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Preface

Cloud computing is a new concept, building on well-established industrial technologies. The
interactions between the technologies behind Cloud computing had never been of great inter-
est in the academic domain before the Cloud era. The emergence of Cloud computing as an
Internet-scale critical infrastructure has greatly encouraged the collaboration between industry
and academia to analyze this infrastructure. Such collaborations would help in understanding
the vulnerabilities of Cloud and defining research agendas to address the identified vulner-
abilities. In fact, funding bodies and governments have already allocated generous grants to
encourage both academic and industrial collaboration on research activities in Cloud com-
puting. In addition, some universities have very recently introduced Cloud computing-related
subjects as part of their undergraduate and postgraduate degrees to advance the knowledge in
this domain.

Cloud computing has emerged from industry to academia without transferring the knowl-
edge behind this domain. This results in confusion and misunderstanding. Most of the available
trusted resources are industrial and scattered around hundreds of technical manuals and white
papers. These cover different complex domains (e.g., infrastructure management, distributed
database management systems, clustering technology, software architecture, security manage-
ment, and network management). These domains are not easy to understand, as integrated
science, for many people working both in the industry and academia. This book does not
discuss the complex details of each technical element behind Cloud computing, as these are
too complicated to be covered in a single textbook. In addition, discussing these will not help
non-technical readers to understand Cloud computing. This book rather provides a conceptual
and integrated view of the overall Cloud infrastructure; it covers Clouds structure, operation
management, property and security. It also discusses trust in the Cloud – that is, how to estab-
lish trust in Clouds using current technologies – and presents a set of integrated frameworks for
establishing next-generation trustworthy Cloud computing. These elements have never been
discussed before in the same way. The book is rich in real-life scenarios, currently used in a
Cloud production environment. Moreover, we provide practical examples partly clarifying the
concepts discussed throughout the book.

The main objective of this book is to establish the foundations of Cloud computing, building
on an in-depth and diverse understanding of the technologies behind Cloud computing. The
author has more than 15 years of senior industrial experience managing and building all
technologies behind Cloud computing. The book is also based on strong scientific publication
records at international conferences and in leading journals [1–17]. That is to say, this book
presents a neutral view of the area, supported by solid scientific foundations and a strong
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industrial vision. Oxford University has adopted this book as part of its MSc in Software and
Systems Security.

Guide to Using this Book

This section discusses the organization of the book and the required background when reading
different chapters of the book. It also aims to help instructors seeking to adopt this book for
their undergraduate or postgraduate course levels.

Organization of the Book

This book starts with an introduction, followed by three parts: Cloud management; Cloud
security; and practical examples.

The introduction is presented in Chapter 1. It discusses the fundamental concepts
of Cloud computing. That is, Cloud definition, Cloud services, Cloud deployment
types, and the main challenges in Clouds.

The first part (i.e., Cloud management) consists of four chapters. Chapter 2
presents the main components of the Cloud infrastructure. It also discusses the
relationship between the components of Cloud and their interactions. This chapter
is key to understanding the properties of Cloud, the real challenges of Cloud, and
the differences between different deployment types of Cloud. Chapter 3 analyzes
Cloud’s management platforms. The chapter starts by identifying and discussing
the main services which are required to automatically manage Cloud resources.
It then presents a unified view of Cloud’s management platforms and discusses
their required inputs. Following that, the chapter presents the process workflow
of managing user requirements and identifying weaknesses in the management
process. Chapter 4 identifies and analyzes the main properties of the Cloud infras-
tructure. Such properties are important for Cloud users when comparing different
Cloud providers. They are also important for Cloud providers when assessing their
infrastructure and introducing various Cloud business models. Moreover, realiz-
ing the Cloud properties is very important when conducting research in the Cloud
computing domain. Finally, Chapter 5 discusses Clouds automated management
services: virtual and application resource management services.

The second part (i.e., Cloud security) consists of six chapters. Chapter 6 intro-
duces Part Two and highlights its relation to Part One of the book. It also briefly
outlines the trusted computing principles. Chapter 7 discusses the problem of
establishing trustworthy Cloud. The chapter concludes with a set of research direc-
tions for establishing trust in Cloud. The remaining chapters in this part extend the
identified directions and draw a set of integrated frameworks for establishing next-
generation trustworthy Cloud computing. Chapter 8 lays a foundation framework
to address the question of how users can establish trust in Cloud without the need
to get involved in complex technical details. Chapter 9 discusses mechanisms for
remote attestation in Cloud and addresses the question of how to establish trust in
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a composition of multiple entities in which the entities could change dynamically.
Chapter 10 presents a framework for establishing a trustworthy provenance sys-
tem. This helps in monitoring, verifying, and tracking the operation management
of the Cloud infrastructure, that is it helps in the direction of proactive service
management, finding the cause of incidents, customer billing assurance, security
monitoring (as in the case of lessening the effects of insider threats), security and
incident reporting, and tracking both management data and customer data across
the infrastructural resources. Chapter 11 discusses the problem of insiders; it pro-
vides a systematic method to identify potential and malicious insiders in a Cloud
environment.

The last part (i.e., practical examples) consists of two chapters. Chapter 12
presents real-life commercial and open-source examples of some of the concepts
discussed in this book. It also presents a possible implementation of some of the
concepts in the book. Chapter 13 presents a case study which helps in under-
standing the concepts discussed throughout the book.

Required Background

Readers of this book should have a basic understanding of computer security principles and
some understanding of computer systems architecture and network connectivity. Each chapter
in Part Two is composed of three main components: problem analysis, a framework, and
implementation protocols. The first two components require careful understanding of Part
One, while the third component requires, in addition, an extensive understanding of trusted
computing principles and cryptographic protocols. We introduce trusted computing principles
in Chapter 6.

Suggestions for Course Organization

The layout of this book has been carefully designed for postgraduate studies. Specifically, most
chapters cover the teaching material of the Cloud security module1 of Oxford University’s
MSc in Software and Systems Security. This degree is specifically designed to fit the needs
of industrial professionals. The book could also be of great benefit for undergraduate studies.
We suggest the following layout in both cases.

Postgraduate Study

This could follow the Oxford University curriculum in teaching the book (available on its
website), in which we cover selected parts from all chapters. Alternatively, the book could
be taught as two modules: Cloud management and advanced Cloud security. The Cloud
management module would need to complete the first part of the book and part of the third
part of the book. The advanced Cloud security module would need to start with a high-level

1 http://www.cs.ox.ac.uk/softeng/subjects/CLS.html (accessed March 2013).

http://www.cs.ox.ac.uk/softeng/subjects/CLS.html
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introduction to the first part of the book and then cover the details of the second and third
parts of the book. In addition, it would need to cover federated identity management and key
management in Cloud and federated Clouds, which we do not cover here.

Undergraduate Study

As in the case of postgraduate studies, an undergraduate course could cover the Cloud com-
puting subject in two modules: Cloud management and Cloud security. Cloud management
could cover selected sections from all chapters of the first part of the book. The Cloud secu-
rity module would assume that students had already studied information security and Cloud
management. Cloud security could cover the problem analysis and framework components of
the second part of the book. Undergraduate students would also benefit from the third part of
the book as laboratory-based exercise work.
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1
Introduction

This chapter introduces Cloud computing. The introduction helps the reader to get an overview
of Cloud computing and its main challenges. Subsequent chapters of this book assume the
reader understands the content of this chapter.

1.1 Overview

Cloud computing originates from industry (commercial requirements and needs). Governments
and leading industrial bodies involved academia at early stages of adopting Cloud computing
because of its promising future as an Internet-scale critical infrastructure. Involving academia
would ensure that Cloud computing is critically analyzed, which helps in understanding its
problems and limitations. This would also help in advancing the knowledge of this domain
by defining and executing research road maps to establish next-generation trustworthy Cloud
infrastructure. Moreover, academia would provide the required education in Cloud computing
by developing undergraduate and postgraduate courses in this domain.

Cloud comes with enormous advantages; for example, it reduces the capital costs of newly
established businesses, it reduces provisioning time of different types of services, it establishes
new business models, it reduces the overhead of infrastructure management, and it extends IT
infrastructures to the limits of their hosting Cloud infrastructure. Although Cloud computing is
associated with such great features, it also has critical problems preventing its wider adoption
by critical business applications, critical infrastructures, or even end-users with sensitive data.
Examples of such problems include: security and privacy problems, operational management
problems, and legal concerns. The immaturity of Cloud and the generosity of its allocated
funds have made Cloud computing, in a relatively short period of time, one of the most
in-demand research topics around the world.

Cloud computing is built on complex technologies which are not easy to understand, as an
integrated science, for many people working in the industry and academia. A fundamental
reason behind this is the lack of resources analyzing current Cloud infrastructure, its properties
and limitations [1, 2]. The main objective of this book is to establish the foundations of
Cloud computing, which would help researchers and professionals to understand Cloud as an
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integrated science. Understanding the Cloud structure and properties is key for conducting
practical research in this area that could possibly be adopted by industry.

Most current research assumes Cloud computing is a black-box that has physical and virtual
resources. The lack of careful understanding of the properties, structure, management, and
operation of the black-box results in confusion and misunderstanding. In terms of misunder-
standing, this relates to Cloud’s limitations and the expectations of what it could practically
provide. For example, some people claim that Cloud has immediate and unlimited capabilities,
that is immediate and unlimited scalability. This is not practical considering present-day tech-
nologies, such as the limitations of hardware resources. There are also many other factors that
have not been considered in such strong claims, for example should Cloud provide unlimited
resources in case of application software bugs? Should resources be available immediately
upon request without users’ prior agreement? This book discusses these issues in detail.

This chapter is organized as follows. Section 1.2 discusses the definition of Cloud computing.
Section 1.3 clarifies the evolution of Cloud computing. Section 1.4 discusses Cloud services.
Section 1.5 discusses Cloud deployment types. Section 1.6 discusses the main challenges of
Clouds. Finally, we summarize the chapter in Section 1.7 and provide a list of exercises in
Section 1.8.

1.2 Cloud Definition

Cloud computing is a new buzzword in computing terms and it is associated with various
definitions. In this book we focus on two definitions: the first is provided by the National
Institute of Standards & Technology (NIST) [2] and the second is provided by an EU study
of the future directions of Clouds [3]. The main reasons for analyzing these definitions in
particular are:

� The good reputation of the organizations behind the definitions. For example, the EU study
was edited by representatives of leading universities and industrial bodies such as Oracle,
Google, Microsoft, and IBM.

� We found thsse definitions to be unique, such that their combination provides the most
important elements of Cloud as covered throughout this book.

NIST defines Cloud as a model for enabling ubiquitous, convenient, on-demand network
access to a shared pool of configurable computing resources (e.g., networks, servers, storage,
applications, and services) that can be rapidly provisioned and released with minimal
management effort or service provider interaction [2].

In contrast:

An EU study defines Cloud as an elastic execution environment of resources involving mul-
tiple stakeholders and providing a metered service and multiple granularities for specified
level of quality [3].
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Although both definitions come from reputable organizations, they are not consistent. This
is not to say that either of them is wrong, but they are incomplete. Both definitions reveal
many important keywords reflecting Clouds capabilities; however, a careful analysis of these
definitions shows they only have one keyword in common. The first definition uses ‘rapidly
provisioned and released’ while the second definition uses ‘elastic execution.’ These two
keywords have the same objective. However, other keywords are not the same, for example
‘minimal management effort’ as stated by the NIST definition is not stated anywhere in the
EU definition. Similarly, the EU definition uses the keyword ‘metered service’ which is again
not stated anywhere in the NIST definition.

Cloud computing is in fact a combination of both definitions as each definition provides a
partial view of the Cloud attributes. Therefore, we could redefine Cloud computing as follows:

Cloud computing is a model involving multiple stakeholders and enabling ubiquitous, con-
venient, on-demand network access to a shared pool of configurable computing resources
(e.g., networks, servers, storage, applications, and services) that can be rapidly provisioned
and released with minimal management effort or service provider interaction. The model
provides a metered service and multiple granularities for a specified level of quality.

This book focuses primarily on the details behind the elements in the definition which would
clarify the Cloud computing black-box.

1.3 Cloud Evolution

Enterprise infrastructures witnessed three major fundamental changes, which were a result of
major innovations in computer science. These are as follows:

� Traditional enterprise infrastructure. This is the foundation of the virtualization era. Initially,
it starts with a few powerful servers (what used to be called mainframes). With advances
in technologies and an increased number of required applications, the number of servers
increases rapidly. This results in a huge number of resources within an enterprise infras-
tructure. Despite the complexity of the traditional enterprise infrastructure, the relationship
between customers and their resources is simple. Within this, the requirements of customers
are carefully analyzed by system analysts. The system analysts forward the analyzed results
to enterprise architects. The enterprise architects deliver an architecture which is designed to
address the needs of a specific customer application requirement. The resources required by
the delivered architecture in most cases run a specific customer applications. This process
results in a one-to-one relationship between architecture and customer. Such a relationship
causes huge wastage of resources including, for example, computational resources, power
consumption, and data-center spaces. In contrast, this relationship results in a relatively more
secure and customized design than the other evolution models of enterprise infrastructure.

� Virtual enterprise infrastructure. This is the foundation of today’s Cloud infrastructure.
The problems of the traditional enterprise infrastructure, which affect the green agenda,
require novel innovations enabling customers to share resources without losing control or
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increasing security risks. This was the start of the virtualization era, which brings tremendous
advantages in terms of consolidating resources and results in effective utilization of power,
data-center space, etc. A virtual enterprise infrastructure suffers from many problems,
such as security, privacy, and performance problems, which restricts many applications
from running on virtual machines. As a result, virtual infrastructures for many enterprises
support applications that run on virtual resources and those that run directly on physical
resources.

The virtualization era changes the mentality of enterprise architects as the relationship
between users and their physical resources is no longer one-to-one. This raises a big chal-
lenge in terms of how such a consolidated virtualized architecture could satisfy users’
dynamic requirements and unique application nature. Enterprise architects address this by
studying the environment inherited from the traditional enterprise infrastructure, to find that
different architectures have some similarities. The similarities between independent appli-
cations enable enterprise architects to split the infrastructure into groups. Each group has
architecture-specific static properties. The properties enable the group to address common
requirements of a certain category of applications. For example, a group could be allocated
to applications that tolerate a single point of failure; another group could be allocated to
applications that require full resilience with no single point of failure; a third group could
be allocated to applications that are highly computational; a group for archiving systems;
and so on.

The second part of the challenging question is how such a grouping, which is associated
with almost static properties, could be used to address users’ dynamic requirements and
their unique application nature. Enterprise architects realize that virtualization can be fine-
tuned and architected to support the dynamic application requirements which cannot be
provided by the physical group static properties. In other words, a combination of static
physical properties and dynamic virtual properties is used to support customer expectations
in a virtual enterprise infrastructure.

� Cloud infrastructure. This has evolved from the virtual enterprise infrastructure. Chapters
2 and 4 cover the details of Cloud structure and its attributes. Clouds come with many
important and promising features, such as direct interaction with customers via supplied
APIs, automatically managed resources via self-managed services, and support for a pay-
per-use model. In addition, Cloud computing comes with new promising business models
that would enable more efficient utilization of resources and quicker time-to-market. Cloud
computing inherits the problems of the virtual infrastructure and in addition, it comes
with more serious problems including security problems, operational and data management
problems. The problems associated with Cloud prevent its wider adoption, especially by
critical organizations. This chapter discusses the most important problems in Clouds.

1.4 Cloud Services

Cloud services are also referred to as Cloud types in some references. These are served by
Cloud providers to their customers following a pre-agreed service level agreement (SLA).
Figure 1.1 illustrates the commonly agreed Cloud services in the context of a Cloud environ-
ment. Understanding these services requires understanding the structure of the Cloud, which is
discussed in detail in Chapter 2. As illustrated in the figure, the Cloud structure could be viewed
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Figure 1.1 Cloud services

based on the hosting relationship as the following hierarchical layers: physical layer, virtual
layer, software platform and software application layer. The physical layer is composed of
all physical components and their management software components, including the operating
system and the hypervisor. The virtual layer is composed of virtual machines, virtual storage,
and a virtual network managed by the physical layer. The software application and software
platforms are self-explanatory, and could be served either by the virtual layer or directly by
the physical layer.

The management of Cloud services is a shared responsibility between the Cloud provider
and their customers. The level of responsibility is Cloud service specific, as explained next.
Cloud computing has the following main services.

� Infrastructure as a service (IaaS). IaaS provides virtual compute and store resources as
a service to customers. Cloud providers in IaaS manage the physical resources and their
hypervisors. Cloud customers run their software stack and manage the content of their
allocated virtual resources, including guest operating system. Customers in this type should,
in principle, have overall control of their data. At the time of writing, Cloud providers have
ultimate control of customer data.

� Platform as a service (PaaS). PaaS provides the environment and software platforms that
Cloud customers can use to develop and host their own software applications. Unlike IaaS,
PaaS customers do not manage the software platforms provided by the Cloud, but only need
to manage their own software stack. Cloud providers of PaaS expose their own APIs, which
are used directly by customer applications. The exposed APIs, at the time of writing, do not
follow any standard. As a result, Cloud customers of PaaS cannot move their applications
transparently across competing Cloud providers.

� Software as a service (SaaS). SaaS provides ready-to-consume software applications which
address the needs of specific business functions and processes. Cloud providers manage the
software applications and the hosting environment completely. Cloud customers might need
to manage their specific configurations within the supported software application.
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We conclude from the above that Cloud computing provides full outsourcing support for
SaaS, partial outsourcing support for PaaS, and minimal outsourcing support for IaaS. That
is, IaaS in theory provides customers with the greatest control over their resources, while
SaaS provides Cloud providers with the greatest control over their customers’ data and Cloud
customers with the least control over their resources.

The above services are the main services a Cloud provider supports. Some references
discuss other services, such as backup as a service, log as a service, etc. These services would
be categorized under the above main services. For example, backup as a service could be
viewed as SaaS. A Cloud customer does not necessarily need to stick to one service. It is,
rather, likely for a Cloud customer to have a combination of different services. The selection
of the service should be based on different complex factors, such as: the nature of the hosted
application that will be using the service, the customer level of competence in using IT, the
desired level of control, security and privacy requirements, cost factors, and legal requirements.
We discuss these in detail throughout the book.

1.5 Cloud Deployment Types

Clouds have the following main deployment types (also referred to as deployment models in
some references):

� Public Cloud. The infrastructure of a public Cloud is owned by the Cloud provider, but leased
to Cloud customers. The Cloud provider typically manages its physical infrastructure, but
it could outsource specific functions to a third party as in the case of outsourcing hardware
maintenance. Example of this type includes Amazon and RackSpace.

� Private Cloud. A private Cloud deployment type is owned and used by a specific enterprise.
That is, the enterprise employees are the only customer of the private Cloud. The private
Cloud could either directly manage its own infrastructure or it could outsource the manage-
ment to a third party. Example of a private Cloud deployment type includes most banks and
telecoms infrastructure.

� Community Cloud. Organizations sharing common business functions and/or objectives
could collaborate and establish their own specific community Cloud infrastructure. Example
of this include Associated Newspapers which is a group of newspapers and publishing media
that establish a community Cloud infrastructure to serve their common needs.

� Hybrid Cloud. This deployment type is a mixture of private, community, and/or public
Cloud. This is important to support higher resilience, availability, and reliability.

Public Cloud has many more customers than private and community Clouds. As a result,
public Cloud hosts more services and has intensive interactions with customers. Managing
the huge customer base of public Cloud necessitates the public Cloud only hosting services
that could be fully managed automatically with minimal human intervention. Automation
hides the complexity of the infrastructure and increases its resilience. At the current time fully
automated management services are not yet available for most types of applications and virtual
resources. Such a lack of automated management services forces public Cloud providers to
mainly support basic services which can be automated. These basic services currently cover
the needs of casual users, small businesses, and uncritical applications.
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Community and private Cloud deployment types, however, establish strong relations with
their customers. That is, customers typically have a relationship of mutual benefit or shared
goals with the Cloud provider; customers may also be contractually bound to good behavior.
These characteristics give rise to a substantial degree of trust in the Cloud; its architecture is
also important, but perhaps less so. By contrast, users of public Clouds are much more reliant
on infrastructure properties in order to establish trust.

The hybrid Cloud model is different from the above as it is a mixture of different Cloud
deployment types. Carefully managing it could result in higher reliance, reliability or even a
reduction in costs. For example, a hybrid Cloud could be composed of a public and private
Cloud such that the private Cloud hosts the critical and dependent application and the public
Cloud acts as a web front-end or stores protected backup. The hybrid Cloud could also result in
higher risk if badly configured and managed. For example, if a hybrid Cloud is composed of a
highly secure private Cloud and a public Cloud, an attacker could attack the weakest link (i.e.,
the public Cloud) and from there get into the private Cloud. Therefore, careful risk analysis
and management would need to be conducted not only when outsourcing services into public
and community Cloud types, but importantly when moving into a hybrid Cloud type.

1.6 Main Challenges of Clouds

The EU study of Cloud [3] states the following:

Cloud technologies and models have not yet reached their full potential and many of the
capabilities associated with Clouds are not yet developed and researched to a degree that
allows their exploitation to the full degree, respectively meeting all requirements under all
potential circumstances of usage.

This strong statement implicitly indicates that Cloud is still at an early stage of development
and there are lots of challenges that still need to be addressed in this domain. In this section we
highlight the most commonly discussed challenges in Clouds. This book discuss the challenges
and how they could be managed using today’s technologies. The main challenges in Clouds
are as follows:

� Operational management. The scale, heterogeneity, and number of services and users of
Cloud computing are by far more complex than traditional enterprise infrastructure. This
requires automating the process of managing the Cloud environment as the management of
Cloud computing is beyond the capabilities of typical human administrations and current
system management tools. Providing fully automated management services is one of the key
challenges in Cloud, which is discussed in great detail throughout this book. The following
are example of cases which currently require excessive human intervention:
– Automated and effective elasticity property. This means that resources which are used by

a service should reflect the real needs of the service. For example, running applications
should immediately utilize allocated virtual computation, storage, and memory resources
without the need to do further updates and/or restarts. This is not provided effectively
at the current time, which results in an increase in operational management costs and,
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in addition, affects the green agenda. Such a case would require an optimized scheduler
which considers the green agenda, SLA and QoS. For example, it is more efficient to not
power up resources and delay execution if (i) utilized resources will be available shortly
and (ii) SLA/QoS are maintained.

– Self-detection of failure and automated recovery. Failure management within enterprise
infrastructures is provided manually with support from the limited available manage-
ment tools. Such a semi-automatic process reduces the resilience and availability of the
infrastructural resources.

� Data management. The amount of stored data in the Cloud is huge and increasing massively.
Controlling the distribution of data is a big challenge that requires full consideration of
legislation, security, privacy, and performance factors. This problem is considered in the
first part of this book. The following are examples of data management problems:
– The huge volume of Cloud data affects data availability and transmission, as the greater

the size of data the more complex it is to control its movement across the distributed
elements of Clouds.

– The lack of automated data management mechanisms has a direct effect on the provided
QoS.

– Data management is a major concern when scaling and shrinking resources, which is a
result of Cloud elasticity. Cloud elasticity requires ensuring consistency and security of
data when replicated and shrunk.

– Classical DBMS may break in Cloud considering the latency of accessing disks and the
cache coherency across a very large number of nodes.

� Privacy, security, and trust. Establishing trust in Clouds is the ultimate objective of most
research in this domain. Other discussed challenges will eventually help in establishing
trust in the Cloud. Privacy, security, and trust is a top challenge of Cloud that directly
prevents its wider adoption, especially by critical infrastructure. Clouds suffer from major
security concerns, for example: physical resources shared by many (possibly competing)
customers – what is known as the multi-tenant architecture; vulnerability to the insiders
threat of traditional enterprises; complex and heterogeneous architecture increasing security
vulnerabilities. In addition, the Cloud elasticity results in security vulnerabilities when
replicating, distributing, and shrinking data. This process must validate the non-existence
of security holes in remote servers. Equally importantly, in current Cloud users do not have
control over their resources, for example users cannot be assured about the way Cloud
manages resources, about the integrity of their bills, and about Cloud’s compliance with the
greed SLA.

� Forensic and provenance in Clouds. This is one of the main issues in Clouds, and it helps
in addressing many other challenges. A key fundamental requirement for establishing trust
in Cloud is having a trustworthy provenance mechanism. Provenance helps in supporting
proactive service management, assuring the integrity of bills, providing incident manage-
ment, and lessening the impacts of insider threats, which increase Cloud trustworthiness.
We devote Chapter 10 to this important topic.

� Federation and interoperability. The future vision of Cloud computing is to be the Internet-
scale critical infrastructure. This strong vision requires trustworthy and resilient Cloud
infrastructure that can survive even with failures of multiple Cloud providers. Addressing
such a requirement requires establishing a Cloud-of-Clouds (what is also referred to as
federated Clouds). The future vision of Cloud computing also enables customers to switch
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transparently between Cloud providers. Such visions (i.e., federated Clouds and flexibility
in changing Cloud providers) are not available at the current time. One of the main reasons
for this is the lack of standardization in this domain. The first part of this book presents the
taxonomy of federated Clouds and briefly discusses this challenge.

� Performance management. This is a key subject for the success of Clouds, especially when
considering the complexity, enormous customer base, and criticality of the Cloud. For
example, high performance is a key for: managing the operation of the Cloud (e.g., scala-
bility and resource scheduling), copying large amounts of data within the Cloud infrastruc-
ture and across federated Clouds, copying large amounts of data between Cloud customers
and the Cloud infrastructure, and copying large amounts of data across distant locations
within the Cloud infrastructure and across federated Clouds.

� Legislation and policies. Different countries have their own legislation in terms of where
data could be hosted and which data is allowed. Cloud computing has many limitations
for complying with different legislations. For example, current Cloud does not have the
capabilitly to allow users to enforce the location of where their data could be stored and/or
processed. In addition, current Cloud computing does not provide users with the capability
to enforce their requirements (e.g., data privacy and security) and neither does it provide
the assurance of their enforcement. This book does not cover the details of legal issues in
Clouds; however, the frameworks which are discussed in the second part of the book look
at how it addresses some of the legal requirements.

� Economical aspects. It is not always the case that switching to Cloud would provide the
most economical approach. This is especially the case for well-established businesses that
already have an enterprise infrastructure. Organizations would need to carefully balance and
understand the risk and economical values when switching to Clouds. This book discusses
the factors that would need to be considered when switching to Cloud, what services to
outsource into Cloud, and the Cloud type that best suits an organization’s needs.

Cloud computing helps in supporting green IT. For example, it offers possibilities to
reduce carbon emission through more efficient resource usage; however, this needs to be
counterweighed with the indirect carbon footprint arising from more experimental and
thus more overall usage of resources, and the pressure on Cloud providers to update their
infrastructure more regularly and faster than the average user.

1.7 Summary

Cloud computing is a recent term in IT, which started in 2006 with Amazon EC2. Cloud
computing has emerged from commercial requirements and thus it draws an enormous amount
of attention from both industry and academia, because of its promising future. Cloud comes
with great advantages to help with economic growth, such as supporting the green agenda,
reducing operational man-power, and providing effective utilization of resources. The lack
of widely accepted academic studies that formally analyze the current Cloud infrastructure
results in confusion over realizing its potential features, misunderstanding of some Cloud
properties, and underestimating the challenges involved in achieving some of the potential
features of Cloud. Discussing these was one of the main objectives of this chapter. The chapter
also discussed Cloud services, deployment types, and main challenges. Subsequent chapters
of the book build on the concepts presented in this chapter.
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1.8 Exercises

Q1. What are the main features of Cloud which differentiate it from traditional data centers
and enterprise infrastructures?

Q2. Cloud provides different services (i.e., IaaS, PaaS, and SaaS). Discuss the main differences
between Cloud services.

Q3. Discuss the different Cloud deployment types.

Q4. What are the advantages and disadvantages of Clouds?

Q5. Organizations should understand the risks involved when outsourcing their data and
services to public Clouds, and they should consider the available security and privacy
options provided by Clouds. Can you identify some of the risks and how they could be
managed?

Q6. The NIST definition of Cloud computing includes the statement ‘minimal management
effort or service provider interaction.’ Discuss the importance of this statement in the
Cloud definition.
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2
Cloud Structure

This chapter presents the main components constituting the Cloud infrastructure. It also dis-
cusses relations and interactions between its components. Understanding the Cloud structure
is vital to understanding Cloud properties, challenges, and the differences between its deploy-
ment types. This chapter also helps when discussing solutions for addressing Cloud problems.

2.1 Introduction

The Cloud infrastructure hosts various types of applications which could be simple, mid-range,
or even highly complex. In addition, the Cloud infrastructure is accessed by a huge customer
base. The huge number of applications hosted at the Cloud infrastructure, their variations, and
the large customer base results in a highly complex and heterogeneous structure. Also, the
differences in application requirements and the complexity of the infrastructure require Cloud
components to be provided by different vendors. All these factors result in complexities in
understanding the properties of the Cloud infrastructure and the relations between its entities.
It gets even more complicated when considering the collaboration within a Cloud and across
federated Clouds.

This chapter clarifies the structure of the Cloud and federated Clouds. Specifically, it focuses
on the nature of Cloud resources, their grouping, types of data, and data flow across Cloud
entities. Subsequent chapters of the first part of the book build on this chapter and clarify
Cloud properties and management services.

This chapter is organized as follows. Section 2.2 briefly discusses the main components
constituting Cloud infrastructure. Section 2.3 presents a 3-D view of Cloud computing and
discusses the details of the grouping of the components within the Cloud infrastructure.
Section 2.4 discusses all possible relations between Cloud components. Section 2.5 discusses
the dynamic nature of Cloud. Section 2.6 discusses the types of data in the Cloud. Finally, we
summarize the chapter in Section 2.7.
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2.2 Infrastructure Components

The Cloud infrastructure is composed of enormous components. High-level understanding
of the functions of the Cloud infrastructure components, their properties and the way they
interact is vital to understand Cloud computing. Cloud components have the following main
categories: physical servers, storage components, network devices, and management platforms.
This section briefly1 discusses the functions of the first three categories while the last category
is discussed in Chapter 3.

2.2.1 Storage Components

A storage component is a basic component2 that stores Cloud data and/or provides file system
services. Storage could be of two types: local storage and network storage. Local storage
means that the storage component is connected directly to a server or multiple servers via a
private network.3 An example of this is the Storage Area Network (SAN) [2]. Accessing data
at a local storage should be via a server component. Network storage, on the contrary, means
servers are connected to a storage component over a public network.4 An example of network
storage is the Network Attached Storage (NAS) [3]. Network storage provides file storage as
a service and therefore could be accessed directly by authenticated users and applications.

There are many important properties which are associated with the storage component, such
as: size, speed, protection measures, and reliability. Enterprise architects are in charge of decid-
ing on such properties when selecting and configuring a storage component. Such a decision
would be based on the application properties that are planned to use the storage component.

2.2.2 Physical Servers

A physical server provides computational resources to Cloud users. It also provides possible
means by which Cloud users could access network and storage resources. The server would
typically run a hypervisor, which is a minimized operating system providing minimum compo-
nents enabling the hypervisor to virtualize hardware resources to guest operating systems[4].

The hypervisor runs a Virtual Machine Manager (VMM). The VMM manages virtual
machines (VMs) running at the physical server [4, 5] (e.g., starts, stops, and restarts a VM).
A VM provides an abstraction of CPU, memory, network, and storage resources to Cloud
users in such a way that a VM appears to a user as an independent physical machine. Each
VM runs its own operating system (OS), which is referred to as guest OS. The guest OS
runs its VM-specific applications. VMs running at the same physical platform would share
the platform resources in a controlled manner but then should be independent and not aware
of each other. For example, a VM can be shut down, restarted, cloned, and migrated without
affecting other VMs running at the same physical platform.

1 It is beyond the scope of this book to discuss the details of the Cloud components, apart from the management
platform which is covered in detail. Our objective is to provide conceptual understanding of Cloud management rather
than providing detailed understanding of every component in the Cloud.
2 By basic component we mean an integrated component (e.g., EMC storage products [1]) and not a simple hard-disk
or a physical block.
3 A private network would typically connect storage to servers via a direct point-to-point cable or via dedicated
switches.
4 A public network, in our context, is not restricted to the Internet, as it could be an office LAN or WAN.
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2.2.3 Network Components

The network of Clouds is the backbone which provides the communication medium between
the resources constituting the Cloud infrastructure. There are many important properties asso-
ciated with the network components, such as network speed, network nature, and restrictions
affecting information flow as in the case of a firewall filtering traffic. Enterprise architects
decide on the network properties.

The communication between Cloud resources is horizontally, vertically, or a combination
of both. We define these as follows.

Horizontal communication. This is where Cloud resources communicate as peers. There
are many examples of horizontal communication, such as replicating files between peers
of virtual machines and synchronizing shared memory across parallel servers.

Vertical communication. This is where Cloud resources communicate with other Cloud
resources following a process workflow in either up–down or down–up directions. This
would typically work as follows. First, an upper layer’s resource runs a process which
generates sub-processes that must be run at lower layers. The lower layer would then
process the sub-processes and send the outcome to the upper layer. These steps represent
an up–down communication channel. Each layer in turn sends their response back in the
opposite direction, which represents the down–up communication channel.

2.3 Cloud Layers

The Cloud infrastructure is analogous to a 3-D cylinder, which can be sliced horizontally
and/or vertically (see Figure 2.1). We refer to each slice using the keyword ‘layer.’

A layer represents Cloud resources that share common characteristics.

The layering concept helps in understanding the relations and interactions amongst Cloud
resources. We use the hosting relation between resources as the key characteristic for horizontal
slicing of Cloud (i.e., physical, virtual, or application). We use the function of the resource (i.e.,
server, network, or storage) as the key characteristic for vertical slicing of Cloud. Figure 2.1
illustrates the 3-D view of the Cloud. The side view of the Cloud results in horizontal slices
and the top view results in vertical slices. The following subsections discuss these views.

2.3.1 Vertical Slices

As illustrated in Figure 2.1(b), the top view of the Cloud results in three layers (that is, by
considering the function of resources): a storage layer, a server layer, and a network layer. As
the names indicate, the storage layer consists of storage components, the server layer consists
of physical servers, and the network layer consists of the network components. Unlike the side
view of Clouds, the top view is not concerned about software stacks inside these layers.
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(a) Horizontal slice/side view

(b) Vertical slice/top view
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Figure 2.1 Cloud taxonomy: 3-D view

The components of each layer are organized into three groups: network, storage, and server.
We refer to the groups within a layer as sublayers; that is, we have network sublayers, storage
sublayers, and server sublayers. A sublayer, for example, could be a cluster of physical servers,
a replicated integrated-storage system, or a set of high-availability switches. The properties
of the members of each sublayer are carefully selected such that a sublayer can satisfy its
planned properties. A server sublayer is then connected to a storage and a network sublayers
to form a unified group, which is called a collaborating sublayer. The associations between
the three sublayers are not random. In fact, it must not be random as it is based on a careful
enterprise architecture design. The architecture is meant to provide certain attributes enabling
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it to host certain categories of applications. The collaborating sublayer has properties which
are inherited directly from its member sublayers. Such properties enable it to serve the needs of
a common category of user application requirements (e.g., a database management system that
supports transaction survivability). For example, when a user interacts with a Cloud provider to
host a VM, the user would instruct the provider to create a VM with a set of requirements. The
Cloud provider would then host the VM using a collaborating sublayer, which has properties
that can meet the user requirements.

2.3.2 Horizontal Slices

As illustrated in Figure 2.1(a), a side view of Cloud computing results in three layers (that is,
by considering the hosting relation between resources): a physical layer, a virtual layer, and
an application layer. The physical layer represents physical resources and their management
software components.

The management software component could, for example, be an operating system, a hyper-
visor, or a firmware. The physical layer is associated with policies and properties. The policies
and properties govern the interactions of physical resources and are used when managing and
enforcing the requirements of users at the physical layer. A physical resource could be of
server type, storage, or network device. The physical layer should be completely transparent
to Cloud customers.

The virtual layer consists of virtual resources which are hosted at physical resources. The
virtual resource could be a virtual machine, a virtual disk, or a virtual network, which collab-
oratively serve software platforms and applications at the application layer. Cloud customers
using IaaS have to fully maintain their VMs including guest operating systems without worry-
ing about the resources of the physical layer. The virtual layer should be transparent to Cloud
customers using SaaS service, and possibly PaaS service.5

The application layer represents resources of software applications and software platforms
(herein we refer to application resources for simplicity to mean either a software application
resource or a software platform resource). An application resource could be hosted either at
virtual resources or directly at physical resources. The earlier is the most commonly known
case, that is hosting an application resource at the virtual layer. The latter case is also valid in
a Clouds context and is the common case for both critical infrastructure and highly resilient
application requirement. That is, Clouds could host applications directly at a physical layer
without necessarily having a virtual layer.

The resources of the horizontal slices are categorized and grouped based on their types,
properties, functions, and deployment across the Cloud infrastructure. Understanding such
grouping and their associated properties helps us understand where in Clouds user requirements
need to be enforced. Entities within a layer are organized into domains. That is we have
physical domains, virtual domains, and application domains. A domain represents related
resources which enforce the domain policy. The physical domains are related to a specific Cloud
infrastructure and, therefore, are associated with the infrastructure properties and policies. The
virtual and application domains are a Cloud user specific and therefore are associated with the
Cloud user properties.

5 The level of transparency would depend on customer settings as a customer could have a combination of IaaS and
PaaS.
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Domains that need to interact amongst themselves within a layer join a collaborating
domain, that is we have physical collaborating domains, virtual collaborating domains, and
application collaborating domains. A collaborating domain controls the interaction amongst
its members using a defined policy. Domains and collaborating domains help in managing the
distribution and coordination of the resources of the Cloud infrastructure in normal operations
as well as during incidents such as hardware failures or a whole data-center failure. The exact
purpose of such domains is layer specific, as discussed in Section 2.4.

Federated Cloud is a new concept in IT (also called Cloud-of-Clouds). It is proposed to
enable different Cloud providers to collaborate in emergencies. Examples of an emergency
include acts of God (e.g., an earthquake), site failure, or even when a Cloud provider exceeds
its capacity limits. Federated Clouds are proposed to enable Cloud to be the Internet-scale
critical infrastructure resembling the Internet backbone. Managing federated Clouds to a
certain extent is similar to managing collaborating organizations and somehow similar to
managing a geographically distributed Cloud infrastructure. However, in the federated Cloud
case more stringent restrictions need to be applied.

Collaborations within the federated Cloud can be abstracted in the form of emergency
domains (see Figure 2.2). An emergency domain consists of a set of physical collaborating
domains where each collaborating domain is specific to a Cloud provider. In this, the partici-
pating Cloud providers of each emergency domain should be members of a federated Cloud.
The selection of the members of an emergency domain should be planned in such a way that
the members should be capable of serving as backup for each other without compromising
user requirements.

Emergency domains are associated directly with the physical layer. Virtual and application
layers do not have the emergency domain concept directly; however, their resources would
benefit indirectly from federated Clouds when they are hosted at a physical collaborating
domain which is itself a member of an emergency domain. That is, application and virtual
resources would inherit the properties of their allocated physical collaborating domains, as
clarified in Section 2.4. If the physical collaborating domain is a member of an emergency
domain, then all the resources which are hosted at the physical collaborating domain would
inherit the benefits of the emergency domain.

2.3.3 Horizontal vs. Vertical Slices

The top and side views of the Cloud infrastructure are important to understand the properties
of the infrastructure, the relation between its resources, and the way they are managed and
organized. The views are not meant to replace each other. It is rather the opposite, as these
views present different angles of the Cloud. The way to view the Cloud depends on the nature
of the situation being considered. For example, the components of the physical infrastructure
and their properties are better realized by the top view; however, the hosting relation between
Cloud resources and the communication between different types of resources are realized using
the side view. In some cases both the side and the top view would be needed to understand
the scope of a situation, as in the case of managing disaster recover scenarios. Subsequent
chapters of this book provide detailed examples of the different views of Cloud.

The following is a high-level comparison between both views. The side view of the Cloud
does not have the sublayer concept. The collaborating sublayer concept in the top view is
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similar to the concept of a physical collaborating domain in the side view. The top view of the
Cloud does not have the concept of a collaborating physical domain. Neither does it discuss
the grouping of virtual and application resources into domains and collaborating domains.

2.3.4 Illustrative Example

Figure 2.3 illustrates the side view of the Cloud using a simplified multi-tier example. The
physical layer is composed of two physical domains: the first is physically configured and
optimized by a Cloud provider to host DBMS applications which can provide no single
point of failure (e.g., configured to support a real application cluster [6]), while the second is
physically configured and optimized to host lightweight-type applications (e.g., a middle-tier
application running a web-application server).

The application layer has an application domain which consists of two application resources:
a middle-tier application component and a backend DBMS. The application resources represent
a multi-tier application hosted at a Cloud infrastructure. The application owner provides his
requirements for each application resource (e.g., minimum/maximum scalability value of
each resource, physical location restrictions, and backend DBMS providing no single point
of failure). An application resource could be hosted at the virtual or physical layer based on

Physical Layer

Physical domainPhysical domain

Middle-tier 

virtual domain

DBMS 
virtual domain

Virtual Layer

Server sublayer

Storage sublayer

Network 
sublayer

Collaborating virtual domain

Application Layer

Application domain
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virtual domain

Hosted at a
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Infrastructure 

properties

(middle-tier)
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for the backend 
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should satisfy user 
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Figure 2.3 Multi-tier example using the provided Cloud structure
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the application requirements. The application domain manages the hosting of its resources at
appropriate virtual or physical resources. For example, a DBMS resource would typically be
hosted at the physical layer without involving virtual resources. In this case, the application
domain would manage the hosting of the application backend resource at an appropriate
physical domain. In contrast, the middle-tier application resource would typically require
being hosted at the virtual layer. In this case the application domain would interact with
the virtual layer to create a virtual domain. The created virtual domain would in turn manage
the hosting of the virtual resources at an appropriate physical domain following the application
owner-requested requirements.

The concept of the collaborating virtual domain represents a group of virtual domains in
which each virtual domain depends on the others. Resources of dependent virtual domains
could be related to the same application, or they could be related to different applications. For
example, an organization might have multiple applications which exchange a high volume of
transactions. That is, such types of applications, for performance reasons, need to run within
physical proximity. This is achieved by joining the virtual domains where the applications
run to a collaborating virtual domain and then associating the collaborating virtual domain
with properties and policies. Such policies and properties would mainly be based on user
requirements and they would help the Cloud provider to automatically manage the group of
domains based on these requirements. This will be clarified further in subsequent chapters.

The concept of the collaborating physical domain can be realized by having redundant
physical domains which have similar infrastructural properties; for example, a collaborating
domain in our scenario requires creating a new physical domain with the same properties as
the DBMS physical domain, and then joining both domains within a collaborating physical
domain. In this case, the members of the collaborating physical domain (based on a defined
policy) would automatically act as backup for each other during emergencies.

2.4 Cloud Relations

This section clarifies the interactions and dependencies of resources and groupings within a
layer and across dependent layers. The dependencies and interactions are very well organized
and managed following predefined policies. Such policies are based on both user requirements
and infrastructure properties and policies. The relations between Cloud resources are of two
main types: intra-layer and across-layer relations, which are discussed in this section.

2.4.1 Intra-layer Relations

Intra-layer relations exist within the same layer of either a single Cloud or across federated
Clouds. We identify the following relations that fall under this category, as illustrated in
Figure 2.4.

� Resource–Resource (R-R-IL). Resources within a single layer communicate amongst each
other to provide services to other layers. This relation can exist within a single domain or
across several domains. Resources should always adhere to their domain policy.

� Resource–Domain (R-D-IL). Relation covers the management of a resource by a domain
which could be of two types: resources communicate with their own domain or resources
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Figure 2.4 Intra-layer relations

communicate with other domains. We are mainly interested in the first case since, in the
Cloud context, a resource is managed based on its specific-domain policies. This relation
is bi-directional in that the behavior of a resource may be influenced by the behavior of
the domain it is a member of. In the other direction, the behavior of the domain is directly
influenced by the behavior of its resources.

� Resource–Collaborating Domain (R-CD-IL). Relation is used to manage resources in
exceptional circumstances. A resource communicates and is managed by its own domain,
and a domain provides Cloud properties (such as high resilience) by communicating
with other domain members of the same collaborating domain. As a result, the relation
R-CD-IL is transitive and covered under the following intra-layer relations: R-D-IL and
D-CD-IL.

� Domain–Collaborating Domain (D-CD-IL). Relation is bi-directional in such a way that
the behavior of a domain may be influenced by the policies set in its specific collaborating
domain. In the other direction, the behavior of a collaborating domain is directly influenced
by the status of the domains which are members of the collaborating domain. In addition, if
the collaborating domain is a member of an emergency domain, then its behavior is directly
influenced by the policies of the emergency domain. This relation shows a view of the
interdependencies between the resources of a specific Cloud customer.

� Domain–Domain (D-D-IL). Relation represents the interdependencies between a group of
domains. These could either exist within a specific collaborating domain or across various
collaborating domains. Within a ‘single Cloud’ we restrict domain relations to be within
a collaborating domain and insist that if a domain depends on another domain, then both
domains must be members of the same collaborating domain. On the contrary, the ‘federated
Clouds’ case requires physical domain dependencies to be, in addition, across various
physical collaborating domains. In this case, the collaborating domains involved must be
members of the same emergency domain and must belong to different Cloud providers.
Policies associated with emergency domains govern the interactions of member domains
during emergencies.
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� Collaborating Domain–Emergency Domain (CD-ED-IL). Relation represents dependencies
between a set of collaborating domains with their emergency domain. This relation is only
valid for physical collaborating domains. Specifically, it governs the behavior of Clouds
during emergencies which require the involvement of other public Clouds that form a feder-
ated Cloud. Resources should not be aware of the emergency domain. During emergencies,
the collaborating domains would follow the rules of their emergency domain policy.

� Collaborating Domain–Layer (CD-L-IL). Relation represents a membership relation. In
contrast to the other types of membership relations, this relation is one-directional in that a
collaborating domain does not influence the behavior of the layer, instead it only represents
a ‘slice’ of the resources provided in a layer, that is a collaborating domain is conceptual as
far as layers are concerned.

2.4.2 Across-layer Relations

Across-layer relations exist between entities in different layers, as illustrated in Figure 2.5.

� Resource–Resource (R-R-AL). A resource in one layer communicates with resources that are
members of other layers for hosting and message communication purposes. Examples of this
relation include: the hosting relation between application, virtual, and physical resources,
and the communication between dependent resources across layers as in the case of the
communication of an application resource with dependent virtual resources.

Layer

Collaborating Domain

Domain

Layer

Collaborating Domain

Domain

Resource

R-R-AL

R-D-AL

R-CD-AL

Resource

D-D-ALD-CD-AL CD-CD-AL CD-L-AL

Figure 2.5 Across-layer relations
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� Resource–Domain (R-D-AL). Relation resembles the management of a resource in one layer
by a hosting domain at another layer. For example, a virtual domain manages the hosting
of an application resource; analogously, a physical domain manages the hosting of a virtual
resource or an application resource (based on the hosting relations discussed earlier).

