small System Services 501

servers bind to TCP port 25 on the local host, dma(8) does not. It deliv-
ers mail only for programs that can call /usr/sbin/sendmail or one of its
counterparts.

Before activating DMA, configure it in /etc/dma/dma.conf. This file
contains variables you can uncomment and set to a specific value. While
DMA has several configurable settings, you should leave most of them at
the default.

Smart Host

A smart host is the actual mail server, the host this client should relay mail
through. Use the hostname or IP address.

SMARTHOST=mail.mwl.io

TCP Port

If your mail administrator is a madman that runs the smart host’s email on
a nonstandard port, or if you’re trying to evade your ISP’s block port 25 out-
bound, set the TCP port here:

PORT 2025

If you don’t set a smart host but do set a port, you’ll break mail delivery.

False Hostname and Usernames

You might want your server to claim to be a different host when it sends
mail. Maybe your cloud provider has given this system a hostname com-
posed of random digits and numbers, but you want it to send mail as www
.example.com. Use the MAILNAME to set a fake hostname.

MAILNAME www.mwl.io

If you give MAILNAME the full path to a file, dma(8) will use the first
line of that file as the hostname.

Some mail servers very strictly inspect relayed mail and reject inadequately
forged messages. For those hosts, you’ll need to use the MASQUERADE
option. Masquerading gives you a couple different options for changing mes-
sages. If you use an entire email address, all mail sent via dma(8) is rewritten
so it comes from that address. If you use a username with an @ sign, such as
bert@, all email appears to be coming from that user at the host. A hostname
on its own leaves the sending username untouched but changes the hostname.

MASQUERADE bert@mwl.io

Any messages sent from this host appear to be from Bert. Any replies
will go to him. All is as it should be.

502 Chapter 20

Disable Local Delivery

Some hosts should never receive mail. No account on the host should ever
get mail, not even from other local accounts. Totally disable local mail deliv-
ery by uncommenting the NULLCLIENT option.

Secure Transport

Over the decades, the email protocol has had a whole bunch of different
security measures wedged into it. Your mail server might use any or all
of them. Speak to your email administrator about what your smart host
requires and supports.

Enable TLS (or SSL, if your mail server is notably awful) by uncomment-
ing the SECURETRANSFER option. You don’t need to set this to a value;
its mere presence turns on TLS. If your mail server needs STARTTLS, also
uncomment that option. If you want to send mail even if TLS negotiation
fails, also uncomment OPPORTUNISTIC_TLS.

These three options all require the previous options. You can use
SECURETRANSFER on its own, STARTTLS and SECURETRANSFER
together, or all three. STARTTLS and SECURETRANSFER without their
preceding options don’t work.

If you need a local TLS certificate, set it with the CERTFILE option.

CERTFILE /etc/ssl/host.crt

These options should let you connect to just about any smart host.

Username and Password

Some smart hosts require clients authenticate with a username and pass-
word. Put authentication credentials in the file /etc/dma/auth.conf. Each
entry needs the format:

user|host:password

Suppose my smart host is mail.mwl.io. The username is www1, and the
password is BatteryHorseStapleCorrect. My auth.conf would contain:

www1|mail.mwl.io:BatteryHorseStapleCorrect

DMA will use this to log into your host.
If you want to use a username and password over an unencrypted

connection, you must set the INSECURE variable. Sending unencrypted
authentication information over the network is a bad idea, but many mail
servers are full of bad ideas.

Enabling DMA

Using DMA requires shutting down any existing Sendmail processes and
enabling dma(8) in mailer.conf.

Small System Services 503

Sendmail runs as a daemon even when it only handles local delivery.
Shut down Sendmail with service(8) or the /etc/rc.d/sendmail script.

service sendmail stop

Make sure it never starts again.

sysrc sendmail_enable=NONE

Now, go to /etc/mail/mailer.conf and point every mail program to dma(8).

sendmail /usr/libexec/dma
send-mail /usr/libexec/dma
mailq /usr/libexec/dma
newaliases /usr/libexec/dma
rmail /usr/libexec/dma

DMA has no persistent daemon, so it doesn’t need a startup script.
Congratulations, you now have a small, simple, effective client mail agent.

The Aliases File and DMA
The /etc/mail/aliases file contains redirections for email sent to specific
accounts or usernames. Even mail clients and mail agents like DMA use the
aliases file. Adding an entry to the aliases file is a good way to locally redi-
rect email.

While the aliases file has a whole bunch of features, DMA can exercise
only a few of them. Features like redirecting email to an arbitrary file don’t
work. We’ll discuss the basic functions.

Open up the aliases file and look around. Each line starts with an alias
name or address, followed by a colon and a list of real users to send the
email to. We’ll illustrate how aliases work by example.

Forwarding Email from One User to Another

Someone should always read email sent to the root account. Rather than
having that someone log onto every server to read the messages, forward all
of root’s email to another email address.

root: bert@mwl.io

I’ve assigned Bert the job of reading all the mail from all the machines.2

Many email addresses don’t have accounts associated with them. For
example, the required postmaster address often doesn’t have an account.
You can use an alias to forward this to a real account.

postmaster: root

2. It’s good for him. It’ll build character.

504 Chapter 20

So, postmaster forwards to root, which forwards to Bert. Bert gets all
the email for these two addresses.

The default aliases file contains a variety of standard addresses for
internet services, as well as aliases for all of the default FreeBSD service
accounts. They all go to root by default. By defining a real address as a des-
tination for your root email, you’ll automatically get all system administra-
tion email.

Aliased Mailing Lists

You can list multiple users to create small mailing lists. This doesn’t scale
for dynamic lists, but it’s sufficient for quick and dirty lists.

escalate: mwlucas@mwl.io, bert@mwl.io, helpdesk@mwl.io

The moment you find yourself creating an aliased mailing list is the
moment you need to start considering which mailing list solution you’re
going to deploy. You’ll need it sooner than you think.

Network Time
If a database starts entering dates three hours behind, or if emails arrive
dated tomorrow, you’ll hear about it pretty quickly. Time is important.3 You
have two tools to manage system time: tzsetup(8) to control the time zone
and ntpd(8) to adjust the clock. Start by setting your time zone manually, and
then use network time protocol.

Setting the Time Zone
Time zone is easy to manage with tzsetup(8), a menu-driven program that
makes the appropriate changes on your system for each time zone. Global
organizations might use the default of UTC (Universal Time Clock, previ-
ously known as Greenwich Mean Time, currently known as Coordinated
Universal Time, soon to be known by Yet Another Name) on their systems,
while others use their own local time. Enter tzsetup, follow the geographic
prompts, and choose the appropriate time zone for your location. If you
know your time zone’s official name, you can set it at the command prompt
without going through the prompts.

tzsetup America/Detroit

The tzsetup(8) program copies the relevant time zone file from /usr/
share/zoneinfo to /etc/localtime. This is a binary file, and you can’t edit with
your average text editor. If the characteristics of your time zone change—
for example, the day Daylight Saving Time begins changes—you must

3. The most important time of all, of course, is the “time to go home.”

Small System Services 505

upgrade FreeBSD to get the new time zone files and then rerun tzsetup(8)
to correctly reconfigure time.

Users can use the TZ environment variable to set their personal time zone.

Network Time Protocol
Network time protocol (NTP) is a method to synchronize time across a network.
You can make your local computer’s clock match the atomic clock at your
government’s research lab or the time on your main server. Computers that
offer time synchronization are called time servers and are roughly lumped
into two groups: Tier 1 and Tier 2.

Tier 1 NTP servers are directly connected to a highly accurate time-
keeping device. If you really need this sort of accuracy, then what you really
need is your own atomic clock. A USB radio clock such as that found on
an inexpensive GPS might look very nice, but USB turns out to be a lousy
medium for transferring timing data. Go price a dedicated non-USB GPS
receiver, and then choose a Tier 1 NTP server instead.

Tier 2 NTP servers feed off the Tier 1 NTP servers, providing time
service as a public service. Their service is accurate to within a fraction of
a second and is sufficient for almost all non–life sustaining applications.
Some digging will even lead you to Tier 3 time servers, which feed off of
Tier 2 servers.

The best source of time servers is the list at http://www.pool.ntp.org/.
This group has collected public NTP servers into round-robin DNS pools,
allowing easy NTP configuration. These NTP servers are arranged first in a
global list, then by continent, and then by country. For example, if you’re in
Canada, a brief search on that site leads you to 0.ca.pool.ntp.org, 1.ca.pool.ntp
.org, and 2.ca.pool.ntp.org. We’ll use these servers in the following examples,
but look up the proper servers for your country and use those instead when
setting up your own time service.

Configuring ntpd(8)

ntpd(8) checks the system clock against a list of time servers. It takes a rea-
sonable average of the times provided by the time servers, discarding any
servers too far away from the consensus, and gradually adjusts the system
time to match the average. This gives the most accurate system time pos-
sible, without demanding too much from any one server, and helps keep
errant hardware in check. Configure NTP in /etc/ntpd.conf. Here’s a sample
that uses Canadian time servers:

server 1.ca.pool.ntp.org
server 2.ca.pool.ntp.org
server 3.ca.pool.ntp.org

This system checks three time servers for updates. If you list only one
server, ntpd(8) slaves its clock to that one server and shares any time prob-
lems that server experiences. Using two time servers guarantees that your
system won’t know what time it is; remember, NTP takes an average of its

506 Chapter 20

time servers but throws out any values too far out of range of the others.
How can NTP decide whether one server is wrong when it has only two val-
ues to choose from? Using three time servers is optimal; if one server runs
amok, ntpd recognizes that the time offered by that server doesn’t make
sense against the time offered by the other two servers. (Think of this as a
“tyranny of the majority”; the one guy whose opinion differs from the rest
doesn’t get any voice at all.)

ntpd(8) at Boot Time

To have ntpd perform a one-time clock synchronization at boot and then
continually adjust the clock afterward, set the following in /etc/rc.conf :

ntpd_enable="YES"
ntpd_sync_on_start="YES"

Ntpd will force correct time immediately on boot and then gently keep
the clock synchronized.

Instant Time Correction

ntpd(8) is great at keeping the system clock accurate over time, but it
adjusts the local clock only gradually. If your time is off by hours or days
(which isn’t unlikely at install time or after a long power outage), you prob-
ably want to set your clock correctly before letting any time-sensitive appli-
cations start. ntpd(8) includes that functionality as well, with ntpd -q.

To perform a single brute-force correction of your clock, use ntpd -q.
This connects to your NTP servers, gets the correct time, sets your system
clock, and exits.

ntpd -q
ntpd: time set -76.976809s

This system’s time was off by about 77 seconds but is now synchronized
with the NTP servers.

Do not change the clock arbitrarily on a production system. Time-
sensitive software, such as many database-driven applications, has problems
if time suddenly moves forward or backward.

If you have really good hardware with an excellent oscillator, using
ntpd -q at boot handles all of your time problems. Very few people have that
sort of hardware, however. Most of us have to make do with commodity hard-
ware with notoriously poor clocks. The best way to ensure you have accurate
time is to run ntpd(8) to gently adjust your clock on an ongoing basis.

Redistributing Time

While ntpd doesn’t use a large amount of network bandwidth, having every
server on your network query the public NTP servers is a waste of network
resources—both yours and that of the time-server donors. It can also lead
to very slight (subsecond) variances in time on your own network.

Small System Services 507

Reliable time servers aren’t virtual machines. Tier 1 NTP servers are
all run on real hardware specifically to avoid the clock jittering virtual
machines can suffer.

I recommend setting up three authoritative time servers for your
network. Have these servers synchronize their clock with the global NTP
pool. Configure each server on your network to point to these servers for
NTP updates. That way, every clock on your network will be perfectly syn-
chronized. You won’t have to trawl through NTP logs to try to determine
whether a particular server in the global time server pool has somehow
messed up your system clock. It’s best to enforce this policy via firewall rules
at your network border; allowing only your time server to communicate
with outside NTP servers eliminates one common source of temporal chaos.

Name Service Switching
Any Unix-like system performs innumerable checks of many different name
services. We’ve already talked about the Domain Name System that maps
hostnames to IP addresses (see Chapter 7), but there’s also a password entry
lookup service, a TCP/IP port number and name lookup service, an IP pro-
tocol name and number lookup service, and so on. You can use /etc/nsswitch
.conf to configure how your FreeBSD system makes these queries and what
information sources it uses through nsswitch (name service switching).

Each name service has an nsswitch.conf entry including the type of the
service and the information sources it uses. We previously saw an example
of name service switching in Chapter 8. Remember this entry for host lookups?

hosts: files dns

This means, “Look for IP addresses in the local files first, and then
query DNS.” The other information sources work similarly. FreeBSD, like
most other Unix-like operating systems, supports name service switching
for the information sources listed in Table 20-1.

Table 20-1: Lookups Supporting Name Service Switching

Lookup Function

groups Group membership checks (/etc/group)
hosts Hostname and IP checks (DNS and /etc/hosts)
networks Network entries (/etc/networks)
passwd Password entries (/etc/passwd)
shells Checks for valid shells (/etc/shells)
services TCP and UDP services (/etc/services)
rpc Remote procedure calls (/etc/rpc)
proto TCP/IP network protocols (/etc/protocols)

508 Chapter 20

Most of these you don’t want to muck with, unless you like breaking
system functionality. If you have a Kerberos or an NIS domain, for example,
you might want to have your FreeBSD box attach to them for user and group
information—but if you don’t, reconfiguring the password lookups would
make your system slow at best or entirely stop working at worst!

For each name service, you must specify one or more sources of infor-
mation. Many of these name services are very simple and default to having
a single authoritative source of information—a file. Others, such as the
host’s name service, are more complicated and have multiple sources. A
few are very complicated simply because of the vast array of information
available and the many possible ways to get that information. As this book
doesn’t cover Kerberos, NIS, or any other enterprise-level user management
systems, we won’t cover changing password, group, and shell information
sources. If you’re in such an environment, read nsswitch.conf(5) for details.

Most common services have specific valid information sources. Files are
the standard text files containing information for the service. For example,
network protocols are traditionally stored in /etc/protocols, network services
in /etc/services, and passwords in /etc/passwd and friends. A source of dns
means that the information is available on a DNS server, as is typical for the
hosts service responsible for mapping hostnames to IP addresses. The pass-
word service often uses compat, which grants compatibility with /etc/passwd
and NIS but could also use files. You might add information sources to the
system—for example, enabling LDAP authentication adds the ldap informa-
tion source.

List each desired information source in the order you want them to be
tried. Our hosts entry tells the name service lookup to try the local file first
and then query the DNS server.

hosts: files dns

If you deploy a central authentication scheme like LDAP, you’ll need to
add an appropriate entry to tell the host to look up passwords and groups
in LDAP. The important question is, should hosts use their local password
file and then fall back to LDAP or start with LDAP and fall back to the pass-
word file?

passwd: ldap files

Here, we start with LDAP but fall back to the password file if LDAP isn’t
available.

inetd
The inetd(8) daemon handles incoming network connections for less fre-
quently used network services. Most systems don’t have a steady stream of
incoming FTP requests, so why have the FTP daemon running all the time?

Small System Services 509

Instead, inetd listens to the network for incoming FTP requests. When an
FTP request arrives, inetd(8) starts the FTP server and hands off the request.
Other common programs that rely on inetd are telnet, tftp, and POP3.

Inetd also handles functions so small and rarely used that they’re easier
to implement within inetd, rather than route them through a separate pro-
gram. This includes discard (which dumps any data received into the black
hole of /dev/null), chargen (which pours out a stream of characters), and
other functions. These days, most of these services are not only not required
but often considered harmful. The chargen service, for example, is mostly
useful for denial-of-service attacks.

/etc/inetd.conf
Take a look at /etc/inetd.conf. Most daemons have separate IPv4 and IPv6
configurations, but if you’re not running IPv6, you can ignore the IPv6
entries. Let’s look at one entry, the FTP server configuration.

uftp vstream wtcp xnowait yroot z/usr/libexec/ftpd {ftpd -l

The first field is the service name u, which must match a name in /etc/
services. inetd performs a service name lookup to identify which TCP port
it should listen to. If you want to change the TCP/IP port your FTP server
runs on, change the port for FTP in /etc/services. (You could also change the
first field to match the service that runs on the desired port, but I find that
this makes the entry slightly confusing.)

The socket type v dictates what sort of connection this is. All TCP con-
nections are of type stream, while UDP connections are of type dgram. While
you might find other possible values, if you’re considering using them, either
you’re reading the documentation for a piece of software that tells you what
to use, or you’re just wrong.

ine t d Secur i t y

Some sysadmins think of inetd as a single service with a monolithic security
profile. Others say that inetd has a bad security history. Neither is exactly
true. The inetd server itself is fairly secure, but it absorbs a certain amount of
blame for the programs it forwards requests to. Some services that inetd can
support, such as ftp, telnet, and so on, are inherently insecure, while others
have had a troubled childhood and act out as a result (for example, popper).
Treat inetd as you would any other network server program: do not run inetd
unless you need it, and then confirm that it offers only trusted and secure
programs!

510 Chapter 20

The protocol w is the layer 4 network protocol, either tcp (IPv4 TCP),
udp (IPv4 UDP), tcp6 (IPv6 TCP), or udp6 (IPv6 UDP). If your server accepts
both IPv4 and IPv6 connections, use the entries tcp46 or udp46.

The next field indicates whether inetd should wait for the server program
to close the connection or just start the program and go away x. As a gen-
eral rule, TCP daemons use nowait while UDP daemons need wait. (There
are exceptions to this, but they’re rare.) inetd(8) starts a new instance of the
network daemon for each incoming request. If a service uses nowait, you can
control the maximum number of connections inetd accepts per second
by adding a slash and a number directly after nowait, like this: nowait/5. One
way intruders (usually script kiddies) try to knock servers off the internet is
by opening more requests for a service than the server can handle. By rate-
limiting incoming connections, you can stop this. On the other hand, this
means that your intruder can stop other people from using the service at all.
Choose your poison carefully!

We then have the user y that the server daemon runs as. The FTP
server ftpd(8) runs as root, as it must service requests for many system
users, but other servers run as dedicated users.

The sixth field is the full path to the server program inetd runs when a
connection request arrives z. Services integrated with inetd(8) appear as
internal.

The last field gives the command to start the external program, includ-
ing any desired command line arguments {.

Configuring inetd Servers
While /etc/inetd.conf seems to use a lot of information, adding a program is
actually pretty simple. The easiest way to learn about inetd(8) is to imple-
ment a simple service with it. For example, let’s implement a Quote of the
Day (qotd) service. When you connect to the qotd port, the server sends
back a random quote and disconnects. FreeBSD includes a random quote
generator, fortune(1), in its games collection. This random quote generator
is all we need to implement an inetd-based network program. We must spec-
ify a port number, a network protocol, a user, a path, and a command line.

port number

The /etc/services file lists qotd on port 17.

network protocol

The qotd service requires that you connect to a network port and get some-
thing back, so it needs to run over TCP. Remember, UDP is connectionless—
a reply isn’t required. We must specify tcp in our inetd configuration, which
means that we must specify nowait in the fourth field.

Small System Services 511

user

Best practice says to create an unprivileged user to run the qotd service, as
discussed in Chapter 19. For this example, we’ll just use the general unprivi-
leged user nobody, but if you were implementing this in production, you’d
want to create an unprivileged user qotd.

path

Find fortune at /usr/bin/fortune.

Running the Command

fortune(6) doesn’t require any command line arguments, but you can add
them if you like.4 On FreeBSD 11, believers in Murphy’s Law can use fortune
murphy, while Star Trek fans can get quotes with fortune startrek. (The latter
correctly includes only the One True Star Trek, not any of the wannabe
followups.) Those interested in education could use fortune freebsd-tips.
FreeBSD 12 removes many of the fortune databases, sadly.

Sample inetd.conf Configuration

Putting this all together, the entry for qotd in /etc/inetd.conf looks like this:

qotd stream tcp nowait nobody /usr/bin/fortune fortune

You might think this example trivial, but providing other services out of
inetd(8) is no more difficult.

Starting inetd(8)
First, enable inetd(8) at boot by adding the following entry to /etc/rc.conf :

inetd_enable=YES

With this set, start inetd by hand with /etc/rc.d/inetd start. Now that
inetd is running, telnet to port 17 to test our new service:

telnet localhost 17
u Trying 127.0.0.1...

Connected to localhost.
Escape character is '^]'.

v It is difficult to produce a television documentary that is both
incisive and probing when every twelve minutes one is interrupted by
twelve dancing rabbits singing about toilet paper.
 -- Rod Serling
Connection closed by foreign host.

4. I preferred fortune -o, but FreeBSD sadly purged the offensive fortune database.

512 Chapter 20

It works! We have the usual TCP/IP connection information u and our
random fortune v. (As an added bonus, you also know why I don’t write for
television.)

Changing inetd’s Behavior
inetd behaves differently depending on the flags you set for it. The default
flags turn on TCP wrappers, as configured in /etc/hosts.allow (see Chapter 19).
Table 20-2 lists some of the useful flags.

Table 20-2: inetd(8) Flags

Flag Description

-l Log every successful connection.

-c Set the maximum number of connections per second that can be made
to any service. By default, there’s no limit. Note that “unlimited” isn’t the
same as “infinite”—your hardware only handles so many connections.

-C Set the number of times one IP address can connect to a single service
in one minute. This connection rate is unlimited by default, but using this
can be useful against people trying to monopolize your bandwidth or
resources.

-R Set the maximum number of times any one service can be started in one
minute. The default is 256. If you use -R 0, you allow an unlimited number
of connections to any one service.

-a Set the IP address inetd(8) attaches to. By default, inetd listens on all IP
addresses attached to the system.

-w Use TCP wrappers for programs started by inetd(8), as per hosts.allow
(see Chapter 19).

-W Use TCP wrappers for services integrated with inetd(8), as per hosts.allow
(see Chapter 19).

As an extreme example, if you want to use TCP wrappers, allow only two
connections per second from any single host, allow an unlimited number of
service invocations per minute, and listen only on the IP address 203.0.113.2,
then you’d set the following in /etc/rc.conf:

inetd_flags="-Ww -c 2 -R 0 -a 203.0.113.2"

With inetd(8), almost anything can be a network service.

DHCP
Dynamic Host Configuration Protocol (DHCP) is the standard method for
handing out IP addresses to client computers. While DHCP services aren’t
integrated with FreeBSD out of the box, they’re commonly required to
implement such services as diskless workstations. We’ll cover the basics of
DHCP configuration here so you can set up your own network.

Small System Services 513

These days, every firewall and embedded device has a DHCP server.
Why would you need a separate DHCP server? Most of the embedded
DHCP servers lack functions needed to run diskless clients, such as network-
booted servers and VoIP phones. When they do support such functions,
those DHCP servers are often difficult to manage. Services are meant to
run on actual servers. We’ll cover enough of DHCP to let you configure
your own network clients, including diskless hosts.

FreeBSD packages include several DHCP servers. The two I like are
OpenBSD’s dhcpd and ISC DHCP server. The ISC DHCP server is an indus-
try standard and supports every feature you could possibly want. For small
deployments, I recommend OpenBSD’s dhcpd. The OpenBSD folks took
ISC DHCP, ripped out all the rarely used features, and made a smaller, sim-
pler server. The configuration file is still one-way compatible; you can run
an OpenBSD dhcpd configuration on ISC’s DHCP server without trouble.
(The reverse is also true if you’re not using any of the features OpenBSD
ripped out of the server.) If you want to run diskless FreeBSD clients, or if
you need LDAP integration, switching to the more complex ISC server is
fairly straightforward. You can install only one of the two servers.

The package for either server includes dhcpd(8), the configuration file
/usr/local/etc/dhcpd.conf, and extensive man pages.

How DHCP Works
DHCP can be terribly complicated in a large network where we are relay-
ing DHCP requests between offices, but it’s rather simple on a local
Ethernet. Each DHCP client sends a broadcast across the local Ethernet
asking for someone—anyone—to provide network configuration infor-
mation. If your DHCP server is on that local Ethernet, it answers directly.
If your DHCP server is on another network segment, the router for that
network segment needs to know which IP address to forward the DHCP
request to. The DHCP server then loans configuration information to the
client and tracks which clients have been assigned which IP addresses. A
configuration issued to a client is called a lease. Like the lease you pay on a
home or auto, DHCP leases expire and must be renewed occasionally.

rOgue dHcp Se rv e rS

Each network should have one and only one set of authoritative DHCP infor-
mation. If you set up your own DHCP server on a network that already has
one, such as in your company office, you’ll probably break a whole bunch of
clients and trigger a whole bunch of phone calls to the network team. Setting
up a “rogue” DHCP server is a great way to have the network team ignore all
of your help requests from now until forever.

514 Chapter 20

The client can request certain features—for example, Microsoft clients
ask for the IP address of the WINS server, while diskless systems ask where
to find a kernel. You can set all these options as necessary.

Each client is uniquely identified by the MAC address of the network card
used to connect to the network. ISC dhcpd tracks MAC and IP addresses, as
well as leases, in the file /var/db/dhcpd.leases. In this file, you can identify
which hosts have which IP addresses. If a host disappears from the network
for a time and returns, dhcpd(8) reissues the same IP to that client if that
IP is still available.

Configuring dhcpd(8)
The file /usr/local/etc/dhcpd.conf contains all the configuration for dhcpd.
While ISC dhcpd(8) can and does fill entire books on its own, we’ll focus
on the functions needed for a basic small office as well as those used in the
examples later in this book. The default dhcpd.conf is well commented and
includes still more examples, while dhcpd.conf(5) is painfully exhaustive.
We’re going to assume that you’re running a single DHCP server on your
network, and that your server should answer all requests for DHCP services.
(It’s entirely possible to cluster dhcpd for fault tolerance, but that’s beyond
our scope here.)

Global Settings

Start your dhcpd.conf with a few general rules for client configuration. These
rules apply to all DHCP clients unless specifically overridden.

u option domain-name "mwl.io";
v option domain-name-servers 198.51.100.2, 198.51.100.3;
w option subnet-mask 255.255.255.0;
x default-lease-time 600;
y max-lease-time 7200;

Each DHCP client registers its hostname with the DHCP server, but
the client must learn the local domain name from the server. (It’s also
possible for the DHCP server to set the client’s hostname.) Set this with
the domain-name option u. You can give your DHCP clients any domain
name you like; they don’t need to share the server’s domain name. You
can include multiple domains if you separate them with spaces, but not
all operating systems will recognize additional domain names.

Every TCP/IP client needs a DNS server or two. Specify them with the
option domain-name-servers v. Separate multiple DNS servers with commas.

It’s a good idea to set a default subnet mask w. Individual networks can
override this, but a global default is useful.

The normal duration of a lease is given (in seconds) by the
default-lease-time option x. After the lease time runs out, the client
requests a new DHCP lease from the DHCP server. DHCP servers com-
monly default to a small number of minutes, but if your network is fairly

Small System Services 515

stable you can extend this to hours or a couple days. If the client can’t reach
the DHCP server, it continues to use the old lease for a number of minutes
equal to the maximum life of the lease, specified with max-lease-time y. You
can think of the maximum lease time as “if my DHCP server fails, this is
how long I have to replace it before the phone starts ringing.” Give yourself
time to fix the issue.5

Now define subnets.

Subnet Settings

Each subnet on your network needs a subnet statement to identify configu-
ration information for DHCP clients on that subnet. For example, here’s a
network statement for a single small office network:

u subnet 198.51.100.0 netmask 255.255.255.0 {
 v range 198.51.100.50 198.51.100.99;
 w option routers 198.51.100.1;

}

Each subnet declaration starts by identifying the network number
and netmask u of the subnet. Here, we have a subnet using the IP network
number 198.51.100.0 with the netmask 255.255.255.0, or the IP addresses
198.51.100.1 through 198.51.100.255. The information that follows in
braces all pertains to hosts on that particular subnet.

The range keyword v identifies the IP addresses that dhcpd(8) may issue
to clients. In this example, we have 50 IP addresses available for clients. If
51 DHCP clients connect before any leases expire, the last host won’t get an
address.

Define a default route with the routers option w. Note that you can’t
define additional routes with dhcpd(8); instead, your local network router
needs to have the proper routes to reach the destination. If you have multiple
gateways on your local network, your gateway transmits an ICMP redirect to
the DHCP client to give it an updated route. (If you have no idea what this
means, that’s all right. When you need it, you’ll abruptly comprehend what
I’m talking about, and if you never need it, you’ve just wasted the two seconds
it took to read this aside.)

If you have multiple subnets, create multiple subnet statements. Some
of those subnets might need settings different than the global defaults, such
as a netmask or DNS servers. If so, use those same keywords to define those
values for that subnet.

Dhcpd lets you set anything from the subnet mask, boot servers, and
even WINS servers for antediluvian Windows clients. We’ll use some of
these less common settings to manage diskless clients in Chapter 23. See
dhcpd.conf(5) for an exhaustive list.

5. Answering the question “When will it be fixed?” with “However long it takes to fix, plus
however much time I waste talking to you” never goes over well.

516 Chapter 20

Managing dhcpd(8)
Dhcpd defaults to listening to all network interfaces to catch DHCP request
broadcasts. I’ve run many DHCP servers with multiple network cards, how-
ever, and usually want dhcpd to listen only to a single interface. Give the
desired interface as a command line argument.

sysrc dhcpd_flags="em1"

Now enable dhcpd(8) itself.

sysrc dhcpd_enable=YES

You can now fire up dhcpd with service dhcpd start.
Congratulations, you’re ready to go!

Printing and Print Servers
Printing on Unix-like operating systems is a topic that makes new sysad-
mins cry and seasoned sysadmins ramble on about the good old days when
printers were TTY devices and about the younger generation not knowing
how good they have it.6 The most common printing situations are printers
directly attached to a computer via a USB port and printers attached to
a network print server.

If you have a printer attached directly to your FreeBSD machine, such as
by a USB cable, I suggest using the Common Unix Printing System (CUPS). This
suite of software manages many popular consumer-grade and commercial
printers, from lowly inkjets to web-scale laser printers. I’m not going into any
detail about CUPS, as it’s complicated and varies by printer model. Learn
more about CUPS at http://www.cups.org/. Many brands of printers have spe-
cial setup programs in CUPS, such as HP’s hp-setup. If your printer supports
a network connection, though, try to avoid CUPS and use network printing
instead.

Accessing a remote print server or network printer via the Line Printer
Spooler Daemon (LPD) is simple in comparison. LPD takes in PostScript and
produces printouts. Most office print servers run LPD. The lpd(8) daemon
manages LPD. Most modern networked printers also support LPD and can
act as their own print server.

Test for LPD support by connecting to TCP port 515; if you get a con-
nection, the device speaks LPD.

nc -v color-printer 515
Connection to color-printer 515 port [tcp/printer] succeeded!

This device supports LPD. We can send print jobs to it by configuring
/etc/printcap.

6. We’re right: you don’t know how good you have it.

Small System Services 517

/etc/printcap
Every printer your system knows about needs an entry in /etc/printcap, the
printer capability database. This file is, by modern standards, in a rather
obtuse format and will look very unfamiliar to anyone who hasn’t previously
worked with termcap(5). Fortunately, to access a print server you don’t need
to understand printcap(5); you just need to use the following template.

To connect to a printer on a print server, you must have the print serv-
er’s hostname or IP address and its name for the printer you want to access.
Make an entry in /etc/printcap following this template. Pay special attention
to the colons and backslashes—they’re absolutely vital.

u lp|printername:\
 v :sh=:\
 w :rm=printservername:\
 x :sd=/var/spool/output/lpd/printername:\
 y :lf=/var/log/lpd-errs:\
 z :rp=printername:

Our first line shows the printer’s name u. If you print from LibreOffice
or a graphical web browser, these names will show up as printer options. Each
printer can have any number of names, separated by the pipe symbol (|). The
default printer on any Unix-like system is called lp, so list that as one of the
names for your preferred printer. One other name should be the name used
by the print server for your printer (for example, 3rdFloorPrinter). Be warned,
Microsoft print servers frequently share one printer under several different
names and use different names to handle printing differently. If you find this
to be the case on your network, be sure to choose the PostScript name.7

By default, lpd(8) precedes each print job with a page listing the job
name, number, host, and other information. Unless you’re in an environ-
ment with a single massive shared printer, this is probably a waste of paper.
The :sh:\ entry v suppresses this page.

The rm (remote machine) variable w provides the hostname of the
print server. You must be able to ping this server by the name you give here.
If the print server is part of the printer, give the printer’s hostname here.

Each printer requires a unique spool directory x, where the local print
daemon can store documents in transit to the print server. This directory
must be owned by user root and group daemon.

Unlike spool directories, which must be different, printers can share a
common log file y.

Finally, specify the remote printer name z, as the print server identifies it.
If you’re connecting directly to a printer, not to a central print server, you can
skip this entry—but you must get rid of the trailing slash on the previous line.

Be sure you end /etc/printcap with a new line; don’t just terminate the
file immediately after the printer name. Also, note that unlike every other
entry in this template, the last line doesn’t require a trailing backslash.

7. Whatever that is.

518 Chapter 20

Printers have dozens and dozens of options, from the cost per page to
manually setting a string to feed a new sheet of paper. Most of these are
obsolete today. If you have an older printer or special needs, though, con-
sult printcap(5) for enough glorious detail to choke on.

Enabling LPD
Set lpd_enable to YES in /etc/rc.conf to have lpd(8) start at boot. Any time you
edit /etc/printcap you must restart lpd(8). View the print queue with lpq(1)
and watch for any problems in /var/log/lpd-errs.

TFTP
Let’s end our discussion of small network services with perhaps the smallest
network service still used, the Trivial File Transfer Protocol (TFTP). TFTP lets
you transfer files from machine to machine without any authentication
whatsoever. It’s also much less flexible than file copy protocols, such as SCP
or FTP. TFTP is still used by makers of embedded devices, such as Cisco, to
load system configurations and operating system updates. We cover it here
only because diskless clients use TFTP to download their operating system
kernel and get their initial configuration information. Run tftpd(8) out of
inetd(8) on TCP port 69.

Setting up a tftpd(8) server involves four steps: choosing a root direc-
tory for your server, creating files for the server, choosing an owner for your
files, and running the server process.

Root Directory
The tftpd(8) daemon defaults to using the directory /tftpboot. This might
be suitable if you have only a couple files that you rarely access, but the root
partition is best reserved for files that don’t change often. You don’t want
a TFTP upload to crash your system by filling the root partition! If you’re
running ZFS, create a tftp dataset. On UFS, I usually put my tftpd(8) root
directory in /var/tftpboot and add a symlink to /tftpboot:

mkdir /var/tftpboot
ln -s /var/tftpboot /tftpboot

t F t p Secur i t y

TFTP isn’t suitable for use on the public internet. Anyone can read or write files
on a TFTP server! Only use TFTP behind a firewall or at least protect it tightly
with TCP wrappers (see Chapter 19).

Small System Services 519

Now you can create files for access via TFTP.

tftpd and Files
Users can both read and write files via TFTP. If you want tftpd(8) users to
be able to read a file, the file must be world-readable:

chmod +r /var/tftproot/filename

Similarly, tftpd(8) won’t allow anyone to upload a file unless a file of
that name already exists and is world-writable. Remember, programs and
regular files have different permissions. A program must have execute per-
missions in addition to read and write permissions, so you must set permis-
sions differently for programs and files. You can use touch(1) to precreate
files that you’ll want to upload via TFTP.

chmod 666 /var/tftproot/filename
chmod 777 /var/tftproot/programname

Yes, this means that anyone who knows a file’s name can overwrite the
contents of that file. Make vital files read-only.8 This also means you don’t
have to worry about someone uploading a big file and filling your hard drive.

File Ownership
Files in a TFTP server should be owned by a user with the least possible
privilege. If you run a TFTP server only intermittently, you can use the
nobody user. For example, if you need the TFTP server only to perform the
occasional embedded device upgrade, let the nobody user own your files
and just turn tftpd(8) off when it’s not needed. If you run a permanent
TFTP server, however, it’s best to have a dedicated tftp unprivileged user to
own the files. The tftp user doesn’t need to own the tftproot directory and,
in fact, should have an entirely different home directory. He needs owner-
ship only of the files available to users.

tftpd(8) Configuration
tftpd(8) is configured entirely through command line arguments, and
there aren’t many of them. For a full list, read tftpd(8), but here are the
most commonly used ones.

If you create a user just to run tftpd(8), specify that user with the -u
argument. If you don’t specify a user, tftpd(8) runs as nobody. Create an
unprivileged user.

I recommend logging all requests to your TFTP daemon. The -l argu-
ment turns on logging. tftpd(8) uses the FTP facility, which you must enable
in syslog.conf (see Chapter 21).

8. Unless, of course, you’d like to try installing someone else’s server configuration file as the
new IOS on your Cisco router. Be sure to tell the Cisco support tech to activate the phone
recorder before you describe your problem; he’ll want to share this one with his coworkers.

520 Chapter 20

Tftpd supports chrooting with the -s flag. This lets you confine tftpd(8)
to your selected directory. You don’t want users to TFTP world-readable files
such as /etc/passwd, or even /boot/kernel/kernel, just on general principle!
Always chroot your tftpd(8) installation.

You can chroot TFTP clients by IP address with the -c argument. In
this case, you must create a directory for every client permitted to connect.
For example, suppose the only host you want to give TFTP access to is your
router, with the IP address of 192.168.1.1. You could create a directory /var/
tftproot/192.168.1.1 and use -c. You must also use -s to define the base direc-
tory of /var/tftproot. This is a good compromise when you must offer TFTP
to only one or two hosts, but you don’t want the world to have access to your
TFTP server.

You can choose to allow a client to write new files to your TFTP server.
This is a bad idea because it lets remote users fill up your hard disks with
arbitrary files. If you must have this functionality, use the -w flag.

For example, suppose you want to log all requests to tftpd, chroot
to /var/tftpboot, run the server as the user tftpd, and chroot clients by IP
address. The command to run tftpd would look like this:

tftpd -l -u tftpd -c -s /var/tftpboot

Enter this into inetd.conf as described earlier this chapter, restart
inetd(8), and you’re in business!

Scheduling Tasks
The FreeBSD job scheduler, cron(8), allows the administrator to have the
system run any command on a regular basis. Combined with the system
maintenance scheduling system, periodic(8), you can schedule almost
anything.

cron(8)
If you need to back up your database nightly or reload the nameserver
four times a day, cron is your friend. cron(8) configuration files are called
crontabs and are managed with crontab(1). Every user has a separate crontab
stored in /var/cron/tabs, and the global crontab file is /etc/crontab. Global
cron entries can also be placed in /etc/cron.d and will be run as if they were
part of /etc/crontab.

User Crontabs vs. /etc/crontab

The purpose of /etc/crontab is different from that of individual users’
crontabs. With /etc/crontab, root may specify which user will run a particu-
lar command. For example, in /etc/crontab, the sysadmin can say, “Run this
job at 10 pm Tuesdays as root, and run this other job at 7 am as www.” Other
users can run jobs only as themselves. Of course, root can also edit a user’s
crontab.

Small System Services 521

Also, any system user can view /etc/crontab. If you have a scheduled
job that you don’t want users to know about, place it in a user crontab.
For example, if you have an unprivileged user for your database, use that
unprivileged user’s crontab to run database maintenance jobs.

/etc/crontab is considered a FreeBSD system file. Don’t overwrite it
when you upgrade! One way to simplify upgrading /etc/crontab is to set
your custom entries at the end of the file, marked off with a few lines of
hash marks (#). The /etc/crontab file must end with a new line, or the last
line won’t get parsed and run. That’s fine if your last entry is a comment,
but not so good if it’s a command.

Finally, while you edit /etc/crontab with a text editor, edit a user crontab
with crontab -e.

cron and Environment

Crontabs run in a shell, and programs might require environment variables
to run correctly. You can also specify environment variables on the com-
mand line for each command you run from cron. cron doesn’t inherit any
environment variables from anywhere; any environment variables a pro-
gram needs must be specified in the crontab. For example, here’s the envi-
ronment from /etc/crontab on a FreeBSD 12 system:

SHELL=/bin/sh
PATH=/etc:/bin:/sbin:/usr/bin:/usr/sbin

Yes, this is extremely minimal! Feel free to add environment variables
as needed to user crontabs, but be conservative when changing /etc/crontab.
If you need a custom environment variable, it’s safest to use a user crontab
rather than /etc/crontab because many of the commands in /etc/crontab are
for core system maintenance.

Crontab Format

Beneath the environment statements, a user crontab is divided into six col-
umns. The first five columns represent the time the command should run,
as minute, hour, day of the month, month of the year, and day of the week,
in that order. An asterisk (*) in any column means every one, while a number
means at this exact time. Minutes, hours, and days of the week begin with 0,
and days of the month and months begin with 1. Also, thanks to an ancient
disagreement between AT&T and BSD, Sunday can be represented by
either 7 or 0. After the time, list the command to be run at that time.

The /etc/crontab file, and files under /etc/cron.d, have one extra col-
umn: the user under which to run the command. It goes between the time
specification and the command itself. Check out the many examples in
/etc/crontab if you like.

522 Chapter 20

Sample Crontabs

Assume that we’re editing the crontab of an unprivileged user to schedule
maintenance of a program. As /etc/crontab has column headings at the top,
we’ll demonstrate user crontabs here. (To use these examples in /etc/crontab,
just add the user before the command.) Here, we want to run the program
/usr/local/bin/maintenance.sh at 55 minutes after each hour, every single hour:

55 * * * * /usr/local/bin/maintenance.sh

Asterisks tell cron to run this job every hour, on every day of the month,
every month, and on every weekday. The 55 tells cron to run this job only at
minute 55.

