

 فقط کتاب

 مرجع معتبر دانلود کتاب های تخصصی

Faghatketab.ir

The	Hacker’s	Guide	to	Scaling
Python
Julien	Danjou

Julien	Danjou
<julien@danjou.info>

Copyright	©	2016-2017	Julien	Danjou

Revision	History
Revision	1.0May	2017 JD
First	Edition.

About	this	Book
Version	1.0	released	in	2017.

When	I	released	The	Hacker’s	Guide	to	Python	in	2014,	I	had	no	idea	that
I	would	be	writing	a	new	book	so	soon.	Having	worked	on	OpenStack	for
a	few	more	years,	I	saw	how	it	is	easy	to	struggle	with	other	aspects	of
Python,	even	after	being	on	board	for	a	while.

Nowadays,	even	if	computers	are	super-fast,	no	server	is	fast	enough	to
handle	millions	of	request	per	second,	which	is	a	typical	workload	we
want	to	use	them	for.	Back	in	the	day,	when	your	application	was	slow,
you	just	had	to	optimize	it	or	upgrade	your	hardware	–	whichever	was
cheaper.	However,	in	a	world	where	you	may	already	have	done	both,	you
need	to	be	able	to	scale	your	application	horizontally,	i.e.,	you	have	to
make	it	run	on	multiple	computers	in	parallel.

That	is	usually	the	start	of	a	long	journey,	filled	with	concurrency
problems	and	disaster	scenarios.

Developers	often	dismiss	Python	when	they	want	to	write	performance
enhancing,	and	distributed	applications.	They	tend	to	consider	the
language	to	be	slow	and	not	suited	to	that	task.	Sure,	Python	is	not
Erlang,	but	there’s	also	no	need	to	ditch	it	for	Go	because	of	everyone
saying	it	is	faster.

I	would	like	to	make	you	aware,	dear	reader,	that	a	language	is	never
slow.	You	would	not	say	that	English	or	French	is	slow,	right?	The	same
applies	for	programming	languages.	The	only	thing	that	can	be	slow	is	the
implementation	of	the	language	–	in	Python’s	case,	its	reference
implementation	is	CPython.

Indeed	CPython	can	be	quite	sluggish,	and	it	has	its	share	of	problems.
Every	implementation	of	a	programming	language	has	its	downside.
However,	I	think	that	the	ecosystem	of	Python	can	make	up	for	that
defect.

https://thehackerguidetopython.com
http://openstack.org
https://www.erlang.org/
https://golang.org/

Python	and	everything	that	evolves	around	it	offer	a	large	set	of
possibilities	to	extend	your	application,	so	it	can	manage	thousands	of
requests	simultaneously,	compensating	for	its	lack	of	distributed	design
or,	sometimes	its	"slowness".

Moreover,	if	you	need	proof,	you	can	ask	companies	such	as	Dropbox,
PayPal	or	Google	as	they	all	use	Python	on	a	large	scale.	Instagram	has
400	million	active	users	every	day	and	their	whole	stack	is	served	using
Python	and	Django.

In	this	book,	we	will	discuss	how	one	can	push	Python	further	and	build
applications	that	can	scale	horizontally,	perform	well	and	remain	fast
while	being	distributed.	I	hope	it	makes	you	more	productive	at	Python
and	allows	you	to	write	better	applications	that	are	also	faster!

Most	code	in	this	book	targets	Python	3.	Some	snippets	might	work	on
Python	2	without	much	change,	but	there	is	no	guarantee.

https://thenewstack.io/instagram-makes-smooth-move-python-3/

Chapter	1.	Scaling?

	
Scalability	is	the	capability	of	a	system,	network,	or	process	to	handle	a
growing	amount	of	work,	or	its	potential	to	be	enlarged	to
accommodate	that	growth.

	

	 --	Wikipedia

When	we	talk	about	scaling	Python,	what	we	mean	is	making	Python
application	scalable.	However,	what	is	scalability?

According	to	Wikipedia,	scalability	is	"the	capability	of	a	system,	network,
or	process	to	handle	a	growing	amount	of	work,	or	its	potential	to	be
enlarged	to	accommodate	that	growth".	This	definition	makes	scalability
difficult	to	define	as	an	absolute	since	no	definition	applies	to	all
applications.

This	book	concentrates	on	methods,	technologies,	and	practice	that	allow
one	to	make	applications	fast	and	able	to	grow	in	order	to	handle	more
jobs	–	all	of	that	using	the	Python	programming	language	and	its	major
implementation,	named	CPython.