� Resource–Collaborating Domain (R-CD-AL). Relation follows the same principle as
R-CD-IL.

� Domain–Domain (D-D-AL). Relation is used mainly to manage domain interdependency
across layers. It is related to the management of the resources hosting environment, which
covers the following cases: an application domain might be hosted by at least one virtual
domain; a virtual domain might host an application domain or a specific resource of an
application domain; a virtual domain should be hosted by one or more physical domains;
a physical domain might host multiple virtual domains; a physical domain might host the
resources or part of the resources of an application domain; an application domain might be
hosted by one or more physical domains.

� Domain–Collaborating Domain (D-CD-AL). Relation is layer-specific as follows: the D-
CD-AL relation between an application or a virtual layer and a physical layer is used
mainly to manage backup domains at the physical layer (e.g., if a physical domain fails
then its hosted resources could be relocated to another backup domain member of the same
collaborating domain); the D-CD-AL relation between an application layer and a virtual
or a physical layer is used mainly to manage the interdependencies amongst application
resources, for example performance requires application resources which have transaction
rates to be within physical proximity to reduce network latency.

� Domain–Emergency Domain (D-ED-AL). Relation follows the same principle as D-CD-AL.
� Collaborating Domain–Collaborating Domain (CD-CD-AL). Relation represents the over-

all Cloud customer-dependent resources within the Cloud environment. For example, depen-
dent application resources will be within an application collaborating domain which is
hosted by a set of virtual or physical collaborating domains. Similarly, a virtual collaborat-
ing domain is hosted by a set of physical collaborating domains. As a result, understanding
CD-CD-AL across all layers provides Cloud customers with a vertical and horizontal slice
of the Cloud infrastructure where their resources could possibly be managed and hosted.

� Collaborating Domain–Layer (CD-L-AL). A collaborating domain is not related to other
layers, as each layer has its own collaborating domains.

2.5 Cloud Dynamics

The building up of Cloud resources starting from a physical resource hosting a virtual resource
which, in turn, runs an application resource is dynamic. By dynamic we mean the following: (a)
a specific virtual resource has a 1:N relation with a physical resource, that is a specific virtual
resource can run on different physical resources following a predefined policy restricting
and controlling the virtual resource hosting environment; (b) similarly, a specific application
resource has a 1:N relation with a virtual resource, that is a specific application resource can
run on multiple virtual resources that could increase or decrease based on a predefined policy
controlling such behavior (as in the case of horizontal scalability, covered in Chapter 5); and
(c) from points a and b we can conclude that the relation between a specific application and a
physical resource is 1:N, that is a specific application can eventually be hosted under different
physical servers.
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Figure 2.6 Dynamics of Cloud computing

Points a, b, and c show that the building block of a Cloud environment is not static but
dynamic. This is not to say that a Cloud resource would run anywhere on the Cloud’s physical
infrastructure, it is rather the opposite, as Cloud resources are well controlled and managed
following policies controlling the limits of movement [7]. That is, an application resource can
move within a specific virtual domain boundary, and similarly a virtual resource can move
within a physical domain boundary, as discussed in previous subsections. We illustrate this
dynamic relation in Figure 2.6.

The dynamic nature of Clouds has tremendous advantages for enhancing their desirable
properties, as in the case of resilience, availability, and scalability (discussed in Chapter 4).
However, it is also associated with security challenges that are unique to this environment, as
covered in Part Two of the book.

2.6 Data Types

There are two types of information flow in Clouds: one holds management data and the other
holds application data. Management data is related to the information which is needed to
manage physical, virtual, and application resources and their interactions. The management
data is not about Cloud’s management services, which we discuss in Chapter 5; however, it
covers all the data which the management services would require in order to operate the Cloud
infrastructure and it also covers the outcome of such services. This, for example, includes
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the data for managing the hosting of virtual resources at physical resources, and application
resources at virtual or physical resources. In addition, the management data covers the data for
managing resource groupings and their interactions within physical, virtual, and application
domains and collaborating domains. Moreover, it covers issues of federated Clouds such as
managing emergency domains and their policies.

Cloud providers are in charge of managing the ‘management data.’ Cloud users, on the
contrary, shouldn’t need to worry about the management data, except for providing that rep-
resenting the requirements of their hosted services and ensuring their enforcement. Cloud
providers would need to provide users with trustworthy tools which help them to transparently
assess the trustworthiness of Clouds. This includes, but is not limited to, assessing the trust-
worthiness of the process which manages and validates the management data (the second part
of this book discusses trust in the Cloud).

The continual validation, verification, and protection of management data is crucial for a
successful management of the Cloud infrastructure, for example, help in proving the assurance
that the Cloud infrastructure is operating as expected, providing proactive service delivery, and
assuring and supporting error investigation processes. Unlike application data, the protection of
management data has not yet received the required attention from both industry and academia.
For example, management data is not protected within the Cloud infrastructure and, as a result,
it is subject to insider attack. Such data could cause unbounded consequences and should be
protected by Cloud providers.

Application data, in contrast, represents the hosted data at the Cloud infrastructure. Users
of the hosted data are in charge of protecting their data when using IaaS and PaaS Cloud
services. For SaaS, the Cloud provider should ensure the protection of user data. Users should
be provided with trustworthy tools to help them in this process, such as key management as a
service and provenance as a service. For federated Clouds, case users should not be required
to use special methods when accessing and protecting their data. That is, application data in
federated Clouds should be managed, from a customer’s perspective, in the same way as if it
was hosted only within a single Cloud. For example, when a customer is encrypting, storing,
and accessing their data they should not need to worry about data replication across federated
Clouds, the variations in the hardware used or changes in the underlying hypervisor, or the
identity of the Cloud provider which served their applications data.

Cloud providers should not be able to access their customers’ data; however, in order to
present a transparent infrastructure management, Cloud providers should still have a fine line
of control over part of the management of the applications data. Such partial management
should not remove control of the application data from the hands of customers to the hands of
the Cloud provider. The partial management is mainly for managing the hosting environment
of the software applications. Managing the hosting environment is related to managing the
availability, scalability, and resilience of application data by considering the user requirements
provided. For example, during emergencies, customer data should be inaccessible for a longer
period than the agreed time in the SLA. Cloud management services use the management data
to provide such transparent management of the application data.

2.7 Summary

This chapter has presented the Cloud ontology. It started by discussing the main components
of a Cloud infrastructure. It then presented the 3-D view of Clouds, which is composed of
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horizontal and vertical slices. The 3-D view helps in clarifying the structure of the Cloud and
the grouping of its entities. The chapter discussed the relations amongst Cloud resources and
grouping of resources. Finally, it discussed the data types of Clouds.

The presented ontology of Clouds is the foundation which other chapters build on. For
example, it helps in understanding the infrastructure properties of Cloud, how to enforce user
requirements without losing control, and importantly how to establish trust in Clouds. In
addition, the Cloud ontology helps in realizing the complexities of providing self-managed
services. These subjects are covered throughout the book.

2.8 Exercises

Q1. What are the advantages of the Cloud taxonomy?

Q2. What are the differences between the top and side views of Clouds?

Q3. Identify and discuss the main categories of Cloud components.

Q4. What is the dynamic nature of Clouds?

Q5. What are the pros and cons of the dynamic nature of Clouds?

Q6. Discuss the differences between Cloud management and application data.
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3
Fundamentals of Cloud
Management

This chapter presents fundamental concepts about Cloud management platforms. Understand-
ing the Cloud management process helps in realizing Cloud attributes, which are key for the
development and enhancement of Cloud computing. The chapter starts by identifying and
discussing the main services for managing Cloud resources. It then presents a unified view
of the most well-known Cloud management platforms. Subsequently, the chapter discusses
the required input data that such platforms would need to consider in order to make the
right decisions. Following that, the chapter presents an end-to-end workflow for managing
user requirements in the Cloud. We then identify the weaknesses in the workflow. Finally,
we identify and discuss the challenges of managing the Cloud infrastructure, and present the
requirements which could address the challenges.

3.1 Introduction

Based on the NIST definition of Cloud computing (see Chapter 1), one of the key features of
Cloud is the provision of minimal management effort or service provider intervention. This is a
key attribute of Clouds, and without it the Cloud cannot practically satisfy many of its potential
features for different reasons, as we discuss throughout this chapter. Meeting this attribute is a
major challenge in the Cloud environment, and would require enormous collaborative efforts
between academia and industry. The provision of such a feature is not only important to reduce
management costs and overhead, but is also one of the key requirements for establishing trust
in the Cloud. This chapter clarifies the management aspect of Cloud and the importance of
supporting Cloud with self-managed services. Subsequent chapters build on this chapter and
discuss further issues in Cloud management and security.
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The chapter is organized as follows. Section 3.2 identifies the required management software
services of the Cloud infrastructure. Section 3.3 analyses Cloud’s management platforms of
virtual resources. Section 3.4 discusses the main input data that would affect decisions made
by the identified management software services. Section 3.5 provides a detailed analysis of
the overall process for managing user requirements inside the Cloud infrastructure. Finally,
we summarize in Section 3.6.

3.2 Clouds Management Services

Supporting Cloud with self-managed services is the foundation for providing trustworthy
Cloud infrastructure that is capable of becoming the Internet-scale critical infrastructure. This
section identifies these services and starts by providing a real-life application deployment in
Cloud. Subsequently, we use the scenario to identify the required management services and
motivate the importance of such services.

3.2.1 Application Deployment Scenario

The scenario discussed in this section is based on a real-life deployment of a system in a
production environment supporting an editorial workflow. This system is composed of an
editorial application and a weather forecasting application. For simplicity, we assume both
editorial and weather applications have similar architectural requirements. The system is
architected as a multi-tier application which is deployed across a community Cloud infras-
tructure. The Cloud infrastructure is split across two locations: primary and secondary, as
illustrated in Figure 3.1. Having an infrastructure that is physically distributed at different
geographical locations helps Cloud in providing disaster recovery (DR), supporting busi-
ness continuity, and increasing Cloud availability, reliability, resilience, and scalability. We
now provide a simplified architecture of the deployed application scenario, as illustrated in
Figure 3.1.

The system has two application domains: an editorial application domain and a weather
application domain. Each application is composed of layers: a middle-tier layer and a backend
layer. The middle-tier layer for each application domain runs the business process and is hosted
at a specific virtual domain, while the backend layer of each application domain manages the
application database and is hosted directly by physical domains. This fits with the discussed
Cloud taxonomy in Chapter 2.

The system requires two virtual domains: one for hosting the weather application middle-tier
layer and another for hosting the editorial application middle-tier layer. The number of VMs
for each virtual domain and their specifications would depend on application requirements
as agreed in the SLA.1 In general, each domain should have at least two VMs to support
higher resilience with no single point of failure. Each backend application domain resembles
a database instance. The database instance would be hosted at a database management system
(DBMS). This would typically be deployed directly at an appropriate physical domain.2

1 We do not discuss application requirements in the example for simplicity.
2 Chapter 2 discusses the pros and cons of application hosting at virtual and physical domains.
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The system requires at least two types of physical domains: one to host a middle-tier type
of application and another to host a DBMS. Each domain would be composed of a storage
sublayer, a network sublayer, and a server sublayer. Each sublayer has special properties, and
the collaborations amongst the sublayers would provide the physical domain with properties
that enable the domain to host the indicated type of application. At this level the focus is
mainly on non-functional requirements including resilience, availability, reliability, adaptabil-
ity, scalability, security, and privacy.

The higher the resilience requirement the more complex the architecture would be. In our
example, as illustrated in Figure 3.1, the system is hosted at a highly resilient component at
the physical infrastructure. The architecture of the technology requires each physical domain
to be a member of a collaborating physical domain such that the members of the collaborating
physical domain are hosted at different geographical locations. This is implemented by hosting
the first physical domain at the primary site and the second physical domain at the secondary
site, as follows:

� A middle-tier (primary) physical domain (a) has properties enabling it to host middle-tier
application and is physically located at the primary location.

� A middle-tier (secondary) physical domain (b) has properties enabling it to host middle-tier
application and is physically located at the secondary location.

� A DBMS (primary) physical domain (c) has properties enabling it to host DBMS instances
and is physically located at the primary location.

� A DBMS (secondary) physical domain (d) has properties enabling it to host DBMS instances
and is physically located at the secondary location.

The scenario requires four physical domains, which are related as follows: the physical domains
a and b are members of one collaborating physical domain, and the physical domains c and d
are members of another collaborating domain. The physical domains located at the secondary
location act as backup for the physical domains located at the primary location. One of the
roles of the enterprise architect team is to define the attributes of the physical domains to be
capable of hosting software applications considering user requirements.

Understanding the nature of the hosted application enables enterprise architects to use
enhanced features in terms the right hardware configuration that best suits the generic nature
of the software application. For example, if application activities are more write than read
then, for performance reasons, using RAID 1+0 for storage configuration is much better than
RAID 5. Also, user requirements that indicate no single point of failure would imply an
integrated storage component which should be fully redundant from inside and outside (e.g.,
dual communication channels and multiple processor cards). It also implies replicating data
across different geographical locations, that is across the community Cloud primary site and
secondary site. Replicating data can be done at different levels: storage managed replication
and/or DBMS managed replication.

In our scenario, enterprise architects would, in addition, do the following:

� Associate the two application domains with dependency property, which necessitates the
active copies of the application resources running within physical proximity. That is, emer-
gencies that affect a single application resource would require all dependent application
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resources to fail-over to the secondary location. This, for example, would avoid the case
where a DBMS application resource is hosted at a different location than its corresponding
middle-tier application domain.

� Host editorial and weather DBMS domains at a physical domain that has a server sublayer
with properties enabling it to host DBMS with no single point of failure.

� Host editorial and weather middle-tier virtual domains at a physical domain that has a server
sublayer with properties enabling it to host middle-tier-type applications.

The storage and server sublayers must be connected using redundant network sublayers
to support high-resilience architecture. For example, a DBMS server sublayer should be
connected using multiple channels to the related storage sublayer.

Enterprise architecture is a complex subject which is beyond the scope of this book to
discuss in further detail. Our main goal is to briefly present an example of an architected
application to help in identifying Cloud attributes and management services.

3.2.2 Identifying Cloud Management Services

This section aims to identify the main services that the Cloud infrastructure supports to
meet part of the applications’ non-functional requirements. It also clarifies the importance of
automating the management of these services. Automating the process of managing Clouds
is one of the key requirements for moving critical applications to public Clouds. Critical
applications are hosted mainly by private and community Cloud providers. Such applications,
at the time of writing, cannot be hosted by public Cloud for several reasons. These are mainly
related to the lack of automation and high reliance of humans. Enhancing Cloud with automated
managed services is the foundation for establishing trustworthy Clouds.

Most of the Cloud management activities at this time still require excessive human inter-
action. Public Cloud providers have huge and well-structured IT departments. The IT depart-
ments have groups of employees with different roles. Each group is in charge of managing
certain aspects of the Cloud, for example an architecture group, a deployment group, a sys-
tem administration group, and a security management group. Such groups manage the Cloud
infrastructure. In this section we identify the services that are provided by Cloud groups to
help in drawing the required Cloud automated management services.

Automating the process of managing Cloud resources requires a set of self-managed ser-
vices. We need to understand the process workflow of Clouds in order to identify these
services. A simplified system architect is outlined in the previous subsection. The process
workflow starts with the user, who first provides a set of requirements to a Cloud provider. The
requirements are then verified and validated. The enterprise architect role provides a resilient
architecture that satisfies the provided user requirements. This role is reflected in the following
self-managed service: system architect as a virtual service. Next, the system administrator role
deploys the architected system. This role is reflected in the following self-managed services:
resilience as an application service and resilience as a virtual service.

Applications running at the Cloud infrastructure could fail for any reason. Also, users
could change their requirements, and the Cloud provider could update the properties of the
physical resources. Cloud providers, as a result, should automatically adapt to such events
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(i.e., unexpected failures, changes in user properties, and changes in infrastructure properties
and policies). The roles that perform the adaptability activities in current Cloud provider
models are referred to as incident and change management.3 These roles could be application
resource related and/or virtual resource related. Thus, there is a need to have the following
self-managed services that can perform these roles: adaptability as a virtual service and
adaptability as an application service. The adaptability service is critical for the potential
Cloud infrastructure. For example, when users change their requirements, the virtual layer
resources should automatically adapt to such changes; also, when the infrastructure physical
resources get changed, the virtual layer resources should also automatically adapt to such
changes without compromising user requirements. All these changes should not compromise
user requirements, and security and privacy properties.

Elasticity (also referred to as scalability) is one of the most desirable properties of Clouds.
In peak periods the virtual layer resources should automatically scale up, and at off-peaks the
resources should automatically scale down. Such scaling is based on demand and is subject to
customer pre-agreed SLA. Elasticity should not compromise user requirements, and security
and privacy properties. At the time of writing, the major work behind Cloud elasticity is
provided by the role of system administrators. Therefore, a self-managed service is needed to
support elasticity, which is referred to as: scalability as a virtual service and scalability as an
application service.

Other important services which are associated with elasticity are availability as a virtual
service, availability as an application service, reliability as a virtual service, and reliability
as an application service. The availability services ensure that all access paths to a resource
are always available to requesters. For example, when a resource is replicated, the requester
should automatically get notified about the availability of additional access paths. Similarly,
when a resource gets shrunk, the requester should automatically get notified about the removal
of an access path. The reliability services, however, ensure an end-to-end service integrity.
Self-managed integrity assurance is different from the definition of integrity in information
security. The latter provides the assurance that data has not been manipulated but does not
prevent it happening. However, the former prevents data manipulation by malfunction process,
malicious insider, attacher, etc.

Self-managed services should consider security and privacy by design. That is, the role of
security professionals should not resemble an independent service; it is rather the opposite, as
security and privacy should be considered fundamental parts within each service.

At the time of writing, the importance of self-managed services is recognized; however,
little work has been done in this direction. This is because such services are complex and
rely on huge collaborative efforts between industry, and industry and academia. For example,
we still do not have global standards amongst different suppliers of many technologies. This
is one of the keys for self-managed services. Enterprises are still highly reliant on human
beings, who which require a longer time to architect and deploy solutions, and a longer time
to discover and resolve problems. Also, reliance on human beings is error prone, subject
to insider threats by Cloud employees, and does not provide a reliable way of measuring

3 Depending on the complexity of the organization, the incident and change management could be one role, two
separate roles, or part of a general role.
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the level of trust in Cloud’s operations. This raises the need for self-managed services that
can automatically and with minimal human intervention manage the Cloud infrastructure.
Automated self-managed services provide Cloud computing with exceptional capabilities and
new features, such as: scale per use, hide the complexity of the infrastructure, automated
higher reliability, availability, scalability, dependability, and resilience that considers users’
security and privacy requirements by design. Automated self-managed services should help
in providing trustworthy resilient Cloud computing, and should result in cost reduction. We
discuss these services in further detail in Chapter 5.

3.3 Virtual Control Center

The Cloud infrastructure is composed of enormous and complex resources. Such resources
cannot be efficiently and reliably managed only by relying on humans and basic manage-
ment tools. Cloud management requires advanced and complex automated management tools.
Currently, there are different tools which help administrators in managing the Cloud infras-
tructure. These include tools for virtual resource management, physical resource management,
network management, cluster management, and database management. This book is mainly
concerned with the virtual resource management tools, which could either be open-source or
proprietary tools. Examples of propriety management tools include vCenter from VMWare
[1], and System Center from Microsoft [2]. Example of open-source tools include OpenStack
[3] and OpenNebula [4]. For convenience, this book refers to such tools using a common
name: Virtual Control Center (VCC).

A VCC is a Cloud device that manages virtual resources and their interactions with physical
resources using a set of intelligent self-managed software agents.

The management of virtual resources requires the VCC to establish communication chan-
nels with physical servers. The VCC currently establishes the communication channels via a
VMM. VMMs are installed at physical servers to manage their allocated VMs. Such manage-
ment would follow the instructions received from the VCC, as illustrated in Figure 3.2. Current
implementations of VCCs require each VMM to regularly communicate its VMs status (e.g.,
failure, uptime, and shutdown) to the VCC. The VCC and VMMs regularly exchange ‘heart-
beat’ signals ensuring they are up and running. These enable the VCC to be an easy-to-use
centralized management tool of VMs across the Cloud infrastructure.

The VCC provides a centralized management interface, which is important nowadays con-
sidering the lack of automated management services for managing the Cloud infrastructure.
For example, if a physical machine fails (e.g., due to hardware failure), the system administra-
tors using the VCC could easily manage it and decide where to migrate the failed VMs. Also,
once the failed physical machine is recovered, system administrators need to decide whether
to return the VMs back to their original hosting server or leave them at the newly allocated
hosting server. Current Cloud infrastructure architects do not allow a VM to automatically
migrate/move to a random physical resource in Cloud, as this would cause unwise distribution
of resources. The VCC will play a major role in supporting self-managed services, as discussed
in subsequent chapters of this book.
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3.4 Prerequisite Input Data for Management Services

Current implementations of the VCC require excessive human intervention to support the
management of the Cloud infrastructure. Clouds are planned to support critical infrastructure
and a huge number of users. These necessitate Clouds to be managed automatically with
minimal human intervention. The VCC hosts most of the self-managed services and requires
trustworthy sources of input data when taking action. This section discusses the types of
such data, and subsequent chapters provide detailed discussion of these services and how to
establish the required levels of trustworthiness. The main types of input data that would affect
decisions made by self-managed services are as follows:

� Infrastructure properties. As we discussed earlier, the Cloud physical infrastructure is very
well organized and managed by multiple parties, for example enterprise architects, adminis-
trators, and security managers. These parties build the infrastructure such that it could host
various types of services. Providing different services would necessitate partitioning the
infrastructure into groups, each associated with static properties. Each set of group-specific
static properties is identified based on the properties of its physical resources and their
connectivity. The VCC needs a trustworthy source of input data of the static properties and
any changes to them.

� User properties. A Cloud user interacts with the Cloud provider via a web interface and
supplied APIs. This enables users to define their dynamic properties. The dynamic properties
would cover the following for potential Clouds:
– Technical requirements. These are related to the application requirements when hosted

at the Cloud infrastructure, for example DBMS instances that require high availability
with no single point of failure, middle-tier web servers that can tolerate failures, and
highly computational applications. This enables the Cloud provider to identify the best
infrastructural resources that can manage user requirements. A Cloud provider should
provide an easy-to-use interface enabling both sophisticated and naive users to use,
identify, and provide their requirements.

– Service level agreement (SLA). This reports the agreement between a Cloud provider
and customers. The agreement contains the criteria of service management, for example
quality control measures, legal constraints, and operational requirements. The SLA, for
example, defines system availability, reliability, scalability (in upper/lower bound limits),
and performance metrics. Cloud providers should adhere to the SLA agreements when
hosting and managing the services of their customers.

– User-centric security and privacy requirements. Examples include: users needing strin-
gent assurance that their data is not being abused or leaked; users needing to be assured
that Cloud providers properly isolate their VMs, especially when the VMs share the same
physical platforms (i.e., the problem of multi-tenant architecture [5]); users needing to
identify the location of the distribution and processing of their data (which could be for
legal reasons). Current Cloud providers have full control over all hosted services in their
infrastructure; that is, the Cloud provider controls who can access VMs (e.g., internal
Cloud employees and contractors) and where user data could be hosted (e.g., server type
and location). Users have very limited control over the deployment of their services, no
control over the exact location of the provided services, and no option but to trust Cloud
providers to uphold the guarantees provided in their SLAs.
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� Infrastructure policy. Policies are defined by Cloud authorized employees to control the
behavior of self-managed services when operating the Cloud environment.

� Changes and incidents. These represent changes in user properties (e.g., security/privacy set-
tings), infrastructure properties (e.g., component reliability, component distribution across
the infrastructure, redundancy type), infrastructure policy, and other changes (e.g., increase/
decrease of requests, failure of a component, network failure).

3.5 Management of User Requirements

The requirements of complex services, especially those associated with critical and/or highly
resilient applications, at the time of writing require system analysts to identify them and system
architects to create an application-specific architecture. That is, such a process necessitates the
involvement of human elements. Human elements are also needed to exchange the architecture,
negotiate SLA, implement and deploy the architecture, and maintain the deployed architecture
at the Cloud provider.

In contrast, the requirements of simple applications are easier to identify. Cloud providers
have the tools which help them to automatically collect, process, and manage simple user
requirements, as we discuss next. Cloud computing by definition should support minimal
human intervention [6]; therefore, automating the process of identifying, collecting, and man-
aging user requirements, including complex services, is an important subject for the wider
adoption of Clouds. This section covers the details of managing user requirements in the
context of Cloud computing.

3.5.1 Requirement Management Workflow

This subsection outlines the typical process which is followed by Clouds to collect and manage
user requirements. The following subsection discusses some of the main challenges in this
process. The following steps outline the workflow that VCC follows when managing user
requirements (illustrated in Figure 3.3).

I. Users would need to identify their application requirements.4 This is a complex process,
which we do not cover in this book. Users then need to decide whether the requirements
could be managed automatically or require human elements. Such a decision is not
complicated, as the VCC can only collect and manage very basic requirements (at the
time of writing), for example the size of VMs and the flavor of the VMI (Virtual Machine
Image).

II. If the identified user requirements could be managed automatically, users would then
connect to a selected Cloud provider typically using a web page or via a set of APIs
running on the VCC. They then submit their identified requirements and agree on an
SLA governing how the Cloud should manage the requirements.

III. Once the user submits the requirements they would be validated using a software agent
running at the VCC.

4 We mean by ‘requirements’ the deployment and operational requirements and not the application design require-
ments.
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IV. If the validation succeeds, the agent categorizes user requirements. As indicated earlier,
because of technological limitations current VCC tools only consider limited infras-
tructure properties and support basic user requirements. As a result, the categorization
process is currently related only to individual physical server-related criteria (e.g., CPU
speed, size of memory, and available storage space).

V. Next, the agent starts a scheduling process. This process is currently very basic and
focuses mainly on matching the categorized user requirements with infrastructure prop-
erties. Current implementations of VCCs cover only a few infrastructure properties,
which are limited to the capabilities of individual physical servers, such as number of
CPUs, memory, etc. Matching user requirements with infrastructure properties would
result in a set of physical servers that could host user services. A physical server is
then selected from the set of servers to host user services by following a scheduling
algorithm. The final result would be stored in a structured database, whose layout we
cover in Chapter 12.

VI. Once a physical server is allocated, a delegation process starts. This process sends an
‘instantiate VM’ message to a management process running at the selected physical
server. The message would include the VMI, the requested VM flavor, and other related
user requirements.

VII. After the management process receives the message it instantiates a VM and manages
it based on the received requirements. Whenever a physical server fails, the VCC would
take control and decide where to move the VMs which are hosted at the failed server.

VIII. In principle, users should be provided with tools enabling them to assess the trust-
worthiness of the process which manages and enforces their requirements. OpenStack
[7] has recently introduced a framework for trust attestation which has not yet been
implemented.
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Having identified the main process workflow for managing user requirements, the next
subsection discusses the main problems in this process. It then suggests a list of requirements
to address the identified problems.

3.5.2 Challenges and Requirements

As discussed in Chapter 2, Clouds have two types of data: management and application data.
We consider user requirements to be part of the management data, as user requirements eventu-
ally control the behavior of the Cloud when managing user resources. Therefore, protecting and
carefully managing user requirements, which are crucial for establishing trustworthy Clouds,
are the responsibility of Cloud providers. User requirements need to be managed throughout
the Cloud environment; that is, when requirements are submitted, processed, stored, dis-
tributed, and delegated to other entities within the Cloud infrastructure. User requirement
protection mechanisms need to provide data integrity, availability, confidentiality, and origin
authentication wherever the requirements are transferred and used. Exploiting vulnerabilities
in the way the requirements are managed and protected could cause major consequences. For
example, an attacker might maliciously update the resilience level of an application, change the
hosting location of a VM, and/or change the security properties of an application by attacking
the user requirements without the need to directly attack the hosted applications. We now
briefly discuss the problems which are associated with the way user requirements are currently
managed.

I. Users should not be expected to have sufficient skills to understand the full require-
ments of their applications, and the way to express and quantify them in technical terms.
For example, quantifying the reliability and resilience measures requires high technical
skills which are beyond the capabilities of most individuals. In addition, users should
not be expected to understand the consequences when changing the values of require-
ments of their applications. Addressing this requires an easy-to-use and adaptive web
interface which helps users to identify their requirements [8]. Such an interface should
be intelligent enough to help users understand the consequences of their decisions on the
overall architecture of their hosted applications. It could also be designed by following a
challenge–response method. That is, a web interface could be designed to dynamically
adjust its look-and-feel and its output data based on users’ technical abilities and the
sophistication of their requirements. The web interface should also ensure that users’
requirements do not violate legal requirements.

II. SLAs are complex for normal users to understand [9]. A key requirement in the SLA
is that users need to understand whether the complex terms and conditions provided
in the SLA are sufficient to assure them that Cloud providers would maintain their
requirements. This could possibly be addressed by introducing a trustworthy tool that
manages and generates SLAs. The tool should be trusted by both Cloud providers and
users. The SLA should, as a result of using the tool, be easy to read by a ‘non-technical
person,’ and should provide the assurance that Cloud would maintain the agreed user
requirements.

III. The validation process is critical and complex, especially for sophisticated requirements.
For example, it needs to check that the requirements do not contradict each other and can
be reflected in the Cloud infrastructure. The validation process does not necessarily need
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to be implemented only at the Cloud provider side, it could also be part of the adaptive
web-interface design (discussed above). This is to ensure that those user requirements
(prior submission to the Cloud provider) get validated.

IV. The scheduling process is one of the most important functions of the VCC. Current
implementations of schedulers do not consider complex user requirements and also do
not consider the complex infrastructure properties. Therefore, we require a trustwor-
thy scheduler that can consider such complexities and scale well with changes in the
requirements and properties [10].

V. The scheduler requires trusted and categorized inputs of user requirements and infras-
tructure properties. Therefore, a process is required which could understand the scope
of user requirements in the context of Cloud ontology. Such a process, for example,
could help the scheduler to understand how to meet user requirements on the distributed
elements of the Cloud infrastructure.

VI. The management of the grouping of entities in the Cloud infrastructure (i.e., domains and
collaborating domains) is not yet implemented as part of current VCCs and is currently
managed by human intervention.

VII. Current VCCs implicitly assume that Cloud infrastructures are trusted, and as a result
user requirements are only protected whilst being transferred between users and the
software agent running the VCCs; however, once submitted they are no longer protected
inside the environment of Cloud, for example they are transferred in the clear between
different entities of the VCC and across related entities of the Cloud, stored unprotected
in the VCC database, and when delegating the management of user services to phys-
ical servers there is no verification of either the execution environment of the servers
whilst processing user requirements or the identity of the physical servers. This requires
establishing trust amongst the distributed elements of the Cloud infrastructure, including
federated Clouds [11–14]. It also requires establishing federated identity management
within Clouds [15].

VIII. The management of user requirements is centralized in such a way that the VCC has to
take all decisions for all problems that expand outside a single physical resource bound-
ary. Such centralized management is a single point of failure (see step 8 in Figure 3.3).
This, in addition, causes delays in critical operation management, for example service
recovery on failure requires additional overheads when communicating with the VCC.
Addressing this would require the VCC to be distributed. In addition, it requires the VCC
to properly and effectively delegate the management of resources to their domains such
that the VCC would only consider highly critical cases while domains should manage
the resources which are related to their boundaries.

IX. Users have no way of getting the assurance that their requirements will be managed
properly throughout the infrastructure. Therefore, a mechanism is required to enable
users to get such an assurance without the need to go into the details of the complex
Cloud infrastructure.

Addressing the above points is a complex process which is important for establishing
trustworthy Clouds. The remaining parts of this chapter focus on understanding the wider
range of user requirements, their generic types, and how their management could be delegated
across the distributed elements of the Cloud infrastructure. This partially covers points V and
VI. Subsequent chapters of this book discuss points IV, VII, and IX. Other points are still
under active research.
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3.5.3 Categories and Delegation of User Requirements

This subsection identifies and discusses the main categories of user requirements. It then
outlines the management of the delegation process of user requirements. The subsequent
subsection clarifies the proposed method on resilience requirements. User requirements could
be categorized as follows:

� Application layer-related user requirements (or simply application requirements). Applica-
tion requirements are directly related to an application or a set of applications and would need
to be enforced at the application layer. An example of an application requirement includes
the measures which control the dependencies between resources of a single and multiple
applications, such as whether to host an application resource on a single or multiple VM;
the physical distance between the application resources when hosted at different VMs; and
the physical distance between dependent applications. In addition to enforcing application
requirements at the application layer, they might also need to be enforced at other layers.
For example, meeting application availability, reliability, scalability, and resilience might
involve collaboration amongst all Cloud layers. The application requirements could also
include Cloud services, such as secure logging mechanism as a service and key management
as a service.

� Virtual layer-related user requirements (or simply virtual requirements). As in the case
of application requirements, user requirements could be directly or indirectly categorized
as virtual layer-related requirements. An example of directly related virtual requirements
are the horizontal and vertical scalability measures. An example of an indirect virtual
requirement is the dependency between VMs which is reflected in the dependency between
application components, for example a set of VMs needing to be within physical proximity
for performance and network congestion reasons, a set of VMs needing to be geographically
distant to better serve geographical distribution and for higher resilience reasons, and a set
of VMs needing to be hosted at different physical servers but within physical proximity for
resilience, performance, and security reasons.

� Physical layer-related user requirements (or simply physical requirements). Some user
requirements could be reflected directly at this layer, such as geographical location restric-
tions, physical resources isolation, and binary trust measurements of physical resources.
Other user requirements could be related indirectly to the physical layer, such as reliability,
availability, resilience, adaptability, and scalability criteria, which would need to be main-
tained across different Cloud layers including the physical layer. These are demonstrated
for resilience requirements in the next subsection.

User requirements are enormous and their management could be delegated at different layers
in the Cloud and managed by different elements within the Cloud infrastructure, as pointed
out earlier. Careful categorization of user requirements would simplify their management and
help in the direction of providing enforcement assurance measures. Some user requirements
could be satisfied at multiple layers; however, satisfying a user requirement at one layer could
be violated by another layer. The suggested approach, as a result, is to start the delegation
from bottom-up, that is to start the delegation at the physical layer, then the virtual layer,
and finally the application layer. In other words, the application layer should only manage
the requirements that cannot be managed by the physical and/or virtual layers, the virtual
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layer should attempt to serve the requirements that cannot be managed at the physical layer,
and the physical layer should attempt to address as many requirements as practically possible
and financially feasible. This would provide a more stringent control and higher levels of
security and assurances than a random or a top-down approach. For example, physical layer
vulnerabilities could have major consequences on other layers even if the other layers are well
protected; however, application layer vulnerabilities might not necessarily affect virtual and
physical layers.

3.5.4 Illustrative Example

This section clarifies the bottom-up approach presented in the previous subsection by dis-
cussing the management of the resilience requirement. There is a misconception that resilience
is only related to physical resources; however, in this subsection we illustrate that resilience
does not necessarily require highly resilient physical resources.

Resilience has different levels of granularity which affect the design criteria of the grouping
within the various Cloud layers. The level of resilience is the key to know how to delegate its
management across the elements of Cloud. We next discuss a possible way in which resilience
could be managed across the layers of the Cloud infrastructure.

1. Resilience could be delegated to the physical layer and is reflected as a physical requirement.
Users would need to select their desired level of resilience by considering the nature of the
hosted application, as follows:
(a) The first is for critical applications. In this case services must always be available

within and across federated Clouds and on emergency the hosted services should
immediately be available for customer usage without any downtime. This case requires
an active–active configuration within and across federated Clouds (that is, downtime is
not tolerable).

(b) The second is for highly resilient but less critical applications. In this case services
should be available on emergencies within a single Cloud, however, high reliance
across federated Clouds is optional. That is, if the federated Clouds option is requested
and the primary Cloud provider fails, then services should start and be available within
an agreed timeframe (typically minutes) at an alternative Cloud provider. This case
requires an active–active configuration within a single Cloud, and an active–passive
configuration across federated Clouds. That is, short downtime within federated Clouds
is tolerable; however, downtime is not tolerable within a single Cloud.

(c) The last category could be a default option for all other types of application. In this
case, services should be accessible ‘most’ of the time. This case means downtime is
tolerable within or across federated Clouds. However, the length of downtime must
be quantified and agreed in advance. This category could be managed completely by
other layers without involving the physical layer, as discussed next. This is the only
case in which the physical resilience requirement could be eliminated completely, but
delegated to other layers based on the agreed downtime.

The first category is the most technically complicated and the most expensive to imple-
ment; the second category is still expensive to implement but is less complicated than the
first; the last category is relatively the simplest and the least expensive option. The last
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category is important for overall Cloud services continuity in the long run. These services
are associated with many challenges such as security, privacy, performance, and data man-
agement. Users will need to define their preferred option when joining a Cloud provider.
In addition, users should be provided with the option to decide if they need their hosted
applications to be supported by federated Clouds, and they need to decide on the specific
category of the above services and the length of time a service should be recovered if ever
failed (within and across federated Clouds). Cloud providers will have different pricing
models for the different levels of service.

2. Resilience could be reflected as virtual requirements with or without physical requirements
(based on the requested level of service and the application nature). Specifically, the first
two types of application discussed in points 1a and 1b should (in addition to the physical
layer) be managed by the virtual layer; however, point 1c does not necessarily need a
physical requirement as virtual layer resilience should be sufficient to satisfy its requested
level of service. For example, higher resilience of an application resource would definitely
require horizontal scalability of VMs (see Chapter 5). In this case, the VMs should be
hosted at different physical servers. A virtual resource resiliance might not be enough for
some kinds of application (e.g., those that require transaction survivability or protection
against geographical location failure for highly transactional applications). In such a case,
both virtual and physical resilience would be required.

3. Resilience can be an application requirement. High resilience at either the virtual or the
physical layer would necessitate distributing the access points of an application across
all available resources, as in the case of performing horizontal scalability within a multi-
tier application scenario. This would require high resilience at the application layer, for
example by incorporating a load-balancing algorithm to distribute the incoming and out-
going application requests across available access points.

The above clarifies using an example bottom-up approach to manage user requirements.
That is, it discusses a possible approach for delegating the resilience requirement across
Cloud layers.

3.6 Summary

Automating the management process of the Cloud environment is a complex task, and a
vital requirement for the wider adoption of Clouds, especially by critical infrastructure. The
management process is not only restricted to monitoring resources; it also involves resolving
problems, and managing infrastructure properties and user requirements. Automating the
process of managing Cloud has great advantages, such as: reducing human cost, helping to
address the problems of insiders, helping to quantify the level of trust in Cloud, and increasing
the overall efficiency and resilience of Cloud.

Currently available Cloud management processes require excessive human intervention and
could only automate the management of basic user requirements. This has been the case since
the start of IT (i.e., before the Cloud era). The emergence of the Cloud and its potential features
necessitates updating traditional management tools. The lack of automated management tools
for enterprise infrastructure is due to different reasons, such as: technological limitations,
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complexity of implementations, lack of standardization, and lack of published solid cases
covering user requirements in this domain (that is, the deployment and operational management
requirements).

This chapter has covered the basics of Cloud management. Subsequent chapters will build
on the concepts discussed in this chapter and extend them to cover other angles of Cloud
management.

3.7 Exercises

Q1. Identify Cloud self-managed services and discuss their role in the future development of
Clouds.

Q2. What are the Cloud static and dynamic properties?

Q3. Identify and discuss the main challenges of managing user requirements in the Cloud.

Q4. Which critical infrastructures do not yet adopt the public Cloud model?

Q5. Discuss the importance of protecting Cloud management data.

Q6. Discuss the problem of managing user requirements in the Cloud.

Q7. This chapter presented the bottom-up approach for managing user requirements. If the
approach is reversed, to top-down, can you think of the disadvantages of top-down in
comparison with bottom-up?
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4
Cloud Properties

This chapter identifies and discusses the main properties of a Cloud environment. These are
adaptability, scalability, resilience, availability, reliability, security, and privacy. Such proper-
ties are vital when comparing different Cloud providers. They are also important for Cloud
providers when assessing their infrastructure and for introducing different business models.
Importantly, Cloud properties provide measures which help in quantifying Cloud trustwor-
thiness. Assessing the level of trust of a Cloud provider is one of the hot research topics in
this area. A foundation of this is quantifying the Cloud properties. This chapter defines and
discusses these properties; however, quantifying these properties is not an easy task and lots
of work still needs to be done in this domain.

4.1 Introduction

There are, of course, many definitions of the word ‘trust.’ For example, Diego Gambetta [1]
defines trust as follows:

Trust (or, symmetrically, distrust) is a particular level of the subjective probability with
which an agent assesses that another agent or group of agents will perform a particular
action, both before he can monitor such action (or independently of his capacity ever to be
able to monitor it) and in a context in which it affects his own action.

There are also a number of techniques that enable one party to establish trust with an
unknown entity: direct interaction, trust negotiation, reputation, and trust recommendation
and propagation. Most of these establish trust based on identity. Trust negotiation, by contrast,
establishes trust based on properties. In a Cloud context, as we discuss later, establishing trust
should be based on both identities and properties. This section discusses the main properties
of the Cloud infrastructure that would need to be considered when assessing its level of trust.

Assessing the level of trust in the Cloud infrastructure is not a trivial task. The main points
that would need to be addressed are as follows: What are the properties that the assessor should
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check? What are the factors that help in assessing the properties? How could such properties
be assessed? Who should be involved in the assessment process? How can users establish trust
in the assessors?

This chapter addresses the first two questions. Other questions are discussed in subsequent
chapters of the book. This chapter is organized as follows. Section 4.2 discusses the adapt-
ability property. Section 4.3 discusses the resilience property. Section 4.4 discusses the scal-
ability property. Section 4.5 discusses the availability property. Section 4.6 discusses the
reliability property. Section 4.7 discusses the security and privacy by design requirement.
Section 4.8 clarifies the importance of the discussed properties in a simplified business model.
We summarize the chapter in Section 4.9 and provide a list of exercises in Section 4.10.

4.2 Adaptability Property

The adaptability property is a statistical number reflecting a Cloud provider’s ability to
react in a timely and efficient way to infrastructure and application changes and events.
Examples of changes and events include the following: adding new components, removing
components, changing the location of components, acts of God, an application component
failure, etc.

The adaptability property should by default consider security and privacy requirements. The
factors affecting the value of the adaptability property are as follows:

� Adaptability as virtual and application services. These services, as discussed in further detail
in subsequent chapters, perform the management role in a Cloud environment, for example
infrastructure and application incidents and change management. The two roles manage
changes and incidents within the Cloud infrastructure by liaising with other services and/or
internal and external teams to ensure the successful resolve of an incident and successful
execution of a change. Examples of such changes and incidents include: hardware failures,
change in user requirements, security incidents, and so on.

The factors that help in assessing the adaptability as virtual and application services
include the following: mean time to discover (MTTD) an incident, mean time to invoke
(MTTI) an action to remedy the incident, and mean time to recover (MTTR) from an
incident. In addition to these factors, the trust factor is an important factor that should also
be considered.

Providing adaptability as an automated service that does not require human intervention
would result in a much quicker incident discovery time, invocation time, and recovery time.
This in turn would reduce the values of MTTD, MTTI, and MTTR because self-services
do not require a physical human presence at incidents, do not require coordination amongst
multiple team members, and do not require critical human observations.

In traditional enterprise infrastructures trust is related to operational services which
are provided by human beings and assessed based on prior experience in the enterprise.
Automated services, in contrast, enable better measurement of trust, as the more mature and
tested an adaptability service the higher the value of trust it would have.
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� Tolerance to attack. The value of this is based on two factors: statistical figures on prior
experience of the ability of the infrastructure to mitigate attacks caused by insiders or
outsiders; and statistical figures about Cloud provider proactivity, which could be estimated
based on the security risk management process.

4.3 Resilience Property

The resilience property is a statistical number reflecting the ability of a system to maintain
its features (e.g., serviceability and security) despite a number of subsystem and component
failures. A high value of resilience requires a design which uses redundancy to eliminate
any single point of failure, together with well-crafted procedures (e.g., a procedure that
defines a disaster recovery process). Resilient design helps in achieving higher availability
and reliability, as its design approach focuses on tolerating and surviving the inevitable
failures rather than trying to reduce them.

The factors affecting the value of the resilience property are as follows:

� Resilience as virtual and application services. These services resemble the activities of
Cloud internal employees (specifically enterprise architects) when producing the infrastruc-
ture architecture to eliminate any single point of failure. Examples of resilience services
include the following: if a hardware component fails, the system services should not be
affected; if a process fails, the system should provide redundant services that support the
failed services; and data should be replicated to protect against physical corruption, failures,
and/or security attacks. Factors that help in assessing resilience as virtual and applica-
tion services include MTTD, MTTI, MTTR, and trust. These follow the same description
provided for the adaptability property.

� Adaptability property. The higher the value of the adaptability property, the better the system
can support resilience as virtual and application services, which in turn increases the value
of the resilience property. In other words, the better the management of a Cloud environment
the more likely the Cloud is to maintain higher resilience.

� Tolerance to attack. This follows the same description provided for the corresponding point
at the adaptability property; however, it would be reflected in the resilience domain.

� Architecture. The architecture of a system affects the resilience level of the infrastructure
and includes the following: redundancy and replication of resources; individual compo-
nent reliability as provided by the manufacturer; and process management that provides
automated scripts and documents (these identify exact procedures on incidents).

� Feedback of availability as virtual and application services and reliability as virtual and
application services. Availability and reliability are the two main properties that are reflected
directly by resilience. The higher the resilience of a system, the higher the availability and
reliability to be expected. Availability as virtual and application services and reliability as
virtual and application services reflect the on-time work performed by a system to maintain
its availability and reliability properties. Therefore, getting statistical figures about these
services should indicate the effectiveness of resilience as virtual and application services.
This in turn affects the resilience property.
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4.4 Scalability Property

The scalability property is a statistical figure reflecting the ability of Clouds to enable
a virtual infrastructure to scale resources up and down based on demand. For example,
obviously at peak periods the virtual layer should scale resources up, and similarly at
off-peak periods the virtual layer should release unneeded resources by scaling down.
These should be reflected at the application to support the addition and removal of virtual
resources. Also, these should not affect fundamental system properties and should always
enforce user requirements, such as security and privacy.

Scalability at a virtual layer can be of two types:

� Horizontal scalability. The horizontal scalability relates to the number of instances that
would need to be added to or removed from a system to satisfy an increase or decrease
in demand.

� Vertical scalability. The vertical scalability is about increasing or decreasing the size of
instances themselves to maintain an increase or decrease in demand.

In this regard, application layer scalability reacts differently to both types of scalability. For
example, horizontal scalability means the application will be replicated at the newly created
VMs; vertical scalability means the application needs to take advantage of the additional
allocated resources (e.g., increase memory usage, spawn additional child processes).

The factors affecting the value of the scalability property are as follows:

� Scalability as virtual and application services. These services resemble the work of Cloud
internal employees when designing the infrastructure to scale up and down based on demand.
It also matches the work of application architects who design the application to take advan-
tage of any additional resources when scaling up and releasing resources when scaling down.
For example, if legitimate requests increase beyond the current allocated virtual resource
limits, scaling up is then needed to the limits agreed with the customer. The scalability
service should add additional virtual resources to cope with any additional demand, and
it should also ensure that the application utilizes the additional virtual resources. As an
alternative example, if illegitimate requests increase beyond the allocated virtual resources
(as in the case of DoS attack), then the system should attempt to address this, for example
by scaling horizontally and isolating the attacked VM [2].