To run the same job at 1:55 pm every day, use the following:

55 13 * * * /usr/local/bin/maintenance.sh

Here, 13 represents 1:00 pm on the 24-hour clock, and 55 is the number
of minutes past that hour.

One common mistake people make when using cron is specifying a
large unit of time but missing the small one. For example, suppose you
want to run the job every day at 8 am:

* 8 * * * /usr/local/bin/maintenance.sh

This is wrong. Yes, the job will run at 8:00 am. It will also run at 8:01,
8:02, 8:03, and so on, until 9 am. If your job takes more than one minute to
run, you’ll quickly bring your system to its knees. The correct way to specify
8:00 am, and only 8:00 am, is this:

0 8 * * * /usr/local/bin/maintenance.sh

To specify ranges of time, such as running the program once an hour,
every hour, between 8 am and 6 pm, Monday through Friday, use something
like this:

55 8-18 * * 1-5 /usr/local/bin/maintenance.sh

To specify multiple exact times, separate them with commas:

55 8,10,12,14,16 * * * /usr/local/bin/maintenance.sh

More interestingly, you can specify fractions of time, or steps. For
example, to run a program every 5 minutes, use:

*/5 * * * * /usr/local/bin/maintenance.sh

Small System Services 523

You can combine ranges with steps. To run the program every 5 min-
utes, but 1 minute after the previous example, use this:

1-56/5 * * * * /usr/local/bin/maintenance.sh

Control the day a job runs with two fields: the day of the month and the
day of the week. If you specify both, the job will run whenever either condi-
tion is met. For example, tell cron to run a job on the 1st and the 15th of
every month, plus every Monday, as follows:

55 13 * 1,15 1 /usr/local/bin/maintenance.sh

If your job has a nonstandard environment, set the environment on the
command line just as you would in the shell. For example, if your program
requires a LD_LIBRARY_PATH environment variable, you can set it thus:

55 * * * * LD_LIBRARY_PATH=/usr/local/mylibs ; /usr/local/bin/maintenance.sh

cron also supports special scheduling, such as annually or daily, with the
@ symbol. Most of these terms are best not used, as they can be ambiguous.
While the machine knows exactly what they mean, humans tend to misun-
derstand! One useful crontab entry is for whenever the system boots, which is
@reboot. This lets an unprivileged user run jobs when the system boots. Use
the @reboot label instead of the time fields:

@reboot /usr/local/bin/maintenance.sh

Crontabs and cron(8) let you schedule your work any way you like, elim-
inating the human being from many routine maintenance tasks.

periodic(8)
Some system maintenance jobs should be run only on particular systems,
but the way they should be run is identical across all hosts. That’s where
periodic(8) comes in.

The periodic(8) command runs system functions on schedule, as
cron(8) determines. Periodic checks a directory for a set of scripts to run.
FreeBSD includes several directories for periodic tasks: /etc/periodic/daily,
/etc/periodic/weekly, /etc/periodic/monthly, and /etc/periodic/security. Depending
on which packages you install, you might have corresponding directories in
/usr/local/etc/periodic. When cron runs, say, periodic daily, periodic(8) checks
each script in each periodic/daily directory to see whether it should be run.

When you have spare time, I recommend perusing the periodic(8)
scripts. You might find disabled maintenance scripts useful for your
environment.

Which scripts should be run? The default settings are listed in /etc/
defaults/periodic.conf, but you can override them in /etc/periodic.conf.

Once periodic(8) runs, it mails the results of the scripts to root on the
local machine. Forward root’s mail to someone who will actually read it.

524 Chapter 20

Why use periodic(8)? It’s all for system maintenance. /etc/crontab is for
configuring your own system administration jobs. Using separate scripts
allows the system upgrade process to replace tasks and packages to add and
remove them.

All periodic(8) jobs run as root, though. If you have scheduled jobs that
should be run by less privileged users, run them from the user’s crontab.

Now that you have a decent understanding of the common small services
provided by FreeBSD, let’s go on to performance.

21
S y S t e m P e r f o r m a n c e

a n d m o n i t o r i n g

Even if “it’s slow!” isn’t the most dreaded
phrase a system administrator can hear, it’s

pretty far up on the list. The user doesn’t
know why the system is slow and probably can’t

even quantify or qualify the problem any further than
that. It just feels slow. Usually there’s no test case, no
set of reproducible steps, and nothing particularly wrong. A slowness com-
plaint can cause hours of work as you dig through the system trying to find
problems that might or might not even exist.

One phrase is more dreadful still, especially after you’ve invested those
hours of work: “it’s still slow.”

An inexperienced sysadmin accelerates slow systems by buying faster
hardware. This exchanges “speed problems” for costly parts and even more
expensive time. Upgrades just let you conceal problems without actually
using the hardware you already own, and sometimes they don’t even solve
the problem at all.

You can frequently solve performance problems by tweaking the soft-
ware that’s causing the problems. Your WordPress site is slow? Investigate

526 Chapter 21

running PHP under memcached or another PHP accelerator. FreeBSD is
only one layer of your application stack, so be sure to give the other layers
proper attention.

FreeBSD includes many tools designed to help you examine system
performance and provide the information necessary to learn what’s actually
slowing things down. Some of them, such as dtrace(1), are highly compli-
cated and require extensive knowledge of the system, the software, and a
book of their own. Once you understand where a problem is, identifying
the solution to the problem becomes much simpler. You might actually
need faster hardware, but sometimes shifting system load or reconfiguring
software might solve the problem at much less expense. In either case, the
first step is understanding the problem.

Computer Resources
Performance problems are usually caused by running more tasks than the
computer can handle. That seems obvious, but think about it a moment.
What does that really mean?

A computer has four basic resources: input/output, network band-
width, memory, and CPU. If any one of them is filled to capacity, the others
can’t be used to their maximum. For example, your CPU might very well
be waiting for a disk to deliver data or for a network packet to arrive. If
you upgrade your CPU to make your system faster, you’ll be disappointed.
Buying a whole new server might fix the problem, but only by expanding
the existing bottleneck. The new system probably has more memory, faster
disks, a better network card, and faster processors than the old one. You
have deferred the problem until the performance reaches some new limit.
However, by identifying where your system falls short and addressing that
particular need, you can stretch your existing hardware much further. After
all, why purchase a whole new system when a few gigabytes of relatively inex-
pensive memory would fix the problem? (Of course, if your goal is to retire
this “slow” system to make it your new desktop, that’s another matter.)

Input/output is a common bottleneck. System busses have a maxi-
mum throughput, and while you might not be pushing your disk or your
network to their limits, you might be saturating the bus by continually
bombarding both.

One common cause of system slowdowns is running multiple large pro-
grams simultaneously. Not only does disk I/O become saturated, but the pro-
cessors might spend the majority of their time waiting to swap data between
the on-CPU cache and the memory. For example, I once thoughtlessly sched-
uled a massive database log rotation that moved and compressed gigabytes
of data at the same time as the daily periodic(8) run. Since the job required
shutting down the main database and caused application downtime, speed
was crucial. Both the database job and the periodic(8) run slowed unbear-
ably. Rescheduling one of them made both jobs go more quickly.

FreeBSD has some features that improve performance. Doing lots of
cryptographic operations? Use the aesni(4) kernel module. Database is disk

System Performance and Monitoring 527

bound? Consider the filesystem block size. ZFS pool slow? Maybe you need
an add-on cache. Identifying what you should change requires a hard look
at the system, however.

We’re going to look at several FreeBSD tools for examining system
performance. Armed with that information, we’ll consider how to fix per-
formance issues. Each potential bottleneck can be evaluated with the
proper tools. FreeBSD changes continually, so later systems might have
new tuning options and performance features. Read tuning(7) on your
system for current performance tips.

Checking the Network
If you’re concerned about network performance, measure it. Consult
netstat -m and netstat -s, and look for errors or places where you’re out
of memory or buffers. These are instantaneous snapshots, but for the net-
work, you really need to evaluate congestion and latency over minutes,
hours, and even days. The network team probably has a tool like Cacti,
Zabbix, or Graphite to observe long-term performance.1 Ask them for infor-
mation. Combine what these tools provide with your instantaneous snap-
shots. If the average throughput per minute on your 10-gig Ethernet is only
5 gigabit a second, but your instantaneous measurements show frequent
spikes up to the full 10 gigabit, you probably have really bursty connectivity.

Some network cards can better handle a full network in polling mode.
Polling tells the network card to stop sending frames up to the operating
system as they arrive and instead let the operating system visit every so often
to collect the frames. Check your network card’s man page to see whether it
supports polling. Enable and disable polling with ifconfig(8).

A heavily loaded network might benefit from a different congestion
control algorithm. FreeBSD provides several TCP congestion control algo-
rithms. Look for files beginning with cc_ in /boot/kernel; these are conges-
tion control modules. Each has a man page.

1. Once you manage dozens or hundreds of servers, you’ll also find yourself installing Catci,
Zabbix, Graphite, or one of their kin to monitor performance. You wanted to manage yet
another application, right?

W h at iS nor m a l?

One word you’ll keep tripping over in this chapter is abnormal. As the
sysadmin, you’re supposed to know what’s normal for your system. It’s some-
what like art; you might not be able to define normal, but you need to recog-
nize abnormal when you see it. Use these tools regularly when the system is
behaving itself so you can have a good idea of which results are out of whack
during system slowdowns. Pay attention to your hardware!

528 Chapter 21

View the currently loaded congestion control algorithms with the sysctl
net.inet.tcp.cc.available.

sysctl net.inet.tcp.cc
net.inet.tcp.cc.available: newreno

New Reno is the traditional congestion control algorithm. The
congestion control kernel modules on this system include CDG, CHD,
CUBIC, DCTCP, HD, H-TCP, and Vegas. The H-TCP algorithm is spe-
cifically designed for long-distance, high-bandwidth applications. Let’s
enable it.

kldload /boot/kernel/cc_htcp.ko
sysctl net.inet.tcp.cc.available
net.inet.tcp.cc.available: newreno, htcp

We now have H-TCP available in the kernel. Enable it with the net.inet
.tcp.cc.algorithm sysctl.

sysctl net.inet.tcp.cc.algorithm=htcp
net.inet.tcp.cc.algorithm: newreno -> htcp

Ultimately, you can’t fit 10 pounds of bandwidth in a 5-pound circuit. If
your saturated Ethernet is crippling your applications, turn off unnecessary
network services or add more bandwidth.

Other system conditions are much more complicated. Start by checking
where the problem lies with vmstat(8).

General Bottleneck Analysis with vmstat(8)
FreeBSD includes several programs for examining system performance.
Among these are vmstat(8), iostat(8), and systat(1). We’ll discuss vmstat(8)
because I find it most helpful; iostat(8) is similar to vmstat(8), and systat(1)
provides the same information in an ASCII graphical format.

Use vmstat(8) to see the system’s current virtual memory statistics.
While the output takes getting used to, vmstat(8) is very good at showing
large amounts of data in a small space. Type vmstat at the command prompt
and follow along.

vmstat
procs memory page disks faults cpu
r b w avm fre flt re pi po fr sr ad0 ad1 in sy cs us sy id
8 0 0 1.3G 26G 157 0 1 0 172 1 0 0 12 212 149 0 0 100

The vmstat divides its display into six sections: process (procs), memory,
paging (page), disks, faults, and cpu. We’ll look at all of them quickly and then
discuss in detail those parts that are the most important for investigating

System Performance and Monitoring 529

performance issues. This single line represents the average values for the
whole time the system has been running. We’ll get more real-time data in
the next section.

Processes
vmstat(8) has three columns under the procs heading. Technically, vmstat
counts threads rather than processes. Unthreaded applications have one
thread per process, but your multithreaded application could have far,
far more.

r The number of runnable threads that are waiting for CPU time,
including all running processes. One thread per CPU is fine; it means
your hardware is fully utilized. More than that means your CPU is a
bottleneck. Some programs demand all the processor the host has and
more, though; check that you’re not running such a remorseless com-
pute suck.

b The number of threads that are blocked waiting for system input
or output—generally, waiting for disk access. These threads will run
as soon as they get their data. If this number is high, your disk is the
bottleneck.

w The number of threads that are runnable but are entirely swapped
out. If you regularly have processes swapped out, the system’s memory
is inadequate for the host’s workload.

This host has averaged eight runnable threads since boot, but zero wait-
ing on I/O or memory. If you’re getting complaints that this host is slow,
the first place to check is processor utilization. Is someone, say, building
FreeBSD from source just to generate interesting output for a book’s per-
formance chapter, while real people are attempting to do their jobs on the
same system?

Memory
FreeBSD breaks memory up into uniform-sized chunks called pages. When a
program requests memory, it gets assigned a number of pages. The size of a
page is hardware- and OS-dependent but appears in the hw.pagesize sysctl. On
FreeBSD’s i386 and amd64 platforms, a page is 4KB. The system treats each
page as a whole—if FreeBSD must shift memory into swap, for example, it
does that on a page-by-page basis. The kernel thread that manages memory
is called the pagedaemon. The memory section has two columns.

avm The average number of pages of virtual memory that are in use.
If this value is abnormally high or increasing, your system is actively
consuming swap space.

fre The number of memory pages available for use. If this value is
abnormally low, you have a memory shortage.

Our sample output is using 1.3GB of RAM and has 26GB free. Memory
isn’t an issue.

530 Chapter 21

Paging
The page section shows how hard the virtual memory system is working. The
inner workings of the virtual memory system are an arcane science that I
won’t describe in detail here.2

flt The number of page faults, where information needed wasn’t in
real memory and had to be fetched from swap space or disk.

re The number of pages that have been reclaimed or reused from
cache.

pi Short for pages in; this is the number of pages being moved from
real memory to swap.

po Short for pages out; this is the number of pages being moved from
swap to real memory.

fr How many pages are freed per second.

sr How many pages are scanned per second.

Moving memory into swap isn’t bad, but consistently recovering paged-
out memory indicates a memory shortage. Having high fr and flt values
can indicate lots of short-lived processes—for example, a script that starts
many other processes or a cron job scheduled too frequently. Or perhaps
someone’s been running make -j16 buildworld. A high sr probably means
you don’t have enough memory, as the pagedaemon is constantly trying to
free memory. The paging daemon normally runs once a minute or so, but
a high sr count means you’re probably trying to do more work than your
RAM can hold.

Disks
The disks section shows each of your disks by device name. The number
shown is the number of disk operations per second, a valuable clue to deter-
mining how well your disks are handling their load. You should divide your
disk operations between different disks whenever possible and arrange them
on different buses when you can. If one disk is obviously busier than the
others, and the system has operations waiting for disk access, consider mov-
ing some frequently accessed files from one disk to another. One common
cause of high disk load is a coredumping program that can restart itself. For
example, a faulty CGI script that dumps core every time someone clicks on a
link will greatly increase your disk load.

If you have a lot of disks, you might notice that they don’t all appear on
the vmstat display. Designed for an 80-column display, vmstat(8) can’t list
every disk on a large system. If, however, you have a wider display and don’t
mind exceeding the 80-column limit, use the -n flag to set the number of
drives you want to display.

2. I won’t describe it anywhere, actually. If you want to know the horribly intimate details of
FreeBSD’s virtual memory system, read the latest edition of “The Design and Implementation
of the FreeBSD Operating System.”

System Performance and Monitoring 531

Faults
Faults aren’t inherently bad; they’re just received system traps and interrupts.
An abnormally large number of faults is bad, of course—but before you
tackle this problem, you need to know what’s normal for your system.

The first line of vmstat output shows the average faults per second since
system boot.

in The number of system interrupts (IRQ requests) received

sy The number of system calls

cs The number of context switches in the last second, or a per-second
average since the last update. (For example, if you have vmstat update
its display every five seconds, this column displays the average number
of context switches per second over the last five seconds.)

This host has averages 12 system calls and 212 context switches per
second since boot. How does that compare to what you saw when the system
was working normally?

CPU
Finally, the cpu section shows how much time the system spent doing user
tasks (us), system tasks (sy), and how much time it spent idle (id). top(1)
presents this same information in a friendlier format, but only for the cur-
rent time, whereas vmstat lets you view system utilization over time.

Using vmstat
So, how do you use all this information? Start by checking the first three
columns to see what the system is waiting for. If you’re waiting for CPU
access (the r column), then you’re short on CPU horsepower. If you’re wait-
ing for disk access (the b column), then your disks are the bottleneck. If
you’re swapping (the w column), you’re short on memory. Use the other col-
umns to explore these three types of shortages in more detail.

Continuous vmstat
You’re probably more interested in what’s happening over time, rather than
in a brief snapshot of system performance. Use the -w flag and a number
to run it as an ongoing display updating every so many seconds. FreeBSD
shows average values since the last update, updating counters continuously:

vmstat -w 5
procs memory page disks faults cpu
r b w avm fre flt re pi po fr sr ad0 ad1 in sy cs us sy id
8 0 0 1.6G 25G 415 0 1 0 432 6 0 0 12 281 157 1 0 99
8 0 0 2.4G 24G 53089 0 7 0 11188 561 11 8 45 8789 994 96 4 0
8 0 0 2.5G 24G 44600 0 3 0 38703 741 10 9 49 8806 1032 96 3 1
8 0 0 2.2G 24G 42841 0 15 0 58044 717 11 9 52 10271 1103 96 4 0
--snip--

532 Chapter 21

The first line still shows the averages since boot. Every five seconds,
however, an updated line appears at the end. You can sit there and watch
how your system’s performance changes when scheduled jobs kick off or
when you start particular programs. Hit ctRL-C when you’re done. In this
example, processes are always waiting for CPU time (as shown by the stack of
8s in the r column), and we frequently have something waiting for disk access.

An occasional wait for a system resource doesn’t mean you must upgrade
your hardware; if performance is acceptable, don’t worry about it. Otherwise,
however, you must look further. The most common culprit is the storage
system.

Disk I/O
Disk speed is a common performance bottleneck, especially with spinning
disks, but even flash-based storage can get slow. Programs that must repeat-
edly wait for disk activity to complete run more slowly. This is commonly
called blocking on disk, meaning that the disk is preventing program activity.
The only real solution for this is to use faster disks, install more disks, or
reschedule the load.

While FreeBSD provides several tools to check disk activity, my favor-
ite is gstat(8), so we’ll use that. You can run gstat without arguments for a
display of all of your disks and partitions that updates every second or so.
If you have many disks this can generate a whole bunch of zeros, though. I
always use the -a flag, so that gstat(8) displays only disks with activity. The
-p flag is also useful, to view entire disks, but I prefer a per-partition view.

gstat -a
dT: 1.002s w: 1.000s
 L(q) ops/s r/s kBps ums/r w/s kBps vms/w %busy Name
 0 120 0 0 0.0 118 331 0.1 12.1| ada1
 0 120 0 0 0.0 118 331 0.1 12.1| ada1p1
 0 21 0 0 0.0 19 351 0.4 8.2| da1
 0 20 0 0 0.0 18 331 0.1 12.1| gpt/zfs4
 0 21 0 0 0.0 19 351 0.4 8.2| da1p1
 0 21 0 0 0.0 19 351 0.4 8.2| gpt/zfs7

We get a line for each disk device, slice, and partition, and various
information for each. gstat(8) shows all sorts of good stuff, such as the
number of reads per second (r/s), writes per second (w/s), the kilobytes per
second of reading and writing, as well as a friendly-looking %busy column.

Ignore most of these. Some of these, such as the percent busy column,
use sloppy measuring methods. The FreeBSD developers chose disk perfor-
mance over accuracy of statistical measurements. What does matter, how-
ever, are the ms/r (milliseconds per read) u and ms/w (milliseconds per
write) v. These numbers are accurate. Measure and monitor them. If one
disk has really high activity, but another is idle, consider dividing what’s on
that disk between multiple disks or using striped storage. Or, if it’s your lap-
top, consider accepting that this is as fast as your storage system gets.

System Performance and Monitoring 533

Once you identify the scarce system resource, you need to figure out
what program’s draining that resource. We’ll need other tools for that.

CPU, Memory, and I/O with top(1)
The top(1) tool provides a decent overview of system status, displaying
information about CPU, memory, and disk usage. Just type top to get a full-
screen display of system performance data. The display updates every two
seconds, so you have a close to real-time system view. Even if you update
the update interval to one second, you can still miss short-lived, resource-
sucking processes.

The output of top(1) is split into two halves. The upper portion gives
basic system information, while the bottom gives per-process data.

ulast pid: 84111; vload averages: 0.09, 0.21, 0.20 wup 7+07:58:00 14:41:09
x28 processes: 2 running, 26 sleeping
yCPU: 0.0% user, 0.0% nice, 0.9% system, 0.0% interrupt, 99.1% idle
zMem: 80M Active, 642M Inact, 124M Laundry, 222M Wired, 17M Free
{Swap: 1024M Total, 83M Used, 941M Free, 8% Inuse

 PID USERNAME THR PRI NICE SIZE RES STATE TIME WCPU COMMAND
 479 bind 4 20 0 99444K 35956K kqread 6:55 0.00% named
 586 root 1 20 0 154M 33768K select 4:54 0.00% perl
 562 root 1 20 0 22036K 13948K select 1:27 0.00% ntpd
--snip--

Very tightly packed, isn’t it? The top(1) tool crams as much data as pos-
sible into a standard 80 × 25 terminal window or X terminal. Let’s take this
apart and learn how to read it. We’ll start with the upper part, which can
look a little different depending on whether you’re using UFS or ZFS.

UFS and top(1)
The per-host information at in the upper part of top(1) varies slightly
between ZFS and UFS hosts, but we’ll start with UFS and then explain the
differences.

PID Values

Every process on a Unix machine has a unique process ID (PID). Whenever
a new process starts, the kernel assigns it a PID one greater than the previ-
ous process. The last PID value is the last process ID assigned by the system.
In the previous example, our last PID is 84,111 u. The next process created
will be 84,112, then 84,113, and so on. Watch this number to see how fast
the system changes. If the system is running through PIDs more quickly
than usual, it might indicate a process forking beyond control or something
crashing and restarting.

534 Chapter 21

Load Average

The load average v is a somewhat vague number that offers a rough impres-
sion of the amount of CPU load on the system. The load average is the
average number of threads waiting for CPU time. (Other operating systems
have different load average calculation methods.) An acceptable load aver-
age depends on your system. If the numbers are abnormally high, you need
to investigate. Some hosts feel bogged down at a load average of 3, while
some modern systems are still snappy with what look like ridiculously high
load averages. Again, what’s normal for this host?

You’ll see three load averages. The first (0.09 here) is the load average
over the last minute, the second (0.21) is for the last five minutes, and the
last (0.20) is for the last 15 minutes. If your 15-minute load average is high,
but the 1-minute average is low, you had a major activity spike that has since
subsided. On the other hand, if the 15-minute value is low but the 1-minute
average is high, something happened within the last 60 seconds and might
still be going on now. If all of the load averages are high, the condition has
persisted for at least 15 minutes.

Uptime

The last entry on the first line is the uptime w, or how long the system has
been running. This system has been running for 7 days, 7 hours, and 58 min-
utes, and the current time is 14:41:09. I’ll leave it up to you to calculate what
time I booted this system.

Process Counts

On the second line, you’ll find information about the processes currently
running on the system x. Running processes are actually doing work—
they’re answering user requests, processing mail, or doing whatever your
system does. Sleeping processes are waiting for input from one source or
another; they’re just fine. You should expect a fairly large number of sleep-
ing processes at any time. Processes in other states are usually waiting for
a resource to become available or are hung in some way. Large numbers
of nonsleeping, nonrunning processes hint at trouble. The ps(1) command
can show the state of all processes.

Process Types

The CPU states line y indicates what percentage of available CPU time the
system spends handling different types of processes. It shows five different
process types: user, nice, system, interrupt, and idle.

The user processes are average everyday programs—perhaps daemons
run by root, or commands run by regular users, or whatever. If it shows up
in ps -ax, it’s a user process.

The nice processes are user processes whose priority has been delib-
erately manipulated. We’ll look at this in detail in “Reprioritizing with
Niceness” on page 543.

System Performance and Monitoring 535

The system value gives the total percentage of CPU time spent by
FreeBSD running kernel processes and the userland processes in the
kernel. These include things such as virtual memory handling, networking,
writing to disk, debugging with INVARIANTS and WITNESS, and so on.

The interrupt value shows how much time the system spends handling
interrupt requests (IRQs).

Last, the idle entry shows how much time the system spends doing
nothing. If your CPU regularly has a very low idle time, you might want
to think about rescheduling jobs or getting a faster processor.

Memory

The Mem line z represents the usage of physical RAM. FreeBSD breaks
memory usage into several different categories.

Active memory is the total amount of memory in use by user processes.
When a program ends, the memory it had used is placed into inactive mem-
ory. If the system runs this program again, it can retrieve the software from
memory instead of disk.

Free memory is totally unused. It might be memory that has never been
accessed, or it might be memory released by a process. This system has
17MB of free RAM. If you have a server that’s been up for months, and it
still has free memory, you might consider putting some of that RAM in a
machine that’s hurting for memory.

Memory in the Laundry is queued to be synchronized with other stor-
age, such as disk.

FreeBSD 11 shuffles memory between the inactive, laundry, and free
categories as needed to maintain a pool of available memory. Memory in
the inactive is most easily transferred to the free pool. When cache memory
gets low and FreeBSD needs still more free memory, it picks pages from the
inactive pool, verifies that it can use them as free memory, and moves them
to the free pool. FreeBSD tries to keep the total number of free pages above
the sysctl vm.v_free_target.

FreeBSD 12 has no cache and handles low memory situations a little
differently. When free memory gets low, the pagedaemon picks pages from
the inactive pool. If that inactive page needs to be synced to disk, it’s placed

toP a nd SmP

On an SMP system, top(1) displays the average use among all the processors.
You might have one processor completely tied up compiling something, but
if the other processor is idle, top(1) shows the CPU usage of only 50 percent.
Use the -p flag to view per-CPU stats.

536 Chapter 21

on the laundry queue, and the pagedaemon tries another inactive page.
One way to test whether a host needs more RAM is if the pagedaemon is
accumulating CPU time from all this testing.

On either FreeBSD version, having free memory doesn’t mean that your
system has enough memory. If vmstat(8) shows that you’re swapping at all,
you’re using more physical memory than you have. You might have a program
that releases memory on a regular basis. Also, FreeBSD will move some pages
from inactive to free in an effort to maintain a certain level of free memory.

FreeBSD uses wired memory for in-kernel data structures, as well as
for system calls that must have a particular piece of memory immediately
available. Wired memory is never swapped or paged. All memory used by
ZFS is wired.

Swap

The Swap line { gives the total swap available on the system and how much
is in use. Swapping is using the disk drive as additional memory. We’ll look
at swap in more detail later in the chapter.

ZFS and top(1)
The output of top(1) on a ZFS system looks superficially different, but the
per-host handling of memory has important differences.

last pid: 53202; load averages: 0.26, 0.28, 0.30 up 1+15:41:48
13:50:54
120 processes: 1 running, 119 sleeping
CPU: 0.1% user, 0.0% nice, 0.0% system, 0.0% interrupt, 99.9% idle

u Mem: 288M Active, 205M Inact, 3299M Wired, 137M Free
v ARC: 2312M Total, 458M MFU, 1626M MRU, 420K Anon, 38M Header, 189M Other
w 1918M Compressed, 8885M Uncompressed, 4.63:1 Ratio

Swap: 2048M Total, 126M Used, 1922M Free, 6% Inuse

 PID USERNAME THR PRI NICE SIZE RES STATE C TIME WCPU COMMAND
53202 mwlucas 1 20 0 20124K 3388K CPU0 0 0:00 0.08% top
 835 mysql 26 23 0 629M 219M select 1 62:42 0.03% mysqld
53151 www 1 20 0 237M 12924K select 2 0:00 0.03% httpd
 863 nobody 7 20 0 34928K 4960K kqread 0 0:31 0.02%
memcached
53058 www 1 20 0 239M 13296K lockf 0 0:00 0.01% httpd
 852 root 1 20 0 166M 11716K kqread 2 0:05 0.01% php-fpm
--snip--

The Mem section u lists Active, Inactive, Laundry, Wired, and Free mem-
ory familiar from UFS output.

The ARC line v represents ZFS’s Advanced Replacement Cache. The
Total field shows the amount of memory the entire ARC uses. Within the
2,312MB used by the cache, 458MB are in the Most Frequently Used (MFU)
cache, while 1,626MB are in the Most Recently Used (MRU) cache. You’ll also
see much smaller entries for ZFS internal data structures, such as anony-
mous buffers (Anon), ZFS headers (Header), and the ever-useful Other.

System Performance and Monitoring 537

ZFS compresses the ARC w, exchanging plentiful CPU time for scarce
memory. You can see the amount of space used by compressed and uncom-
pressed cached data.

ZFS is greedy for memory, provided nothing else wants it. ZFS aggres-
sively caches data read from and written to disk. This host has 4,096MB of
RAM, and ZFS has claimed 2,312MB of that. You’ll see that this host has
only 137MB free. If a program requests memory and the system doesn’t
have it available, ZFS will release some of its cache back to the system. If you
see a high wired memory level, remind yourself that all memory claimed by
ZFS goes into the “wired” bucket.

This is a long-winded way of saying, “Don’t let apparent high ZFS mem-
ory usage worry you.” Worry only if the host starts paging and swapping.

More interesting is the list of processes that are using that memory.

Process List
Finally, top(1) lists the processes on the system and their basic character-
istics. The table format is designed to present as much information as pos-
sible in as little space as possible. Every process has its own line.

PID First, we have the process ID number, or PID. Every running pro-
cess has its own unique PID. When you use kill(1), specify the process
by its PID. (If you don’t know the PID of a process, you can use pkill(1)
to kill the process by its name.)

Username Next is the username of the user running the process. If
multiple processes consume large amounts of CPU or memory, and
they’re all owned by the same user, you know whom to talk to.

Priority and niceness The PRI (priority) and NICE columns are inter-
related and indicate how much precedence the system gives each pro-
cess. We’ll talk about priority and niceness a little later in this chapter.

Size SIZE gives the amount of memory that the process has requested.

Resident memory The RES column shows how much of a program is
actually in memory at the moment. A program might request a huge
amount of memory but use only a small fraction of that at any time.
The kernel is smart enough to give programs what they need rather
than what they ask for.

State The STATE column shows what a process is doing at the moment.
A process can be in a variety of states—waiting for input, sleeping until
something wakes it, actively running, and so on. You can see the name
of the event a process is waiting on, such as select, pause, or ttyin. On an
SMP system, when a process runs, you’ll see the CPU it’s running on.

Time The TIME column shows the total amount of CPU time the pro-
cess has consumed.

WCPU The weighted CPU (WCPU) usage shows the percentage of
CPU time that the process uses, adjusted for the process’s priority and
niceness.

Command Finally, we have the name of the program that’s running.

538 Chapter 21

Looking at top(1)’s output gives you an idea of where the system is
spending its time.

Not every process on a host is actively engaged in work. You might have
dozens or hundreds of daemons sitting idle. Enter i on a running top(1)
display to toggle displaying idle processes, or use the -i command line flag.
To show individual threads, either toggle H or add the -H flag.

By default, top sorts its output by weighted CPU usage. You can also sort
output by priority, size, and resident memory. Enter o at a running top dis-
play. Enter the name of the column you want to sort by. This will help iden-
tify self-important programs or those using too much memory.

top(1) and I/O
In addition to the standard CPU display, top(1) has an I/O mode that
displays which processes are using the disk most actively. While top(1) is
running, hit m to enter the I/O mode. The upper portion of the display
still shows memory, swap, and CPU status, but the lower portion changes
considerably.

 PID USERNAME VCSW IVCSW READ WRITE FAULT TOTAL PERCENT COMMAND
 3064 root 89 0 89 0 0 89 100.00% tcsh
 767 root 0 0 0 0 0 0 0.00% nfsd
 1082 mwlucas 2 1 0 0 0 0 0.00% sshd
 1092 root 0 0 0 0 0 0 0.00% tcsh
 904 root 0 0 0 0 0 0 0.00% sendmail
--snip--

The PID is the process ID, of course, and the USERNAME column shows who
is running the process.

VCSW stands for voluntary context switches; this is the number of times this
process has surrendered the system to other processes. IVCSW means invol-
untary context switches and shows how often the kernel has told the process,
“You’re done now. It’s time to let someone else run for a while.”

Similarly, READ and WRITE show how many times the system has read
from disk and written to disk. The FAULT column shows how often this
process has had to pull memory pages from disk, which makes for another
sort of disk read. These last three columns are aggregated in the TOTAL
column.

The PERCENT column shows what percent of disk activity this process is
using. Unlike gstat(8), top(1) displays each process’s utilization as a percent-
age of the actual disk activity, rather than the possible disk activity. If you
have only one process accessing the disk, top(1) displays that process as using
100 percent of disk activity, even if it’s sending only a trickle of data. While
gstat(8) tells you how busy the disk is, top(1) tells you what’s generating that
disk activity and where to place the blame. Here, we see that process ID 3064
is generating all of our disk activity. It’s a tcsh(1) process, also known as
“some user’s shell.” Let’s track down the miscreant.

mor e toP f e at ur e S

The top(1) tool can alter its display in many ways. You can view processes for
a particular user, include or exclude kernel threads, exclude idle processes,
and so on. Read the man page for details.

System Performance and Monitoring 539

Following Processes
On any Unix-like system, every userland process has a parent-child relation-
ship with other processes. When FreeBSD boots, it creates a single process
by starting init(8) and assigning it PID 1. This process starts other processes,
such as the /etc/rc startup script and the getty(8) program that handles your
login request. These processes are children of process ID 1. When you log in,
getty(8) starts login(8), which fires up a new shell for you, making your shell
a child of the login(8) process. Commands you run are either children of
your shell process or part of your shell. You can view these parent-child rela-
tionships with ps(1) using the -ajx flags (among others).

ps -ajx
USER PID PPID PGID SID JOBC STAT TT TIME COMMAND
root 0 0 0 0 0 DLs - 6:26.23 [kernel]
root 1 0 1 1 0 ILs - 0:00.09 /sbin/init --
root 2 0 0 0 0 DL - 0:00.00 [crypto]
--snip--
root 845 1 845 845 0 Is - 0:00.00 /usr/sbin/sshd
root 849 1 849 849 0 Ss - 0:01.05 /usr/sbin/cron -s
root 8632 845 8632 8632 0 Is - 0:00.09 sshd: mwlucas [priv] (sshd)
mwlucas 8634 8632 8632 8632 0 S - 0:00.53 sshd: mwlucas@pts/0,pts/1 (sshd)
mwlucas 8687 1 8687 8687 0 Ss - 0:25.90 tmux: server (/tmp/tmux-1001/default)
(tmux)
--snip--

At the far left, we have the username of the process owner and then the
PID and parent PID (PPID) of the process. This is the most useful thing we
see here, but we’ll briefly cover the other fields.

The PGID is the process group ID number, which is normally inherited
from its parent process. A program can start a new process group, and that
new process group will have a PGID equal to the process ID. Process groups
are used for signal processing and job control. A session ID, or SID, is a
grouping of PGIDs, usually started by a single user or daemon. Processes
may not migrate from one SID to another. JOBC gives the job control count,
indicating whether the process is running under job control (that is, in the
background).

STAT shows the process state—exactly what the process is doing at the
moment you run ps(1). Process state is very useful as it tells you whether a
process is idle, what it’s waiting for, and so on. I highly recommend reading
the section on process state from ps(1).

Looking at top(1)’s output gives you an idea of where the system is
spending its time.

Not every process on a host is actively engaged in work. You might have
dozens or hundreds of daemons sitting idle. Enter i on a running top(1)
display to toggle displaying idle processes, or use the -i command line flag.
To show individual threads, either toggle H or add the -H flag.

By default, top sorts its output by weighted CPU usage. You can also sort
output by priority, size, and resident memory. Enter o at a running top dis-
play. Enter the name of the column you want to sort by. This will help iden-
tify self-important programs or those using too much memory.

top(1) and I/O
In addition to the standard CPU display, top(1) has an I/O mode that
displays which processes are using the disk most actively. While top(1) is
running, hit m to enter the I/O mode. The upper portion of the display
still shows memory, swap, and CPU status, but the lower portion changes
considerably.

 PID USERNAME VCSW IVCSW READ WRITE FAULT TOTAL PERCENT COMMAND
 3064 root 89 0 89 0 0 89 100.00% tcsh
 767 root 0 0 0 0 0 0 0.00% nfsd
 1082 mwlucas 2 1 0 0 0 0 0.00% sshd
 1092 root 0 0 0 0 0 0 0.00% tcsh
 904 root 0 0 0 0 0 0 0.00% sendmail
--snip--

The PID is the process ID, of course, and the USERNAME column shows who
is running the process.

VCSW stands for voluntary context switches; this is the number of times this
process has surrendered the system to other processes. IVCSW means invol-
untary context switches and shows how often the kernel has told the process,
“You’re done now. It’s time to let someone else run for a while.”

Similarly, READ and WRITE show how many times the system has read
from disk and written to disk. The FAULT column shows how often this
process has had to pull memory pages from disk, which makes for another
sort of disk read. These last three columns are aggregated in the TOTAL
column.

The PERCENT column shows what percent of disk activity this process is
using. Unlike gstat(8), top(1) displays each process’s utilization as a percent-
age of the actual disk activity, rather than the possible disk activity. If you
have only one process accessing the disk, top(1) displays that process as using
100 percent of disk activity, even if it’s sending only a trickle of data. While
gstat(8) tells you how busy the disk is, top(1) tells you what’s generating that
disk activity and where to place the blame. Here, we see that process ID 3064
is generating all of our disk activity. It’s a tcsh(1) process, also known as
“some user’s shell.” Let’s track down the miscreant.

mor e toP f e at ur e S

The top(1) tool can alter its display in many ways. You can view processes for
a particular user, include or exclude kernel threads, exclude idle processes,
and so on. Read the man page for details.

540 Chapter 21

TT lists the process’s controlling terminal. This column shows only the
end of the terminal name, such as v0 for ttyv0 or p0 for ttyp0. Processes with-
out a controlling terminal are indicated by ??.

The TIME column shows how much processor time the process has used,
both in userland and in the kernel.

Finally, we see the COMMAND name, as it was called by the parent process.
Processes in square brackets are actually kernel threads, not real processes.
FreeBSD runs a whole bunch of kernel threads.

So, how can this help us track a questionable process? In our top(1)
I/O example, we saw that process 3064 was generating almost all of our
disk activity. Run ps -ajx to look for this process:

USER PID PPID PGID SID JOBC STAT TT TIME COMMAND
--snip--
root 3035 3034 3035 2969 1 S+ p0 0:00.03 _su -m (tcsh)

u bert 2981 2980 2981 2981 0 Is p1 0:00.03 -tcsh (tcsh)
v root 2989 2981 2989 2981 1 I p1 0:00.01 su -m
w root 2990 2989 2990 2981 1 D p1 0:00.05 _su -m (tcsh)
x root 3064 2990 3064 2981 1 DV+ p1 0:00.15 _su -m (tcsh)

mwlucas 2996 2995 2996 2996 0 Is p2 0:00.02 -tcsh (tcsh)
--snip--

Our process of interest is owned by root and is a tcsh(1) instance x, just
as top’s I/O mode said. The command is running under su(1), however.
Check this process’s parent process ID with the PPID column, and you’ll see
that process 3064 is a child of process 2990 w, which is a child of process
2989 v, both of which are owned by root. Process 2989 is a child of 2981 u,
however, which is a shell run by a real user. You might also note that these
processes are all parts of session 2981, showing that they’re probably all run
in the same login session. The TT column shows p1, which means that the
user is logged in on /dev/ttyp1, the second virtual terminal on this machine.
Investigating that SID would illuminate just what Bert thought he was doing.

Now that you know how process parent-child operations work, you can
cheat. Add the -d flag, as in, ps -ajxd, to present processes arranged in a
tree with their parents. You’ll want a wide terminal.

It’s normal for a system to experience brief periods of total utilization.
If nobody else is using the system and nobody’s complaining about perfor-
mance, why not let this user run his job? If this process is causing problems
for other users, however, we can either deprioritize it, use our root privi-
leges to kill the job, or show up at the user’s cubicle with a baseball bat.

Paging and Swapping
Using swap space isn’t bad in and of itself. Swap space is much slower than
chip memory, but it does work, and many programs don’t need to have every-
thing in RAM in order to run. The old rule of thumb says that a typical pro-
gram spends 80 percent of its time running 20 percent of its code. Much of
the rest of its code covers startup and shutdown, error handling, and so on.
You can safely let those bits go out of RAM with minimal performance impact.

System Performance and Monitoring 541

Swap caches data that it has handled. Once a process uses swap, that
swap remains in use until the process either exits or calls the memory back
from swap.

Swap usage occurs through paging and swapping. Paging is all right;
swapping is not so good, but it’s better than crashing.

Paging
Paging occurs when FreeBSD moves a portion of a running program into
swap space. Paging can actually improve performance on a heavily loaded
system because unused bits can be stored on disk until they’re needed—if
ever. FreeBSD can then use the real memory for actual running code. Does
it really matter whether your system puts your database startup code to swap
once the database is up and running?

Swapping
If the computer doesn’t have enough physical memory to store a process
that isn’t being run at that particular microsecond, the system can move
the entire process to swap. When the scheduler starts that process again,
FreeBSD fetches the entire process from swap and runs it, probably con-
signing some other process to swap.

The problem with swapping is that disk I/O activity goes through the
roof and performance drops dramatically. Since requests take longer to
handle, there are more requests on the system at any one time. Logging in
to check the problem only makes the situation worse because your login is
just one more process. Some systems can handle certain amounts of swap-
ping, while on others, the situation quickly degenerates into a death spiral.