We	are	all	aware	that	processors	are	not	becoming	faster	and	faster	at	a
rate	where	a	single	threaded	application	could,	one	day,	be	fast	enough	to
handle	any	size	workload.	That	means	you	need	to	think	about	using
more	than	just	one	processor.	Building	scalable	applications	implies	that
you	distribute	the	workload	across	multiple	workers	using	multiple
processing	units.

Dividing	up	the	tasks	at	hand,	those	workers	run	across	several
processors,	and	in	some	cases,	across	several	computers.

That	is	a	distributed	application.

There	are	fundamental	properties	to	understand	about	distributed
systems	before	digging	into	how	to	build	them	in	Python	–	or	any	other
language.

https://en.wikipedia.org/wiki/Scalability

We	can	lay	out	the	following	options	when	writing	an	application:

	Write	a	single-threaded	application.	This	should	be	your	first	pick,
and	indeed	it	implies	no	distribution.	They	are	the	simplest	of	all
applications.	They	are	easy	to	understand	and	therefore	easier	to
maintain.	However,	they	are	limited	by	the	power	of	using	a	single
processor.

Write	a	multi-threaded	application.	Most	computers	–	even	your
smartphone	–	are	now	equipped	with	multiple	processing	units.	If	an
application	can	overload	an	entire	CPUs,	it	needs	to	spread	its
workload	over	other	processors	by	spawning	new	threads	(or	new
processes).	Multi-threading	applications	are	more	error-prone	than
single-threaded	applications,	but	they	offer	fewer	failure	scenarios
than	multi-nodes	applications,	as	no	network	is	involved.

Write	network	distributed	applications.	This	is	your	last	resort	when
your	application	needs	to	scale	significantly,	and	not	even	one	big
computer	with	plenty	of	CPUs	is	enough.	Those	are	the	most
complicated	applications	to	write	as	they	use	a	network.	It	means	they
should	handle	a	lot	of	scenarios,	such	as	a	total	or	partial	failure	of	a
node	or	the	network,	high	latency,	messages	being	lost,	and	any	other
terrible	property	related	to	the	unreliability	of	networks.

The	properties	of	distribution	vary	widely	depending	on	the	type	you
pick.	Operations	on	a	single	processor	can	be	regarded	as	fast,	with	low
latency	while	being	reliable,	and	ordered,	whereas	operations	across
several	nodes	should	be	considered,	slow,	with	high	latency.	They	are
often	unreliable	and	unordered.

Consider	each	architecture	choice	or	change	carefully.	As	seen
throughout	this	book,	there	are	various	tools	and	methods	in	Python
available	for	dealing	with	any	of	those	choices.	They	help	to	build
distributed	systems,	and	therefore	scalable	applications.

1.1.	Across	CPUs
Scaling	across	processors	is	usually	done	using	multithreading.

Multithreading	is	the	ability	to	run	code	in	parallel	using	threads.
Threads	are	usually	provided	by	the	operating	system	and	are	contained
in	a	single	process.	The	operating	system	is	responsible	to	schedule	their
execution.

Since	they	run	in	parallel,	that	means	they	can	be	executed	on	separate
processors	even	if	they	are	contained	in	a	single	process.	However,	if	only
one	CPU	is	available,	the	code	is	split	up	and	run	sequentially.

Therefore,	when	writing	a	multithreaded	application,	the	code	always
runs	concurrently	but	runs	in	parallel	only	if	there	is	more	than	one	CPU
available.

This	means	that	multithreading	looks	like	a	good	way	to	scale	and
parallelize	your	application	on	one	computer.	When	you	want	to	spread
the	workload,	you	start	a	new	thread	for	each	new	request	instead	of
handling	them	one	at	a	time.

However,	this	does	have	several	drawbacks	in	Python.	If	you	have	been	in
the	Python	world	for	a	long	time,	you	have	probably	encountered	the
word	GIL,	and	know	how	hated	it	is.	The	GIL	is	the	Python	global
interpreter	lock,	a	lock	that	must	be	acquired	each	time	CPython	needs	to
execute	byte-code.	Unfortunately,	this	means	that	if	you	try	to	scale	your
application	by	making	it	run	multiple	threads,	this	global	lock	always
limits	the	performance	of	your	code,	as	there	are	many	conflicting
demands.	All	your	threads	try	to	grab	it	as	soon	as	they	need	to	execute
Python	instructions.

The	reason	that	the	GIL	is	required	in	the	first	place	is	that	it	makes	sure
that	some	basic	Python	objects	are	thread-safe.	For	example,	the	code	in
Example	1.1,	“Thread-unsafe	code	without	the	GIL”	would	not	be	thread-
safe	without	the	global	Python	lock.