Factors that affect the assessment of scalability service include the following: MTTI,
mean time to procure hardware resources (MTTPHW), mean time to deploy (MTT-
Deploy), and trust. MTTI and trust follow the same description provided for the adaptability
property. MTTPHW describes the average time required to procure additional hardware
resources, and MTT-Deploy represents the average time required to deploy additional hard-
ware resources.

� Tolerance to attack. This follows a similar description to that provided for the adaptability
property, but it should be reflected in scalability-related issues.
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� Failure statistics. Represent statistical figures when scalability service fails to scale up
or down.

� Scalability statistics. These include mean time to scale up (MTTS-Up) and mean time to
scale down (MTTS-Down). These describe the average consumed time (based on histori-
cal figures) when scaling resources up or down, respectively. MTTS-Up and MTTS-Down
include: the time required to re-deploy applications when scaling up (vertically and horizon-
tally); the time required to release resources when scaling down; and the time required for
the application to utilize additional resources and release unneeded resources when scaling
vertically up/down.

4.5 Availability Property

The availability property is a statistical number reflecting the relative time for which a
service provides its intended functions. High levels of availability property are a result of
excellent architecture, which considers well-crafted procedures, redundant services, and
high service reliability; that is, resilient design.

The factors affecting the value of the availability property are as follows:

� Resilience property. As we discussed earlier, resilience has a major impact on availability.
� Availability as virtual and application services. These services are in charge of distributing

requests coming to an application across all redundant application resources. The distribution
should be based on a scheduling algorithm which considers various factors on distributing
requests (e.g., load). If a resource is down or it is relatively overloaded, the availability as
virtual and application services should stop diverting traffic to that resource immediately,
and re-divert traffic to other active resources until the adaptability as virtual and application
services fixes the problem or until the overloaded resource returns to normal processing
capacity. Factors that affect the assessment of availability as virtual and application services
include the following: MTTD, MTTI, MTTR, and trust – with the same description as
presented for the adaptability property.

� Tolerance to attack. This follows the same description provided for the adaptability property;
however, it should be reflected in availability-related issues.

� Failure statistics. These include statistical figures based on historical experience, including
mean time between failure (MTBF) and incident rate.

4.6 Reliability Property

The reliability property is a statistical figure related to the success with which a service func-
tions. High end-to-end service reliability implies a service always provides correct results
and guarantees no data loss. Higher individual component reliability, together with excel-
lent architect and well-defined management processes, helps to support higher resilience.
This in turn increases end-to-end service reliability and availability.
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The factors which affect the reliability property are as follows:

� Resilience property. As we discussed earlier, resilience has a major impact on reliability,
which in turn necessitates including the value of the resilience property as a factor affecting
the reliability property.

� Reliability as virtual and application services. These services ensure that an end-to-end
service integrity is maintained (i.e., no data loss and correct service execution). If service
integrity is affected in any way and cannot be immediately recovered, reliability as vir-
tual and application services would then notify the availability as virtual and application
services to immediately bring a service or part of a service down. This is to ensure that
data integrity is always protected. Simultaneously, adaptability as virtual and application
services and resilience as virtual and application services should automatically attempt to
recover the system and notify system administrators in case a decision cannot be made auto-
matically (e.g., data corruption that requires manual intervention by an expert). Factors that
affect the assessment of reliability as virtual and application services include the following:
MTTD, MTTI, MTTR, and trust – with the same description as presented for the adaptabil-
ity property.

� Tolerance to attack. This follows the same description as provided for the adaptability
property; however, it should be considered in the context of the resilience property.

� Failure statistics. These include statistical figures based on historical experience including
MTBF and mean time to failure (MTTF).

� Integrity incidents. These include incident rates which are statistical figures based on histor-
ical experience. They also cover certain historical incidents that have caused data integrity
problems, such as physical block corruption and memory problems.

4.7 Security and Privacy Property

In the previous sections of this chapter we discussed some of the main properties which help
in assessing and comparing various Cloud infrastructures. In this section we discuss the most
important properties which currently limit the wider adoption of Clouds, especially by critical
infrastructure. These are the security and privacy properties, which should not be independent
of the other properties; they rather are considered as an integrated part within the others. That
is to say, quantifying security and privacy should be considered as part of other properties
and not independently. If a service is not secure then the value of its corresponding property
should go down.

In the previous subsections we identified the elements contributing to each of the identi-
fied properties. One of these key elements is the services behind the properties. Establishing
trustworthiness in such services and the ability to quantify them are key contributors to
assessing the operational trust of Clouds. Trust is directly proportional to security and pri-
vacy. Trustworthiness means the service performs its job as expected, which includes but
is not limited to considering security and privacy by design when performing any action.
In other words, security and privacy need to be integrated from within rather than being
an added option. This has been considered as a key element for establishing trust in the
Cloud [3–10].
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The following are examples of security and privacy by design:

� Resilience as virtual and application services should ensure the presence of strong isolation
mechanisms between virtual machines when providing a resilient architecture (to address
the multi-tenant architecture problem [11]).

� Resilience as virtual and application services should also consider user security and privacy
requirements by design. For example, it must maintain user requirements when relocating
virtual resources – the allocation of a new physical resource should always be based on user-
defined security and privacy requirements as in the case of geographical location restrictions,
discussed in [7, 9]. Also, the newly allocated physical resource should not be less secure
than the previous physical resource.

� Scalability as virtual and application services must protect VM integrity and confidentiality
on replication. It should also permanently remove data on downscaling. The new virtual
resources should be allocated based on user properties on a horizontal scaling.

� Availability as virtual and application services should maintain secure communication chan-
nels when distributing load, verify the identity of communicating parties, and communicate
securely with other services.

4.8 Business Model

In this section we illustrate the importance of the discussed Cloud properties on a simplified
business model case.

Cloud users might not be interested in understanding Cloud properties for the overall Cloud
infrastructure. A Cloud user’s main concern is to ensure that his applications are hosted and
managed considering his expectations. Therefore, users would be interested in understanding
the values of individual and overall properties of the environment hosting their applications.
Knowing the values of individual properties would help Cloud users to assess Cloud providers
based on their needs and then judge which provider best matches their requirements.

A Cloud provider might not necessarily maintain a specific and static value for the discussed
properties. It is rather expected from a business angle that a Cloud provider would be more
interested in providing customers with different service levels by splitting its infrastructure
into groups (see Figure 4.1). Each group is associated with hardware and software properties,

Cloud Infrastructure

Cloud properties:

Group(B).

Cost factor=£££ 
Cloud properties:

Group(C).

Cost factor=£££ 

Cloud properties:

Group(A).

Cost factor=£££ 

Figure 4.1 A simplified business model illustrating the importance of Cloud properties
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which should have a direct impact on the group-specific Cloud properties. In other words, a
Cloud provider is most likely to provide different options which are associated with appropriate
monetary values. Each option will reflect a guaranteed minimum value of the Cloud properties.

The above business model would fit with the provided abstraction of Cloud layers and
resource management within the layers (see Chapter 2). As we discussed in earlier chapters,
a Cloud user application will be hosted in a set of domains. Domains that depend on each
other join a collaborating domain. A Cloud customer can then request to host his domain or
collaborating domains within an infrastructural group that has an expected value of properties.
A group that has higher values would be more expensive than a group with lower values.

The variations in service charges in the above business model are due to several reasons,
for example: as is well known, different hardware products have different values of statistical
reliability – the more reliable a hardware the more expensive it will be; hardware devices
have different mechanisms for scaling resources (e.g., some hardware resources permit online
scaling of hardware resources – more expensive than offline scaling that requires servers to be
shut down before resource scaling); and software tools provided by different manufacturers
have different management processes affecting their resilience and reliability.

The above would enable Cloud users to decide on the service level they anticipate. A Cloud
provider will then ensure that the Cloud user’s set of applications are eventually hosted at
resources with specific properties, as agreed in an SLA.

4.9 Summary

Assessing various Cloud providers is an important subject to consider. There are many Cloud
providers nowadays. End-users, businesses, and enterprises need a trustworthy and reliable
mechanism to help them assess and differentiate amongst the various Cloud providers. Cur-
rently, such mechanisms do not exist. This chapter aims to clarify and analyze the properties
of the Cloud that could be used to assess different Cloud providers. These properties are as
follows: adaptability, scalability, resilience, availability, reliability, security, and privacy. We
envisage that Cloud users might be interested in understanding not only the overall Cloud
properties, but also the individual properties relevant to their own needs. With suitable trust
models and information provision they can judge which provider best fits their requirements.

This chapter does not cover the way to calculate these properties. This is a complex problem
to tackle and requires huge collaborative efforts from industry and academia. For example,
we do not cover the weights associated with each element of the discussed properties. Making
meaningful calculations is non-trivial and is still under research.

4.10 Exercises

Q1. Identify the main properties of a Cloud environment and then discuss their effects on the
different Cloud deployment types.

Q2. Discuss the importance of Cloud properties from an end-user perspective.

Q3. Discuss the importance of Cloud properties from a critical enterprise infrastructure
perspective.

Q4. How could Cloud properties help in establishing trust in the Cloud?
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5
Automated Management Services

Automated management services are a key enabler for the wider adoption of Clouds. These
services are complex to implement as they represent humans in different domains of expertise
and their interactions. This chapter abstracts and analyzes the required Cloud automated
management services. We start with the management services of the virtual layer, and then the
management services of the application layer. The chapter also discusses the interdependencies
amongst these services. Finally, we provide an example scenario using a multi-tier application
deployment in Clouds.

5.1 Introduction

Automated management services are a key requirement of the Cloud infrastructure, as identi-
fied by NIST (definition in Chapter 1). These services are one of the key areas that distinguish
Clouds from traditional enterprise infrastructure [1]. Such services provide Cloud computing
with exceptional capabilities and new features. For example, scale per use, hiding the complex-
ity of the infrastructure, automated higher reliability, availability, scalability, dependability,
and resilience. These should help in providing trustworthy resilient Cloud computing, and
should result in a cost reduction.

Moving the current Cloud infrastructure to the potential trustworthy Cloud infrastructure
requires a set of trustworthy self-managed services (also referred to as middleware services).
The services should be transparent to Cloud customers and should require minimal human
intervention. The implementation of the self-managed services would depend mainly on their
location within the layers of Clouds. Self-managed services could be of two types: application
layer self-managed services and virtual layer self-managed services. The main objective of
this chapter is to identify and analyze these services and their interdependencies. Part Two of
this book builds on this chapter and discusses how such services help in establishing trust in
Clouds. Also, Part Three presents a partial prototyping of some of these services.

This chapter is organized as follows. Sections 5.2 and 5.3 discuss the virtual layer self-
managed services and their interdependencies, respectively. Sections 5.4 and 5.5 discuss the
application layer self-managed services and their interdependencies, respectively. Section 5.6
discusses how the automated management services should address security and privacy by
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design. Section 5.7 illustrates the deployment architecture of a multi-tier application in the
Cloud. It then discusses the usage of self-managed services to automatically manage the
application in Cloud. Section 5.8 discusses the main challenges and the requirements for
providing automated management services. Finally, Section 5.9 summarizes.

5.2 Virtual Layer Self-managed Services

This section provides a set of conceptual models for the virtual layer self-managed services.

5.2.1 Adaptability as a Virtual Service

Figure 5.1 provides a conceptual model of adaptability as a virtual service (ADaaVS), which
resembles the role of an infrastructure incident manager. ADaaVS is concerned with adapting
virtual resources, which are part of the virtual layer, to changes and incidents. The changes
could be related to user requirements or infrastructure properties. Incidents, on the other
hand, have to be related to the virtual layer in some way; for example, there could be a faulty
physical resource affecting virtual resources, or an increase in service demand affecting virtual
resources. Such changes and incidents should maintain the overall service security and privacy
properties as agreed with customers; for example, adding/removing a VM to/from a virtual
domain should not compromise the virtual domain security or integrity; and removing physical
storage from a physical domain should not reveal content confidentiality.

The primary role of ADaaVS is to perform planning and validation. It then coordinates with
other services for execution of the plans. In this context, ADaaVS would always validate the
plans with the system architect as a virtual service (SAaaVS, covered next) before taking any
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Figure 5.1 ADaaVS
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action. This is to ensure that the plan does not have an impact on the system properties. For
example, when a group of VMs within a virtual domain requires more resources, ADaaVS
would first check if the group is authorized to scale resources up. If so, ADaaVS would then
identify all possible resources that might be affected by such scaling, for example scaling the
virtual resources of a middle-tier application might also require scaling the backend database
resources. Next, ADaaVS would follow the same steps for all identified dependent resources.
Once done, ADaaVS would validate the plan with SAaaVS, and then trigger the scalability
service to scale up the identified resources.

5.2.2 System Architect as a Virtual Service

Figure 5.2 provides a conceptual model of SAaaVS, which resembles enterprise architect
professionals. SAaaVS provides a resilient design and always considers user requirements
and infrastructure properties when allocating physical resources to manage virtual resources.
SAaaVS is triggered by ADaaVS (e.g., on incidents, when users change their requirements,
or when users request a new service).

User requirements could be related to the following properties of the physical layer: resource
reliability, redundancy/replication type (e.g., RAID 1+0, RAID 5, dual channel), and the
distribution, grouping, and management of resources across the Cloud infrastructure. SAaaVS
would also generate and manage well-crafted documents and scripts of process management.

SAaaVS should maintain user security and privacy requirements by design. For example,
if a physical domain could not serve a virtual domain for any reason (e.g., network failure),
ADaaVS would then check with SAaaVS where to relocate the virtual resources. SAaaVS
must ensure that the updated architecture does not compromise user properties.

5.2.3 Resilience as a Virtual Service

Figure 5.2 also provides a conceptual model of resilience as a virtual service (RSaaVS).
RSaaVS resembles system administrators who deploy the outcome of SAaaVS at the virtual
layer. SAaaVS would provide a resilient design when producing an architecture for a new ser-
vice request. It would also provide a resilient architecture when updating an exiting architecture
based on changes in user requirements or infrastructure properties. RSaaVS communicates
with other resources and management tools to deploy the resilient design. It is also in charge
of communicating failures of a resource to other services; for example, on resource failure
RSaaVS would trigger availability as a virtual service (AVaaVS) to divert traffic to alternative
routes and it would trigger ADaaVS to take further action. RSaaVS should maintain security
and privacy by design, for example it should consider the hosting of virtual resources at phys-
ical domains which are not geographically located within boundaries restricted by the user
properties.

5.2.4 Scalability as a Virtual Service

Figure 5.3 provides a conceptual model of scalability as a virtual service (SCaaVS). This
service supports the elasticity feature of the Cloud virtual layer by scaling virtual resources
up and down when needed. SCaaVS is triggered by ADaaVS when detecting a need to
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either add or remove virtual resources. In this case, SCaaVS would perform actions. The
actions include horizontal scalability by replicating VM resources and/or vertical scalability by
expanding VM resources. These actions should always validate user properties before scaling
resources and should maintain security and privacy by design. For example: they protect VM
integrity and confidentiality on replication; permanently shred data from released resources;
and when performing horizontal scaling the allocation of new virtual resources should be based
on user properties. SCaaVS should notify AVaaVS and RLaaVS when scaling up/down, as
discussed next.

5.2.5 Availability as a Virtual Service

AVaaVS manages the available resources at the virtual layer. Specifically, it is in charge
of the following tasks: maintaining communication channels of available virtual services
with resources at the application layer and distributing application layer requests evenly
across available redundant virtual resources. Availability is supported by a correctly deployed
resilient design. The more resilient a system, the higher the availability expected. Figure 5.4
provides a conceptual model of AVaaVS. This figure provides examples of incidents from
RSaaVS and changes from SCaaVS which trigger AVaaVS. AVaaVS in turn performs actions
based on incidents and changes. The actions also trigger cascaded actions to other services
at both the application and virtual layers. For example, if a channel is marked unusable by
RSaaVS, AVaaVS would immediately stop diverting traffic to that channel, and re-divert
traffic to other active channels until ADaaVS addresses the problem. AVaaVS should always
consider security and privacy requirement by design. For example, it should maintain secure
communication channels when distributing load, verify the identity of communicating parties,
and communicate securely with other services.
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5.2.6 Reliability as a Virtual Service

RLaaVS is in charge of maintaining service reliability at the virtual layer, which is of higher
priority than service availability. Most importantly, it ensures that the integrity of the virtual
layer management is maintained (i.e., no data loss and correct service execution). If service
integrity is affected in any way and cannot be immediately recovered, RLaaVS would then
notify AVaaVS to bring the service down by stopping network traffic to the service. This is to
ensure that data integrity is always protected. Simultaneously, ADaaVS should automatically
attempt to recover the system, and notify system administrators in case a decision cannot be
made automatically (e.g., data corruption that requires manual intervention by experts).

Figure 5.5 provides a conceptual model of RLaaVS. This figure provides examples of
incidents and changes, which trigger RLaaVS. RLaaVS in turn performs actions and cascaded
actions based on incidents and changes. It should also maintain security and privacy by design.
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5.3 Virtual Services Interdependency

Figure 5.6 provides a summary of the interactions amongst the virtual layer self-managed
services. This figure provides a high-level overview and for clarity is not meant to cover the
details in depth.

Humans that manage the Cloud infrastructure need to communicate, exchange messages, and
get feedback. Analogously, self-managed services also need to collaborate when managing
the infrastructural resources. We discussed this interaction in previous subsections and we
now summarize the collaborations between the services. ADaaVS acts as the heart of the
virtual layer self-managed services. For example, it intercepts incidents and changes, and then
manages them by generating action plans. ADaaVS delegates part of the generated plan to
SAaaVS, SCaaVS, AVaaVS, and RLaaVS.

SAaaVS provides a resilient architecture by deciding on component reliability and redun-
dancy. It then triggers RSaaVS to deploy the design. Excellent design results in higher avail-
ability and reliability properties. This is indicated in the figure using the Supports relation
between RSaaVS, AVaaVS, and RLaaVS.

ADaaVS triggers SCaaVS for either vertical scaling and/or horizontal scaling. Once scaling
is done, SCaaVS notifies AVaaVS and RLaaVS about the scaling.

RLaaVS is linked with the integrity validation process using the Must Provide relation.
The outcome of the integrity validation process is fed to RLaaVS. If application integrity is
affected, RLaaVS would then send an integrity failure message to both AVaaVS and ADaaVS
to take proper action.

5.4 Application Layer Self-managed Services

This section discusses the application layer self-managed services.

5.4.1 Adaptability as an Application Service

Adaptability as an application service (ADaaAS) is the ability to provide timely and efficient
support of an application on system changes and events. It resembles the application incident
management role that manages changes and incidents at the application layer. This role also
coordinates with other management roles at the virtual layer. ADaaAS should always ensure
that the overall system properties are preserved (e.g., resilience, availability, and reliability)
when taking an action. It should also automatically decide on an action plan and then manage
it by coordinating with other services in the same or other layers.

Figure 5.7 provides a conceptual model of the functions of ADaaAS. This figure provides
examples of events and changes, which trigger ADaaAS. ADaaAS in turn performs actions
based on the events and changes. The actions also trigger cascaded actions to other services
in both the application and the virtual layer. ADaaAS follows a set of rules defined by Cloud
authorized employees when performing the actions and cascaded actions.

5.4.2 Resilience as an Application Service

Resilience as an application service (RSaaAS) is the ability of a system to maintain an appli-
cation features (e.g., serviceability and security) despite a number of component failures. High
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resilience at the application layer can be achieved by providing high resilience at the virtual
layer and well-planned procedures, which we discuss in the next subsection. High application
layer resilience also requires application redundancy, which can be of the following two types:

� Active/passive (also referred to as hot-standby). In this mode two copies of an application
need to run in parallel. The first is called active, which receives and responds to service
requests. The second is called passive, which maintains an up-to-date copy of the active
application but does not process service requests. The passive application can only process
requests once its status changes to active when the original active application cannot process
requests for any reason, for example network failure, component failure, etc.

� Active/active means multiple copies of an application simultaneously process service
requests. If any active application copy fails, all requests to that application copy will
be diverted to another live application copy.

Resilient design helps in achieving higher availability and end-to-end service reliability,
as its design approach focuses on tolerating and surviving the inevitable failures rather than
trying to reduce them. RSaaAS collaborates with other services to provide an end-to-end
resilient Cloud. Figure 5.8 provides a conceptual model for the functions of RSaaAS that
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should be provided to maintain the overall end-to-end application resilience. This figure
provides examples of a single point of failure which triggers RSaaAS. Once ADaaAS receives
notification of a single point of failure event it first manages the event by following a predefined
process (e.g., it performs dependencies validation) and then coordinates with RSaaAS. RSaaAS
in turn performs actions based on the event. If the actions fail to guarantee a certain level of
resilience, a cascaded action plan is then followed. Such actions and cascaded actions follow
a set of rules defined by Cloud authorized employees.

5.4.3 Scalability as an Application Service

Scalability as an application service (SCaaAS) is about providing an application with the
capabilities to instantaneously1 and efficiently adapt to the addition and removal of virtual
resources. For example, at peak periods the virtual layer scales resources up, and similarly at
off-peak periods the virtual layer should release unneeded resources. These should be reflected
at the application to support the addition and removal of virtual resources. Also, these should
not affect the fundamental system properties and should always represent user requirements
(e.g., security and privacy). ADaaVS, upon detecting a need for either adding resources (e.g.,
peak period) or removing resources, instructs SCaaVS to do this. SCaaVS triggers ADaaAS to
adapt to changes at the virtual layer. Finally, ADaaAS triggers SCaaAS to scale the application
to adapt to such changes.

Scalability, as discussed earlier, can be of two types: horizontal and vertical. SCaaAS
reacts differently to these different types. For example, horizontal scalability of an application
requires the application to be replicated at newly created VMs. However, vertical scalability of
an application requires the application to take advantage of the additional allocated resources,
such as increased memory usage and spawning additional child processes. Also, both cases
require SCaaAS to notify availability as an application service (AVaaAS) and reliability as an
application service (RLaaAS) to follow an appropriate action plan.

Figure 5.9 provides a conceptual model of SCaaAS. The figure provides the actions that
trigger SCaaAS. It also provides examples of services that SCaaAS could provide.

5.4.4 Availability as an Application Service

AVaaAS represents the relative time for which a service provides its intended functions. High
levels of availability are the result of excellent resilient design.

1 Existing technologies do not support the instantaneous adaptation.
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AVaaAS is in charge of distributing requests coming to an application across all redundant
application resources based on their current load. If a resource is down or it is relatively
overloaded, AVaaAS should immediately stop diverting traffic to that resource, and re-divert
traffic to other active resources until ADaaAS manages the problem or until the overloaded
resource returns to normal processing capacity.

Figure 5.10 provides a conceptual model of AVaaAS. The figure provides examples of
events and changes triggering AVaaAS. The events are triggered by RSaaAS while the
changes are triggered by SCaaAS. AVaaAS in turn performs actions based on the events
and changes. Such actions could also trigger cascaded actions to other services at both the
application and virtual layers.

5.4.5 Reliability as an Application Service

RLaaAS is related to the success with which a service functions [2]. High end-to-end service
reliability implies that a service always provides correct results and guarantees no data loss.
Higher individual component reliability, together with excellent architect and well-defined
management processes, helps in supporting higher resilience. This in turn increases end-to-
end service reliability and availability.

RLaaAS is of higher priority than AVaaAS, as RLaaAS ensures that an end-to-end service
integrity is maintained (i.e., no data loss and correct service execution). If service integrity is
affected in any way and cannot be immediately recovered, then RLaaAS notifies AVaaAS to
immediately bring the service or part of the service down. This is to ensure that data integrity
is always protected. Simultaneously, ADaaAS should automatically attempt to recover the
system and notify system administrators in case a decision cannot be made automatically
(e.g., data corruption that requires manual intervention by experts).

Figure 5.11 provides a conceptual model for RLaaAS. The figure provides examples of
events from RSaaAS and the virtual layer services, and changes from SCaaAS. Such events
and changes trigger RLaaAS. RLaaAS in turn performs actions and cascaded actions based
on the events and changes.

5.5 Application Services Interdependency

Figure 5.12 provides a summary of the interaction amongst application layer self-managed
services. The figure provides a high-level overview and for clarity is not meant to cover
the details in depth. In this figure, ADaaAS acts as the heart of self-managed services. For
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example, it intercepts faults and changes in user requirements, manages these by generating
action plans, and delegates action plans to other services. To be in a position to do this,
ADaaAS communicates with RSaaAS, SCaaAS, AVaaAS, and RLaaAS.

RSaaAS requires redundant resources, which is represented by the relation Maintains on
redundancy. An excellent resilient design results in higher availability and reliability properties.
This is indicated using the Supports relation between RSaaAS, AVaaAS, and RLaaAS.

SCaaAS starts based on triggers which are received from ADaaAS. It instructs to adapt
to vertical scaling and/or adapt to horizontal scaling processes. It also notifies AVaaAS and
RLaaAS once scaling is done. RLaaAS is linked with the integrity process using the Must
Provide relation. The outcome of the integrity process is fed to RLaaAS. If the application
integrity is affected in any way, RLaaAS would send an integrity failure message to both
AVaaAS and ADaaAS.

5.6 Security and Privacy by Design

Security and privacy at the application layer is about ensuring Cloud user security and privacy
requirements are maintained by the environment surrounding the application. We do not
concern ourselves in this book with the application-related security as we focus on automated
services supporting the application and not the application itself. This includes the following
examples:

� Protecting Cloud user data whilst in transit (transferred to the Cloud and back to the client,
and transferred between Cloud structure components).

� Protecting the data whilst being processed by an application.
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Figure 5.13 Security and privacy service

� Protecting the data when transferred across Cloud services.
� Protecting data whilst in storage.
� Ensuring that the application runs at a certain geographical location as agreed with the

customer.
� Ensuring that the application data is stored at a certain geographical location as agreed with

the customer.

Security and privacy should be built into all application self-managed services as a default
option. Similarly, security and privacy should also be built into virtual self-managed services
as a default option. For example, scaling virtual resources should ensure that the selected
physical host does not have security holes and has the properties enabling it to serve customer
requirements. Also, removing a virtual resource should ensure that the data left are shredded.

Figure 5.13 provides a conceptual model of a security and privacy service. This figure
provides examples of application and virtual services, which trigger the self-managed services
at the application and virtual layer. These services should, by default, ensure that security and
privacy are maintained. This is illustrated in the figure using the relation Associated by design
with between the self-managed services and the security and privacy service. The security and
privacy service would perform actions based on the requested service.

5.7 Multi-tier Application Deployment in the Cloud

This section demonstrates the architecture of a typical multi-tier application in the Cloud. It
then discusses how the multi-tier application could possibly be managed using the proposed
self-managed services.
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5.7.1 Application Architecture

Figure 5.14 illustrates an architecture of a multi-tier application in the Cloud. The application
layer would typically be composed of the following components:

� Server backend application. In charge of maintaining backend database repository. The
database repository runs in an appropriate container (e.g., Oracle DBMS [3], Microsoft
SQL Server [4], or Derby [5]). The server backend application would typically be hosted
on dedicated physical servers; however, it could also be hosted on a set of dedicated VMs.
We refer to the backend application hosting machine as backend VMs.

� Server middle-tier application. In charge of running application business logic functions that
interact with client frontend applications. The middle-tier application runs in an appropriate
container (e.g., Apache/Tomcat [6], Weblogic [7], Oracle Application Server[8]), which
would normally be hosted and replicated across a set of VMs. We refer to the middle-tier
application hosting machine as middle-tier VMs.

Middle-teir VMs and backend VMs are usually separate and independent in the produc-
tion environment for several reasons (e.g., security, resource management, and resilience).
These two sets of VMs could be combined and could even be hosted on a single VM for
development and testing environment.

� Client frontend application. Client application could be a combination of HTML, JavaScript,
Java Applets, or even a standalone application that would need to communicate with the
Cloud for special purposes (e.g., to upload data on the Cloud for backup purposes or be part
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of a supply chain application). Client application could be stored at either the Cloud customer
environment or inside middle-tier VMs, based on the application nature. The Cloud customer
at run time (possible downloads) runs the client frontend application at the client side.

For example, media organizations usually have editorial systems and online web systems.
A media organization could move its online web systems on to the Cloud and keep the edito-
rial applications hosted on their local infrastructure. The organization’s editorial employees
would then use their local editorial applications when creating and editing stories. The orga-
nization’s customers, in contrast, would access online web systems from the Cloud. The
nature of the client frontend application would typically be a HTML/JavaScript; however,
the client frontend application could also be a standalone application which transfers stories
into an online web system hosted at the Cloud.

The proposed multi-tier application architecture requires a set of trustworthy self-managed
services, as follows (see Figure 5.15).

� Virtual layer self-managed services.
� Application layer self-managed services. These are conceptually composed of two parts:

server middle-tier self-managed services, which support the server middle-tier application
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and server backend self-managed services, which support the server backend application.
These types of application services would coordinate with each other to support a trustworthy
environment for the hosted application. They also need to coordinate with the self-managed
services supporting the client frontend application and with the virtual layer self-managed
services, as discussed earlier.

� Client frontend self-managed services. These should provide transparent management ser-
vices supporting the client frontend application and its communication with the middle-tier
application. This is to provide an end-to-end trustworthy service.

5.7.2 Managed Services Interaction

In this section we illustrate using examples the use of self-managed services to support the
management of the discussed multi-tier application architecture. Our approach is based on
providing several examples for the interaction between the self-managed services of the client
frontend, server middle-tier, and server backend. For simplicity, our examples focus more on
the application layer services and less on the virtual layer services.

Client Frontend Self-Managed Services

The client frontend application requires the following self-managed services (we do not discuss
issues related to the customer environment’s self-managed services as these are not directly
related to Clouds). It is important to re-stress at this point that the application is not necessarily
a simple HTML, as it could be an interactive application that does part of the application
processing at the client application and then communicates with the Cloud for follow-up
processes.

� Adaptability service. This is in charge of adapting the client frontend application to changes
provided by the Cloud provider (i.e., server middle-tier management services), for example
changes in service location, degraded performance, and incidents. This would enable an
adaptability service at the client side to take appropriate action. Examples of actions include
the following:
– If the middle-tier application location changed, the adaptability service would then send

the new location to the adaptability service at the client frontend. The latter would re-
establish communication to the new location.

– If the Cloud application performance was degraded, the client could reduce its requests
to the minimal or even do offline processing and then upload the result on the Cloud.

– The client could temporarily follow an emergency plan on security incidents at the Cloud
side.
These are just a few examples which would be based on the nature of the application.

� Resilience service. This is about providing resilient service at the client side when com-
municating with the Cloud. The service, in this context, mainly attempts to re-establish
failed communication with the Cloud (that is, it establishes communication with the server
middle-tier services).

� Reliability service. This is concerned with maintaining service reliable of the client frontend
application when communicating with the Cloud. The service, in this context, ensures
reliability when data is transferred from/received by the Cloud, and ensures reliability when
data is processed at the client frontend application.
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� Security and privacy. Integrated with other services to provide security and privacy measures
supporting the client frontend application. This includes the following examples:
– Protecting client’s data when retrieved from the Cloud and stored or processed at client

environment
– Protecting data whilst being transferred to/from the Cloud.

Server Middle-tier Self-managed Services

These support server middle-tier applications and require the following self-managed services:

� Adaptability service. This is in charge of managing changes and events which could affect
the functions of the server middle-tier application. Examples of these include the following:
– Problems in the Cloud which necessitate relocating the service to another location. In

such a case, the adaptability service communicates with the adaptability service at the
client frontend to take appropriate action.

– If the server middle-tier application cannot be restarted because of a hardware-related
issue the adaptability service would coordinate with the adaptability service at all other
dependent self-managed services.

– If an application cannot be restarted because of dependency problems, the adaptability
service would manage this by finding dependent applications and re-validating their
availability.

� Resilience service. This covers the following examples:
– Subject to the nature of the client frontend application, the resilience service re-establishes

communications with the client frontend application on failure.
– It re-establishes communications with the server backend application on failure.
– It restarts the server middle-tier application on failure.
– If the application cannot be restarted because of an error (application, environment, or

others), the service follows an appropriate procedure based on the error nature (e.g.,
triggers the adaptability service).

� Scalability service. This is mainly concerned with adaptability issues of the server middle-
tier application when scaling up/down. It covers the following:
– Scaling up resources allocated to VMs which host the server middle-tier application. This

requires the application to follow a set of processes, for example spawning further child
processes.

– Scaling up by adding a VM which requires the application to follow a different process,
for example notifying the availability service to redistribute the incoming load to the
newly created VM, and redistributing client sessions considering the new VM.

– Scaling down by removing additional resources or VMs allocated, in which each requires
following a reverse process and then notifying the availability service.

� Availability service. This is in charge of distributing the load coming from the client front-
end application and server backend application evenly across the redundant resources of the
server middle-tier application. If a resource is down, the availability service would imme-
diately stop diverting traffic to that resource and re-divert traffic to other active resources
until the adaptability service fixes the problem. Also, when the hosting environment scales
up/down the availability service would redistribute the incoming requests based on the
nature of the scaling.
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� Reliability service. This is concerned with maintaining a reliable service for the server
middle-tier application when communicating with both the server backend application and
the client frontend application. Examples of processes provided by this service include the
following:
– Verifying reliability when data is transferred/received between applications.
– Verifying reliability whilst data is processed.

� Security and privacy. Integrated with other services to provide security and privacy measures
supporting the server middle-tier application. This includes the following:
– Protecting a client’s data when retrieved from the client frontend application.
– Protecting data whilst being processed by the server middle-tier application.
– Protecting data when transferred to/from the server backend application.
– Protecting data on storage.
– Ensuring security and privacy is preserved for all other services (e.g., securing communi-

cation baths).

Server Backend Self-managed Services

Required to support the server backend application. These services are the same as those
required for the server middle-tier self-managed services. The main difference is that the
server backend services do not communicate with the client frontend application. They mainly
protect the application which intermediates the communication between the server middle-tier
application and the backend storage, where data is eventually stored. This in turn means the
implementation of the server backend services would require providing additional functions
and security features for managing database instances that interact with the storage.

5.8 Main Challenges and Requirements

This section discusses the challenges involved in providing trustworthy self-managed services.
It is beyond the scope of this book to cover the challenges of implementing self-managed
services such as data replication.

5.8.1 Challenges

As discussed in Chapter 3, the self-managed services will be managed by the VCC. The VCC
communicates with VMMs running at the Cloud infrastructure physical servers to manage the
Cloud resources. This process is associated with many challenges, which we categorize in two
parts: the first is about providing trustworthy management of the services and the second is
for providing trustworthiness in the services.

For the first challenge, the VCC should be trusted to operate as expected; for example,
to enforce infrastructure policies and host user virtual resources at physical resources by
considering both user requirements and infrastructure properties. Managing self-managed
services using the VCC exposes the following issues:

� The VCC, as a central management service, must provide self-managed services without
compromising security and data consistency.
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� How can the VCC be assured that the VMMs’ execution environment is secure, trusted, and
reliable to provide timely information about the status of VMs. Also, how can the VCC be
assured that the VMMs enforce Cloud user properties.

� How can the VMMs be assured about VCC trustworthiness and about its running execution
environment when communicating messages.

� How can the VMM and VCC be assured that their data is stored securely and only accessed
when their execution status is trusted.

� The VMM and VCC need assurance about each other’s identity.

The second challenge, which is about providing trustworthiness in self-managed services,
requires the following:

� As we explained earlier, Cloud’s infrastructure is conceptually composed of several inter-
secting layers. Self-managed services should take into consideration the heterogeneous and
complex Cloud layering, and the horizontal and vertical communication channels amongst
these layers. Specifically, providing automated self-managed services for a resource requires
the following:
– Understand the relative position of the resource, that is identify the resource’s horizontal

layer, vertical layer, domain membership, and collaborating domain membership.
– Understand the infrastructure properties associated with the physical environment hosting

a virtual resource (i.e., the properties associated with the physical domain and collaborat-
ing domain which host the virtual resource).

– Understand the user properties associated with a resource in the virtual domain and
collaborating domain.

– Understand how the management of a resource would affect other resources within the
same domain.

– Understand how the management of a resource would affect other resources within the
same collaborating domain.

� Policy distribution, coordination, and management across the Cloud entities is a big chal-
lenge considering its complex infrastructure.

� The Cloud infrastructure is not hosted at a single data center that is located at a specific
location; it is rather the opposite, as it is distributed across distant data centers. This factor
has a major impact on decisions being made by self-managed services for several reasons.
Examples of such reasons include the following:
– The distance and the communication medium between distant data centers will have an

impact on data transfer speed.
– Cloud users might have security and privacy concerns about the location of their data.

Automated services must consider these important factors and other related factors (e.g.,
data volume, data access mode, etc.) when providing a service.

� Self-managed services must consider federated Clouds and they must also be designed to
enforce Cloud provider-related policies when considering a decision to use other Cloud
resources. This is important to consider, as federated Clouds could have a major impact on
security, privacy, and legislation-related issues. That is, migrating user resources between
Cloud providers should ensure user requirements are always enforced.

� Key management is a fundamental issue when discussing Cloud security. This is especially
the case as Cloud internal employees are considered potential insiders. Thus, the protection
keys of content should not be accessible by Cloud employees.
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5.8.2 Requirements

In this section we discuss a set of high-level requirements that could address the problems
identified earlier.

A trustworthy management of self-managed services requires the following:

� The VCC and VMMs should attest to each other’s execution environment, so that commu-
nicating entities can get the assurance of the security and reliability of VMMs and the VCC.

� The VCC and VMMs need to have management agents that are trusted to behave as
expected. Such agents are expected to manage the self-managed services across the
distributed Cloud infrastructure. The trustworthiness of the agents must be assured to all
communicating parties.

� The VCC and VMMs should provide protected storage capabilities.
� The VCC and VMMs should be able to exchange identification certificates with each other

in a secure and authentic way.
� The VCC needs to be resilient and scalable to provide distributed and coordinated services.
� The VCC should provide hardware trustworthiness mechanisms to prevent infrastructure

single point of failure.

Providing self-managed services requires the following:

� A mechanism to attest to VMMs’ trustworthiness to ensure that they would enforce user
properties.

� A mechanism to communicate user properties across Cloud-related components, and ensure
the properties are not tampered with whilst being transferred, executed, and stored.

� Providing secure information sharing across Cloud components in the same layer and across
multiple layers.

� Mitigating the insider threats as discussed next.
� Standardization. Most technologies used in the Cloud are not new; however, the heteroge-

neous nature of the Cloud requires reconsidering many issues, as in the case of standard-
ization. For example, different software and hardware providers need to provide standard
interfaces enabling cross-communication between Cloud components.

� Interoperability. This is an essential requirement to avoid vendor lock problems. In addi-
tion, it is the key enabler for collaborative efforts. For example, hypervisor and VMM
interoperability enables VMs from different suppliers to work on hypervisors from different
manufacturers. This in turn helps in supporting self-managed services.

The Cloud infrastructure must be capable of protecting the integrity, confidentiality, and
availability of Cloud critical data from Cloud insiders. This covers all types of data and commu-
nication messages, whether directly related to Cloud users or used to manage internal resources;
that is, both the application data and the management data discussed in Chapter 2. Part Two
of this book presents frameworks which would help in addressing the identified requirements.

5.9 Summary

The complexity of the Cloud infrastructure means a large number of subsystems have to work
perfectly together to keep the operation running. In addition, multiple and different groups
within and across Cloud layers need to cooperate, exchange critical messages, and coordinate
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amongst themselves. Current Cloud computing does not provide the full potential of automated
self-managed services, and relies on Cloud’s employees to support the infrastructure. The
complexity of Clouds and their enormous number of users necessitate developing trustworthy
self-managed services. Such services are one of the key foundations to address many Cloud
problems and for the future success of Clouds.

This chapter has presented a set of conceptual models of self-managed services at the
virtual and application layers of the Cloud. The models help in understanding the different
types of management services across Cloud layers. They also help in understanding service
interdependency. Subsequently, we clarified further the use of the services on a home healthcare
application deployed at a Cloud provider. Finally, the chapter discusses the challenges and
requirements for establishing trustworthy self-managed services.

5.10 Exercises

Q1. Self-managed services are considered as one of the key distinguishing features of Clouds.
Discuss the importance of these services.

Q2. What are the types of self-managed services?

Q3. Discuss the interdependencies between the application layer self-managed services.

Q4. Discuss the interdependencies between the virtual layer self-managed services.

Q5. Discuss how security could be provided using Clouds self-managed services.
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6
Background

This chapter helps in understanding the flow of Part Two of this book. It introduces Cloud
security, trusted computing, and the general flow of Part Two.

6.1 Topics Flow

This book is about Cloud management and security. We started the first part of this book
by discussing the structure of Clouds, their management platforms and attributes. We then
discussed the requirements and services that would help in automating the management of
Cloud platforms. The second part of this book builds on the first part and assumes readers have
carefully grasped the concepts discussed in the first part, especially those relating to Cloud
structure. This part focuses on the roadmap and building blocks that are needed to establish
the next generation of trustworthy Cloud computing. It also defines the security challenges
and the requirements to address these challenges. Establishing trust in Clouds is a big subject
in itself. Almost all challenges in Clouds eventually affect the trustworthiness of Clouds, as
illustrated in Figure 6.1. For example:

� Addressing the security and privacy challenges of the Cloud is key to establishing trust.
� Addressing the operational management concerns will help in reducing failures, and increas-

ing efficiency and security. These help in enhancing Cloud trustworthiness.
� Addressing the data management concerns will help in increasing data security and reducing

outages. These help in enhancing Cloud trustworthiness.

The discussion in this part is centered around issues relating to Cloud security and its effects
on trust establishment. Although this part covers the most widely discussed security aspects
about Clouds, we do not discuss the security elements topic by topic, neither do we focus on
a specific security topic by itself. This is because security is a big subject in itself and we
assume readers have a very good knowledge of the foundations of information security. That
is, we discuss the process of establishing trustworthy Cloud, which involves many elements
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not limited to information security. In this book we focus more on those elements related to
security. This part consists of the following chapters:

� Chapter 6 is the current chapter. It introduces Part Two and highlights its relation to Part
One.

� Chapter 7 discusses the challenges related to establishing trustworthy Cloud. The chapter
concludes with a set of research directions for establishing trust in Cloud. The remaining
chapters in this part extend the identified directions and draw a set of integrated frameworks
for establishing the next generation of trustworthy Cloud computing.

� Chapter 8 gives a foundation framework which draws a roadmap to address the question of
how to allow users to establish trust in Cloud without the need to get involved in complex
technical details.

� Chapter 9 discusses mechanisms for remote attestation in Cloud and addresses the question
of how to establish trust in a composition of multiple entities in which the entities could
change dynamically.

� Chapter 10 presents a framework for establishing a trustworthy provenance system. This
helps in monitoring, verifying, and tracking the operation management of the Cloud infras-
tructure, that is it helps in the direction of proactive service management, finding the cause
of incidents, customer billing assurance, security monitoring (as in the case of lessening the
effects of insider threats), security and incident reporting, and tracking both management
data and customer data across the infrastructural resources.

� Chapter 11 discusses the insider problem. The insider problem is one of the key areas
which restricts the wider adoption of Clouds. It was one of the key security concerns before
the Cloud era. The problem is worse with Clouds, as insiders have higher motivation to
attack the infrastructure. This is related to the huge number of customers sharing the Cloud
infrastructure. A malicious insider can get access to different customer information. This
chapter provides a systematic method to identify potential and malicious insiders in a Cloud
environment. It also discusses how this would help in having trustworthy Clouds.
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6.2 Trusted Computing

This section briefly introduces the fundamental concepts of trusted computing, as it will be
very helpful to understand the protocols of the second part of the book.

6.2.1 Introduction

The Trusted Computing Group (TCG1) was established in April 2003. It is a not-for-profit
organization formed to develop, define, and promote open, vendor-neutral, industry standards
for trusted computing building blocks and software interfaces across multiple platforms. TCG
is the successor to the Trusted Computing Platform Alliance (TCPA), which was founded
in January 1999 by a group of major technology vendors, including AMD, IBM, Intel, HP,
Microsoft, and Sun Microsystems (that recently changed name to Oracle).

As discussed in [1] trusted computing platforms provide five main components, which are
used to implement TCG functions. These components are: (1) root of trust for measurement
(RTM); (2) root of trust for storage (RTS); (3) root of trust for reporting (RTR); (4) root of trust
for verification (RTV); and (5) isolation technology. These components are used to implement
the TCG functions, which are as follows: (1) an authenticated boot process; (2) platform
attestation; (3) protected storage functionality; (4) a secure boot process; (5) software isolation

In the remainder of this section, we start by discussing the core component in TCG specifi-
cations (i.e., the trusted platform module). We then briefly discuss the above components and
how each function is achieved using these components, as proposed within TCG specifications.
Finally, we outline the main criticism raised by researchers on using trusted computing.

6.2.2 Trusted Platform Module

The core component to establishing trust in an IT system based on TCG specifications is the
trusted platform module (TPM) [2–4]. TPM is generally implemented as a component which
must be physically bound to a platform. A TPM must be completely protected against software
attacks and it must be tamper-evident; that is, provide a limited degree of protection against
physical attack.

A TPM incorporates various functional components and features, including:

� A cryptographic co-processor that supports the following operations: asymmetric key gen-
eration, asymmetric encryption, digital signing capabilities, hashing and random number
generation. The asymmetric keys that are generated by a TPM could be either migratable
or non-migratable keys. Migratable keys can be transmitted to other TPs if authorized by
both a selected trusted authority and the TPM owner. A non-migratable key, in contrast, is
bound to the TP that created it, and cannot be cloned.

� An SHA-1 engine.
� Protected storage capabilities. Each TPM has a specific storage root key (SRK), which is

securely stored inside the TPM. Once a TPM has been assigned an owner, it generates a
new SRK. Other TPM objects (key objects or data objects) are protected using keys that are

1 www.trustedcomputinggroup.org.

http://www.trustedcomputinggroup.org
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ultimately protected by the SRK in a tree hierarchy. Each object protected by a TPM includes
a secret 20 bytes of authorization data, which is known as AuthData. Proving the knowledge
of the value of the AuthData associated with an object grants access to that object.

� Non-volatile and volatile memory.
� Platform configuration registers (PCRs) are special-purpose registers for storing the platform

state. Each PCR is a 20-byte inegrity-protected register securely present in a TPM; TCG
specifications require that a TPM must contain a minimum of 16 PCR registers.

Each TPM is associated with a statistically unique asymmetric encryption key pair called
an endorsement key pair (EK), which is generated either internally or using an external key
generator at the time of manufacture. The EK is used only for encryption/decryption purposes.
The EK is stored in the TPM at the time of production by the manufacturer. The private
decryption endorsement key is known only to the TPM and never revealed outside the TPM.
The EK can only be used when assigning TPM ownership.

The TPM is an inexpensive hardware chip, which has protected storage and protected
capabilities. In order to reduce TPM costs, the TCG specifications only require the TPM to be
used for functions requiring protected storage and capabilities. Functions that do not require
protected storage and capabilities can run using the platform main processor and memory
space. A significant proportion of all new PCs now incorporate a TPM for implementing
trusted computing functionality.