When your CPU is overloaded, the system is slow. When your disks are
a bottleneck, the system is slow. Memory shortages can actually crash your
computer. If you’re swapping, you must buy more memory or resign yourself
to appalling performance. If you’re trapped into this hardware and can’t
buy more memory, you might get a really fast SSD and use it for swap.

The output of vmstat(8) shows the number of processes swapped out at
any one time.

Performance Tuning
FreeBSD caches recently accessed data in memory because a surpris-
ing amount of information is read from the disk time and time again.
Information cached in physical memory can be accessed very quickly. If
the system needs more memory, it dumps the oldest cached chunks in
favor of new data. UFS and ZFS use different methods to decide what to
cache, but the principle generally applies.

When I booted my desktop this morning, I started Firefox so I could
check my RSS feeds. The disk worked for a moment or two to read in the
program. I then shut the browser off so I could focus on my work, but
FreeBSD left Firefox in the cache. If I restart Firefox, FreeBSD will pull it

542 Chapter 21

from memory instead of troubling the disk, which dramatically reduces
its startup time. Had I started a process that demanded a whole bunch of
memory, though, FreeBSD would have dumped the web browser from the
cache to support the new program.

If your system is operating well, you’ll have at least a few megabytes
of free memory. The sysctls vm.v_free_target and hw.pagesize tell you how
much free memory FreeBSD thinks it needs on your system. If you consis-
tently have more free memory than these two sysctls multiplied, your system
isn’t being used to its full potential. For example, on my mail server I have:

sysctl vm.v_free_target
vm.v_free_target: 5350
sysctl hw.pagesize
hw.pagesize: 4096

My system wants to have at least 5,350 × 4,096 = 21,913,600 bytes, or
about 22MB, of free memory. I could lose a gigabyte of RAM from my desk-
top without flinching, if it wasn’t for the fact that I suffer deep-seated emo-
tional trauma about insufficient RAM.3

Memory Usage
If a host has a lot of memory in cache or buffer, or the ARC has eaten all its
RAM, it doesn’t have a memory shortage. You might make good use of more
memory, but it isn’t strictly necessary. If you have low free memory, but a
lot of active and non-ZFS wired memory, your system is devouring RAM.
Adding memory would let you take advantage of the buffer cache.

If the pagedaemon keeps running, incrementing the sr field in your
vmstat output, the kernel is working hard to provide memory. The host
might well have a memory shortage. Once the host start to use swap,
though, this memory shortage is no longer hypothetical. It might not be
bad, but it’s not theoretical.

Swap Space Usage
Swap space helps briefly cover RAM shortages. For example, if you’re
untarring a huge file you might easily consume all of your physical mem-
ory and start using virtual memory. It’s not worth buying more RAM for
such occasional tasks when swap suffices. If a memory-starved server runs a
daemon that doesn’t ever get called, that daemon will eventually get mostly
or entirely swapped out in favor of processes that are performing work.

Only worry about swap space use when the system constantly pages data
in and out of swap.

In short, swap space is like wine. A glass or two now and then won’t
hurt you and might even be a good choice. Hitting the bottle constantly is a
problem. If you have to swap constantly, consider a really fast but durable SSD.

3. My desktop has 32GB but uses only about 4. Yes, I’m compensating for something. The 1990s.

System Performance and Monitoring 543

CPU Usage
A processor can do only so many things a second. If you run more tasks
than your CPU can handle, requests will start to back up, you’ll develop a
processor backlog, and the system will slow down. That’s CPU usage in a
nutshell. If performance is unacceptable and top(1) shows your CPU hov-
ering around 100 percent all the time, CPU utilization is probably your
problem. While new hardware is certainly an option, you do have other
choices. For example, investigate the processes running on your system
to see whether they’re all necessary. Did some junior sysadmin install a
SETI@Home client to hunt for aliens with your spare CPU cycles? How
about a Bitcoin miner? Is anything running that was important at one time,
but not any longer? Find and shut down those unnecessary processes, and
make sure that they won’t start the next time the system boots.

If you have very specific needs, such as dedicating certain processors
to specific tasks, consider cpuset(1). It’s overkill for most users, but a high-
performance application might make good use of dedicated processors.

Once that’s done, evaluate your system performance again. If you still
have problems, try rescheduling or reprioritizing.

Rescheduling
Rescheduling is easier than reprioritizing; it’s a relatively simple way to
balance system processes so that they don’t monopolize system resources.
As discussed in Chapter 20, you and your users can schedule programs
to run at specific times with cron(8). If you have users who are running
massive jobs at particular times, you might consider using cron(1) to run
them in off hours. Frequently, jobs such as the monthly billing database
search can run between 6 pm and 6 am and nobody will care—Finance just
wants the data on hand at 8 am on the first day of the month so they can
close out last month’s accounting. Similarly, you can schedule your make
buildworld && make buildkernel at 1 am.

Reprioritizing with Niceness
If rescheduling won’t work, you’re left with reprioritizing, which can be a
little trickier. When reprioritizing, you tell FreeBSD to change the impor-
tance of a given process. For example, you can have a program run during
busy hours, but only when nothing else wants to run. You’ve just told that
program to be nice and step aside for other programs.

The nicer a process is, the less CPU time it demands. The default nice-
ness is 0, but niceness runs from 20 (very nice) to -20 (not nice at all). This
might seem backward; you could argue that a higher number should mean
a higher priority. That would lead to a language problem, however; calling
this factor “selfishness” or “crankiness” instead of “niceness” didn’t seem
like a good idea at the time.4

4. Besides, sysadmins already claimed “selfish” and “cranky” for themselves.

544 Chapter 21

The top(1) tool displays a PRI column for process priority. FreeBSD cal-
culates a process’s priority from a variety of factors, including niceness, and
runs high-priority processes first whenever possible. Niceness affects prior-
ity, but you can’t directly edit priority.

If you know that your system is running at or near capacity, you can
choose to run a command with nice(1) to assign the process a niceness.
Specify niceness with nice -n and the nice value in front of the command.
For example, to start a very selfish make buildworld at nice 15, you’d run:

nice -n 15 make buildworld

Only root can assign a negative niceness to a program, as in nice -n -5.
For example, if you want to abuse your superuser privileges to make a com-
pile finish as quickly as possible, use a negative niceness:

nice -n -20 make

Usually, you don’t have the luxury of telling a command to be nice when
you start it but instead have to change its niceness when you learn that it’s
absorbing all of your system capacity. You can use renice(8) to reprioritize
running processes by their process IDs or owners. To change the niceness of
a process, run renice with the new niceness and the PID as arguments.

In my career, I’ve run several logging hosts. In addition to general syslog
services, they usually also run several instances of flow-capture, Nagios, and
other critical network awareness systems. I’ll often use a web interface to
all of this and allow other people to access my logs. If I find that intermit-
tent load on the web server is interfering with my network monitoring or
my syslogd(8) server, I must take action. Renicing the web server makes
clients run more slowly, but that’s better than slowing down monitoring. Use
pgrep(1) to find the web server’s PID:

pgrep httpd
993
renice 10 993
993: old priority 0, new priority 10

nice v S. tcSh

The tcsh(1) shell has a nice command built in. That built-in nice uses the
renice(8) syntax, which is different from nice(1). I’m sure there’s a reason
for that other than annoying tcsh users, but that rationale escapes me at the
moment. To use nice(1), use the full path /usr/bin/nice.

System Performance and Monitoring 545

Boom! FreeBSD now serves web requests after other processes. This
greatly annoys the users of that service, but since it’s my server and I’m
already annoyed, that’s all right.

To renice every process owned by a user, use the -u flag. For example, to
make my processes more important than anyone else’s, I could do this:

renice -5 -u mwlucas
1001: old priority 0, new priority -5

The 1001 is my user ID on this system. Again, presumably I have a very
good reason for doing this, beyond my need for personal power.5 Similarly,
if that user who gobbled up all my processor time insists on being difficult,
I could make his processes very, very nice, which would probably solve other
users’ complaints. If you have a big background database job, having the user
running that job run nicely can let the foreground work proceed normally.

Niceness only affects CPU usage. It has no impact on disk or network
activity.

Now that you can look at system problems, let’s learn how to hear what
the system is trying to tell you.

Status Mail
FreeBSD runs maintenance jobs every day, week, and month, via periodic(8).
These jobs perform basic system checks and notify the administrators of
changes, items requiring attention, and potential security issues. The out-
put of each scheduled job is mailed daily to the root account on the local
system. The simplest way to find out what your system is doing is to read
this mail; many very busy sysadmins just like you have collaborated to make

5. Being selfish doesn’t count as a good reason to renice -20 your processes. Or so I’ve
been told.

t he Bot t l e neck Sh uf f l e

Every system has bottlenecks. If you eliminate one bottleneck, performance
will increase until another bottleneck is hit. The system’s performance is bound
by the slowest component in the computer. For example, a web server is fre-
quently network-bound because the slowest part of the system is the internet
connection. If you upgrade your gigabit uplink to a 2.4Gb/s OC-48, the system
will hand out its sites as fast as its other components allow. The hypothetical
“eliminating bottlenecks” that management often demands is really a case
of “eliminating bottlenecks that interfere with your usual workload.”

546 Chapter 21

these messages useful. While you might get a lot of these messages, with a
little experience, you’ll learn how to skim the reports looking for critical or
unusual changes only.

The configuration of the daily, weekly, and monthly reports is con-
trolled in periodic.conf, as discussed in Chapter 20.

You probably don’t want to log in as root on all of your servers every day
just to read email, so forward root’s mail from every server to a centralized
mailbox. Make this change in /etc/mail/aliases, as discussed in Chapter 20.

The only place where I recommend disabling these jobs is on embedded
systems, which should be managed and monitored through some other
means, such as your network monitoring system. On such a system, disable
the periodic(8) checks in /etc/crontab.

While these daily reports are useful, they don’t tell the whole story.
Logs give a much more complete picture.

Logging with syslogd
The FreeBSD logging system is terribly useful. Any Unix-like operating
system allows you to log almost anything at almost any level of detail. While
you’ll find default system logging hooks for the most common system
resources, you can choose a logging configuration that meets your needs.
Almost all programs integrate with the logging daemon, syslogd(8).

The syslog protocol works through messages. Programs send individ-
ual messages, which the syslog daemon syslogd(8) catches and processes.
syslogd(8) handles each message according to its facility and priority
level, both of which client programs assign to messages. You must under-
stand both facilities and levels to manage system logs.

Facilities
A facility is a tag indicating the source of a log entry. This is an arbitrary label,
just a text string used to sort one program from another. In most cases, each
program that needs a unique log uses a unique facility. Many programs
or protocols have facilities dedicated to them—for example, FTP is such a
common protocol that syslogd(8) has a special facility just for it. syslogd also
supports a variety of generic facilities that you can assign to any program.

Here are the standard facilities and the types of information they’re
used for.

auth Public information about user authorization, such as when
people logged in or used su(1).

authpriv Private information about user authorization, accessible only
to root.

console Messages normally printed to the system console.

cron Messages from the system process scheduler.

daemon A catch-all for all system daemons without other explicit
handlers.

System Performance and Monitoring 547

ftp Messages from FTP and TFTP servers.

kern Messages from the kernel.

lpr Messages from the printing system.

mail Mail system messages.

mark This facility puts an entry into the log every 20 minutes. This is
useful when combined with another log.

news Messages from the Usenet News daemons.

ntp Network Time Protocol messages.

security Messages from security programs, such as pfctl(8).

syslog Messages from the log system about the log system itself. Don’t
log when you log, however, as that just makes you dizzy.

user The catch-all message facility. If a userland program doesn’t spec-
ify a logging facility, it uses this.

uucp Messages from the Unix-to-Unix Copy Protocol. This is a piece of
pre-internet Unix history that you’ll probably never encounter.

local0 through local7 These are provided for the sysadmin. Many pro-
grams have an option to set a logging facility; choose one of these if at
all possible. For example, you might tell your customer service system to
log to local0.

While most programs have sensible defaults, it’s your job as the sysadmin
to manage which programs log to which facility.

Levels
A log message’s level represents its relative importance. While programs
send all of their logging data to syslogd, most systems record only the
important stuff that syslogd receives and discard the rest. Of course, one
person’s trivia is another’s vital data, and that’s where levels come in.

The syslog protocol offers eight levels. Use these levels to tell syslogd
what to record and what to discard. The levels are, in order from most to
least important:

emerg System panic. Messages flash on every terminal. The computer
is basically hosed. You don’t even have to reboot—the system is doing it
for you.

crit Critical errors include things such as bad blocks on a hard drive
or serious software issues. You can continue to run as is, if you’re brave.

alert This is bad, but not an emergency. The system can continue to
function, but this error should be attended to immediately.

err These are errors that require attention at some point, but they
won’t destroy the system.

warning These are miscellaneous warnings that probably won’t stop the
program that issued them from working just as it always has.

548 Chapter 21

notice This includes general information that probably doesn’t
require action on your part, such as daemon startup and shutdown.

info This includes program information, such as individual trans-
actions in a mail server.

debug This level is usually only of use to programmers and occasion-
ally to sysadmins who are trying to figure out why a program behaves
as it does. Debugging logs can contain whatever information the pro-
grammer considered necessary to debug the code, which might include
information that violates user privacy.

none This means, “Don’t log anything from this facility.” It’s most com-
monly used to exclude information from wildcard entries, as we’ll see
shortly.

By combining level with priority, you can categorize messages quite
narrowly and treat each according to your needs.

Processing Messages with syslogd(8)
The syslogd(8) daemon catches messages from the network and compares
them with entries in /etc/syslog.conf or files in /etc/syslog.d/. Files in /etc/syslog.d/
are for your own entries and add-on programs, while /etc/syslog.conf is for inte-
grated system programs. Syslogd only reads /etc/syslog.d/ files ending in .conf.
Both files have the same format, but I’ll refer to /etc/syslog.conf for clarity. That
file has two columns; the first describes the log message, either by facility and
level, or by program name. The second tells syslogd(8) what to do when a log
message matches the description. For example, look at this entry from the
default syslog.conf:

mail.info /var/log/maillog

This tells syslogd(8) that when it receives a message from the mail
facility with a level of info or higher, the message should be appended to
/var/log/maillog.

The logger won’t log to a nonexistent file. Use touch(1) to create the
log file before restarting syslogd(8).

Wildcards

You can also use wildcards as an information source. For example, this line
logs every message from the mail facility:

mail.* /var/log/maillog

To log everything from everywhere, uncomment the all.log entry and
create the file /var/log/all.log:

. /var/log/all.log

System Performance and Monitoring 549

This works, but I find it too informative to be of any real use. You’ll
find yourself using complex grep(1) statements daisy-chained together
to find even the simplest information. Also, this would include all sorts
of private data.

Excluding Information

Use the none level to exclude information from a log. For example, here,
we exclude authpriv information from our all-inclusive log. The semicolon
allows you to combine entries on a single line:

.; authpriv.none /var/log/most.log

Comparison

You can also use the comparison operators < (less than), = (equal), and
> (greater than) in syslog.conf rules. While syslogd defaults to recording all
messages at the specified level or above, you might want to include only
a range of levels. For example, you could log everything of info level and
above to the main log file while logging the rest to the debug file:

mail.info /var/log/maillog
mail.=debug /var/log/maillog.debug

The mail.info entry matches all log messages sent to the mail facility at
info level and above. The second line matches only the messages that have a
level of precisely debug. You can’t use a simple mail.debug because the debug-
ging log will then duplicate the content of the previous log. This way, you
don’t have to sort through debugging information for basic mail logs, and
you don’t have to sort through mail transmission information to get your
debugging output.

Local Facilities

Many programs offer to log via syslog. Most of these can be set to a facility
of your choice. The various local facilities are reserved for these programs.
For example, by default, dhcpd(8) (see Chapter 20) logs to the facility
local7. Here, we catch these messages and send them to their own file:

local7.* /var/log/dhcpd

If you run out of local facilities, you can use other facilities that the
system isn’t using. For example, I’ve once used the uucp facility on a busy
log server on a network that had no uucp services.

550 Chapter 21

Logging by Program Name

If you’re out of facilities, you can use the program’s name as a matching
term. An entry for a name requires two lines: the first line contains the pro-
gram name with a leading exclamation mark and the second line sets up
logging. For example, FreeBSD uses this to log ppp(8) information:

!ppp
. /var/log/ppp.log

The first line specifies the program name and the second one uses wild-
cards to tell syslogd(8) to append absolutely everything to a file.

The !programname syntax affects all lines after it, so you must put it last
in syslogd.conf. You can safely use it in an /etc/syslog.d file without worrying
about affecting other entries.

Logging to User Sessions

When you log to a user, any messages that arrive appear on that user’s
screen. To log to a user session, list usernames separated by commas as the
destination. To write a message to all users’ terminals, use an asterisk (*).
For example, the default syslog.conf includes this line:

*.emerg *

This says that any message of emergency level will appear on all users’
terminals. Since these messages usually say “goodbye” in one way or another,
that’s appropriate.

Sending Log Messages to Programs

To direct log messages to a program, use a pipe symbol (|):

mail.* |/usr/local/bin/mailstats.pl

Logging to a Logging Host

My networks habitually have a single logging host that handles not only the
FreeBSD boxes but also Cisco routers and switches, other Unix boxes, and
any syslog-speaking appliances. This greatly reduces system maintenance
and saves disk space. Each log message includes the hostname, so you can
easily sort them out later.

Use the at symbol (@) to send messages to another host. For example,
the following line dumps everything your local syslog receives to the log-
ging host on my network:

. @loghost.blackhelicopters.org

System Performance and Monitoring 551

The syslog.conf on the destination host determines the final destination
for those messages.

On the logging host, you can separate logs by the host where the log
message originated. Use the plus (+) symbol and the hostname to indicate
that the rules that follow apply to this host:

+dhcpserver
local7.* /var/log/dhcpd
+ns1
local7.* /var/log/named

Put your generic rules at the top of syslog.conf. Per-host rules should go
near the bottom or in separate syslog.d files.

Logging Overlap

The logging daemon doesn’t log on a first-match or last-match basis; instead,
it logs according to every matching rule. This means you can easily have
one log message in several different logs. Consider the following snippet of
log configuration.

*.notice;authpriv.none /var/log/messages
local7.* /var/log/dhcp

Almost every message of level notice or more is logged to /var/log/messages.
Anything with a facility of authpriv is deliberately excluded from this log,
though. We have our DHCP server logging to /var/log/dhcp. This means that
any DHCP messages of notice level or above will be logged to both /var/log/
messages and /var/log/dhcpd. I don’t like this; I want my DHCP messages only
in /var/log/dhcpd. I can follow the authpriv example to deliberately exclude
DHCP messages from /var/log/messages by using the none facility:

*.notice;authpriv.none;local7.none /var/log/messages

My /var/log/messages syslog configuration frequently grows quite long as
I incrementally exclude every local facility from it, but that’s all right.

SPace S a nd ta BS

Traditional Unix-like operating systems require tabs between the columns in
syslog.conf, but FreeBSD permits you to use spaces. Be sure to use only tabs if
you share the same syslog.conf between different operating systems.

552 Chapter 21

syslogd Customization
FreeBSD runs syslogd by default, and out of the box it can be used as a log-
ging host. You can customize how it works through the use of command
line flags. You can specify flags either on the command line or in rc.conf as
syslogd_flags.

Allowed Log Senders

You can specify exactly which hosts syslogd(8) accepts log messages from.
This can be useful so you don’t wind up accepting logs from random people
on the internet. While sending you lots of logs could be used to fill your
hard drive as a preparation for an attack, it’s more likely to be the result
of a misconfiguration. Your log server should be protected by a firewall in
any case. Use the -a flag to specify either the IP addresses or the network
of hosts that can send you log messages, as these two (mutually exclusive)
examples show:

syslogd_flags="-a 192.168.1.9"
syslogd_flags="-a 192.168.1.0/24"

While syslogd(8) would also accept DNS hostnames and domain
names for this restriction, DNS is a completely unsuitable access control
mechanism.

You can entirely disable accepting messages from remote hosts by speci-
fying the -s flag, FreeBSD’s default. If you use -ss instead, syslogd(8) also
disables sending log messages to remote hosts. Using -ss removes syslogd(8)
from the list of network-aware processes that show up in sockstat(1) and
netstat(1). While this half-open UDP socket is harmless, some people feel
better if syslogd(8) doesn’t appear attached to the network at all.

Attach to a Single Address

syslogd(8) defaults to attaching to UDP port 514 on every IP address the
system has. Your jail server needs syslogd, but a jail machine can run only
daemons that bind to a single address. Use the -b flag to force syslogd(8) to
attach to a single IP:

syslogd_flags="-b 192.168.1.1"

Additional Log Sockets

syslogd(8) can accept log messages via Unix domain sockets as well as over
the network. The standard location for this is /var/run/log. No chrooted
processes on your system can access this location, however. If you want
those chrooted processes to run, you must either configure them to log
over the network or provide an additional logging socket for them. Use the
-l flag for this and specify the full path to the additional logging socket:

syslogd_flags="-l /var/named/var/run/log"

System Performance and Monitoring 553

The named(8) and ntpd(8) programs come with FreeBSD and are
commonly chrooted. The /etc/rc.d/syslogd is smart enough to add the appro-
priate syslogd sockets if you chroot these programs through rc.conf.

Verbose Logging

Logging with verbose mode (-v) prints the numeric facility and level of
each message written in the local log. Using doubly verbose logging prints
the name of the facility and level instead of the number:

syslogd_flags="-vv"

These are the flags I consider most commonly. Read syslogd(8) for the
complete list of options.

Log File Management
Log files grow, and you must decide how large they can grow before you
trim them. The standard way to do this is through log rotation. When logs are
rotated, the oldest log is deleted, the current log file is closed up and given
a new name, and a new log file is created for new data. FreeBSD includes a
basic log file processor, newsyslog(8), which also compresses files, restarts
daemons, and in general handles all the routine tasks of log file shuffling.
cron(1) runs newsyslog(8) once per hour.

When newsyslog(8) runs, it reads /etc/newsyslog.conf and the files in
/etc/newsyslog.conf.d/. The /etc/newsyslog.conf file is for core system functions,
while files in /etc/newsyslog.conf.d/ are for add-on software. The newsyslog pro-
gram attempts to parse any files in /etc/newsyslog.conf.d/ as newsyslog configu-
rations. Both use the same format, so we’ll refer to newsyslog.conf for clarity.
Each line in newsyslog.conf gives the condition for rotating one log file. If the
conditions for rotating the log are met, the log is rotated and other actions
are taken as appropriate. /etc/newsyslog.conf uses one line per log file; each
line has seven fields, like this:

/var/log/ppp.log root:network 640 3 100 * JC

Let’s examine each field in turn.

Log File Path
The first entry on each line (/var/log/ppp.log in the example) is the full
path to the log file to be processed.

Owner and Group
The second field (root:network in our example) lists the rotated file’s owner
and group, separated by a colon. This field is optional and isn’t present in
many of the standard entries.

554 Chapter 21

newsyslog(8) can change the owner and group of old log files. By default,
log files are owned by the root user and the wheel group. While it’s not com-
mon to change the owner, you might need this ability on multiuser machines.

You can also choose to change only the owner or only the group. In
these cases, you use a colon with a name on only one side of it. For example,
:www changes the group to www, while mwlucas: gives me ownership of the file.

Permissions
The third field (640 in our example) gives the permissions mode in stan-
dard Unix three-digit notation.

Count
This field specifies the oldest rotated log file that newsyslog(8) should keep.
newsyslog(8) numbers archived logs from newest to oldest, starting with the
newest as log 0. For example, with the default count of 5 for /var/log/messages,
you’ll find the following message logs:

messages
messages.0.bz
messages.1.bz
messages.2.bz
messages.3.bz
messages.4.bz
messages.5.bz

Those of you who can count will recognize that this makes six archives,
not five, plus the current log file, for a week of logs. As a rule, it’s better
to have too many logs than too few; however, if you’re tight on disk space,
deleting an extra log or two might buy you time.

Size
The fifth field (100 in our example) is the file size in kilobytes. When
newsyslog(8) runs, it compares the size listed here with the size of the file. If
the file is larger than the size given here, newsyslog(8) rotates the file. If you
don’t want the file size to affect when the file is rotated, put an asterisk here.

Time
So far this seems easy, right? The sixth field, rotation time, changes that.
The time field has four different legitimate types of value: an asterisk, a
number, and two different date formats.

If you rotate based on log size rather than age, put an asterisk here.
If you put a plain naked number in this field, newsyslog(8) rotates the

log after that many hours have passed. For example, if you want the log to
rotate every 24 hours but don’t care about the exact time when that hap-
pens, put 24 here.

The date formats are a little more complicated.

System Performance and Monitoring 555

ISO 8601 Time Format

Any entry beginning with an @ symbol is in the restricted ISO 8601 time
format. This is a standard used by newsyslog(8) on most Unix-like systems;
it was the time format used in MIT’s primordial newsyslog(8). Restricted
ISO 8601 is a bit obtuse, but every Unix-like operating system supports it.

A full date in the restricted ISO 8601 format is 14 digits with a T in
the middle. The first four digits are the year, the next two the month, the
next two the day of the month. The T is inserted in the middle as a sort of
decimal point, separating whole days from fractions of a day. The next two
digits are hours, the next two minutes, the last two seconds. For example,
the date of March 2, 2008, 9:15 and 8 seconds pm is expressed in restricted
ISO 8601 as 20080302T211508.

While complete dates in restricted ISO 8601 are fairly straightforward,
confusion arises when you don’t list the entire date. You can choose to
specify only fields near the T, leaving fields further away as blank. Blank
fields are wildcards. For example, 1T matches the 1st day of every month.
4T00 matches midnight of the 4th day of every month. T23 matches the 23rd
hour, or 11 pm, of every day. With a newsyslog.conf time of @T23, the log rotates
every day at 11 pm.

As with cron(1), you must specify time units in detail. For example,
@7T, the seventh day of the month, rotates the log once an hour, every hour,
on the seventh day of the month. After all, it matches all day long! A time
of @7T01 would rotate the log at 1 am on the 7th day of the month, which is
probably more desirable. You don’t need more detail than an hour, how-
ever, as newsyslog(8) runs only once an hour.

FreeBSD-Specific Time

The restricted ISO 8601 time system doesn’t allow you to easily designate
weekly jobs, and it’s impossible to specify the last day of the month. That’s
why FreeBSD includes a time format that lets you easily perform these com-
mon tasks. Any entry with a leading cash sign ($) is written in the FreeBSD-
specific month week day format.

This format uses three identifiers: M (day of month), W (day of week),
and H (hour of day). Each identifier is followed by a number indicating a
particular time. Hours range from 0 to 23, while days run from 0 (Sunday)
to 6 (Saturday). Days of the month start at 1 and go up, with L representing
the last day of the month. For example, to rotate a log on the fifth of each
month at noon I could use $M5H12. To start the month-end log accounting at
10 pm on the last day of the month, use $MLH22.

rotat ing on Si z e a nd t ime

You can rotate logs at a given time, when they reach a certain size, or both. If
you specify both size and time, the log rotates whenever either condition is met.

556 Chapter 21

Flags
The flags field dictates any special actions to be taken when the log is
rotated. This most commonly tells newsyslog(8) how to compress the log
file, but you can also signal processes when their log is rotated out from
under them.

Log File Format and Compression

Logs can be either text or binary files.
Binary files can be written to only in a very specific manner. newsyslog(8)

starts each new log with a “logfile turned over” message, but adding this text
to a binary file would damage it. The B flag tells newsyslog(8) that this is a
binary file and that it doesn’t need this header.

Other log files are written in plain old ASCII text, and newsyslog(8)
can and should add a timestamped message to the top of the file indicating
when the log was rotated. If you’re using UFS, compressing old log files can
save considerable space. The -J flag tells newsyslog(8) to compress archives
with bzip(1); the -Z flag specifies gzip compression; the -X flag, xz(1); and
the -Y flag, the new hotness in compression, zstd(1).

If you’re using ZFS, though, text log files get compressed at the dataset
layer along with every other compressible file. You can compress the log
files in the traditional manner anyway, but there’s no advantage to doing
so. Plus, you’ll need to manually decompress the files before you can view
them. Let ZFS handle compression for you.

Special Log File Handling

When it creates and rotates log files, newsyslog(8) can perform a few spe-
cial tasks. Here are the most common; you can read about the others in
newsyslog.conf(5).

Perhaps you have many similar log files that you want to treat identi-
cally. The -G flag tells newsyslog that the log file name at the beginning of
the line is actually a shell glob, and that all log files that match the expres-
sion are to be rotated in this manner. To learn about shell expressions, read
glob(3). Bring aspirin.

You might want newsyslog to create a file if it doesn’t exist. Use the -C
flag for this. The syslogd program won’t log to a nonexistent file.

The -N flag explicitly tells newsyslog not to send a signal when rotating
this log.

Finally, use a hyphen (-) as a placeholder when you don’t need any of
these flags. It creates a column here so that you can have, say, a pidfile path.

Pidfile
The next field is a pidfile path (not shown in our example, but look at
/etc/newsyslog.conf for a couple of samples). A pidfile records a program’s
process ID so that other programs can easily view it. If you list the full
path to a pidfile, newsyslog(8) sends a kill -HUP to that program when

System Performance and Monitoring 557

it rotates the log. This signals the process to close its logfiles and restart
itself. Not all processes have pidfiles, and not all programs need this sort
of special care when rotating their logs.

Signal
Most programs perform logfile rotation on a SIGHUP, but some programs
need a specific signal when their logs are rotated. You can list the exact
signal necessary in the last field, after the pidfile.

Sample newsyslog.conf Entry
Let’s slap all this together into a worst-case, you’ve-got-to-be-kidding example.
A database log file needs rotation at 11 pm on the last day of the month. The
database documentation says that you must send the server an interrupt
signal (SIGINT, or signal number 2) on rotation. You want the archived logs
to be owned by the user dbadmin and viewable only to that user. You need
six months of logs. What’s more, the logs are binary files. Your newsyslog.conf
line would look like this:

/var/log/database dbadmin: 400 6 * $MLH23 B /var/run/db.pid 2

This is a deliberately vile example; in most cases, you just slap in the
filename and the rotation condition, and you’re done.

FreeBSD and SNMP
Emailed reports are nice but general, and logs are difficult to analyze for
long-term trends. The industry standard for network, server, and service
management is Simple Network Management Protocol (SNMP). Many different
vendors support SNMP as a protocol for gathering information from many
different devices across the network. FreeBSD includes an SNMP agent,
bsnmpd(8), that not only provides standard SNMP functions but also gives
visibility to FreeBSD-specific features.

FreeBSD’s bsnmpd (short for Begemot SNMPD) is a minimalist SNMP
agent specifically designed to be extensible. All actual functionality is pro-
vided via external modules. FreeBSD includes the bsnmpd modules for
standard network SNMP functions and modules for specific FreeBSD fea-
tures, such as PF and netgraph(4). Rather than trying to be all things to all
people, bsnmpd(8) offers a foundation where everyone can build an SNMP
implementation that does only what they need, no more and no less.

SNMP 101
SNMP works on a classic client-server model. The SNMP client, usually some
kind of management workstation or monitoring server, sends a request
across the network to an SNMP server. The SNMP server, also called an
agent, gathers information from the local system and returns it to the client.
FreeBSD’s SNMP agent is bsnmpd(8).

558 Chapter 21

An SNMP agent can also send a request to make changes to the SNMP
server. If the system is properly (or improperly, depending on your point of
view) configured, you can issue commands via SNMP. This “write” configu-
ration is most commonly used in routers, switches, and other embedded
network devices. Most Unix-like operating systems have a command line
management system and don’t usually accept instruction via SNMP. Writing
system configuration or issuing commands via SNMP requires careful setup
and raises all sorts of security issues; it’s an excellent topic for an entire book.
No sysadmin I know is comfortable managing their system via SNMP. With all
of this in mind, we’re going to focus specifically on read-only SNMP.

In addition to having an SNMP server answer requests from an SNMP
client, the client can transmit SNMP traps to a trap receiver elsewhere on
the network. An SNMP agent generates these traps in response to particu-
lar events on the server. SNMP traps are much like syslogd(8) messages,
except that they follow the very specific format required by SNMP. FreeBSD
doesn’t include an SNMP trap receiver at this time; if you need one, check
out snmptrapd(8) from net-snmp (net-mgmt/net-snmp).

SNMP MIBs

SNMP manages information via a management information base (MIB),
a tree-like structure containing hierarchical information in ASN.1 format.
We’ve seen an example of an MIB tree before: the sysctl(8) interface dis-
cussed in Chapter 6.

Each SNMP server has a list of information it can extract from the local
computer. The server arranges these bits of information into a hierarchi-
cal tree. Each SNMP MIB tree has very general main categories: network,
physical, programs, and so on, with more specific subdivisions in each.
Think of the tree as a well-organized filing cabinet, where individual draw-
ers hold specific information and files within drawers hold particular facts.
Similarly, the uppermost MIB contains a list of MIBs beneath it.

MIBs can be referred to by name or by number. For example, here’s an
MIB pulled off a sample system:

interfaces.ifTable.ifEntry.ifDescr.1 = STRING: "em0"

The first term in this MIB, interfaces, shows us that we’re looking at this
machine’s network interfaces. If this machine had no interfaces, this first
category wouldn’t even exist. The ifTable is the interface table, or a list of
all the interfaces on the system. ifEntry shows one particular interface, and
ifDescr means that we’re looking at a description of this interface. This MIB
can be summarized as, “Interface number 1 on this machine is called em0.”

MIBs can be expressed as numbers, and most SNMP tools do their
work natively in numerical MIBs. Most people prefer words, but your poor
brain must be capable of working with either. An MIB browser can translate

System Performance and Monitoring 559

between the numerical and word forms of an SNMP MIB for you, or you
could install net-mgmt/net-snmp and use snmptranslate(1), but for now, just
trust me. The preceding example can be translated to:

.1.3.6.1.2.1.2.2.1.2.1

Expressed in words, this MIB has 5 terms separated by dots. Expressed
in numbers, the MIB has 11 parts. That doesn’t look quite right if they’re
supposed to be the same thing. What gives?

The numerical MIB is longer because it includes the default .1.3.6.1.2.1,
which means .iso.org.dod.internet.mgmt.mib-2. This is the standard subset of
MIBs used on the internet. The vast majority of SNMP MIBs (but not all)
have this leading string in front of them, so nobody bothers writing it down
any more.

If you’re in one of those difficult moods, you can even mix words and
numbers:

.1.org.6.1.mgmt.1.interfaces.ifTable.1.2.1

At this point, international treaties permit your coworkers to drive you
from the building with pitchforks and flaming torches. Pick one method of
expressing MIBs and stick to it.

MIB Definitions and MIB Browsers

MIBs are defined according to a very strict syntax and are documented in
MIB files. Every SNMP agent has its own MIB files; bsnmpd’s are in /usr/
share/snmp. These files are very formal plaintext. While you can read and
interpret them with nothing more than your brain, I highly recommend
copying them to a workstation and installing an MIB browser so that you
can comprehend them more easily.

MIB browsers interpret MIB files and present them in their full tree-like
glory, complete with definitions of each part of the tree and descriptions
of each individual MIB. Generally speaking, an MIB browser lets you enter
a particular MIB and displays both the numerical and word definitions of
that MIB, along with querying an SNMP agent for the status of that MIB.

If you have FreeBSD (or a lesser Unix) on your workstation, use
mbrowse (net-mgmt/mbrowse) for MIB browsing. If you don’t want to use a
graphical interface for SNMP work, check out net-snmp (net-mgmt/net-snmp)
for a full assortment of command line SNMP client tools.

SNMP Security

Many security experts state that SNMP really stands for “Security: Not My
Problem!” This is rather unkind but very true. SNMP needs to be used only
behind firewalls on trusted networks. If you must use SNMP on the naked
internet, use packet filtering to keep the public from querying your SNMP
service. SNMP agents run on UDP port 161.

560 Chapter 21

The more common SNMP versions, 1 and 2c, provide no encryption.
This means that anyone with a packet sniffer can capture your SNMP com-
munity name, so be absolutely certain you’re using SNMP only on a private
network. Making unencrypted SNMP queries over an untrusted network
is a great way to have strangers poking at your system management. SNMP
version 3 uses encryption to protect data on the wire.

SNMP provides basic security through communities. If you go looking
around, you’ll find all sorts of explanations for why a community isn’t the
same thing as a password, but a community is a password. Most SNMP
agents have two communities by default: public (read-only access) and
private (read-write access). Yes, there’s a default that provides read-write
access. Your first task whenever you provision an SNMP agent on any host,
on any OS, is to disable those default community names and replace them
with ones that haven’t been widely documented for decades.

FreeBSD’s bsnmpd(8) defaults to SNMPv2c but can do SNMPv3.
SNMPv3 is a more complicated protocol, so we’re not going to cover it
here. If you understand the SNMPv3 protocol and the basics of configur-
ing FreeBSD’s bsnmpd, you won’t have any trouble enabling SNMPv3 in
bsnmpd.

Configuring bsnmpd
Before you can use SNMP to monitor your system, you must configure the
SNMP daemon. Configure bsnmpd(8) in /etc/snmpd.config. In addition to
including the default communities of public and private, the default con-
figuration doesn’t enable any of the FreeBSD-specific features that make
bsnmpd(8) desirable.

bsnmpd Variables

bsnmpd uses variables to assign values to configuration statements. Most
high-visibility variables are set at the top of the configuration file, as you’ll
see here:

location := "Room 200"
contact := "sysmeister@example.com"
system := 1 # FreeBSD
traphost := localhost
trapport := 162

These top variables define values for MIBs that should be set on every
SNMP agent. The location describes the physical location of the machine.
Every system needs a legitimate email contact. bsnmpd(8) runs on operat-
ing systems other than FreeBSD, so you have the option of setting a par-
ticular operating system here. Lastly, if you have a trap host, you can set the
server name and port here.

System Performance and Monitoring 561

Further down the file, you can set the SNMP community names:

Change this!
read := "public"
Uncomment begemotSnmpdCommunityString.0.2 below that sets the community
string to enable write access.
write := "geheim"
trap := "mytrap"

The read string defines the read-only community of this SNMP agent.
The default configuration file advises you to change it. Take that advice. The
write string is the read-write community name, which is disabled by default
further down in the configuration file. You can also set the community name
for SNMP traps sent by this agent.

With only this configuration, bsnmpd(8) will start, run, and provide
basic SNMP data for your network management system. Just set bsnmpd
_enable="YES" in /etc/rc.conf to start bsnmpd at boot. You won’t get any special
FreeBSD functionality, however. Let’s go on and see how to manage this.

Detailed bsnmpd Configuration

bsnmpd(8) uses the variables you set at the top of the configuration file to
assign values to different MIBs later in the configuration. For example, at
the top of the file you set the variable read to public. Later in the configura-
tion file, you’ll find this statement:

begemotSnmpdCommunityString.0.1 = $(read)

This sets the MIB begemotSnmpdCommunityString.0.1 equal to the value of
the read variable.

Why not just set these values directly? bsnmpd(8) is specifically designed
to be extensible and configurable. Setting a few variables at the top of the file
is much easier than directly editing the rules further down the file.

Let’s go back to this begemotSnmpdCommunityString MIB set here. Why are
we setting this? Search for the string in your MIB browser, and you’ll see
that this is the MIB that defines an SNMP community name. You probably
could have guessed that from the assignment of the read variable, but it’s
nice to confirm that.

Similarly, you’ll find an entry like this:

begemotSnmpdPortStatus.0.0.0.0.161 = 1

Checking the MIB browser shows that this dictates the IP address and
the UDP port that bsnmpd(8) binds to (in this case, all available addresses,
on port 161). All MIB configuration is done in this manner.

562 Chapter 21

Loading bsnmpd Modules

Most interesting bsnmpd(8) features are configured through modules.
Enable modules in the configuration file by giving the begemotSnmpdModulePath
MIB a class that the module handles and the full path to the shared library
that implements support for that feature. For example, in the default configu-
ration, you’ll see a commented-out entry for the PF bsnmpd(8) module:

begemotSnmpdModulePath."pf" = "/usr/lib/snmp_pf.so"

This enables support for PF MIBs. Your network management software
will be able to see directly into PF when you enable this, letting you track
everything from dropped packets to the size of the state table.

As of this writing, FreeBSD’s bsnmpd(8) ships with the following
modules included but disabled. Some are FreeBSD-specific, while others
support industry standards. Enable these by uncommenting their configu-
ration file entries and restarting bsnmpd.

lm75 Provides data from the lm75(4) temperature sensor via SNMP.

Netgraph Provides visibility into all Netgraph-based network features,
documented in snmp_netgraph(3).

PF Provides visibility into the PF packet filter.

Hostres Implements the Host Resources SNMP MIB, snmp_hostres(3).

bridge Provides visibility into bridging functions, documented in
snmp_bridge(3).

wlan Accesses information on wireless networking.

Restart bsnmpd(8) after enabling any of these in the configuration file.
If the program won’t start, check /var/log/messages for errors.

With bsnmpd(8), syslogd(8), status emails, and a wide variety of
performance analysis tools, you can make your FreeBSD system the best-
monitored device on the network. Now that you can see everything your
system offers, grab a flashlight as we explore a few of FreeBSD’s darker
corners.

22
J a i l s

Virtualization separates an operating sys-
tem instance from the underlying hard-

ware. Virtualization allows you to move
operating system installs from one piece of

hardware to another by copying a file. Virtualization
needs an operating system installed on the hardware,
but that install is normally very minimal, has no public-facing services, and
is easily reproduced on new hardware. It’s perhaps the biggest change in
system administration in decades.