Example	1.1.	Thread-unsafe	code	without	the	GIL

import	threading

x	=	[]

def	append_two(l):
				l.append(2)

threading.Thread(target=append_two,	args=(x,)).start()

x.append(1)
print(x)

That	code	prints	either	[2,	1]	or	[1,	2],	no	matter	what.	While	there
is	no	way	to	know	which	thread	appends	1	or	2	before	the	other,	there	is
an	assumption	built	into	Python	that	each	list.append	operation	is
atomic.	If	it	was	not	atomic,	a	memory	corruption	might	arise	and	the
list	could	simply	contain	[1]	or	[2].

This	phenomenon	happens	because	only	one	thread	is	allowed	to	execute
a	bytecode	instruction	at	a	time.	That	also	means	that	if	your	threads
run	a	lot	of	bytecodes,	there	are	many	contentions	to	acquire	the	GIL,	and
therefore	your	program	cannot	be	faster	than	a	single-threaded	version	–
or	it	could	even	be	slower.

The	easiest	way	to	know	if	an	operation	is	thread-safe	is	to	know	if	it
translates	to	a	single	bytecode	instruction	[1]	or	if	it	uses	a	basic	type
whose	operations	are	atomic	[2].

So	while	using	threads	seems	like	an	ideal	solution	at	first	glance,	most
applications	I	have	seen	running	using	multiple	threads	struggle	to	attain
150%	CPU	usage	–	that	is	to	say,	1.5	cores	used.	With	computing	nodes
nowadays	usually	not	having	less	than	four	or	eight	cores,	it	is	a	shame.
Blame	the	GIL.

There	is	currently	an	effort	underway	(named	gilectomy)	to	remove	the
GIL	in	CPython.	Whether	this	effort	will	pay	off	is	still	unknown,	but	it	is
exciting	to	follow	and	see	how	far	it	will	go.

However,	CPython	is	just	one	–	although	the	most	common	–	of	the
available	Python	implementations.	Jython,	for	example,	doesn’t	have	a

https://github.com/larryhastings/gilectomy
http://jython.org
http://www.jython.org/jythonbook/en/1.0/Concurrency.html

global	interpreter	lock,	which	means	that	it	can	run	multiple	threads	in
parallel	efficiently.	Unfortunately,	these	projects	by	their	very	natures	lag
behind	CPython,	and	so	they	are	not	useful	targets.

Multithreading	involves	several	traps,	and	one	of	them	is	that	all	the
pieces	of	code	running	concurrently	are	sharing	the	same	global
environment	and	variables.	Reading	or	writing	global	variables	should	be
done	exclusive	by	using	techniques	such	as	locking,	which	complicates
your	code;	moreover,	it	is	an	infinite	source	of	human	errors.

Getting	multi-threaded	applications	right	is	hard.	The	level	of	complexity
means	that	it	is	a	large	source	of	bugs	–	and	considering	the	little	to	be
gained	in	general,	it	is	better	not	to	waste	too	much	effort	on	it.

So	are	we	back	to	our	initial	use	cases,	with	no	real	solutions	on	offer?
Not	true	–	there’s	another	solution	you	can	use:	using	multiple	processes.
Doing	this	is	going	to	be	more	efficient	and	easier	as	we	will	see	in
Chapter	2,	CPU	Scaling.	It	is	also	a	first	step	before	spreading	across	a
network.

1.2.	Distributed	Systems
	
A	distributed	system	is	one	in	which	the	failure	of	a	computer	you
didn’t	even	know	existed	can	render	your	own	computer	unusable.

	

	 --	Lamport	(1987)

When	an	application	uses	all	the	CPU	power	of	a	node,	and	you	cannot
add	more	processors	to	your	server	or	switch	to	a	bigger	server,	you	need
a	plan	B.

The	next	step	usually	involves	multiple	servers,	linked	together	via	a
network	of	some	sort.	That	means	the	application	starts	to	be	distributed:
running	not	only	on	one	node	but	on	multiple,	connected,	nodes.
Spreading	the	workload	over	different	hosts	introduces	several
advantages,	such	as:

Horizontal	scalability,	the	ability	to	add	more	nodes	as	more	traffic
comes	in

Fault	tolerance,	as	if	a	node	goes	down,	another	one	can	pick	up	the
traffic	of	the	dysfunctioning	one

While	this	sounds	awesome,	it	also	introduces	major	drawbacks:

As	with	multithreading,	concurrency	and	parallelism	come	into	play
and	complicate	the	workflow	(e.g.,	locking	usage)

What	can	fail	will	fail,	such	as	a	random	node	in	the	middle	of	an
operation	or	a	laggy	network,	so	tolerance	for	failure	must	be	built-in

All	of	this	means	that	an	application	which	is	going	the	distributed	route
expand	its	complexity	while	potentially	increasing	its	throughput.	Making
this	kind	of	architectural	decision	requires	great	wisdom.