6.2.3 TCG Main Components

We now briefly discuss the five main components of TP.

The Root of Trust for Measurement

The RTM is a computing engine capable of making reliable measurements of TP running
components, it is known as an integrity measurement.

Definition 6.1 Integrity measurement. A cryptographic digest or hash of a platform
component; that is, a piece of software executing on a platform [5].

In order to ensure that an unlimited number of measurements could be stored in the limited
number of PCRs in a TPM, the concept of an integrity metric has been raised, which is defined
as follows.

Definition 6.2 Integrity metric. A condensed value of integrity measurements. It is
calculated by concatenating a new integrity measurement with the existing content of a
PCR, and hashing the resulting string. Following that, the resulting integrity metric replaces
the old value of the PCR.

The RTM is controlled by a particular instruction set, which is known as the core root of
trust for measurement (CRTM). On a PC, the CRTM may be contained within the BIOS,
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and is executed by the platform when it is acting as the RTM. The CRTM must be protected
against software attack. The CRTM measures the first piece of software to be executed during
system boot. Next, it passes the measurement result to the RTS that records the result in the
TPM PCRs, and then passes control to the next piece of software to be executed, which has a
measurement agent (MA) embedded within it. This MA measures the next piece of software to
be executed, passes the result to the RTS that records the result in the TPM PCRs, and passes
control to the next piece of software to be executed, and so on. MAs are used to build up a chain
of trust in the form of a series of integrity measurements. The results of integrity measurements
made by the CRTM and MAs are known as measurement events; these involve two classes
of data – measured values, which are representations of embedded data or program code, and
measurement digests, which are hashes of the measured values. The measurement digests are
stored in the TPM PCRs. The measurement values are stored in the stored measurement log
(SML), which is stored outside the TPM.

The Root of Trust for Storage

The RTS is a collection of capabilities, which must be trusted if storage of data in a platform is
to be trusted [6]. The RTS uses TPM components to achieve its functions; for example SRK,
PCR, cryptographic co-processor. These main functions are as follows:

� Maintaining the integrity measurements made by the RTM by generating the integrity
metrics.

� Providing confidentiality and integrity protection to keys and data.

The RTS in the TPM must be immutable, which implies that the replacement or modification
of RTS should be under the control of the TPM manufacturer alone.

The RTR enables a TPM to reliably report information about its identity and the current
state of the TPM host platform. This is achieved using a set of keys and certificates, which
are signed by a variety of third parties that must be trusted if the state of the platform is to be
trusted. These certificates are as follows:

� An endorsement credential containing the public EK belonging to a particular TPM. This
credential is signed by a trusted platform module entity (TPME), which attests that a
particular TPM is genuine. The TPME is likely to be the TPM manufacturer.

� A conformance credential signed by a conformance entity (CE) to attest that the TP design,
that is the design of the TPM and other trusted platform building blocks, when integrated
into a particular design of platform, meets the TCG specifications.

� A platform credential signed by a platform entity (PE) to attest that a particular platform is
an instantiation of a TP design, as described in specified conformance credentials. The PE
may be the equipment manufacturer.

� A validation certificate signed by a validation entity (VE) to certify the software components’
integrity measurements. The integrity measurements correspond to a correctly functioning
platform component (i.e., a piece of software). These validation certificates are used by
a challenger wishing to evaluate the state of a challenged TP. The VE is typically the
component supplier.
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There is still an important set of keys which provide anonymity, and simultaneously attest
that a particular platform is genuine. These keys are called the attestation identity keys (AIKs).
AIKs (which are signature key pairs) function as aliases for the TP; they are generated by
the TPM, and the public part is included in a certificate known as an identity credential. The
identity credential asserts that the (public part of the) AIK belongs to a TP with specified
properties, without revealing which TP the key belongs to. The first generation of TPM (i.e.,
V1.1) requires a privacy certification authority (Privacy CA) to certify AIKs, that is signing the
identity credential confirms that it belongs to a genuine TP. However, in the second release of
TPM specifications (i.e., V1.2) it imposes the direct anonymous attestation (DAA) protocol [7],
which allows TPs to authenticate themselves as genuine TPs while preserving their anonymity.
The pros and cons for using privacy CA and DAA are discussed later in this chapter.

Before generating an identity credential, the privacy CA verifies a series of signed credentials
belonging to the platform, including the endorsement credential, conformance credential, and
platform credential. These latter credentials are used to guarantee that an EK belongs to a
particular TPM, attest that a TP design meets the TCG specifications, and that a particular
platform is an instantiation of a TP design as described in the conformance credentials,
respectively. AIKs are used to sign data generated inside the TPM, including the values of
PCRs which hold measurements of platform state. AIKs can also be used to sign other keys.

The Root of Trust for Verification

The root of trust for verification (RTV) is defined as a computing engine capable of verifying
at least one platform component’s integrity measurement against its expected value [8]. Note
that the main TCG specifications do not include the RTV, enabling a secure boot process. The
RTV was first included in the TCG mobile trusted module [8].

Isolation Technology

Software isolation is about providing a secure environment for protecting executed software
confidentiality and integrity. Most proposed mechanisms for providing software isolation
focused onVMM technology to provide an isolated secure execution environment and, also,
on the use of new process generation provided, for example, by Intel’s LaGrande initiative [9].

VM supports multiple operating systems from different vendors that, under the control of
VMM, utilize the hardware of a single machine. The hypervisor presents a virtual machine
interface to the operating system and arbitrates requests from the operating system in the
virtual machines. Thus, the hypervisor can support the illusion of multiple machines, each of
which can run a different operating system image. ‘Although virtualization offers abstraction
from physical hardware and some control over process interaction, there still are problems
to be solved. For example, in the x86 architecture, direct memory access (DMA) devices can
access arbitrary physical memory locations’[10].

6.2.4 The TP Main Functions

In this section we discuss the TP main functions.



Background 87

The Authenticated Boot Process

Establishing trust in a TP starts by having an initial trusted state. Achieving this requires the
assurance of the trustworthiness of a platform whilst the platform is starting up during the
boot process; that is, an authenticated boot process. The authenticated boot process requires
interaction amongst two main TCG components, namely the RTM and the RTS. We now
illustrate this in the form of an example for currently available PCs.

Step 1. The CRTM first measures itself and the rest of the BIOS. The result is then passed to
the RTS.

Step 2. The RTS condenses the CRTM output and stores it in PCR 0, which is the first one
within the 16 PCRs. The measurement values (i.e., prior to condensing) are stored in
the SML, which is stored outside the TPM. Control is then transferred to the POST
BIOS.

Step 3. The POST BIOS measures the host platform configuration, the option ROM code, and
the OS loader. The results are then passed to the RTS.

Step 4. The RTS condenses the POST BIOS output and stores this in PCR 1–5. The mea-
surement values are stored in the SML. The RTS then passes the output to the POST
BIOS. Control is then transferred to the OS loader.

Step 5. The OS loader measures the OS.
Step 6. At each stage the result of measuring is passed to the RTS, which condenses and then

stores it. Control is then passed again to the next components, exactly as discussed
above, until the OS is loaded.

Protected Storage

The protected storage is a fundamental function provided by TPM, which relies mainly on the
RTS component to not only ensure data confidentiality and integrity when stored on untrusted
devices, but also bind the usage of the protected data to a specific platform when its execution
status is in a specific predefined state. In this section we discuss this in detail.

As mentioned before, each TPM has a specific asymmetric encryption key pair known as
SRK. The private key is securely generated and stored inside the TPM and is never released
outside it. SRK is the root of TPM-protected object hierarchy, which is used to protect all
objects underneath it. TPM-protected objects can be of two types: key object or data object,
discussed as follows:

� Key object. A TPM incorporates a functional component that supports the protected storage
capability, which is a cryptographic co-processor. Part of the cryptographic co-processor
function generates asymmetric key pairs, where the private part of the key is associated
with a data structure containing a set of constraints controlling key usage. For example,
forcing the private key to be used only on a specific TPM (i.e., the private key is never
exported unencrypted outside the TPM), and forcing the key to be used only when the
platform is in a specific predefined state. The asymmetric keys generated by a TPM could
be either migratable or non-migratable keys. Migratable keys can be transmitted to other
TPs if authorized by both a selected trusted authority and the TPM owner. A non-migratable
key, however, is bound to the TP that created it and cannot be cloned.
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� Data object. Can be either data or symmetric keys that are used to protect bulk data using the
platform main processor. The TPM protects a data object’s confidentiality by encrypting it
using either migratable or non-migratable key at a higher layer of the hierarchy, based on the
data object’s protection requirements. It also implicitly protects a data object’s integrity by
associating a 20-byte authorization data (AuthData) with the data object before encryption.
When a data object is decrypted, the AuthData is requested and then compared with the
recovered value. If the values do not match then the decrypted key object will not be released
to the caller. However, if the values match then the value could be released based on the
key storage type. More specifically, TP provides sealing functionality, which only enables
the decryption of data objects using the same TPM that encrypted it, and only when the
host platform is in a predefined state. This is achieved by associating three additional values
with the encrypted data object: (1) tpmProof, which is a TPM-specific secret value forcing
which TPM can successfully decrypt the data object; (2) digest at creation, which represents
the state of the host platform when the data was sealed, enabling the verifier to validate
the state of the host platform to ensure that the data was not sealed by rogue software; and
(3) digest at release, which specifies the required platform state for releasing the decrypted
data object.

Platform Attestation

Establishing trust in a TP is based on the mechanisms used for measuring, storing, reporting,
and verifying platform integrity metrics; that is, it relies on the following TP components –
RTM, RTS, and RTR. Platform attestation is a method to show to a remote party (the verifier)
the status and running environment of a local platform. The remote party needs to trust the
attestator to reliably measure and report its configuration. As indicated above, TCG has adopted
two different approaches to enabling anonymous attestation: Privacy CA and DAA.

TCG defines integrity management as ‘the management of component-information through-
out the supply chain to ensure their integrity (tamper-free state) and also to the management
of the runtime integrity of the entire Trusted Platform through the correct management of its
components, both at load-time and at runtime’ [11]. As described in Section 6.2.3, TP mea-
surements are performed using the RTM, which measures software components running on a
TP. The RTS stores these measurements inside TPM shielded locations. Next, the RTR mech-
anism allows TP measurements to be reliably communicated to an external entity in the form
of an integrity report. The integrity report is signed using an AIK private key, and is sent with
the appropriate identity credential. This enables a verifier to be sure that an integrity report is
bound to a genuine TPM. The term measurement is used in various ways, as described below.

� Loadtime measurements refer to integrity measurements of TP components made whilst the
platform is booting up.

� Runtime measurements refer to integrity measurements of TP components that are generated
during the operation of the platform, that is after the end of a boot-up sequence.

� Reference measurements refer to a collection of digest values of TP components, each of
which must be collected from the component manufacturer. This provides an authoritative
source of component integrity information, which can be read by a verifier of the state
of a TP.
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Platform attestation works as follows when a requestor, for example, is seeking a service
from a verifier.

Step 1. The requestor sends a request to the verifier.
Step 2. The verifier sends a challenge to the requestor, which includes a nonce, to perform an

integrity measurement of the entire platform.
Step 3. The requestor returns a platform integrity report to the verifier (using the RTR).

The returned report includes the current platform state, reflected in integrity metrics
associated with the sent nonce. This is then signed using the platform AIK private key,
and is associated with SML and the appropriate identity credential.

Step 4. The verifier first needs to verify the TPM’s signature and the AIK credential.
Step 5. The verifier then needs to verify if it is safe to trust all or part of the software environ-

ment running on the platform. This is achieved by getting the reference measurements
for each component of the requestor’s platform from its manufacturer. The integrity
metric provider, that is the hardware manufacturer or software vendor, makes these
reference measurements accessible. In this way, the verifier knows both the current
integrity status of the component making up the requestor’s platform and the source
authenticity of those components (as coming from the manufacturer).

Step 6. The verifier needs to identify each component of the requestor’s platform and compare
the reported measurement against the expected reference measurement value (for each
component). If the result is positive, the verifier can provide the requested service.

The Secure Boot Process

The secure boot process mainly uses the RTV TP components, outlined in Section 6.2.3,
to extended the authenticated boot process function, discussed in Section 6.2.4, in such a
way that the platform state, during the boot process, is reliably captured, compared against
measurements indicative of a trustworthy platform state, and then stored. If a difference is
found between the measured value and the expected value, then the platform halts the boot
process.

Isolated Execution Environment

An isolated execution environment is a fundamental requirement to achieve trust in a TP.
Achieving this requires the host platform to provide the following services [5]:

� Whilst a program is being executed it should be protected from external interference, for
example, by being accessed using direct memory access.

� Executed programs on the same machine can only communicate via a secure and controlled
interprocess communication.

� Executed programs on different machines (hardware or virtual machine) must communicate
via a secure communication channel.

� Executed programs must communicate with I/O devices via a a secure communication
channel.
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6.2.5 Challenges in TCG Specifications

The TCG specifications are large, complex, and based on certain assumptions. In addition to
its complexity, building a system that can satisfy such assumptions using today’s hardware
devices and operating systems is a technical challenge, and is the subject of ongoing research
[1, 10]. The following list, based on that given by Gallery and Mitchell [1] and by Sadeghi
[10], summarizes these challenges:

� Not only do the TCG specifications use ‘hard-coded’ cryptographic primitives (e.g., using
SHA-1 to compute the integrity metrics) but the used cryptography is also not in accordance
with current best practice (e.g., RSA signature and RSA encryption).

� The DAA protocol adapted in TCG specifications is subject to anonymity attack by a
malicious DAA issuer, as discussed by Rudolph [12].

� Smyth et al. [13] have pointed out a possible privacy vulnerability in the implementation of
the DAA protocol; described as corrupt administrator attacks. In this the verifier, with the
help of a corrupt DAA issuer, can identify a trusted platform.

� The TCG specifications assume that platform configurations cannot be manipulated after the
corresponding hash values have been computed and stored in the TPM’s PCRs. Satisfying
this assumption requires a secure operating system that is especially designed to consider
this requirement. Currently available operating systems can easily be modified, for example
by exploiting security bugs.

� The deployment and use of trusted computing based on the TCG specifications requires a
fully functioning trusted computing PKI, which is currently unavailable.

� As discussed earlier in this chapter, a verifier can determine the trustworthiness of code
from hash values (binary measurements of running code). Such a binary-based attestation
mechanism has the following shortcomings:
– It reveals information about the platform’s hardware and software configuration to a

verifier.
– It allows remote parties to exclude certain system configurations.
– It requires the verifier to know all possible trusted configurations of all platforms.
– Most importantly, updates in firmware or software, or hardware migrations, result in

changed hash values for the updated components. This, in turn, prevents access to data
bound to the previous configuration.
In principle, attestation should only determine whether a system/component configuration

has a desired property. Several methods have been proposed to meet this requirement,
such as property-based attestation [14–16], anonymous property-based attestation [17], and
semantic remote attestation using language-based trusted virtual machines [18].

� The TCG specifications implicitly require the establishment of secure channels between
hardware components. TPM chips integrated into currently available devices are connected
to the I/O board with an unprotected interface that can be eavesdropped upon and manipu-
lated [19]. Secure channels between hardware components can be established using cryp-
tographic mechanisms supported by an appropriate PKI.

� Currently available trusted platforms come pre-equipped with a TPM chip; however, they do
not have isolation technology and CRTM. Therefore, the platform state cannot be reliably
measured. This undermines the effect of sealing and platform attestation techniques.



Background 91

� As discussed in [1], the current generation of TCs has usability and conformance problems.
For example, when a TC platform owner enables a TPM he must understand BIOS settings;
the TC platform owner is also required to set a TPM owner password; and there are password
management issues, as unique passwords may be associated with the TPM owner as well
as with data and keys protected by a TPM.

Despite the above problems, TC is on the way to being realized in practise; great support
for TC technology is emerging from the open-source community, and from collaborative
research projects (e.g., OpenTC and EMSCB). Open-source trusted virtualization layers are
being developed by both the Xen and L4 communities [20]. Considering that, and in addition
that enterprise infrastructures are more advanced and more managed in comparison with home
network environments, ‘it seems likely that the technology will succeed first in a corporate
setting rather than for home use’.

6.3 Summary

This chapter has clarified the flow of the second part of the book. It briefly discussed trusted
computing principles. Part Two of the book uses trusted computing principles for protocol
design.
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7
Challenges for Establishing Trust
in Clouds

Establishing trustworthy Clouds is the ultimate goal of most current research in the Cloud
computing area. This chapter attempts to clarify the huge challenges behind this objective.
The chapter concludes with a set of research directions for establishing trust in Clouds. The
remaining chapters in this book draw a set of integrated frameworks for the research directions
presented in this chapter.

7.1 Introduction

Establishing trust in Clouds is an important subject that is yet to receive adequate attention
from both academia and industry [1–4]. The Cloud service model attracts users coming from
diverse backgrounds, with a variety of requirements. For example, users will frequently be non-
technical end-users or organizations that already have a well-established enterprise infrastruc-
ture and might be interested in outsourcing part of their operations into the Cloud. Establishing
trust in the Cloud should consider the requirement of different types of users, by providing
them with different models. Each model should provide suitable levels of transparency in the
context of technical complexities and trust establishment. In addition, trust models are not
only beneficial to Cloud users, but also to Cloud providers, collaborating Clouds-of-Clouds,
and external auditors. For example, trust assessment helps in the following cases:

� Exposing the components that must be trusted or are assumed to be trusted in a Cloud.
� Computing a trust metric for a given Cloud, thus enabling comparison between alternative

Cloud providers.
� Cloud providers assessing their own resources’ trustworthiness, enabling the Cloud to

determine its degree of trustworthiness.
� When Cloud providers collaborate, determining the levels of trust of the resources involved

in the collaboration.

Cloud Management and Security, First Edition. Imad M. Abbadi.
© 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd.
Companion Website: www.wiley.com/go/abbadi cloud

http://www.wiley.com/go/abbadi_cloud


94 Cloud Management and Security

A trust model also helps users to decide on the resources that are best to host their applica-
tions, as users are enabled to determine what could happen to their application when hosted
in a specific resource associated with particular properties.

As we discussed earlier, many different deployment scenarios of Clouds have been proposed
and adopted, including private, community, and public Cloud models. In community and
private Cloud models, users will typically have a relationship of mutual benefit or shared goals
with the Cloud service provider; they may also be contractually bound to good behavior. These
characteristics give rise to a substantial degree of trust in the Cloud: its architecture is also
important, but perhaps less so. By contrast, users of public Clouds are much more reliant upon
infrastructure properties in order to establish trust.

This chapter is organized as follows. Section 7.2 clarifies the effects of Cloud dynamics
on trust establishment. Section 7.3 summarizes the main challenges and identifies a research
agenda for addressing the challenges. Finally, Section 7.4 summarizes the chapter.

7.2 Effects of Cloud Dynamism on Trust Relationships

Chapter 4 discussed the properties of the Cloud which result in its dynamic nature. This section
demonstrates the effects of the Cloud dynamic nature on the trust relationships amongst Cloud
entities and between users and the Cloud provider. To demonstrate this, we consider the
following scenario in which we have two entities, the trustor (e.g., an entity representing the
Cloud user or a self-managed service) and the trustee (i.e., a service point at the Cloud that
can be at virtual or application layers), which interact such that the trustor establishes ‘trust’
in the ability of the trustee to provide some service S, and to enforce an agreed policy P, when
both the trustor and the trustee have behavior B.

7.2.1 Load Balancing

In terms of our scenario, load balancing means that the trustee would share the requests coming
from service requestors, including the trustor, with other resources, as illustrated in Figure 7.1.
The serving resources would be capable of handling similar services. This has an implication
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that the requests coming from the trustor may have to be serviced by a resource other than the
trustee. Conversely, the trustee may have to service requests coming from service requestors
other than the trustor. The trustor maintains a trust relationship initially established with the
trustee, but the request coming from the trustor is not necessarily serviced by the trustee.

This scenario demonstrates the need for the trustor to update the trust relationship based on
the entity assigned to service the request.

7.2.2 Horizontal Scaling

Horizontal scaling for a resource might result in cascaded horizontal scaling at other dependent
resources. For example, suppose the trustee is a three-tier application within an application
domain, horizontal scaling of Tier 1 involves introducing more machines at the virtual domain
that hosts the Tier 1 application component. Increasing the requests coming to Tier 1 is likely
to increase the requests going to Tier 2. This in turn might require further horizontal scaling
of Tier 2, and so on. As illustrated in Figure 7.2, the trustee is no longer three components
and this results in a change in the value of B. Horizontal scaling works in conjunction with
load balancing, meaning that the effects on trust described above also come into play. More
specifically, the request req 1 sent from the trustor traverses various tiers, some of which are
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not part of the original trustee. This invalidates the trust relationship that the trustor has in
the trustee.

7.2.3 Vertical Scaling

For our scenario, vertical scaling implies that the trustee’s properties are changed, resulting in
a change in the behavior, B. In order to maintain a valid trust relationship, the trustor would
need to re-evaluate the trust decision by checking how the changes to the trustee’s properties
affect B. However, the service provider would like to make the scaling transparent to the
trustor and therefore a challenge of balancing between transparency of the vertical scaling and
maintaining an accurate trust relationship becomes eminent. This problem is due to the fact
that if the balance between transparency of the scaling process and trust evaluation is not right,
a large window will be created in which the trust relationship will be inaccurate. The balance
has to help reduce the size of the window and, if possible, should be coupled with protocols
that help to completely eliminate it.

7.2.4 Redundancy

In our scenario, when the trustee fails, the system should transparently switch into failure
mode in which the redundant server continues to service requests coming from the trustor.
As shown in Figure 7.3, redundancy has three implications: the trustee will have possible
trust relationships with other servers; requests coming from the trustor may transparently be
serviced by a redundant server with which the trustor has no direct trust relationship; and the
pattern main server–redundant server may be repeated multiple times.

In order to maintain an accurate trust relationship, the trustor has to invalidate the trust rela-
tionship with the trustee and establish a new trust relationship with the redundant resource that
is now in use. This would need to be done every time the system transitions into failure mode.
The challenge here is that the switch into and out of failure mode would normally be trans-
parent to the trustor, limiting the chance for the trustor to re-evaluate the trust relationship –
leaving them to rely on some form of transitive trust.

Key
Trustor

req 1

Trustee

Trust

relationship
Trust

relationship

Redundant

Server 

Redundant

Server 

Redundant

Server 2 

Trustor

req 1

TrusteeX
Normal Operation Failure Mode

Service request/

response

Relationship 

Figure 7.3 Redundancy and trust relationship



Challenges for Establishing Trust in Clouds 97

Key

Server n

Trustor

req 1

Trustee Server 2 …...

Service request/

response

Relationship 

Server n

Trustor

req 1

Trustee

Service

Requestor 2

Service

Requestor m

req m
req 2

…...

Trust

relationship

Trust

relationship

Server 2 …...

Cluster Cluster

Figure 7.4 Trust relationship for a cluster

7.2.5 Clustering

This is a very important concept in the Cloud environment, which covers the above cases. A
cluster could be a group of replicated application resources (i.e., a set of replicated application
components within an application domain), a group of virtual resources within a virtual
domain, or a sublayer at a physical layer.

In Figure 7.4, we see that initially the trustor may establish a trust relationship with a
single resource in the cluster. However, when the number of requests increases/decreases or
the properties of the cluster change (e.g., full/partial failure of a resource, changing a resource
properties, or adding additional resources into the cluster), algorithms that determine the best
placement for requests come into play. The main purpose of such algorithms is to ensure
that the resources within the cluster are utilized as efficiently as possible and to provide
transparency of failures to incoming requests. As a result, no guarantee about the identity of
the node that will serve a particular request can be made ahead of time.

A natural solution to this challenge would be to establish trust in an entire cluster. This
means the cluster is seen as a single entity by the trustor. This, however, brings about different
challenges, including: establishing trust in a group of entities and updating the trust relationship
as members of the group change state.

7.3 Challenges

In Section 7.2 we demonstrated using several examples of the effects of Cloud management
services on ‘breaking’ trust relationships between a trustee and a trustor. We noticed that any
established relationship could be invalidated at any time as a result of the Cloud dynamic
nature. In this section we identify the main challenges in the Cloud environment in the context
of trust establishment and outline a research agenda towards addressing these challenges.

� Compositional chains of trust. Some entities within the Cloud exist as a composition of
multiple entities (e.g., virtual, application, and physical domains). Members of such a
grouping may have identical or different chains of trust. However, an entity depending
on this grouping should see a single chain of trust representing the trust they have in the
grouping. In other words, relying entities will see a single entity, even though that entity
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will be a grouping representing multiple entities. To address this issue, we set the following
research agenda:

Agenda 1. Effective Chain of Trust Functions. Develop functions that can be used to
determine the chain of trust from a composition of multiple entities; that is, the effective
chain of trust of a physical domain, the effective chain of trust of a group within a virtual
domain, the effective chain of trust of an application domain, etc.

� Trust re-evaluation. Whenever the state of trusted entities changes, all trust relations with
these entities must be re-evaluated and decisions updated based on the changed trust relation-
ships. A challenge here is that there are several scenarios, brought about by the dynamics
of the Cloud, which might trigger a re-evaluation of trust decisions. To address this issue,
we set the following research agenda:

Agenda 2. Dynamicity Aware Protocols. Develop protocols to effectively support trust
establishment and re-evaluation with minimal impact on the desirable properties of the
Cloud.

� Transparency versus trust evaluation. Many aspects of the Cloud infrastructure require a
level of abstraction. For example, the various Cloud service models (IaaS, PaaS, and SaaS)
serve as forms of abstraction. Such abstraction requires users at a given level (i.e., IaaS,
PaaS, or SaaS) to not deal with internal details of the operation, management, or state
of the underlying infrastructure. As a result of such abstractions, several details essential
for establishing trust or updating trust may not be made accessible to users, either for
security reasons or in order to simplify interactions between users and Cloud providers. In
cases where this information is made accessible to users, it might take time for users to
re-evaluate trust decisions, and this would have effects on other Cloud properties such as
availability. For example, suppose a user at the IaaS level was given information about a
detected failure of a resource on which their application is running. The user will then need
to consume this information and evaluate the trustworthiness of alternative resources before
making a decision. This gets users involved in deep technical details related to the Cloud
infrastructure, and the user may take a long time to make a decision, which may lead to
service outage. To address these issues, we set out the following research agenda:

Agenda 3. Transparency Strategy. We mean by this finding the right balance between the
amount of information made accessible to users against trust evaluation. Preferably, we aim
to provide users with mechanisms enabling the user to transparently evaluate trust in the
Cloud without the need to get involved in deep technical details about the operation of the
Cloud infrastructure.

At the time of writing, there is no single solution to address the above challenges. In
subsequent chapters we put forward foundation frameworks to discuss how the above problems
could possibly be tackled.

7.4 Summary

The Cloud’s desirable properties result in the dynamic nature of the Cloud. This chapter has
demonstrated how such a dynamic nature affects trust relationships. The chapter identified
the challenges with trust establishment and maintenance. Finally, it defined the research
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agenda towards addressing these challenges. Subsequent chapters present a set of integrated
frameworks clarifying how the identified challenges could be tackled.

7.5 Exercises

Q1. Identify the main parties who would benefit from establishing trust in Clouds.

Q2. What is special about Cloud trustworthiness in comparison with trust in other systems?

Q3. What does dynamic mean in a Cloud computing context? What are the main properties
that result in Cloud dynamisms?

Q4. Discuss the effects of Cloud dynamic nature on trust establishment. Can you think of
other challenges which could result from the dynamic nature of Clouds?

Q5. This chapter discusses the effects of Cloud dynamism on trust establishment. Building on
your understanding of this topic, can you think of other challenges of Cloud dynamics?
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8
Establishing Trust in Clouds

This chapter presents a framework which draws the roadmap and building blocks to address the
last challenge discussed in Chapter 7; that is, the transparency strategy agenda. The framework
addresses the question of how to allow users to establish trust in the Cloud without the need
to get involved in complex technical details. The chapter identifies a set of requirements,
discusses how some of the requirements could be addressed, and leaves other requirements as
planned future research work.

8.1 Introduction

There are a number of techniques that enable one party to establish trust in an unknown entity:
direct interaction, trust negotiation, reputation, and trust recommendation and propagation.
Most of these establish trust based on identity. Trust negotiation, by contrast, establishes trust
based on properties. In a Cloud context, establishing trust would be based on both identities
and properties [1]. The properties that an attestor requires when establishing trust in Clouds
has been discussed in Chapter 4.

This chapter focuses on the provision of a secure and trustworthy environment which assures
users that Cloud providers continually enforce their requirements, do not interfere with their
application data, and move control of users’ application data from the hands of Cloud providers
to users. The chapter demonstrates the framework using the IaaS Cloud service and assumes
the Cloud user is an organization. The concepts presented throughout this chapter could equally
well be applied to other types of Cloud services, as explained in subsequent chapters.

The chapter is organized as follows. Section 8.2 outlines the process followed by an organi-
zation when outsourcing the hosting of their application into the Cloud. Section 8.3 identifies
the chapter’s main objectives and the framework requirements. Section 8.4 identifies device
hardware properties. Section 8.5 discusses the dynamic domain concept, and then presents
the Cloud framework architecture. Section 8.6 defines and discusses the framework software
agents. Section 8.7 discusses the scheme workflow. Section 8.8 analyzes the proposed scheme
framework. We summarize the chapter in Section 8.9.
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8.2 Organization Requirements

Organizations, when outsourcing their applications (or part of their applications), would typi-
cally do the following (as clarified in Chapter 3). First, decide on the application that will be
outsourced to the Cloud. The application nature, organization policy, and legislation factors
would play an important role in such a decision. Then, define the application requirements,
which include: technical requirements, service level agreement, user-centric security and pri-
vacy requirements. Finally, provide these properties to the Cloud via a set of APIs or a web
interface. The APIs are supplied by the Cloud provider, which then creates virtual resources
considering the provided user properties. The Cloud provider manages the organizational out-
sourced resources based on the agreed user properties. In turn, the organization pays the Cloud
provider based on a pay-per-use model.

Current Cloud providers have full control over all hosted services in their infrastructure; for
example, the Cloud provider controls who can access VMs (e.g., internal Cloud employees,
contractors) and where user data can be hosted [2, 3]. Cloud users have very limited control
over the deployment of their services, no control over the exact location of the provided
services, and no option but to trust the Cloud provider to uphold the guarantees provided in
their SLA.

The key requirement for Cloud customers, as a result, is to be provided with a tool enabling
them to assess Cloud for meeting their requirements. This tool should not add any extra com-
plexities at the organization side; for example, it should not require organizations to understand
the technical details of the Cloud infrastructure. This is a complex requirement to address,
which would require a proxy to be setup between Cloud customers and Cloud providers. Both
Cloud customers and providers should easily assess the trustworthiness of the proxy. The
framework presented in this chapter uses VCC as a proxy, as discussed in the next subsection.

8.3 Framework Requirements

As discussed earlier, the focus of this chapter is on understanding how trust could be established
between Cloud customers and the Cloud provider. The approach that we follow uses proxy to
establish such trust. The main objective of the proxy is to provide transparent infrastructure
management and to remove any extra complexities from the hands of clients. In our discussion
we assume the client is an organization that already has an IT infrastructure. The VCC will
act as the proxy, and so the organization needs to establish trust in the VCC’s abilities to
manage and operate its outsourced resources within the Cloud infrastructure based on its
requirements. The VCC needs to establish trust with the physical infrastructure, assuring its
ability to maintain user requirements. Employees and other resources within the organization
need to communicate securely and transparently with the outsourced data at the Cloud without
the need to understand infrastructure complexities. Simultaneously, organizations want to
ensure that their data is protected at all times. The discussed framework forms the foundation
which helps in providing these requirements. This is achieved at two levels, as illustrated in
Figure 8.1:

� Level I. This is about providing organizations with the capability to control and protect their
outsourced resources at the Cloud to the same level of protection and control provided inside
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Figure 8.1 Protection levels in the discussed framework

the organization’s premises. Level I requires secure and transparent protection measures at
three phases:
(a) Protect content inside the organization itself.
(b) Protect content at the Cloud provider side.
(c) Protect content whilst being transferred between the organization’s internal resources

and the organization’s outsourced resources at the Cloud.
� Level II. This is related to providing the organization with the capability to attest the trust-

worthiness of a Cloud provider for managing the organization’s outsourced resources. This
involves establishing a chain of trust between the organization and the Cloud infrastructural
resources (see the dashed arrow in Figure 8.1). One of the key features of Clouds is provid-
ing organizations with a transparent infrastructure management. Therefore, such a chain of
trust needs to be established at two stages:
(a) A chain of trust between an organization and the VCC.
(b) A chain of trust between the VCC and the Cloud’s infrastructural resources.

We now ‘informally’ discuss the requirements to achieve the above objectives. The require-
ments can be split into three groups: the first is about the chain of trust (a and b), the second
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is about Level I, and the third is about mitigating insider threats which affect the discussed
requirements (i.e., the chain of trust and Level I). Note that Level II is related to chain of trust (b).

Establishing chain of trust (a), which is part of Level I (see Figure 8.1), requires the
organization to attest to the trustworthiness of VCC management agents to manage the organi-
zation’s resources. Such management, as discussed earlier, should consider both the user and
infrastructure attributes. Level I requires the following:

� Data should be protected from within rather than from outside, that is organizations should
strongly bind access rights with data.

� The data should not be revealed in the clear except in a trusted execution environment and
with the presence of mechanisms to enforce associated access rights.

� Only organizations should be able to access and manage their deployed applications and
data running in VMs, that is organizations should have full control of who can access their
data.

� The system should provide organizations with superior control of whether to accept the
hosting environment properties.

Establishing the chain of trust (b) (see Figure 8.1) includes the provision of a trustworthy
Cloud virtual resource management using VCC. This requires the following:

� VCC and VMMs should attest to each other’s execution environment.
� VCC and VMMs need to have management agents that are trusted to behave as expected.

Such agents should have mechanisms to ascertain their trustworthiness to remote parties.
� VCC and VMMs should provide protected storage functions.
� VCC and VMMs should be able to exchange identification certificates with each other in a

secure and authentic way.
� VCC needs to be resilient and scalable to provide distributed and coordinated services.
� VCC should provide hardware trustworthiness mechanisms to prevent infrastructure single

point of failure.

In addition to the above, both Level I and Level II involve protecting organizational data
from insiders. This requires the following:

� Content must always be encrypted on storage and whenever it leaves a VM; that is content
must not leave a VM unprotected either by physical (e.g., copying it to a USB stick) or
digital means (e.g., sending it via the Internet). This ensures that only entities having a copy
of the content encryption key can access the VM content.

� A content encryption key must be generated automatically away from human observance,
not available in the clear, and managed automatically (i.e., distributed and revoked) by a
trusted entity.

� Content is revealed only if the environment is verified as trusted and with the presence of a
predefined usage policy.

� VM migration/motion between different hardware servers should be carefully controlled
and managed, so that VMs are not able to process sensitive data at any time on less secure
environments (e.g., insiders might migrate a VM to a less secure hypervisor to indirectly
access VM memory space).
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� The infrastructure should be highly reactive and resilient (e.g., as in the case of peaks due
to insider/outsider attack or fault).

� Employees having access to hypervisors should not be capable of accessing VM space
directly from the hypervisor. The hypervisor should also provide full isolation between
running VMs.

� Lastly but probably most importantly in a Cloud environment, the above points must
consider security of information sharing across VMs, which must collaborate to achieve
their mission. Such secure information sharing is still very important but of less concern
when organizations own and manage the infrastructure in their internal protected network.
For the Cloud, however, the story is different as the Cloud provider network is accessed by
many more people who do not have a direct contract with the organization, for example a
Cloud provider’s system administrator and suppliers.

8.4 Device Properties

A key requirement for addressing the identified challenges is to use devices which are enhanced
with trusted computing technology. That is, devices which incorporate a TPM as defined by the
TCG specifications [4]. Trusted computing systems are platforms whose state can be remotely
tested, and which can be trusted to store security-sensitive data in ways testable by a remote
party. The TCG specifications require each TP to include an additional hardware component to
establish trust in that platform. This is the TPM, which has protected capabilities; for example
protected storage and processing. The entries of TPM PCRs, where integrity measurements
are stored, are used in the protected storage mechanism. This is achieved by comparing the
current PCR values with the intended PCR values stored with the data object. If the two values
are consistent, access is then granted and data is unsealed. Storage and retrieval are carried
out by the TPM.

8.5 Framework Architecture

This section presents a framework that forms the foundation for addressing the identified
requirements in Section 8.3. The framework uses the dynamic domain concept proposed in
[5]. We start by defining the dynamic domain concept, and then discuss the adaptation of such
a concept in the framework.

8.5.1 Dynamic Domain Concept

Definition 8.1 A dynamic domain represents a group of devices that need to share a pool
of content. Each dynamic domain has a unique identifier iD, a shared unique symmetric key
kD, and a specific PKLd composed of all devices in the dynamic domain. kD is shared by all
authorized devices in a dynamic domain and is used to protect the dynamic domain content
whilst in transit. This key is only available to devices that are a member of the domain.
Thus, only such devices can access the pool of content bound to the domain. Each device is
required to securely generate for each dynamic domain a symmetric key kC, which is used
to protect the dynamic domain content when stored in the device.
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8.5.2 Proposed Architecture

Our framework architecture is composed of the following (see Figure 8.2): cloud management
domain (MD), cloud collaborating management domain (CMD), organization outsourced
domain (OD), organization collaborating outsourced domain (COD), and organization
home domain (HD). MD, CMD, OD, and COD are hosted at the Cloud provider, while HD is
hosted at the organization.

We now map the above domains using the Cloud infrastructure taxonomy concept, as
discussed in Chapter 2. A Cloud provider MD and CMD represent a physical domain and
collaborating physical domain at the Cloud infrastructure physical layer. An organization
OD and COD represent a virtual domain and collaborating virtual domain at the virtual
layer. An organization HD includes all devices hosted at an organization, which need to
communicate with the OD. We now discuss these entities in the context of the dynamic domain
concept.

A management domain is defined as follows:

Definition 8.2 An MD represents a group of devices at the Cloud physical layer. The
capabilities of member devices of the MD and their interconnection reflect the overall
properties of the MD. Such properties enable the MD to serve the part of user requirements
which can only be matched at the physical layer.

An MD has a specific policy defined by the Cloud architect to manage the behavior of MD
members when providing services to the OD, when collaborating with other MDs, and during
incidents. Such a policy, which is controlled by the VCC, helps in providing Cloud properties
(e.g., availability and resilience), which are reflected at virtual resources hosted by the MD.
The MD has credentials consisting of a unique identifier imd, a unique symmetric key kmd, and
a public key list (PKLmd). These are defined as follows:

Definition 8.3 The MD identifier imd is a unique number that we use to identify an MD.
It is securely generated and protected by the TPM of the VCC.

Definition 8.4 The MD key kmd is used to protect the management data that controls the
behavior of the MD. kmd is a symmetric key that is securely generated and protected by the
TPM of the VCC. kmd is not available in the clear, it is shared between all member devices
of the MD, and it can only be transferred from the VCC to a device when the device joins
the MD.

Definition 8.5 The MD’s public key list (PKLmd) is an MD-specific list that is composed
of the public keys of all devices of the MD. Enterprise architects assign devices to each
MD by providing each device public key to the VCC in the form of a PKL. The PKLmd is
securely protected and managed by the VCC.
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A collaborating management domain is defined as follows:

Definition 8.6 A CMD represents groups of MDs that have similar infrastructural prop-
erties. Such groupings enable all MD members of a CMD to serve as backup for each
other, in case of MD failure, maintenance window, or overloaded resources. This operation
is controlled by a defined policy at the VCC. Such a policy considers user properties and
infrastructure properties. For example, before an OD can migrate from MD1 to MD2, both
MDs must be within the same CMD and the user requirements must be validated against
MD2 properties, for example users might have restrictions when migrating across different
legal jurisdictions, and users might require to migrate CODs for performance reasons when
migrating a resource across far-distant data centers.

A home domain is defined as follows:

Definition 8.7 A HD is an organization-specific domain which consists of all organization
devices that need access to the OD. HD membership is controlled by an organization-specific
master controller, as in Definition 8.8. HD has a specific policy defined by the organization
to control the interaction between OD and HD.

As in the case of MD, the HD has a unique identifier ihd, a shared unique key khd, and a specific
PKLhd composed of all devices in the HD. khd is used to protect HD content that needs to be
shared between HD devices. This key is only available to devices that are members of HD.
The HD domain credentials have similar definitions as provided for MD, but in this case the
HD is managed by the organization master controller.

A master controller is defined as follows:

Definition 8.8 An MC is an organization-specific trusted device that is in charge of
managing organizational domains (i.e., HD, OD, and COD). The master controller enforces
organizational policies for domain membership. It runs a trusted server agent that is in charge
of performing the master controller’s main functions, as explained in Section 8.6.

An outsourced domain is defined as follows:

Definition 8.9 An OD consists of the virtual machines which host organizational out-
sourced applications at the Cloud. The VCC would establish and manage the hosting of
the OD at the MD and CMD based on user properties and infrastructure properties. How-
ever, the key management of OD members should be fully controlled by the organization
master controller. Each OD has a specific policy defined by the organization to control the
interaction amongst its members, and between its members and HD members. As in the
case of MD, the OD has a unique identifier iod, a shared unique key kod, and a specific
PKLod composed of all devices in the OD. kod is used to protect OD content that needs to
be shared between OD devices. This key is only available to devices that are members of
the OD. OD credentials have similar definitions as provided for MD, but managed by the
organization master controller.
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A collaborating outsourced domain is defined as follows:

Definition 8.10 A COD consists of groups of related ODs that share a common policy.
For example, the policy could state that COD members should be hosted within physical
proximity for performance reasons and COD members should not be hosted in the same
MD as in the case of a primary and standby DBMS. Such a policy is defined based on user
properties but controlled by the VCC.

8.6 Required Software Agents

The framework requires four types of software agents (as illustrated in Figure 8.2): Cloud
server agent, Cloud client agent, organization server agent, and organization client agent.
These software agents run on trusted devices that must all have TP properties, as outlined
in Section 8.4. The Cloud server agent runs on the VCC; the Cloud client agent runs on a
physical member device of the MD; the organization server agent runs in the master controller
(see Definition 8.8); the organization client agent runs on member devices of the OD and HD.
For convenience, we use the word ‘content’ to mean either infrastructure management data or
organizational data. Organization client/server agents manage organization data, while Cloud
client/server agents manage infrastructure management data.

Assumption 8.1 We assume the identified software agents are designed in such a way that
they do not reveal domain credentials in the clear, do not transfer domain protection keys
to others, and do not transfer sensitive domain content unprotected to others. Although this
is a strong assumption recent research shows promise in the direction of satisfying it [6].
TCG-compliant hardware using the sealing mechanism alone is not enough to address such
an assumption. Trustvisor [6] moves one step forward and focuses on protecting the content
encryption key by utilizing recent developments in processor technology (e.g., Intel TXT).
However, this does not protect clear text data once decrypted and more work is required in
this direction.

8.6.1 Server Agent Functions

The Cloud and organization server agents have the following shared functions:

� Create and manage domains. This includes the following: securely generating and storing
domain protection keys; attesting to the execution environment status of devices whilst
being added to the domain and ensuring they are trusted to execute as expected and hence
trusted to securely store the domain key and to protect domain content; adding and removing
devices to and from a domain by releasing the domain-specific key to devices joining the
domain; and backing up and recovering domain-specific credentials.

� Control the exchange of content between different domains.
� Manage policies, and ensure protected content is only accessible to authorized devices. This

covers the collaboration between related MDs forming a CMD and related ODs forming a
COD.
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In addition to the above shared functions, each server agent supports additional functions
as follows:

� Organization server agent manages the communication between member devices of the HD
and member devices of the OD and COD. It also installs and manages organization client
agents at member devices of the HD and OD.

� The Cloud server agent manages the MD and CMD and installs and manages the Cloud client
agent at member devices of the MD. Most importantly, the Cloud server agent matches user
properties with Cloud infrastructure properties, as associated with the MD resources. This
enables the Cloud server agent to manage the hosting of the OD resources on appropriate
MD resources by considering both user and infrastructure properties.

8.6.2 Client Agent Functions

The framework has the following two types of client agent:

� Organization client agents are used by devices when interacting with the master controller
for joining to the following domains: HD, or OD and COD. Organization client agents are
also used to create content and bind it to a domain.

� Cloud client agents have the following functions: they are used by physical devices when
interacting with the Cloud server agent for joining an MD and CMD; they manage and
enforce MD and CMD policy as defined by the Cloud server agent (e.g., manage hosted
virtual resources, manage resilient architecture inside an MD and CMD, etc.).

In addition to the above, both types of client agent are responsible for ensuring that access
to their domain content is granted only to applications running on specific devices conditional
on having a trusted execution environment. Applications requiring access to content would
need to communicate with the device-specific client agent to get access to clear text content.
In this case the client agent first verifies the application requesting access is trusted. If so, it
decrypts the content and then releases it to the trusted application.

8.6.3 Server Agent Initialization

This section describes the procedure for initializing the organization and Cloud server agents
discussed in Section 8.6.1. The main objective of this procedure is to prepare the server agent
to implement the scheme framework and manage the domain membership. This includes
the following: system administrators install the server agent on its hosting device (i.e., the
MC for an organization server agent and the VCC for a Cloud server agent). The server
agent installation includes generating a non-migratable key pair (Pr, Pu) to protect domain
credentials; the server agent manages security administrator(s) credentials and securely stores
them to be used whenever administrator(s) need to authenticate themselves to the server agent.

The first time security administrators run the server agent, it performs the following ini-
tialization procedure (as described in Algorithm 8.1). The objective of this algorithm is to
initialize the server agent. The server agent executes and sends a request to its hosting device
TPM (i.e., to the VCC TPM or MC TPM) to generate a non-migratable key pair, which is used
to protect domain credentials. The TPM then generates this key and seals it to be used by the
server agent when the hosting device execution status is trusted.



Establishing Trust in Clouds 111

The server agent then needs to ensure that only security administrators can use the server
agent. For this the server agent instructs security administrators to provide their authentication
credentials (e.g., password/PIN), as described in Algorithm 8.2. The objective of this algorithm
is to enrol system administrators in the server agent. The server agent then requests the TPM
to store the authentication credentials of the organization security administrators associated
with its trusted execution environment state (i.e., the integrity measurement as stored in the
TPM PCR) in the hosting device protected storage. By storing data in a protected storage
we mean ‘sealing data’ in TCG terms. The authentication credential is used to authenticate
security administrators before using the server agent; see Algorithm 8.3.

Given the definitions and assumptions above, the protocol is described by Algorithms 8.1,
8.2, and 8.3. The objective of the protocol is to install the server agent at the hosting device,
which generates the non-migratable key to encrypt the domain credentials and securely store
a copy of the security administrator’s credentials. The protocol is used every time security
administrators want to manage the domain. The following notation is used in the algorithms: M
is the software agent; TPM is the TPM on the software agent hosting device; S is the platform
state at release as stored in the PCR inside the TPM; (Pu, Pr) is a non-migratable key pair
such that the private part of the key Pr is bound to the TPM and to the platform state S. The
following protocol functions are defined in [4]: TPMCreateWrapKey, TPMLoadKey2, TPMSeal,
and TPMUnseal.