Virtualization is something like a client-server environment. The hard-
ware and its core operating system instance is the host, while the clients are all
virtualized operating system instances. The clients rely on the host to provide
basic services, such as storage, processor power, and memory. Changes to the
host can be reflected in the virtualized clients, but changes on the client have
no effect on the host beyond consuming resources.

FreeBSD supports two types of virtualization: jails and bhyve.
Jails are a lightweight virtualization method, sometimes called OS-level

virtualization. A jail normally contains a complete operating system userland

564 Chapter 22

that runs on top of an existing FreeBSD system. The jail relies on the host’s
filesystem but is limited to a subset of the directory tree. It might even have
a chunk of dedicated space in a ZFS pool. A jail doesn’t have its own kernel
and instead runs in a restricted portion of the host’s kernel. The host can
manage jailed processes without entering the jail, or it can run processes
inside the jail if preferred. Jails don’t get a graphical console. Use jails to
virtualize FreeBSD installs of the same version or older, or to run simple
virtual Linux systems.

Bhyve is a heavier virtualization system. Rather than using the host’s
kernel and filesystem, bhyve simulates hardware. The host provides a chunk
of disk space for the virtual machine to use as a disk. A bhyve virtual machine
must bring along its own filesystem, kernel, and supporting infrastructure.
Bhyve virtual machines require more resources than jails, but they also offer
a console via virtual network computing (VNC) and can run truly foreign
operating systems, like Microsoft Windows. Bhyve is changing rapidly thanks
to its rapid development, so this book doesn’t cover it. I’ll write about bhyve
once it stabilizes.

Before considering bhyve, see whether a jail will meet your needs.

Jail Basics
A jail is a supercharged chroot that applies not only to the filesystem but
also to processes and the network stack. A jailed system can access only
a narrow part of the filesystem and can’t see processes outside the jail.
Traditionally, each jail is assigned a dedicated IP address, and the jail
can view only traffic to that particular IP. Each jail even has its own user
accounts. The root account in a jail completely controls that jail but has no
access to anything beyond the jail.

To a user given root access to a jail, the jail looks like a nearly complete
FreeBSD system, missing only a few device nodes. The user can install what-
ever software she likes without interfering with the host or other jails. All
processes running in the jail can affect only the jail’s files and processes.
The jailed user has no visibility of anything beyond the jail; she’s confined.
If the jail is hacked, the intruder is also confined to the jail.

Jails can use a virtual network stack, based on vnet(9). That’s an advanced
use we won’t cover here, but if you need to provide a jail with its own rout-
ing table, that’s how you do it.

As of FreeBSD 9, multiple jails can share a single IP address, but the
sysadmin needs to configure each jail to use unique TCP/IP ports for every
network service. You can’t run multiple SSH instances on port 22 of a single
IP! For simplicity, the following examples use a single IP for each jail, but
remember that you have other options.

Many people put all of their services in jails, even when a host is dedi-
cated to a particular purpose. A ZFS snapshot of the jail dataset, or a tarball
of the directory tree, is a complete backup of the jail. Restoration after a
failed software upgrade becomes a simple matter of extracting a tarball or
rolling back to the snapshot.

Jails 565

A jail is also useful for software development and testing. Deploying a
new service often requires installing and testing quite a few packages. Doing
the testing in a jail before selecting a solution and proceeding to production
prevents polluting the host with abandoned files and unneeded software.

Depending on your hardware and the system load, a single FreeBSD
host can support dozens or even hundreds of jails. If you want to seriously
run that many jails, though, make sure your host has two separate network
interfaces. Dedicate one to jails and the other to managing the host.

Everything starts with configuring your jail host.

Jail Host Server Setup
A server meant as a jail host must work within a few annoying constraints.
Configure your host correctly before building your first jail.

The jail system has its own sysctl tree, security.jail. You can change
these sysctls only from the host system. Some sysctls affect all jails running
on the host. Sysctls that begin with security.jail.param can be set on a per-
jail basis. We’ll touch on these throughout this chapter.

Jail Host Storage
I strongly advise you to use your jail host only for the purpose of running
jails and to put all services inside a jail. Start by configuring the host’s storage
to separate jails and the host operating system.

Many hosts intended for virtualization include SATA DOM flash drives
on the mainboard for the operating system. These drives are usually less
than 100GB in size, but a base install of FreeBSD fits in much less than a
gigabyte. If you have a SATA DOM or similar, use it for the host operating
system. If you have multiple sets of redundant hard drives, use a pair to
mirror the operating system and dedicate everything else to jails.

If you don’t have such hardware, dedicate space to the host operating
system. Use either a partition for UFS filesystems or a dataset reservation
for ZFS. In either case, 10GB of space should be sufficient. If you need addi-
tional space for an emergency, you can borrow some from the jail space.

While ZFS is highly useful for jails, it’s not necessary. I ran jails on UFS
for many years. Use what works for you and fits your environment.

Once you have your host partitioned and the operating system installed,
look at the network.

Jail Networking
There are two seemingly conflicting aspects of jail networking: first, each
jail expects full control of any IP addresses assigned to it; and second, jails
can share IP addresses with other jails and even the host. You can start a jail
using any IP address on the host, but that jail can’t coordinate any network-
facing services with other services running on that IP. If your jail shares the
host’s IP address, and the host runs SSH on port 22, the jail can’t use port 22.
If you try to start sshd(8) in the jail, the program will complain that it can’t

566 Chapter 22

use port 22 and crash. Sharing IP addresses between jails, or even between
jails and the host, requires the sysadmin to coordinate which ports belong
to which hosts and to configure everything accordingly.

The simplest way to configure jails is to assign each its own IP address
and give the host its own IP address. Each jail can then completely control
its own IP address. Once you get the hang of this, you can start sharing
addresses between jails. That means the host can’t have daemons listening
on IP addresses assigned to jails. Having a host’s daemons listening on the
jail’s IP won’t prevent the jail from starting, but it will prevent the jail from
starting its own services on that port. Users like Bert will complain if they
can’t SSH to their private jails!

The cleanest way to configure a jail host is to decide that the host only
provides jails. Any services run on the host must be in a jail. If you need
simple services, like a nameserver or a mail exchanger, configure them in a
jail. Not only is this easier than properly reconfiguring all these servers to
attach only to the selected IP address; it also provides an additional layer of
security for your other jails. An intrusion on the host automatically grants
the intruder access to all of your jails, while an intrusion on a single jail
confines the intruder to that jail.

Use sockstat(1) to identify programs listening on your network, as dis-
cussed in Chapter 9. Add the -46 flags to show only IPv4 and IPv6 traffic,
and -l to show only listening sockets.

sockstat -46l
USER COMMAND PID FD PROTO LOCAL ADDRESS FOREIGN ADDRESS
root ntpd 19776 20 udp6 *:123 *:*
root ntpd 19776 21 udp4 *:123 *:*
--snip--
root sshd 2846 3 tcp6 *:22 *:*
root sshd 2846 4 tcp4 *:22 *:*

This fairly default FreeBSD install has two programs listening to the
network: ntpd and sshd. Both are listening to all IP addresses. We must con-
figure all of these daemons to listen only to the main server address.

Here are some common daemons that cause problems on host servers.
In all of these, I’ll assume that the jail host has an IP of 198.51.100.50.

syslogd

The system logger syslogd(8) opens a UDP socket so that it can send mes-
sages to other hosts. If you don’t log remotely, or if you use a different log-
ging solution, use the -ss flag in rc.conf to turn off the network component.

syslogd_flags="-ss"

If you need to send syslogd messages, use the -b flag to force syslogd to
attach to only a single IP address.

syslogd_flags="-b 198.51.100.50"

Jails 567

Either solution lets your jails’ administrators individually decide whether
or not they’re going to log across the network. See Chapter 21 for a full dis-
cussion of syslogd.

inetd

If you need inetd (see Chapter 20), you should almost certainly run it from
within a jail rather than the host. If you can’t weasel out of running inetd
on the host, though, use the -a flag to restrict it to a single IP address, as in
the following rc.conf snippet.

inetd_flags="-a 198.51.100.50 -wW -C 60"

If I had only specified the -a flag and the IP address, it would’ve
overwritten inetd’s default flags from /etc/defaults/rc.conf. Every release of
FreeBSD from the last few decades has used the default flags of -wW -C 60; I
added my -a and the IP address to those flags.

sshd

The option ListenAddress in /etc/ssh/sshd_config tells sshd(8) which addresses
to bind to. Restrict it to only your host IP.

ListenAddress 198.51.100.50

If the only service your jail host offers is sshd(8), you’ve done well.

NFS

Network filesystem programs, such as rpcbind(8) and nfsd(8), bind to all
IP addresses on a host, no matter what you do. Don’t run these programs
inside a jail, and don’t run NFS from within a jail. If your clients need NFS
mounts, have the host run these programs and provide the NFS mounts.

Network Time Protocol

The most problematic service on a jail host is timekeeping. All jails get their
system clock from the host. FreeBSD’s included time daemon, ntpd(8),
listens to all IP addresses on the host—including the jailed ones. As the
lone rare exception, though, I’m going to tell you to go ahead and run ntpd
on the host.

A jail lacks the proper access to change the kernel’s time. While you
could run ntpd in a jail, it couldn’t actually do anything. Go ahead and run
ntpd on your jail host, and don’t worry about it1 listening to all IP addresses.
Anyone who tries to run a UDP-based service other than ntpd on port 123
is probably trying to evade a packet filter. Make them work harder.

1. This book could be described as “a not even nearly comprehensive list of things for
sysadmins to worry about.” This right here is the only counterexample.

568 Chapter 22

If you want to avoid even the chance of a collision, install the openntpd
package. Unlike the base system ntpd(8), OpenNTPD can be configured to
listen to a single IP address.

IP Addresses

Each jail can have one or more IP addresses. These addresses must be
attached to the host before you start the jail. A jail will run without any net-
working, but it won’t be accessible beyond the host. Add any necessary IP
addresses as aliases in /etc/rc.conf.

Jails at Boot
To have FreeBSD start your jails at boot, set jail_enable in rc.conf.

jail_enable=YES

FreeBSD defaults to starting all jails listed in /etc/jail.conf. If you want
the system to start only a subset of those jails at boot, use the jail_list
rc.conf option. Here, I have two jails, called mariadb and httpd. I want them
started in this order so that my database jail is running before the web
server that calls it.

jail_list="mariadb httpd"

During system shutdown, FreeBSD stops jails in the same order it starts
them. Your application might not like that. In my example, I want the web
server to turn off before the database backend. I’d rather have a website
be flat-out unavailable than have users see the dreaded “database server is
kaput” error.

jail_reverse_stop=YES

If the jail startup order is unimportant, you can start and stop all jails
simultaneously.

jail_parallel_start="YES"

Now you can configure a jail.

Jail Setup
Now that I have a host, I can install some jails. I’ll start with a jail called
mariadb, for running . . . wait for it . . . MariaDB.

Each jail needs a dedicated root directory. All of my example jails live
under /jail. I normally put each jail in a directory named after the jail
name—in this case, /jail/mariadb.

Each jail needs a primary IP. It can also have other IPs, as we’ll see later,
but let’s start with one. The jail mariadb gets 203.0.113.51.

Jails 569

Each jail needs an internet hostname, just as if it were a real host. This
jail will become mariadb.mwl.io.

Now we can put a userland in the jail.

Jail Userland
While you can install any userland components in a jail, all a jail requires is
the base system. Grab the base.txz distribution set for your desired FreeBSD
release and extract it in your jail’s root directory.

tar -xpf base.txz -C /jail/mariadb

That’s a complete install of the base operating system. If you want addi-
tional distribution sets, such as the debugging symbols, extract them the
same way.

If you’ve built your own FreeBSD base system, you can install it in the jail.

cd /usr/src
make installworld DESTDIR=/jail/mariadb

Jails also need supporting directories and assorted detritus created by
the install process, but not by make installworld. The make distribution com-
mand creates those files. If you already have these directories and files,
though, don’t rerun make distribution: it’ll overwrite any local changes.
And don’t forget the DESTDIR setting, unless you like resetting the host’s
configuration!

make distribution DESTDIR=/jail/mariadb

You can also build a custom userland with only enough binaries for
running a single program, much as you would for a traditionally chrooted
program. For most of us, that’s too much work, but if you want to break out
ldd(1) and go wild, don’t let me stop you.

Once you have a jail userland, tell FreeBSD about your jail in /etc/jail.conf.

/etc/jail.conf
Traditionally, FreeBSD configured jails in /etc/rc.conf. This was clunky and
unwieldy. While FreeBSD still supports rc.conf configuration of jails, I rec-
ommend using the more flexible /etc/jail.conf instead. This file isn’t in UCL,
although it looks like something UCL could support. Define each jail by a
name. Give the jail parameters in braces after the jail name. Each param-
eter definition ends in a semicolon.

Many jail parameters have an equal sign, where we assign a parameter a
value. Here, I set the parameter path to the value /jail/mariadb:

path="/jail/mariadb";

570 Chapter 22

Other parameters enable or disable a feature with their mere presence.
Here, I tell this jail to turn on the mount.devfs feature:

mount.devfs;

Jails support a whole bunch of “mount” parameters, with subparameters
for different filesystems. This particular parameter specifically addresses
mounting devfs.

Toggles can be turned off for a jail by adding no in front of the specific
parameter. If I don’t want to enable devfs, I wouldn’t turn off the whole
mount parameter; I’d put the no in front of the devfs.

mount.nodevfs;

Here’s how I define a jail named mariadb:

mariadb {
 host.hostname="mariadb.mwl.io";
 ip4.addr="203.0.113.51";
 path="/jail/mariadb";
 mount.devfs;
 exec.clean;
 exec.start="sh /etc/rc";
 exec.stop="sh /etc/rc.shutdown";
}

The parameter host.hostname gives the jail’s hostname. While the jail
name is mariadb, this host identifies itself by the internet hostname mariadb
.mwl.io.

The IP address is in ip4.addr. I’ve assigned the address 203.0.113.51 to
this jail. This IP must be on the host first.

The jail’s root directory goes in the path variable. Here, it’s set to
/jail/mariadb.

Almost every jail needs access to specific device nodes in /dev, which
requires mounting devfs (see Chapter 13) in the jail. Enable devfs with the
mount.devfs setting. A jail defaults to getting only a few very specific device
nodes. An untrusted user can sometimes use device nodes to escape a jail,
so don’t add additional devices without careful research. You can allow other
device nodes with a custom devfs ruleset. Assign a custom devfs ruleset to the
jail with the devfs_ruleset jail.conf parameter. I strongly recommend using the
default jail devfs rules as a base and unhiding the additional devices this jail
needs, rather than trying to build a custom devfs ruleset from scratch.

A jailed process can inherit parts of its environment from the parent
process. The exec.clean option tells jail(8) to strip away all of the environ-
ment except for $TERM. The environment variables $HOME, $USER, and
$SHELL get set to the target environment, normally that of the jail’s root
account. You’ll almost always want exec.clean.

The exec.start and exec.stop options tell FreeBSD how to start and stop
the jail.

Jails 571

In-Jail Startup

Jails can emulate a full-running FreeBSD userland, run a single process, or
anything in between. You must either use the exec.start jail.conf parameter
to tell FreeBSD what process to run in the jail or the persist parameter to
declare you want the jail to exist even without any processes in it. Here, I
start a full FreeBSD userland, using the normal FreeBSD startup script:

exec.start="/bin/sh /etc/rc"

If you need only a single command to run inside the jail, you can write
your own startup script and use exec.start to run it when the jail boots.
Your brand-new jail won’t have an rc.conf yet, so it won’t start any additional
processes.

Instead of exec.start, you could set the persist option. This tells FreeBSD
that a jail can exist without any processes running inside it. Including both
persist and exec.start means that FreeBSD will start a process for the jail,
but when the process stops running, the jail won’t shut itself down.

You can tell the jail to run an additional command after it starts with
the exec.poststart option. Any command or script listed with exec.poststart
gets run in the host once the normal /etc/rc startup process (including any
enabled packages) finishes. This lets you write scripts to glue jails together.

Similarly, you can use the exec.prestop option to run a command on
the host before stopping the jail. When the sysadmin turns the jail off, the
host first runs this command, and then the jail runs the normal shutdown
command.

The exec.stop command tells FreeBSD what command to run inside the
jail to shut the jail down. If you’re simulating a full jail, you’ll probably
run /bin/sh /etc/rc.shutdown as in our example in the previous section.

Jail Defaults

You’ll find that many of your jails share common settings. You can define
those settings in the front of the configuration. All jails will use those set-
tings unless you override them. This doesn’t seem to make much sense
when using a single jail.

exec.start="/bin/sh /etc/rc";
exec.stop="/bin/sh /etc/rc.shutdown";
exec.clean;
mount.devfs;

mariadb {
 host.hostname="mariadb.mwl.io";
 ip4.addr="203.0.113.221";
 path="/jail/mariadb";
}

Given this configuration, though, adding another jail becomes five
lines including the braces.

572 Chapter 22

httpd {
 host.hostname="httpd.mwl.io";
 ip4.addr="203.0.113.222";
 path="/jail/httpd";
}

Over dozens of jails, it saves a lot of trouble.
You can override the defaults within a jail’s definition. If I don’t want to

mount devfs(5) in a jail, I would set mount.nodevfs for that specific jail.

jail.conf Variables

You can use variable substitutions in jails. While you can define some of
these variables, you can also pull some from the jail’s settings. Variables
are expanded in double quotes and in unquoted strings, but not in single-
quoted strings.

Here, I define a variable for the directory that contains all of my jails
and use that inside my jail definition:

$j="/jail";
mariadb {
 path="$j/mariadb";
--snip--
}

If I must move my jails to a new filesystem or pool, I can update jail.conf
by changing the one variable rather than editing every definition.

Parameters as Variables

Once you define a jail parameter, you can use it as a variable. Every jail
has at least one parameter, name. You can use these parameters to further
expand default settings.

$j="/jail";
path="$j/$name";
host.hostname="$name.mwl.io";

mariadb {
 ip4.addr="203.0.113.221";
}

By setting the global default path to $j/$name, I’ve removed the need to
define path for each individual jail.

You can use multiterm parameters with a period in them by enclosing
the parameter in braces. While this doesn’t make sense for parameters like
mount.devfs, it’s useful for per-jail parameters, like host.hostname.

path = "/jail/${host.hostname}";

Jails 573

I prefer to put my jails in directories named after the shorter name,
rather than the hostname, but feel free to indulge your own biases.

Combining parameters and variables with a coherent directory layout lets
you squeeze each jail definition down into a single configuration statement.

Testing and Configuring a Jail
Once you have files for a jail, lock yourself in. Run the jail(8) command to
run a single command inside the jail. You’ll need four arguments: the path,
the jail name, the primary IP, and the command to run.

jail <path to jail> <jail name> <jail IP> <command>

Here, I use the jail in /jail/mariadb, named mariadb, with the IP address
203.0.113.51, to run the command /bin/sh:

jail /jail/mariadb/ mariadb 203.0.113.51 /bin/sh

Run ls(1). You’re in the root directory of your jail filesystem. This jail
isn’t quite in single-user mode, but no programs other than /bin/sh are run-
ning here. You can do some basic setup, but not even devfs(5) is mounted.

ps
ps: /dev/null: No such file or directory

Yes, the normal jail startup process would mount /dev—but the jail has
no user accounts, no root password, no daemons running, and absolutely
nothing optional. Configure the jail before starting it.

Stuff to Steal from the Host

Some host setup information is also useful within the jail. You can copy this
information from the host to the jail, but you must do this from the host,
not the jail.

Each jail performs its own DNS resolution. You can probably copy the
host’s /etc/resolv.conf into the jail.

Your jail probably shares the same time zone as the host. Copy the
host’s /etc/localtime into the jail or run tzsetup(8) inside the jail to select a
new time zone.

Create /etc/fstab

Many programs and scripts, including /etc/rc, expect to find /etc/fstab and
have a tantrum if it’s not there. Requiring /etc/fstab is perfectly sensible in a
real server, but a jailed machine has no need for a filesystem table. Create
an empty filesystem table.

touch /etc/fstab

574 Chapter 22

I don’t mind unhappy programs. I just don’t want to listen to them whinge.

Create /etc/rc.conf

Either you’ll do all jail management from the host, or you’ll manage jails via
SSH. You’ll need an /etc/rc.conf entry for sshd.

sshd_enable="YES"

Add any other settings you want while creating this file. If you know
some of the settings packages will need, it won’t hurt to set them before
they’re needed.

User Accounts and Root Password

You can add user accounts and change passwords only from within the jail.
Set a root password with passwd(1) and run adduser(8) to add at least one
user, for SSH. While SSH is not the only way to access the host, it’s far easier
in most cases.

Jail Startup and Shutdown
The host considers each jail an independent service, much like sshd(8), a
web server, or any other daemon. Yes, each jail might run a whole bunch of
services that need managing independently, but from the host’s perspective,
each jail is a single entity containing a group of processes. That’s part of the
separation between the host and the jail.

Use service(8) to start, stop, and restart jails. You’ll need to provide one
additional argument, the name of the jail. FreeBSD automatically starts
them at boot, but you can stop, start, and restart them individually once the
system is running. Let’s shut down my database jail and fire it up again.

service jail stop mariadb
service jail start mariadb

I could use the restart command, but that wouldn’t look nearly so
impressive here on the page.

If you omit the jail name, the service(8) command affects all jails that
FreeBSD starts at boot.

service jail restart
Stopping jails: httpd mariadb.
Starting jails: mariadb httpd

This lets you coherently reinitialize your production jail infrastructure.
FreeBSD defaults to starting all jails listed in /etc/jail.conf. As discussed in

“Jails at Boot” on page 568, you can change that in /etc/rc.conf. The service(8)
command can control jails that aren’t autostarted, but you must specify them
by name.

Jails 575

Jail Dependencies
If you have a whole bunch of jails, listing the start order in /etc/rc.conf can
get tedious. You’ll most often need to set a start order to maintain service
dependencies. Rather than defining the order in rc.conf, though, you can
tell a jail that it requires another jail with the depend option.

httpd {
 ip4.addr="203.0.113.232";
 depend=mariadb;
}

The jail httpd won’t start until the jail mariadb is running. A depend
statement overrides a rc.conf jail_list entry.

Managing Jails
Virtualization doesn’t make system administration tasks evaporate; it only
adds options for performing typical sysadmin tasks. Here’s some of those
options.

Viewing Jails and Jail IDs
Use jls(8) to see all jails currently running on the system.

jls
 JID IP Address Hostname Path
 29 203.0.113.221 mariadb.mwl.io /jail/mariadb
 30 203.0.113.222 httpd.mwl.io /jail/httpd
 31 203.0.113.223 test.mwl.io /jail/test

Each jail has a unique jail ID, or JID. The JID is much like a process
ID; while each jail has one, the exact JID issued to a jail changes each time
the jail is started. We’ll use the jail ID or name to execute various jail-
management tasks.

We also get each jail’s IP address, hostname, and the path to the jail’s
files. You don’t get the jail name, but those of us who use a hostname based
on the jail name have no trouble figuring it out.

Jailed Processes
Jailed processes all get a process ID, like any other Unix process. Process
IDs are not unique to jails; they’re shared between the host, the jail, and all
the other jails. You won’t find repeated process IDs.

Jailed processes show up in ps(1) with the -J flag.

ps -ax
 PID TT STAT TIME COMMAND
 0 - DLs 2:56.24 [kernel]
 1 - ILs 0:00.07 /sbin/init –

576 Chapter 22

--snip--
35002 - SsJ 0:00.01 /usr/sbin/syslogd -s
35129 - IsJ 0:00.00 /usr/sbin/sshd
--snip--

Process IDs 35002 and 35129 are jailed.
View a particular jail’s processes with ps(1) using the -J flag and the

jail name.

ps -ax -J test
 PID TT STAT TIME COMMAND
35561 - IsJ 0:00.01 /usr/sbin/syslogd -s
35652 - IsJ 0:00.00 /usr/sbin/sshd
35661 - SsJ 0:00.03 sendmail: accepting connections (sendmail)
--snip--

Using -J 0 excludes all jailed processes from ps(1) output, letting you
more easily debug the host.

Commands like pgrep(1), pkill(1), and killall(1) all accept a -j argu-
ment to let you specify a jail. If you prefer using pgrep(1) to view process
information, use pgrep -lfj and the jail name or JID.

pgrep -lf -j mariadb
 PID TT STAT TIME COMMAND
35002 - SsJ 0:00.01 /usr/sbin/syslogd -s
35129 - IsJ 0:00.00 /usr/sbin/sshd
35158 - SsJ 0:00.02 sendmail: accepting connections (sendmail)
--snip--

Why is Sendmail running inside this jail? Let’s kill it.

pkill -9 -j mariadb sendmail

Running pgrep again shows that Sendmail is dead.
This works well if you want to get information about which processes

are running in a jail, but sometimes you have a process ID and must identify
which jail it belongs to. That’s where you need the -O option to ps(1). This
option supports a bunch of keywords that adjust the output of ps(1) in ways
not supported by the regular command line flags—specifically, -O jail adds
a column for the name of the jail the process is running in.

ps -ax -O jail | grep 39415
39415 mariadb - IsJ 0:00.00 /usr/local/libexec/mysqld

This process is running inside the jail mariadb.

Running Commands in Jails
The jexec(8) command lets the jail host administrator execute commands
within a jail without going to the trouble of logging into the jail. This helps

Jails 577

preserve the jail owner’s sense of privacy.2 When jail owner Bert calls to beg
for help, I don’t need his root password or even an account on his system.
Using jexec requires knowing the jail’s name or JID. Here, I use the host’s
root account to run ps -ax inside my jail mariadb.

jexec mariadb ps -ax
 PID TT STAT TIME COMMAND
35002 - SsJ 0:00.00 /usr/sbin/syslogd -s
35129 - IsJ 0:00.00 /usr/sbin/sshd
--snip--

This command runs as root inside the jail. I might want to run the com-
mand as another jailed user, though. Give that username with the -U flag.

jexec -U xistence mariadb ps
jexec: xistence: no such user

Well, that’s not good. I’m expecting Bert to run my database. Let’s
make him a user account.

jexec mariadb adduser
Username: xistence
Full name: Bert JW Regeer
Uid (Leave empty for default):
Login group [bert]:
Login group is bert. Invite bert into other groups? []: wheel
--snip--

This jail now has an account for Bert, using his preferred username and
everything. I’ve added it to the wheel group within the jail. Remember, root
access within a jail doesn’t equal root access on the host. That’s the whole
point of jails.

I can now run commands as that user in that jail.

jexec -U xistence mariadb sh
$

I’m locked up in jail! Specifically, in Bert’s jail cell.
This jailed process will behave a little oddly, though. A process retains

its environment. In this case, while I’m running as the user xistence, I
retain all the environment settings I had in my nonjailed process. This
includes stuff like $SSH_AUTH_SOCK, my IRC server setting, and more.
I don’t want this stuff in my jailed environment. If I’m logged in as Bert, I
want to be Bert.

To strip your environment before entering a jail, use jexec’s -l flag. This
simulates a clean login.

jexec -lU xistence mariadb sh

2. Note that I used “sense of privacy” and not actual “privacy.”

578 Chapter 22

Should you always strip your environment before running a command
in a jail? No, not always. It depends entirely on what you’re doing.

Many commands include support for running them on the host but
targeting a jail. Always check the man page for such an option. One
good example is sysrc(8), which lets you specify a jail with -j. Here, I
enable MariaDB on the jail mariadb. MariaDB has chosen to continue
to use MySQL naming conventions, so it’s enabled with the rc.conf option
mysql_enable.

sysrc -j mariadb mysql_enable=YES
mysql_enable: -> YES

This jail is now ready to run MariaDB.
Except for the bit where MariaDB isn’t installed, of course. Let’s take

care of that next.

Installing Jail Packages
FreeBSD’s package tools let you manage software either from within the jail
or from the host. If the host administrator has allocated you a jail to config-
ure, you probably want to manage packages from the jail. Jail packages work
exactly as packages on any other FreeBSD host, as discussed in Chapter 15.
If you’re responsible for the whole system, including the host and all the jails
on that host, you probably want to manage each jail’s packages from the host
rather than logging into each jail. Let’s spend some time on that.

The pkg(8) command’s -j flag lets you specify a jail to manage. You’ll
need one argument, the jail’s name or JID. The -j flag must be given before
the pkg(8) subcommand. Here, I install the MariaDB server on its dedi-
cated jail:

pkg -j mariadb install mariadb101-server
Updating FreeBSD repository catalogue...
FreeBSD repository is up to date.
All repositories are up to date.
The following 9 package(s) will be affected (of 0 checked):
--snip--

Note that pkg(8) offers no notice that it’s installing packages within a
jail. It assumes that if you’re using -j, you know you’re working in a jail.

When you manage a jail’s packages from the host, the package tools
don’t get installed on the jail. The jail has its own package database, stored
within the jail, but the jail has no way to use that database directly.

Don’t switch between managing packages on the host and from within
the jail. Choose one method and stick with it.

Updating Jails
So you have umpteen bajillion jails on your host, each dedicated to per-
forming its own task in perfect isolation. That’s grand, until you have to

Jails 579

apply security patches to all of the hosts. If you’ve built your FreeBSD from
source, you’ll need to install a new world in each jail. If you’re running
releases, though, freebsd-update(8) (see Chapter 18) can handle jails.

You can’t use freebsd-update(8) inside a jail. The same things that iso-
late a jail from compromising the host system disallow some of the function-
ality freebsd-update(8) needs. Instead, you update the jail from the host.

Any time you need to update your system, update your host before
updating your jails. The host must be running a version of FreeBSD equal
to or newer than any jail.

Start by copying /etc/freebsd-update.conf to an alternate file, such as
/etc/jail-freebsd-update.conf. Remove all components that aren’t installed on
the jail. Jails don’t have kernels, and most of them don’t have source code,
so you’ll probably wind up with an entry like this:

Components world

When you run freebsd-update(8), it checks the version of FreeBSD you’re
running on. It does this by querying the kernel. If you have FreeBSD 12.0 jails
on a FreeBSD 13.0 system, the update program gets confused, chokes, and dies
with mysterious errors. You need freebsd-update to use the release installed
in the jail, not the version the host is running. Use the --currently-running
option to tell freebsd-update(8) what version the jail is running. You must
use the jail’s release, including the patch level. While you could easily enough
extract that information from the jail, I encourage you to let freebsd-update
ask the jail what version it’s currently running. Do this by using jexec(8) to
query the version of FreeBSD running in the jail.

You’ll also use the -b flag to tell freebsd-update(8) the directory the jail
lives in.

Here, I update the jail called test. The jail’s files are in /jail/test. I use a
jexec(8) command in backticks to check the current FreeBSD version.

freebsd-update -f /etc/jail-freebsd-update.conf -b /jail/test/ --currently-
running `jexec -l test freebsd-version` fetch install

Once freebsd-update finishes running, restart your jail. It’s upgraded.
Many people have written scripts to run through /etc/jail.conf and

upgrade all of their jails. If you have more than a couple jails, you find or
write such a script.

More Jail Options
You can customize jails in all sorts of ways. The jail(8) man page includes
the current list of jail options, but here’s a few features I commonly use.

Rather than letting jail(8) assign jail IDs, you can assign each jail a per-
manent ID with the jid option.

jid=101;

580 Chapter 22

The securelevel option lets you raise the securelevel (see Chapter 9)
within a jail. The jail’s securelevel can never be lower than that of the host.

You can view a jail’s startup messages by manually running a /etc/rc with
a jail command. That’s inconvenient for routine troubleshooting, though.
Direct the jail’s console messages to a file with the exec.consolelog option.

exec.consolelog="$j/logs/$name.log";

In addition to mounting /dev, a jail can have its own fdescfs(5) and
procfs(5) with the mount.fdescfs and mount.procfs options.

Jailing Ancient FreeBSD
In my experience, the phrase enterprise network is synonymous with “we have
lots of ancient stuff that nobody dares touch.” Jails can help you cope with
some of these systems. In 2014, I worked at a company that ran a critical
custom-built PHP and MySQL application on FreeBSD 4.10. I don’t know
when this server was installed, but FreeBSD 4.11 came out in January 2005,
so: before then. This application used ancient versions of Perl, PHP,
OpenSSL, and more.

Worse, this application lived on a repurposed desktop machine. With
a standard-issue, high-quality desktop hard drive. I hid a spare desktop
machine of the same vintage under my desk, just so I had a hope of getting
FreeBSD 4.10 onto it. The most proper solution was to rewrite or replace this
application. Several sysadmins had faced that task—and failed. I decided to
virtualize it. FreeBSD 4.10 doesn’t run well on VMWare—yes, you can find
de(4) and fxp(4) drivers, but they’re for versions of those cards over a decade
old. Here’s how I got this ancient FreeBSD system into a jail.

Drop to single-user mode. Unmount /proc—yes, FreeBSD 4 still used
/proc. Those were the days. Tar up the entire filesystem, including tempo-
rary directories, like /usr/obj, /usr/ports, /var/tmp, and suchforth. By modern
standards, they won’t use much space at all, and you have no way to know
what files you might need later. You can probably find an old PHP 5.0.what-
ever tarball out on the internet, but that would involve work.

Copy the tar file to your jail host and extract it in your jail directory.

tar -C /jail/oldserver -xvpf oldserver.tgz

Be sure to use the -p flag to preserve permissions.
Now look at /etc/rc.conf. The jail host will handle all networking func-

tions, so turn off any statements that set IP addresses or set routes. Get rid
of daemons that provide services the jail host offers, such as time, packet
filters, and SSH. Your jailed host needs only the functions that directly sup-
port the application. In this case, I needed Apache and MySQL.

Consider the jail’s /etc/fstab. Do you need a NFS filesystem or some other
special mount? Remove everything you don’t need. If this application needs
/proc, provide it with the jail option mount.procfs.

Jails 581

Remove the old /dev. You can’t use FreeBSD 4 device nodes on a modern
FreeBSD.

Configure the host to protect the jail. While people can write perfectly
fine applications in Apache and PHP, not even the most ardent Apache and
MySQL fan would encourage you to expose 15-year-old versions of these
servers to the internet. Use the host’s packet filter to protect the jail. Don’t
even consider using the migrated host’s OpenSSH server.

You won’t be able to use some FreeBSD 4 commands inside the jail, as
the interfaces have diverged too far. A FreeBSD 4 ps(1) can’t successfully
query a modern FreeBSD kernel. You can copy statically linked versions of
most of those programs from the host’s /rescue and copy them into the jail,
however.

Is it this simple? No, not really. The older the source system is, the more
problems you’ll have. Most of the problems I had in this particular migra-
tion meant changing a configuration file to account for the new underlying
filesystem. You’ll need to perform your usual sysadmin debugging. But it’s
one way to get a modern network interface on a system lacking a device
driver for it, and it’s the only way to get ZFS on a FreeBSD 4 system.

Last Jail Notes
People have evolved many ways of using jails. Fully covering all of these
features would pretty much require a book of its own, but here are some
pointers.

You can use ZFS features to delegate a dataset entirely to the jail admin-
istrator so that jail owners can take their own snapshots and create their
own child datasets. With the VIMAGE kernel option, you can give a jail
its own routing table. If you’re brave, nullfs(5) lets you recycle an operat-
ing system install and minimize disk utilization. You can establish per-jail
resource limits with the RCTL kernel option.

If you have many jails, you might prefer using a jail management pro-
gram, such as iocage or ezjail. Both are available in the Ports Collection.

Successfully using jails requires automating your maintenance. Each jail
requires separate security patches, both for the userland and for installed
packages. The more you can automate this process, the more likely it is that
you’ll actually perform such maintenance. I recommend using Ansible’s jail
modules or at least writing your own shell script to apply patches.

The jail(8) command will let you modify, create, and destroy jails with-
out a command line. If you’re doing extensive jail work, definitely read the
man page.

Now let’s look at some of FreeBSD’s less well-known corners.

23
T h e F r i n g e o F F r e e B S D

If you hang around the FreeBSD commu-
nity for any length of time, you’ll hear men-

tion of all sorts of things that can be done if
you know how. People build embedded FreeBSD

devices and ship them to customers all over the world,
who don’t even know that they have a Unix-like server
inside the little box running their air conditioner or radio relay station.
People run FreeBSD on machines without hard drives, supporting hun-
dreds or thousands of diskless workstations from a single server. You’ll find
bootable CDs and USB devices that contain complete FreeBSD systems,
including all the installed software you could ever want. These things aren’t
difficult to do, once you know the tricks.

In this chapter, we’re headed into the fringes of FreeBSD—the really
cool things that are done by FreeBSD users but aren’t necessarily supported
by the mainstream FreeBSD Project. While you can find support and assis-
tance through the usual channels, you must be prepared to debug and
troubleshoot everything in this chapter even more than usual.

584 Chapter 23

Terminals
A terminal is the device that people can log in on. The keyboard, video,
and mouse make up a terminal that’s also called a console. When you SSH
into your host, it provides a virtual terminal. Terminal configuration is over-
whelmingly automatic, but you might need to tweak it.

The file /etc/ttys controls how and where users may log into your
FreeBSD system. Do console logins work? How about virtual terminals?
What about logging in over serial lines? FreeBSD systems offer four stan-
dard terminals: the console, virtual terminals, dial-up terminals, and
pseudoterminals.

The console is the only device available in single-user mode. On most
FreeBSD systems, this is either a video console that includes the monitor
and keyboard or a serial console accessed from another system. Once the
system hits multiuser mode, the console is usually attached to a virtual ter-
minal instead. The console device is /dev/console.

A virtual terminal is attached to the physical monitor and keyboard. You
can have multiple terminals on your one physical terminal. Switch between
them with aLt and the function keys. The next time you’re at the keyboard,
hit aLt-F2. You’ll see a fresh login screen, with ttyv1 after the hostname.
This is the second virtual terminal. Hitting aLt-F1 takes you back to the
main virtual terminal. By default, FreeBSD has eight virtual terminals and
reserves a ninth for X Windows. You can use the eight virtual text terminals
even when you’re in X, and some X desktops provide multiple X virtual ter-
minals. The virtual terminals are the /dev/ttyv devices.

A dial-up terminal is connected via serial line. You can attach modems
directly to your serial ports and let users dial into your server. This isn’t so
common these days, but the same functionality supports logging in over a
serial console. Dial-up terminals are the /dev/ttyu devices.

Finally, a pseudoterminal is implemented entirely in software. When you
SSH into your server, you don’t need any actual hardware, but the software
still needs a device node for your session. Pseudoterminals are the device
nodes in /dev/pts/. You don’t configure pseudoterminals; they’re automati-
cally negotiated when you log in.

Configure access to the console, virtual terminals, and dial-up termi-
nals in /etc/ttys. You can enable serial access, require or disable passwords,
and more.

/etc/ttys Format
A typical entry in /etc/ttys looks like this:

ttyv0 "/usr/libexec/getty Pc" xterm on secure

The first field is the terminal’s device node. In this case, ttyv0 is the first
virtual terminal on the system.

The second field is the program that’s spawned to process login requests
on this terminal. FreeBSD uses getty(8), but if you have a preferred terminal

The Fringe of FreeBSD 585

management program, you can use it instead. You’ll find several in pack-
ages. This field takes one argument, the terminal configuration. The file
/etc/gettytab contains all the terminal configurations.

The third entry is the terminal type. The file /etc/termcap describes all
the innumerable terminal types FreeBSD supports. For really small systems,
FreeBSD provides /etc/termcap.small with only the most vital entries. Almost
everything modern works with either xterm or vt100.

The fourth entry determines whether the terminal is available for
logins or not. This could be on for accepting logins or off for not allowing
them. The onifconsole setting permits logins on a serial port if the kernel
configured the port as a console.

Last, we have the options. This example has the option secure set, which
tells getty(8) that root may log into this console.

Offering terminals is a low-level system task handled directly by init(8).
Changes to /etc/ttys don’t take effect until you tell init(8) to reread its con-
figuration file. Init is always PID 1.

kill -1 1

Insecure Console
When you boot FreeBSD in single-user mode, you get a root command
prompt. This is fine for your laptop and works nicely for servers in your cor-
porate data center, but what about machines in untrusted facilities? If you
have a server in a colocation center, for example, you probably don’t want
just anyone to be able to get root-level access to a machine. You can tell
FreeBSD that the physical console is insecure and make it require the root
password to enter single-user mode. The system will then boot from power-
on to multiuser mode without requiring a password, but it’ll require the
password when you explicitly boot in single-user mode.

Requiring a password in single-user mode doesn’t completely protect
your data, but it does raise the bar considerably. A lone tech working late,
when nobody’s looking, could boot your system into single-user mode and
add an account for himself in only 15 minutes or so. Dismantling your
machine, removing the hard drives, mounting them into another machine,
making changes, and bringing your server back online requires much more
time, is far more intrusive, and is much more likely to be noticed by coloca-
tion management.

Find the console entry in /etc/ttys:

console none unknown off secure

You’ll see that the console terminal isn’t as full-featured as other termi-
nals; it doesn’t run getty(8) and uses the generic unknown terminal type. The
console is intended for use only in single-user mode and when attached to a
physical terminal, however, so that’s fine.

To make the console require a root login when booted into single-user
mode, change secure to insecure.

586 Chapter 23

console none unknown off insecure

Password-protecting the console dissuades casual mischief. It won’t
even slow a knowledgeable intruder with physical access to the machine.

Managing Cloudy FreeBSD
Clusters of hundreds or thousands of servers are growing increasingly
common. Automation systems like Ansible and Puppet somehow let us
maintain these systems in a semblance of order. Unix wasn’t designed to
be operated that way, however. Primordial UNIX was written to be admin-
istered by a highly skilled operator who had no problem handling the
vagaries of countless different command output formats and even more
configuration file styles.

FreeBSD is attacking the problems of cloud-scale management with
libXo and universal configuration language (UCL).