Python	does	not	offer	so	many	tools	for	building	a	distributed	system,	but
its	ecosystem	has	a	few	good	options	as	seen	throughout	this	book.	For
example,	it	can	be	pretty	easy	to	distribute	jobs	across	several	nodes	as
covered	in	Chapter	5,	Queue-Based	Distribution.	Bigger	problems	such	as
coordination	and	synchronization	with	sibling	nodes	also	have	a	few
solutions,	as	discussed	in	Chapter	7,	Lock	Management	and	Chapter	8,
Group	membership.

Finally,	a	great	approach	to	writing	distributed	systems	is	to	make	them
purely	functional,	i.e.,	without	any	shared	state.	That	means	such
applications	should	not	have	even	a	single	shared,	global	variable,	across
all	of	its	distributed	processes.	Stateless	systems	are	the	easiest	ones	to
distribute	and	scale,	and	therefore	systems	should	be	designed	as	such
when	possible.	Chapter	4,	Functional	Programming	talks	about
functional	programming	and	the	mindset	behind	writing	such	programs.

1.3.	Service-Oriented	Architecture
If	you’ve	never	heard	of	it,	service-oriented	architecture	is	an
architectural	style	where	a	software	design	is	made	up	of	several

independent	components	communicating	over	a	network.	Each	service	is
a	discrete	unit	of	functionality	that	can	work	autonomously.	That	means
that	the	problem	should	be	divided	up	into	interacting	logical	pieces.	If
we	refer	back	to	the	different	application	styles	defined	in	Chapter	1,
Scaling?,	SOA	refers	to	network	distributed	applications.

This	kind	of	architecture	is	not	a	perfect	or	magical	solution.	It	has	many
drawbacks,	but	it	also	has	many	advantages	that	make	it	valuable…	and
so	popular	these	days	for	building	distributed	applications.

The	service-oriented	architecture	is	not	a	first-class	citizen	in	Python,
though	it	makes	it	easy	to	use	and	implement	–	the	language	being
generic	and	the	ecosystem	rich	enough.

Services	built	for	this	kind	of	architecture	should	follow	a	few	principles
[3]	among	them	being	stateless.	That	means	services	must	either	modify
and	return	the	requested	value	(or	an	error)	while	separating	their
functioning	from	the	state	of	the	data.	This	is	an	essential	property,	as	it
makes	it	easier	to	scale	the	services	horizontally.

Statelessness	is	a	property	that	is	also	shared	with	the	functional
programming	paradigm,	as	discussed	in	Chapter	4,	Functional
Programming.	Both	of	these	are	relevant	topics	and	principles	to	know
about	when	designing	scalable	applications.

How	to	split	your	application	into	different	services	might	deserve	a	book
on	its	own,	but	there	are	mainly	two	categories:

Object-oriented	approach:	each	noun	is	a	service,	e.g.,	catalog	service,
phone	service,	queue	service,	etc.	Such	service	types	are	a	good	way	to
represent	data	types.

Functional	approach:	each	verb	is	a	service,	e.g.,	search	service,
authentication	service,	crawl	service,	etc.	Such	service	types	are	a	good
way	to	represent	transformations.

Having	too	many	services	has	a	cost,	as	they	come	with	some	overheard.
Think	of	all	of	the	costs	associated,	such	as	maintenance	and	deployment,
and	not	only	development	time.	Splitting	an	application	should	always	be

a	well-thought	out	decision.

If	you	know	that	some	services	need	to	scale	independently,	you	should
probably	split	them.	However,	if	they	are	latency	sensitive	and	should
work	together	very	closely,	involving	a	lot	of	communication,	that	might
be	where	the	line	is	drawn.

Software	production	is	both	a	technical	and	social	artifact:	there	might	be
some	services	that	come	naturally	to	mind	due	to	the	social	organization
of	your	project.	For	example,	some	teams	might	be	responsible	for	the
user	database,	so	that	might	be	their	job	to	create	and	maintain	an
independent	user	service	that	other	components	can	use	to	get
information	and	authenticate	it.	This	is	also	important	to	take	into
consideration	when	choosing	where	to	set	the	boundaries	of	your
different	services.

Once	this	is	all	set	[4],	the	technical	aspect	of	the	implementation	comes
to	mind.	Nowadays,	the	most	common	type	of	services	that	are
encountered	are	Web	services,	base	on	the	well-known	and	ubiquitous
HTTP	protocol.	This	is	what	will	be	largely	discussed	in	Chapter	9,
Building	REST	API.