Algorithm 8.1 Server Agent Initialization

1. M → TPM: TPMCreateWrapKey.
2. TPM: Generates a non-migratable key pair (Pu, Pr). Pr is bound to the TPM, and to the

required platform state S at release, as stored in the PCR inside the TPM.
3. TPM → M: TPM KEY12[Pu, Encrypted Pr, TPM KEY STORAGE, tpmProof=TPM

(NON-MIGRATABLE), S, Auth data].

Algorithm 8.2 Administrators Registration

1. M → Administrators: Request for system administrators’ authentication credentials.
2. M → TPM: TPMLoadKey2(Pr). Loads the private key Pr in the TPM trusted environment,

after verifying the current PCR value matches the one associated with Pr (i.e., S). If the
PCR value does not match S, M returns an appropriate error message.

3. M → TPM: TPMSeal(Authentication Credential).

Algorithm 8.3 Authentication Verification

1. M → Administrators: Request for authentication credentials.
2. M → TPM: TPMLoadKey2(Pr). TPM on M loads the private key Pr in the TPM trusted

environment, after verifying the current PCR value matches the one associated with Pr
(i.e., S). If the PCR value does not match S, M returns an appropriate error message.

3. M → TPM: TPMUnseal(Authentication Credential).
4. TPM: Decrypts the string Authentication Credential and passes the result to M.
5. M: Authenticates the administrators using the recovered authentication credentials. If

authentication fails, M returns an appropriate error message.
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8.6.4 Client Agent Initialization

This section describes the procedure of initializing the organization and Cloud client agents.
The goal of this procedure is to prepare devices to join a domain, which includes installing
the client agent at a device. This covers generating the non-migratable key to protect domain
credentials.

The protocol of initializing the client agent is described in Algorithm 8.4. The objective
of this algorithm is to install at each device a copy of the client agent, which generates a
non-migratable key to protect the domain credentials. Organization client agents are installed
at member devices of the HD and OD, while Cloud client agents are installed at member
devices of the MD (member devices of the COD and CMD are members of the OD and MD,
so we do not need to install the client agents on them). The following notation is used in the
provided algorithm: D is the client agent running on a client device; TPM, S, and (Pu, Pr) have
the same meanings as provided earlier.

Algorithm 8.4 Client Agent Initialization

1. D → TPMD: TPMCreateWrapKey.
2. TPM: Generates a non-migratable key pair (Pu, Pr).
3. TPM → D: TPM KEY12[Pu, Encrypted Pr, TPM KEY STORAGE, tpmProof=TPM

(NON-MIGRATABLE), S, Auth data].

8.7 Framework Workflow

This section discusses a possible workflow of the presented system framework.

8.7.1 Management Domain and Collaborating Management
Domain Establishment

This procedure is followed when establishing an MD and CMD managed by the Cloud server
agent. In the protocol we use the same notation described earlier (note that M resembles the
Cloud server software agent running on the VCC).

In this subsection we require that the Cloud server agent has already been installed on the
VCC, exactly as described earlier in Section 8.6.3. This includes installing the server agent,
which interacts with the TPM to generate a non-migratable key pair that can only be used by
the server agent. This key pair is used to protect the MD and CMD credentials.

Domain establishment begins when the Cloud administrators want to add a new domain to
the Cloud infrastructure. Administrators instruct the server agent to create a new MD. The
server agent authenticates the administrators, as described in Algorithm 8.3. If authentication
succeeds, the server agent interacts with the TPM to securely generate an MD-specific secret
key kmd and an identifier imd, as described in Algorithm 8.5.

On successful completion of this protocol, the MD credentials are initialized at the VCC,
including the MD key, MD identifier, and an empty PKL. These are protected by the VCC,
which manages MD membership. Cloud internal employees (i.e., system architects) assign
devices to the MD based on the required overall MD properties. They also define member
device capabilities and policies governing their interaction. In addition, they join related MDs
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to a CMD. The policies control the migration of OD resources within a single MD resource
and across multiple MD members of a CMD.

Algorithm 8.5 Management Domain Establishment

1. M → TPM: TPMGetRandom. TPM generates a random number to be used as MD domain
key kmd.

2. TPM→ M: kmd.
3. M → TPM: TPMGetRandom. M generates a unique number to be used as MD domain

identifier imd.
4. TPM→ M: imd.
5. The MD domain credentials kmd, imd, and an empty PKLmd are stored in VCC protected

storage and sealed to the server agent so that only the server agent can access these
credentials when its execution status is trusted. This is achieved as follows:
5a. M → TPM: TPMLoadKey2(Pr). Loads the private key Pr in the TPM trusted environment

to be used in the sealing function, after verifying the current PCR value matches the one
associated with Pr (i.e., S). If the PCR value does not match S, M returns an appropriate
error message.

5b. M → TPM: TPMSeal(kmd||imd||PKLmd). TPM securely stores the string
kmd||imd||PKLmd using the platform protected storage, such that it can only be decrypted
on the current platform by M, and only if the platform runs as expected (when the plat-
form PCR values match those associated with Pr, i.e., S).

8.7.2 Organization Home Domain Establishment

This procedure is followed when an organization wishes its internal devices to access the
outsourced applications at the Cloud. The process starts by creating an HD, which provides
the following: enables controlled content sharing between member devices of the HD and
other member devices of the OD, and simultaneously prevents uncontrolled transfer of content
to other devices. The HD consists of all devices that are required to access or be accessible by
the OD members. The HD is managed by the server agent running on the organization-specific
master controller. The server agent initialization procedure is the same as that described in
Section 8.7.1.

8.7.3 Adding Devices to a Domain

This section describes the process for adding a device to a domain (the process applies to all
types of domain described in this chapter; note that collaborating domains (CMD and COD)
are not included as they are covered by policies governing their members). The following
notation is used in the provided protocol:

� D is the client agent running on a device.
� M is the server agent running on its hosting device (i.e., VCC for MD, MC for HD and OD).
� TPMD is the TPM on a client device.
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� TPMM is the TPM on the server agent hosting device.
� SD is the platform state at release as stored in the PCR inside the TPMD.
� SM is the platform state at release as stored in the PCR inside the TPMM .
� (PuD, PrD) are non-migratable key pairs such that the private part of the key PrD is bound

to TPMD and to the platform state SD.
� (PuM , PrM) are non-migratable key pairs such that the private part of the key PrM is bound

to TPMM and to the platform state SM .
� i is the domain-specific identifier, which is equal to imd for MD, iHD for HD, or iOD for OD.
� PKL is the domain public key list, which is equal to PKLmd for MD, PKLHD for HD, or

PKLOD for OD.
� k is the domain-specific content protection key, which is equal to kmd for MD, kHD for HD,

or kOD for OD.
� CertM is the server agent hosting device certificate.
� CertD is the joining device certificate.
� AM is an identifier for the server agent device included in CertM .
� AD is an identifier for a client agent device included in CertD.
� PrMAIK is the corresponding private key of the public key included in CertM .
� PrDAIK is the corresponding private key of the public key included in CertD.
� N1 is a randomly generated nonce.
� N2 is a randomly generated nonce.
� ePuD

(Y) denotes the asymmetric encryption of data Y using key PuD, and where we assume
that the encryption primitive in use provides non-malleability, as described in [7].

The client agent on the device sends a join domain request to the server agent to install the
domain-specific key k. This request includes the domain-specific identifier i. Two algorithms
are then initiated to add the device to the domain. The first algorithm involves the server agent
and the client agent to mutually authenticate each other, conforming to the three-pass mutual
authentication protocol [8]. The server agent sends an attestation request to the client agent
to prove its trustworthiness, then the client agent sends the attestation outcome to the server
agent. These steps are achieved using Algorithm 8.6.

Adding a device to a domain uses a second algorithm (Algorithm 8.7), which starts upon
successful completion of Algorithm 8.6. The objective of Algorithm 8.7 is to securely transfer
the key k to client agent D. k is sealed on D, so that it is only released to the client agent when
its execution environment is as expected. If D’s status is trusted, the server agent checks if
the device’s public key is included in the domain public key list. If so, it securely releases the
domain-specific key k to D using Algorithm 8.7. The keys are sealed on D, so that they are
only released to the client agent when its execution environment is as expected.

Upon successful completion of these algorithms, the client agent and the server agent
establish a trusted secure communication channel that is used to transfer the domain key to
the client agent. Such a channel provides assurance to the server agent about the client agent
state, and also forces future use of the transferred key to the agent on specific trusted state. The
device hosting D is now part of the domain, as it possesses a copy of the key k, and its public
key matches the one stored in the server agent. Member devices of the domain can access the
domain associated content, and hence such content is now shared by all member devices of
the domain.
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Algorithm 8.6 Client and Server Agents Mutual Authentication

1. M → TPMM: TPMGetRandom.
2. TPMM → M: Generates a random number to be used as a nonce N1.
3. M → TPMM: TPMLoadKey2(PrMAIK); Loads the server agent hosting device AIK in the

TPM trusted environment, after verifying the current PCR value matches the one associated
with PrMAIK .

4. M → TPMM: TPMSign(N1).
5. TPMM → M → D: N1||CertM||SignM(N1).
6. D: Verifies CertM , extracts the signature verification key of M from CertM , and checks

that it has not been revoked, e.g. by querying an OCSP service [9]. D then verifies the
message signature. If the verifications fail, D returns an appropriate error message.

7. D → TPMD: TPMGetRandom.
8. TPMD → D: Generates a random number N2 that is used as a nonce.
9. D → TPMD: TPMLoadKey2(PrDAIK); Loads the private key PrDAIK in the TPM trusted

environment, after verifying the current PCR value matches the one associated with
PrDAIK .

10. D → TPMD: TPMCertifyKey(SHA1(N2||N1||AM||i),PuD). TPMD attests to its execution
status by generating a certificate for the key PuD.

11. TPMD → D: N2||N1||AM||PuD||SD||i|| SignD(N2||N1||AM||i||PuD||SD).
12. D → M: N2||N1||AM||PuD||SD||i||CertD|| SignD(N2||N1||AM||i||PuD||SD).
13. M verifies CertD, extracts the signature verification key of D from the certificate, and

checks that it has not been revoked, e.g. by querying an OCSP service. M then verifies the
message signature, the message freshness by verifying the value of N1, and then verifies
it is the intended recipient by checking the value of AM . M determines if D is executing
as expected by comparing the platform state given in SD with the predicted platform
integrity metric. If these validations fail, then M returns an appropriate error message.

Algorithm 8.7 Sealing Domain Key to Client Agent

1. M → TPMM : TPMLoadKey2(PrM). TPM on M loads the private key PrM in the TPM trusted
environment after verifying the current PCR value matches the one associated with PrM
(i.e., SM). If the PCR value does not match SM , the server agent returns an appropriate error
message.

2. M → TPMM : TPMUnseal(k||i||PKL).
3. TPMM → M: Decrypts the string k||i||PKL and passes the result to M.
4. M verifies i matches the recovered domain identifier and PuD is included in the PKL. If so,

M encrypts k using the key PuD as follows: ePuD
(k).

5. M → TPMM : TPMCertifyKey(SHA1(N2||AD||ePuD
(k)),PuM).

6. TPMM → M: Attests to its execution status by generating a certificate for the key PuM , and
sends the result to M.

7. M → D: N2||AD||PuM||SM||ePuD
(k)||SignM(N2||AD||ePuD

(k)|| PuM||SM).
8. The device D verifies the message signature, that it is the intended recipient by checking the

value of AD, and verifies the message freshness by checking the value of N1. If verifications
succeed, D stores the string ePuD

(k)) in its storage.



116 Cloud Management and Security

8.7.4 Outsourced Domain and Collaborating Outsourced
Domain Establishment

Section 8.1 discusses the general steps that an organization would follow when outsourcing
part of (or all of) its infrastructure to the Cloud. This section assumes that an organization
has chosen the applications to be outsourced to the Cloud, defined the requirements, and
negotiated an SLA with the Cloud provider. The following is the process of establishing an
OD and joining related ODs within a COD based on user requirements.

The organization would first need to communicate with the APIs of the Cloud provider,
which create virtual resources considering the defined user requirements. Both endpoints (that
is the Cloud provider and the organization) would need to validate each other’s trustworthi-
ness. The work on dynamic domains [10] has provided a protocol for establishing trusted
secure channels between the endpoints of collaborating organizations. Such a trusted secure
channel would provide the required assurance to such endpoints about each other’s execution
environment being trusted to behave as expected. The trusted secure channel establishes a
trustworthy communication between the organization server agent running on the MC and the
Cloud server agent running on the VCC.

The Cloud server agent and client agent have also established trusted secure channels, as
discussed in Section 8.7.3. The secure channels between the organization and the VCC and
between the VCC’s server agent and the physical resources’ client agents provide assurance
to the organization that the channel from MC physical devices is trusted. The following steps
are then executed:

Step 1. The organization server agent sends a request to the Cloud server agent to establish
IaaS virtual resources. The request includes the organization technical requirements.
Such requirements should be specified using a standard language, which is outside
our scope to discuss.

Step 2. The Cloud server agent validates user properties. If validation succeeds, the Cloud
server agent selects the CMD which could serve user properties. The selection of CMD
would mainly be based on the infrastructure properties of MD members of the CMD.

Step 3. Based on user properties and the identified CMD, the Cloud server agent establishes
user-specific processes and policies. These define how the CMD would manage the
OD, for example, it defines for each OD the primary MD and backup MDs which
should be members of the same CMD. Such processes and policies enable the pri-
mary MD to instantiate and control the user OD virtual resources. It also contains
management decisions related to other OD members in the same COD.

Step 4. The Cloud server agent coordinates with the Cloud client agents of each identified
MD to establish the MD allocated VMs.

Step 5. The Cloud client agents coordinate amongst themselves and create VMs, as defined
by the user requirements.

Step 6. The Cloud server agent sends details of the newly created VMs (PKL, IP addresses,
and default authentication credentials) to the organization server agent.

Step 7. The organization server agent creates a new OD following the same process as
described in Section 8.7.2.

Step 8. The organization server agent then adds the created VMs to the OD exactly as described
in Section 8.7.3. Following this process, member devices of the organization HD can
communicate with the OD devices following the organization defined policy.
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8.8 Discussion and Analysis

In this section we discuss the advantages of the framework architecture and how it achieves
the objectives identified in Section 8.3.

8.8.1 Benefits of Using Trusted Computing

We use the ‘remote attestation’ concept in trusted computing, which provides the ability to
remotely attest to the execution environment of running software agents (i.e., server and client
agents). It also binds the release of domain credentials to the attested trusted environment. This
provides assurance that agents are behaving as expected ‘offline.’ Such assurance establishes
a chain of trust between an organization and the Cloud provider as follows:

� An organization server agent trusts a Cloud server agent to enforce user properties.
� The Cloud server agent trusts the Cloud client agent to enforce both user properties and

infrastructure properties.
� The organization server agent trusts the organization client agent running at member devices

of HD and OD to enforce user properties.

The first two points assure organizations that their client agents can enforce user properties,
without worrying about the vulnerabilities caused by the Cloud – at this stage we do not
consider attacks at the physical or the hypervisor level, as indicated in Section 8.3 and
Assumption 8.1.

8.8.2 Benefits of the Framework Architecture

The framework architecture adds the following benefits:

� It delegates the management of OD to the owner organization rather than to the Cloud
provider; in addition to the established chain of trust described above, this enables organi-
zations to have control over their outsourced applications at the Cloud.

� The Cloud provider delegates the enforcement of a domain policy to the organization.
Similarly, the Cloud server agent delegates the enforcement of the domain policy to the
Cloud client agents. If all resources must be fully managed at all times by a centralized
management unit, then this could be subject to single point of failure and would also raise
performance concerns.

� The framework supports domains with special properties (e.g., expandability, changeability
of member devices, and collaboration with other domains). As the Cloud environment is
dynamic, this feature will be extremely helpful in satisfying Cloud properties and manage-
ment requirements defined earlier, especially for OD and MD.

� Secure domains enable controlled content sharing but protection between member devices
of a domain.

8.8.3 Content Protection

Protecting organization data and Cloud management data from Cloud insiders is achieved
as follows (as discussed earlier, we do not focus on hypervisor security threats and physical
security threats in this chapter). If an authorized or unauthorized insider sends content from a
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member device of an organization OD to an unauthorized user, the content stays protected and
the unauthorized user will not be able to access content on any device which is not a member
of the OD. This is because client agents are trusted to not reveal protected content to others.
Thus, if an insider transfers protected content to another device which is not a member of
the OD, the receiver will not be able to access the protected content as the receiver does not
possess a copy of the content decryption key.

If an insider attempts to send a copy of the OD key to unauthorized users they will fail to
do so. This is because the organization server and client agents are the only entities authorized
to access the key after verifying the execution environment state of the device matches the
one associated with the keys. In other words, these keys are sealed to be used only by a
trusted application, which is implemented to not reveal the keys in the clear even to system
administrators.

If an insider attempts to add an unauthorized device to the OD they will fail to do so. This
is because system administrators explicitly identify member devices of a domain by adding
their public keys in a domain-specific public key list. This means only predefined devices can
join a domain. Therefore, unauthorized devices will fail to join a domain as their public key is
not listed in the PKL and so they will not be able to get a copy of the domain key.

From the above we can see that the discussed scheme enables controlled content sharing
between devices. Simultaneously, content can only be accessed by devices which are authorized
by security administrators. The same discussion applies to all other types of domain but to
address different security threats. For example, an insider might add an insecure device to the
MD, migrate a VM to the new device, and then leak content. Our scheme addresses such a
threat by controlling the member devices of an MD as discussed above.

8.9 Summary

Trust establishment in Clouds requires collaborative efforts from industry and academia.
Establishing trust in Cloud systems requires two mutually dependent elements: (a) supporting
infrastructures with trustworthy mechanisms and tools to help Cloud providers automate the
process of managing, maintaining, and securing their systems (this includes but is not limited
to self-managed services); and (b) developing methods to help Cloud users and providers to
establish trust in the operation of the infrastructure by continually assessing its operational
status. This chapter focuses on point (b) and, in addition, it discusses the way to transfer the
power to manage users’ application data from the hand of the Cloud providers to the hand of
the users.

The framework presented in this chapter presents a foundation roadmap, but it is not
enough by itself to establish an end-to-end trusted Cloud. That is, the framework still requires
further extensions as establishing trust in Clouds is a complex subject. Chapter 10 extends the
framework to cover Cloud provenance.

8.10 Exercises

Q1. Discuss the main challenges that would need to be considered when an organization,
which has a private Cloud, outsources its services to a public Cloud model.

Q2. Discuss the main challenges that would need to be considered when an organization,
which has a private Cloud, outsources part of its services to a community Cloud model.
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Q3. Discuss the main challenges that would need to be considered when an organization,
which has a private Cloud, outsources part of its services to a hybrid Cloud model.

Q4. Discuss what organizations could do to establish trust in Clouds in each of the above
cases, i.e. Q1, Q2, and Q3.
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9
Clouds Chains of Trust

This chapter establishes a foundation framework which draws a roadmap for addressing the
first two challenges discussed in Chapter 7; that is, developing the effective chain of trust
functions and the dynamicity aware protocols. The framework addresses the question of
how an entity could establish trust in a composition of multiple entities which could change
dynamically. The chapter also discusses how users could assess the Cloud’s trustworthiness
without the need to get involved in the complex technical details of the Cloud.

9.1 Introduction

Establishing trust between remote entities is an important subject which has been widely
discussed in academia and industry. The most commonly known solution attempting to address
this problem, which has been adopted by the industry, is that proposed as part of the TCG
specifications (known as remote attestation) [1–3]. Establishing remote attestation in Clouds
is critical for their success. However, remote attestation as proposed by the TCG is impractical
in the Cloud due to Clouds’ complexity and dynamism. This chapter clarifies this important
subject, and presents a method which helps in providing remote attestation in the context of
the Clouds environment.

Establishing trust in the Cloud infrastructure is an important subject that is yet to receive
adequate attention from both academia and industry [4–7]. There are a number of techniques
that enable one party to establish trust in an unknown entity: direct interaction, trust negotiation,
reputation, and trust recommendation and propagation. Most of these establish trust based on
identity. Trust negotiation, by contrast, establishes trust based on properties. In a Cloud context,
establishing trust would be based on both identities and properties [8]. This chapter focuses
on trust negotiation based on properties. Specifically, it presents enhancements to remote
attestation [1–3] which provide a trustor with an authentic and fresh copy of the properties
of the trustee such that the trustor can make a timely decision on the ability of the trustee to
operate in a certain state.

Remote attestation, as discussed by the TCG specifications, requires the trustee to have a
root of trust [1–3]. The root of trust must be trusted by the trustor (e.g., a third party vouches
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for its trustworthiness). In TCG, the root of trust is protected by a tamper-evident hardware
chip (the TPM) from where the root of trust starts. Remote attestation was originally designed
to work between peers of devices. However, Clouds have different properties than peer-to-
peer communication, as the building up of its resources – starting from a physical resource,
hosting a virtual resource, which in turn runs an application resource – is dynamic. Chapter 7
demonstrates, using several examples, the effects of the Cloud dynamic nature on ‘breaking’
the trust relationship between a trustee and a trustor – any established relationship could be
invalidated at any time as a result of the Cloud dynamic nature. The focus of this chapter is on
the two identified agendas in Chapter 7: the compositional chains of trust and the transparency
versus trust evaluation.

The chapter is organized as follows. Section 9.2 briefly summarizes the software agents
which are discussed in Chapter 8. Section 9.3 defines the chain of trust concept and discusses its
types. Section 9.4 presents the Clouds compositional chains of trust within a layer. Section 9.5
discusses the chains of trust across layers and how the chains of trust help in establishing
Cloud ‘trust anchors.’ Finally, Section 9.6 summarizes the chapter.

9.2 Software Agents Revision

As we discussed earlier, trust establishment in Clouds requires ‘trustworthy’ automated self-
managed services that can manage the Cloud infrastructure with minimum human intervention.
Chapter 8 presents a trust establishment framework which identifies the challenges and require-
ments, and addresses those related to establishing a secure environment at the infrastructural
level. This includes the establishment of offline chains of trust amongst the entities of the Cloud.
This chapter builds on the discussed framework and addresses the question of how a verifier
could attest to the trustworthiness of the complex and dynamic Cloud environment. The func-
tions of the previously presented framework are provided using two types of software agent:

� A server software agent that runs at the VCC. We refer to the server software agent as the
domain controller server side, DC-S.

� A client agent that runs at the physical resources within the Cloud infrastructure. We refer
to the client software agent as the domain controller client side, DC-C.

The DC-S delegates the enforcement of some Cloud policies to DC-Cs. Each DC-C is
in charge of enforcing the delegated policy. Prior to policy delegation, the DC-S establishes
chains of trust with each of the DC-Cs, as discussed in the previous chapter. The following
is an outline summary:

� A DC-S verifies the DC-C trustworthiness to continually enforce the domain policies and
to only access the domain credentials when the resource execution status is as expected.

� In turn, the DC-C provides assurance to the DC-S about the trustworthiness of its hosting
resource’s execution environment when managing the domain and enforces the domain
policies. This provides the assurance that only resources with a trustworthy DC-C can be
members of a domain.

9.3 Roots of and Chains of Trust Definition

This section provides basic background about the roots and chains of trust.
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9.3.1 Roots of Trust

In this part we first briefly highlight the Cloud taxonomy, which was covered in detail in the
first part of this book, and then indicate the roots of trust within the taxonomy. The Cloud
environment is composed of enormous resources, which are categorized based on their types
and deployment across the Cloud infrastructure. A resource is a conceptual entity that provides
services to other entities. The Cloud environment conceptually consists of multiple intersecting
layers, as follows:

� Physical layer. This represents the physical resources and their interactions, which constitute
the Cloud physical infrastructure. Examples of these resources include server, storage, and
network resources. The physical layer resources are consolidated to serve the virtual layer.

� Virtual layer. This represents the virtual resources, which are hosted by the physical layer.
Examples of these resources include VM, virtual network, and virtual storage. Cloud cus-
tomers in an IaaS Cloud type interact directly with the virtual layer resources, which host
Cloud customer applications.

� Application layer. This runs the applications of the Cloud customers. These are hosted
using virtual layer resources. Cloud customers using a PaaS type deploy their applications
at virtual layer resources, while customers of Cloud SaaS type access a deployed application
via the Internet.

Figure 9.1 provides a conceptual model in which we identify an entity layer as the parent of
the three Cloud layers (i.e., physical, virtual, and application). At an abstract level the layers
contain resources which join domains (i.e., we have a physical domain, a virtual domain, and
an application domain). A domain resembles a container which consists of related resources.
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Figure 9.1 Cloud computing – layering conceptual model
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Domain resources are managed following the domain defined policy. Domains that need
to interact amongst themselves within a layer join a collaborating domain (i.e., we have a
physical collaborating domain, a virtual collaborating domain, and an application collaborating
domain). A collaborating domain controls the interaction between domains which are members
of the collaborating domain using a defined policy.

The nature of resources, domains, collaborating domains, and their policies is layer specific.
The concepts of domains and collaborating domains help in managing the Cloud infrastruc-
ture, and managing resources distribution and coordination in normal operation and during
incidents. Collaborating domains communicate across Cloud layers to serve the collabora-
tive customer application needs. Domains communicate horizontally within a layer-specific
collaborative domain, and/or vertically across multiple layers of collaborative domains.

Each of the identified Cloud entities has a root of trust which helps in establishing trust in
Clouds. Subsequent sections clarify the relationships between Cloud entities, define the roots
of trust, and discuss how they would help in establishing trust in Clouds.

9.3.2 Chains of Trust

A chain of trust (CoT) is composed of a set of elements primarily used to establish the trust
status of an object. The first element of the CoT (also call the root of trust) should be established
from a trusted entity or an entity that is assumed to be trusted, for example a trusted third party
or a tamper-evident hardware chip (as in the case of TPM) [1–3]. The trust status of the second
element in the CoT is measured by the root of trust (i.e., the first element in the CoT). If the
verifier trusts the root of trust, then the verifier must also trust the root of trust measurement of
the second element. The second element then measures the trust status of the third element in
the CoT. If the second element is trusted, and the second element measures the third element
trust status, then the verifier trusts the measurements of the third element. This process is a
simplified example of how a CoT could possibly be established.

Clouds have chains of trust within a layer and across layers. The across-layers chains of
trust build on the intra-layer chains of trust. In the remaining part of this chapter we focus on
these. The intra-layer chain of trust has two types:

� A single resource CoT.
� A compositional CoT representing multiple entities (i.e., domains and collaborating

domains).

As we discussed in Chapter 7, a verifier is mainly interested in evaluating compositional CoTs
within and/or across Cloud layers without the need to get involved in understanding the details
of the Cloud infrastructure. The compositional CoT would be built on resource CoTs. As a
result, this chapter defines both types of CoT, including defining the nature of their roots of
trust (Figure 9.3 later illustrates the details of these relations). Subsequently, we move on to
discuss Chains of Trust across the Cloud layers.

9.4 Intra-layer Chains of Trust

In this section we discuss a single resource CoT and a compositional CoT within a Cloud layer.
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9.4.1 A Resource Chain of Trust

As stated earlier, a resource is a conceptual entity that provides services to other entities.
Therefore, we begin the discussion by defining the CoT for a single resource (RCoT) as a
triple comprising an initial trust function (itf), a set of trust functions (stf), and a sequence
of elements in the chain (sq. < x0, x1, . . . , xn >), where x is an element representing any
component (software, hardware, etc.) that contributes to the chain of trust. RCoT requires the
following:

� The initial function evaluates to ‘trusted’ or ‘assumed to be trusted’ when applied to the first
element of the sequence.

� Every function in the set of trust functions evaluates to ‘true’ when applied to any two
consecutive elements of the sequence.

This is formally defined as follows:

RCoT = (
itf , stf , sq. < x0, x1, . . . , xn > |

itf (x0) ∈ {trusted, assumed trusted},
∀i : [1..n] ∙ ∀f : stf ∙ f (xi−1, xi) == true)

The nature of the root of trust (i.e., the first element in the sequence, x0) is based on the type
of entity and its location within the Cloud layers. We now discuss a single resource root of trust
and the subsequent part of this section covers a compositional entities root of trust. We now
clarify RCoT in the context of TCG specifications, as we require each resource within the
physical layer to be TCG compliant and fitted with a TPM which is physically bound to that
resource. A TPM must be tamper-evident; that is it provide a limited degree of protection
against physical attack. The TPM helps in providing three roots of trust, for measurement,
storage, and reporting. The RTM is a computing engine capable of making reliable measure-
ments of TP running components, which is known as an integrity measurement. Integrity
measurement is a cryptographic digest or hash of a TP component; that is, a piece of software
executing on a TP [9]. The RTS is a collection of capabilities, which must be trusted if the
storage of data in a TP is to be trusted [10]. The RTS uses TPM components to achieve its
functions. The RTR is a collection of capabilities that must be trusted if reports of integrity
metrics are to be trusted (platform attestation) [10]. The RTR works in conjunction with the
RTM and the RTS to implement the platform attestation. The RTR enables a TPM to reliably
report information about its identity and the current state of the TPM host platform. This is
achieved using a set of keys and certificates, which are signed by a variety of third parties
that must be trusted if the state of the platform is to be trusted. In TCG, the RCoT starts from
the (CRTM, which should be stored in protected location such as the TPM (currently it is
protected by the BIOS). Once the CRTM measures the initial environment state it stores the
result in protected registers inside the TPM (referred to as PCR). The CRTM represents the
root of trust, x0, and the Set.(trust_functions) contains RTM, RTS, RTR, and other functions.
The initial trust function is the one that measures the CRTM itself and stores the result inside
the TPM PCR. Figure 9.2 illustrates these relations.
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Figure 9.2 Example of a partial RCoT of a physical resource

Unlike the RCoT at the physical layer, RCoTs at the virtual and application layers have
different treatments when discussing specific resource roots of trust. This is because physical
resources are the foundation of virtual resource roots of trust, which in turn form the foundation
of application resource roots of trust. In other words, the virtual and application layer RCoTs,
in a Clouds context and considering its dynamisms, should build on a compositional CoT and
not a specific RCoT.

We require each resource within the virtual layer to have a vTPM (virtual TPM). The
vTPM provides similar roots of trust and trust functions as those described in the TPM. The
main difference is that the vTPM is a software component and would need to assure its own
trustworthiness. The trustworthiness of the vTPM used to be assured by extending the CoT from
the hardware TPM up to the vTPM. However, in a Clouds context, this does not work because
of the dynamic nature of Clouds. Therefore, we present in this chapter a different method in
which the vTPM extends its trustworthiness from a compositional CoT at the physical layer
rather than a specific RCoT at the physical layer. In other words, the virtual RCoT will start
from the vTPM root of trust supported by the serving physical layer compositional CoT as
discussed later in this chapter. Similar to a virtual RCoT, an application RCoT root of trust
would typically start from the vTPM. However, in a Clouds context, an application resource
is likely to be hosted by multiple virtual resources which increase/decrease based on demand
(i.e., as a result of the elasticity property of Clouds). Therefore, having the root of trust of
an application resource start from the vTPM would create complexities in calculating the
effective chain of trust viewed by a user, as discussed in [11]. As a result, an application RCoT
will represent the elements of the application resource supported by a root of trust resulting
from the virtual layer compositional CoT, as discussed later in this chapter.
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Having discussed different layer RCoTs, we now discuss the operation we use when dis-
cussing compositional CoTs.

� compare(RCoT1, RCoT2): Returns true if the CoTs are equal, otherwise returns false. This
function is formally defined as follows:

compare(X, Y) = if RCoT1 == RCoT2 then true
elsefalse

� extend(RCoT1,< elements >): Concatenates < elements > to sq.RCoT1. Formally, this is
defined as follows:

extend(X, Y) = (itf .X, stf .X, sq.X ⌢ Y)

� combine(RCoT1, RCoT2): Returns a unique sequence of elements, each representing the
input CoT. Formally, this is defined as follows:

combine(X, Y) = {X, Y}
This function has the following semantics:
– Idempotent: The combination of a chain of trust with itself or its equivalent is the chain

of trust itself. Formally, this is defined as follows:
combine(X, X) = {X, X} = {X}

– Commutative: The resulting chain of trust from a combination does not depend on the
order of combination:
combine(X, Y) = combine(Y , X)

– Associative: The grouping of combinations of chains of trust has no effect on the resulting
chain of trust.
combine(combine(X, Y), Z) = combine(X, combine(Y , Z))
For simplicity, we write combine(X, Y , Z) to mean either way.

9.4.2 Compositional Chains of Trust

We now define how trust is composed from members of a particular grouping in Clouds.
Understanding compositional chains of trust is a vital requirement for establishing trust in
Clouds. This is because Cloud resources at the upper layers are served by a collaborating set
of resources rather than a specific resource. We identify two types of domain configuration:

� Homogeneous domains. In a homogeneous setting all resources are configured uniformly,
resulting in identical CoTs. An example of this is the resources within a physical domain
or a virtual domain. Each resource member of a physical domain is identical and care-
fully selected, interconnected, and positioned to achieve the domain properties. Similarly,
resources of a virtual domain are identical as they represent (as a result of horizontal
scalability) a replication of the VMs hosting an instance of an application resource.

� Heterogeneous domains. In a heterogeneous setting resources does not necessarily need to
be configured uniformly, which results in differences in the CoTs. Application domains are
an example of heterogeneous settings as they are composed of resources having different
CoTs.
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Collaborating domains follow the same concept as domains. For example, collaborating
domains of the physical layer are homogeneous as they should serve as a backup for each
other. Virtual and application layer collaborating domains, however, are heterogeneous as they
serve to identify the interdependencies between domains rather than as a backup for each
other. Chapter 2 explicitly identifies the trust relationship between Cloud entities.

We identify two types of compositional CoT, namely the domains chain of trust (DCoT) and
the collaborating domains chain of trust (CDCoT). These CoTs are composed of two entities:

� A root of trust.
� A combination of all CoTs of the entities which are members of the domain and/or the

collaborating domain.

Unlike a RCoT, the root of trust of DCoT/CDCoT attests to the trustworthiness of the way the
domain or collaborating domain is managed and operated. We need a root of trust that satisfies
two main properties: its trustworthiness can be measured and assessed at all times; and it can
provide strong assurance about the trustworthiness of the way the domain or collaborating
domain is managed and operated. In this section we discuss the compositional CoT in the
following order: the physical layer, the virtual layer, and finally the application layer. We follow
this order as each layer root of trust is derived from the layer immediately underneath it.

9.4.3 Physical Layer DCoT and CDCoT

We identify two types of compositional CoT at the physical layer, namely DCot and CDCoT.
In these, a CoT is composed of two entities: a root of trust and a combination of the entities’
CoTs which are members of the corresponding domain and/or the collaborating domain.
Unlike RCoT, the root of trust of DCoT/CDCoT attests to the trustworthiness of the way
the domain or collaborating domain is managed and operated. We need a root of trust that
satisfies two properties:

� Its trustworthiness can be measured and assessed at all times.
� It can provide strong assurance about the trustworthiness of the way domains and collabo-

rating domains are managed and operated.

Considering the above discussion, the two elements of the physical layer DCoT are as
follows:

� The combination of all RCoT members of a physical domain. The physical domain is
homogeneous and, as a result, all RCoT members of the domain are identical (combining
identical chains of trust is equal to either chain of trust, as discussed in Section 9.4.1).

� The root of trust of a physical domain. As explained in Section 9.2, the resources of
a physical domain run a trustworthy copy of DC-C which provides assurances of the
physical resource state. The VCC runs a trustworthy copy of DC-S which measures the
trustworthiness of DC-C. A verifier can independently acquire the CoT of the VCC and
assess its trustworthiness; that is, a verifier can attest to the trustworthiness of DC-S which
itself attests to the trustworthiness of DC-C.
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These two points satisfy our two stated properties of DCoT/CDCoT root of trust. Therefore,
we present the CoT of VCC, RCoT(VCC), to act as the root of trust of the physical DCoT.

Assume a homogeneous physical domain, DPhysical, consists of resources R0, R1,…, Rn such
that ∀i, j : [0..n] ∙ RCoT(Ri) == RCoT(Rj). The DCoT(DPhysical) is then defined as follows:

DCoT(DPhysical) = combine(RCoT(VCC), RCoT(R0))

DC-S, which is part of RCoT(VCC), vouches for and attests to the trustworthiness of
members of DPhysical. DC-S also provides the assurance that DC-C can only operate and be a
member of a domain when its serving host has a specific RCoT. Therefore, a verifier only needs
to attest to the trustworthiness of RCoT(VCC) and DC-C, that is an extended CoT which starts
from RCoT(VCC) and extends to DC-C. The resources of each physical domain have identical
values of DC-C when it runs as expected.1 As a result, we can redefine DCoT(DPhysical)
as follows:

DCoT(DPhysical) = extend(RCoT(VCC), DC − C)

After discussing a physical layer DCoT we now move to the physical layer CDCoT. DC-S
and DC-C manage both physical domains and physical collaborating domains. As a result, an
appropriate root of trust of CDCoT is the same as the root of trust of DCoT. The root of trust
of CDCoT is already included in DCoT, thus we can exclude it from the physical CDCoT.
Suppose a collaborating domain CDPhysical is composed of domains DP0, DP1, . . . , DPx such
that ∀i, j : [0..x] ∙ DCoT(DPi) == DCoT(DPj). The CDPhysical is then defined as follows:

CDCoT(CDPhysical) = DCoT(DP0)2

By substituting the value of DCoT(DP0) from DCoT(DPhysical), we end up with the
following:

CDCoT(CDPhysical) = extend(RCoT(VCC), DC − C)

The above shows that physical CDCoT is mainly based on VCC and DC-C. VCC trustwor-
thiness can be measured by a verifier, and DC-C trustworthiness can be verified by VCC. This
is the foundation of the root of trust of the physical layer, which acts as a foundation for the
layer above it (i.e., the virtual layer), as discussed in [12].

9.4.4 Virtual Layer DCoT and CDCoT

Having defined the DCoT and CDCoT at the physical layer, we now move to the virtual layer. A
virtual resource can only be served by resource members of a specific physical collaborating
domain (as discussed in Chapter 2). Therefore, we present the root of trust of a virtual
DCoT to be built on the hosting physical CDCoT, that is extend(RCoT(VCC), DC − C). The
root of trust still satisfies our stated properties, as DC-Cs running at the physical collaborating
domain manage the virtual resources and measure their trustworthiness. DC-C trustworthiness

1 Resources of different domains would typically have different values of DC-C, as different domains have different
properties.
2 As discussed earlier, each physical collaborating domain has identical physical domains to support Cloud properties;
however, resources and domain members of different collaborating domains are not necessarily identical.
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is measured and assured by DC-S. DC-S trustworthiness can be measured by a verifier. This
builds a CoT from DC-S to DC-C, and from DC-C to the virtual resources. As in the case
of the physical layer the Cloud elasticity property results in each virtual domain’s resources
having identical RCoTs. A virtual domain, DVirtual, DCoT is then defined as follows. Assume
that a physical collaborating domain, CDPhysical, whose CDCoT is CDCoT(CDPhysical), hosts
a virtual domain DVirtual. Assume DVirtual has resources V0, V1,…, Vk such that ∀a, b : [0..k] ∙
RCoT(Va) == RCoT(Vb). The DCoT(DVirtual) is then defined as follows:

DCoT(DVirtual) = combine(extend(RCoT(VCC), DC − C), RCoT(V0))

Unlike virtual domains, virtual collaborating domains consist of virtual domains that support
different services. Such services interact amongst each other to serve the needs of an application
domain. Domains that provide different services would typically have different DCoTs. As
in the case of physical CDCoT, the root of trust of the virtual CDCoT is included in its
member domains, and so we do not need to re-include it. Suppose a virtual collaborating
domain CDVirtual is composed of domains DV0, DV1, DV2 such that∀i, j : [0..2] ∙ DCoT(DVi)! =
DCoT(DVj). The following is the definition of a CDCoT of non-identical virtual domains:

CDCoT(CDVirtual) = combine(DCoT(DV0), DCoT(DV1), DCoT(DV2))

By substituting the values of DCoT(DV0), DCoT(DV1), and DCoT(DV2), and assuming
Vx0 ∈ DV0 ∧ Vy0 ∈ DV1 ∧ Vz0 ∈ DV2, we end up with the following:

CDCoT(CDVirtual) = combine(
combine(extend(RCoT(VCC), DC − C), RCoT(Vx0),
combine(extend(RCoT(VCC), DC − C), RCoT(Vy0),
combine(extend(RCoT(VCC), DC − C), RCoT(Vz0))
≡

CDCoT(CDVirtual) = combine(extend(RCoT(VCC), DC − C),
RCoT(Vx0), RCoT(Vy0), RCoT(Vz0))

9.4.5 Application Layer DCoT and CDCoT

An application domain is composed of multiple resources where each resource provides part
of the functions that other resources depend on. As a result, the application domain has
a heterogeneous mix of RCoTs. The effective application DCoT results in a complicated
structure, and its root of trust is built on a collaborating domain chain of trust of the hosting
layer which is the virtual CDCoT. Application resources are of two types:

� Application resources which provide the same functions. In this case such applications
would typically have the same components. This results in a symmetric RCoT between the
components. Such symmetry reflects various real-life scenarios, as in the case of replicated
web applications and replicated database management systems

� Application resources which provide different functions. An example of this are the
resources of dependent applications which would typically have different components result-
ing in differences in their RCoT (e.g., resources providing web applications that connect
and build on resources providing database management systems).
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The dynamic nature of the Cloud, as discussed earlier, could result in users being connected
to an application resource at one time but served by a replicated resource member of the
same application domain at a different time. A verifier, therefore, is interested in assessing the
trustworthiness of a whole domain.

An application RCoT would build on a specific virtual DCoT, as each application resource
would be served by a specific virtual domain (see Chapter 2). All virtual domains serving
a specific application domain would join a virtual collaborating domain. As a result, the
application domain root of trust should be the virtual CDCoT.

Suppose an application domain, DApp, is composed of resources Ax0, Ax1, . . . , Axl, Ay0,
Ay1, . . . , Aym, Az0, Az1, . . . , Azn such that

∀i, j : [0..l] ∙ RCoT(Axi) == RCoT(Axj)∧
∀i, j : [0..m] ∙ RCoT(Ayi) == RCoT(Ayj)∧
∀i, j : [0..n] ∙ RCoT(Azi) == RCoT(Azj)∧
RCoT(Ax0) ! = RCoT(Ay0) ∧ RCoT(Ax0) ! = RCoT(Az0)∧
RCot(Ay0) ! = RCot(Az0)

The following is the definition of a DCoT(DApp):

DCoT(DApp) = combine(CDCoTVirtual, RCoT(Ax0), RCoT(Ay0), RCoT(Az0))

An application collaborating domain would typically consist of domains that provide dif-
ferent services. Such domains join a collaborating domain to have a policy governing their
interdependencies, that is they should be located within physical proximity, have less restricted
access between their resources, etc. As in the case of virtual domains, application domains
would typically have different DCoTs. Suppose a collaborating domain, CDApp, is composed
of domains DA0, DA1, and DA2. The following is the definition of an application CDCoT (we
exclude the root of trust as it is already included in the individual domain DCoTs):

CDCoT(CDApp) = combine(DCoT(DA0), DCoT(DA1), DCoT(DA2))

We now use the definition of DCoT(DApp) to re-build CDCoT(CDApp). Assume the follow-
ing: DA0 consists of two unique resources, Ax0 and Ax1, which are served by a virtual collabo-
rating domain whose CDCoT is CDCoTVirtualx; DA1 consists of two unique resources, Ay0 and
Ay1, which are served by a virtual collaborating domain whose CDCoT is CDCoTVirtualy; and
DA2 consists of two unique resources, Az0 and Az1, which are served by a virtual collaborating
domain whose CDCoT is CDCoTVirtualz. The definition of CDCoT(App) is then extended as
follows:

CDCoT(App) =
combine(combine(CDCoTVirtualx, RCoT(Ax0), RCoT(Ax1)),
combine(CDCoTVirtualy, RCoT(Ay0), RCoT(Ay1)),
combine(CDCoTVirtualz, RCoT(Az0), RCoT(Az1)))
=
combine(CDCoTVirtualx, CDCoTVirtualy, CDCoTVirtualz,
RCoT(Ax0), RCoT(Ax1), RCoT(Ay0),
RCoT(Ay1), RCoT(Az0), RCoT(Az1))
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9.5 Trust Across Layers

In this section we discuss how the identified trust relations and chains of trust help in establish-
ing the ‘trust anchors’ of the Cloud. Trust anchors aim to provide verifiers with mechanisms
enabling them to transparently evaluate trust in the Cloud at different layers of abstractions. The
level of transparency is directly proportional to the type of verifier. For example, if a verifier is
an IaaS Cloud user then he would need to be provided with mechanisms assuring him of the
trustworthiness of the Cloud to manage his virtual resources at physical resources (as agreed
in the SLA). If a verifier is a SaaS user then he would need to be provided with mechanisms
assuring him of the trustworthiness of the Cloud to manage software applications. This would
cover the hosting environment (physical and virtual), as agreed in the SLA. If the verifier is a
PaaS user then he would need two assurances: the same assurances as IaaS, and an additional
assurance of the trustworthiness of the Cloud to manage all additional software components
of the development environment provided by the Cloud, as required by the application of
the verifier.

As discussed earlier, layers in a Cloud serve as a means of abstracting internal details of
its complex infrastructure and resources. Each layer creates a pool of entities that can be used
by the layer above it. Therefore, an application, user, or process at layer (n) is presented with
a pool of entities by layer (n − 1). Layer (n), as a result, assumes certain aspects about the
trustworthiness of the pool provided by layer (n − 1). Based on the level of trust it builds
services on top of this pool of resources. We therefore state that trust in the Cloud at any layer
depends on the trustworthiness of the pool of resources provided by the layer underneath it.

Providing transparent trust management involves two conflicting requirements:

� Provide a verifier with measurements of the pool of resources at layer (n) and simultaneously
assure the verifier about the trustworthiness of the pool of resources at layer (n − 1) (i.e.,
the one that hosts the verifier resources).

� The verifier should not get involved in understanding and measuring the complex trust
relations amongst and across Cloud serving layers.

This chapter answers the question: Can TCG specifications be used to address the stated
requirements? In this chapter we discuss the fact that the current TCG concepts, such as remote
attestation, do not work ‘as is’ in Clouds because of their dynamic nature. In addition,
remote attestation requires the trustee to reveal the whole chain of trust of all physical resources
at different layers of abstraction. As a result, the trustor would need to understand the details
of the Cloud infrastructure. Therefore, using TCG concepts ‘as is’ does not satisfy the stated
objectives.

The method discussed throughout this chapter still builds on TCG concepts; however, it
moves the starting point of the root of trust from the TPM to the discussed trust anchors. The
trust anchors are layer specific and they generally represent a group of compositional resources
at each layer. Different types of Cloud users have different interest in the Cloud layers – see
the three solid arrows in Figure 9.3, which clarify the differences in user requirements for
assessing resources at Cloud layers. Unlike the TCG specifications, a verifier in this case
would need to verify the trustworthiness of the trust anchor at a given layer and build the chain
of trust from the trust anchor upward. If the verifier trusts the trust anchor, then he implicitly
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trusts all resources managed and attested by the trust anchor. The presented trust anchors
are specific to each pool of resources at each layer, which we summarize as follows (see
Figure 9.3).