LibXo
While automated monitoring is a necessity and can alert you to issues, when
it comes to in-depth troubleshooting, nothing replaces logging into a host,
running a command, and interpreting the result. I’ve lost track of how
many scripts I’ve written to parse the output of some obscure combination
of ps(1) flags so that I could feed a number to the monitoring software.
I’ve also lost track of how many hours I’ve spent debugging those scripts or
explaining why the script I wrote to process one netstat(1) flag is irrelevant
to the flags we’re interested in right now.1 Multiply this by those hundreds
or thousands of servers, and getting information out of software quickly
becomes a serious problem.

FreeBSD has cut down this problem space with libXo.
LibXo is a library that helps commands provide output not only in text

form but also in XML, JSON, and even HTML. Instead of using grep(1)
and awk(1) and whatever appalling combination of shell or Perl or Python
you’ve brewed up to find desired information, you can have a parser extract
data from a tagged format. You can dump command output straight to a
web page.

Not all programs support libXo, but support is continually added to
more programs. The man page declares whether a program supports libXo,
but if you’re too lazy to read it, you can try the command with the --libxo
flag. All commands that support libXo use that command line option. You
must also specify the output format, either text, XML, JSON, or HTML.
Here, I run arp -an and identify JSON as the output format.

$ arp -an --libxo json
{"__version": "1", "arp": {"arp-cache": [{"hostname":"?","ip-address":"

1. “My own code” is #8 on my list of Reasons I Shriek Obscenities in the Office.

The Fringe of FreeBSD 587

203.0.113.221","mac-address":"08:00:27:31:91:0d","interface":"em0",
"permanent":true,"type":"ethernet"}
--snip--

How do you use this? Many of us won’t. But if you’re running dozens or
hundreds of servers, you probably have the expertise in-house to painlessly
parse this. Hundreds of tools can select tagged data, and your application
developer probably has their preferred software already installed on your
hosts. And while the output of arp(8) is fairly consistent, libXo also handles
any arbitrary combination of flags to netstat(1), vmstat(8), and more. Learn
to grab tagged data from the output once, and you’re done writing those
horrible scripts forever.

Universal Configuration Language
Unix systems have a pretty standard configuration file format. Hash marks
are comments. There are variables. Maybe the presence of the variable in
a config file is enough to activate a feature, or perhaps you have to set the
variable to a value. They’re all a little bit different, though. Some programs
can pull in configuration snippets from a primary file and the files in a
directory, like cron(8) does with /etc/crontab and /etc/cron.d/. Others can’t.
Some use braces to set aside chunks of configuration, where others use .
. . whatever the programmer thought was a good idea 30 years ago. The
result is that nobody looks at syslog.conf and thinks it looks like pkg.conf, even
though they share common underlying concepts.

The universal configuration language (UCL) aims to change that. If all of
these programs have a similar syntax, why not use a single parsing library
for each? And if you have a parsing library, why not let it parse multiple for-
mats? UCL lets you provide configuration files in classic Unix style, JSON,
or YAML, ideal for automated management. It can extract configuration
settings in shell code, UCL, JSON, or YAML.

At the time I write this, FreeBSD uses UCL for pkg(8). Support for
other utilities, such as bhyve(8), is slowly happening. If you’re managing
large numbers of servers, check to see the status of UCL in your release.

Diskless FreeBSD
While FreeBSD isn’t difficult to manage, dozens or hundreds of nearly
identical systems can become quite a burden. One way to reduce your main-
tenance overhead is to use diskless systems. Diskless systems aren’t forbidden
to have hard drives; rather, they load their kernel and operating system
from an NFS server elsewhere on the network.

Why use a diskless system for your server farm? Multiple systems can
boot off of a single NFS server, centralizing all patch and package manage-
ment. This is excellent for collections of terminals, computation clusters,
and other environments where you have large numbers of identical systems.
Rolling out an operating system update becomes a simple matter of replac-
ing files on the NFS server. Similarly, when you discover that an update has

588 Chapter 23

problems, reverting it is as simple as restoring files on the NFS server. In
either case, the only thing you have to do at the client side is reboot. As the
clients have read-only access to the server, untrusted users can’t make any
changes to the operating system. If you have only a couple of systems run-
ning, diskless is probably too much work for you, but any more than that
and diskless is a clear winner.

Before you can run diskless systems, you must have an NFS server, a
DHCP server, a TFTP server, and hardware that supports diskless booting.
Let’s go through each and see how to set it up.

Diskless Clients
Machines that run diskless must have enough smarts to find their boot
loader and operating system over the network. There are two standard ways
of doing this: BOOTP and PXE. BOOTP, the internet Bootstrap Protocol,
is an older standard that fell out of favor long ago. PXE, Intel’s Preboot
Execution Environment, has been supported on almost every new machine
for years now, so we’ll concentrate on that.

Boot your diskless client machine and go into the BIOS setup. Somewhere
in the BIOS, you’ll find an option to set the boot device order. If the
machine supports PXE, one of those options will be the network. Enable
that option and have the machine try it first.

Your diskless client is ready. Now let’s get the server ready.

DHCP Server Setup
While most people think of DHCP as a way to assign IP addresses to clients,
it can provide much more than that. You can configure your DHCP server
to provide the locations of a TFTP server, an NFS server, and other network
resources. Diskless systems make extensive use of DHCP, and you’ll find
that we use DHCP options you’ve never tried before.

OpenBSD’s DHCP server won’t support FreeBSD diskless clients; you
must use ISC’s DHCP server or some other more full-featured version.
Configuring the ISC DHCP server to handle diskless systems is pretty
straightforward once you have the MAC address of your diskless workstation.

T e S T, T e S T, T e S T !

Your first diskless setup will be much like your first firewall setup: error-prone,
trouble some, and infuriating. I strongly suggest that you test each step of the
preparation so that you can find and fix problems more easily. Test instructions
are provided for each required service.

The Fringe of FreeBSD 589

MAC Address

To assign configuration information to a DHCP client, you need the MAC
address of that client’s network card. Some BIOS implementations provide
the MAC addresses of integrated network cards, and some server-grade
hardware has labels with the MAC address printed on them. Those options,
however, are too easy, so we’ll try the hard way.

When a machine tries to boot off the network, it makes a DHCP request
for its configuration information. While you don’t have a diskless configura-
tion yet, any DHCP server logs the MAC address of clients. You can get the
client information from the leases file, /var/db/dhcpd.leases.

--snip--
u lease 198.51.100.10 {

 starts 6 2017/09/16 06:57:23;
 ends 6 2017/09/16 07:07:23;
--snip--

v hardware ethernet 08:00:27:d8:c1:1c;
 uid "\001\010\000'\330\301\034";
 set vendor-class-identifier = "PXEClient:Arch:00000:UNDI:002001";
}
--snip--

This client has a MAC address of 08:00:27:d8:c1:1c v and has been
offered IP address 198.51.100.10 u. Given this information, we can create
a DHCP configuration to assign this host a static IP address and provide its
boot information.

DHCP Configuration: Specific Diskless Hosts

We configured basic DHCP services in Chapter 20. Here’s a sample dhcpd(8)
configuration for a diskless client. This doesn’t go inside a subnet statement
but is a top-level statement on its own, even if it’s on a subnet shared with
nondiskless DHCP clients.

u group diskless {
 v next-server 198.51.100.1;
 w filename "pxeboot";
 x option root-path "198.51.100.1:/diskless/1/";

 y host compute1.mwl.io {
 z hardware ethernet 08:00:27:d8:c1:1c ;
 { fixed-address 198.51.100.101 ;

 }
}

We define a group called diskless u. This definition will allow us to
assign certain parameters to the group and then just add hosts to the
group. Every host in the group gets those same parameters.

The next-server setting v tells the DHCP clients the IP address of a
TFTP server, and the filename option w tells clients the name of the boot

590 Chapter 23

loader file to request from that TFTP server. Remember from Chapter 4
that the boot loader is the software that finds and loads the kernel. Finally,
option root-path x tells the boot loader where to find the root directory for
this machine. All of these options and settings are given to all clients in the
diskless group.

We then assign our diskless client to the diskless group using the host
statement and the hostname of this system y. Our first client is called
compute1. This client is identified by its MAC address z and is assigned a
static IP {. It also receives the standard configuration for this group.

Create additional host entries just like this for every diskless host on
your network.

Restart dhcpd(8) to make this configuration take effect. Now reboot
your diskless client. The DHCP log should show that you’ve offered this
client its static address. However, the DHCP client can’t boot any further
without a boot loader, which means you need a TFTP server.

DHCP Configuration: Diskless Farms

Perhaps you have a large number of identical diskless hosts, such as thin
clients in a terminal room. It’s perfectly sensible not to want to make a static
DHCP entry for each thin client. Let these hosts get their boot information
from the DHCP server, but without specifying a host address. They’ll just
take an address out of the DHCP pool. Many clustering solutions include
client services that register new hosts with whatever “cluster manager”
they’re using, so hardcoded addresses aren’t so important.

You can also specifically identify hosts that are requesting DHCP infor-
mation from PXE and assign those hosts to a specific group of addresses.
A host booting with PXE identifies itself to the DHCP server as a client of
type PXEclient. You can write specific rules to match clients of that type and
configure them appropriately. Look in the DHCP manual for information
on how to match on vendor-class-identifier and dhcp-client-identifier.

tftpd and the Boot Loader
We covered configuring a TFTP server in Chapter 20. The TFTP server
must provide the pxeboot file for your diskless clients. FreeBSD provides
pxeboot in the /boot directory.

cp /boot/pxeboot /tftpboot
chmod +r /tftpboot/pxeboot

Try to download pxeboot via TFTP from your workstation. If that works,
reboot your diskless client and watch it try to boot. The console should
show a message like this:

Building the boot loader arguments
Relocating the loader and the BTX
Starting the BTX loader

The Fringe of FreeBSD 591

You’ve seen this message before, when a regular FreeBSD boots off its
hard drive. Your diskless client will identify the PXE version, print the mem-
ory, and declare that it’s running the bootstrap loader. At that point, it’ll
circle endlessly trying to load the kernel. It can’t load the kernel because we
haven’t yet set up the NFS server.

Diskless Security
Diskless systems run over NFS and have all of NFS’s security issues. Even if
you deploy Kerberos to encrypt NFS traffic, the initial network boot and
mounting of the root filesystem is always unencrypted. Don’t run diskless
nodes on the open internet.

You can somewhat protect your NFS server by assigning a different
user for the NFS root account. Running find /diskless/1 -user 0 -exec chown
nfsroot {} \; changes the owner of all files owned by root to be owned by
the user nfsroot. You can then edit the exports file to map root to the nfsroot
user. You’d need to revert that to run freebsd-update(8), however, and then
restore it after applying patches. But when you’re first learning, don’t get
fancy. Get a basic userland working first.

The NFS Server and the Diskless Client Userland
Many tutorials on diskless operation suggest using the server’s userland and
root partition for diskless clients. That might be easy to do, but it’s not even
vaguely secure. Your diskless server probably has programs on it that you
don’t want the clients to have access to, and it certainly has sensitive security
information that you don’t want to hand out to a whole bunch of worksta-
tions. Providing a separate userland is a much wiser option.

While you can provide a separate userland in many ways, I find that
the simplest is to slightly modify the jail(8) construction process from
Chapter 22. First, make a dataset, UFS filesystem, or directory for our disk-
less clients to use as their root directory, and then install a userland and
kernel in that directory. Extract the base.txz and kernel.txz distribution files
for the version of FreeBSD in that directory.

tar -xpf base.txz -C /diskless/1/
tar -xpf kernel.txz -C /diskless/1/

If you’ve built a FreeBSD you want to run, that works too. Here, we
install a locally built userland in /diskless/1:

cd /usr/src
make installworld DESTDIR=/diskless/1
make installkernel DESTDIR=/diskless/1
make distribution DESTDIR=/diskless/1

Now tell your NFS server about this directory. I intend to install sev-
eral diskless systems on this network, so I offer this directory via NFS to

592 Chapter 23

my entire subnet. The clients don’t need write access to the NFS root, so I
export it read-only. The following /etc/exports line does this:

/diskless/1 -ro -maproot=0 -alldirs -network 198.51.100.0 -mask 255.255.255.0

Restart mountd(8) to make this share available, and try to mount it
from a workstation. Confirm that the directory contains a basic userland
visible from the client and that clients can’t write to the filesystem.

Your diskless host needs a root password. Set it using chroot(8) and
passwd(1).

chroot /diskless/1/ passwd

You’ll need to tell the host that its root filesystem is read-only. Create
/diskless/1/etc/rc.conf and set root_rw_mount to NO. While you’re in that direc-
tory, also create a resolv.conf for your client.

Now reboot your diskless client and see what happens. It should find the
kernel and boot into an unconfigured multiuser mode. Depending on the
server, client, and network speed, this might take a while to complete.

At this point, you could configure your userland to specifically match
your single diskless client. You could make changes in /etc, such as creating
/etc/fstab that reflects your needs, and copy password files into place. That
suffices for one diskless client, but FreeBSD has infrastructure designed
specifically to support dozens or hundreds of hosts off the same filesystem.
Let’s look into how this is done.

Diskless Farm Configuration
One of the benefits of diskless systems is that multiple machines can share
the same filesystem. However, even on machines that are mostly identical,
you’ll probably find that you must make certain configuration files slightly
different. FreeBSD includes a mechanism for offering personalized con-
figuration files on top of a uniform userland by remounting directories on
tmpfs(5) temporary filesystems and copying custom files to these partitions.

FreeBSD’s default diskless setup lets you configure diskless workstations
across multiple networks and subnets—an invaluable feature on large net-
works. If you have only a few diskless systems, however, you might find it
slightly cumbersome at first. Over time, however, you’ll find that you make
more and more use of it. Diskless systems are a convenient solution to many
problems.

A booting FreeBSD system uses the vfs.nfs.diskless_valid to see
whether it’s running diskless. If the sysctl equals 0, it’s running off a hard
drive; otherwise, it’s running diskless. On diskless systems, FreeBSD runs
the /etc/rc.initdiskless script to parse and deploy the hierarchical diskless
configuration.

The Fringe of FreeBSD 593

Configuration Hierarchy
Configure your diskless farm in the diskless host’s /conf. The /conf direc-
tory can have a whole bunch of directories in it. The two critical ones are
/conf/base and /conf/default, but you might also have separate directories
for subnets and/or individual IP addresses. Diskless systems use the con-
tents of these directories to build tmpfs filesystems on top of the mounted
root partition so individual hosts can have unique settings and read-write
filesystems. You can make any directory a tmpfs filesystem and populate it
from this hierarchy, but every host needs a read-write /etc directory, so we’ll
use that as our example.

The /conf/base directory contains base system files that need to be
mounted read-write on the diskless client. Create /conf/base/etc and popu-
late it with a set of /etc files, and the diskless host can use them as the base
of its tmpfs /etc. (It can also recycle the diskless root’s /etc, as we’ll see later.)

The /conf/default directory contains defaults for your environment.
Perhaps every host in your environment needs an /etc/fstab that directs it
to mount a shared data store. You’d create /conf/defaults/etc/fstab, and the
diskless system would copy that to every host on top of the base system from
/conf/base/etc. I’d also distribute your environment’s generic rc.conf in the
default directory.

You can also have per-subnet directories. Name that directory after
the subnet’s broadcast address, the top address in the network. My disk-
less farm runs on the subnet 198.51.100.0/24, with a broadcast address of
198.51.100.255. If I created /conf/198.51.100.255/etc/rc.conf, every host in that
subnet would get that rc.conf. If I had a special /etc/fstab for diskless hosts on
that subnet, I could put it in /conf/198.51.100.255/etc/fstab and it would over-
write the default. I’d also add files in /etc/rc.conf.d/ for special services that
run only on that subnet.

Finally, I could have per-host directories. If I created /conf/198.51.100.101/
etc/rc.conf.d/apache, the host 198.51.100.101—and only that host—would get
that file. If that particular host needed a truly unique /etc/fstab, I could put
it in /conf/198.51.100.101/etc/fstab, and it would overwrite both the default
and the subnet /etc/fstab.2

This hierarchical configuration gets deployed through a process called
diskless remounting.

Diskless Remounting /etc
The diskless system checks the file /conf/base/etc/diskless_remount for a list
of directories it should mount as memory filesystems. Without this file, no
memory filesystems get created, and your diskless host shares a single read-
only userland with all of the other diskless hosts. The diskless_remount file
contains a list of filesystems to be remounted.

/etc

2. Because, sadly, at some time, we all need to override the override’s override.

594 Chapter 23

This tells FreeBSD to build an MFS /etc and copy the diskless root’s
existing /etc onto it, giving us a base to work from.

You don’t necessarily want all of the files in the diskless root’s /etc on
your diskless host’s /etc. It’s a memory filesystem, so why waste memory hold-
ing stuff you don’t need? You also don’t want to imply to junior sysadmins that
the hosts support functions that they don’t. Diskless systems shouldn’t keep
logs locally, so they don’t need newsyslog or /etc/newsyslog.conf. You don’t back
up diskless clients, so /etc/dumpdates is also unnecessary. Browsing /etc will
reveal quite a few files irrelevant to diskless hosts. If you remove too much,
however, your system won’t boot, and the list of necessary files isn’t intuitive.
For example, if you remove /etc/mtree, the machine will hang in single-user
mode because it can’t repopulate the MFS /var partition.

Put the full paths to your unwanted files and directories in the file
/conf/base/etc.remove. For example, the following entries remove the /etc/gss and
/etc/bluetooth directories as well as the syslog and backup files discussed earlier.
You don’t need to copy over /etc/resolv.conf. FreeBSD’s /etc/rc.d/resolv startup
script creates one from the original DHCP response that booted the host.

/etc/gss
/etc/bluetooth
/etc/dumpdates
/etc/resolv.conf
/etc/newsyslog.conf
/etc/syslog.conf

Not so hard, is it?
Now let’s put some things back into our configuration.

Finalizing Setup
Now that you have an installed system, let’s do some fine-tuning. Diskless
clients need third-party packages and assorted configuration files. The
easiest and safest way to finish setting up your client is through using the
chroot(8) program, which locks you into a subdirectory of the filesystem.
By using chroot(8) on the NFS server, you can get read-write access to the
filesystem almost exactly as it will exist on the diskless client.

chroot /diskless/1

Yes, /etc still has hierarchical overrides, but other parts of the system
exist exactly as the diskless client sees them. Any changes you make while
chrooted will be coherent to the client.

Installing Packages
Use pkg(8) to install software on a diskless client. Use the -c flag to specify
the diskless root directory and have pkg(8) chroot into it.

pkg -c /diskless/1/ install pkg

The Fringe of FreeBSD 595

You now have the package tools, database, and repository information
on your diskless client.

pkg -c /diskless/1/ install sudo

Install any software you need this way.

SSH Keys
Perhaps the most annoying thing about diskless clients is the host’s SSH keys.
In normal operation, every host needs unique SSH keys. If you’re running
on a private network, you might decide to have all the diskless clients share
the same SSH key. You might decide to have each host autogenerate new SSH
keys at boot time. As /etc exists on tmpfs, those keys will vanish at shutdown,
but users will quickly grow accustomed to the “host key has changed” mes-
sages. That’s not something you want users to grow accustomed to, though.

Establishing persistent, unique host keys for each diskless client, how-
ever, isn’t hard. Create a /conf directory for each host.

mkdir -p /diskless/1/conf/198.51.100.101/etc/ssh
cd /diskless/1/conf/198.51.100.101/etc/ssh

In this directory, create the SSH keys for each algorithm your version of
SSH uses. While ssh-keygen(1) includes the -A flag to autogenerate missing
keys, it places those keys in /etc/ssh. That won’t work for your diskless userland
or even in a chroot. You’ll need to create those keys the old-fashioned way.

ssh-keygen -N "" -qt algorithm -f ssh_host_algorithm_key

You’ll need to substitute the name of the cryptographic algorithm
twice, in lowercase. For example, here’s how you’d create a DSA SSH key:

ssh-keygen -N "" -qt dsa -f ssh_host_dsa_key

Today, OpenSSH creates keys for RSA, ECDSA, and ED25519. Create
each of those. Key creation is easily scriptable. See /etc/rc.d/sshd for examples.

Diskless clients let you easily run thousands of nearly identical
machines. Now let’s look at protecting just one.

Storage Encryption
FreeBSD supports two different disk encryption methods, GBDE and GELI.
Both tools work very differently, support different cryptographic algo-
rithms, and are designed for different threat models. People talk about
encrypting disks all the time, but you rarely hear discussions of what disk
encryption is supposed to protect the disk from.

GBDE, or Geom-Based Disk Encryption, has specific features for high-
security environments where protecting the user is just as important as

596 Chapter 23

concealing the data. In addition to a cryptographic key provided by the
user, GBDE uses keys stored in particular sectors on the hard drive. If either
key is unavailable, the partition can’t be decrypted. Why is this important?
If a secure data center (say, in an embassy) comes under attack, the opera-
tor might have a moment or two to destroy the keys on the hard drive and
render the data unrecoverable. If the bad guys have a gun to my head and
tell me to “enter the passphrase or else,” I want the disk system to say, The
passphrase is correct, but the keys have been destroyed. I don’t want a generic
error saying, Cannot decrypt disk. In the first situation, I still have value as a
blubbering hostage; in the latter, either I’m dead or the attackers get unpleas-
antly creative.3

GELI is much more flexible, but it won’t protect me from bodily harm
the way GBDE might. If someone might steal my laptop for the confiden-
tial documents on it, or if an untrusted system user might snoop my swap
space to steal secrets, GELI suffices. GELI doesn’t try to protect my person,
just my data. As I won’t take any job that poses a higher than average risk
of exposure to firearms (keeping in mind that I live in Detroit), that’s per-
fectly fine with me. GELI also uses FreeBSD’s cryptographic device driver,
which means that if your server has a hardware cryptographic accelerator,
GELI takes advantage of it transparently.

I should mention that people lose more data to encryption miscon-
figuration or lost keys than to laptop theft. When I hear someone say, “I’ve
encrypted my whole hard drive!” I have a nearly psychic vision of the future
where that same person is saying, “I’ve lost access to everything on my hard
drive!” More often than not, I’m correct. Consider carefully whether you
really, truly need disk encryption. If you do need it, also back your files up.
Those government spooks aren’t going to crack the encryption on your
laptop. They’re going to wait for you to decrypt it yourself—and then they’ll
break in.

If you want to encrypt your laptop, use the FreeBSD installer to do so.
You should still read this section so you understand how the disk encryp-
tion works, but if the installer wants to do the work for you, let it. We’ll
walk through using GELI to encrypt a disk partition on /dev/da0, storing
the cryptographic keys on the USB storage device mounted on /media. You
might find it more sensible to use a filesystem in a file (see Chapter 13) as an
encrypted partition. Very few people actually need to encrypt their entire
hard drive, and in certain circumstances, doing so might raise suspicions. I
have enough trouble explaining to airport security why my computer “looks
so weird.” In their minds, a boot prompt that says, Insert cryptographic key
and enter cryptographic passphrase is only one step away from This man is a
dangerous lunatic who requires a very thorough body cavity search. If you really
do need to encrypt certain documents, chances are they total only a few mega-
bytes. That’s a perfect application for a filesystem in a file or a flash drive.

Note that you must load the geom_eli.ko kernel module before working
with GELI.

3. Just for the record: if you have a sharp stick and the proper attitude, you can have my
passphrases.

The Fringe of FreeBSD 597

Generating and Using a Cryptographic Key
GELI lets you use a key file and/or a passphrase as cryptographic keys for
an encrypted device. We’ll use both. To generate your cryptographic key
file, use dd(1) to grab a suitable amount of data from /dev/random and write
it to a file. Remember, /media is where our USB device is mounted. If you
really want to protect your data, create your key directly on the USB device
and don’t leave it on your filesystem where a hypothetical intruder could
recover it. (Even deleting the file still leaves remnants that a skilled attacker
could conceivably extract.)

dd if=/dev/random of=/media/da0p1.key bs=64 count=1
1+0 records in
1+0 records out
64 bytes transferred in 0.000149 secs (429497 bytes/sec)

The 64 bytes of data constitute a 512-bit key. You can increase the size
of the key if you like, at the cost of extra processor overhead when accessing
the encrypted filesystem. Don’t forget that your passphrase also increases
key complexity.

To assign a passphrase to the key, use geli init. The -s flag tells geli(8)
the desired sector size on the encrypted filesystem; 4,096 bytes, or 4KB, is
usually a decent sector size for this application. The -K indicates the key file.
You must also specify the device to be encrypted.

geli init -s 4096 -K /media/da0p1.key /dev/da0p1
Enter new passphrase:
Reenter new passphrase:

A passphrase is much like a password except that it can contain spaces
and be of any length. If you really want to protect your data, I recommend
using a passphrase that is several words long, contains nonalphanumeric
characters, and is not a phrase in your native language.

Now that you have a key, attach it to the device to be encrypted.

geli attach -k /media/da0p1.key /dev/da0p1
Enter passphrase:

GELI now knows that /dev/da0p1 is an encrypted disk and that the file
/media/da0p1.key contains the key file. Once you enter the passphrase, you
can access the decrypted contents of the encrypted disk at the new device
node, /dev/da0p1.eli. Of course, you need a filesystem to put any data on
that disk.

Filesystems on Encrypted Devices
Before you build a filesystem on your encrypted device, purge the disk of
any lingering data. Programs like newfs(8) and zpool(8) don’t actually
overwrite most of the bits in a new partition; they simply add superblocks
that indicate the location of inodes. If you’ve used this disk before, an

598 Chapter 23

intruder would be able to see chunks of old files on the disk. Worse, he’d
see chunks of encrypted data placed there by GELI. Before you put a file-
system on the disk, it’s best to cover the disk with a deceptive film of ran-
domness to make it much more difficult for an intruder to identify which
blocks contain data and which do not. Use dd(1) again:

dd if=/dev/random of=/dev/da0p1.eli bs=1m

FreeBSD has an infinite supply of chaos—or, in technical terms, /dev/
random is nonblocking. The amount of time needed to cover the whole disk
with high-quality randomness depends on your storage system. It might
take a day.

Now that your disk is full of garbage, put a filesystem on it and attach it
to your system. I’ll often use UFS on such encrypted devices.

newfs /dev/da0p1.eli
mount /dev/da0p1.eli /mnt

Your encrypted disk device is now available on /mnt. Store your confi-
dential files there.

Encrypted disks have many more possibilities. Either read geli(8) or
check out my book FreeBSD Mastery: Storage Essentials (Tilted Windmill
Press, 2014).

This takes you through some of FreeBSD’s murkier corners. Now let’s
see what to do when things go really wrong

24
P r o b l e m r e P o r t s a n d P a n i c s

FreeBSD is produced by human beings.
Human beings make mistakes. Some of

these mistakes are pretty trivial, while others
can crash the whole system. FreeBSD explicitly

has no warranty, but the community takes problems
fairly seriously. Developers can’t fix these problems
without a proper bug report, however—and that’s where you come in.
Learning how to file a usable bug report will help you interact with not
only the FreeBSD Project but also every other entity that produces software.

Bug reports need program output that demonstrates the bug, but what
if the problem crashes the whole system? A system-halting panic is perhaps
the most vexing of problems, but with proper preparations, you can deal
with a panic as routinely as any less intrusive bug. The FreeBSD folks defi-
nitely want debugging output from your panic reports, and you can easily
provide it in your problem report.

But first, useful bug reports.

600 Chapter 24

Bug Reports
A bug report is a detailed description of a problem that causes the system to
behave in an unexpected manner. That’s kind of vague, yes. What’s unex-
pected? What’s a problem? There’s a whole spectrum of valid problem
reports, ranging from “I’d expect a man page for this thing” to “when I
mount an SMB filesystem, the operating system crashes.” Trivial problems
like a missing man page reference might not seem worth your time to
report, but every reference in every man page is there because someone
thought it was worth including. So what’s a bug report, and what isn’t?

A bug report isn’t where you say that you have a problem. A bug report
is where you prove that FreeBSD has a problem. Yes, I said prove. It’s not that
FreeBSD is innocent until proven guilty, but for you to submit a bug report,
you must substantiate your claim. Bugs filed without evidence will be closed
with terse replies, like “not a bug” or “useless report.” The proper venue to cry
for help is a search engine, followed by a mailing list or the FreeBSD forums.

Any variation on “I don’t know what I’m doing” doesn’t belong in a bug
report. This includes “FreeBSD doesn’t work the way I think it should” or
“something bad happens when I do something dumb.” If you start your new
hobby of free climbing with a master-rated sheer cliff face, fall, and break
your fool neck, the hospital kind of has to take you in. If you yank out a
new hard drive halfway through running newfs(8) and complain about file-
system corruption, the FreeBSD folks will dismiss your bug.

Bugs can be about system inconsistencies. Every network interface, API,
and system call has a man page. If you try to call up the man page for a
system call and don’t get a match, that’s a bug. If you’re reading source code
and find a place where the documentation doesn’t match the code, that’s a
bug. If you can make a program (or the whole system) reproducibly crash,
that’s a bug.

You can also file bugs to submit improvements to the FreeBSD Project.
The key word here is improvement, not wish. An improvement needs actual
code attached to the bug, along with how you’ve tested your code and any
related information, such as specifications and standards. If you file enough
of these, you might be invited to become a committer.

Bugs are collaborative. By filing a bug, you’re indicating a willingness
to work with the FreeBSD developers to resolve your issue. This might mean
applying a patch, trying a different approach, or running debugging com-
mands and sending the output to the developers. Filing a bug and expecting
an answer like, “Fixed! Go do this,” is unrealistic. Including everything in
your initial bug report helps resolve the issue much more quickly. Err on
the side of providing too much data.

Repeat after me: “Free software. Donated support time.” A server’s
RAID card making your hard drives spin to a conga beat feels critical to
you, but the people on the other end of the bug are giving up their per-
sonal time to help you. Remember that.

Problem Reports and Panics 601

It’s best if you’re running a recent version of FreeBSD when filing a bug.
If you file a bug on FreeBSD 12.0-RELEASE when 12.4-p15 is the current
version, someone will ask you to update and try again. Nobody will look at
a problem report for a FreeBSD release past End of Life.

Before Filing a Bug
Ideally, you won’t ever have to file a bug. Not only is a proper report for a seri-
ous bug a lot of work for you; it’s a lot of work for the FreeBSD developers.
The FreeBSD Project has an internal mailing list dedicated to assessing the
bug database and guiding reports to their most likely owners. While send-
ing an email to a FreeBSD mailing list announces your woes to thousands of
people, opening a bug announces your woes to thousands of highly skilled
people and demands that they handle virtual paperwork for you. Before filing
a bug, be absolutely certain that both you and the FreeBSD Project need it.

Does the problem happen on all of your hosts or only on one? Problems
restricted to a single host might result from failing hardware. Consistent,
reproducible behavior is much more likely to be a bug.

Treat your issue as a general problem and search the usual FreeBSD
resources. Review the FAQ and the Handbook. Check the FreeBSD bug
database at https://bugs.FreeBSD.org/ for an existing bug. Search the mailing
list archives, the forums, and the wider internet for people who’ve already
had this problem. Ask on the forums or the FreeBSD-questions mailing list
whether anyone else has seen this behavior. Is this expected, or should you
open a bug? The questions people ask will be invaluable in troubleshooting
your problem and in creating your bug report.

Before starting a bug report, gather every scrap of information that
might possibly be helpful. This includes:

•	 Verbose boot output

•	 System version

•	 Custom kernel configuration, if any

•	 Program debugging output

•	 What do you expect to happen?

•	 What actually happens?

Can you reproduce this problem? A developer investigating a bug needs
a reproducible test case. If your server starts singing show tunes at 3 am, that
is a problem. If it happened only once and you can’t reproduce it, you’re
best served by keeping your mouth shut so people don’t think you’re loony.
If it happens whenever you run a particular combination of commands on
certain hardware, though, the matter can be verified and investigated so
that either the problem is resolved or someone offers your server a record-
ing contract.

FreeBSD tracks bugs with Bugzilla at https://bugs.FreeBSD.org/. Before
submitting a bug, search the existing bug database to see whether there’s
something similar or related. Does your problem resemble any existing
bugs? If your server sings Disney tunes, but another bug shows someone’s

602 Chapter 24

identical hardware does Broadway hits, you should probably mention that
bug in your report. Are there any illuminating comments on those bugs?
The comments might tell you how to cope with or work around your issue
without filing another identical bug. If you want updates, add yourself to
the bug’s cc field. You’ll get an email every time the bug is updated.

While you’re searching Bugzilla, create an account there. Even if you
don’t need to file this bug, one day you will . . . and you’ll probably be pretty
annoyed about it. Having your Bugzilla account ready will make that sub-
mission just a little bit easier.

If you get this far and still have a problem, you might actually need to
file a bug report. Let’s see what not to put in it.

Bad Bug Reports
The easiest way to understand a good bug report is to read some bad
ones and identify what makes them bad. Digging through the closed bugs
uncovers bunches of bad reports, but here’s an archetype:

When I boot the FreeBSD 12.1 ISO image, I can’t get past the
“Welcome to FreeBSD” options screen. The boot menu is stuck,
and each time the screen refreshes it stays at 10. It doesn’t matter
what I press, the system never boots. If I press a whole bunch of
buttons, I eventually get a kernel panic. The same ISO image
launches in VirtualBox and I can install it to the disk.

The bug report includes the model number of a dead standard
SuperMicro motherboard, keyboard, and mouse. None of the hardware
is exotic. The reporter suggests reproducing the problem by booting the
ISO with similar hardware.

First off, the reporter obviously has a problem installing FreeBSD. It
might even be that FreeBSD has a problem. I’ve no doubt that this system
fails at boot exactly as advertised. But there’s no evidence and no diagnostic
information. The reproduction process isn’t very useful; if every 12.1 instal-
lation image behaved this way on common hardware, the release engineers
would have never signed off on the release.

Including the hardware make and model isn’t as useful as you might
hope. Vendors occasionally change chipsets without changing the model
number. The verbose boot information identifies the hardware in the
machine in a way that the model number never can. This reporter can’t
get a 12.1 verbose boot, however.

If I experienced this behavior, I’d first try a second CD. Perhaps the
first burned disk was bad. If the behavior persisted, I’d download a slightly
older version of FreeBSD to see whether the problem exists there. If 12.0
fails, how about 11.0? I’d include the verbose boot information from the
earlier version in my bug report. If the older version failed, I’d ask the
FreeBSD-questions mailing list for further advice before filing a bug.

As you might guess, nobody follows up on bugs like this.
Many developers like fixing bugs. They enjoy digging through code

and identifying subtle problems. What they don’t enjoy is sorting through

Problem Reports and Panics 603

people’s erratic bug reports; they expect to be paid for dealing with dif-
ficult people. Your goal is to file a bug so complete and compelling that a
developer that’s looking for a bug to work on will think you’re easy to work
with—and then, you need to actually be easy to work with.

The FreeBSD FAQ includes a joke by Dag-Erling Smørgrav: “How many
-current users does it take to change a light bulb?” The answer is 1,169 and
includes “three to submit (bugs) about it, one of which is misfiled under
doc and consists only of ‘it’s dark.’” If your bug amounts to “it’s dark,” it’s a
bad problem report.1

The Fix
The most important part of any bug report is the fix. How do you remedy
the problem? Perhaps all you have is a workaround. “The program crashes
if I do this, but I can run it and pipe the output through such-and-such and
do well enough.” That comment helps the next person to hit your bug.

When you hit a bug, take a look at the source code. Fixing typos in
man pages or on the website isn’t hard. If you’re a programmer, a couple
minutes of perusing the source might uncover the problem. If it doesn’t,
well, figuring out why the system behaves in this way will make you a better
programmer and debugger.

Maybe you can’t fix this bug. Letting people know the bug exists is still
helpful. But by including a fix, your bug transcends a report and becomes a
contribution to the community.

Filing Bugs
All bugs get filed and handled at https://bugs.FreeBSD.org/. FreeBSD has
three categories of bug: ports, base system, and documentation. Use a
ports bug for anything with add-on software. Use the base system for any-
thing that gets installed with a basic FreeBSD install. Use the documentation

1. Also, do try not to swear. Much.

sPecul at ion v s. e v ide nce

Whenever you submit a bug report to any person or organization, separate
your evidence from what you think is going on. Evidence is actionable; your
speculation is not. Including speculation doesn’t hurt, but it needs to be clearly
separated from the evidence. How many times have you received a support
call from a user who claims he’s having a particular problem, but, once you
dig into the issue, it turns out that everything he told you is bogus and some-
thing totally unrelated is going on? Yeah. Don’t be that user. Keep your specu-
lation separate.

604 Chapter 24

category for problems with man pages, the FAQ, the Handbook, and the
website. Each brings up a slightly different web form. The fields needed for
documentation and ports bugs are mostly subsets of the base system bugs,
though, so we’ll walk through filing a base system bug.

The web form includes several drop-down fields that let you steer your
bug toward the right people. Your bug might get reassigned right after you
file it, but that’s okay; initially, you’re looking for someone who understands
what the heck you’re talking about. You don’t want a doc committer triag-
ing system call issues or a source committer figuring out a port-packaging
problem.

The Component field lets you select a part of the system the bug affects.
The list of components varies over time, but selecting a component brings
up a description. While there’s always a catch-all field, such as Bin for base
system bugs, making a good choice will accelerate handling of your bug.

In the Version field, select the FreeBSD version this bug applies to.
The Severity field is both somewhat misleading and requires a little

detachment from your own emotions. The choices are “Affects Only Me,”
“Affects Some People,” and “Affects Many People.” A bug terrible enough
that you consider gnawing off your own foot to escape might affect only
you. It’s critical to you, but not to the FreeBSD project. Resist the urge to
declare that it affects everyone. Similarly, a typo on the website might be
visible to everyone, but if nobody’s noticed until now, it’s probably not worth
“Affects Many People.” Reserve the more important severity levels for bugs
that negatively impact all users of a particular device driver or anyone who
uses a certain filesystem. If you get a reputation for filing trivial reports as
critical, you’ll quickly find yourself being ignored. The FreeBSD Project
works on the honor system, and reputation counts for more than you might
think.

In the Hardware field, select the platform you found the bug on. Even if
that seems irrelevant, it might be critical.

The OS field is vestigial from Bugzilla. Ignore it.
Below these drop-downs, Bugzilla offers text fields. These need a little

more thought.
The Summary takes a brief description of the problem. A good summary

should provide unique information to make your bug stand out from other
bugs. “Panic when unmounting an SMB filesystem” is decent. “Can’t install,”
“system broken,” and “problem” are terrible. A developer perusing the bug
database will see your summary first. A bad summary will encourage him to
gloss right over it.

The Description area is where you get to describe the problem. Don’t
rant and rave about how awful everything is. Say what happened and what
you expected to happen. Include debugging output, if it’s short enough
to fit reasonably; otherwise, add the debugging output as an attachment.
Include advice on how to replicate the problem. If you have a fix, give it.
Add in anything you’ve discovered about the problem. Sometimes, the most
unusual detail provides the vital clue.

Problem Reports and Panics 605

Add Attachments beneath the description. This is where you can upload
your custom kernel configuration, verbose boot messages, kernel panic
messages, and lengthy diatribes.

Use the Preview button to verify you included everything you thought
you did. Once the bug looks correct, hit Submit.

After Submitting
You’ll shortly receive an email stating that you’re now the proud owner
of bug number such-and-such. Any response you make to that email gets
attached to that bug, so long as you don’t change the subject.

A high percentage of bugs that include the proper information get
closed quickly. Complex or elusive bugs might take longer, but if you pro-
vide enough detail, you’ll see updates.

If it seems that your bug report has been forgotten, drop a note to the
appropriate mailing list with your bug number, a brief explanation of the
issue, and a sentence or two on why it’s important. FreeBSD is a volunteer
effort, and it’s possible that something happened to the person who would
normally handle that bug report. While many FreeBSD developers are pro-
fessional programmers, for many of them, this is still a hobby that must take
a backseat to sick kids or the big work deadline. If nothing else, hire a devel-
oper on a contract basis to address your particular issue.

If you file a notably vexing bug, a FreeBSD developer will probably ask
you for more information. Provide it as quickly and thoroughly as possible.
If you don’t understand what they’re asking for, spend some time research-
ing and then ask. Most developers are happy to provide pointers to a willing
and basically competent partner, especially if you can help them improve
their code.

I’ve lost count of how many FreeBSD bugs I’ve filed. I tend to file either
trivial or serious bugs, such as documentation errors and kernel panics, but
very little in between. Most were solved and/or committed and then closed.
The odd ones were mostly trivial goofs on documentation that lives under
/usr/src/contrib, an area where the FreeBSD Project specifically disavows
responsibility for minor fixes. If a doofus like me can get over 90 percent
of his bugs successfully closed, anyone can. Be warned, however: if you sub-
mit enough correct patches, you’ll find that the committers you work with
will start to talk about you behind your back. Eventually, they’ll grow tired
of acting as the secretary for your high-quality work and offer you commit
access. If you refuse, they’ll offer more insistently. Don’t worry; becoming
a committer isn’t that painful. The rumors that the FreeBSD Project initia-
tion ritual involves a bunch of Danes with axes behind a bike shed are com-
pletely untrue. Mostly.

Keep filing good bug reports anyway; that’s the only way FreeBSD
improves!

The worst sort of bug to deal with is a full-on system crash. Let’s talk
about how to get information from one.