[1]	Details	about	disassembling	code	and	bytecode	instruction	are
provided	in	Section	13.4,	“Disassembling	Code”.

[2]	The	list	is	provided	in	the	Python	FAQ.

[3]	Wikipedia	offers	a	great	list	of	those	principles.

[4]	Of	course	no	architecture	is	written	in	stone,	and	everything	can
evolve,	likewise	social	groups	change	and	services	might	come	and	go.

https://docs.python.org/2/faq/library.html#what-kinds-of-global-value-mutation-are-thread-safe
https://en.wikipedia.org/wiki/Service-oriented_architecture#Principles

Chapter	2.	CPU	Scaling
As	CPUs	are	not	getting	infinitely	faster,	using	multiple	CPUs	is	the	best
path	towards	scalability.	That	means	introducing	concurrency	and
parallelism	into	your	program,	and	that	is	not	an	easy	task.	However,
once	correctly	done,	it	really	does	increase	the	total	throughput.

Python	offers	two	options	to	spread	your	workload	across	multiple	local
CPUs:	threads	or	processes.	They	both	come	with	challenges;	some	are
not	specifically	tied	to	Python,	while	some	are	only	relevant	to	its	main
implementation,	i.e.,	CPython.

2.1.	Using	Threads
Threads	in	Python	are	a	good	way	to	run	a	function	concurrently	other
functions.	If	your	system	does	not	support	multiple	processors,	the
threads	will	be	executed	one	after	another	as	scheduled	by	the	operating
system.	However,	if	multiple	CPUs	are	available,	threads	could	be
scheduled	on	multiple	processing	units,	once	again	as	determined	by	the
operating	system.

By	default,	there	is	only	one	thread	–	the	main	thread	–	and	it	is	the
thread	that	runs	your	Python	application.	To	start	another	thread,	Python
provides	the	threading	module.

Example	2.1.	Starting	a	new	thread

import	threading

def	print_something(something):
				print(something)

t	=	threading.Thread(target=print_something,	args=("hello",))
t.start()

print("thread	started")
t.join()

If	you	run	the	program	in	Example	2.1,	“Starting	a	new	thread”	multiple
times,	you	will	notice	that	the	output	might	be	different	each	time.	On	my
laptop,	doing	this	gives	the	following:

$	python	examples/chapter2-cpu-scaling/threading-start.py
hellothread	started
$	python	examples/chapter2-cpu-scaling/threading-start.py
hello
	thread	started
$	python	examples/chapter2-cpu-scaling/threading-start.py
hello
thread	started

If	you	specifically	expected	any	one	of	the	outputs	each	time,	then	you
forgot	that	there	is	no	guarantee	regarding	the	order	of	execution	for	the
threads.

Once	started,	the	threads	join:	the	main	thread	waits	for	the	second
thread	to	complete	by	calling	its	join	method.	Using	join	is	handy	in
terms	of	not	leaving	any	threads	behind.

If	you	do	not	join	all	your	threads	and	wait	for	them	to	finish,	it	is
possible	that	the	main	thread	finishes	and	exits	before	the	other	threads.
If	this	happens,	your	program	will	appear	to	be	blocked	and	will	not
respond	to	even	a	simple	KeyboardInterrupt	signal.

To	avoid	this,	and	because	your	program	might	not	be	in	a	position	to
wait	for	the	threads,	you	can	configure	threads	as	daemons.	When	a
thread	is	a	daemon,	it	is	considered	as	a	background	thread	by	Python
and	is	terminated	as	soon	as	the	main	thread	exists.

Example	2.2.	Starting	a	new	thread	in	daemon	mode

import	threading

def	print_something(something):
				print(something)

t	=	threading.Thread(target=print_something,	args=("hello",))
t.daemon	=	True
t.start()
print("thread	started")

In	Example	2.2,	“Starting	a	new	thread	in	daemon	mode”	,	there	is	no
longer	a	need	to	use	the	join	method	since	the	thread	is	set	to	be	a
daemon.

The	program	below	is	a	simple	example,	which	sums	one	million	random
integers	eight	times,	spread	across	eight	threads	at	the	same	time.