� Physical layer trust anchor. The physical layer trust anchor is the set of physical CDCoTs
which serves selected virtual resources. For example, a virtual collaborating domain com-
posed of N virtual domains would be served by at most N physical collaborating domains.
The combination of the physical collaborating domains would result in the physical layer
trust anchor of the selected virtual collaborating domain. IaaS Cloud type would only need
to measure the trustworthiness of the physical CDCoT that serves the virtual resources of
the IaaS Cloud customer. If trusted, then the verifier can be assured that his virtual resources
are served by the trusted physical resources.

� Virtual layer trust anchor. The virtual layer trust anchor is the serving virtual collaborating
domain CDCoT. It is used mainly to provide a unified chain of trust to software application
domains when building their chains of trust. The virtual CDCoT is built on a set of trusted
physical CDCoTs, that is an application layer entity only needs to attest to the trustworthiness
of the virtual CDCoT and does not need to worry about the set of CDCoTs at the physical
layer. If the virtual CDCoT is measured to be trusted, then application layer entities which
are served by the virtual collaborating domain can assume trustworthy physical and virtual
management.

� Application layer trust anchor. The application layer has two trust anchors: the application
DCoT and the application CDCoT. A verifier needs mainly to attest to the trustworthiness
of the application DCoT or CDCoT. If he finds it is to be trusted, then he can be assured that
the physical, virtual, and application serving components are to be trusted. If the verifier
is interested in attesting to the trustworthiness of a specific application component, then
he would be interested in the application DCoT. Alternatively, if the verifier is interested
in accessing collaborating applications (e.g., the daisy-chain model) then the applications
CDCoT is what the verifier should be seeking. A PaaS Cloud user type would typically need
to attest to the DCoT of a specific software application that is supported and managed by
the Cloud for the user environment.

9.6 Summary

The Cloud infrastructure is expected to be able to support Internet-scale critical applications
(e.g., hospital systems and smart grid systems). Critical infrastructure services and organi-
zations alike will not outsource their critical applications to a public Cloud without strong
assurance that their requirements will be enforced. Central to this concern is that the user
should be provided with evidence of the trustworthiness of the elements of the Cloud. Cloud’s
infrastructure complexity and dynamism make it difficult to use remote attestation mecha-
nisms to attest to the trustworthiness of the elements of the Cloud. This chapter presents a
Cloud-specific remote attestation mechanism to build Cloud trust anchors. Such trust anchors
provide different types of Cloud users with appropriate levels of abstraction, which eliminate
the need to get users involved in evaluating trust across Cloud complex layering. It also enables
users to attest to the trustworthiness of a compositional chain of trust rather than each item of
a resource chain of trust.
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9.7 Exercises

Q1. What is remote attestation?

Q2. Discuss the importance of remote attestation for establishing trust in the Cloud.

Q3. What is the chain of trust?

Q4. What are the types of chains of trust in the Cloud?

Q5. Cloud users should be provided with transparent infrastructure management. Discuss the
importance of the keyword ‘transparent’ and how it could be satisfied with the various
Cloud user requirements.

Q6. Discuss how the chains of trust could help organizations when outsourcing part of their
applications using IaaS in the public Cloud model.
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10
Provenance in Clouds

Verifiers (e.g., users, forensic investigators, and even Cloud providers) should be provided with
evidence about the trustworthiness of the operations management of the Cloud. Assessing the
operations management of Clouds is important, but the Cloud’s infrastructure complexity and
dynamism make it difficult to address. This chapter establishes a framework for setting up a
trustworthy provenance system. This helps in monitoring, verifying, and tracking the opera-
tions management of the Cloud infrastructure, for example it helps in the direction of proactive
service management, finding the cause of incidents, customer billing assurance, security moni-
toring (as in the case of lessening the effects of insider threats), security and incident reporting,
and tracking both management data and customer data across the infrastructural resources.

10.1 Introduction

Cloud computing is an increasingly popular approach for the processing of large data sets and
computationally expensive programs. This includes scenarios that have clear requirements
for maintaining the provenance of data, including eScience [1] and healthcare [2], where
assurance in the quality and repeatability of results is essential. In addition, Clouds have
their own application for provenance: the identification of the origins of faults and security
violations. However, Cloud systems are structured in a fundamentally different way from other
distributed systems, such as grids, and therefore present new problems for the collection of
provenance data. In this chapter we discuss these problems and present a framework which
helps in establishing a trustworthy provenance management system.

As discussed in Chapter 1, there are many definitions of Cloud computing which are
still inconsistent. Provenance, however, is better defined. It generally refers to information that
‘helps determine the derivation history of a data product, starting from its original sources’ [3].
This information is clearly valuable in data-intensive computing scenarios, such as scientific
computing [4], to provide assurance in the quality of results [5] and to ensure the repeatability
of experiments.

We observe that the problem (if not the concept) of provenance should also be familiar
to anyone involved in debugging IT systems. System administrators must identify where
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an error originated, what caused it, and the effects it had. This is particularly true of security
violations, and provenance records are closely related to data forensics. These tasks are usually
supported through logging and auditing. This is particularly difficult in complex systems with
multiple layers of interacting software and hardware, such as a Cloud. Clouds are dynamic and
heterogeneous by definition, and involve several components provided by different vendors
which must interoperate. Tracing the origins of faults on Cloud infrastructures involves the
collection of evidence and data from diverse sources with difficult-to-determine causes and
effects. Cloud computing is therefore a good example of a situation where the introduction
of better provenance data could provide immediate benefits for system administrators as
well as users.

Logging, auditing, and historical data are of tremendous importance for establishing trust
in Clouds. This data has different usage, for example proactive service delivery (incidents and
security monitoring), billing, error and forensic investigation. For convenience, we refer to
this data as log records.

Almost all Cloud resources generate this data in some way. The importance of such data
and its usage is based on the following resource types. Physical resources generate log records
related to physical resource status, security, and incident reporting. The generated data helps
in the direction of finding the cause of incidents and for security monitoring. Virtual resources
generate log records related to virtual resource status, security, and incident reporting. They
also generate usage data, which is used for billing customers using IaaS Clouds. Finally,
application resources generate log records related to application resource status, security, and
incident reporting. They also generate usage data that is used for billing customers using PaaS
and SaaS Clouds.

As we discussed earlier in this book, establishing trust in Cloud systems requires two mutu-
ally dependent elements: (a) support infrastructures with trustworthy mechanisms and tools
to help Cloud providers automate the process of managing, maintaining, and securing their
systems; and (b) methods to help Cloud users and providers establish trust in the operational
management of the infrastructure. Chapter 8 focuses on both points (a and b); specifically,
it establishes offline chains of trust across the distributed elements of the Cloud physical
infrastructure, helping self-managed services to securely exchange management data, and it
provides a mechanism enabling users to attest to the way the Cloud infrastructure is managed.
The framework presented in this chapter focuses on point (a) by supporting self-managed ser-
vices with a trustworthy provenance system. In addition, this chapter discusses a mechanism
for establishing offline chains of trust between Cloud entities and the provenance system,
collecting log records from the distributed elements of the Cloud infrastructure, associating
important identification metadata with such records in a Cloud context, and securely pushing
the result to the provenance system. The integrated frameworks (i.e., those presented in the
previous chapter and this chapter) help in establishing trustworthy Clouds.

10.1.1 Log and Provenance

Logs and provenance data are distinctly different. Logs provide a sequential history of actions,
usually relating to a particular process. Provenance generally refers to information that helps
determine the derivation history of a data product, starting from its original sources [3].
Provenance goes beyond an individual application or process and may refer to many pieces
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of equipment as well as people. Throughout this chapter we refer to logs as being a source of
provenance, primarily because in Cloud, logs are used in combination for a similar purpose.

Provenance is provided in Clouds through linking together log records, collected from
multiple resources, to provide the complete history of an event or result. Cloud provenance,
at present, is associated with the following limitations [6]: the methods followed by Clouds
to support provenance queries are basic and, in many cases, such methods are developed on
an ad-hoc basis by Cloud system administrators using customized scripts to address a specific
event. In addition, current provenance mechanisms are object specific; that is, they do not
automate the process of managing different log and audit files and linking dependent log and
audit records together. Current log and audit records are not reasonably protected, which in
turn affects the creditability of provenance in the Cloud. Moreover, current Cloud provenance
mechanisms are deployed and fully controlled by Cloud providers; that is, Cloud users do not
have control over such mechanisms, and neither can they access log and audit records. The
identified limitations motivate the need to establish a trustworthy secure Cloud provenance.
In the next subsection we discuss the complexities involved in this.

10.1.2 Problem Description and Objectives

We believe that establishing trustworthy secure Cloud provenance requires great effort from
both academia and industry. One of the main reasons for the complexity of Cloud provenance
is that it uses log records which are associated with the following issues: log records are not
properly managed and are dispersed amongst the complex and distributed infrastructure of
Clouds, that is, most log records are scattered around the infrastructure using unstructured
and unrelated text files; and log records do not adhere to any standard format (this covers
both those generated by different processes and those generated by similar processes but from
different manufacturers). Also, such log records do not have semantics explaining the meaning
of the items of log records.

Provenance in Clouds with the above problems is not practical considering the enormous
number of applications, complex infrastructure, and huge number of users of Clouds. In
addition, Cloud provenance is even more complicated than traditional enterprises considering
the dynamic nature of Clouds. The dynamic nature of Clouds results in the desired properties,
for example resource consolidation, resilience, scalability, and high availability. However, this
dynamism results in new challenges, for example building a logical sequence of events to
investigate an incident for any one application requires data from many sources, including the
application itself, all logs for possible virtual resources that the application could have used,
and logs of all physical resources, that virtual resources could have used. Administrators must
then combine this data correctly by identifying all time intervals when an application used a
specific virtual resource, all possible time intervals when these virtual resources used physical
resources, and then all relevant log files from all related resources. Collecting and combining
data from these resources is not easy or practical considering the potential scale of Cloud
systems. These, in turn, increase insider threats in the Cloud and reduce its trustworthiness,
which discourages critical infrastructures from outsourcing their resources to public Clouds.

The foundation for providing Cloud provenance requires the following key elements: (i)
establishing semantics and standards of log records which enable the automated understanding
of log records as generated by multiple processes; (ii) storing log records in a structured, highly
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available, and centralized repository which enables provenance tools to easily and quickly find
log records, query them, and bind related events together; (iii) providing security measures
for storing, querying, transferring, and managing log records; and (iv) establishing trust in
the operation of the processes managing log records which help end-users to establish trust in
Cloud provenance.

Providing trustworthy secure Cloud provenance is a complex problem that requires huge
collaborative efforts. This chapter represents a foundation framework for addressing this
problem. In addition, it discusses in further detail points (ii) and (iii) above. In order to clarify
the overall picture and put the scheme into context, the chapter also partially discusses point
(iv). In addition to points (i) and (iv), this chapter does not cover the details of the following:

� A detailed database management system design for supporting provenance application
requirements.

� A detailed design of the provenance application itself.
� Policy management and enforcement (e.g., log retention policy).
� Detailed discussion about VM agents that manage provenance data inside a VM (we only

outlined one aspect of this, i.e. secure storage and transfer of provenance data).
� Protecting provenance data and domain credentials once decrypted in memory.
� Key management.

10.1.3 Organization of the Chapter

The chapter is organized as follows. Section 10.2 presents motivating scenarios. Section 10.3
discusses the management of provenance data and then extracts the system requirements.
Section 10.4 defines our domain architecture. Section 10.5 identifies the software services
and their functions. Section 10.6 provides our framework workflow. Section 10.7 provides an
informal threat analysis of the system workflow. Finally, we discuss and conclude the chapter
in Sections 10.8 and 10.9.

10.2 Motivating Scenarios

We now discuss the importance of provenance in a Cloud using two simple example scenarios,
as illustrated in Figure 10.1. We assume that a Cloud provider has six physical servers PS1
to PS6, and two physical domains L1 and L2. L1 is allocated physical servers PS1 to PS3, and
L2 is allocated physical servers PS4 to PS6. We also assume that the Cloud provider hosts an
application App. The Cloud provider creates a virtual domain VD1 in the virtual layer to run
App. VD1 is initially allocated one virtual resource, VR1, to host App. VD1 is associated with
a policy allowing it to scale its resources when there is an increase in demand using resources
from physical domain L1.

The first example demonstrates how a simple increase in load, and the corresponding
reaction from the Cloud, can result in a loss of provenance data. Assume the load on App has
increased dramatically, then the following steps apply:

� VD1 responds by instantiating a new virtual resource VR2 replicating VR1 inside VD1.
� Now both VR1 and VR2 process App, which are hosted using L1 – assume that VR1 is hosted

by PS1 and VR2 is hosted by PS2.
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VD1 policy (based on 

user and infrastructure

properties)

Figure 10.1 Provenance scenario

� PS2 has hardware problems, which results in incorrect results being generated by App.
� Load returns to normal and so VD1 downscales by removing VR2.
� Cloud customers discover the problem and call the Cloud provider. If the Cloud provider

only examines the log files generated by VR1 and PS1, then they will not find the root cause
of the problem or how to rectify it.

The second scenario focuses on forensic provenance in the Cloud, as follows:

� a security administrator reads the policy for VD1 and understands that App can only be
hosted using L1 resource;

� the administrator updates the VD1 policy to force VD1 to use L2 resources;
� the administrator then connects to L2 physical resources and finds out that VD1 resources

are running on PS4, meaning that App is hosted there. The security administrator connects
to PS4 and indirectly extracts important information from App. PS4 logs this activity; and

� The administrator restores the original policy, which forces VD1 resources to switch
back to L1.

If the Cloud provider only examines log files generated by L1 resources, then they will not
discover who performed the attack or, even worse, they might never discover that an attack
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has happened in the first place. This is one of the main challenges that shows the impor-
tance of provenance considering the complex Cloud infrastructure and enormous distributed
resources.

10.3 Log Records Management and Requirements

This section presents a provenance database scheme design and an approach for managing its
records (i.e., covering point (ii) discussed in Section 10.1.2).

10.3.1 Database Design

We now discuss a provenance database scheme, a VCC scheme, and their interlinks. We
categorize provenance data into four parts, each stored in a dedicated set of tables (see the
provenance database scheme in Figure 10.2). Three categories cover the three horizontal
layers of the Cloud taxonomy (i.e., we have physical domain provenance data, virtual domain
provenance data, and application domain provenance data), while the last category represents
Cloud management tools (i.e., we have management tools provenance data). Each category is
composed of the following types of data:

� Log record tables having the following mandatory columns: log-id, timestamp, and detailed
log data. The combination of log-id and timestamp represents the table primary key. The
‘detailed log data’ is generated by a layer-specific process.

� Metadata tables clarifying the relationships and interdependencies amongst different records
of the ‘detailed log data’ in the context of Cloud taxonomy. Understanding such relationships
and their interdependencies helps in automatically (and with no intervention from experts
in the domain) understanding the sequential flow of events across and within the distributed
elements of Clouds.

The metadata which is associated with log records varies based on the category that it
represents, as follows:

� Physical layer metadata. This type is composed of the following columns:
– Log-id is a foreign key binding the metadata with its set of log records, which are stored

in a separate table.
– Physical-domain-id is a unique identifier of a physical domain.
– Physical-component-id is a unique identifier of the physical resource member of the

physical domain which hosts the process generating the log records.
– Physical-component-type identifies the nature of the physical component, that is server,

storage, or network device.
� Virtual layer metadata. This type is composed of the following columns:

– Virtual-domain-id is a unique identifier of a virtual domain within the virtual layer.
– Virtual-component-id is a unique identifier of the virtual machine member of the virtual

domain which hosts the process that generates the log records.
– Physical-domain-id and physical-component-id point to the physical domain and the

physical resource which host the virtual machine at the time the log record is generated.
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� Application layer metadata. This type is composed of the following columns:
– Log-id binds the metadata with its log records table.
– Application-component-id is a unique identifier of an application component that gener-

ates the log record.
– Application-domain-id is a unique identifier of the application domain which manages

the application component.
– Virtual-domain-id and virtual-component-id point to the virtual domain and the virtual

component which runs a specific instance of the application at the time an item of log is
generated.

� Management tools metadata. This repository represents the log records of Cloud manage-
ment tools, which is outside the scope of this book to discuss.

Having discussed the provenance database scheme, we now outline the VCC database
scheme and discuss its interlink with the provenance database scheme. The VCC database is
composed of many tables holding details of the Cloud components. It also holds users, projects,
and security details. There are many commercial and open-source VCC. This book focuses
on the most widely discussed open-source VCC, which is called OpenStack. The OpenStack
database is referred to as a nova-database [7]. We present an extension of the nova-database
to realize the taxonomy of Clouds, user security requirements, and infrastructure properties.
Figure 10.2 illustrates the nova-database scheme. The proposed modifications are presented
using bold format. The following covers the related part of the nova-database scheme:

� Compute_nodes is an existing nova-database table that holds records reflecting a computing
resource at the physical layer. We update this table by adding the following additional fields:
physical resource chain of trust, RCoT(Physical); security properties that hold a list of secu-
rity details of the computing resource; and a foreign key establishing the relation between
the physical resource with its physical domain as exists in the Physical_Layer_Domain
table.

� Physical_Layer_Domain. We add this table to hold the records of the Cloud physical
domains, to define the relationship amongst resources, and to hold physical domain metadata.
The domain metadata includes the domain capabilities, DCoT, and a foreign key pointing
to the table which identifies the relative location of the physical domain within the Cloud
infrastructure.

� Collaborating_PL_Domain. We add this table which establishes the concept of collabo-
rating physical domains. Each record in the Collaborating_PL_Domain table identifies a
specific collaborating domain (i.e., a backup domain) for each physical source domain with
a priority value. A source domain can have many backup domains. The priority value iden-
tifies the order in which the physical backup domains could possibly be allocated to serve
source domain needs. Backup domains are used in maintenance windows, emergencies,
load balancing, etc.

� Instances is an existing OpenStack table representing the running instances at computing
nodes. We update the table by adding the following fields: a virtual resource chain of trust
RCoT(Virtual); an application resource chain of trust RCoT(Application); and two foreign
keys which establish a relationship with the instance’s virtual and application domain
tables, as defined in the Virtual_Layer_Domain and Application_Layer_Domain tables,
respectively.
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OpenStack has many more tables and we also add additional tables to those discussed above,
however, these are outside the scope of this book to cover (we are mainly interested in the
interlinks between VCC and the provenance database). The interlink is managed by a set of
trustworthy server and client software agents, which are discussed in a subsequent section
(see Figure 10.3). The server software agent collects the metadata from the VCC database and
pushes the result to Cloud client software agents. The metadata reflects a lively status of the
elements of the Cloud infrastructure. Whenever a process wants to store a log record in the
LaaS system, it sends the log record to its assigned Cloud client agent which associates the log
record with the required metadata. The client agent then pushes the result to the LaaS client
agent. The LaaS agent stores the result in the provenance database.

We note here that our design approach explicitly separates both databases, that is the
provenance database does not interact directly with the VCC database, and the integrity of
their binding data is controlled by the software agents. We follow this design approach to
maintain a complete separation of management of both databases (to enforce the separation of
duty principle, as our design approach assumes the provenance system is maintained by specific
security administrators who do not maintain other components of the Cloud infrastructure).

10.3.2 Security Requirements

In this section we discuss the provenance system requirements and properties based on the
discussed provenance database. We start with the security requirements, which are as follows:

� Provide assurance measures to the LaaS system that the log records are generated and
transferred from their source by trustworthy processes.

� Provide assurance to the LaaS system that the metadata associated with each item of the log
records is correct.

� Provide assurance measures to the processes which generate the log records that the Cloud
management software agents are trusted to provide correct metadata and, in addition, the
LaaS system is trusted to protect the log records and the associated metadata.

� Provide assurance measures to interested parties (e.g., Cloud customers, auditors, and even
Cloud providers) about the trustworthiness and reliability of the LaaS system to protect the
log records and associated metadata.

10.3.3 Other Requirements and Device Properties

Clouds have a huge number of resources that each host many processes. The provenance
database, as a result, is expected to be highly transactional with enormous size. These properties
require a careful distributed system design that maintains reliability, eliminates any single point
of failure, and maintains overall high system performance. The properties of the provenance
database (i.e., enormous size and high transaction rates) and the requirements of the LaaS
system to be highly available and reliable with no single point of failure necessitate careful
design at the infrastructure and application levels, which we outline in this subsection. LaaS, as
a result, is expected to fully utilize multiple and redundant physical servers. Thus, we require
the LaaS application to be installed at dedicated physical servers that do not have a virtual layer,
as virtualization in the LaaS system does not add extra benefits; it rather deteriorates database
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performance. The key advantages of virtualization are: consolidating resources and providing
highly available and resilient design. LaaS’s resources do not require consolidations as the LaaS
is an isolated system that fully utilizes a bunch of distributed powerful servers. High availability
and resilient design, in the LaaS system, could better be provided by different tools (using
clustering technology as in the case of the Oracle Real Application Cluster (RAC)[8]). Such
tools were in use even before the virtualization era. Clustering technology, in fact, provides
advanced features which cannot be provided by virtualization technology at the time of writing
and which are required in LaaS, for example to maintain high transaction availability [8].

We require that the LaaS system devices are commercial off-the-shelf hardware enhanced
with trusted computing technology that incorporates a TPM as defined by the TCG specifica-
tions [9]. Trusted computing systems are platforms whose state can be remotely tested, and
which can be trusted to store security-sensitive data in ways testable by a remote party. The
TCG specifications require each TP to include an additional hardware component, the TPM,
to establish trust in that platform. The TPM has protected storage and protected capabilities.
The entries of a TPM PCR, where integrity measurements are stored, are used in the protected
storage mechanism. This is achieved by comparing the current PCR values with the intended
PCR values stored with the data object. If the two values are consistent, access is then granted
and data is unsealed. Storage and retrieval are carried out by the TPM.

10.4 Framework Domain Architecture

In this section we discuss the LaaS domain architecture which forms the foundation for
addressing the identified objectives. The architecture uses the dynamic domain concept as
discussed in Chapter 8. The framework is composed of the following types of domain (see
Figure 10.4): log as a service domain (LaaSD), MD, CMD, OD, and COD. The LaaSD is
composed of LaaS-specific servers which host the LaaS system. Chapter 8 covers the details
of MD, CMD, OD, and COD; however, the framework in this chapter extends some of the
functions of the framework presented previously to make it provenance aware. Subsequent
sections identify the additional functions which we introduced at the MD – this chapter does
not cover integration of the provenance system with OD, COD, and CMD, as these would
increase the complexity of the chapter and divert the focus.

� LaaS Domain

Definition 10.1 The LaaSD consists of platforms that host Cloud LaaS applications.
Section 10.3 outlines the design requirements of the LaaSD hosting platforms. The LaaSD
has a unique identifier ilaas, two shared unique keys klaas and klaas−cca, and a specific
PKLlaas composed of all devices in the LaaSD. klaas is used to protect log records when
transferred within the LaaSD, while klaas−cca is used to protect log records when transferred
from Cloud entities to the LaaSD (specifically between the Cloud client agent and the log
client agent, as will be explained later). The credentials of the LaaSD are defined below
(Definitions 10.2–10.5). The LaaSD is associated with a provenance policy, which controls
its behavior and manages the provenance data, for example see the data retention policy
outlined in Section 10.8.
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Definition 10.2 The LaaSD identifier ilaas is a unique number that we use to identify the
LaaSD. It is securely generated and protected by the TPM of the VCC.

Definition 10.3 The LaaSD key klaas is used to protect provenance data. klaas is a
symmetric key that is securely generated and protected by the TPM of the VCC. klaas is
not available in the clear, it is shared between all member devices of the LaaSD, and it can
only be transferred from the VCC to a device when it joins the LaaSD.

Definition 10.4 The LaaSD public key list (PKLlaas) is an LaaSD-specific list that is
composed of the public keys of all devices of the LaaSD. Provenance administrators assign
devices to each LaaSD by providing each device public key to the VCC in the form of a
PKL. The PKLlaas is securely protected and managed by the VCC.

Definition 10.5 The LaaSD key klaas−cca (also called the LCA-CCA key) is used to
protect the provenance data when transferred from Cloud distributed elements to an LaaS
provenance application. klaas−cca is a symmetric key that is securely generated and protected
by the TPM of the VCC. klaas−cca is not available in the clear, it is shared between member
devices of the LaaSD and MD, and it can only be transferred from the VCC to a device
when the device joins an MD or LaaSD.

� Management domain

Definition 10.6 The MD is defined in Definition 8.2. However, in the extended framework
the MD policy not only manages the behavior of its members and controls the behavior
of collaborating MDs, but also controls the transfer of log records and the association of
metadata to the LaaSD from across the distributed elements of the Cloud infrastructure.
In addition, the MD credentials also include the shared LCA-CCA key provided by the
LaaSD, with similar definitions to those provided above.

10.5 Framework Software Agents

The presented framework architecture is composed of a set of software agents which are
required to implement the functions of the framework (see Figures 10.4 and 10.5). The
software agents are as follows: Cloud client agent (CCA); Cloud server agent (CSA); LaaS
server agent (LSA); LaaS client agent (LCA); and virtual machine agent (VMA). Chapter 8
provided the required protocols for the CCA and CSA, which control the management of the
OD/COD at the MD/CMD. As we discussed earlier, the objectives of Chapter 8 are not the
same as the objectives of this chapter, which necessitates introducing changes to the CCA and
CSA to provide an integrated framework. In the remaining part of this section we discuss in
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Figure 10.5 Software agents for Cloud provenance and management services

detail the functions of these agents, and the changes we introduce at the CCA and CSA to be
provenance aware. The software agents still have Assumption 8.1.

10.5.1 Cloud Server Agent

The CSA is a trusted management agent that runs at the VCC, and has the following functions:

� Installs the CCA on all physical devices except those of the LaaS servers, as discussed in
Chapter 8.

� Manages the MD/CMD policies, as discussed in Chapter 8. Also, manages the provenance
policies. Provenance policies provide the assurance that the log records are securely gen-
erated and transferred to authorized entities. These policies also provide assurance that
trustworthy metadata is generated and associated with the log records.

� Establishes offline chains of trust between Cloud entities, which include the following:
– Chains of trust between the CSA and CCA, as covered in Chapter 8.
– Collaborating with the LSA to establish chains of trust between the CSA and LSA, and

the CCA and LCA.
� Creates and manages the MD/CMD (the creation is covered in Chapter 8).

10.5.2 LaaS Server Agent

The LSA is a trusted provenance agent which runs at the VCC. The LSA has the following
functions:

� Installs and manages the LCA.
� Manages the provenance policies which provide assurance that the provenance data is only

accessible to authorized entities and controls provenance data retention.
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� Establishes offline chains of trust between provenance management agents (i.e., the LSA
and LCA) and between provenance management agents and other agents (i.e., the LSA and
CSA and the CCA and LCA).

� Creates and manages the LaaSD, which includes the following:
– Securely generating and storing LaaSD protection keys.
– Attesting to the execution environment status of devices’ LCAs whilst being added to the

domain and ensuring they are trusted to execute as expected; hence, trusted to securely
store the domain key and to protect domain content.

– Adding and removing devices to and from a domain by releasing the domain-specific key
to the LCA running on devices joining the LaaSD.

10.5.3 LaaS Client Agent

The LCA is a trusted provenance agent which runs at a physical platform member of the
LaaSD. The LCA has the following functions:

� Intermediates the communication between the CSA/CCA and the provenance system and
between the provenance security administrators and the provenance system.

� Assures verifiers that the provenance system operates in a trusted environment; that is, it
can access provenance data when its execution environment is trusted.

� Manages and enforces organization policy related to the provenance operations as distributed
by the LSA.

10.5.4 VM Agent

The VM agent is a trusted agent running at all virtual machines which are organized into ODs
and CODs. The VM agent intermediates the communication between running processes inside
a virtual machine and the CCA – this chapter only covers the secure storage of provenance
data. The VM agent attests to the execution status of all running processes inside the VM and
ensures that they are trusted to behave as expected. It then securely transfers the log records
to the CCA. The CCA, as explained next, is in charge of adding and binding the metadata to
log records and then transferring the result to the LCA.

10.5.5 Cloud Client Agent

The CCA is a trusted client-management agent running at the resources of the physical layer
(excluding members of the LaaSD). The CCA has the following functions, which are related
to the provenance system (these are additional functions to those discussed in Chapter 8):

� Enforces provenance policy as distributed by the LSA via the CSA.
� Intermediates the communication between all processes running at the physical platform

and the LCA. Specifically, it grabs the log records as forwarded from inside the VM and
other processes in the hypervisor, and then associates them with the required metadata.
Subsequently, it sends the result to its allocated LCA.

� Sends its own log records (i.e., log records related to the management of virtual resources
at physical resources) to its allocated LCA.
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10.6 Framework Workflow

This section discusses a possible workflow of the system framework. The chapter does not
discuss OD/COD (i.e., it does not discuss VMs and the details of their agents), neither does
it discuss the management of application provenance. Discussing such details would drag us
into extra complexities that divert the focus of the chapter. At this early stage of the work we
discuss a set of protocols as a proof of concept with an informal security analysis. This is to
clarify how the framework components could possibly be managed. Once we proceed further
in this work and address the identified challenges, we will then need to provide a formal
analysis in which the discussed protocols would likely to be updated.

10.6.1 Cloud Server Agent Initialization

This section describes the procedure of initializing the CSA discussed in Section 10.5. The
following notation is used in this section: TPM is the TPM on the VCC; S is the platform
state at release as stored in the PCR inside the TPM; and (Pu, Pr) is a non-migratable key pair
such that the private part of the key Pr is bound to the TPM and to the platform state S. The
following protocol functions are defined in [9]: TPMCreateWrapKey, TPMLoadKey2, TPMSeal,
and TPMUnseal.

The main objective of initializing the CSA is to prepare it to implement the framework of
the discussed scheme. This includes the following:

� Cloud security administrators install the CSA on the VCC – the installation of the CSA
includes generating a non-migratable key pair (Pr, Pu) to protect domain secrets.

� The CSA manages security administrator(s) credentials and securely stores them to be used
whenever administrator(s) need to be authenticated to the CSA.

The first time security administrators run the CSA it performs the following initialization
procedure (as described in Algorithm 10.1). The objective of this algorithm is to initialize
the CSA. The CSA executes and sends a request to the VCC-specific TPM to generate a
non-migratable key pair, which is used to protect domain secrets. The TPM then generates
this key and seals it to be used by the CSA when the hosting device execution status is trusted.

The CSA then needs to ensure that only security administrators can use the CSA. For
this the CSA instructs security administrators to provide their authentication credentials (e.g.,
password/PIN), as described in Algorithm 10.2. The objective of this algorithm is to enrol
security administrators in the CSA. The CSA then requests the TPM to store the authentication
credentials of the Cloud security administrators associated with its trusted execution environ-
ment state (i.e., the integrity measurement as stored in the TPM PCR) in the VCC protected
storage. By storing data in a protected storage we mean ‘sealing data’ in TCG terms, so that
data can only be accessed by the trusted server agent. The authentication credential is used to
authenticate security administrators before using the CSA; see Algorithm 10.3.

Given the definitions and the assumptions above, the protocol is described by Algorithms
10.1–10.3. The objective of the protocol is to install the server agent at the VCC, which
generates the non-migratable key to encrypt the CSA secrets. The protocols are used by
security administrators when interacting with the server agent.
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Algorithm 10.1 CSA Initialization

1. CSA→ TPM: TPMCreateWrapKey.
2. TPM: Generates a non-migratable key pair (Pu, Pr).

Pr is bound to the TPM and to the required platform state S at release, as stored in the
PCR inside the TPM.

3. TPM→ CSA: TPM_KEY12[Pu, Encrypted Pr, TPM_KEY_STORAGE, tpmProof=TPM
(NON-MIGRATABLE), S, Auth_data].

Algorithm 10.2 Administrators Registration

1. CSA→ Administrators: Request for security administrators’ authentication credentials.
2. CSA→ TPM: TPMLoadKey2(Pr).

Loads the private key Pr in the TPM trusted environment, after verifying the current PCR
value matches the one associated with Pr (i.e., S). If the PCR value does not match S, the
CSA returns an appropriate error message.

3. CSA→ TPM: TPMSeal(Authentication_Credential).

Algorithm 10.3 Authentication Verification

1. CSA→ Administrators: Request for authentication credentials.
2. CSA→ TPM: TPMLoadKey2(Pr). The TPM on the CSA device loads the private key Pr in the

TPM trusted environment, after verifying the current PCR value matches the one associated
with Pr (i.e., S). If the PCR value does not match S, the CSA returns an appropriate error
message.

3. CSA→ TPM: TPMUnseal(Authentication_Credential).
4. TPM: Decrypts the string Authentication_Credential and passes the result to the CSA.
5. CSA: Authenticates the administrators using the recovered authentication credentials. If

authentication fails, the CSA returns an appropriate error message.

10.6.2 LaaS Server Agent Initialization

The process of initializing the LSA follows exactly the same process and algorithms described
for initializing the CSA in Section 10.6.1. The main differences are as follows: the LaaS
should be managed by provenance security administrators who should not have access to the
CSA. Similarly, the CSA security administrators should not have access to the LSA. The LaaS
should have its specific non-migratable key pair, which is independent of the CSA key pair
and, although both the LSA and the CSA run at the VCC this does not mean that the VCC is
a single entity. It is most likely to be the opposite (as currently implemented, for example, in
OpenStack), having multiple different entities that could each be allocated a specific function
for scalability, performance, and security reasons.
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10.6.3 LCA and CCA Initialization

This section describes the procedure of initializing client agents, which could be LCA or
CCA. The goal of this procedure is to prepare devices to participate in Clouds. This covers
generating a non-migratable key to protect important credentials at client devices.

The protocol of initializing an LCA and CCA is described in Algorithm 10.4. The objective
of this algorithm is to install a copy of the agent, which generates a non-migratable key to
protect a device’s credentials. TPM, S, and (Pu, Pr) have the same meanings as earlier.

Algorithm 10.4 LCA Initialization – this applies equally to CCA initialization

1. LCA→ TPM: TPMCreateWrapKey.
2. TPM: Generates a non-migratable key pair (Pu, Pr).
3. TPM→LCA: TPM_KEY12[Pu, Encrypted Pr, TPM_KEY_STORAGE, tpmProof=TPM

(NON-MIGRATABLE), S, Auth_data].

10.6.4 LaaS Domain Establishment

In this section we discuss the procedure of establishing the LaaSD, which is managed by the
LSA. In the provided protocol we use the same notation as described earlier. In this subsection
we require that the LSA has already been installed and initialized, exactly as described in
Section 10.6.2. This includes installing the LSA, which interacts with the TPM to generate a
non-migratable key pair that can only be used by the agent. This key pair is used to protect
LaaS secrets.

LaaSD establishment begins when provenance security administrators want to establish
an LaaSD. The administrators instruct the LSA to create a new LaaSD. The server agent
authenticates the administrators as described in Algorithm 10.3. If authentication succeeds,
the server agent interacts with the TPM to securely generate the LaaS-specific domain key
klaas and identifier ilaas, and a specific key klaas−cca to be used to establish a trusted channel
between the LCA and CCA. These are described in Algorithm 10.5.

On successful completion of this protocol the LaaS credentials are initialized, including the
domain key, domain identifier, LCA-CCA key, and an empty PKL. These are protected by the
LSA running at the VCC, which manages LaaSD membership.

Provenance security administrators assign selected physical devices to the LaaSD based on
the device properties to fulfil the required overall LaaSD properties. As we discuss in Section
10.6.5, the LSA securely transfers the domain credentials to the joining log devices. It also
transfers the key klaas−cca associated with ilaas to the CSA. The CSA in turn transfers the key to
the joining CCA (see Section 10.6.7), which would establish an offline chain of trust between
the CCA and LCAs.

Algorithm 10.5 LaaSD Establishment

1. LSA→ TPM: TPMGetRandom.
TPM generates a random number to be used as LaaSD key klaas.

2. TPM→ LSA: klaas.
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3. LSA→ TPM: TPMGetRandom.
TPM generates a random number to be used as LCA-CCA key klaas−cca.

4. TPM→LSA: klaas−cca.
5. LSA→ TPM: TPMGetRandom.

LSA generates a unique number to be used as LaaSD identifier ilaas.
6. TPM→LSA: ilaas.
7. The LaaSD credentials klaas, ilaas, klaas−cca, and an empty PKLlaas are stored in the VCC

protected storage and sealed to the LSA so that only the LSA can access these credentials
when its execution status is trusted. This is achieved as follows:

LSA→ TPM: TPMLoadKey2(Pr).
Loads the private key Pr in the TPM trusted environment to be used in the sealing

function, after verifying the current PCR value matches the one associated with Pr (i.e., S).
If the PCR value does not match S, the LSA returns an appropriate error message.

LSA→ TPM: TPMSeal(klaas||ilaas||PKLlaas).
TPM securely stores the string klaas||ilaas||PKLlaas using the platform protected storage,

such that it can only be decrypted on the current platform by the LSA, and only if the
platform runs as expected (when the platform PCR values match those associated with Pr,
i.e., S).

10.6.5 Adding Devices to an LaaSD

This section describes the process for adding a device to an LaaSD. The following notation is
used in the provided protocol: TPMLCA is the TPM of the device running the LCA; TPMLSA
is the TPM of the device running the LSA; SLCA is the platform state at release as stored in
the PCR inside the TPMLCA; SLSA is the platform state at release as stored in the PCR inside
the TPMLSA; (PuLCA, PrLCA) is a non-migratable key pair such that the private part of the key
PrLCA is bound to TPMLCA and to the platform state SLCA; (PuLSA, PrLSA) is a non-migratable
key pair such that the private part of the key PrLSA is bound to TPMLSA and to the platform
state SLSA; ilaas is an LaaSD-specific identifier; PKL is the LaaSD public key list; klaas is the
LaaSD-specific content protection key; klaas−cca is the LCA-CCA-specific key for protecting
content transferred between the CCA and LaaS and to establish trust between both entities;
CertLSA is the LSA device certificate; CertLCA is the joining LCA device certificate; ALSA is
an identifier for the LaaS server device included in CertLSA; ALCA is an identifier for the LaaS
client device included in CertLCA; PrLSA−AIK is the corresponding private key of the public key
included in CertLSA; PrLCA−AIK is the corresponding private key of the public key included
in CertLCA; N1 is a randomly generated nonce; N2 is a randomly generated nonce; ePuLCA

(Y)
denotes the asymmetric encryption of data Y using key PuLCA, and where we assume that the
encryption primitive in use provides non-malleability, as described in [10]; and SHA1 is a
one-way hash function.

The LCA sends a ‘join domain’ request to the LSA. This request includes the LaaSD-
specific identifier ilaas and is achieved as follows: LCA→LSA: Join_Domain. Two algorithms
are then initiated to add the device to the domain. The first algorithm involves the LaaS server
and client agents to mutually authenticate each other, conforming to the three-pass mutual
authentication protocol [11]. The LSA sends an attestation request to the LCA to prove its
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trustworthiness; the LCA then sends the attestation outcome to the LSA. These steps are
achieved using Algorithm 10.6.

Adding a device into a domain uses Algorithm 10.7, which starts upon successful completion
of Algorithm 10.6. The objective of Algorithm 10.7 is to securely transfer the keys klaas and
klaas−cca to the LCA. Both keys are sealed on the device hosting the LCA, so that they are only
released to the LCA when its execution environment is as expected. If the execution status of
the device running the LCA is trusted, the LSA checks if the device’s public key is included
in the public key list of the domain. If so, it securely releases the domain-specific key klaas
and the LCA-CCA-specific key to the LCA using Algorithm 10.7. The keys are sealed on the
LCA’s device, so that they are only released to the LCA when its execution environment is as
expected.

Upon successful completion of these algorithms the LaaS client and server agents establish
a trusted secure communication channel that is used to transfer the LaaSD key and policy to
the LCA. The established secure channel, importantly, provides assurance to the LSA about
the state of the client agent and forces future use of the transferred key to the agent on a specific
trusted state. The device hosting the LCA is now part of the domain, as it possesses a copy
of the key klaas and its public key matches the one stored in the server agent. Member devices of
the domain can access the domain log records, which are now shared by all member devices
of the LaaSD.

Algorithm 10.6 LCA and LSA Mutual Authentication

1. LSA→ TPMLSA: TPMGetRandom.
2. TPMLSA →LSA: Generates a random number to be used as a nonce N1.
3. LSA→ TPMLSA: TPMLoadKey2(PrLSA−AIK).

Loads the server agent hosting device AIK in the TPM trusted environment, after
verifying the current PCR value matches the one associated with PrLSA−AIK .

4. LSA→ TPMLSA: TPMSign(N1).
5. TPMLSA → LSA →LCA: N1||CertLSA||SignLSA(N1).
6. LCA: Verifies CertLSA, extracts the signature verification key of the LSA from CertLSA,

and checks that it has not been revoked, e.g. by querying an OCSP service [12]. The LCA
then verifies the message signature. If the verification fails the LCA returns an appropriate
error message.

7. LCA→ TPMLCA: TPMGetRandom.
8. TPMLCA →LCA: Generates a random number N2 that is used as a nonce.
9. LCA→ TPMLCA: TPMLoadKey2(PrLCA−AIK).

Loads the private key PrLCA−AIK in the TPM trusted environment, after verifying the
current PCR value matches the one associated with PrLCA−AIK .

10. LCA→ TPMLCA: TPMCertifyKey(SHA1(N2||N1||ALSA||ilaas),PuLCA). TPMLCA attests to its
execution status by generating a certificate for the key PuLCA.

11. TPMLCA →LCA: N2||N1||ALSA||PuLCA||SLCA||ilaas||

SignLCA(N2||N1||ALSA||ilaas||PuLCA||SLCA).
12. LCA→LSA: N2||N1||ALSA||PuLCA||SLCA||ilaas||CertLCA||

SignLCA(N2||N1||ALSA||ilaas|| PuLCA||SLCA).
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13. The LSA verifies CertLCA, extracts the signature verification key of the LCA from the
certificate, and checks that it has not been revoked, e.g. by querying an OCSP service. The
LSA then verifies the message signature, the message freshness by verifying the value of
N1, and then verifies it is the intended recipient by checking the value of ALSA. The LSA
determines if the LCA is executing as expected by comparing the platform state given in
SLCA with the predicted platform integrity metric. If these validations fail, the LSA returns
an appropriate error message.

Algorithm 10.7 Sealing LaaSD Credentials to the LCA

1. LSA→ TPMLSA: TPMLoadKey2(PrLSA).
The TPM on the LSA loads the private key PrLSA in the TPM trusted environment, after

verifying the current PCR value matches the one associated with PrLSA (i.e., SLSA). If the
PCR value does not match SLSA, the server agent returns an appropriate error message.

2. LSA→ TPMLSA: TPMUnseal(klaas||klaas−cca||ilaas||PKL).
3. TPMLSA →LSA: Decrypts the string klaas||klaas−cca||ilaas||PKL and passes the result to

LSA.
4. The LSA verifies ilaas matches the recovered domain identifier and PuLCA is included

in the PKL. If so, the LSA encrypts klaas and klaas−cca using the key PuLCA as follows:
ePuLCA

(klaas||klaas−cca).
5. LSA→ TPMLSA: TPMCertifyKey(SHA1(N2||ALCA||ePuLCA

(klaas||klaas−cca)),PuLSA).
6. TPMLSA →LSA: Attests to its execution status by generating a certificate for the key PuLSA

and sends the result to the LSA.
7. LSA→LCA: N2||ALCA||PuLSA||SLSA||ePuLCA

(klaas||klaas−cca)||
SignM(N2||ALCA||ePuLCA

(klaas||klaas−cca)|| PuLSA||SLSA).
8. The device LCA verifies the message signature, that it is the intended recipient by checking

the value of ALCA, and verifies the message freshness by checking the value of N1. If these
verifications succeed, the LCA stores the string ePuLCA

(klaas||klaas−cca) in its storage.

10.6.6 Establishing Trust between Server Agents

Before establishing an MD domain we should first establish a chain of trust between both the
CSA and LSA. This would help in establishing a transparent chain of trust between the CCA
running at each member device of the MD and the LCA that runs at each member device of the
LaaSD, as we discuss later. For clarity, we do not assume that the LSA and CSAs are hosted at
a single VCC (as indicated earlier, the VCC could be composed of multiple but collaborating
entities). The following notation is used in the provided protocol: TPMLSA is the TPM of the
device running the LSA; TPMCSA is the TPM of the device running the CSA; SLSA is the
platform state at release as stored in the PCR inside the TPMLSA; SCSA is the platform state
at release as stored in the PCR inside the TPMCSA; (PuLSA, PrLSA) is a non-migratable key
pair such that the private part of the key PrLSA is bound to TPMLSA and to the platform state
SLSA; (PuCSA, PrCSA) is a non-migratable key pair such that the private part of the key PrCSA
is bound to TPMCSA and to the platform state SCSA; ilaas is an LaaSD-specific identifier; imd
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is an MD-specific identifier; k is a specific shared key between Cloud and LSAs; CertCSA is
the LSA device certificate; CertLSA is the CSA device certificate; ACSA is an identifier for the
LSA device included in CertCSA; ALSA is an identifier for the CSA device included in CertLSA;
PrCSA−AIK is the corresponding private key of the public key included in CertCSA; PrLSA−AIK is
the corresponding private key of the public key included in CertLSA; N1 is a randomly generated
nonce; N2 is a randomly generated nonce; ePuLSA

(Y) denotes the asymmetric encryption of data
Y using key PuLSA and where we assume that the encryption primitive in use provides non-
malleability, as described in [10]; and SHA1 is a one-way hash function.

The LSA sends an ‘establish trusted channel’ request to the CSA as follows: LSA→CSA:
Establish_Trusted_Channel. Two algorithms are then initiated to establish the trusted channel
and to transfer management data across. The first algorithm involves the LSA and CSA to
mutually authenticate each other, conforming to the three-pass mutual authentication protocol
[11]. The agents attest to each other to prove their trustworthiness. These steps are achieved
using an algorithm which is exactly the same as Algorithm 10.6. The second algorithm
(Algorithm 10.8) starts upon successful completion of Algorithm 10.6. The objective of this
algorithm is to securely establish a shared key k that can only be accessed by both agents when
their execution status is as expected. Upon successful completion of the two algorithms, the
LSA and CSAs establish a trusted secure communication channel that is used to transfer the
related provenance policy and other secret data between both agents. In addition, such a trusted
channel, as we discuss later, would help in establishing a transparent chain of trust between
LCAs and CCAs. The established trusted secure channel provides assurance to both agents
about their states and forces future use of the transferred key to be on a specific trusted state.
The next sections build on the successful completion of the provided protocols when storing
and querying log records, and when validating the trustworthiness of the log management
processes.

Algorithm 10.8 Sealing the LSA-CSA Shared Key to the LSA/CSA Server Agents

1. Note that, as indicated in the text, for this algorithm to make sense it must be read after
the attestation algorithm to show the reader how both entities (i.e., LSA and CSA) attest to
each other’s execution environment and exchange certificates.