606 Chapter 24

System Panics
A panic is when the operating system completely stops working. All systems,
from the network stack to the disk drive, stop working. A system chooses
to panic, or completely stop working, when the kernel faces an unresolv-
able conflict. If the system achieves a condition that it doesn’t know how
to handle, or if it fails its own internal consistency checks, it throws up its
hands and says, “I don’t know what to do!” A panic is the kernel’s version
of malicious obedience.2 Production versions of FreeBSD are increasingly
difficult to panic, but it can still happen. The easiest way to panic a system
is to do something daft, like yank out a non–hot swappable hard drive while
it’s in use. Panics aren’t uncommon when running -current; they’re not fre-
quent, mind you, but they’re not exotic rarities.

FreeBSD is very complex, and neither its royal blood lineage nor the
open source development process can protect it from all bugs. Fortunately,
that heritage and the development process do give you the tools you need
to provide the information for other people to debug your problem. You
might begin with a cryptic error code, but you’ll quickly learn that your
string of garbage characters means something to someone.

A panicking kernel can copy critical information into a crash dump. The
crash dump contains enough information about the panic that hopefully
a developer can identify and fix the underlying problem. Configure every
system to capture crash dumps before you allow them to enter production.
FreeBSD can capture crash dumps with an install-time setting, but if you
reconfigure your server or have unique disk partitioning, you’ll want to con-
firm that crash dumps still work. This precaution will be wasted on most of
your servers but pays off when something explodes.

Recognizing Panics
When a system panics, it stops running all programs, writing to the disk,
and listening to the network. On any version of FreeBSD except -current,
a panicking system automatically reboots. Not all unexplained reboots are
panics—bad hardware, such as a failing power supply or cruddy memory,
can cause a reboot without any sort of log or console message. If you’re run-
ning -current, though, a panic will cause a console message much like this:

panic: Assertion cp->co_locker == curthread failed at /usr/src/sys/modules/smbfs/../..
/netsmb/smb_conn.c:363
cpuid = 5
KDB: stack backtrace:
db_trace_self_wrapper() at db_trace_self_wrapper+0x2b/frame 0xfffffe085d0db630
vpanic() at vpanic+0x182/frame 0xfffffe085d0db6b0
kassert_panic() at kassert_panic+0x126/frame 0xfffffe085d0db720
smb_co_unlock() at smb_co_unlock+0x9c/frame 0xfffffe085d0db740
smb_co_put() at smb_co_put+0x68/frame 0xfffffe085d0db770

2. I’m increasingly convinced that the word panic was chosen to describe the sysadmin, not
the system.

Problem Reports and Panics 607

nsmb_dev_ioctl() at nsmb_dev_ioctl+0x484/frame 0xfffffe085d0db800
devfs_ioctl_f() at devfs_ioctl_f+0x15d/frame 0xfffffe085d0db860
kern_ioctl() at kern_ioctl+0x230/frame 0xfffffe085d0db8c0
sys_ioctl() at sys_ioctl+0x17e/frame 0xfffffe085d0db9a0
amd64_syscall() at amd64_syscall+0x2de/frame 0xfffffe085d0dbab0
Xfast_syscall() at Xfast_syscall+0xfb/frame 0xfffffe085d0dbab0
--- syscall (54, FreeBSD ELF64, sys_ioctl), rip = 0x800b8016a, rsp = 0x7fffffffe4f8, rbp =
0x7fffffffe530 ---
KDB: enter: panic
db>

The only part of this message that seems even vaguely sensible to me is
the first line. I unmounted an SMB filesystem and got this panic message.
The first line mentions smbfs, netsmb, and smb_conn, which seem pretty SMB-
ish to me.

The db> at the bottom is a debugger command prompt. Hit enteR
a couple of times and you’ll see the debugger respond; you can enter
commands. Debugger instructions aren’t Unix commands, but they help
you extract more information out of the system.

Responding to a Panic
If you get a panic, the first thing to do is get a copy of the panic message.
Since FreeBSD is no longer running, the standard methods for copying
data from your machine won’t work—you can’t SSH in, and script(1) is no
longer viable. The console might even be completely locked up and unre-
sponsive instead of being in the debugger. In any event, you must have that
error message.

Back in the bad old days of the 1990s, FreeBSD didn’t automatically
reboot after a panic; originally, it just sat there displaying the panic message.
The first time I saw a panic, I scrambled for paper and pen. Eventually, I
found an old envelope and a broken stub of pencil that made marks if
you held it at just the right angle and crawled between the server rack and
the rough brick wall. I balanced the six-inch black-and-white monitor in
one hand, and with my other hand, I held the envelope against the wall.
Apparently, I grow a third hand under duress because I recorded the panic
message on the envelope somehow. Finally, scraped and cramped, I slith-
ered back out of the rack and victoriously typed the whole mess into an
email. Surely the FreeBSD Project’s Panic Emergency Response Team would
be able to look at this garbage and tell me exactly what had happened.

I quickly learned that FreeBSD has no elite PERT standing by to take
my problem report. Instead, I got a lonesome email: “Can you send a back-
trace?” When I asked how, I was directed to a man page. (Drag yourself all
the way back to Chapter 1.) Fortunately, the panic was easily reproducible—
the only thing that had to happen to recreate the issue was for a customer
to log in to the system. I spent the rest of the day struggling to master serial
consoles and core dumps.

The problem with the panic message on my envelope was that it
gave only a tiny scrap of the story. It was so vague, in fact, that it was like

608 Chapter 24

describing a stolen car as “red, with a scratch on the fender.” If you don’t
give the car’s make, model, VIN, and license plate number, you can’t expect
the police to make much headway. Similarly, without much more informa-
tion from your crashing kernel, the FreeBSD developers can’t catch the
criminal code.

The good news is, panic handling has vastly improved since those days.
FreeBSD can automatically record crash dumps and capture everything
about a panic. There’s even a toggle in the installer to enable it. I highly rec-
ommend testing the panic capture before putting a machine into produc-
tion, however. This way, if you get a panic, you’re ready and you’ll be able to
easily file a complete problem report.

Preparations
Configuring crash dumps requires telling FreeBSD which swap device to
save the dump on, through the dumpdev /etc/rc.conf variable. If you set dumpdev
to AUTO, the kernel will automatically save the dump to the first swap device.
You can specify a different swap device if needed, but the whole dump must
fit in a single swap device. If your regular swap space doesn’t have enough
space to hold the dump, add a disk to get sufficient swap space and set dumpdev
to that partition.

The Crash Dump in Action
When a system configured to capture panics crashes, it saves a copy of the
kernel memory. The copy is called a dump. The system can’t save the dump
straight to a file. The crashed kernel doesn’t know anything about filesys-
tems, for one thing, and the filesystem might be corrupt or a write could
corrupt it. A crashed kernel understands partitions, however, so it can write
the dump to a partition. Most FreeBSD hosts have readily available scratch
space—the swap partition. FreeBSD defaults to dumping on the first swap
partition on the system, placing the dump as close to the end of the parti-
tion as possible. After the dump, the computer reboots.

After a panic, a host’s filesystems will almost certainly be dirty. Perhaps
they’re ZFS or they use soft updates journaling, but the system still must
recover from the journal or roll back to the last successful ZFS transac-
tion group. Cleaning a filesystem with fsck(8) can use a lot of memory, so
FreeBSD must enable swap before running fsck(8). Hopefully, you have
enough memory for fsck(8) to not require swapping, and if swapping is
necessary, hopefully you have enough swap space to avoid overwriting the
dump file lurking at the end of the swap partition. Worst case, you could
boot into single-user mode, enable swapping to partitions that don’t have
the dump, clean up a filesystem to save the dump to, and then manually
run savecore(8).

Once FreeBSD has a useful filesystem where it can save a core dump, it
checks the swap partition for a dump. If it finds a core dump, FreeBSD runs
savecore(8) to copy the dump out of swap and into a proper filesystem file,

Problem Reports and Panics 609

runs crashinfo(8) to gather information from the dump, clears the dump
from swap space, and continues rebooting. You now have a kernel core file
usable for debugging.

The savecore(8) automatically places kernel dumps in /var/crash. Each
crash is in a file called vmcore with a trailing period and number. The first
panic is vmcore.0, the second vmcore.1, and so on. FreeBSD defaults to keep-
ing the most recent 10 crash dumps. The file vmcore.last always points to the
most recent crash dump.

If your /var partition is not large enough to contain the dump, choose a
different directory with the dumpdir variable in rc.conf :

dumpdir="/usr/crash"

While savecore(8) also supports a few other options, such as compres-
sion, they aren’t usually necessary on modern systems.

FreeBSD defaults to running crashinfo(8) on each recovered crash dump.
The crashinfo(8) program runs a series of debugger scripts to gather infor-
mation from the panic, storing it in a convenient text file, core.txt.0. This
information includes a panic backtrace, process list, and a whole bunch of

virtual memory statistics.

Testing Crash Dumps
You’ve set the savecore rc.conf option, so everything should work. Any time
you hear the phrase “should work,” immediately ask, “How can I verify that
it does work?” Force FreeBSD to panic by setting the sysctl debug.kdb.panic to
any integer above 0. While this is the ugliest way to reboot a machine ever,
it does make the host run through the panic and core-preservation process.
Shut down any active processes that might corrupt data if interrupted, such
as databases, and deliberately trigger a panic.

sysctl debug.kdb.panic=1

se r i a l consol e s a nd Pa nics

While a serial console isn’t strictly necessary for panic debugging, it can
be invaluable when dealing with a stuck machine. While a Java applet that
grants remote access is better than nothing, the ability to capture everything
with script(1) makes serial consoles worthwhile. If you really want to be pre-
pared for a panic, make sure all of your machines have serial consoles or
at least dual consoles. If possible, log the output of your serial consoles; this
way, you’ll get the panic message even if the system isn’t configured for crash
dumps. If your laptop doesn’t have a serial port, take a photograph of the
panic message and attach it to the bug report.

610 Chapter 24

You’ll see the panic message flash on the console, followed by the host’s
progress in dumping core to swap space. If you watch the reboot messages,
you should see a quick mention of saving core files. When you can log into
the machine again, take a look in /var/crash. You’ll find three files: info.0,
vmcore.0, and core.txt.0.

The info.0 text file describes the dump recovery process. It includes the
hostname, the architecture, the panic message, and more. The most impor-
tant detail is the last line, however.

 Dump Status: good

This dump is usable. You can proceed with debugging.
The file vmcore.0 contains the memory dump in binary form. It should

be anywhere from a couple hundred megabytes to gigabytes, depending on
what your host was doing when it panicked.

The file core.txt.0 contains the panic information from vmcore.0. When
you file a problem report, include the core.txt file for your panic.

Congratulations—you have a core dump! When your host actually
panics, you can get information from the dump. Sometimes, though, the
panic gets a little more complicated.

Crash Dump Types
FreeBSD supports three different sorts of crash dumps: minidumps, full
dumps, and textdumps. All get written to swap space at a panic and copied
to files at boot.

A minidump, the current default dump format, contains the memory
used by the kernel. While the kernel itself isn’t that big, you’ll also get the
UFS buffer cache. The swap space needed should be only a fraction of your
system memory, but it’s possible that it could be almost as large as your sys-
tem memory, depending on what your system was doing at the time. The
dump excludes both memory not used by the kernel and the ZFS ARC.

A full dump contains every scrap of memory the system has. If it’s in
RAM, it gets dumped. The whole kernel memory? Yep. Your web server’s
buffer? Passwords? It’s all in there. A full dump takes up as much swap
space as your host has memory. Enable full dumps by setting the sysctl
debug.minidump to 0. Enable full dumps only if a FreeBSD developer asks
you to do so to help debug a particularly intractable panic.

A textdump is an advanced type of dump that contains only the informa-
tion captured by the ddb(8) debugger and associated scripts. It’s available
only on hosts with the DDB option in their kernel—as in, not the GENERIC
kernel of any release. It’s in the -current GENERIC kernel, though, so you
brave souls running -current can take advantage of textdumps.

Textdumps
A textdump takes advantage of the ddb(8) debugger to run scripts on a
panicked kernel. The default scripts in /etc/ddb.conf pull the most commonly
needed information out of the kernel and then dump that information

Problem Reports and Panics 611

to disk. While crashinfo(8) runs on a captured memory image, though,
ddb(8) runs on the panicked kernel. An experienced developer can take
advantage of this. You might not be an experienced developer, but if you’ve
made it this far into this book, you can follow directions and edit /etc/ddb.conf,
and that’s close enough.

Enable textdumps with the ddb_enable rc.conf option.

sysrc ddb_enable=YES

At system boot, the kernel debugger ddb(8) reads the debugging
scripts from /etc/ddb.conf and loads them into the kernel. The debugger
runs those scripts at a panic. The scripts switch the kernel to textdump
mode, call several commands to gather useful information, write that data
to swap space, and reboot the host. Textdumps aren’t as useful as mini-
dumps, but they fit in much less space.

A complete textdump shows up in /var/crash as a tar file, textdump.tar.0.
The textdump number gets incremented at each panic, and the file textdump
.tar.last always points to the most recent textdump. The textdump(4) man
page describes each of the files found inside the tarball, but as a user, what
you really need to know is that you attach the whole thing to your bug report.

Dumps and Security
The vmcore file contains everything in your kernel memory at the time of
the panic, which might include sensitive security information. Someone
could conceivably use this information to break into your system. A
FreeBSD developer might request a copy of the vmcore file and the bad
kernel for many legitimate reasons; it makes debugging easier and can
save countless rounds of email. Still, carefully consider the potential con-
sequences of someone having this information. If you don’t recognize
the person who asks or if you don’t trust him, don’t send the file and don’t
feel bad about it. Take the time to research any developer who wants your
vmcore. Even if they seem reputable and respected, it’s perfectly accept-
able if you decide to work via emails back and forth rather than offer up
the vmcore. Anyone qualified to work on your crash understands why you
hesitate to send a vmcore, and anyone who tries to shame you into sending
it probably shouldn’t have it.

Posting a link to your vmcore on the public internet offers the guts of
your server to the whole world. Don’t do that.

If the panic is reproducible, however, you can cold-boot the system to
single-user mode and trigger the panic immediately. If the system never
starts any programs containing confidential information and nobody types
any passwords into the system, the dump can’t contain that information.
Reproducing a panic in single-user mode generates a security information–
free, sanitized dump. Boot into single-user mode and then run:

mount -ar
/etc/rc.d/dumpon start
command_that_panics_the_system

612 Chapter 24

The first command mounts the filesystems as read-only so that you
won’t have to fsck(8) yet again after a panic. The second command tells
FreeBSD where to put a dump. Finally, run the command that triggers the
panic. Triggering the panic might require more than one command, but
this should get a clean dump for you in most cases.

If your panic requires that you load confidential information into mem-
ory, that information will be present in the dump. If you can file a useful
bug report, you’re among the FreeBSD elite. Congratulations!

A f t e r w o r d

If you’ve made it this far, you now know how
to manage and use FreeBSD as a platform

for just about any server task. You might have
to learn new protocols and how to configure

new programs, but the underlying operating system
is pretty much a solved problem. Congratulations!
FreeBSD is a wonderful, flexible platform, capable of assuming just about
any role in your network. To wrap things up, I’d like to discuss some other
aspects of FreeBSD.

We’ve talked about FreeBSD’s features throughout this book: the pro-
grams, the kernel, the features, and so on. One thing we haven’t covered is
the community that creates all this.

The FreeBSD Community
The FreeBSD community includes computer scientists, experienced pro-
grammers, users, system administrators, documentation writers, and
just about anyone interested in the system. They come from countries all

614 Afterword

around the world and have education levels ranging from high school to
post-doctoral. I personally have had dealings with FreeBSD users from
every continent and most of the larger islands on Earth.1 Nationality simply
isn’t important—nor is race, color, gender, sexual orientation, or creed.

Some are computer scientists. Some work at cloud providers or manu-
facturing firms. Some are physicians, and some work as clerks in dubious
little stores that disappear just before the government notices them. At
one point, I worked closely with a brilliant developer who turned out to be
too young to legally drive. Oddly enough, time zones are important, but
only because they impact the developers’ ability to communicate with each
other. Since most of the community’s interaction is online, the only things
that represent you are your words and your work. These are the people who
improve FreeBSD and drive it forward, making it more than a collection of
ones and zeros and more than just a way to serve websites.

One of the interesting things about the FreeBSD community is that
it has developed methods for coping with changes in its leadership. Many
open source projects have a single leader or a small static leadership
team. When those people decide to move on, the project is probably over.
Someone else might branch or fork that project, but the original com-
munity usually fragments. The people who created FreeBSD have mostly
moved on to other things, but the community has grown other leaders.
After five generations of leadership, FreeBSD as a project has demon-
strated a resilience to leadership changes that is almost unique in the
open source world. Today’s FreeBSD leaders take a very active interest in
their own replacements, mentoring and coaching those junior community
members who seem most likely to become the leaders of the 2020s and
and even the 2030s.

This ability to change leadership has kept FreeBSD as a community
vital and helped it adapt to the world. In 1994, nobody thought an open
source project would need a Code of Conduct or a process for discussing
and managing architectural changes. FreeBSD now has both. Where once
the Core Team handled all the central decisions, Core has delegated many
of its responsibilities to more specific groups. All organizations change as
they grow and mature. Change destroys many organizations, but FreeBSD
has demonstrated that it can survive and prosper while redefining itself.

What’s more, they always welcome those who came before, both in the
Subversion repository and at the bar. The original author of the UFS file-
system still hangs around. One of FreeBSD’s founders recently rejoined the
project. Some people have been committers since the founding. And some-
how, they’ve let me hang around since the mid ‘90s—probably because I’m
too large to easily shift against my will, but I’ll take it.

1. Yes, this includes a man who took his FreeBSD laptop on a cruise to Antarctica. With his
wife. On their 20th anniversary. He’s never mentioned whether his wife threw the laptop
overboard or not, but if so, he’s lucky he didn’t follow it into the briny deeps.

Afterword 615

Why Do We Do It?
Each person works on FreeBSD for their own reasons. A tiny portion
of people are paid to improve the code by corporations dependent on
FreeBSD, such as Dell EMC and Netflix. The FreeBSD Foundation hires
developers to complete specific tasks on a contract basis. Most developers
work on FreeBSD as a hobby, either so they can program things more cor-
rectly than they’re allowed to at their day job or so they can do work that
interests them. How many of you have completed work projects less success-
fully than you’d like because of outside influences? And how many of you
have jobs that pay the bills but don’t leave you feeling fulfilled? Developing
FreeBSD allows people to satisfy both those itches.

Many contributors are not software developers but work on some other
part of FreeBSD instead. Some write documentation, some design the
websites, some just lurk in shadowy alleys of the forums and answer user
questions. People who can’t do anything else test release candidates and
snapshots, hunting bugs that crop up only in their environments. Many
people spend hours and hours working on FreeBSD-related matters. Why?
I can assure you that the royalties on this book won’t come close to compen-
sating me for the time I could spend with my family. I’m a full-time writer
now, but if I were to chase money, I’d write about Windows, Linux, and
the latest cockamamie management snake oil. Instead, I’m writing a book
about FreeBSD.

Worse, I’m writing this Afterword up in my office on a Saturday after-
noon while my family is downstairs having a grand old time persuading the
family of Canadian Red Squirrels that’s conquered the barbeque grill to
move back into the tree. There’s yelling and squeaking and the occasional
shout of “Oh, God, please no!”—so a good time is being had by all. You’d
be within your rights to ask: “What is wrong with you? Why do you do this?”

We do it for the satisfaction of creating something useful to the rest of
humankind and to return some of what we’ve been given.

You’re free to simply take what FreeBSD offers and do whatever you
wish with it. I did exactly that for a while. After a couple years, once I
became a modestly competent sysadmin, I found that I wanted to return
something to the community. This is how the community grows, and a
growing community means that FreeBSD will prosper.

If you want some of that satisfaction yourself, there’s a place for you too.

What Can You Do?
If you’re interested in supporting FreeBSD, for whatever reason, there’s
space for you. Ever since I started with FreeBSD back in 1996, every so
often, someone posts, “I’d like to help, but I can’t code.” (I’m pretty sure
I sent that email to the questions@ mailing list back in 1998 or so.) The
standard response to these posts is silence. If you’ve already decided that
you can’t help, you’re right—you can’t. Once you decide that you can help,
though, you can.

616 Afterword

Nobody denies that some high-visibility programmers are the celebri-
ties of FreeBSD. Many of those have impressive skills, and most of us could
never dream of being the next Robert Watson or John Baldwin. Even if you
can’t program your way out of a damp paper bag, however, you can still help.

You’re just asking the wrong question.
Don’t ask what FreeBSD needs. You can’t provide that, unless you have

a large bank balance begging for a charitable cause to belong to. (If you do
have spare piles of cash in desperate need of someone to nurture them, the
FreeBSD Foundation would be happy to adopt them and cuddle them and
make them feel loved.) Don’t say, “Wouldn’t it be cool if FreeBSD did such-
and-such?” if you can’t create that yourself. Lots of people can do that.

Instead, ask yourself what skills you have. Any large organization
needs many different people, and whatever skills you have today are use-
ful to FreeBSD. Can you write documents? Dive into the official documen-
tation, and maybe port a popular tutorial from the forums to the official
doc repository. Do enough of that, and the doc team will drag you into
FreeBSD and brand a commit bit on your forehead.

Are you a web designer? Independent web designers provide valuable
third-party resources, such as https://freshports.org/ and http://daemonforums.org/.
There’s lots of room in this space, and you can fill it.

Is there third-party software you need that hasn’t already been ported
to FreeBSD? Bludgeon it into working and then turn it into an official port.
FreeBSD is always looking for more maintained software. Once you’ve done
a couple of those, you can adopt maintainership on ports you need that no
longer have maintainers. Keep that up, and the Ports Team will come for
you to make you a committer.2

I write copiously and passably well. I wrote some updates for the FAQ
and then the first edition of the book. The FAQ updates made me a com-
mitter, although I let that lapse many years ago when I turned my attention
to writing more books. The mere sight of code I’ve written drives small
children to desperate sobs and compels sweet old ladies to make the sign to
ward off the evil eye, but the FreeBSD folks welcome me as one of their own
and treat me as a partner simply because I do the work.

What is it that you do? What is it that you enjoy doing, even if you don’t
get the chance to do it often? Leverage that skill. It will be appreciated.

If Nothing Else . . .
If you truly have no useful skills, and you have no other ideas, reread this
book. Read the documentation on the FreeBSD website. Subscribe to
FreeBSD-questions@FreeBSD.org, or join the forums, and help other users.
Many people started contributing to FreeBSD in exactly this way.

I encourage you to direct people to existing information resources
whenever possible. When someone asks a question answered in the FAQ,
steer them there. If the question has been asked before, suggest that they

2. They won’t deliberately come for you in your sleep, though. It’s a global group—they don’t
know when you’re sleeping.

Afterword 617

search the mailing list archives. Teaching people to help themselves is the
most effective use of your time—not just in FreeBSD, but in the world as well.
As the old saying goes, teach a man to fish and you can sell him fishhooks.

Do enough of that and you’ll want to update the FreeBSD FAQ just
so you don’t have to answer that question one . . . more . . . time. Submit
enough FAQ updates, and once again, the doc team will offer you a commit bit.

Best of all, after answering questions for a while, you’ll develop a deeper
understanding of FreeBSD’s needs. One of those needs will almost certainly
match your skills.

Getting Things Done
Here’s the big secret of success in FreeBSD: everything that it contains is
there because somebody saw a need they could fill and did something about
it. NetBSD and FreeBSD started when a bunch of 386BSD patchkit users
got sick of waiting for the next official release. I didn’t ask for permission to
write this book before starting. The fine folks over on bugbusters@FreeBSD.org
don’t wade through the bug database for fun; they do it because they think
it’s important enough to spend their time on. (And if you are a programmer,
wading through the bug database and finding problems you can solve is one
of the best contributions you can make.)

Once you have an idea, search the mailing lists for discussions about it.
Many projects are suggested and debated but never implemented. If some-
one’s brought up your idea, read the archived discussion. If the idea met
with general approval in the last few years, but nobody’s working on it, get
to work! The FreeBSD folks will be perfectly content if the first time they
hear from you is in a bug saying, “Hi, here are my patches to implement this
feature, as discussed in such-and-such mailing list thread.”

Whatever you do, don’t go on the mailing list or forums to ask,
“Why doesn’t someone else do the work for X?” Most of these sugges-
tions fall into three categories: obvious (“Hey, wouldn’t it be cool if
FreeBSD ran on Teslas?”), foolish (“Why isn’t there a kernel option
BRINGMEACOLDBEER?”), or both (“Why not support my Sinclair
ZX80?”). In any of these cases, the person asking is both unqualified to
perform the work themselves and claims to be helpless to support others
who could do the work. All these suggestions do is waste bandwidth and
annoy people. Bandwidth is cheap; people are not.

In short: shut up and work. Do what you can, and do it well, and people
will appreciate it. Programmers can help by jumping into the bug database
and picking a promising bug to attack. Nonprogrammers can help by find-
ing a hole they can fill and doing the work to fill it in. You might become
a leader in FreeBSD, or you might be known as “that awesome woman
who hangs out on -questions@ and helps people with EFI boot loaders.” All
are absolutely vital. Your help makes FreeBSD prosper. Stick around long
enough, and what starts by helping people with EFI boot loaders might
grow into representing the whole of FreeBSD.

I look forward to seeing you on the mailing lists.

B i B l i o g r a p h y

This bibliography contains two types of books: those
I use as my own reference and those I’ve written that
you can consult for more information.

References
These books helped me learn stuff I used in writing this book. You might
find them educational.

Hansteen, Peter N. M. The Book of PF: A No-Nonsense Guide to the OpenBSD
Firewall. 3rd ed. San Francisco: No Starch Press, 2015.

Kong, Joseph. Designing BSD Rootkits: An Introduction to Kernel Hacking.
San Francisco: No Starch Press, 2007.

———. FreeBSD Device Drivers: A Guide for the Intrepid. San Francisco:
No Starch Press, 2012.

620 Bibliography

Kozierok, Charles M. The TCP/IP Guide: A Comprehensive, Illustrated Internet
Protocols Reference. San Francisco: No Starch Press, 2005.

McKusick, Marshall Kirk, George V. Neville-Neil, and Robert N. M. Watson.
The Design and Implementation of the FreeBSD Operating System. 2nd ed.
Upper Saddle River, NJ: Addison-Wesley, 2014.

Stevens, W. Richard, and Stephen A. Rago. Advanced Programming in the
UNIX Environment. 3rd ed. Upper Saddle River, NJ: Addison-Wesley, 2013.

Books I've Written
Over the last 10 years, FreeBSD has grown. A lot. In writing Absolute FreeBSD,
I attempted to strike a balance between explaining everything and writing
a book small enough to hold in your hand. ZFS, for example, merits a book
the size of this one. I’ve tried to give you what you must know instead of
everything there is to know.

You’ll want more on some topics. I’ve written books that can give you
that more. Mixing them in with the regular bibliography felt way too self-
aggrandizing, so here’s a separate list.

Jude, Allan, and Michael W. Lucas. FreeBSD Mastery: Advanced ZFS. Grosse
Pointe Woods, MI: Tilted Windmill Press, 2016.

———. FreeBSD Mastery: ZFS. Grosse Pointe Woods, MI: Tilted Windmill
Press, 2015.

Lucas, Michael W. FreeBSD Mastery: Specialty Filesystems. Grosse Pointe
Woods, MI: Tilted Windmill Press, 2016.

———. FreeBSD Mastery: Storage Essentials. Grosse Pointe Woods, MI: Tilted
Windmill Press, 2014.

———. Network Flow Analysis. San Francisco: No Starch Press, 2010.

———. Networking for Systems Administrators. Grosse Pointe Woods, MI:
Tilted Windmill Press, 2015.

———. PAM Mastery. Grosse Pointe Woods, MI: Tilted Windmill Press, 2016.

———. PGP & GPG. San Francisco: No Starch Press, 2006.

———. SSH Mastery. 2nd ed. Grosse Pointe Woods, MI: Tilted Windmill
Press, 2018.

———. Sudo Mastery. Grosse Pointe Woods, MI: Tilted Windmill Press, 2013.

Symbols and Numbers
$ (cash symbol)

and log date format, 555
for username, 190

:: (double-colon substitution), in IPv6
addresses, 134

= or == (equal signs), 349
\ (line-continuation character),

306–307, 459
~ (tilde), for user’s home directory, 190
4K drives, 202
32-bit compatibility libraries, 33
32-bit Intel-style processor, 17
32-bit number, 129
64-bit Intel-style processor, 17
386BSD, xxxvi

A
ABI (application binary interface),

413–414
ACK packet, 464
ACPI (Advanced Configuration and

Power Interface), 59
active memory, 535
active slices, 223
add-on software, 336
addr keyword, for CIFS

configuration, 312
adduser(8) program, 171
administrative group, creating, 182–184
aesni(4) kernel module, 482, 526
agent, in SNMP, 557
aggregation protocols, 163
AIX, xli
alert log message, 547
aliased mailing lists, 504
aliases

for files, disabling, 237
for IPv6 addresses, 147–148
for network card, 68
and outgoing connections, 148
for pkg(8) subcommands, 349

ALL EXCEPT keyword
for login restriction, 187
for TCP wrapper, 458–459

ALL keyword
for login restriction, 187
for TCP wrapper, 458–459

allow option, for TCP wrapper rule, 459
AllowGroups option, for SSH, 496
AllowTcpForwarding, 495
AllowUsers option, for SSH, 496
Amanda, 87
AMD, xlii
amd64, 17
“ancient crap,” 20
Ansible, 64
a.out binaries, 408
Apache web server

and httpd program, 456
packages, 341

Apple, macOS, xl
applications, boot environment and, 279
applications (of OSI), 126
apropos mount_, 282
apropos(1), 5, 9–10
archives

compression for, 91
creating in tar, 88–90
list mode for, 90

ARP (Address Resolution Protocol),
141–142

ARP table, 141–142
ashift property, 268
asynchronous mounts, 235–236
AT&T, xxxiv

UNIX work, xxxv–xxxvi
atime (access-time stamp),

disabling, 236
attach rules, for devd(8), 299
attachments, building kernel and,

106–107
attackers. See intruders
authoritative nameservers, 150
autoboot_delay option, 58

I n d e x

622 Index

AUTO_INSTALL, for mergemaster, 447
automounting, 318
autonegotiation, by switch, 141
autoremoval of software, 350–351
AUTO_UPGRADE, for mergemaster, 447
avail memory, 61

B
background fsck, 66, 247–248
backslash (\), for line continuation,

306–307, 459
backups

of jail, 564
system, 84
tapes for, 84–87, 106
verifying, 89–90
of working kernel, 107

Bacula, 87
bandwidth

and performance, 526
PF and, 467

Banner option, 495
base 2, 129
base 10, 129
base-dbg, 33
baseboard management controller

(BMC), 76–77
BATCH environment variable, 374
BATCH_DELETE_OLD_FILES option, 445
baud rate, 74–75
beadm activate command, 278
beadm create command, 278
beadm destroy command, 279
beadm(8) program, 277
beastie_disable option, 58
begemotSnmpdCommunityString MIB, 561
Berkeley Software Distribution

(BSD), xxxiv–xxxv, xxxvi
release of code, xxxvi

BGL (Big Giant Lock), 397–398
bhyve(8), 24, 564

developers, xlix
Big Giant Lock (BGL), 397–398
binary branding, 414
binary files

compression and, 273
for logs, 556

binary math, 129
binary updates, 428–434

scheduling, 434
binary values, 99

BIOS (basic input/output system), 20,
50–51

bits, 129
blacklistctl dump command, 474
blacklistd(8), 319, 470–475

configuring, 471–473
configuring clients, 473–474
de-blacklisting, 474–475
managing, 474

blacklisting, 454
blocking on disk, 532
blocks

in FFS, 232
fsck(8) program to verify, 246

$BLOCKSIZE, 250
Bluetooth, 319
bonding, 163
boot blocks, 51. See also loader
/boot/defaults/loader.conf file, 16, 57
boot environment, 259, 276–279

activating, 278
and applications, 279
at boot, 279
creating and accessing, 277–278
removing, 279
viewing, 277

/boot/kernel directory, 97, 107
/boot/kernel.good directory, 107
boot loader, 30, 77

for boot disk, 226
and kernel, 96
and tftpd(8), 590–591

/boot/loader file, 51
/boot/loader.conf file, 16, 57
boot menu, options, 58–59
boot messages file, 62
/boot/modules directory, 97
Boot Multi User loader option, 51
boot process, 49–82

/dev at, 295–297
configuring VLANs, 165
on legacy hardware, 222
loader, 51–52, 57

configuration, 57–58
loader prompt, 55–57
loading modules, 105
multiuser startup, 63–71

/etc/rc.conf.d/ file, 64–71
sysrc(8), 63–64

ntpd(8) in, 506
options, 58–59
power-on, 50–51

Index 623

serial consoles, 74–82
configuration, 77–79
IPMI setup, 76–77
physical setup, 75–76
using, 79–82

single-user mode, 52–54
startup messages, 59–62
tmpfs(5) at, 289

boot-time tunables, 57, 101
testing, 103

BOOTP (Bootstrap Protocol), 588
bootstrap code, 223
boot_verbose="NO" option, 58
botnets, 169
bottlenecks, 545

analysis with vmstat(8), 528–532
brandel(1), 417
branding software binaries, 417–418
bridge module, 562
broadcast address, 133
broadcast domain, 140
broadcast protocol, Ethernet as, 140
BSD 4.4-Lite, xxxvi
BSD (Berkeley Software Distribution),

xxxiv–xxxv, xxxvi
license, xxxv

BSD labels, 224, 227–229
BSD partitions, assigning specific

letters, 228–229
bsdinstall(8), 31, 34
bsdlabel(8), 215
BSDstats Project, xxxix
bsdtar, 88
bsnmpd(8), 557

configuring, 560–561
loading modules, 562

buffer overflow, 168
bug reports, 599, 600–605

actions after submitting, 605
bad, 602–603
before filing, 601–602
filing, 603–605
speculation vs. evidence, 603

Bugzilla, 601–602
buses, building kernel and, 106–107
bytes, 130
bzip compression, 91

C
CA (Certificate Authorities), 478–479
cables, for Ethernet, 140
caching nameserver, 153–154

camcontrol(8), 202–203
Capsicum security system, 319
carmount dataset property, 262
ca_root_nns package, 478
cash symbol ($), for username, 190
cdrtools package, 283, 286
CDs

burning, 27
filesystem for, 283

“certificate signer is unknown”
warning, 481

certificates, 478–481
creating request, 479–480
self-signed, 480–481

CFLAGS (compiler flags) options,
324–325

CHANGES file, in Ports Collection, 365
checksum, 372

SHA512/256, 486
chflags(1), 194
chmod(1) program, 183–184
chown(1) program, 183–184
chpass(1), 175–176
chrooting, 594

tftpd(8) support for, 520
CIFS (Common Internet File System),

301, 310–315
configuring, 311
file ownership, 315
kernel modules for support, 311
mounting share, 313–314
name resolution, 313
prerequisites, 310

ciphertext, 475
Cisco switches, 163
class environment, 190–191
clean login, for jailed environment, 577
cleartext, 475
client list, for wrappers, 457–458
clients

access to NFS export, 307
configuring for blacklistd, 473–474
diskless, 588
MAC addresses for, 514
showing available mount for

NFS, 309
for SSH, 497–498

clock synchronization at boot, 506
cloud-scale management, 586–587
clri(8) program, 247
clustering, disabling, 236–237
code freeze, 423

624 Index

cold backup, 90
comconsole, 78
command line, xlvi

customization options, 374–375
command prompt, 47, 452
commands

question mark for listing, 55
running in jail, 576–578
service support for, 73

committers, xxxvii–xxxviii
becoming, 605

Commodore 64, emulator, 413
Common Access Method (CAM),

202–203
common name, for server, 480
communities, for SNMP security, 560
comparison operators, in /etc/syslog.conf

file, 549
COMPAT_FREEBSD32 option, for kernel, 115
components, connections, 61
Components src world kernel option, for

freebsd update, 429
compress(1) command, 91
compressed installation media, 26–27
compression

for archives, 91
for log files, 556
in ZFS, 273

Computer Systems Research Group
(CSRG), xxxiv

/conf/base directory, for diskless
farms, 593

/conf/base/etc/diskless_remount, 593
/conf/default directory, for diskless

farms, 593
confidentiality, of cryptosystems, 475
configtest command, 73
configuration files, in packages, 337
connected protocol, 138
connectionless protocol, 137
connections, outgoing, and aliases, 148
console, 584

insecure, 585
consumer, for geoms, 206
context switch, 396
continuation line, \ (backslash) for,

306–307, 459
CONTRIBUTING.md file, in Ports

Collection, 365
contributors, xxxviii

cookies, 379
Coordinated Universal Time, 504
COPTFLAGS, 325
copy-on-write (COW), 270–271
copycenter, xxxv
copying files, over SSH, 498–499
COPYRIGHT file, in Ports

Collection, 365
core settings, 30–32

configuring, 46
trimming kernel for, 113–115

corrupted files, 354, 372
cpio, 87
CPU

bottleneck analysis with
vmstat(8), 531

and performance, 526
threads waiting for, 529
trimming kernel for type, 113
usage, 543

CPU core, 399
cpu entry, in kernel configuration

file, 108
CPU package, 399
crash dump, 608–609

configuring, 608
and security, 611–612
swap partition for, 25
testing, 609–610
types, 610

crashinfo(8), 609
crit log message, 547
cron(8), 520–523
crontabs, 520
cryptography, 9–11

generating key, 597
CSRG (Computer Systems Research

Group), xxxiv
CTM, 435
CUPS (Common Unix Printing

System), 516
current resource limits, 190
customizable builds, xliii
customization files, 16
customization options

global, 375–376
Ports Collection, for command

line, 374–375
setting default versions, 376–377

CVS (CVSup), 435
CXXFLAGS, 325

Index 625

D
daemon, name in wrapper, 456
DAEMON provider, 404
data integrity. See also integrity check

and lost data, 245
database files

backup process and, 90
changes, 88
updating for mergemaster, 447

database software, shutdown and, 74
datagram protocol. See UDP (User

Datagram Protocol)
datalink layer (of OSI), 125,

127–128, 138
datasets, 258–263

creating, 261
destroying and renaming, 261–262
moving files to new, 262–263
properties, 260–261

inheritance, 261
unmounted parent, 262

date
ISO 8601 time format, 555
for password changes, 176

DB9-to-RJ45 converters, 75–76
dd(1), 288, 597, 598
ddb(8) utility, 319, 610–611
deadlock, 399
deadly embrace, 399
debug log message, 548
debugging Linux mode, 418–420
debugging symbols, 33
debug.kdb.panic sysctl, 609
DEBUG_LEVEL, in pkg.conf file, 340
decimal math, 129

for computing netmasks, 132
default accept vs. default deny, 454–455
default config, not copying, 17
default directory, 16
default files, 16–17
default GPT partitioning, 36
default groups, 171, 184–185
DEFAULTS file, 109
DEFAULT_VERSIONS variable, 376–377
Defense Advanced Research Projects

Agency (DARPA), xxxiv
DEGRADED pool state, 275
deleting

partitions, 216–217
shared libraries, 445
slices, 226
user accounts, 178

deny option, for TCP wrapper rule, 459
DenyGroups option, for SSH, 496
DenyUsers option, for SSH, 496
dependencies, 346

for jails, 575
packaged, 378
in poudriere, 392
removing, 350

desktop FreeBSD, xlvi
DESTDIR setting, 569
detach rules, for devd(8), 300
/dev, at boot, 295–297
/dev/console, 584
/dev/esa0 device node, 85
/dev/nsa0 device node, 85
/dev/pts, 584
/dev/sa0 device node, 85
/dev/ttyu, 584
/dev/ufs file, 239
devd(8) daemon, 320

dynamic device management
with, 299–300

devfs(5) program, 281, 295–300
in jail, 570

devfs.conf(5), 297
devfs_hide_all rule, 297
devfs.rules file, 297
“device busy” error, 217
device daemon, 320
device drivers, 5

Common Access Method (CAM),
202–203

hints for, 102–103
in kernel, 115
loading, 105
man pages for, 61
for proprietary hardware, 19

device name, for root partition, 53
device nodes, 62

filesystem for managing, 295–300
MBR, 224–225
permissions of, 296
for tape drives, 85

DEVICE_POLLING, 162
devices entry, in kernel configuration

file, 108
df command, 232, 250
DHCP (Dynamic Host Configuration

Protocol), 41, 144, 149,
512–516

for diskless farms, 590
global settings for clients, 514–515

626 Index

DHCP (Dynamic Host Configuration
Protocol), continued

how it works, 513–514
for IPv6, 42
rogue servers, 513
server setup, 588–591
subnet settings, 515

dhcpd, 513
configuring, 514–515

diagnostic messages, in boot process, 60
dial-up terminal, 584
diff mode, 89
digital certificates, 478. See also

certificates
digital signatures, 476
directories

adding to shared library, 407–408
backups, 90
exporting multiple, in NFS, 306
hierarchies, 325
for unprivileged users, 452

dirty disks, forcing read-write
mounts, 248

dirty filesystems, 244–245
disable soft updates flag, 65
disaffected users, 169
disconnecting serial consoles, 80
disk controllers, SATA, 24
disk ID labels, 212–213
disk images, mounting, 292–293
disk partitioning schemes

assigning, 217–218
removing, 217

disk space, for jails, 382
disklabel, 224

and MBR alignment, 225
diskless farms, DHCP for, 590
diskless FreeBSD, 587–594

clients, 588
DHCP server setup, 588–591
farm configuration, 592–594
finalizing setup, 594–595
security for, 591
userland, NFS server and, 591–592

diskless remounting, 593–594
disks, 20–25

bottleneck analysis with
vmstat(8), 530

installing files on new, 253–254
labeling, 211–214
lies, 201–202

partitioning, 20, 23, 34–41, 252–253
as performance bottleneck, 532
schemes for, 217–218
in single-user mode, 52–53
viewing, 55–56
ZFS and block size, 267–268

distfile, 372
distfiles directory, in Ports

Collection, 366
distinfo file, 370
DNS (Domain Name Service), 150–154

configuring, 42–43
/etc/hosts, local names with, 151–152
host/IP information sources, 151
nameservice configuration, 152–153

documentation, 1–14, 33
domain, accessing in CIFS, 314–315
domain keyword, 152
download timing, 344
Dragonfly BSD, xxxix–xl
Dragonfly Mail Agent (DMA), 499,