Example	2.3.	Workers	using	multithreading

import	random
import	threading

results	=	[]

def	compute():
				results.append(sum(
								[random.randint(1,	100)	for	i	in	range(1000000)]))

workers	=	[threading.Thread(target=compute)	for	x	in	range(8)]
for	worker	in	workers:
				worker.start()
for	worker	in	workers:
				worker.join()
print("Results:	%s"	%	results)

Running	Example	2.3,	“Workers	using	multithreading”	program	returns
the	following:

$	time	python	multithreading-worker.py
Results:	[50505811,	50471217,	50531481,	50460206,	50462903,	50533718,	50500182,	50480848]
python	examples/multithreading-worker.py		19.84s	user	6.32s	system	116%	cpu	22.501	total

The	program	ran	on	an	idle	quad	cores	CPU,	which	means	that	Python
could	have	used	up	to	400%	CPU	power.	However,	it	was	unable	to	do
that,	even	with	eight	threads	running	in	parallel	–	it	stuck	at	116%,	which
is	just	29%	of	the	hardware’s	capabilities.

The	graph	in	Figure	2.1,	“Using	threads	with	CPython”	illustrates	that
bottleneck:	to	access	all	of	the	system’s	CPU,	you	need	to	go	through
CPython’s	GIL.

Figure	2.1.	Using	threads	with	CPython

Again,	as	discussed	in	Section	1.1,	“Across	CPUs”,	the	GIL	limits	the
performance	of	CPython	when	executing	multiple	threads.	Threads	are
therefore	useful	when	doing	parallel	computing	or	input/output	on	slow

networks	or	files:	those	tasks	can	run	in	parallel	without	blocking	the
main	thread.

To	achieve	a	greater	throughput	using	multiple	CPUs,	using	processes	is
an	interesting	alternative	discussed	in	Section	2.2,	“Using	Processes”.

2.2.	Using	Processes
Since	multithreading	is	not	a	perfect	scalability	solution	because	of	the
GIL,	using	processes	instead	of	threads	is	a	good	alternative.	Python
obviously	exposes	the	os.fork	system	call	to	create	new	processes.
However,	this	approach	is	a	little	bit	too	low-level	to	be	interesting	in
most	cases.

Instead,	the	multiprocessing	package	is	a	good	higher-level	alternative.
It	provides	an	interface	that	starts	new	processes,	whatever	your
operating	system	might	be.

We	can	rewrite	Example	2.3,	“Workers	using	multithreading”	using
processes	thanks	to	the	multiprocessing	library,	as	shown	in
Example	2.4,	“multiprocessing.Process	usage”.

Example	2.4.	multiprocessing.Process	usage

import	random
import	multiprocessing

def	compute(results):
				results.append(sum(
								[random.randint(1,	100)	for	i	in	range(1000000)]))

with	multiprocessing.Manager()	as	manager:
				results	=	manager.list()
				workers	=	[multiprocessing.Process(target=compute,	args=(results,))
															for	x	in	range(8)]

				for	worker	in	workers:
								worker.start()
				for	worker	in	workers:
								worker.join()
				print("Results:	%s"	%	results)

The	example	is	a	bit	trickier	to	write	as	there	is	no	data	shared	available
between	different	processes.	Since	each	process	is	a	new	independent
Python,	the	data	is	copied	and	each	process	has	its	own	independent
global	state.	The	multiprocessing.Manager	class	provides	a	way	to
create	shared	data	structures	that	are	safe	for	concurrent	accesses.

Running	this	program	gives	the	following	result:

Example	2.5.	Result	of	time	python	multiprocessing-
workers.py

$	time	python	multiprocessing-workers.py
Results:	[50505465,	50524237,	50492168,	50482321,	50503634,	50543646,	50533775,	50521610]
python	examples/multiprocessing-workers.py		32.00s	user	0.50s	system	332%	cpu	9.764	total

Compared	to	Example	2.3,	“Workers	using	multithreading”,	using
multiple	processes	reduces	the	execution	times	by	60%.	This	time,	the
processes	have	been	able	to	consume	up	to	332%	of	the	CPU	power,
which	is	more	than	80%	of	the	computer’s	CPU	capacity,	or	close	to	three
times	more	than	multithreading.

The	graph	in	Figure	2.2,	“Using	processes	with	CPython”	tries	to	lay	out
the	differences	in	terms	of	how	scheduling	processes	work	and	why	it	is
more	efficient	than	using	threads,	as	shown	previously.

Figure	2.2.	Using	processes	with	CPython

Each	time	some	work	can	be	parallelized	for	a	certain	amount	of	time,
it’s	much	better	to	rely	on	multiprocessing	and	to	fork	jobs,	thiu
spreading	the	workload	among	several	CPU	cores,	rather	than	using	the
threading	module.

The	multiprocessing	library	also	provides	a	pool	mechanism	that	is	useful
to	rewrite	the	code	from	Example	2.4,	“multiprocessing.Process
usage”	in	a	more	functional	manner;	an	example	is	provided	as
Example	2.6,	“Worker	using	multiprocessing”.