2. CSA→ TPM: TPMGetRandom.
TPM generates a random number to be used as a shared key k.

3. TPM→ CSA: k.
4. k is stored in the CSA protected storage and sealed to the CSA so that only the CSA can

access the key when its execution status is trusted. This is achieved as follows:
CSA→ TPM: TPMLoadKey2(Pr).
Loads the private key Pr in the TPM trusted environment to be used in the sealing

function, after verifying the current PCR value matches the one associated with Pr (i.e., S).
If the PCR value does not match S, the CSA returns an appropriate error message.

CSA→ TPM: TPMSeal(k).
The TPM securely stores the key k using the platform protected storage, such that it can

only be decrypted on the current platform by the CSA, and only if the platform runs as
expected (when the platform PCR values match those associated with Pr, i.e., S).

5. The CSA then encrypts k using the key PuLSA as follows: ePuLSA
(k).
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6. CSA→ TPMCSA: TPMCertifyKey(SHA1(N2||ALSA||ePuLSA
(k)),PuCSA).

7. TPMCSA →CSA: Attests to its execution status by generating a certificate for the key PuCSA,
and sends the result to the CSA.

8. CSA→ LSA: N2||ALSA||PuCSA||SCSA||ePuLSA
(k)||

SignCSA(N2||ALSA||ePuLSA
(k)|| PuCSA||SCSA).

9. The LSA verifies the message signature, that it is the intended recipient by checking the
value of ALSA, and verifies the message freshness by checking the value of N1. If these
verifications succeed, the LSA stores the string ePuLSA

(k)) in its storage.
As in the case of the CSA, the key k can only be decrypted on the current platform by

the CSA, and only if the platform runs as expected.

10.6.7 MD Establishment and Management

In this subsection we require that the CSA has already been installed and initialized, the
LaaSD has been established, and a trusted channel between the LSA and CSA has been
established, exactly as described earlier in Sections 10.6.1, 10.6.4, and 10.6.6, respectively.
The establishment of an MD follows similar steps to those provided in Algorithm 10.5, with
the following changes: the CSA does not generate the shared LCA-CCA key, it rather requests
it from the LSA using the trusted channel established in Algorithm 10.8; and after the CCA
receives this key, it securely stores the key along with other MD credentials.

Adding a device to the MD also follows similar steps to those provided in Algorithms 10.6
and 10.7, with the following changes: the mutual authentication protocol (Algorithm 10.6)
needs to be updated to establish a chain of trust between the CSA and CCA rather than the LSA
and LCA; a chain of trust needs to be established between the LCA and CCA in Algorithm
10.7. This is transparently established when the CSA sends the shared LCA-CCA key to the
CCA (how this is achieved is discussed in Section 10.8); the CSA regularly receives changes
relating to provenance management and policies from the LSA using the trusted channel
established in Algorithm 10.8; and the CSA (by collaborating with the LSA sends to the CCA
the metadata to use with the log records (such as the physical device-id reflecting the CCA’s
device identifier at the VCC database, the MD-id the CCA is a member of the CMD-ids the
MD is a member of the VMs the CCA would manage, and the policy that controls how the
CCA interacts with the LCA).

10.6.8 Secure Log Storage

In this section we discuss a possible approach for storing Cloud provenance data using an
LaaSD. We list the main steps for storing a log record generated by a process P which is hosted
at a physical device D. Whenever a process P generates a log record, LOG, it sends the LOG
to the CCA running at D as follows:

P →CCA: LOG||APPID (where APPID is the process unique identifier which
produces the LOG).



160 Cloud Management and Security

The CCA, as discussed earlier, is assigned to an LaaSD and a pre-agreed shared CCA-LCA-
specific key, klaas−cca. Such a key can only be accessed by the assigned agents when their
execution environment is as expected. We assume, for performance reasons, that the CCA and
LCAs keep such keys pre-loaded in memory (we assumed in Assumption 8.1 that a mechanism
is in place to protect sensitive data whilst being in memory). Loading such a key is done as
follows:

1. CCA → TPM: TPMLoadKey2(Pr). The TPM on D loads the private key Pr in the TPM trusted
environment, after verifying the current PCR value matches the one associated with Pr (i.e.,
S). If the PCR value does not match S, the CCA returns an appropriate error message.

2. CCA → TPM: TPMUnseal(klaas−cca).

The CCA associates additional metadata representing the virtual and physical layer details
(i.e., virtual domain id (VDID), virtual machine id (VMID), physical machine id (PHID), and
physical domain id (PHDID)), and then encrypts the string using the shared key klaas−cca. The
CCA then sends the result to the LaaS agent as follows:

CCA → LaaS: eklaas−cca
(LOG||APPID||VMID||VDID||PHID||PHDID)

As discussed above, we require that the LaaS pre-loads the shared key klaas−cca. The LaaS
then decrypts the string, and re-encrypts only the LOG field using the LaaSD-specific key klaas
as follows:

1. LaaS →TPM: TPMLoadKey2(Pr). The TPM on an LaaS device loads the private key Pr in the
TPM trusted environment, after verifying the current PCR value matches the one associated
with Pr (i.e., S). If the PCR value does not match S, the LaaS returns an appropriate error
message.

2. LaaS → TPM: TPMUnseal(klaas||klaas−cca).
3. LaaS decrypts the string eklaas−cca

(LOG||APPID||VMID||VDID||PHID||PHDID).

4. LaaS then encrypts the LOG field as follows: eklaas
(LOG).

Finally, the LaaS stores the encrypted LOG record and the extracted metadata in a set of
tables inside the provenance DBMS (identified in Section 10.3). We require that the LaaS
DBMS provides additional protection measures for the stored provenance data. An example
of this is the Oracle Wallet [13]. In this, the DBMS automatically stores the data encrypted
inside the DBMS. It is beyond the scope of this book to discuss or analyze the process of
securely storing data inside a DBMS.

10.7 Threat Analysis

In this section we informally analyze the threats, services, and mechanisms for the provenance
framework workflow presented in Section 10.6. We focus on the threats, services, and mecha-
nisms that apply to provenance and management data, and the domain credentials of MD and
LaaSD.



Provenance in Clouds 161

Provenance and Cloud security administrators, when interacting with the server agents
running at the VCC, could violate their privileges by adding unauthorized devices to a
domain or even an unauthorized party could steal security administrators’ authentication
credentials to add an unauthorized device into a domain. The administrators’ authorization
violation threat can be mitigated by combining different measures, for example: requiring
that N out of M administrators successfully authenticate themselves directly to the VCC
for request authorization; using logging and auditing mechanisms that could detect abnor-
malities in the system; and using the policy of separation of duty, for example, preventing
administrators (both provenance and Cloud) from accessing log files, which are routinely
examined by auditors. The stealing of administrators’ credentials, in contrast, can be miti-
gated by using strong authentication measures which involve a combination of: ‘something
the administrator has,’ for example a smart card; ‘the security administrator is…’ for example
biometric verification; and/or ‘the security administrator knows…’ for example a password or
PIN. At this foundation stage, we do not cover the implementation and enforcement of such
mechanisms.

The server software agents running at the VCC raise the following security threats when
processing and storing system credentials: unauthorized manipulation of system credentials
during use in the VCC, and/or unauthorized manipulation of system credentials whilst stored in
the VCC. The confidentiality and integrity protection of system credentials during execution in a
VCC requires process isolation techniques, in which software agents run in isolation, free from
being observed or compromised by other processes running in the same protected partition,
or by software running in any insecure partition. This chapter does not cover this point,
however, we assumed in Assumption 8.1 that such a protection mechanism is in place. The
confidentiality and integrity of system credentials whilst stored in the VCC requires protected
storage capabilities, as discussed in Section 10.3.3 and Algorithm 10.5. The protected storage
capabilities uses TPM functions to protect domain credentials. The TPM is tamper-evident and
so it is not easy for the protected credentials to get hacked in normal circumstances. However,
the TPM cannot protect itself from physical attacks and, in addition, domain keys could
possibly be revealed in different ways (such as brute-force attack). Lessening the impact of
such threats requires key management. The Cloud policy makers decide on the key management
policy (e.g., frequency of refreshing domain keys, what should happen if a device is hacked,
etc.). In this chapter we do not cover the key management part, neither do we consider policy
management and enforcement mechanisms.

The interaction between a client software agent running on a device joining a domain and
the corresponding server software agent running at the VCC raises the following threats to the
corresponding domain key whilst in transit: unauthorized reading or alteration of the domain
key whilst in transit, the VCC wittingly/unwittingly sending the domain key to a malicious
entity, a device wittingly/unwittingly receiving the domain key from a malicious entity, and
a replay of communications between the VCC and the added device. The confidentiality and
integrity of the domain whilst in transit, as discussed in Section 10.6.5, is provided by the
use of asymmetric encryption where we assume that the encryption primitive in use provides
non-malleability. Entity authentication of a device to a VCC involves a protocol exchange
between the device and the VCC, as discussed in Algorithm 10.6. It is initiated when the VCC
and the joining device mutually authenticate each other. This mutual authentication attests to
the scheme applications execution status and whether the platform is trusted. By this the VCC
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can only communicate with a trusted entity, and so cannot unwittingly send the domain key
to a malicious entity. Similarly, the device agent, if it is not operating properly, cannot get
the domain key and so it cannot wittingly send it to a malicious entity (see Algorithms 10.7
and 10.8). A similar discussion also applies to entity authentication of a VCC to a device.
Prevention of replay of communications between a VCC and a device is provided by the
inclusion of nonces in protocol messages (see Section 10.6.5).

Domain devices raise the following threats to the processing and storage of the domain
key and content: unauthorized reading or alteration of the domain key during use in the
device, unauthorized reading or alteration of the domain key whilst stored in the device,
unauthorized reading or alteration of content during use in the device, and unauthorized
reading or alteration of content whilst stored in the device. The confidentiality and integrity
of the domain key during execution on a device is covered in Assumption 8.1 as discussed
above for the VCC. The confidentiality and integrity of the domain key whilst stored in
a device, as discussed above, not only requires protected storage capabilities but also key
and policy management and enforcement mechanisms. The confidentiality and integrity of
domain content during execution on a device follows the same discussion as the point of
protecting the domain key during execution in the device. The confidentiality and integrity
of domain content is protected by encrypting it using the domain key whilst stored on a
device, where we assume that the encryption primitive in use provides authenticated encryp-
tion. The encryption key is bound to the device’s trusted environment, as discussed in
Section 10.6.8.

10.8 Discussion and Future Directions

10.8.1 Establishing Trust

In this part we discuss the foundation of trust establishment between different Clouds entities.
A client or a verifier (which could, for example, be a Cloud customer, Cloud employee,
or a third party) needs to assess the trustworthiness of a running application in the Cloud.
This includes assessing the trustworthiness of a Cloud to manage the infrastructure and the
provenance system. If the result is positive, the verifier can then trust the operation of the
Cloud and would only need to assess the trustworthiness of the running application. We
now discuss how the framework proceeds in this direction in more detail – it is beyond
the scope of this chapter to go into the details of trust measurement and this is a planned
future work.

As we discussed earlier, one of the responsibilities of the LSA is to establish a trustworthy
LaaSD to manage the provenance data of Cloud elements. The first step is to install LCAs at
carefully selected log-specific devices. The LSA then verifies the trustworthiness of the LCA
and assures users of the trustworthy behavior of the LCA when managing the LaaSD. In other
words, an untrusted LCA will automatically be evicted from managing the LaaSD. Thus, a
verifier only needs to measure and then assess the trustworthiness of the LSA. If trusted, the
verifier can then implicitly assume that the LCA (which is managed by the LSA) is trusted
to manage the LaaSD. Assessing the trustworthiness of the LSA is not enough by itself. This
is because the operation of the Cloud infrastructure (e.g., hosting of billing applications) is
managed by the CSA and CCA, while the log records are managed by the LSA and LCA.
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Therefore, a verifier would also need to measure and then verify the trustworthiness of the
CSA as well as the LSA. As in the case of assessing the trustworthiness of log management,
a verifier does not need to measure and assess the trustworthiness of the CCA. It is rather the
opposite, as the verifier should not, indeed, get involved in understanding the complexities of
the Cloud infrastructure [14]. As in the case of the LSA, one of the key functions of the CSA is
to assure users that only trustworthy CCAs can manage the Cloud infrastructure and untrusted
agents will automatically be evicted from the MD.

A chain of trust is also required between both the CCA and LSA, which is provided based
on the above chains of trust, as follows: we established a chain of trust between the LSA and
LCA; we established a chain of trust between the LSA and CSA; and we established a chain of
trust between the CSA and CCA. Using these chains of trust, we have established a transparent
chain of trust between CCAs and LCAs.

To conclude, a verifier should not (i.e., must not) get involved in understanding the details
of the Cloud infrastructure. The identified chains of trust help in this direction, as a verifier
only needs to attest to the trustworthiness of the requested application and the VCC which
runs both the LSA and CSA.

10.8.2 Log Retention

Log retention policy is an important topic that needs to be considered in an LaaS system. It
is about how long log records should be kept before deletion or offline archiving. The log
retention policy would be based on the type of log records which, as discussed, we categorize
as follows: physical, virtual, application, and management tools log records. The application
layer log records are relatively large in comparison with the others. Provenance might require
the co-existence of all these log records. A retention policy would also depend on the log nature,
owner requirements, and other legislative measures. For example, EU legislation requires that
log records of financial applications should be kept for at least five years.

Performance could also be an issue with such large log data if archiving is not considered. As
discussed earlier, our database design is built on a distributed database management system
that utilizes existing technology to manage such a large database, for example clustering
technology, table partitioning, and data replication. Log records archiving would be based
on insertion date as live and archive. Live records could, for example, represent the last
six months of activity while archive log records represent data older than that. Live records
should be stored in high-performance devices, while archiving data could be stored in slower
devices. Such architectural decisions must be defined, in advance, by policy makers. We have
prototyped this design approach and found that performance is enhanced dramatically, in
particular live records are frequently accessed while archive records are required mainly for
forensic investigation cases.

10.8.3 Achievement of Objectives

Section 10.1.2 identifies four key requirements for trustworthy secure Clouds provenance, and
we now discuss those covered in this chapter. We partially addressed requirement (ii) as follows:
providing a high-level design of a provenance system which is built on a distributed DBMS
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engine; associating each item of the log record with a metadata identifying the recorded log in
the context of the Cloud taxonomy; and identifying the provenance system requirements. We
covered requirement (iii) as follows: establishing an LaaSD which manages the secure sharing
of provenance data between LaaSD member devices; updating the framework presented in
Chapter 8 to associate provenance metadata with log records; and integrating the frameworks
presented in Chapter 8 with this chapter’s framework to enable the secure transfer of log records
from their originating processes to the log repository. The previous subsection discusses how
we partially covered point (iv), which is related to trust management – more work is still
needed on this point, which is related to trust evaluation in Clouds.

Section 10.6.8 provides a possible approach to how the integrated framework could work.
However, this is not enough in itself to assure provenance data integrity and confidential-
ity whilst being stored and processed within the LaaSD. For example, this chapter has not
discussed key management, policy management, and protecting sensitive data whilst being
processed. These subjects are too complex, especially in the Cloud context, to be covered in
this chapter, and we leave them as planned future work.

10.9 Summary

This chapter has discussed an important topic in Clouds computing, which has not yet received
much attention. It presents a framework for trustworthy Cloud provenance. Cloud provenance
is a key requirement to establish a foundation for providing trust in the Cloud. Establishing
trust in the Cloud requires trustworthy self-managed services that can automatically, and
with minimal human intervention, manage Cloud users’ resources at the Cloud infrastructure.
Such self-managed services require trustworthy Cloud provenance as it helps in taking the
right action on changes and incidents. Cloud provenance has many additional advantages,
for example it is a key requirement in forensic investigation. This chapter does not provide
an exhaustive secure framework, neither does it provide a formal security analysis of the
framework. For example, the chapter does not cover key management or database security.
This is because discussing such topics is a whole area of research in the Cloud context.
In addition, the discussed framework still requires further extensions which, likely, would
introduce some changes. The framework addresses part of the identified requirements and
establishes a foundation for further research to address other requirements.

10.10 Exercises

Q1. Logs and provenance are distinctly different. How can logs be used as a source of
provenance in Clouds? Is it sufficient only to use logs as a source of provenance?

Q2. Discuss the importance of provenance in different Cloud deployment types.

Q3. What are the shortcomings of the current mechanisms of Cloud provenance?

Q4. What are the key challenges for establishing trustworthy Cloud provenance?
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11
Insiders

The problem of insiders in organizations is one of the most complex problems to deal with.
This is because insiders have to be trusted to perform their daily business processes. In Cloud,
the problem of insiders is even more complicated, as the domain of insiders is bigger than
organizations and insiders have higher motivation to attack Cloud applications. This chapter
analyzes this problem and provides a systematic method to identify potential and malicious
insiders in the Cloud environment.

11.1 Introduction

The insider problem is cited as the most serious security problem and the most difficult
problem to deal with [1, 2]. As discussed by Alawneh and Abbadi [3], the insider problem in
organizations is caused mainly by the holders of authorized credentials who are typically the
internal and authorized employees. Such employees should successfully pass several security
checks before being employed by an organization. Also, such employees have a direct contract
with the organization and the organization to a certain level trusts them (e.g., based on prior
experience).

In a Cloud computing context, the insider problem is more significant than in traditional
organizations for the following reasons: (1) the insider domain has expanded from the organi-
zation’s internal employees and contractors to also include the Cloud internal employees and
contractors, Cloud customers, and Cloud third-party suppliers; (2) the organization does not
have a direct relationship with the Cloud employees and cannot anticipate their level of trust;
(3) other Cloud customers, who could be competitors, might share the same physical server
as the organization (raising issues of multitenant architecture [4]); and (4) Clouds-of-Clouds,
in which a provider might host part of their customers’ data at another provider, result in
expanding the customer insiders to include all the Cloud-of-Clouds insiders. All these fac-
tors increase the insider threat to an organization’s sensitive assets when moving to a Cloud
infrastructure.

This chapter provides a systematic method for identifying insiders. The chapter is organized
as follows. Section 11.2 presents the definition of insider and potential insider. Section 11.3
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provides a set of models illustrating the relationship between actors, credentials, and infras-
tructure in the Cloud computing context, focusing on IaaS. It then provides a method for
identifying insiders. Finally, Section 11.4 summarizes the chapter.

11.2 Insiders Definition

11.2.1 Background

Organizations have always faced challenges in protecting sensitive information from being
revealed to unauthorized parties. Such challenges are even harder to address when an orga-
nization needs the sensitive content to be shared between its own employees to achieve a
particular task. Threats from outside the organization are always a major worry; however,
organizations cannot ignore the risk of authorized employees, or ‘insiders,’ revealing sensitive
content to unauthorized parties. This is because insiders may have privileges and know where
to obtain sensitive information from within the organization. Thus, the risk associated with
insider threats is often greater than the risk of threats originating outside the organization [2, 5].

It is important to understand the meaning of the term ‘insider’ in order to correctly define
the threats to an organization and determine how to tackle them. This section is dedicated to
discussing the definition of the term insider. One of the most important criteria for insiders
is that users should have authorized credentials enabling them to access an organization’s
sensitive content to be considered as insiders. For an attacker to be an insider he should possess
authorized credentials. We therefore raise the following questions: What if an employee shares
the credentials with an unauthorized party? What are the insider threats that could result from
such an action? What are the impacts of such threats on an organization’s sensitive content?
All these questions motivate the focus on the threats that could result from authorized users
when sharing their credentials.

Organizations often manage the sharing and protection of content by controlling what
authorized employees are allowed to do with sensitive content. This is typically achieved by
defining access rights that restrict what authorized employees can or cannot do with content.
Widely discussed access control schemes such as Discretionary Access Control (DAC) [6] and
Mandatory Access Control (MAC) [7] protect content by enforcing access rights where content
is stored. However, when content is physically copied to another device, the access rights are
not copied with the content; this means that the access rights are no longer enforceable on
the other device. Such schemes are good enough to satisfy content protection requirements
where content is not transferred between users [5]. However, with conventional access control
systems, once content leaves the device (where it is stored) it becomes disassociated from
its access rights and thus loses its protection. Thus, when insiders copy content and leak it
to a third party the content access rights will no longer be enforceable on the transferred
content.

Other access control models such as Role-Based Access Control (RBAC) [8] and Usage
CONtrol (UCON) [9] also suffer in this respect, since they are general-purpose models and
provide no explicit framework or guidance for secure sharing.

The demand for distributing digital content between an organization’s departments and the
need for content to be shared between employees without affecting its protection motivates
the need for schemes which are capable of protecting content even after it has been distributed
or shared. These schemes provide a pervasive access control policy, sometimes known as
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a ‘sticky policy.’ Enterprise rights management schemes (ERM) [10] are examples of these,
which attempt to expand the policy enforcement point to cover not only where content is stored,
but also where it is subsequently sent and used. Although there are major differences between
traditional access control schemes and ERM schemes, they both aim to protect content from
unauthorized usage. Within any organization, traditional access control schemes and ERM
schemes rely on an employee’s credentials to authenticate users and provide them with proper
authorization rights [10]. But what if authorized employees share their credentials with an
unauthorized party? Are ERM schemes still capable of protecting an organization’s sensitive
content? As has been discussed by Alawneh and Abbadi [3], ERM schemes cannot protect
sensitive content from insiders.

11.2.2 Definition

Within the academic community there are a diversity of definitions of the term ‘insider’ [11].
We use the analysis provided by Alawneh and Abbadi [3], which presents a detailed analysis
of insiders in organizations.

The summary of the Dagstuhl Seminar on countering insider threats [1] proposes several
definitions of an insider, as follows: Someone defined with respect to a resource, leading to
degrees of ‘insiderness.’ Somebody with legitimate, past or present, access to resources. A
wholly or partially trusted subject. A system user who can misuse privileges.

So, someone with authorized access who might attempt unauthorized removal or sabotage
of critical assets or who could aid outsiders in doing so.

While the above definitions may be adequate for a simple self-contained organization, they
have some shortcomings when considering more complex modern enterprises. Moreover, there
are more complicated cases for insiders which may not be clear in the previous definition.
For example, the case of an authorized employee sharing his credentials with an unauthorized
individual. The unauthorized individual may subsequently use the credentials to leak sensitive
information from the employee’s organization. In this case, it is not clear whether this is an
‘insider’ attack or an external ‘masquerade’ attack. Also, who is considered to be the insider,
the authorized employee or the unauthorized individual?

Another, more general, definition of an insider is someone with access, privilege, or knowl-
edge of information systems and services [11]. This definition considers both external and
internal users who possess authorized access or knowledge as insiders. However, this defini-
tion is perhaps too general, as it does not explicitly state the conditions under which the access
or knowledge was obtained.

From the above we conclude that the previous definitions of insiders need to be refined to
cover more complicated insider cases. To set the insider definition we start by specifying the
first time a user becomes an insider. In other words, we specify what makes an ordinary user
become an insider. In real life, when an organization requires someone to work on sensitive
information, it may carry out a background check on the user. The extent of this will depend
on how sensitive the information is. The individual may then have to sign some statement
agreeing to behave in a trustworthy manner. The organization would provide the user with
credentials enabling them to access the information required for them to carry out their agreed
duties. This is the point when an organization should consider the user as an insider. It is
our contention that having valid credentials is an important requirement when considering
whether a user is an insider. This requirement needs to be part of the insider definition.
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Figure 11.1 Factors affecting the definition of an insider

To extend the previous definitions of an ‘insider’ we consider four main factors. Figure 11.1
illustrates these in a conceptual diagram, which has the following main elements:

� A user’s relation with the organization whilst performing an action on the sensitive infor-
mation or content. The user could be either internal or external to the organization.

� The method used to obtain credentials. This could be either authorized or unauthorized.
‘Authorized’ means that credentials are granted to the user in an authorized way. ‘Unau-
thorized’ means that the user obtains the credentials either by mistake (e.g., overheard
accidentally or sent by mistake) or deliberately (e.g., stolen from somewhere or obtained by
social engineering).

� Result of a user’s access to the organization’s sensitive content. By this we mean the
consequences of the user accessing content with the obtained credentials. This could be
either to cause harm or not.

� The user intention when carrying out the action on content. By intention we mean either
accidental or deliberate action on the content. We do not consider this factor in the insider
definition as a ‘deciding factor’ because we suppose that a reliable system should protect
itself from both accidental and deliberate actions. However, this factor is considered as a
deciding factor in other research areas, for example forensic investigations.

Figure 11.1 illustrates four possible cases to consider:

� Case I: route from a to 1. In this case a user is (a) granted a credential in an authorized
way and (1) when accessing content does not cause harm. An example of this is internal
employees who are granted credentials to perform their duties. This case applies when
employees do their job as expected.

� Case II: route from a to 2. In this case a user is (a) granted a credential in an authorized way
and (2) uses it for a purpose other than the one for which it was originally intended, which
results in harm. For example, internal employees who are granted credentials to perform
their daily activities but, when accessing content, intentionally or accidentally misuse their
privileges (e.g., updating someone’s salary, deleting an important file, or leaking content to
a competitor).
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� Case III: route from b to 1. In this case a user has (b) obtained a credential in an unauthorized
way but (1) does not cause harm. For example, when a user obtains some credentials by
mistake (e.g., sent by mistake) but does not act on this knowledge.

� Case IV: route from b to 2. In this case a user has (b) obtained a credential in an unauthorized
way and (2) when accessing content, caused harm. For example, an unauthorized user obtains
credentials from a friend and uses this to update someone’s salary, delete an important file,
or leak content to a competitor.

After analyzing the above cases, Alawneh and Abbadi conclude that when dealing with
insiders we need to distinguish between potential and malicious insiders, defined as follows:

Definition 11.1 A potential insider is a user who is granted a credential in an authorized
way to access sensitive corporate information for a specific purpose defined by the orga-
nization (does not cause harm), or a user who obtains a credential in an unauthorized way
but does not use it to cause harm.

Definition 11.2 A malicious insider (or simply an insider) is an internal or external
user who ‘uses credentials’ obtained by either authorized or unauthorized means, to access
sensitive corporate information that results in harm to the organization. Such a misuse could
be either accidental or deliberate.

Based on these definitions, a ‘malicious insider’ could be one of the following:

� An internal employee who possesses a valid credential to access sensitive content. This
access accidentally or deliberately results in harm to the organization.

� An external user who possesses valid credentials to access sensitive content. This access
accidentally or deliberately results in harm to the organization. This case includes examples
like contractors, third-party vendors who have access to corporate internal information, and
employees from collaborating organizations who have access to each other’s organization’s
information.

� An internal employee who obtained a valid credential, by unauthorized means, to access
sensitive content and cause harm.

� An external user who obtained a valid credential, by unauthorized means, to access sensitive
content and cause harm. This case includes anyone who has gained access to internal
resources by masquerading as an authorized internal employee.

11.2.3 Rules of Identifying Insiders

Based on the definition, we conclude the following set of mandatory rules to identify an
insider:

R1: The insider could be either a potential insider, as defined above, or someone
who managed to obtain the potential insider credentials in some way; and
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R2: Uses the credential to access a resource for a purpose different from the one
which the credentials were originally granted for; and

R3: This misuse results in harm to the resource owner/manager.

In the remaining part of this chapter we use these rules to identify insiders in the Cloud.

11.3 Conceptual Models

A Cloud computing-based system typically involves a number of actors, from different organi-
zations, which interact with the system. In order to identify which actors are potential insiders
and the threats emanating from their activities, we first need to identify all actors within such
a system. We then need to understand the relationships among the actors, as well as their level
of access to resources and assets that are part of the Cloud. To this end, we build various con-
ceptual models that illustrate the explicit relationships among the various entities and expose
any implied relationships as well as interactions between the actors and the system.

11.3.1 Organizational View

A Cloud computing-based system of IaaS type may be designed to serve the needs of different
communities, including: users within a single organization or collaborating organizations
(e.g., a private Cloud within an enterprise); users within a research community comprising,
for example, a virtual organization; or a public community (e.g., a mixture of enterprise and
individuals). In most cases, several organizations, in different capacities, will be involved
in a Cloud-based system. We develop an organizational model of such a system as shown
in Figure 11.2, in which we identify a generic entity organization as the parent of any
organizational entity within a Cloud-based system.

At a minimum, a Cloud-based system comprises a Cloud service provider, a Cloud customer,
and quite often a contractor, such as a cleaning company or hardware suppliers, that may
work_for either a Cloud service provider or a Cloud customer. A Cloud customer has some
object, such as a computation or data, that they wish to take to the Cloud. To do this, the Cloud

Employee

Cloud Service

Provider

Contractor

Resource

member of

works_for

has_client
Cloud

Customer

agree_on

ObjectCo-owns

resides_on

Organization subClassOf

subClassOf

subClassOf

provide_and_support

SLA
agree_on

governs

works_for

works_on

Figure 11.2 High-level organizational view of the Cloud



Insiders 173

Asset

Client

related_to

co_owns

Authorized

Credential
has_access_to

decides_on

obtains

Employee

obtains

Object

Non-

Asset
disjointWith

subClassOf

subClassOf

Authorization

Policy

defines

Provides_service

Cloud

Customer

Figure 11.3 A view around the client

service provider and the Cloud customer agree_on some SLA which defines the resource
provided to the Cloud customer and the conditions, such as performance, up time, and liability,
under which the resources are provided. After this, the object is transferred to the Cloud
and resides_on the resource. Furthermore, an organization has one or more employees who
work_on the object owned by the Cloud customer.

11.3.2 Assets and Clients

One of the main advantages of a Cloud-based system is that the object can be made more
accessible via the Internet to a wider audience. It therefore becomes necessary to define the
entities that may have access to an object in the Cloud, as illustrated in Figure 11.3. From the
organizational perspective, an object can be either an asset (with value to the organization)
or not an asset (less valuable). These objects, especially the valuable ones, will require an
authorization policy to define a type of credential, that is an authorized credential that enables
access to the objects.

In some cases, the object may be co-owned by the Cloud customer and the client of the Cloud
customers. In such cases, the client may have to decide_on all or part of the authorization policy
to define which other clients, and sometimes employees of the Cloud customers, have access
to the authorized credential. We clarify this in the context of an example when discussing the
home healthcare system in Chapter 13.

11.3.3 Infrastructure Model

We now develop a conceptual model of a resource, as shown in Figure 11.4. In this model,
a resource is a composition of components including a physical device, hypervisor (which
includes a VMM), VMs, and applications. A component may further be divided into layers
which indicate the parts of a component that interact to provide the functionality of the
component. The VMM runs on top of the physical device to enable one or more VMs to run
on the physical device (based on the physical device’s layer, as explained in Section 13.3.2).
Applications are configured to run in VMs.
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We define an action as an event performed by the user of the resource. An action is
performed_on a layer, and may break zero or more security properties and require some form
of credential in order to be performed.

11.3.4 Procedure for Identifying Potential and Malicious Insiders

The conceptual models defined in earlier subsections are used for identifying potential insiders
and insiders that may exist within a given context. This is achieved by instantiating the
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models given above with the actual descriptions of entities that exist within the context.
More specifically, one has to provide: layers of each of the components; actions that may be
performed at each layer (these should be limited to those that may have effects on one or more
security properties); credentials that may be used within the system; and actors that may have
access to the identified credentials.

The identification process, illustrated in Figure 11.5, involves mapping actions or categories
of actions to layers on which a particular action or category of actions can be performed. Then,
for each identified action or category of actions, determine the security properties that it may
break and the credentials required to enable the action. With the credentials identified, identify
actors that may have access to each of the identified credentials. Potential insiders and insiders
are those actors that satisfy the criteria as defined in Section 11.2. This process enables us to
make explicit the means through which potential insiders and insiders are defined. We use this
method to identify potential insiders and insiders in a home healthcare system in Chapter 13.

11.4 Summary

This chapter has presented a set of conceptual models, which help in identifying malicious and
potential insiders in a Cloud computing environment. We discuss several insider definitions
and use the ones proposed by Alawneh and Abbadi [3]. Subsequently, we identified and
presented the rules for identifying insiders and potential insiders.

11.5 Exercises

Q1. What is an insider?

Q2. Who are the insiders?

Q3. Discuss the importance of addressing the insider problems in Cloud computing.

Q4. Identify the insiders in a university domain when outsourcing their services to public
Cloud computing.
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12
Real-Life Examples

This chapter outlines the main features of two of the most widely discussed Cloud management
platforms: Amazon AWS (a commercial Cloud management platform) and OpenStack (an
open-source Cloud management platform). Subsequently, the chapter presents a practical
illustration of some of the concepts which are discussed throughout this book using OpenStack.

12.1 OpenStack

This section provides a high-level introduction to OpenStack.

12.1.1 What is OpenStack?

Chapter 3 presents an abstract view of Cloud management platforms, which we refer to as
VCC. This section presents OpenStack [1] which is an example implementation of the VCC.
OpenStack is an open-source software that was funded in October 2010 by Rackspace [2] and
NASA [3]. Initially, OpenStack started by combining source codes from both RackSpace and
NASA. A few months later, commercial companies started joining the OpenStack initiative.
Currently, thousands of professionals around the word participate in the OpenStack software
architecture and code development process [1].

OpenStack’s main objective is to establish a Cloud management platform that is capable
of meeting the needs of the next generation of Cloud computing. OpenStack is designed to
be the global Cloud trusted management platform, and it is not meant to replace a VMM or
a hypervisor function. It does not even have an implementation of a hypervisor or a VMM,
and rather implements a set of APIs that interact with different hypervisors running at the
Cloud’s physical servers. OpenStack is designed with the objective of being an independent
hypervisor, by supporting a wide range of hypervisors. This would help in stopping ven-
dor lock-in, which is a key requirement for the future success of Clouds, as discussed in
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Figure 12.1 Sample of OpenStack releases – a new release is added every six-months

Chapter 1. OpenStack currently supports the following hypervisors: KVM, QEMU, ESX,
ESXi, and Xen.1

OpenStack is still under continuous development and is still missing many components
such as logging, billing, and policy management. As a result, OpenStack plans releases on a
six-month basis. Importantly, its components are still immature and do not cover many aspects
of the capabilities of a potential Cloud. Such limitations make OpenStack, at the current time,
not suitable for a production environment (author’s opinion). The main reason for the current
limitations of Clouds is not related to OpenStack itself; it is rather related to the complexity and
challenges of the potential Clouds which OpenStack aims to manage. OpenStack is supported
by leading companies in their fields, such as IBM, vmware, Redhat, and many more.2 Figure
12.1 lists the current releases of OpenStack.

12.1.2 Openstack Structure

In this section we briefly present the structure of OpenStack, as illustrated in Figure 12.2. It is
composed of the following main components: identity service (also known as Keystone), com-
pute service (also known as Nova), object storage service (also known as Swift), image service
(also known as Glance), and dashboard service (also known as Horizon). More components
are planned to be added in the future. This section briefly discusses these components.

� Keystone. Keystone aims to provide an identity management service when interacting with
OpenStack. It covers the following functions: service management, user management, tenant
management, and role management. Here, a tenant represents a group of resources (net-
works, volumes, instances, images, and keys) which belong to one project; a role represents
an association of privileges, objects, and users.

Keystone manages access rights using RBAC [4], which grants access rights on a tenant’s
objects to users. Privileges are assigned to roles in service-specific files, which are currently
stored at /etc/[SERVICE_CODENAME]/policy.json. The identity service associates users
with roles for tenants.

1 More hypervisors are planned to be added in the future; for an up-to-date list, see http://wiki.openstack.org/
HypervisorSupportMatrix.
2 A full list of OpenStack partners can be found at: http://www.openstack.org/foundation/companies/.

http://wiki.openstack.org/HypervisorSupportMatrix
http://wiki.openstack.org/HypervisorSupportMatrix
http://www.openstack.org/foundation/companies/
http://www.openstack.org/foundation/companies/


Real-Life Examples 181

Cloud users

Internet

Internet Endusers

nova-api
(Public API server)nova-api

(Public API server)

nova-network

nova-compute

Virtual Guests
Runing in the cloud

Disk Images
for Virtual Guests

nova-volume
disk images for  v, guests

(filesystem or AoE)

AMQP
Messaging

(RabbitMQ)

User authorisation

nova-scheduler

nova-objectstore
(implements S3-like api

Using Files or (later) Swift

Plans where to

place new guests

(SQL, LDAP or

fake LDAP using ReDIS)
(uses libvirt or xenAPI

to manage guests)

manages cloud networks.

vlans and bridges

Using services provided

by virtual guests

Admin
network

Public
network

Using tools to manage

virtual guests

Figure 12.2 Current OpenStack structure. Source: http://docs.openstack.org/

� Nova. Nova3 runs on physical servers to manage the resources which are allocated to servers.
The resources which Nova manages include: networks, VMs, and volumes. The management
of VMs covers interactions with the VMM to create, start, stop, and migrate VMs. Nova
does not provide any virtualization capabilities by itself; instead, it uses an open-source
library (e.g., libvirt APIs) to interact with the hypervisors as discussed previously.

Nova has the following additional components:
– Nova-api provides Cloud users with APIs to manage their Cloud resources.
– Nova-database is the central repository for OpenStack data (e.g., it stores compute

resources, available volumes, and instances). More databases have been added recently,
for example Glance and Keystone.

– Nova-schedule manages the hosting of VMs at the distributed servers of the Cloud
infrastructure. Nova-scheduler allocates VMs to run on a physical computing node. The
allocation of the physical computing node is based on the selected scheduling algorithm.
Current supported schedulers include the following (see Figure 12.3):
◦ Simple scheduler. This allocates VMs on physical servers by considering the least loaded

host.
◦ Chance scheduler. This allocates VMs randomly on physical servers.
◦ Filter scheduler. This is a customized allocation of VMs on physical servers.

– Nova-network manages the network configurations of a VM. Nova-network supports the
following types – in the current release of Openstack, only one type can be configured at
a time:
◦ Flat network. In this a VM is allocated a fixed IP address. The IP gets injected into the

VM instance on launch.

3 Also called Nova-compute.

http://docs.openstack.org/
http://docs.openstack.org/
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Figure 12.3 Current OpenStack scheduler. Source: http://docs.openstack.org/

◦ DHCP network. In this a VM IP address is acquired by the VM instance from a DHCP
server running on the nova-network.

◦ VLAN network. In this a switch is required to support VLAN tagging.
OpenStack configures bridges and virtual interfaces. Computing nodes would typically

have two interfaces: public and internal interfaces. VM traffic to the outer world (i.e.,
between the internal interface and the public interface) is routed via the nova-network.
The allocation of an IP address to a VM could either be a static IP (fixed for the instance
lifetime) or a dynamic IP (that changes dynamically).

– Nova-volume manages the VM volumes (create/delete/attach/detach). Volumes provide
persistent storage for use by instances.

– Message queue is a central hub for passing actions between OpenStack components.
� Storage components. OpenStack supports two types of storage function: Swift and Nova-

volume. Swift manages the storage of objects and provides scalable, reliable, and redundant
backend storage. Swift is the storage option to consider when scalability and redundancy
are required, but performance is not of concern. For example, backup and archival systems
could be stored on Swift. On the contrary, Swift is not the right option for continuously
accessed data as in the case of an active database management system. Swift files are
exposed through an HTTP interface.

Swift has the following components, as illustrated in Figure 12.4:
– Swift proxy. This intermediates the communication between Cloud users and their storage.
– Swift object server. This stores, retrieves, and deletes the Cloud user data in the form of

binary large objects (blobs).
– Swift container server. This groups objects in containers (similar to the directory concept

but without nesting).
– Swift account server. This is used to list containers.

http://docs.openstack.org/
http://docs.openstack.org/
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Figure 12.4 The main components of OpenStack Swift

– RING. This maps object names to their physical locations. Blobs, containers, and accounts
have their own separate rings.
Nova-volume (or simple volume) is a detachable block storage device. The data stored

on a volume is persistent even after instance deletion. A volume can be associated with only
one VM instance at a time. Sharing file systems across instances should be provided using
other mechanisms, such as NFS [5]. Nova-volume provides a block storage file system
which is exposed through a low-level bus interface such as SCSI. Clients access the storage
when the storage devices are mounted on their virtual machines.

The Nova-volume service works as follows:
– A volume group named nova-volume should first be created using the command line

‘nova volume-create,’ which creates a logical volume in the nova-volume group.
– After successful execution of the previous command, the compute node, which holds the

volume group, would have a new logical volume as local storage. This logical volume
can now be attached to a specific instance running on the compute node.

– The logical volume can be created and attached to an instance using the following com-
mands:
◦ nova volume -create -display_name VOLUME_NAME SIZE_GB
◦ nova volume-attach INSTANCE_ID VOLUME_ID
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◦ DESTINATION_DEVICE_MOUNT_POINT
◦ Logical volumes could be configured as bootable volumes.

� Glance component. Glance is an OpenStack image service which could be used to store and
retrieve VM images (VMIs). Nova fetches the image to the hosting server and then boots
it up on its host physical server. A VMI could also be managed by Swift, in which Nova
follows similar processes when fetching the image to be booted up on its host physical server.
VMI could be created using either third-party tools (e.g., Oz, VMBuilder, and VeeWee) or
manually as follows:
– Create an empty image using the command

kvm-img create -f raw/qcow IMAGE_NAME SIZE
– Get the OS ISO format and install it in the VMI using the commands

kvm -m SIZE -cdrom ISO_PATH drive file=IMAGE_NAME,if=virtio,index=0 -boot
d -net nic -net user -nographic -vnc VNCDISPLAY -monitor unix:MONITOR_FILE
_NAME,server,nowait

– Connect to the VMI instance using the VNC client and proceed with the installation
instructions.
Once a VMI is created, it can be managed as follows:

– When using glance, upload the image to glance as follows:
glance image-create name=“NAME_IN_GLANCE” is_public=true container_format
=ovf disk_format=raw/qcow2 < IMAGE_NAME

– ‘nova image-list’ is one of the commands that lists images.
– A key pair could be created for accessing an image as follows:

nova keypair-add KEY_HANDLE_NAME > PUBLIC_KEY_FILE_NAME
– Booting nova image can be done as follows:

nova boot –image IMAGE_NAME –flavor m1.small –key_name KEY_HANDLE
_NAME INSTANCE_NAME

– Deleting an instance can be done as follows:
nova delete INSTANCE_NAME

– Pausing/suspending instances can be done as follows:
nova pause/unpause INSTANCE_NAME_ID

– Suspend/resume instances can be done as follows:
nova suspend/resume INSTANCE_NAME_ID

12.1.3 Security in OpenStack

As discussed earlier, OpenStack supports identity management using the Keystone service.
It also manages access rights using the RBAC mechanism. OpenStack uses the concept of
security groups to provide inbound network traffic filtering for instances. A security group is
a collection of rules in an IP table that gets applied to the incoming packets of instances. Each
security group can have multiple rules associated with it. Each rule specifies the source IP,
protocol type, destination ports, etc. Only packets matching the rule are allowed in. A security
group that does not have any rules associated with it causes blocking of all incoming traffic.
A security group is attached to an instance on start-up. Outbound network traffic filtering, in
contrast, needs to be implemented from inside VM instances.

OpenStack supports what is called ‘availability zones.’ Availability zones help in support-
ing application higher availability and resilience. They ensure the physical independence of
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redundant application resources when assigned to different availability zones. Physical inde-
pendence could mean separate power supply, network equipment, physical location, etc.

OpenStack has implemented the remote attestation principle of TCG specifications, as
discussed in Section 6.2. The implementation of the remote attestation principle allows users
to specify the trust level of servers when hosting their resources.

12.1.4 OpenStack Configuration Files

OpenStack configurations are managed via text-based files. The files are stored in the follow-
ing directory: /etc/SERVICE_NAME/SERVICE_NAME.conf, where SERVICE_NAME is a
variable representing the name of an OpenStack service. For example, the nova configuration
file is stored by default in /etc/nova/nova.conf and it has the following type of configuration
parameters: # LOGS, # AUTHENTICATION, # SCHEDULER, # VOLUMES, # DATABASE,
# COMPUTE, # APIS, # GLANCE, and # NETWORK. OpenStack services run by a set of
daemons that have a name starting with the service name, such as nova-*, glance-*, keystone-*,
etc. They could either run on a single machine or be spread across multiple machines.

12.2 Amazon Web Services

Amazon Web Services (AWS) is a Cloud management platform that provides computing
resources and services on a pay-per-use model. Amazon AWS and OpenStack have some
comparable features. We could say that OpenStack provides almost all services that AWS
provides and, in addition, OpenStack provides additional features that AWS cannot cover.
This is because AWS targets a production environment, that is it can only support stable and
proven-to-work technology that has been tested to work reliably in critical infrastructures.

OpenStack, in contrast, is an open-source research-oriented project aiming to establish the
next generation of trustworthy Cloud computing. Unlike AWS, OpenStack as a result is still
considered not production-ready. We now list the most important services in AWS and how
they map to those of OpenStack.

Amazon Elastic Compute Cloud (Amazon EC2) provides computing resources in AWS. It
is somewhat similar to Nova compute in OpenStack. AWS uses different naming conventions
from those of OpenStack; for example, a VMI in AWS is called an Amazon machine image
(AMI) and a VM instance is called an Amazon EC2 instance.

Amazon supports three types of storage systems, as illustrated in Figure 12.5: Amazon
Elastic Block Store (Amazon EBS), Amazon Simple Storage Service (Amazon S3), and
Amazon EC2 instance store. All these storage systems are available at OpenStack. Amazon
EBS is persistent storage, which is similar to Nova-volume in OpenStack. Such volumes are
not affected by an instance lifecycle. That is, if the instance is terminated for any reason,
then its attached Amazon EBS volumes keep the data intact. OpenStack associates with each
instance a local storage which is deleted when its instance is terminated. This is similar to
the Amazon EC2 instance store. Amazon S3 is similar to the OpenStack Swift component. It
provides access to a reliable and inexpensive data storage infrastructure.

The security measures provided by Amazon are also covered by OpenStack. OpenStack
Keystone is called Identity and Access Management (IAM) by AWS. IAM manages users,
federated users, and roles. AWS is also similar to OpenStack when controlling access to
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Figure 12.5 Amazon storage systems

network traffic. Users define appropriate firewall rules controlling network traffic to their
VMs. In addition, AWS as in OpenStack supports availability zones to split redundant resources
across separate physical resources. As indicated earlier, OpenStack provides richer features
than those provided in AWS. For example, unlike OpenStack, AWS does not yet support the
assessment of servers’ trustworthiness.

12.3 Component Architecture

Figure 12.6 presents a high-level architecture which illustrates the main entities and a general
layout of a scheme framework that implements some of the concepts discussed throughout the
book. We use OpenStack controller node (i.e., the VCC) and OpenStack nova-compute (i.e., a
computing node at the physical layer). The computing node runs a hypervisor which manages a
set of VMs. The VCC receives two main inputs: user requirements and infrastructure properties.
The VCC manages user virtual resources based on such an input. This section introduces new
components to OpenStack. Adding a new component to OpenStack requires updating the
following components: nova-api, nova-database, nova-scheduler, and nova-compute. In this
section we present the modifications that are introduced on these components.