500–503
forwarding mail beteen users,

503–504
drives. See also disks

reattaching and detaching, 276
replacing, 276

DTrace, xli
du(1) program, 251
dual console, 78
dual-stack setup, 130
DuckDuckGo, 11
dump partition, 37
dump(8) command, 87

backup level for, 210
and snapshots, 244

dumps. See crash dump
DVD images, 27
Dvorak keyboard layout, 69
dynamic device management, with

devd(8), 299–300

E
ECC RAM, 21
ECDSA key, 493
ED25519 key, 493
$EDITOR environment variable, 175
EFI (Extensible Firmware Interface), 20
ejecting removable media, 285
ELF binaries, 408

Index 627

email, 499–504
attachments, 13
etiquette for requesting help, 12–13
mailwrapper(8), 499–500

email signatures, 13
emerg log message, 547
emergency disk space, 252
empty filesystem file, creating, 293–294
emulation, ABI reimplementation

vs., 414
encapsulation, 127–128
Encrypt Disks option, 39
Encrypt Swap option, 39
encryption, 595–598

evaluating need for, 596
of filesystems, 22–23
of partitions, 65
public-key, 475–482

enterprise network, 580
environment variables, 356

cron and, 521
EoL (End of Life), of release, 26
epochal seconds, and real dates,

487–488
equal signs (= or ==), 349
erase command, 87
err log message, 547
error messages, xlvii
Escape to loader prompt option, 52
/etc/adduser.conf file, configuring,

172–173
/etc/amd.map file, 318
/etc/auto_master file, 318
/etc/blacklistd.conf file, 319, 471
/etc/bluetooth file, 319
/etc/casper directory, 319
/etc/cron.d, 319
/etc/crontab file, 319, 520

format, 521–523
/etc/csh.*, 319
/etc/ddb.conf file, 319
/etc/defaults/devfs.rules file, 320
/etc/defaults/periodic.conf, 327–328
/etc/defaults/rc.conf file, 62
/etc/devd.conf file, 320
/etc/devfs.conf file, 296–297, 320
/etc/devfs.rules file, 320
/etc/dhclient.conf file, 320
/etc directory, 317–333

across Unix versions, 317–333
/etc/disktab file, 320

/etc/dma/dma.conf file, 501, 502
/etc/exports file, 304, 307
/etc/freebsd-update.conf file, 429–430, 579
/etc/fstab file, 209–210, 416

configuring, 253
and file-backed filesystems, 294
for jail, 573
and memory disks, 292
mounting partitions listed, 234
and removable media, 285–286

/etc/ftp.* file, 321
/etc/group file, 180–181, 441–442
/etc/hostid file, 321
/etc/hosts file, 151

local names with, 151–152
/etc/hosts.allow file, 456–462

example, 462
/etc/hosts.equiv file, 321
/etc/hosts.lpd file, 322
/etc inetd.conf file, 509–510
/etc/jail.conf file, 568, 569–573, 574
/etc/localtime file, 322
/etc/locate.rc file, 323
/etc/login.*, 323
/etc/login.access file, 185
/etc/login.conf file, 188, 189

environment settings, 190–191
/etc/mail/aliases file, 503–504
/etc/mail/mailer.conf file, 500
/etc/make.conf file, 324–325, 375, 439,

448–449
for poudriere, 387–388
and single ports, 376
WRKDIRPREFIX option, 380

/etc/master.passwd file, 173–174
editing, 176–178

/etc/motd file, 325
/etc/mtree directory, 325
/etc/netstart shell script, 54, 326
/etc/network.subr shell script, 326
/etc/newsyslog.conf file, 553

sample entry, 557
/etc/newsyslog.conf.d/ directory, 553
/etc/nscd.conf file, 326
/etc/nsmb.conf file, 311

keywords, 311–313
options, 314–315

/etc/nsswitch.conf file, 151, 507
/etc/ntpd.conf file, 505–506
/etc/opie*, 326–327
/etc/pam.d/*, 327

628 Index

/etc/passwd file, 173–174
/etc/pccard_ether script, 327
/etc/periodic.conf file, 327–328, 355
/etc/pf.conf file, 328, 465–467
/etc/pf.os file, 328
/etc/phones file, 328
/etc/pkg file, 356
/etc/pkg/FreeBSD.conf file, 356–357
/etc/printcap file, 329, 517–518
/etc/profile file, 329
/etc/protocols file, 126, 329
/etc/pwd.db file, 173–174, 329
/etc/rc*, 329–330
/etc/rc script, 62–63, 71–74, 380, 539

debugging custom, 405
ordering, 402–403
providers, 404–405
REQUIRE statement in, 405
and securelevel, 197
service(8) command, 71–73

/etc/rc.conf file, 62, 145–146, 568
changing from command line,

63–64
cloned_interfaces, 164
to enable sshd at boot, 492
frozen with schg, 198
ifconfig statements in, 148
for jail, 574

/etc/rc.conf.d/ file, 64–71
console options, 69–70
to enable blacklistd, 471
filesystem options, 65–66
kern_securelevel_enable, 195
network daemons, 66–67
network options, 67–68
network routing options, 68–69
startup options, 64–65

/etc/rc.d/sendmail script, 503
/etc/rc.subr file, 404
/etc/regdomain.xml file, 330
/etc/remote file, 79–80, 330
/etc/resolv.conf file, 152, 153
/etc/rpc, 330
/etc/sc.d/localpkg, 405
/etc/security/ directory, 330
/etc/services file, 138–139
/etc/shells file, 179
/etc/skel file, 331
/etc/snmpd.config file, 560
/etc/spwd.db file, 173–174
/etc/src.conf file, 331, 439, 448–449

SVN-UPDATE, 437

/etc/ssh, 331
/etc/ssh/sshd.config file, 473, 494
/etc/ssl/ directory, 331
/etc/ssl/openssl.cnf file, 477
/etc/sysctl.conf file, 160
/etc/syslog.conf file, 548

comparison operators, 549
space or tabs, 551

/etc/syslog.d/ directory, 548
/etc/termcap, 332
/etc/termcap.small, 332
/etc/ttys file, 332, 584

console entry, 585
format, 584–585

/etc/unbound/, 332
/etc/wall_cmos_clock file, 332
/etc/zfs/ directory, 333
Ethernet, 125, 140–142

speed, 141
evaluations, in queries, 348–349
exec.clean option, for jail(8), 570
exec.stop command, 571
exports, mounting, 309
EXT filesystem, 283
Extensible Firmware Interface (EFI), 20
extracommands command, 73
extract mode, for tar, 90
extracted files, permissions for, 91
ezjail, 581

F
failover, 163
fallback brand, sysctls to set, 418
FAQ (Frequently Asked Questions),

7–8, 9
Fast EtherChannel (FEC), 163
Fast File System (FFS), xxxiv, 232–233

for kernel, 114
FAT (MS-DOS), 283
FAT32, formatting media, 286
FAULTED pool state, 275
faults, bottleneck analysis with

vmstat(8), 531
FCODES variable, 323
fdesc(5), 301
fdisk(8), 215
FETCH_RETRY option, 344
FETCH_TIMEOUT option, 344
FFS. See Fast File System (FFS)
file-backed filesystems, and

/etc/fstab, 294

Index 629

file descriptor filesystem, 301
file flags, 192–194

limitations, 197
setting and viewing, 194

files, xlviii
aliases for, disabling, 237
autoupdate unchanged, 447
backups to, 90
checking for obsolete, 444–445
copying over SSH, 498–499
corrupted, 354, 372
customization, 16
default, 16–17
filesystems in, 293–294
installing on new disks, 253–254
moving to new dataset, 262–263
ownership, 183–184

in CIFS, 315
tftpd and, 519

filesystem table, 209–210
filesystems, xliii, 20–25. See also foreign

filesystems
coherence, 88
dirty, 244–245
on encrypted devices, 597–598
encryption, 22–23
file-backed, and /etc/fstab, 294
in files, 293–294
jailed access to part, 564
lesser-known, 300–301
memory, 288–292
mount(8) to view mounted,

210–211
mounting and unmounting,

233–237
problems, 66
selecting, 34
size for, 243
user mounting of, 284
viewing current settings, 241–242

FILESYSTEMS provider, 404
FILESYSTEMS variable, 323
find(1) program, 244
finding

man pages, 5
packages, 340–342
snapshots, 244

firewall, 67, 465
blacklistd(8) and, 470
NFS and, 308

flags, for log rotation, 556
flash drives, foreign filesystems for, 284

flash (.img) format, 26
floppy disk drive, 102–103
fonts, on console, 69
Force 4K Sectors option, 39
foreign filesystems, 281–315

and permissions, 283–284
for removable media, 284–288
supported, 282–283

fortune(6), 511
forums, 2, 8

old information, 336
posting to, 14
searching, 11

fragments, 249
in FFS, 232
PF and, 466

frame, 127–128
free memory, 535–536
FreeBSD. See also upgrading FreeBSD

basics, xxxiv–xxxvii
birth of, xxxvi–xxxvii
development, xxxvii–xxxix
getting, 25–26
problem-solving resources, 9–11
resources for troubleshooting,

601–602
security announcements, 170–171
shrinking, 448–449
and SNMP, 557–562
strengths, xlii–xliii
support model, 426
testing, 426–427
versions, 26, 422–427

FreeBSD-current, 422–423
FreeBSD-stable, 423–425
snapshots, 425
which to use, 427

who should use, xliii–xliv
FreeBSD attitude, 2
freebsd-boot partition, 36
FreeBSD community, 613–614

reasons for volunteers, 615
ways of supporting, 615–616

FreeBSD Foundation, 9
FreeBSD fringe, 583–598

cloudy FreeBSD, 586–587
diskless farm configuration,

592–594
diskless FreeBSD, 587–594
storage encryption, 595–598
terminals, 584–586

FreeBSD Journal, 9

630 Index

FreeBSD mirrors, 26, 27
FreeBSD Porter’s Handbook, 393
FreeBSD Project

leadership, 614
submitting improvements to, 600

FreeBSD-specific time, 555
freebsd-update cron command, 434
freebsd-update install command,

433–434
freebsd-update rollback command, 434
freebsd-update upgrade command, 431
freebsd-update(8), 428, 579

running, 430–434
FreeBSD.conf file, 390
FREEBSD_HOST variable, 383
FREEBSD_ID option, for mergemaster, 447
FreeBSD.org website, 7–8
FreeNAS, xl
Frequently Asked Questions (FAQ),

7–8, 9
FreshPorts, 9, 342
fsck(8) program, 52, 246–248, 608

background, 247–248
-y flag, 247

fsdn(8) program, 247
fstyp(8) program, 284
ftpd(8) daemon, 321

and user login, 179
full dump, 610
fully qualified domain name, 67

G
GBDE (GEOM-Based Disk Encryption),

22, 65, 595–596
GELI, 22, 65, 596, 597
geli init, 597
GENERIC file, 109, 438
GENERIC install, 105
GENERIC kernel, 420

building, 439–440
GENERIC.hints file, 109
GEOM, 204–208

autoconfiguration, 205
control programs, 207–208
device nodes and stacks, 208
journaling, 238, 240–241
labels, 214
vs. volume managers, 206
withering, 214

GEOM classes, 205

geom_eli.ko kernel module, 596
geom_journal kernel module, 240
getty(8) program, 539
GhostBSD, xl
GIDs file, in Ports Collection, 365
git(1), 16
gjournal label command, 240
gjournal provider, creating, 240
gjournal(8), 238, 240–241
glabel create command, 214
glob(3), 556
gmirror(8) class, 205
Google, 11
gpart add command, 229
gpart bootcode command, 222
gpart create command, 217, 227
gpart delete command, 226
gpart destroy command, 217, 252–253
gpart modify command, 221
gpart resize, 221
gpart show command, 215, 218, 220,

221, 226, 227–228, 229, 285
gpart(8) command, 214–217, 220

for managing MBR slices, 225–226
GPT (GUID Partition Tables), 20, 209,

595–598
creating partitions, 219–220
default partitioning, 36
device nodes, 218–219
expanding disks, 223
GUID labels, 213
labels, 213–214
partitions

changing labels and types, 221
resizing, 221
types, 219

scheme creation, 252
and UEFI, 222–223

gptboot(8), 218, 222
gptzfsboot(8), 218
Greenwich Mean Time, 504
group ID (GID), 181, 183
groups of users, 180–185

administrative group, creating,
182–184

to avoid root, 182
creating, 181
default, 184–185
for logs, 553–554
membership changes, 181
system accounts, 182

Index 631

growfs(8) command, 243
growisofs(1) command, 287–288
gstat(8), 532
GUID (globally unique identifier), for

GPT partition, 211
GUID Partition Tables (GPT), 20, 23

partitioning scheme, 218–223
gvinum(8), 206
gzip compression, 91

H
hacking, 170, 490
halt(8) command, 74
Handbook, 7–8, 9
hard disks, 208–209

multiple, 24
hardening options for system, 44–45
hardware

cryptographic support, 482
customized with FreeBSD, 583
device names for, 62
as files, xlviii
for FreeBSD, 17–20
hot-swappable, 299–300
optimizing network, 159
proprietary, 19

hardware clock, 60
hardware MIBs, 100
hardware threading, 400
help, 600

asking for, 11–14
composing message, 12–13
responding to email, 14

mailing lists and forums for, 2
man pages, 3–6

finding, 5
navigating, 5
sections, 4

minimizing requests, 2
providing, 616–617
resources, 1–14

hexadecimal numbers, 129–130
home directory, 46

for user, 172
$HOME environment variable, 570
$HOME/.nsmbrc file, 311
/home partition, 23
host addresses, for login restriction, 187
“host key has changed” message, 595
host, logging to, 550–551

host.allow option, 192
host.deny option, 192
Hostess module, 562
hostname, 67

false, for Dragonfly, 501
installer request for, 31–32
for login restriction, 186

hot-swappable hardware, 299–300
HTML, 12–13
HTTP_PROXY environment variable, 356
hubs, for Ethernet, 140
human errors, recovery from, 55
hushlogin environment variable, 191
HyperThreading, 400
hypervisors, FreeBSD on, 20

I
i386 platform, 17
ICMP (Internet Control Message

Protocol), 126, 136–137
PF and, 468
redirects, 67–68

ident entry, in kernel configuration
file, 108

ifconfig(8) command, 68, 144–145
to create VLAN interfaces, 164–165
to enable polling, 162
name keyword, 148–149

ignorelogin environment variable, 191
illumos, xli
Image Writer for Windows, 27
inactive memory, 535
INCLUDE_CONFIG_FILE option,

117–118
INDEX file, in Ports Collection, 365
INET networking option, for

kernel, 114
inet6 keyword, 145–146
inetd(8) daemon, 66, 508–512

changing behavior, 512
jail for, 567
sample configuration, 511
servers configuration, 510–511
starting, 511–512
wrappers and, 456

infinite loop, memory allocation
with, 25

info log message, 548
inheritance

of dataset properties, 261
repositories, 357–358

632 Index

init(8), 539
inodes (index nodes), 232

fsck(8) program to verify, 246
input in Unix, xlvii–xlviii
input/output

and performance, 526
top(1) tool and, 538

install clean command, 380
installation images, 26–27
installing

files on new disks, 253–254
jail packages, 578
kernel, 439
Linux packages, 419
packages on diskless client, 594–595
pkg(8), 338–339
poudriere, 383
poudriere ports tree, 386
software, 342–344

from Ports Collection, 370–381
installing FreeBSD, 29–47

core settings, 30–32
disk partitioning, 34–41
distribution selection, 32–33

UFS installs, 34–38
ZFS installs, 39–41

finishing, 46–47
network and service configuration,

41–46
planning, 15–28

configuration with UCL, 17
default files, 16–17
disks and filesystems, 20–25
getting FreeBSD, 25–26
hardware, 17–20
network installs, 27–28

integers, 99
integrity check

of cryptosystems, 475
for packages, 354–355
resiliency and, 237
in ZFS, 265
for zpool, 273–276

Intelligent Platform Management
Interface (IPMI), 76–77

interface
multiple IP addresses on single,

147–148
renaming, 148–149
testing, 146

internet, accessibility of old data, 14
Internet Control Message Protocol

(ICMP), 126
Internet Protocol (IP), 125
interruptible NFS mount, 309
intruders

mtree for preparing for, 485–489
network targets, 198–199

ioapic device, 61
iocage, 581
iostat(8), 528
IP addresses

attaching syslogd(8) to single, 552
for BMC, 76
for interface, 68
for jails, 566, 568
list for wrappers, 457–458
multiple on interface, 147–148
setting, 146–147
sshd listening to, 494
unusable, 133

IP Filter, 463
IP (Internet Protocol), 125

adding to interface, 145–146
IPFW, 463
IPMI (Intelligent Platform

Management Interface),
76–77

SOL (Serial-over-LAN)
connections, 80–81

IPMItool, 80–81
IPSEC networking option, for

kernel, 114
IPv4, 41
IPv4 addresses, 131–133
IPv4-only stack, 130
IPv6 addresses, 133–136

aliases, 147–148
assigning, 136

IPv6 network, 42
exporting to, 307

IPv6-only stack, 130
ISC DHCP server, 513
ISO 8601 time format, for logs, 555
ISO 9660 filesystem, 283

burning to optical media, 287
creating, 286–287

IVCSW (involuntary context
switches), 538

Index 633

J
jail ID, 575
jails, 381, 563–581

for ancient FreeBSD, 580–581
basics, 564–565
at boot, 568
clean login for, 577
creating, 383–386
customizing, 579–580
defaults, 571–572
defining, 570
dependencies, 575
disk space, 382
host server setup, 565–568

networking, 565–568
in-jail startup, 571
installing packages, 578
notes on, 581
parameters as variables, 572–573
processes in, 575–576
rules, 298–299
running commands in, 576–578
setup, 568–575

userland, 569
startup and shutdown, 574
testing and configuring, 573–574
updating, 578–579
viewing, 386, 575

jexec(8) command, 576–578
jls(8), 575
job control, xxxiv
job scheduler, 520–524

cron(8), 520–523
periodic(8), 323, 327, 523–524

journaling
GEOM, 238, 240–241
and recovery, 246
and soft updates, 238, 242

Joy, Bill, xxxv
JSON, 17

K
KeepModifiedMetadata, for freebsd

update, 429
kenv(8), 101
Kerberos authentication, 10, 301
KERNCONF variable, 110, 439
kernel, 95–121

assumptions, 396–397
basics, 96–97
booting alternate, 111–112

building, 105–112
buses and attachments, 106–107
preparation, 106
troubleshooting, 118–119
working kernel backup, 107

building, installing, and testing,
439–440

configuration file format, 107–109
configuration, no option and

include, 119
custom configuration, 112–119

trimming, 112–118
enabling crash dumps, 44
environment, 101–103
inclusions, exclusions and

expansion, 119–121
and jails, 564
locks, 399
network capacity in, 157–158
options, 58

kernel-dbg, 33
kernel debugger configuration

utility, 319
kernel memory, minidump of, 25
kernel modules, 19, 103–105

loading and unloading, 104
loading in boot process, 105
skipping, 121
viewing loaded, 103–104

kern.elf32.fallback_brand sysctl, 418
kern.elf32.nxstack sysctl, 485
kern.elf64.fallback_brand sysctl, 418
kern.elf64.nxstack sysctl, 485
kern.hostname sysctl, 97
kern.ipc.nmbclusters systcl, 160
kern.ipc.somaxconn systcl, 161
kern.maxusers systcl, 160
key fingerprint, 493, 497
keyboard, console options for, 69–70
keymap, selecting, 31
KeyPrint option, for freebsd update, 429
keystrokes, script to copy, 92
keyword searches, on man pages, 5
Keywords directory, in Ports

Collection, 365
kldload(8), 104
kldstat(8) command, 103–104
kldunload(8), 104
knobs, 62. See also tunables
KNOWN keyword, for TCP wrapper, 458
kqueue(2), 413
krb5, 10

634 Index

L
labels. See also BSD labels

changing for GPT partition, 221
for disks, 211–214
for partition, 37
UFS, 239, 243
viewing, 212

LACP (Link Aggregation Control
Protocol), 163

lagg(4), 163
configuring, 164

laptop theft, 596
ldconfig(8), 406–407

and weird libraries, 408–409
ldconfig_local_dirs variable, 407
ldconfig_paths variable, 407
LD_LIBRARY_PATH environment variable,

71, 409–410
LD_PRELOAD environment variable,

409–410
legacy boot, 20
legacy hardware, boot process on, 222
legacy mode, 50
LEGAL file, in Ports Collection, 365
legal restrictions

on Ports Collection, 369–370
on software, 337

Let’s Encrypt, 481
Level 2 Adaptive Replacement Cache

(L2ARC), 267
libarchive(3) command, 88, 92
libiconv.ko module, 311
libmap file, 410, 456
libmchain.ko module, 311
libraries. See shared libraries
LibXo, 586–587
license, 337
line-continuation character (\),

306–307, 459
link aggregation, 163
linprocfs(5), 301, 416
Linux, xli

commercial software, 420
Linux mode, 415, 418–420

debugging, 418–420
testing, 417

Linux packages, installing, 419
Linux process filesystem, 301
Linuxator

installing and configuring, 415
userland, 416

Linuxisms, 413

ListenAddress, 494
listeners on ports, 156–157
live system, activating, 93
lm75 module, 562
load average, 534
load, once-in-a-lifetime vs. standard, 161
loader, 51–52

booting from, 57
configuration, 57–58
variables, 56

loader configuration file, 16
loader prompt, 55–57
loader.conf file, 104
loader_logo option, 58
local blacklistd rules, 471
local build, installing jail from, 385–386
local configuration files, 16
LOCAL, for login restriction, 187
local-link addresses, 135–136
local mail delivery, disabling, 501
local partitions, mounting, 53
LOCALBASE variable, 381
localpkg script, 405
local_unbound, 44, 154
locate(1), 323
lock order reversal, 399
locking

SMP and, 397–398
user accounts, 178

log rotation, 553
log sockets, 552–553
logical block addressing (LBA), 202
logical port, 138
login(8), 539
login classes, 172, 188–192

class definitions, 188
LoginGraceTime, 495
logins

control, 191–192
restricting, 185–188
on serial console, 81

logs, 66
backup process and, 90
changes, 88
of connection attempt, 460
file management, 553–557
overlap, 551
for poudriere, 389
rotation by size and time, 555
from script(1) command, 92
sending messages to programs, 550
specifying senders, 552

Index 635

with syslogd, 546–553
message levels, 547

in verbose mode, 553
loopback device, 117
lost+found directory, 246
lp (default printer), 517
lpd(8) printing daemon, 70, 516,

517–518
LPD (Line Printer Spooler

Daemon), 516
ls command, for viewing flags, 194
ls(1) program, 183–184
lsdev, 55–56
lsof package, 490
lz4 compression algorithm, 273

M
MAC addresses, 141–142

for clients, 514
for DHCP client, 589

MAC table, 141–142
macOS, xl
macros, configuring for PF, 466
MAIL environment variable, 190
mail server, 499
mail, status mail, 545–546
mailing lists, 2

aliased, 504
archives, 8

searching, 11
for FreeBSD-stable, 424
general questions, 13
old information in archives, 336

MAILNAME, for dma(8), 501
mailq(1) program, 500
MailTo root option, for freebsd

update, 429
mailwrapper(8), 499–500
maintenance jobs, 327, 545–546
major release, 422
make build command, 373
make buildkernel command, failure, 118
make buildworld command, 438
make check-old command, 444
make check-old-libs command, 445
make checksum command, 372
make clean command, 380
make config command, 371–372
make config-recursive command, 377
make configure command, 373, 374
make deinstall command, 379

make delete-old-libs command, 445
make depends command, 373
make extract command, 373
make fetch command, 372
make install command, 373
make installkernel command, 111, 439
make installworld command, 443–446
make missing command, 378
make package command, 379
make patch command, 373
make pretty-print-config command,

374–375
make readmes command, 369
make rmconfig-recursive command, 377
make showconfig command, 375
make(1) program, 362

SMP and, 400
make_buildkernel command, 110
make_distribution command, 569
Makefile, 362, 365, 370
makefs(8) program, 286–287
makeoptions entry, in kernel

configuration file, 108
malloc-backed memory disks, 290
man pages, 3–6, 600

contents, 6
for cryptography, 9–10
finding, 5
navigating, 5
sections, 4, 6

manpath environment variable, 191
MASQUERADE, for dma(8), 501
MaxAuthTrie, 495
maximum resource limits, 190
MBR (master boot record), 20,

208–209, 218, 222
device nodes, 224–225
and disklabel alignment, 225
partitioning, 23
partitioning scheme, 223–226

mbrowse, 559
mbufs, 157, 159–160
mdconfig(8), 291, 292
mdmfs(8), 290–291, 292–293
memory, 61

allocation in infinite loop, 25
bottleneck analysis with

vmstat(8), 529
and network optimization, 159–161
and performance, 526
for /tmp, 65
usage, 535–536, 542

636 Index

memory disks, 117, 289, 290–292
creating and mounting, 290–291
and /etc/fstab, 292
shutdown, 291

memory filesystems, 288–292
MergeChanges option, for freebsd

update, 429
merged from current (MFC), 424
mergemaster(8), 440–443, 446

customizing, 446–447
message of the day (motd) file, 325
metadata, 232
MIBs (management information base),

98–99
SNMP, 558–559

Microsoft Outlook, email from, 13
minidump, 610

of kernel memory, 25
MINIMAL file, 110
MINIMAL kernel, 111
minor release, 422
Mirror Swap option, 39
mirror VDEVs (virtual devices), 266, 274
mirrors, 26, 27
mixpasswordcase option, 192
Mk subdirectory, in Ports

Collection, 366
mkisofs(1), 287
mksnap_ffs(8) program, 244
modular kernel, 96
MODULES_OVERRIDE option, 121
monitor

console options for, 69
display on, 70

monitoring system security, 489–490
mount point, 209

temporary, for new partition, 253
mount(8) program, 233–237

for foreign filesystems, 282–284
options, 210

mountd(8) daemon, 303
mounting

disk images, 292–293
exports, 309
filesystems, 233–237
local partitions, 53
share in CIFS, 313–314
thumb drive, 285

mounts
showing available for NFS client, 309
stackable, 254–255

mount_smbfs(8), 313–314

mouse, 69–70
MOVED file, in Ports Collection, 365
moving

files to new dataset, 262–263
package cache, 345

msdosfs mount type, 283
mt(1) command, 87
mtree(1), 485–489

exclusion file, 488
spec file output, 487–488

checking for differences,
488–489

saving, 488
multitasking, preemptive, 397
multiuser startup, 63–71

N
name service, 150. See also DNS

(Domain Name Service)
switching, 507–508

named(8) program, 553
names

for boot environment, 277
for interfaces, changing, 148–149

nameserver, caching, 153–154
nameserver list, 153
navigating man pages, 5
nbns keyword, for CIFS

configuration, 312
NDP (Neighbor Discovery Protocol), 142
net-snmp, 559
NetBSD, xxxvi, xxxix
Netflix, xxxvii
Netgraph module, 562
net.inet.ip.portrange.reservedhigh, 139
net.inet.ip.portrange.reservedlow, 139
net.inet.tcp.cc.available sysctl, 528
netmasks, 131–133

computing in decimal, 132
netstat, 489, 527
netstat(8) program, 154–155

to calculate mbuf clusters, 160
per-protocol performance

statistics, 158
viewing open network connections,

156–157
network, 123–142

activity, 154–158
bandwidth, and performance, 526
bits and hexes, 128
capacity in kernel, 157–158

Index 637

configuration, 142–165
prerequisites, 144–149

installing jail from, 384
interface selection, 41
layers, 124–126
optimizing performance, 158–162

maximum incoming
connections, 161

memory usage, 159–161
polling, 161–162

performance monitoring, 527–528
in single-user mode, 54
time, 504–507
traffic control, 454

network adapter
aliases for, 68
teaming, 162–164

Network Address Translation (NAT),
PF and, 467

Network Configuration screen, 41–42
network daemons, 66
Network File System (NFS). See NFS

(Network File System)
network installs, 27–28
network layer (of OSI), 125, 127, 128
network number, 133
network-related options, for kernel, 114
network secure mode, 196
network stacks, 130
Network time protocol (NTP), 505,

567–568
NETWORKING provider, 404
newfs(8) command, 253, 294
newfs_msdos(8) program, 286
newsyslog(8), 553
NFS (Network File System), 301–310

enabling client, 308–310
exporting multiple directories, 306
exports configuration, 304–308
and firewalls, 308
interoperability, 302
and jails, 567
kernel options supporting, 115
mount options, 309–310
server

configuration, 302–303
and diskless client userland,

591–592
and upgrades, 448
and users, 305–306
versions, 302
zfs(8) for managing, 308

nfsd(8), 303
niceness, 543–545
Nintendo GameCube, emulator, 413
nmbclusters, 160
noasync mounts, 236
nobody account, 453
noexec mount option, 236
nologin environment variable, 191
nomatch rules, for devd(8), 300
nonautomatic packages, 346

changes, 352
nonexecutive stack, 484–485
nonrepudiation, of cryptosystems, 475
normal, defining, 527
nosymfollow option, 237
“not a working copy” error, 436
NOTES file, 110, 119, 438
notice log message, 548
notify rules, for devd(8), 300
nscd(8) service, 326
NTP (Network time protocol), 505,

567–568
ntpd(8) program, 44, 504, 553

configuring, 505–506
null memory disk, 290
null modem cable, 75
NULLCLIENT option, for

Dragonfly, 502

O
obsolete files, checking for, 444–445
offline command, 87
OFFLINE pool state, 275
ONLINE pool state, 275
opaque sysctls, 97
opaques, 99
open files, listing all, 490
Open System Interconnection (OSI)

network protocol stack, 124
applications, 126
datalink layer, 125, 127–128, 138
network layer, 125, 127, 128
physical layer, 124, 128
transport layer, 126, 127, 128

OpenBSD, xxxix
openntpd package, 568
OpenSolaris, xli
OpenSSL, 476, 477

clients, 497
passwords and keys, 499

openssl s_client command, 481

638 Index

operating systems
multiple, 24
packages and upgrades, 449–450
panic, 606–612
running software from wrong,

412–418
OPIE (One-time Passwords In

Everything), 326–327
optical disk (.iso) format, 26
optical media

burning ISOs to, 287
burning UDF to, 287–288
creating, 286–287
/etc/fstab entry for, 285
foreign filesystems for, 284

options entry, in kernel configuration
file, 108

OPTIONS_SET variable, 376
OPTIONS_UNSET variable, 376
Oracle Solaris, xl
organization employees, security risks

from, 169
output. See also input/output

in Unix, xlvii–xlviii
ownership

of device node, changing, 296
of files, 183–184

in CIFS, 315
log files, 553–554
in TFTP, 519

P
package cache, 345
package database

changing, 351–352
querying, 346–347

packaged dependencies, 378
packages, 336–356

branches, 358–359
building, 379
fetching, 344
files in, 337, 353
finding, 340–342
information and automatic

installs, 346
installing on diskless client, 594–595
integrity, 354–355
for jails, installing, 578
locking, 352–353
maintenance, 355

networking and environment,
355–356

Ports Collection and, 363
repositories, 356–358, 389

building, 371
customization, 357
private, 381–391
remote custom, 390–391

security, 490
and system upgrades, 449–450
uninstalling, 350–351
upgrading, 359–360

packaging system, xliii
packet filtering, 454, 462–470

default accept vs. default deny,
463–464

and stateful inspection, 464–465
packet sniffers, 492
packets, 127

normalization in PF, 466
pagedaemon, 529
pages of memory, 529
paging, 530, 540–541
PAM (Pluggable Authentication

Modules), 327
panic, 599, 606–612

recognizing, 606–607
responding to, 607–612
serial consoles and, 609

parallel builds, limiting, 391
PARANOID keyword, for TCP wrapper, 458
parent datasets, unmounted, 262
partition table, 38
partitioning schemes, 23, 35, 208–209

MBR (master boot record),
223–226

partitions, 20, 208–209
adding new, 37
alignment, 220
BSD label, creating, 227–228
for disk, 23, 34–41, 252–253
encrypted, 65
mount point for, 209
removing, 216–217
removing space, 250–251
UFS for, 23–24
viewing, 215–216

passphrase, 597
for certificate, 480
for full-disk encryption, 39

passwd, 54, 174
passwd_format option, 191

Index 639

password
changing, 174
in CIFS, 314
control, 191–192
default for new users, 173
for dma(8), 502
expiration, 176
for group, 181
for OpenSSL, 499
root, 41, 46, 179–180
for single-user mode, 585
for user, 172

password keyword, for CIFS
configuration, 312

patches
levels, 422
updating to latest, 430–434

PATH environment variable, 190, 191
path, for log file, 553
patterns, for queries, 347
pax, 87
performance

computer resources and, 526–527
monitoring, 526–562

bottleneck analysis with
vmstat(8), 528–532

disk I/O, 532
network, 527–528
with top(1), 533–538

per-protocol statistics, from
netstat, 158

tuning, 541–545
periodic(8), 323, 327, 523–524
Perl modules, 341–342
permissions

of device node, 296
for extracted files, 91
and foreign filesystems, 283–284
for logs, 554

PermitRootLogin, 495
PF module, 562
PF (packet filter), 463

and blacklistd(8), 471
configuring, 465–467
managing, 468–470
small server example, 467–469

pfctl(8), 463, 468–470, 475
for active anchor, 471

pf.ko module, 463
pfSense project, xl
PGID (process group ID), 539
pgrep(1), 576

physical address, 141
physical layer (of OSI), 124, 128
physical serial lines, 79
pidfile, 556–557
ping, 146
pipes, xlvii–xlviii
pkg autoremove command, 351
pkg check command, 355
pkg-check(8) tool, 354
pkg clean command, 345
pkg-create(8), 345
pkg delete command, 350
pkg-descr file, 370
pkg help command, 338
pkg-help file, 370
pkg info command, 346, 353
pkg install command, 342–343,

354, 390
pkg-plist file, 370
pkg query command, 347
pkg remove command, 379
pkg unlock command, 353
pkg update command, 358
pkg upgrade command, 359
pkg which command, 353
pkg(8), 336, 337–338

command aliases, 349
common options, 339
configuring, 339–340
fetch, 344
installing, 338–339
and jails, 578
repository download, 390

pkg.conf file, 390
customizing download behavior, 344
DEBUG_LEVEL in, 340
PKG_CACHDIR, 345
PKG_ENV section, 356

pkgNG, 336
pkg_query(8), 387
PKG_REPO_SIGNING_KEY variable, 393
pkg_static(8), 449
pkg_tools, 336
pkg_upgrade command, 449
plaintext email, 12–13
PMBR (protective master boot record),

218, 222
polling

mode, 527
on network, 161–162

pool. See zpool (storage pool)
portability of FreeBSD, xlii

640 Index

porting, 412
portmaster, 371
ports, 138–139

listeners on, 156–157
open, 155–156
review of open, 198
updating installed, 450

Ports Collection, xliii, 336, 358,
361–393

cleaning up ports, 380
contents, 365–367
customization options, 373–381

for command line, 374–375
install path, 380–381
installing software from, 370–381
and Linux mode, 418
port flavors, 378
problem ports, 389
tracking build status, 379–380
uninstalling and reinstalling

ports, 379
ports index file, 367–370
ports tree, 363. See also Ports Collection

read-only, 380
portsnap cron update command, 364
portsnap(8), 364, 393
portupgrade, 371
POSIX standard, 412–413
posting to forums, 14
poudriere bulk command, 388
poudriere options command, 388
poudriere package-building system,

361, 371, 381–391
configuring ports, 386–388
installing and configuring, 383
installing ports tree, 386
large and small systems, 391–392
make.conf for, 387–388
package list for, 387
repository, 389
resources, 382
running, 388–389
updating, 392–393

poudriere ports command, 386
power-on, 50–51
PowerPC, 18
preemptive multitasking, 397
preening, 246
prefix length, 131–133. See also

netmasks
PREFIX variable, 381

primary partitions, 223
Primordial Unix Compression, 91
print servers, 516–518
printer, configuration information, 329
printing, 516–518

/etc/princap file, 517–518
priority environment variable, 191
private key, 476
private repository, 389–391
process ID (PID), 533

for jails, 575
process state, 539
processes

bottleneck analysis with
vmstat(8), 529

following, 539–540
in jails, 575–576
priority in top(1) tool, 544
rescheduling to balance, 543
vs. thread, 401

processors
multiple, 396
and SMP, 399–401
virtual, 400

procfs(5) program, 281, 300
procfs (process filesystem), 416
production releases of FreeBSD, 26
programs, logging by name, 550
proprietary hardware, 19
protective master boot record

(PMBR), 218
provider, for geoms, 206
proxy server, need for, 356
PRUNEPATHS variable, 323
ps(1) command, 534, 576
pseudodevices, in kernel, 116–117
pseudorandom numbers, 117
pseudoterminal, 584
public-key encryption, 475–482

certificates, 478–481
public-key files, 493
PuTTY, 497
pw(8) command, 178
pwd_mkdb(8), 174, 176
PXE (Preboot Execution

Environment), 588

Q
qemu-user-static package, 382
quarterly branches, in package

system, 358

Index 641

queries
evaluations in, 348–349
remote, 347

QWERTY keyboard, 69

R
RAID controllers, 18, 204

ZFS and, 22
RAID-Z, 265, 266

and pools, 267
virtual devices, 274

RAID-Z2, 266
RAID-Z3, 266
RAM, 61. See also memory
random password generator, 172
random quote generator, 510–511
range keyword, in dhcpd, 515
rcorder(8), 402–403
read-only mounts, 235
read-only sysctls, 100
read-write mounts, forcing on dirty

disks, 248
README file, in Ports Collection,

366, 369
real memory, 61
reboot(8) command, 74
rebooting, to test interface changes, 149
recursion, front-loading, 377–378
recursive nameserver, 150
redundancy, 274

in ZFS, 265–267
Reed, Darren, 463
regular expressions, in ruleset, 298
Release Engineering team, 424
releases of FreeBSD, 422
reload command, 73
remote blacklistd rules, 471, 472
remote computers, intruders and, 168
remote logins, SSH for, 66–67
remote modems, phone numbers

for, 328
removable hardware, kernel support

for, 117
removable media

ejecting, 285
and /etc/fstab, 285–286
foreign filesystems for, 284–288

REMOVED pool state, 275
renice(8), 544–545
repairs, 92–93

repositories
inheritance, 357–358
for packages, 356–358, 389

customization, 357
remote custom, 390–391

private, 381–391
REQUIRE statement, in rc script, 405
requirehome environment variable, 191
reserved ports, 139
resilvering, 274
resolver, 150
resources

and performance, 526–527
user limits, 189–190

restarting, services, 72
retension command, 87
rewind command, 87
rewinding tapes, 84–85
rmuser(8) program, 178
rndc(8), 184
rollback of FreeBSD update, 434
root

email sent to, 503
in jail, 564
password change by, 174
server login as, 495
user changes by, 176
user groups to avoid, 182

root dataset, 259
root directory, for tftpd, 518
root filesystem

partition letter for, 228
as read-write, 53

root partition, for filesystem, 37–38
root password, 41, 46, 179–180

for jail, 574
requiring, 484

root user, and NFS server, 305
rootkit-hunting software, 490
rotating logs, by size and time, 555
routers option, in dhcpd, 515
rpcbind(8) daemon, 303
RPCs (remote procedure calls),

303, 330
RSA key, 493
rsync(8) program, 352
rtld(1), 406, 409
running processes, 534
runtime tunable sysctl, 101
RUN_UPDATES option, for mergemaster, 447

642 Index

S
Safe Mode, 59
Samba, 315
sappnd flag, 193
SATA disk controllers, 24
savecore(8), 608–609
/sbin/nologin, 183
scheduling

to balance processes, 543
binary updates, 434
tasks, 520–524

schg flag, 193
scp(1), 498
script(1) command, 92
script kiddies, 168–169
scripts, startup and shutdown, 402–405
scrubbing, 466
SCSI drives, for tape backups, 84
SCSI_DELAY option, for kernel, 115
SCTP transport protocol, in kernel, 114
searching ports index file, 368–369
SEARCHPATHS variable, 323
sector size, 202
Secure Shell, 331
securelevels, 192, 195–198

limitations, 197
security, 167–199

attackers, 168–170
and crash dump, 611–612
data protecton, 428
default accept vs. default deny,

454–455
for diskless systems, 591
file flags, 192–194
FreeBSD announcements, 170–171
global settings, 482–485

install-time options, 483–484
secure console, 484

hacking, 490
for inetd, 509
LD_ environment variables and, 409
login classes, 188–192
monitoring system, 489–490
network targets, 198–199
for packages, 490
preparing for intrusions with

mtree(1), 485–489
removable media risks, 284
resource limits, 189–190
securelevels, 192, 195–198
in SNMP, 559–560