Example	2.6.	Worker	using	multiprocessing

import	multiprocessing
import	random

def	compute(n):
				return	sum(
								[random.randint(1,	100)	for	i	in	range(1000000)])

#	Start	8	workers
pool	=	multiprocessing.Pool(processes=8)
print("Results:	%s"	%	pool.map(compute,	range(8)))

Using	multiprocessing.Pool,	there	is	no	need	to	manage	the
processes	"manually".	The	pool	starts	processes	on-demand	and	takes
care	of	reaping	them	when	done.	They	are	also	reusable,	which	avoids
calling	the	fork	syscall	too	often	–	which	is	quite	costly.	It	is	a
convenient	design	pattern	that	is	also	leveraged	in	futures,	as	discussed	in
Section	2.3,	“Using	Futures”.

2.3.	Using	Futures
Python	3.2	introduced	the	concurrent.futures	module,	which
provides	an	easy	way	to	schedule	asynchronous	tasks.	The	module	is	also
available	in	Python	2	as	it	has	been	back-ported	–	it	can	easily	be
installed	it	by	running	pip	install	futures.

The	concurrent.futures	module	is	pretty	straightforward	to	use.
First,	one	needs	to	pick	an	executor.	An	executor	is	responsible	for
scheduling	and	running	asynchronous	tasks.	It	can	be	seen	as	a	type	of
engine	for	execution.	The	module	currently	provides	two	kinds	of
executors:	concurrent.futures.ThreadPoolExecutor	and
concurrent.futures.ProcessPoolExecutor.	As	one	might	guess,
the	first	one	is	based	on	threads	and	the	second	one	on	processes.

As	outlined	in	Section	1.1,	“Across	CPUs”,	the	process	based	executor	is
going	to	be	much	more	efficient	for	long-running	tasks	that	benefit	from
having	an	entire	CPU	available.	The	threading	executor	suffers	from	the
same	limitation	of	the	threading	module,	which	was	covered	earlier.

So	what	is	interesting	with	the	concurrent.futures	module	is	that	it
provides	an	easier	to	use	abstraction	layer	on	top	of	the	threading	and
multiprocessing	modules.	It	allows	one	to	run	and	parallelize	code	in
a	straightforward	way,	providing	an	abstract	data	structure	called	a
concurrent.futures.Future	object.

Each	time	a	program	schedules	some	tasks	to	execute	in	threads	or
processes,	the	concurrent.futures	module	returns	a	Future	object
for	each	of	the	task	scheduled.	This	Future	object	owns	the	promise	of

the	work	to	be	completed.	Once	that	work	is	achieved,	the	result	is
available	in	that	Future	object	–	so	in	the	end,	it	does	represent	the
future	and	the	promise	of	a	task	to	be	performed.	That	is	why	it	is	called
Future	in	Python,	and	sometimes	promise	in	other	languages.

Example	2.7.	Worker	using
concurrent.futures.ThreadPoolExecutor

from	concurrent	import	futures
import	random

def	compute():
				return	sum(
								[random.randint(1,	100)	for	i	in	range(1000000)])

with	futures.ThreadPoolExecutor(max_workers=8)	as	executor:
				futs	=	[executor.submit(compute)	for	_	in	range(8)]

results	=	[f.result()	for	f	in	futs]

print("Results:	%s"	%	results)

Compared	to	the	threading	based	example	script,	you	might	notice	that
this	one	is	more	functional.	I	changed	the	compute	function	to	return
the	result	rather	than	changing	a	shared	object.	It	is	then	easy	to
manipulate	and	transfer	the	Future	object	and	collect	the	result	as
desired	when	it	is	needed.	Functional	programming	is	a	perfect	paradigm
to	embrace	when	trying	to	spread	workload	across	distributed	workers	–
it	is	covered	more	in	Chapter	4,	Functional	Programming.

The	code	just	schedules	the	jobs	to	be	fulfilled	and	collects	the	results
from	the	Future	objects	using	the	result	method	–	which	also
supports	a	timeout	parameter	in	case	the	program	cannot	hang	for	too
long.	Future	objects	offer	some	more	interesting	methods:

done():	This	returns	True	if	the	call	was	successfully	canceled	or
terminated	correctly.

add_done_callback(fn):	This	attaches	a	callable	to	the	future
which	is	called	with	the	future	as	its	only	argument;	it	is	done	as	soon
as	the	future	is	canceled	or	terminates	correctly.