12.3.1 Nova-api

Nova-api is a set of command lines and graphical interfaces which are used by Cloud customers
when managing their resources at the Cloud, and are also used by Cloud administrators
when managing the Cloud virtual infrastructure. We updated nova-api library to consider
the following:

� Infrastructure properties. The Cloud physical infrastructure is very well organized and
managed, and its organization and management associate its components with infrastruc-
ture properties. Examples of such properties include: a resource chain of trust, components
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reliability and connectivity, components distribution across Cloud infrastructure, redun-
dancy types, servers clustering and grouping, and network speed.

� User requirements. These include technical requirements, service level agreement, and
user-centric security and privacy requirements.

� Changes. These represent changes in user properties (e.g., security/privacy settings), infras-
tructure properties (e.g., components reliability, components distribution across the infras-
tructure, and redundancy type), and infrastructure policy. The main changes which we
introduced at nova-api include the following:
– Add an option to enable users to manage their requirements, which include but are not

limited to security and privacy aspects. We tested our prototype on the following user
requirements: geographical location and user isolation, which are managed manually at
this stage. The first controls the hosting location of user resources, while the second
controls the exclusion of certain users from sharing a physical server. It is important to
stress that (at this stage) we assume system administrators are trusted. Planned future
work will provide a more stringent mechanism to eliminate such an assumption.

– Add an option which enables administrators to manage Cloud infrastructure properties
and policies, for example associate computing nodes with their domains and collaborating
domains.

– Provide an interface which enables automated collection of the properties of the physical
resources through trustworthy channels – at this stage we focus specifically on automating
the collection of RCoT.

The main changes which are related to this point include adding an option to enable users
to add a wide range of requirements and manage them; that is, updating nova-manage to
enable users to create, list, and change requirements, and also updating the same library (nova-
manage) to enable the association with each physical resource of a set of properties using the
command lines options add_properties, get_properties, and remove_properties as illustrated
in Figure 12.7. These libraries communicate with nova-database to store user choices and
infrastructure properties, as discussed next. The stored data in nova-database is used by the
presented scheduler ACaaS (access control as a service), as discussed next.

12.3.2 Nova-database

Nova-database is composed of many tables holding details of the Cloud components. It also
holds users, projects, and security details (these get changed between different releases of
OpenStack). We extended nova-database in different directions to maintain the taxonomy of
Clouds, user requirements, and infrastructure properties. Figure 12.8 illustrates the modifica-
tions at nova-database in bold format, which are as follows:

� Compute_nodes is an existing nova-database table that holds records reflecting a comput-
ing resource at the physical layer. We updated this table by adding the following fields:
RCoT(Physical) and security properties which hold a list of computing resource security
details.

� Requirement_entries and requirement_specification are two new tables. The first holds the
expected type of requirement a user is allowed to enter, such as federated Cloud, location,
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Figure 12.7 Nova-api updates
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excluded user list, etc. The second holds a user-specific value of the defined requirements.
Figure 12.7 demonstrates user interactions with these tables via the nova-manage command
line interface.

� Physical_Layer_Domain is a new table which holds the records of Cloud physical domains.
This covers both the primary Cloud provider physical domains and all other physical
member domains of the emergency domain. The table defines the relationship amongst
resources and holds physical domain metadata. The metadata includes the domain capabili-
ties, DCoT, and a foreign key pointing to the table which identifies the relative geographical
location of the physical domain within the Clouds and federated Clouds infrastructure.
The table has a field source, which can have two values: local or emergency. Emergency
means it is a federated Clouds domain while local means it belongs to the same Cloud
infrastructure.

� Location and Location_Distances. The aim of these tables is to identify all possible locations
at the Cloud infrastructure. They also define the relative distance between pairs of all
identified locations. These tables are bound as follows: the compute_node table is bound to
the physical_layer_domain table and the physical_layer_domain table is bound to a specific
location identifier in the location table. The latter is bound to the location_distances table,
which specifies all distances between a location identifier and all other location identifiers.
In this we assume the resources of a physical domain are within close physical proximity,
which reflects current deployment scenarios in practice.

� Collaborating_PL_Domain is a new table which establishes the concept of collaborating
physical domains. Each record identifies a specific backup domain for each physical domain
with a priority value. A source domain can have many backup domains. The value of the
priority field identifies the order in which physical backup domains could possibly be allo-
cated to serve as source domain needs. Backup domains are used in maintenance windows,
emergencies, load balancing, etc. Backup domains should have the same capabilities and
DCoT as the source physical domain itself.

� Instances is an existing OpenStack table representing the running instances at computing
nodes. We updated the table by adding the following fields: virtual resource chain of trust
RCoT(Virtual); application resource chain of trust RCoT(Application); two foreign keys
which establish a relationship with the instance’s virtual and application domain tables, as
defined in the Virtual_Layer_Domain and Application_Layer_Domain tables, respectively;
and RS_ID which is a foreign key pointing to the requirement_entries table.

� Services table is an existing OpenStack table which binds the virtual layer resources to their
hosting resources at the physical layer.

� Other tables. Openstack has many more tables, which are beyond the scope of this chapter
to discuss.

Most of the nova-database records are uploaded automatically, using the software agents
as discussed in Chapter 9, the modified nova-api, and/or via OpenStack management tools.
Ideally, such records should be securely collected and managed. At this stage our focus is on
providing high-level architecture design, providing a running Cloud scheduler, and providing
software agents that can attest to the trustworthiness of OpenStack components and then push
the result to the nova-database. Full automation of Cloud management services is our planned
long-term objective.
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12.3.3 Nova-scheduler

In OpenStack, nova-scheduler controls the hosting of VMs at physical resources considering
user requirements and infrastructure properties. Current implementations of nova-scheduler
do not consider the entire Cloud infrastructure, nor do they consider the overall user and infra-
structure properties. According to OpenStack documentation, nova-scheduler is still immature
and great efforts are still required to improve it. We implement a new scheduler algorithm,
ACaaS, which performs the following when allocating physical resources to host virtual
resources: considers the discussed Cloud taxonomy; selects a physical domain’s resource
which has physical infrastructure properties that can best match user properties; and ensures
that the user requirements are continually maintained. ACaaS collaborates with the following
software agents (see Figure 12.6):

� Cloud client agent, DC-C. Runs at OpenStack computing nodes and performs the following:
calculates the computing node RCoT and continually assesses the status of the computing
node and passes the result over to DC-S; manages domains and collaborating member
domains based on policies distributed by DC-S (e.g., a VM can only operate with a known
value of a chain of trust and when the hosting physical collaborating domains have a specific
value of CDCoT(Physical) as defined by user properties).

� Cloud server agent, DC-S. Runs at OpenStack domain controller and performs the following:
maintains and manages OpenStack components (including the nova-scheduler) by ensuring
they operate the Cloud only when they are trusted to behave as expected; manages the
membership of the physical and virtual domains; and attests to DC-C trustworthiness when
its computing node joins a physical domain. DC-S also intermediates the communication
between DC-C and nova-scheduler, attests to DC-C’s computing-node trustworthiness,
collects the computing node RCoT, and then calculates DCoT, CDCoT, and stores the result
in an appropriate field in nova-database.

12.4 Prototype

Having defined a high-level architecture of the scheme, this section describes a possible
prototyping. We present a mechanism for a trustworthy collection of resource chains of
trust, and then calculate for each group of resources their domain and collaborating domain
chain of trust. Subsequently, we use the ACaaS scheduler to match user properties with
infrastructure properties. Other infrastructure properties are either collected automatically
(such as the capabilities of physical resources) or entered manually (such as the physical
location of computing nodes). These properties could be altered by system administrators.
The trust measurements performed by the DC-C identify the building up of a resource’s chains
of trust and its integrity measurements. This section discusses the implementation of the
scheme framework. Our implementation also includes trust establishment building on remote
attestation and secure scheduling.

12.4.1 Trust Attestation via the DC-C

The implementation is based on an open-source trusted computing infrastructure which is
built on a Linux operating system. Building the resource chain of trust of a computing node
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Figure 12.9 Compute node architecture

starts from the node TPM and ends with the node DC-C, as illustrated in Figure 12.9. The
RCoT building process starts with the platform bootstrapping procedure, which initializes the
TPM via a trusted BIOS. The trusted BIOS measures and loads the trusted bootloader [6] (i.e.,
the Trusted Grub), which measures and loads a Linux kernel. We updated the Linux kernel
ensuring that the IBM Integrity Measurement Architecture (IMA) [7] is enabled by default.
The IMA measures all critical components before loading them. These include kernel modules,
user applications, and associated configuration files. The values of these measurements are
irreversibly stored inside the PCRs of the computing node, which are protected by the TPM.
The IMA by default uses PCR #10 to store the measurements.

The TPM driver and the Trusted Core Service Daemon (TCSD) [8] expose the Trusted
Computing Services (TCS) to applications. These components constitute the part of the DC-C
for collecting and reporting the trust measurement of a resource. The resource chain of trust
is, hence, constructed from the CRTM [9], which itself resides in and is protected by the
trusted BIOS.

Table 12.1 illustrates part of the records of the bootstrapping process for the prototype as
generated by the IMA measurement log. The IMA measurement log is the source for generating
integrity reports (IRs), which are used, as we discuss later, to determine the genuine properties
of a target system during the remote attestation process. The first column in Table 12.1
shows the value of PCR10 after loading the components of the third column. The second
column records the hash value of the loaded component. The first record holds the value
of boot_aggregate, which is a combined hash value of PCR0−PCR7; that is, it possesses
the measurement of the trusted computing base (TCB) of a computing node, including the
trusted BIOS, the trusted bootloader, and the image of the Linux kernel together with its
initial ram-disk and kernel arguments. Whenever a software component is loaded, the IMA
module generates a hash value of the loaded component and then extends it into PCR10
by invoking the TPM Extend command [10]. Such a command updates PCR10 to reflect
the loaded component as follows: pVali = hash(pVali−1, hVali). Subsequent rows in the table
present the measurement logs of the bootstrapping workflow at the adopted operating system,
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Table 12.1 Compute node bootstrapping
measurement log

PCR10 HASH Loaded component

pVal0 hVal0 boot_aggregate
pVal1 hVal1 /init
pVal2 hVal2 ld-linux-x86-64.so.2
pVal3 hVal3 libc.so.6
… … …
pVali hVali nova-compute.conf
… … …
pValj hValj python
… … …
pValk hValk nova-compute
pValk+1 hValk+1 libssl.so.1.0.0
… … …
pVall hVall nova.conf
… … …

Ubuntu 11.04. Other OpenStack components are then measured, which include the nova-
compute.conf script, the python executable, the nova-compute executable, supporting libraries,
and critical configuration files.

To reduce the complexity and focus on a practical Cloud deployment case, the prototype
turns off all unnecessary services at the base system. As a result, the value of PCR10 does
not change except if a new software module (e.g., a user program, kernel modules, or shared
libraries) is loaded on the computing node. The loading process could be either good (e.g., a
security patch) or malicious. In this case, the loaded software module would be measured and
added to the log records. Such a measurement changes the value of PCR10.

Our prototype intentionally filters out the IMA measurements of VMs, that is the QEMU
program in the prototype. This is because a VM CoT should be built on a compositional
CoT; that is, the IMA measurements of a VM should not be considered as part of the TCB
of a computing node. The measurements of a VM should rather be controlled by the IaaS
Cloud user and not the Cloud provider, as this will likely raise the user’s privacy concerns.
This measurement process, in addition, would significantly increase the complexity of the
trust management. If an exploited VM runs on a computing node, for example, to perform
a malicious behavior on other components and applications, the properties of the computing
node would change once the exploited VM started to affect the TCB components. In such a
case, the DC-C will leave the physical domain; that is, the DC-C will stop operating and the
VMs which are hosted at the infected computing node will be forced to migrate to another
healthy computing node member of the same physical domain.

Finally, the DC-C collects the integrity measurement logs as recorded by the IMA, and
generates an IR following the specifications of the platform trust service (PTS) interface [11].
The DC-C, as we discuss in the next subsection, sends the IR and the signed PCR values to the
DC-S on request. In the prototype, this component is implemented by integrating the PTSC
module from the OpenPTS [12].
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12.4.2 Trust Management by the DC-S

This section starts by summarizing the high-level steps of the implemented part of the system
workflow.4 It then presents the prototyping details which are related to the DC-S. These are
as follows:

� Cloud security administrators could either create a new physical domain or use an existing
domain. The creation process involves deciding on the domain capabilities, location, and
defining its collaborating domains. As discussed in Section 12.3, we updated nova-api to
enable administrators to manage this process.

� Cloud security administrators then install the DC-C and nova-compute at all new physical
computing nodes that are planned to join the domain.

� The DC-C joins the cloud physical domain by communicating with the DC-S. The DC-S
would first attest to the DC-C’s trustworthiness and establish an offline chain of trust with the
DC-C (using sealing and remote attestation concepts, as proposed by TCG specifications).
Next, the DC-C would calculate its host chain of trust RCoT, as described in Chapter 9, and
pass the results to the DC-S.

� Subsequently, the DC-S would store the RCoT at the compute_nodes table, and ensure that
all devices in each domain have the same capabilities. The sealing mechanism, which is
established in previous steps, assures the DC-S that the DC-C can only operate with the
same value of the reported RCoT. If this value changes (e.g., as in the case of the hosting
device being hacked), the DC-C will not operate. This prevents VMs from starting at a
hacked device.

� Users, using nova-api commands, deploy their VMs and associate them with certain prop-
erties. Such properties include, for example, the required CDCoT(Physical) and the multi-
tenancy restrictions which control the sharing of a computing node with other users.

� The ACaaS scheduler allocates an appropriate physical domain to host a user VM. The
properties of the physical domain and its member devices should satisfy the defined user
requirements.

The remaining part of this section covers the implementation of the remote attestation
process and the secure scheduling.

Remote Attestation

Our prototype implements the remote attestation process using OpenPTS [12] which is man-
aged by the DC-S. OpenPTS sends an attestation request to each computing node to retrieve
its IR and PCR values. When a computing node sends the requested values, OpenPTS would
then examine the consistency of the received IR and PCR values [9]. Subsequently, it would
verify the security properties of the computing node by matching the reported IR with the
expected measurement from a white-list database [9]. The white-list database stores sets
of measurements, where each set is calculated based on a carefully selected good platform

4 Further details about these steps are provided in [13].
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configuration state. The calculation is performed on a good platform in the form of hash values
for a selected set of pre-loaded software components.

For the purpose of the prototype, we used two newly installed Ubuntu 11.04 servers. These
servers have minimal settings for a computing node to perform its planned functions. The hash
values of the software stack of each computing node should exist within the white-list database.
If it does not, we consider the computing node to be untrusted. The good configurations could
be extended/changed by adding/updating their corresponding values in the white-list database.

The attestation protocol works as follows. Every computing node (Ci) is identified by its
AIK. The AIK is certified by the Cloud controller VCC (M) as it covers the Privacy-CA
role [9, 14]. When a new computing node is added to the Cloud infrastructure it must first
be registered at the VCC which then certifies its AIK. Only registered computing nodes can
connect to the VCC as their certified AIKs cannot be forged and AIKs can only be used inside
the genuine TPM that generates them. The registration steps of Ci at M are outlined in Protocol
12.1. Whenever a computing node sends a request to connect to the VCC a trust establishment
protocol is executed which is outlined in Protocol 12.2.

Protocol 12.1 Computing Node Registration Protocol

A computing node (Ci) sends a registration request to VCC (M) as follows. First, Ci sends a
request to its TPM to create an AIK key pair using the command TPM_CreateAIK. The TPM
would then generate an AIK key pair. The generated private part of the key pair never leaves
the TPM, and the corresponding public part of the key pair is signed by the TPM endorsement
key (EK) [9]. The EK is protected by the TPM, and never leaves it. Ci then sends a registration
request to M. The request is associated with the EK certificate, the AIK public key, and
other parameters:

Ci → M : Cert(KEKi
), {KAIKi

}K−1
EKi

(12.1)

M certifies AIKi as follows. M verifies Cert(EKi). If the verification succeeds, M generates a
specific-AIK certificate for Ci and a unique ID, CIDi. It then sends the result to Ci:

M → Ci : {Cert(KAIKi
), CIDi}K−1

M
, Cert(KM) (12.2)

Protocol 12.2 Trust Establishment Protocol

M sends an attestation request to Ci. The request includes a nonce Na. Ci would then report an
attestation ticket to M as follows. Ci sends its PCR values, and the measurement log IR back
to M, together with Na. These are signed using the Ci’s AIK:

Ci → M : {Na, {PCR}, IR}K−1
AIKi

(12.3)

M then verifies the message sent by Ci as follows. It verifies the AIKi signature and Na matches
the sent nonce. If the verification succeeds, M examines the consistency of PCR and IR, and
then determines the properties of Ci based on the value of IR.
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The configurations of a computing node could possibly be altered after an attestation
session, for example loading a new application. In such a case, the computing node attestation
properties (as maintained by the VCC) would be violated. Addressing this would require
establishing a trusted channel [15] to seal [9] the communication key with the verified PCR
values. The sealing process provides the assurance that the DC-S can load the key only for a
specific computing node’s configuration. Any changes in the computing node configurations
would trigger a new attestation request from the VCC to the computing node.

The implementation of the trusted channel, when sealed keys are loaded into memory,
requires a small TCB. The TCB should enforce strict access to the memory area which stores
the key. Having a large TCB, however, could result in leaking the key from memory without
reflecting that on the platform trust status. Implementing a small TCB is a challenging problem,
especially considering the complexity and scalability of the hosting Cloud system (we leave
this important subject as planned future research). As an attempt to lessen the impact of this
threat, in the prototype we impose periodic attestations which keep the security properties of a
computing node up to date. We implemented this by associating a timer with each computing
node. Re-attestation is enforced whenever the timer expires. Untrusted computing nodes found
by the re-attestation will be removed immediately from the database and would need to re-enroll
in the system for future use. In addition, VMs running on untrusted computing nodes will be
forced to migrate to other computing nodes which are members of the same physical domain.

Secure Scheduling

As we discussed in previous sections, computing nodes are organized into physical domains.
Such organization is based on the properties of each computing node (i.e., security, privacy
and other properties) which enable it to serve the needs of the domain. Users can specify their
expected properties of computing nodes that could host their VMs. Some of the properties
could be represented by a set of PCR values. However, PCR values are hard to pre-calculate
and manage as they represent aggregated hash values of software components when loaded in
a specific order. In the prototype, users do not need to specify PCR values, rather they would
need to identify their desired hosting environment using the provided sets of white-lists. A
computing node white-list is identified in accordance with its properties which get attested
whilst joining a domain and periodically thereafter. Genuine updates on the properties of
a computing node (e.g., applying a security patch) require adjustment of the corresponding
record in the white-list database. In the prototype, part of the user’s required properties could
represent entries in the white-list database. The ACaaS scheduler deploys each VM on a
computing node that has the same properties as the one requested by the user of the VM.
The ACaaS scheduler, in collaboration with the DC-S and DC-C, periodically examines the
consistency of such properties.

12.5 Summary

Establishing the next generation of trustworthy Cloud infrastructure is a complex mission
which requires collaborative efforts between industry and academia. This book presents the
foundation of Cloud computing science building on solid in-depth and diverse experience
in this domain. Part Two presented a set of integrated frameworks which form the roadmap
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for establishing trust in Clouds. It also presented a list of framework requirements and dis-
cussed possible solutions to some of the requirements. This chapter has presented a possible
implementation of some components of such frameworks. We also introduced commercial
and open-source Cloud management platforms: Amazon AWS and OpenStack.
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13
Case Study

This chapter presents a case study of some of the concepts discussed in the book to address
real-life challenges. The first section describes the scenario and subsequent sections address
issues building on the scenario.

13.1 Scenario

This section describes a scenario for using a home healthcare system in Cloud computing.
The scenario is based on a hospital which provides home services to clients. The services
are accessible through web portals that are provided through the hospital’s website. These
services are hosted on a Cloud infrastructure using the IaaS service type. Users should not
need to be aware of the existence of the Cloud, as all technicalities must be transparent to them.
Users might include patients, care givers (patient family members), hospital staff (e.g., general
practitioners, medical consultants, psychiatrists), and other collaborating organizations with
the hospital (e.g., research centers).

System administrators of the Cloud allocate virtual resources and manage them based on a
pre-agreed SLA with the hospital. This includes allocating VMs, virtual storage, networking,
and managing them. The hospital, however, is in charge of installing and maintaining the
operating system and all software packages which are needed to run the hospital application.
For example, the hospital is in charge of maintaining the operating system, database man-
agement system, application servers, and developing and deploying the hospital application.
The hospital can outsource this service to a professional IT services company, or can have its
own IT staff to maintain the infrastructure provided by the Cloud provider. Once the hospital
application is deployed on the Cloud, the hospital services are then made available to clients
through a web page. The process should be completely transparent to clients; that is, clients
should access the application by connecting to a URL provided by the hospital regardless of
the existence of the Cloud. Clients will then use the credentials provided by the hospital to
log in and access the allocated services.

The Cloud service provider can have SLAs with other third-party service providers (e.g.,
hardware suppliers and operating system vendors) to act as an escalation point for critical
failures and to provide additional support for services that are not in house.

Cloud Management and Security, First Edition. Imad M. Abbadi.
© 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd.
Companion Website: www.wiley.com/go/abbadi cloud
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13.2 Home Healthcare Architecture in the Cloud

In this section we present a possible architecture of the home healthcare system when deployed
at a Cloud provider. This is illustrated in Figure 13.1, which also covers the required self-
managed services. The architecture only covers the virtual and the application layers. In the
application layer we have two types of domains as follows:

� Application-specific domains. The figure illustrates two domains specifically created for the
hospital application and other dependent applications, such as the research center collabo-
rating with the hospital. The number of domains could be more than that, based on several
factors which we do not discuss here for simplicity.

� Application services domains. These are provided as PaaS. Examples could include the
following: encryption service, log management service, and database management service.

In the virtual layer we created two domains: one to host the middle-tier component and the
other for the backend component. Many other domains could be created. The properties of the
domains are not discussed for simplicity.

Virtual Domain-1

Case 9

Case 10

Virtual Domain-2

Virtual Control

Center (e.g. 

OpenStack) 

Hospital service provider
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Figure 13.1 Home healthcare application architecture
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13.3 Insiders Analysis for Home Healthcare

13.3.1 Model Instance

Based on the scenario description above, we can instantiate the model as shown in Figure 13.2.
The hospital is an organization that needs Cloud computing resources and therefore will be
the Cloud customer. A hospital has a number of employees, including: a researcher, hospital
system administrator, and a psychiatrist who work_on PatientRecord (a type of asset for
the hospital).

The hospital provides healthcare services to its patients, (i.e., clients), who co-own the
patient record and are cared_for (a sub-relation of Client related_to Client in Figure 11.3) by
their care givers. Hospitals may co-exist in the Cloud with other organizations (which we label
as ‘competitor’) that may be interested in the hospital’s assets.

13.3.2 Identifying Potential Insiders and Insiders

In this subsection we identify potential insiders and insiders using the process outlined in Sec-
tion 11.3.4. The process starts from the identified system components given in Section 11.3.3;
that is, a physical device, a hypervisor, a VM, and an application. In this section we identify
potential insiders and insiders in each of these components, as follows.

Physical Device

A physical device can belong to three layers: storage, network, or server, as illustrated in
Figure 13.3.

� The storage layer. At this layer the type of physical device would be a storage device, which is
vulnerable to different types of threat. For example: it can be swapped with a corrupt device;
taken away and mounted in another system; and the device’s content can be copied or altered.
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Figure 13.2 Model instance for the home healthcare scenario
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Figure 13.3 Physical infrastructure

Based on the attack scenario, these threats could have an impact on content confidentiality,
integrity, and/or availability. For example, content may lose integrity through backup/restore
operations, content may lose availability through removing a device’s content, and content
could be leaked by copying it to a USB memory stick.

� The server layer. At this layer the physical device type would be a physical server, which
is vulnerable to different types of threat. For example: the physical server is vulnerable
to all possible hardware threats, and it can be started in a different configuration from
that expected, for example by booting it in single-user mode. This could affect content
availability, integrity, and confidentiality based on the attack scenario; for example, booting
the server in a single-user mode enables attackers to access the superuser account without
the need to possess any authorization credentials.

� The network layer. At this layer the physical device type would be a network compo-
nent. Data can be modified as it is transmitted to/from the device, affecting availability,
confidentiality, as well as integrity.

Physical devices will normally be stored in data centers that have access restrictions to
few individuals. This access is typically enforced using credentials such as biometrics and
smartcards. Such credentials, will be assigned to authorized employees from Cloud service
providers (e.g., system administrators) and employees from organizations contracted by the
Cloud service provider.

Based on the insider and potential insider definitions, Cloud authorized employees and
contractors are potential insiders as they are provided with credentials that can access physical
devices. Once the potential insiders use the credentials and cause harm, then they are insiders.
Also, anyone who has access to these credentials (by stealing them, or the system administrator
himself sharing them with unauthorized persons) is considered an insider once he uses them
and causes harm.

Hypervisor

The hypervisor runs a VMM which controls the VMs running on the physical device. It
comprises a thin-layer kernel and management services, as illustrated in Figure 13.4. The
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Figure 13.4 Hypervisor component breakdown

management services enable the VMs’ management actions, such as start, stop, and migrate,
to be performed. Because network traffic to and from the VMs is mediated by the hypervisor,
data for the VMs can also be modified through the hypervisor. All these actions may impact
the availability, integrity, and confidentiality of the services offered by the hospital. The
typical credentials that enable accessing the hypervisor to perform such actions include root
login credentials and SSH private keys. Cloud provider authorized employees (e.g., system
administrators) and contractors are the main actors that are expected to be assigned these
credentials.

Based on the insider and potential insider definitions, Cloud authorized employees and
contractors are potential insiders as they are provided with credentials that can access the
hypervisor. Once the potential insiders use the credentials and cause harm, they are insiders.
Also, anyone who has access to these credentials (by stealing them, or the system administrator
himself sharing them with unauthorized persons) is considered an insider once he uses them
and causes harm.

Virtual Machine

VMs are containers that comprise an operating system and applications. These are stored
together with configuration information in a disk image. Figure 13.5 shows examples of
actions that may be performed on any of the layers, which could affect all three security
properties (i.e., availability, confidentiality, and integrity). For example, updating binaries can
be performed on the operating system and application, which can affect the three security
properties. The entire disk can also be copied, affecting the confidentiality of the stored data.
The data might be modified, affecting its availability and integrity.

Two types of credential would typically be needed to perform the identified actions: the
SSH private key and the root login id/password. These would enable all the actions identified
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at all layers. Hospital internal system administrators and contractors working on behalf of
the hospital would be the main actors expected to be assigned root login and SSH private
keys. However, system administrators from Cloud service providers of IaaS type should not
normally get root access to the VMs.

Based on the insider definition in Chapter 11, hospital Cloud internal system administrators
and contractors could be potential insiders as they are provided with credentials that can
access the main patient information repository from a server-side application. Also, anyone
who has access to a system administrator authorized authentication credential is considered a
potential insider (by stealing it, or the system administrator himself sharing it with unauthorized
persons).

Based on the insider and potential insider definitions in Chapter 11, hospital internal system
administrators and contractors are potential insiders as they are provided with credentials that
can access VMs. Once the potential insiders use the credentials and cause harm, then they are
insiders. Also, anyone who has access to these credentials (by stealing them, or the system
administrator himself sharing them with unauthorized persons) is considered an insider once
he uses them and causes harm.

Application

Applications run on VMs and can be either client-side applications or server-side applications,
as illustrated in Figure 13.6. These are stored and run on VMs. Figure 13.5 shows examples
of actions that may be performed on any of the layers, which could affect all three security
properties (i.e., availability, confidentiality, and integrity). For example, modifying data can
be performed from client-side or server-side applications, and it can also affect the three
security properties. Content stored in the server-side application can be copied (affecting data
confidentiality), altered (affecting data integrity), or removed (affecting data availability).

End-users would be assigned user logins allowing them to perform actions enabled by this
credential. Examples of such users include patients, care givers, and hospital employees (e.g.,
researchers and psychiatrists).
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Based on the definition of insiders in Chapter 11, end-users could be potential insiders
as they can access data using authorized credentials. Also, anyone who has access to an
authorized authentication credential (by stealing it, or the authorized user himself sharing it
with unauthorized persons) is considered a potential insider.

Based on the insider and potential insider definitions in Chapter 11, end-users are potential
insiders as they are provided with credentials that can access the application’s content. Once
the potential insiders use the credentials and cause harm, then they are insiders. Also, anyone
who has access to these credentials (by stealing them or the end-user himself sharing them
with unauthorized persons) is considered an insider once he uses them and causes harm.

13.3.3 Insider Threat Analysis

Insiders’ actions could affect information/service availability, integrity, and confidentiality.
The proposed methods at the time of writing for addressing insider threats focus mainly on
mitigating the threats to content confidentiality. In our opinion, the lack of schemes addressing
insider threats to content integrity and availability is due to two main reasons: the lack of solid
cases discussing insider threats and the nature of the problem, which is not easy to address as
insiders must be authorized to update/remove records.

The possible threats that can be raised by the identified insiders in Section 13.3.2 are as
follows:

� End-users. These access the hospital application services via a provided authentication
credential. Each user is assigned a credential with access rights for accessing the provided
services, which enables a user to create new records, update patient records, and delete
patient records. Such rights should not provide the user the ability to access the system from
the backend (i.e., from the operating system level or database management system level),
and they should not provide users with the ability to have a global effect on services (e.g.,
stop a service or remove the whole data repository).
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The insider threats of end-users are restricted to the granted access rights that are provided
to the end-user credential. For example, if access rights allow the user to only read a patient
record, then the insider threat affects content confidentiality. If access rights allow the user
to update and delete a patient record, then the insider threat affects content integrity and
availability, and so on.

� Hospital internal system administrators. These access the hospital application and back-
end virtual resources via a provided authentication credential(s). A system administrator
is in charge of maintaining the application and backend services (e.g., operating system
and database management system). System administrator are assigned access rights for
performing their job, which could enable them to perform critical actions on the system
(e.g., suspend a VM, backup/restore operations, migrate VMs, and stop/restart middle-tier
application servers). Such rights enable their holder to have a global effect on the provided
hospital services (e.g., to stop a service, remove the whole data repository, or leak the data
repository for patient records).

Insider risks in this case would be based not only on the access rights that are provided to
the account used by the insider but also on the security best practices used (e.g., separation of
duty and least-privilege concepts). For example, an organization might reduce the impact of
data integrity by introducing a database/application backup role, which is separate from the
system administrator role. Also, an organization can introduce an application maintenance
role that is separate from the database management role. The application of security best
practice does not necessarily prevent insider threats, but it will lessen their effects. We now
list the main insider threats for the system administrator role.
– Availability. An insider can affect system availability. For example, the application man-

agement role can stop/delete middle-tier application services, the database management
role can stop/delete the database, and the operating system role can stop the virtual
resources. All these are examples of how an insider can cause a global effect on service
availability.

– Integrity. An insider can affect system integrity. For example, the application management
role can create an authorized user account for a non-existent general practitioner, update
patient records, and then delete the account. A backup role can invalidate the backup. A
database management role can update patient records directly from the database.

– Confidentiality. An insider can leak sensitive content to unauthorized parties. For example,
a backup role grantee can copy the backup to a memory stick, restore it at home, and then
leak the content to others. A database management role can also copy the database to a
memory stick, or even search and then extract selected patient records to a USB stick or
leak them via email.

� Hospital contractors. Hospital contractors are provided with appropriate credentials
enabling them to maintain part of the hospital provided services (e.g., application sup-
port, operating system, and database management system). Contractors should be assigned
the minimal access rights that are sufficient to do the job. Such rights could enable them to
carry out critical actions on the system, exactly as those described for the system adminis-
trator role. Insider threats caused by external Cloud contractors have the same severity level
as those caused by internal system administrators. Identifying these would be based on the
roles granted to the contractor.

� Cloud provider internal employees. These have full access to the physical hardware resources
(servers, storage, and network devices) and the operating system (hypervisor), which serve
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the provided virtual resources. In addition, they have full access to the Cloud infrastruc-
ture management software packages. These are used to maintain and monitor the virtual
resources, for example stopping, starting, suspending, resuming, migrating and backing up
a VM, and allocating/revoking computational resources to/from a VM.

The insider threats caused by the Cloud provider insiders could have a greater effect than
the hospital insiders. This is because insiders could have even more authoritative access to
the underlying infrastructure. Also, they are the parties who manage the hospital allocated
virtual resources. In the following we briefly outline these threats:
– Insider threats that affects content availability. An insider who is granted a virtual resource

management role can deprive some of the computational resources that are granted to the
VM, which cause the machine to be non-responsive, for example, in peak periods.

– Insider threats that affect content integrity. An insider who is granted access to the
hypervisor layer as a super-user can access the VM running on the hypervisor, enabling
the insider to update the VM content. Also, an insider can restore VM storage from an
old/hacked backup.

– Insider threats that affect content confidentiality. An insider with proper access privileges
can copy a VM image or a backup from the storage server and restore these at home,
which enables the insider to leak the hospital patient information to unauthorized parties.

� Cloud provider external contractors. Cloud provider external contractors are provided with
appropriate credentials enabling them to maintain part of the Cloud infrastructure (e.g.,
hardware suppliers and software application support). Contractors should be assigned the
minimal access rights that are sufficient to do the job. Such rights could enable them to
perform critical actions on the system, exactly as those described for the Cloud internal
employees. For example, a contractor that maintains the storage can perform backup of
the storage and restore it at home, which enables him to leak sensitive content. Insider
threats caused by external Cloud contractors have the same severity level as those caused
by Cloud internal employees. Identifying these would be based on the roles granted to the
contractor.

� Cloud-of-Cloud internal employees. As discussed before, if two Cloud providers collaborate,
one Cloud’s internal employees could access another Cloud’s data that migrates across to
their internal infrastructure. In this case the destination Cloud provider’s system internal
employees can cause the same level of threats ‘on the migrated data’ as the source Cloud
provider internal employees, as discussed in the previous point.

� Cloud provider customers. Cloud provider customers in multi-tenant architecture [1]
organizations share the same hardware resources. Here, all the employees of an organi-
zation who are authorized to access their organizational resources in the Cloud might be
insiders for other organizations sharing the same hardware resources. For example, an
attacker can learn sensitive information about other organizations (e.g., by exploiting covert
channels [2, 3]).

13.4 Cloud Threats

In the previous section we discussed the effects of insiders on the home healthcare application
when moving into the Cloud. We found that the insider threats when moving into the Cloud
exceed those prior to moving to the Cloud. This section discusses additional threats that
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could face the home healthcare application when running in the Cloud. The following is a
non-exhaustive list of potential issues:

� Federated Cloud and third parties. All the challenges faced by outsourcing the home
healthcare application to the public Cloud also apply to federated Cloud partners with
additional difficulties, as follows:
– Where contractual agreements are legally binding with the primary Cloud provider, would

the same contractual arrangements hold true with any federated partners and third parties?
– How would contractual arrangements between Cloud partners affect the home healthcare

system? For example, are legal contracts unenforceable within the UK? Are security
controls between federated Cloud partners the same?

– Would the home healthcare information assets be protected in the same fashion across the
whole of the federated Cloud structure? If not, why not and how could this be contractually
enforced? If so, how can assurance of this be gained?

– What could prevent partnering Clouds establishing further federated services with third
parties and using these new partners to store and process the home healthcare information
assets in an unapproved manner? Furthermore, even if third parties were to be engaged
within the partnering Cloud and not used to process the healthcare assets, the third
parties would be considered an additional threat to the hospital by virtue of newly
shared infrastructure and a potential attack vector arising from logical connection. How
could the hospital be assured that the third parties are suitably separated from the hospital
assets upon the approved public Cloud provider’s infrastructure?

� Physical security of Cloud provider sites. It is likely that the home healthcare information
assets will be held in data centers with access available from the public Cloud provider
and their satellite administrative sites. It is therefore challenging to ensure that these parties
apply and demonstrate physical security compliance in a manner commensurate with those
within the hospital itself.

� Personnel security. It is unsure what personnel security checks may occur as part of the Cloud
provider’s employment procedures and furthermore, where pre-employment screening takes
place, are the checks considered to be commensurate with the checks performed by the
hospital?

� The insider threat. As described earlier, when outsourcing the home healthcare application
to a public Cloud, the number of potential insiders increases from merely those considered
within the hospital itself to an unknown proportion and with it the probability that a security
breach may occur at their hands.

� Architectural and technical security controls. It is considered to be a significant challenge
to ensure that a Cloud provider deploys the following technical security mechanisms, in a
manner commensurate with the hospital, to protect the security of its patients. Principles
of defense in depth should be employed to provide a layered security approach to detect,
delay, and repulse a threat actor.

� Identification and authentication. Applying principles of defense in depth will require all
hosts (including privileged users), application services, and data transfer partners to correctly
authenticate each other. This is to prevent attacks that might hijack the service or capture
data in transit. Methods for strong ID&A are made troublesome by password policies
such as password duration, password complexity (will the technology support complex
passwords?), password reuse, etc. Furthermore, a number of strong methods – including
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two-factor authentication using cryptographic means such as digital certificates and smart
tokens – bring with them key management issues to overcome.

� Access control policies. Access control policies would need to be in place to enforce the
principle of least privilege and need to know. A challenge to be overcome is if it could
be implemented such that only the hospital administrators and their clients had access to
the home healthcare information assets residing within the Cloud by using an appropriate
access control mechanism.

� Server hardening. All servers employed should be evaluated by common criteria to at least
EAL4 and should be hardened in accordance with the common criteria security target and
set to fail secure.

� The network security. The network infrastructure should adopt a layered model to ensure
secure data separation boundaries between layers. Network hosts should be hardened accord-
ing to their common criteria security target and set to fail secure. Additionally, a mix of
disparate routers, switches, firewalls, etc. should be used. This is to ensure that if one is
compromised, the same attack technique cannot be used to defeat all hosts in the architecture.

� O/S hardening. All O/S employed should be hardened as per suitable guidelines and con-
figured for use in accordance with their common criteria security target.

� Virtualization hardening. Of particular importance is the hardening and configuration of
hypervisors and individual VMs. Virtual machines are considered information assets in par-
allel with their physical counterparts. When incorrectly configured, the use of virtualization
can weaken security controls in the guest O/S and fail to provide secure data separation.
Even where a guest O/S has been hardened, an incorrectly configured hypervisor can allow
privilege escalation. Virtualization products can be a single point of attack focus. The
virtualization chosen must have undergone common criteria evaluation and be configured
according to their security target. Furthermore, all virtualized machines and software must
be patched in accordance with their non-virtualized counterparts to aid prevention of threats
intended to exploit published vulnerabilities.

� Data confidentiality. Whilst all the controls listed refer to information specifically relating
to software application asset security (C, I and A), one must be mindful that a public Cloud
provider must show due diligence when storing hospital patient information. Should this
information be misused, it could affect patient life.

� Secure deletion of information. When information is deleted, it must be permanently taken
off the public Cloud provider’s technology, rendering it computationally improbable that
the data could be retrieved using popular forensic tools.

� Protective monitoring. Protective monitoring is vitally important to detect if a security breach
has occurred and to positively identify the culprit such that they cannot deny doing the deed
(non-repudiation). Protective monitoring is a primary feed into the incident management
process and can also be used to ascertain correct service billing. All audit logs should be
centrally held (but in split data stores for resilience), and held under strict access control
utilizing principles of segregation of duty for authorization and for access to force collusion
of two parties to affect a security breach. It is important, and something of a challenge, that
the time is synchronized across the whole of the application technical infrastructure. Whilst
this is technically possible (synch to a UTC time source), whether all the federated Cloud
members would have joined technical policies to effect this is questionable. Furthermore,
where the time is synchronized to a centralized source located in the USA, would this be
considered acceptable evidentially during forensic investigations leading to litigation within
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the disparate jurisdictions (e.g., would the Chinese legal system accept a US time source to
be acceptable corroborative evidence)? Additionally, sufficient events must be captured to
ensure the logs are worthwhile and that the logs are made available to the hospital upon its
request to cross-check access, billing and to aid forensic examination post-security incident.
Additional uses for protective monitoring, when deployed in a comprehensive fashion, could
be to generate metrics aiding measurement of the effectiveness of self-managed services
(availability) in terms of MTTD, MTTI, and MTTR.

� Procedural controls. It is important to ensure that the Cloud provider is bound within
procedural controls such as segregation of duty, separation of duty, security awareness, need
to know, least privilege, and two-man rules (to name but a few). Such controls can ensure
that security breaches are detected, and will often force collusion for a security breach
to be effected. Such controls can be enforced by the deployment of individual ‘Forms of
Understanding’ tied into contractual terms and conditions of employees and third parties
within the supply chain.

� Business continuity.
– Backup and restore. It is important that, should a security incident occur, the hospital

services can be returned to normal within a period of time according to a predefined
service level agreement. With this arises the challenge of backup storage, location of
backup resources, and the necessary protection offered to these locations and resources.

– Security incident management and crisis management. Where a security incident occurs to
the home healthcare application or to the Cloud provider it is vitally important that incident
management procedures are in place not only to effect resolution of the problem but also to
ensure that correct lines of communication are issued between all parties with escalation
to a recognized CERT (GovCERTUK). A problem for the Cloud provider may constitute a
problem for the hospital and, potentially, vice-versa. How can this challenge be overcome?
Perhaps agreement over communication and incident management operating procedures
could be encapsulated into the security operating procedures which are subsumed into
legally binding contracts.

– Resilience. Resilience enhances the availability of the information security triad and
ensures that the service is available when the business demands. A resilient design must
be proportional to the criticality of the system.

– Elasticity. As resource demands grow and shrink, ensuring that there is no waste in
resources available (that all resources are utilized) and that in times of high demand,
resources will automatically be assigned to prevent availability issues. The challenge is
to ensure that resource provisioning is correctly ascertained initially and that billing is
correctly calculated.

� Non-comparable legal models/disparate jurisdictions. A public Cloud provider may operate
over a number of different countries; while some countries may share common legal aspects,
some may not and may have their own individual requirements. The following is a non-
exhaustive list of potential issues:
– Statutory compliance. Data protection legislation may not exist in some countries in which

the hospital healthcare assets are stored. Information could be stored by a public Cloud
provider (or its third-party suppliers) within an area not party to legislation akin to the
UK Data Protection Act or the US Safe Harbor Frameworks.

– Protection of intellectual property rights (IPR). Protection of IPR and strict data ownership
may not exist or may not be subject to sufficient enforcement within some countries in
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which the public Cloud provider or an authorized third-party supplier processing the
healthcare IPR operates (e.g., non-members of the World Trade Organisation).

– Privacy laws. Within some countries (such as Germany and Switzerland), privacy laws
may be such that the implementation of detective measures – such as comprehensive
protective monitoring policies – may breach the privacy of the users. Rigorous privacy
laws make it difficult to deploy certain monitoring tools and to forensically prove an
individual’s actions leading to a security breach with non-repudiation.

– Use of technology as preventative, detective and reactive measures. Within some countries
a combination of privacy laws and national security may prohibit some preventative and
detective technical controls from being deployed. Privacy laws prohibit some account-
ing and audit technical controls (as mentioned within the previous point). Individual
country’s national security laws may prohibit or enforce the use of preventative tech-
nical controls such as cryptographic products. France limits the importation of certain
cryptographic products while the USA, used to consider strong cryptographic products
as munitions.

� Unknown threat landscape development. Where home healthcare is outsourced to a public
Cloud, one can assume that the threat landscape will change and due to the global nature of
the public Cloud, may be under constant change. When home healthcare is entirely within
the hospital’s scope of management and control, the threats are well known and quantifiable.
When it is placed within a public Cloud, the application becomes vulnerable to not only
the threats of the hospital but also the threats faced by the public Cloud on a global scale.
Furthermore, the healthcare application can be threatened by non-technical threats such as
destabilized foreign governments, foreign economy crashes, unforeseen natural disasters,
wars, etc. It is therefore contended that the threat profile of placing home healthcare into
the public Cloud could be negatively impacted.

� Organizational ISMS and risk analysis. As part of the hospital’s ISMS, knowledge of all
assets, asset management, and deployed controls and countermeasures is a required factor
contributing to organizational risk registers. The risk registers are a statutory requirement
as part of critical national infrastructure and are essential to influence future IT decisions
and security plans. It is thought unlikely that a Cloud provider would divulge to its client
the exact nature of its security controls, for to do so would illustrate a provider’s capability
and this information placed into the wrong hands could prove useful to a potential attacker.

� Multi-tenancy challenges. There is a concern that significant security threats can occur
where the healthcare assets are held upon shared resources within the Cloud infrastructure.
Multi-tenancy can open up the application assets to potential threats, such as:
– Potential loss of technical data separation controls leading to data leakage.
– Either a lowest common denominator or highest common denominator security control

suite will apply to protect all tenant assets potentially leaving the healthcare assets under-
or overprotected.

– Encryption can be used to enforce confidentiality and integrity within this model but
therein lie key management problems. How best can cryptographic keys be managed
within the public Cloud?

– How to specifically stipulate who you will absolutely not want to share resources with
(for example a lighting industry competitor).

� Intrinsic and extrinsic assurance. One of the main challenges when outsourcing the SLA
to a public Cloud is to gain assurance that the public Cloud provider will maintain the
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healthcare application in a manner contractually agreed. There are a number of mechanisms
by which assurance can be gleaned, as follows:
– It is possible to gain a degree of extrinsic assurance of the technical controls deployed

with the healthcare application upon a public Cloud if technical devices used are subject
to formal evaluation and the architectural details (such as low-level designs) can be shared
with the hospital. The use of a trusted computing infrastructure (TCI) can yield a degree of
assurance. Furthermore, certification to international standards such as the ISO2700110
can go a long way towards assuring the credibility of the governance procedures and
technical controls in place within a public Cloud provider.

– It is far more challenging to gain intrinsic assurance whereby one would wish to employ a
‘right of inspection’ upon any site with access to or processing the healthcare assets.
The details of this could be to (either as an organization or via an approved third
party) physically inspect sites, conduct penetration testing (to detect insecure config-
uration, hard/software, APIs, etc.) and compliance audits with financial penalties for
non-compliance. If chosen, these mechanisms would need to be placed explicitly into a
legally binding framework.

� Contractual issues. Of all the challenges within this question, one is a lynchpin to ensure
that security processes are followed correctly. For all security policies, procedures, and
controls to be mandated, they must be placed into a legally binding contract that will
apply throughout the legal jurisdictions where each party involved in the outsourcing of the
application conducts business. This may mean that multiple contracts must be produced,
containing the same pertinent information, for each legal jurisdiction. Furthermore, com-
pliance documentation – such as codes of connection, memoranda of understanding, forms
of understanding, and security operating procedures – must be bound to each contract to
facilitate enforcement.

� Business tie-in. Owing to the federation of the public Cloud and its partnership, there is a
challenge to overcome to ensure that the application developed upon the public Cloud can
be moved to other Cloud providers as and when business requirements dictate (e.g., as in
the case of unacceptable increase of Cloud charges, the public Cloud going out of business,
etc.). Should the home healthcare application prove difficult or impossible to migrate to
another provider for technical development constraints, the hospital could find itself tied
into an unworkable contract with no obvious way to withdraw without significant economic
expenditure.
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