TFTP and, 518
user security, 171–178
for users, 185–192
workstation vs. server, 199

security.bsd sysctl tree, 485
security.jail sysctl tree, 565
self-signed certificates, 480–481
Sendmail, 499

shutting down, 503
sendmail(8) daemon, 70
sendmail_outbound_enable, 70
Separate Intent Log (SLOG), 267
serial consoles, 74–82

configuration, 77–79
disconnecting, 80
IPMI setup, 76–77
and panics, 609
physical setup, 75–76
using, 79–82

serial port protocol, 74–75
server security, vs. workstation, 199
ServerName update.freebsd.org option,

for freebsd update, 429
SERVERS provider, 404
service(8) command, 71–73, 402
services

configuration, 41–46
for jails, 566
listing and identifying enabled,

71–72
managing, 72–73
restarting, 72
sysrc(8) to enable, 63–64

set command, 56
setenv environment variable, 191
setuid programs, disabling, 236
severity option, for log message, 460
sftp(1), 498
shared libraries, 71, 405–410

adding directories to search list,
407–408

attaching to programs, 406–409
obsolete, 445–446
program requirements, 409
remapping, 410–412
versions and files, 406

sharenfs property, for NFS exports, 308
shares, mounting in CIFS, 313–314
shell environment variable, 191
$SHELL environment variable, 570
shell scripts, variables, 461

Index 643

shells, 178–179
selecting, 52
for user, 172

shorn write, 270
show command, 56
showmount(8) command, 309
shutdown, 73–74

memory disks, 291
and stopping jails, 568
syncer and, 245

shutdown scripts, 402–405
shutdown(8) command, 74
SID (session ID), 539
SIGHUP, logfile rotation on, 557
signal, for log rotation, 557
single-key ciphers, 475
single-user mode, 51, 52–54

network in, 54
programs available, 53–54
reproducing panic in, 611–612
upgrades and, 448

skipping modules, 121
SLAAC, 42
sleeping processes, 534
slice device node, 224–225
slicer, 207–208
slices, 223

activating, 226
creating, 225–226
removing, 226

smart host, for Dragonfly, 501
SMB (Server Message Block), 310
smbfs.ko module, 311
smbutil(8) program, 310–315

view command, 313
SMP (symmetric multiprocessing), 115,

396–401
problems, 399
and processors, 399–401

SMT (Simultaneous
Multi-Threading), 400

snapshots, 271–273
accessing, 272
creating, 271–272
destroying, 273
disk usage, 244–245
finding, 244
of FreeBSD-current and -stable, 425
taking and destroying, 244
UFS, 243–245

vs. journaling, 238
ZFS, 276

SNMP (Simple Network Management
Protocol), 557–562

basics, 557–560
MIBs (management information

base), 558–559
security, 559–560

sockstat(1), 155, 198, 489, 566
soft updates, 237

for background fsck, 247–248
and journaling, 238, 242

software
add-on, 336
attaching shared libraries to,

406–409
building, 362
commercial for Linux, 419
installing, 342–344

from Ports Collection, 370–381
jail for, 565
running from wrong architecture

or release, 420
running from wrong OS, 412–418

ABI reimplementation, 413–414
binary branding, 414
emulation, 413
recompilation, 412–413

software binaries, branding, 417–418
SOL (Serial-over-LAN), 74

IPMI connections, 80–81
Solaris, xl, 21
solid-state disks, TRIM protocol,

242–243
sort(1) program, 251
source code, 336

building FreeBSD from, 437–448
for FreeBSD upgrade, 435
for kernel, 106
for port, 371
and software, 362–363
updating, 436
upgrading from, 428

Sparc hardware, 18
sparse files, 293–294
spawn option, for TCP connection,

461–462
special mounts, 234
SRV record, 357
ssh-keygen command, 493, 595
SSH (Secure Shell), 44, 478, 491–499

clients, 497–498
configuring daemon, 494–497
copying files over, 498–499

644 Index

SSH (Secure Shell), continued
keys and fingerprints, 493

diskless clients and, 595
for remote logins, 66–67
server, 492–493

enabling blacklistd in, 473
user access, managing, 496

sshd(8), 492–493
jail for, 567

SSL (Secure Sockets Layer), 478
library, 376

stack guard page, 485
stack, nonexecutive, 484–485
stackable GEOM classes, 205
stackable mounts, 254–255
standard error, xlvii
standard input, xlvii
standard output, xlvii
STAPE environment variable, 85
startup scripts, 402–405, 446
startup services, 44
startup/shutdown scripts, from

vendors, 405
stateful inspection, 464–465
stateful protocol, 138
stateless protocol, 137
status command, 73, 86
status mail, 545–546
storage

adding to UFS, 252–255
device control programs, 205
device nodes, 202–203
disks, lies, 201–202
encryption, 595–598
GEOM, 204–208
hard disks, partitions and schemes,

208–209
identifying devices, 204
on jail host, 565

streaming protocol, 138
strings, 99
striped VDEVs (virtual devices), 265
su(1) (switch user) command, 179
subnets, 133–136
Subversion (SVN), 435

updates, 436
Sun Microsystems, xxxv, xl
sunlnk flag, 193
superblock, 232
SVN (Subversion), 435
svn(1), 16
svnlite(1) command, 435

for source code, 436

swap-backed memory disks, 290
swap partition, for crash dump, 608
swap space, 24–25, 37, 39, 536,

540–541, 542
partition letter for, 228

switches
for Ethernet, 140
failure, 141
quality, 159

symbol versioning, 406
symlinks, disabling, 237
symmetric multiprocessing (SMP),

396–401
SYN packet, 464
syncer, 245
synchronous mounts, 235
sysctl(8) program, 97–101

MIBs (management information
base), 98–99

values and definitions, 99
sysctl.out file, 97
sysctls

changing, 100–101
runtime tunable, 101
to set fallback brand, 418
viewing, 100

syslog protocol, levels, 547
syslog server, 141
syslogd(8), 66, 460, 546–553

customization, 552–553
facilities as source of log entry,

546–547
and jails, 566–567
local facilities, 549
logging by program name, 550
processing messages with, 548–553

sysrc(8), 63–64
systat(1), 528
system accounts, 182
system administrator, xlv–xlviii
system backups, 84
system calls, 419
system clock, setting, 43
system shutdown, 73–74
system status, top(1) tool for

overview, 533

T
tables, configuring for PF, 466
tape drives, density, 86

Index 645

tapes
for backups, 84–87
rewinding, 84–85

tar(1) command, 87–92, 254
modes, 88–90
non-default storage, 90
verbose flag for, 90

tarball, 88
targets, for Makefile, 362
Tarsnap, 87
tasks, scheduling, 520–524
tasting, 205
TCP/IP network protocol, 123, 124

basics, 136–139
TCP port 22, 494
TCP port, for Dragonfly, 501
TCP (Transmission Control Protocol),

126, 137–138
displaying retransmits, 157
NFS over, 303

TCP wrappers, 454, 455–462
configuring, 456–462

client list for, 457–458
keywords, 458

TCP_HHOOK networking option, for
kernel, 114

TCP_OFFLOAD networking option,
for kernel, 114

telnet(1), 481, 492
Templates directory, in Ports

Collection, 366
temporary mount point, for new

partition, 253
term environment variable, 191
terminal emulators, 79
terminal server, 75
terminals, 332, 584–586
testing

crash dump, 609–610
FreeBSD, 426–427
interface, 146

changes, by rebooting, 149
jails, 573–574
kernel, 439
Linux mode, 417

text editor window, 175
textdump, 610–611
TFTP (Trivial File Transfer Protocol),

518–520
tftpd(8), 518

and boot loader, 590–591
configuring, 519

threading library, 402
threads, 398, 401–402

bottleneck analysis with
vmstat(8), 529

three-way handshake, 138, 464
thumb drive

with partition table, mounting, 285
writing images to, 288

tiered hardware, 17, 18
“tilde-dot” disconnect sequence, 80
tilde (~), for user’s home directory, 190
time

epochal seconds and real dates,
487–488

for logs, 554–555
redistributing, 506–507

time servers, 505
time slice, 397
time zone, 43–44

local data, 322
setting, 504

time zone files, 430–431
timecounter, 60
timed rc script, 404
times.allow option, 192
times.deny option, 192
timezone environment variable, 191
tip(1) program, 79
TLS (Transport Layer Security), 478

connecting to protected ports,
481–482

enabling, 502
host key, 479

/tmp, memory for, 65
TMPDIR variable, 323
tmpfs(5) program, 289
Tools directory, in Ports Collection, 366
top(1) tool, 533

and I/O, 538
process list for, 537–538

Transmission Control Protocol
(TCP), 126

transport layer (of OSI), 126, 127, 128
transport protocol, ports, 138–139
traps in SNMP, 558
TRIM protocol, 242–243, 291
trimming kernel, 112–118
troubleshooting, 599–612. See also bug

reports
dependency problems, 354–355
kernel builds, 118–119
resources for, 601–602

646 Index

TrueOS, xl
truncate(1) program, 293–294
trunking, 163
truss(1), 418–419
tsch shell, 46

nice vs., 544
tunables, 62, 102
tunefs(8), 241–242, 249
tutorials, 8
twist option, for TCP connection,

460–461
typescript file, 92
TZ environment variable, 505
tzsetup(8), 504

U
uappnd flag, 193
uart(4) device driver, 78
uchg flag, 193
UCL (universal configuration

language), 17, 587
UDF (Universal Disk Format), 283

burning to optical media, 287–288
creating, 287

UDP (User Datagram Protocol), 37,
126, 137

NFS over, 303
PF and, 468

UEFI (Unified Extensible Firmware
Interface), 50

and GPT, 222–223
UFS (Unix File System), xliii, 20,

231–255
adding new storage, 252–255
block and fragment size, 239–240
components, 232–233
creating and tuining, 239–243
expanding, 243
installs, 34–38
for jails, 565
minimum free space, 242
mount options, 234–237
mounting, 282
partitioning with, 23–24
and poudriere, 383
recovery and repair, 245–249
resiliency, 237–238
in single-user mode, 52–53
snapshots, 243–245

disk usage, 244–245
finding, 244

vs. journaling, 238
taking and destroying, 244

space reservations, 249
and top(1), 533–536
tuning, 241–243

UFS_DIRHASH option, for kernel, 114
UIDs file, in Ports Collection, 366
umask environment variable, 191
umount(8), 282, 285
UNAVAIL pool state, 275
uncompressed installation media, 26–27
uninstalling

packages, 350–351
ports, 379

universal configuration language
(UCL), 17

University of California, Berkeley, xxxiv
Unix, xxxiv, xlvi–xlviii

versions, xl–xlii
Unix administrator, xlv
Unix File System (UFS), xliii, 21. See

also UFS (Unix File System)
Unix-like, xlii
Unix Sytems Laboratories (USL), xxxvi
UNKNOWN rule, for TCP wrapper, 457, 458
unmounted parent datasets, 262
unmounting

filesystems, 233–237
memory disks, 291

unprivileged users, 45, 452–453
untarring, 90
UpdateIfUnmodified option, for freebsd

update, 429
UPDATING file

for building FreeBSD, 438
in Ports Collection, 366

updating FreeBSD, source code, 436
upgrading FreeBSD, 421–450

binary updates, 428–434
checking for obsolete files, 444–445
and data risk, 428
methods, 428
optimizing and customizing, 434
packages and, 449–450
release updates, 431–434
reverting updates, 434
from source code, 435
versions, 26, 422–427

uptime, 534
USB drives

creating key on, 597
for tape backups, 84
unmounting, 285

Index 647

User Datagram Protocol (UDP). See
UDP (User Datagram
Protocol)

$USER environment variable, 570
user groups, 173
user ID (UID), 171, 183
user sessions, logging by, 550
userland, 97, 415, 444

building, 438–439
diskless client, NFS server and,

591–592
for Linuxator, 416

username
for dma(8), 502
false, for Dragonfly, 501

users, xxxix
account expiration, 176
adding, 45–46
changing accounts, 175–176
deleting accounts, 178
editing, 173–178
filesystem mounting by, 284
groups, 180–185
for jail, 574
locking accounts, 178
NFS and, 305–306
nobody account, 453
resource limits, 189–190
for running tftpd(8), 519
security, 171–178, 185–192

creating user, 171
unprivileged, 45, 452–453

Uses directory, in Ports Collection, 366
/usr/campat/linux , 416
/usr/lib/compat directory, 445
/usr/local/etc/pkg/repos directory, 357
/usr/local/k1//k0etc/dhcpd.conf file,

514–515
/usr/local/lib, vs. per-port library

directories, 408
/usr/local/poudriere dataset, 383
/usr/ports directory, 364
/usr/ports/INDEX file, 367–370
/usr/ports/LEGAL file, 369–370
/usr/ports/packages directory, 379
/usr/ports/UPDATING file, 392
/usr/sbin/sendmail, 499, 501
/usr/share/snmp file, 559
/usr/src/UPDATING, 437
UTC (Universal Time Clock), 504
uunlnk flag, 194

V
/var/cache/pkg, 345
/var/crash, 609
/var/cron file, 520
/var/db/dhcpd.leases file, 514, 589
/var/db/freebsd-update, 430
/var/db/pkg/vuln.xml file, 490
/var/messages file, errors from

background fsck, 248
/var/run/dmesg.boot file, 59, 62, 84
variables. See also tunables
VCSW (voluntary context switches), 538
VDEVs (virtual devices), 265–267
vendors, startup/shutdown scripts, 405
verbose boot mode, 58, 59
verbose flag, for tar, 90
verbose mode, logs in, 553
verbose_loading variable, 16
verifying backups, 89–90
version control system, for

configuration file, 16
VersionAddendum, 494
vesa_load_ioctl function, 118
vesa_unload_ioctl function, 118
vfs.nfs.diskless_valid, 592
vfs.usermount sysctl, 284
Vigor, 175
Vinum, 206
vipw(8) program, 176–178
virtual devices, selecting, 40
virtual disk, expanding, 223
virtual memory, bottleneck analysis

with vmstat(8), 530
virtual network stack, for jails, 564
virtual processors, 400
virtual terminal, 584
virtualization, 24, 563
virtualization server, ZFS for, 21
vlan_ variable, 165
VLAN (virtual LAN), 164–165
vmstat(8), 541

bottleneck analysis with, 528–532
continuous, 531–532

vnet(9), 564
vnode-backed memory disks, 290
vnodes (virtual nodes), 233
volume managers, vs. GEOM, 206
VuXML (Vulnerability and eXposure

Markup Language), 490

648 Index

W
warning log message, 547
wear-leveling, 242–243
web interface, for configuring BMCs, 76
welcome environment variable, 191
whatis(1), 5, 10
wildcards, for log messages, 548–549
wired memory, 536
wireless cards, 330
WITH environment variable, 375
WITNESS, 60
WITNESS kernel option, 399
wlan module, 562
workgroup keyword, for CIFS

configuration, 312
workstation, security, vs. server, 199
wrappers, 454. See also TCP wrappers

X
X Windows, 584
X11Forwarding, 495
Xenix, xli
XZ compression, 91

Y
YAML, 17, 342

Z
Zetabyte Filesystem (ZFS). See ZFS
zfs create command, 261
zfs destroy command, 261–262
.zfs directory, 272
zfs get command, 260–261
zfs list command, 258–259
ZFS pools, 263–265

zfs rename command, 262
zfs set command, 260
ZFS (Zetabyte Filesystem), xli, xliii,

21–22, 257–279
Advanced Replacement Cache,

536–537
datasets, 258–263
and disk block size, 267–268
installs, 39–41
for jails, 565, 581
and poudriere, 383
and RAID controllers, 18–19
in single-user mode, 53
and top(1), 536

zfs(8)
error messages, 270
for managing NFS, 308

zfs_destroy command, 273
zfs_list command, 272
zfs_scrub command, 274
zfs_snapshot command, 271–272
zfs_status command, 273
zpool create command, 268
zpool get command, 264
zpool list command, 263
zpool online command, 276
zpool relace command, 276
zpool status command, 264, 268
zpool (storage pool), 259, 263

creating and viewing, 268–269
destroying, 270
integrity and repair, 273–276
managing, 267–270
multi-VDEV, 269–270
properties, 264–265
and RAID-Z, 267

zpool(8), error messages, 270
zsetup(8), 322
zstatus_status command, 274

Absolute FreeBSD, 3rd Edition is set in New Baskerville, Futura, Dogma, and
TheSansMono Condensed.

RESOURCES
Visit https://www.nostarch.com/absfreebsd3/ for resources, errata, and more
information.

phone:
1.800.420.7240 oR

1.415.863.9900

email:
saLes@nostaRch.com

web:
www.nostaRch.com

LinUx BaSiCS fOR HaCkERS
Getting Started with Networking,
Scripting, and Security in Kali
by occUpytheweB

faLL 2018, 248 pp., $34.95
isBn 978-1-59327-855-7

HaCking, 2nd EditiOn
The Art of Exploitation
by jon eRickson

feBRUaRy 2008, 488 pp., $49.95
isBn 978-1-59327-144-2

tHE LinUx PROgRamming
intERfaCE
A Linux and UNIX System
Programming Handbook
by michaeL keRRisk

octoBeR 2010, 1552 pp., $99.95
isBn 978-1-59327-220-3

HOw LinUx wORkS,
2nd EditiOn
What Every Superuser Should Know
by BRian waRD

novemBeR 2014, 392 pp., $39.95
isBn 978-1-59327-567-9

tHE tCP/iP gUidE
A Comprehensive, Illustrated Internet
Protocols Reference
by chaRLes m. kozieRok

octoBeR 2005, 1616 pp., $99.95
isBn 978-1-59327-047-6

More no-nonsense books from nO StaRCH PRESS

PRaCtiCaL BinaRy anaLySiS
Build Your Own Linux Tools for
Binary Instrumentation, Analysis,
and Disassembly
by Dennis anDRiesse

faLL 2018, 440 pp., $49.95
isBn 978-1-59327-912-7

www.nostarch.com

TH E F I N EST I N G E E K E NTE RTA I N M E NT ™ SHELVE IN:
OPERATING SYSTEM

S/UNIX

$59.95 ($78.95 CDN)

T H E
D E F I N I T I V E

G U I D E T O
F R E E B S D

T H E
D E F I N I T I V E

G U I D E T O
F R E E B S D

FreeBSD—the powerful, flexible, and free Unix-like
operating system—is the preferred server for many
enterprises. But it can be even trickier to use than
either Unix or Linux, and harder still to master.

In this completely revised and updated third edition
of Absolute FreeBSD, FreeBSD committer Michael W.
Lucas covers the newest features and teaches you how
to manage FreeBSD systems. You’ll dive deep into
server management, learning both how things work
and why they work the way they do. New to this edition
is coverage of modern disks and redesigned jail and
packaging systems, as well as FreeBSD transformative
features designed for cloud-based management, like
libxo and UCL.

You’ll also learn how to:

• Choose the right filesystem for your environment

• Back up and restore critical data

• Tweak the kernel—and when not to

• Configure your network, including how to activate
interfaces and select congestion control algorithms

• Manage UFS, ZFS, and other critical filesystems

• Work with advanced security features like blacklistd
and packet filtering

• Implement container-style virtualization with jails

• Perform panic management and bug reporting

Whether you’re a beginner simply in need of a
complete introduction to FreeBSD or an experienced
sysadmin or devops person looking to expand your
skills, Absolute FreeBSD will show you how to take
your FreeBSD system from “just working” to “working
well.” Don’t leave your cubicle without it.

A B O U T T H E A U T H O R

After using Unix since the late ‘80s and spending
twenty-odd years as a network and system adminis-
trator specializing in building and maintaining
high-availability systems, Michael W. Lucas now
writes about them for a living. He’s written more
than 30 books, which have been translated into nine
languages. His critically acclaimed titles include
Absolute OpenBSD, Cisco Routers for the Desperate,
and PGP & GPG, all from No Starch Press. Learn
more at https://mwl.io/.

With a foreword by

M A R S H A L L

K I R K M c K U S I C K
® A B S O L U T E

F R E E B S D
A B S O L U T E

F R E E B S D®

T H E C O M P L E T E G U I D E T O F R E E B S D

M I C H A E L W . L U C A S

3 R
D

E D
I T I O

N

®

L
U

C
A

S
A

B
S

O
L

U
T

E
F

R
E

E
B

S
D

A
B

S
O

L
U

T
E

F
R

E
E

B
S

D

3 R D E D I T I O N

®

®

®

	Brief Contents
	Contents in Detail
	Foreword
	Acknowledgments
	Introduction
	What Is FreeBSD?
	BSD: FreeBSD’s Granddaddy
	The BSD License
	The AT&T/CSRG/BSDi Iron Cage Match
	The Birth of FreeBSD

	FreeBSD Development
	Committers
	Contributors
	Users

	Other BSDs
	NetBSD
	OpenBSD
	DragonFly BSD
	macOS
	FreeBSD’s Children

	Other Unixes
	Solaris
	illumos
	AIX
	Linux
	Other Unixes

	FreeBSD’s Strengths
	Portability
	Power
	Simplified Software Management
	Customizable Builds
	Advanced Filesystems

	Who Should Use FreeBSD?
	Who Should Run Another BSD?
	Who Should Run a Proprietary Operating System?
	How to Read This Book
	What Must You Know?
	For the New System Administrator
	Desktop FreeBSD
	How to Think About Unix

	Notes on the Third Edition
	Contents of This Book

	Chapter 1: Getting More Help
	Why Not Beg for Help?
	The FreeBSD Attitude
	Support Options

	Man Pages
	Manual Sections
	Navigating Man Pages
	Finding Man Pages
	Section Numbers and Man
	Man Page Contents

	FreeBSD.org
	Web Documents
	The Mailing List Archives
	The Forums

	Other Websites
	Using FreeBSD Problem-Solving Resources
	Checking the Handbook and FAQ
	Checking the Man Pages
	Mailing Lists Archives and Forums
	Using Your Answer

	Asking for Help
	Composing Your Message
	Responding to Email
	The Internet Is Forever

	Chapter 2: Before You Install
	Default Files
	Configuration with UCL
	FreeBSD Hardware
	Proprietary Hardware
	Hardware Requirements
	BIOS versus EFI

	Disks and Filesystems
	FreeBSD Filesystems
	Filesystem Encryption
	Disk Partitioning Methods
	Partitioning with UFS
	Multiple Operating Systems
	Multiple Hard Drives
	Swap Space

	Getting FreeBSD
	FreeBSD Versions
	Choosing Installation Images

	Network Installs

	Chapter 3: Installing
	Core Settings
	Distribution Selection
	Disk Partitioning
	UFS Installs
	ZFS Installs

	Network and Service Configuration
	Finishing the Install

	Chapter 4: Start Me Up! The Boot Process
	Power-On
	Unified Extensible Firmware Interface
	Basic Input/Output System

	The Loader
	Boot Multi User [Enter]
	Boot FreeBSD in Single-User Mode
	Escape to loader prompt
	Reboot

	Single-User Mode
	Disks in Single-User Mode
	Programs Available in Single-User Mode
	The Network in Single-User Mode
	Uses for Single-User Mode

	The Loader Prompt
	Viewing Disks
	Loader Variables
	Reboot
	Booting from the Loader

	Loader Configuration
	Boot Options
	Startup Messages
	Multiuser Startup
	/etc/rc.conf, /etc/rc.conf.d, and /etc/defaults/rc.conf

	The rc.d Startup System
	The service(8) Command
	System Shutdown

	Serial Consoles
	Serial Protocol
	Physical Serial Console Setup
	IPMI Serial Console Setup
	Configuring FreeBSD’s Serial Console
	Using Serial Consoles
	Working at the Console

	Chapter 5: Read This Before You Break Something Else! (Backup and Recovery)
	System Backups
	Backup Tapes
	Tape Drive Device Nodes, Rewinding, and Ejecting
	The $TAPE Variable
	Tape Status with mt(1)
	Other Tape Drive Commands

	BSD tar(1)
	tar Modes
	Other tar Features
	Compression
	Permissions Restore
	And More, More, More . . .

	Recording What Happened
	Repairing a Broken System

	Chapter 6: Kernel Games
	What Is the Kernel?
	Kernel State: sysctl
	sysctl MIBs
	sysctl Values and Definitions
	Viewing sysctls
	Changing sysctls
	Setting sysctls Automatically

	The Kernel Environment
	Viewing the Kernel Environment
	Dropping Hints to Device Drivers

	Kernel Modules
	Viewing Loaded Modules
	Loading and Unloading Modules
	Loading Modules at Boot

	Build Your Own Kernel
	Preparations
	Buses and Attachments
	Back Up Your Working Kernel
	Configuration File Format
	Configuration Files

	Building a Kernel
	Booting an Alternate Kernel

	Custom Kernel Configuration
	Trimming a Kernel
	Troubleshooting Kernel Builds

	Inclusions, Exclusions, and Expanding the Kernel
	NOTES
	Inclusions and Exclusions
	Skipping Modules

	Chapter 7: The Network
	Network Layers
	The Physical Layer
	Datalink: The Physical Protocol
	The Network Layer
	Heavy Lifting: The Transport Layer
	Applications

	The Network in Practice
	Getting Bits and Hexes
	Network Stacks
	IPv4 Addresses and Netmasks
	Computing Netmasks in Decimal
	Unusable IP Addresses
	Assigning IPv4 Addresses

	IPv6 Addresses and Subnets
	IPv6 Basics
	Understanding IPv6 Addresses
	IPv6 Subnets
	Link-Local Addresses
	Assigning IPv6 Addresses

	TCP/IP Basics
	ICMP
	UDP
	TCP
	How Protocols Fit Together
	Transport Protocol Ports

	Understanding Ethernet
	Protocol and Hardware
	MAC Addresses

	Chapter 8: Configuring Networking
	Network Prerequisites
	Configuring Changes with ifconfig(8)
	Adding an IP to an Interface
	Testing Your Interface
	Set Default Route
	Multiple IP Addresses on One Interface
	Renaming Interfaces
	DHCP
	Reboot!

	The Domain Name Service
	Host/IP Information Sources
	Local Names with /etc/hosts
	Configuring Nameservice
	Caching Nameserver

	Network Activity
	Current Network Activity
	What’s Listening on Which Port?
	Port Listeners in Detail
	Network Capacity in the Kernel

	Optimizing Network Performance
	Optimizing Network Hardware
	Memory Usage
	Maximum Incoming Connections
	Polling
	Other Optimizations

	Network Adapter Teaming
	Aggregation Protocols
	Configuring lagg(4)

	Virtual LANs
	Configuring VLAN Devices
	Configuring VLANs at Boot

	Chapter 9: Securing Your System
	Who Is the Enemy?
	Script Kiddies
	Disaffected Users
	Botnets
	Motivated Skilled Attackers

	FreeBSD Security Announcements
	User Security
	Creating User Accounts
	Configuring Adduser: /etc/adduser.conf
	Editing Users

	Shells and /etc/shells
	root, Groups, and Management
	The root Password
	Groups of Users
	Using Groups to Avoid Root

	Tweaking User Security
	Restricting Login Ability
	Restricting System Usage

	File Flags
	Setting and Viewing File Flags

	Securelevels
	Securelevel Definitions
	Which Securelevel Do You Need?
	What Won’t Securelevels and File Flags Accomplish?
	Living with Securelevels

	Network Targets
	Putting It All Together

	Chapter 10: Disks, Partitioning, and GEOM
	Disks Lie
	Device Nodes
	The Common Access Method
	What Disks Do You Have?
	Non-CAM Devices

	THE GEOM STORAGE ARCHITECTURE
	GEOM Autoconfiguration
	GEOM vs. Volume Managers
	Providers, Consumers, and Slicers
	GEOM Control Programs
	GEOM Device Nodes and Stacks

	Hard Disks, Partitions, and Schemes
	The Filesystem Table: /etc/fstab
	What’s Mounted Now?
	Disk Labeling
	Viewing Labels
	Sample Labels

	GEOM Withering
	The gpart(8) Command
	Viewing Partitions
	Other Views
	Removing Partitions

	Scheming Disks
	Removing the Disk Partitioning Scheme
	Assigning the Partitioning Scheme

	The GPT Partitioning Scheme
	GPT Device Nodes
	GPT Partition Types
	Creating GPT Partitions
	Resizing GPT Partitions
	Changing Labels and Types
	Booting on Legacy Hardware
	Unified Extensible Firmware Interface and GPT
	Expanding GPT Disks

	The MBR Partitioning Scheme
	What Is the Master Boot Record?
	BSD Labels
	MBR Device Nodes
	MBR and Disklabel Alignment
	Creating Slices
	Removing Slices
	Activating Slices

	BSD Labels
	Creating a BSD Label
	Creating BSD Label Partitions
	Assigning Specific Partition Letters

	Chapter 11: The Unix File System
	UFS Components
	The Fast File System
	How UFS Uses FFS
	Vnodes

	Mounting and Unmounting Filesystems
	Mounting Standard Filesystems
	Special Mounts
	Unmounting a Partition
	UFS Mount Options

	UFS Resiliency
	Soft Updates
	Soft Updates Journaling
	GEOM Journaling

	Creating and Tuning UFS Filesystems
	UFS Labeling
	Block and Fragment Size
	Using GEOM Journaling
	Tuning UFS
	Expanding UFS Filesystems

	UFS Snapshots
	Taking and Destroying Snapshots
	Finding Snapshots
	Snapshot Disk Usage

	UFS Recovery and Repair
	System Shutdown: The Syncer
	Dirty Filesystems
	File System Checking: fsck(8)
	Forcing Read-Write Mounts on Dirty Disks
	Background fsck, fsck -y, Foreground fsck, Oy Vey!

	UFS Space Reservations
	How Full Is a Partition?
	Adding New UFS storage
	Partitioning the Disk
	Configuring /etc/fstab
	Installing Existing Files onto New Disks
	Stackable Mounts

	Chapter 12: The Z File System
	Datasets
	Dataset Properties
	Managing Datasets

	ZFS Pools
	Pool Details
	Pool Properties
	Viewing Pool Properties

	Virtual Devices
	VDEV Types and Redundancy

	Managing Pools
	ZFS and Disk Block Size
	Creating and Viewing Pools
	Multi-VDEV Pools
	Destroying Pools
	Errors and -f

	Copy-On-Write
	Snapshots
	Creating Snapshots
	Accessing Snapshots
	Destroying Snapshots

	Compression
	Pool Integrity and Repair
	Integrity Verification
	Repairing Pools
	Pool Status

	Boot Environments
	Viewing Boot Environments
	Creating and Accessing Boot Environments
	Activating Boot Environments
	Removing Boot Environments
	Boot Environments at Boot
	Boot Environments and Applications

	Chapter 13: Foreign Filesystems
	FreeBSD Mount Commands
	Supported Foreign Filesystems
	Permissions and Foreign Filesystems

	Using Removable Media
	Ejecting Removable Media
	Removable Media and /etc/fstab
	Formatting FAT32 Media
	Creating Optical Media
	Writing Images to Thumb Drives

	Memory Filesystems
	tmpfs
	Memory Disks
	Mounting Disk Images
	Filesystems in Files

	devfs
	/dev at Boot
	Global devfs Rules
	Dynamic Device Management with devd(8)

	Miscellaneous Filesystems
	The Network File System
	NFS Versions
	Configuring the NFS Server
	Configuring NFS Exports
	Enabling the NFS Client

	The Common Internet File System
	Prerequisites
	Kernel Support
	Configuring CIFS
	nsmb.conf Keywords
	CIFS Name Resolution
	Other smbutil(1) Functions
	Mounting a Share
	Other mount_smbfs Options
	nsmb.conf Options
	CIFS File Ownership

	Serving CIFS Shares

	Chapter 14: Exploring /etc
	/etc Across Unix Species
	/etc/adduser.conf
	/etc/aliases
	/etc/amd.map
	/etc/auto_master
	/etc/blacklistd.conf
	/etc/bluetooth, /etc/bluetooth.device.conf, and /etc/defaults/bluetooth.device.conf
	/etc/casper
	/etc/crontab and /etc/cron.d
	/etc/csh.*
	/etc/ddb.conf
	/etc/devd.conf
	/etc/devfs.conf, /etc/devfs.rules, and /etc/defaults/devfs.rules
	/etc/dhclient.conf
	/etc/disktab
	/etc/dma/
	/etc/freebsd-update.conf
	/etc/fstab
	/etc/ftp.*
	/etc/group
	/etc/hostid
	/etc/hosts
	/etc/hosts.allow
	/etc/hosts.equiv
	/etc/hosts.lpd
	/etc/inetd.conf
	/etc/libmap.conf
	/etc/localtime
	/etc/locate.rc
	/etc/login.*
	/etc/mail
	/etc/mail.rc
	/etc/mail/mailer.conf
	/etc/make.conf
	CFLAGS
	COPTFLAGS
	CXXFLAGS

	/etc/master.passwd
	/etc/motd
	/etc/mtree
	/etc/netconfig
	/etc/netstart
	/etc/network.subr
	/etc/newsyslog.conf
	/etc/nscd.conf
	/etc/nsmb.conf
	/etc/nsswitch.conf
	/etc/ntp/, /etc/ntp.conf
	/etc/opie*
	/etc/pam.d/*
	/etc/passwd
	/etc/pccard_ether
	/etc/periodic.conf and /etc/defaults/periodic.conf
	daily_output=”root”
	daily_show_success=”YES”
	daily_show_info=”YES”
	daily_show_badconfig=”NO”
	daily_local=”/etc/daily.local”

	/etc/pf.conf, /etc/pf.os
	/etc/phones
	/etc/portsnap.conf
	/etc/ppp/
	/etc/printcap
	/etc/profile
	/etc/protocols
	/etc/pwd.db
	/etc/rc*
	/et/regdomain.xml
	/etc/remote
	/etc/resolv.conf
	/etc/rpc
	/etc/security/
	/etc/services
	/etc/shells
	/etc/skel/
	/etc/snmpd.config
	/etc/spwd.db
	/etc/src.conf
	/etc/ssh/
	/etc/ssl/
	/etc/sysctl.conf
	/etc/syslog.conf, /etc/syslog.conf.d/
	/etc/termcap, /etc/termcap.small
	/etc/ttys
	/etc/unbound/
	/etc/wall_cmos_clock
	/etc/zfs/

	Chapter 15: Making Your System Useful
	Ports and Packages
	Packages
	Package Files
	Introducing pkg(8)
	Installing pkg(8)
	Common pkg Options
	Configuring pkg(8)
	Finding Packages
	Installing Software
	The Package Cache
	Package Information and Automatic Installs
	Uninstalling Packages
	Changing the Package Database
	Locking Packages
	Package Files
	Package Integrity
	Package Maintenance
	Package Networking and Environment

	Package Repositories
	Repository Configuration
	Repository Customization
	Repository Inheritance

	Package Branches
	Upgrading Packages

	Chapter 16: Customizing Software with Ports
	Making Software
	Source Code and Software
	The Ports Collection
	Ports

	The Ports Index
	Searching the Index
	Legal Restrictions

	What’s In a Port?
	Installing a Port
	Port Customization Options
	Building Packages
	Uninstalling and Reinstalling Ports
	Tracking Port Build Status
	Cleaning Up Ports
	Read-Only Ports Tree
	Changing the Install Path

	Private Package Repositories
	Poudriere Resources
	Installing and Configuring Poudriere
	Poudriere Jail Creation
	Install a Poudriere Ports Tree
	Configuring Poudriere Ports
	Running Poudriere
	Using the Private Repository

	All Poudrieres, Large and Small
	Small Systems
	Large Systems

	Updating Poudriere
	More Poudriere

	Chapter 17: Advanced Software Management
	Using Multiple Processors: SMP
	Kernel Assumptions
	SMP: The First Try
	Today’s SMP
	Processors and SMP

	Threads, Threads, and More Threads
	Startup and Shutdown Scripts
	rc Script Ordering
	A Typical rc Script
	Special rc Script Providers
	Vendor Startup/Shutdown Scripts
	Debugging Custom rc Scripts

	Managing Shared Libraries
	Shared Library Versions and Files
	Attaching Shared Libraries to Programs
	LD_LIBRARY_PATH and LD_PRELOAD
	What a Program Wants

	Remapping Shared Libraries
	Running Software from the Wrong OS
	Recompilation
	Emulation
	ABI Reimplementation
	Binary Branding
	Supported ABIs
	Installing and Configuring the Linuxulator

	Using Linux Mode
	Debugging Linux Mode

	Running Software from the Wrong Architecture or Release

	Chapter 18: Upgrading FreeBSD
	FreeBSD Versions
	Releases
	FreeBSD-current
	FreeBSD-stable
	Snapshots
	FreeBSD Support Model
	Testing FreeBSD
	Which Version Should You Use?

	Upgrade Methods
	Binary Updates
	/etc/freebsd-update.conf
	Running freebsd-update(8)
	Reverting Updates
	Scheduling Binary Updates
	Optimizing and Customizing FreeBSD Update

	Upgrading via Source
	Which Source Code?
	Updating Source Code

	Building FreeBSD from Source
	Build the World
	Build, Install, and Test a Kernel
	Prepare to Install the New World
	Installing the World
	Customizing Mergemaster
	Upgrades and Single-User Mode

	Shrinking FreeBSD
	Packages and System Upgrades
	Updating Installed Ports

	Chapter 19: Advanced Security Features
	Unprivileged Users
	The nobody Account
	A Sample Unprivileged User

	Network Traffic Control
	Default Accept vs. Default Deny
	TCP Wrappers
	Configuring Wrappers
	Wrapping Up Wrappers

	Packet Filtering
	Enabling PF
	Default Accept and Default Deny in Packet Filtering
	Basic Packet Filtering and Stateful Inspection
	Configuring PF
	Small-Server PF Rule Sample
	Managing PF

	Blacklistd(8)
	PF and Blacklistd
	Configuring Blacklistd
	Configuring Blacklistd Clients
	Managing Blacklistd
	De-Blacklisting

	Public-Key Encryption
	OpenSSL
	Certificates
	TLS Trick: Connecting to TLS-Protected Ports

	Global Security Settings
	Install-Time Options
	Secure Console
	Nonexecutable Stack and Stack Guard
	Other Security Settings

	Preparing for Intrusions with mtree(1)
	Running mtree(1)
	mtree(1) Output: The Spec File
	The Exclusion File
	Saving the Spec File
	Finding System Differences

	Monitoring System Security
	Package Security
	If You’re Hacked

	Chapter 20: Small System Services
	Secure Shell
	The SSH Server: sshd(8)
	SSH Keys and Fingerprints
	Configuring the SSH Daemon
	Managing SSH User Access
	SSH Clients

	Email
	mailwrapper(8)
	The Dragonfly Mail Agent
	The Aliases File and DMA

	Network Time
	Setting the Time Zone
	Network Time Protocol

	Name Service Switching
	inetd
	/etc/inetd.conf
	Configuring inetd Servers
	Starting inetd(8)
	Changing inetd’s Behavior

	DHCP
	How DHCP Works
	Configuring dhcpd(8)
	Managing dhcpd(8)

	Printing and Print Servers
	/etc/printcap
	Enabling LPD

	TFTP
	Root Directory
	tftpd and Files
	File Ownership
	tftpd(8) Configuration

	Scheduling Tasks
	cron(8)
	periodic(8)

	Chapter 21: System Performance and Monitoring
	Computer Resources
	Checking the Network
	General Bottleneck Analysis with vmstat(8)
	Processes
	Memory
	Paging
	Disks
	Faults
	CPU
	Using vmstat
	Continuous vmstat

	Disk I/O
	CPU, Memory, and I/O with top(1)
	UFS and top(1)
	ZFS and top(1)
	Process List
	top(1) and I/O

	Following Processes
	Paging and Swapping
	Paging
	Swapping

	Performance Tuning
	Memory Usage
	Swap Space Usage
	CPU Usage
	Rescheduling
	Reprioritizing with Niceness

	Status Mail
	Logging with syslogd
	Facilities
	Levels
	Processing Messages with syslogd(8)
	syslogd Customization

	Log File Management
	Log File Path
	Owner and Group
	Permissions
	Count
	Size
	Time
	Flags
	Pidfile
	Signal
	Sample newsyslog.conf Entry

	FreeBSD and SNMP
	SNMP 101
	Configuring bsnmpd

	Chapter 22: Jails
	Jail Basics
	Jail Host Server Setup
	Jail Host Storage
	Jail Networking
	Jails at Boot

	Jail Setup
	Jail Userland
	/etc/jail.conf
	Testing and Configuring a Jail
	Jail Startup and Shutdown
	Jail Dependencies

	Managing Jails
	Viewing Jails and Jail IDs
	Jailed Processes
	Running Commands in Jails
	Installing Jail Packages
	Updating Jails

	More Jail Options
	Jailing Ancient FreeBSD
	Last Jail Notes

	Chapter 23: The Fringe of FreeBSD
	Terminals
	/etc/ttys Format
	Insecure Console

	Managing Cloudy FreeBSD
	LibXo
	Universal Configuration Language

	Diskless FreeBSD
	Diskless Clients
	DHCP Server Setup
	tftpd and the Boot Loader
	Diskless Security
	The NFS Server and the Diskless Client Userland

	Diskless Farm Configuration
	Configuration Hierarchy
	Diskless Remounting /etc

	Finalizing Setup
	Installing Packages
	SSH Keys

	Storage Encryption
	Generating and Using a Cryptographic Key
	Filesystems on Encrypted Devices

	Chapter 24: Problem Reports and Panics
	Bug Reports
	Before Filing a Bug
	Bad Bug Reports
	The Fix
	Filing Bugs
	After Submitting

	System Panics
	Recognizing Panics
	Responding to a Panic
	Preparations
	The Crash Dump in Action
	Testing Crash Dumps
	Crash Dump Types
	Textdumps
	Dumps and Security

	Afterword
	The FreeBSD Community
	Why Do We Do It?
	What Can You Do?
	If Nothing Else . . .
	Getting Things Done

	Bibliography
	References
	Books I've Written

	Index