Example	2.8.	Time	and	output	of	futures-threads-worker

$	time	python	futures-threads-worker.py
Results:	[50532744,	50524277,	50507195,	50501211,	50537292,	50490570,	50484569,	50515144]
python	futures-threads-worker.py		14.50s	user	6.91s	system	126%	cpu	16.893	total

The	execution	time	is	in	the	same	low	range	as	the	example	using	the
threading	technique:	indeed,	the	underlying	engine	is	based	on	the
threading	module.

Keep	in	mind	that	concurrent.futures	allows	you	to	easily	switch
from	threads	to	processes	by	using	the
concurrent.futures.ProcessPoolExecutor:

Example	2.9.	Worker	using
concurrent.futures.ProcessPoolExecutor

from	concurrent	import	futures
import	random

def	compute():
				return	sum(
								[random.randint(1,	100)	for	i	in	range(1000000)])

with	futures.ProcessPoolExecutor()	as	executor:
				futs	=	[executor.submit(compute)	for	_	in	range(8)]

results	=	[f.result()	for	f	in	futs]

print("Results:	%s"	%	results)

There	is	no	need	to	set	the	number	of	max_workers:	as	by	default
concurrent.futures	calls	the	multiprocessing.cpu_count
function	to	set	the	number	of	workers	to	use,	which	is	equal	to	the
number	of	CPUs	the	system	can	use	–	as	is	shown	in	Example	2.10,
“Extract	of	concurrent.futures.process”

Example	2.10.	Extract	of	concurrent.futures.process

class	ProcessPoolExecutor(_base.Executor):
				def	__init__(self,	max_workers=None):
								#	[...]
								if	max_workers	is	None:
												self._max_workers	=	multiprocessing.cpu_count()
								else:
												self._max_workers	=	max_workers

As	expected,	using	processes	is	much	faster	than	the	threading	based
executor:

Example	2.11.	Time	and	output	of	futures-threads-worker

$	time	python	futures-processes-worker.py
Results:	[50485099,	50461662,	50553224,	50458097,	50520276,	50510314,	50510035,	50525335]
python	futures-processes-worker.py		19.48s	user	0.30s	system	330%	cpu	5.991	total

Warning

One	important	thing	to	notice	with	both	of	the	pool	based
executors	is	the	way	they	manage	the	processes	and	threads	they
spawn.	There	are	several	policies	that	the	authors	could	have
implemented.	The	one	selected	is	that	for	each	job	submitted,	a
new	worker	is	spawned	to	do	the	work,	and	the	work	is	put	in	a
queue	shared	across	all	the	existing	workers.	That	means	that	if
the	caller	sets	max_workers	to	20,	then	20	workers	will	exist	as

soon	as	20	jobs	are	submitted.	None	of	those	processes	will	ever
be	destroyed.	This	is	different	than,	for	example,	Apache	httpd
workers	that	exit	after	being	idle	for	a	while.	You	can	see	that	this
is	marked	as	a	TODO	in	Python	source	code	as	shown	in
Example	2.12,	“Extract	of	concurrent.futures.thread”

Example	2.12.	Extract	of	concurrent.futures.thread

class	ThreadPoolExecutor(_base.Executor):
				def	submit(self,	fn,	*args,	**kwargs):
								[...]
								self._adjust_thread_count()

				def	_adjust_thread_count(self):
								[...]
								#	TODO(bquinlan):	Should	avoid	creating	new	threads	if	there	are	more
								#	idle	threads	than	items	in	the	work	queue.
								if	len(self._threads)	<	self._max_workers:
												t	=	threading.Thread(target=_worker,
																																	args=(weakref.ref(self,	weakref_cb),
																																							self._work_queue))
												t.daemon	=	True
												t.start()
												self._threads.add(t)
												_threads_queues[t]	=	self._work_queue

2.4.	Advanced	Futures	Usage
As	we	have	seen	in	Section	2.3,	“Using	Futures”,	Future	objects	are	an
easy	way	to	parallelize	tasks	in	your	application.	The	futurist	library	has
been	built	on	top	of	concurrent.futures	and	offers	a	few	bonuses	that	I
would	like	to	introduce	here.	It	is	(almost)	a	transparent	replacement	for
concurrent.futures,	so	any	code	should	be	straightforward	in	terms	of
adapting	to	this	library,	which	is	itself	entirely	based	on
concurrent.futures.

Example	2.13.	Workers	using	futurist.ThreadPoolExecutor

import	futurist
from	futurist	import	waiters
import	random

def	compute():
				return	sum(
								[random.randint(1,	100)	for	i	in	range(10000)])

with	futurist.ThreadPoolExecutor(max_workers=8)	as	executor:
				futs	=	[executor.submit(compute)	for	_	in	range(8)]
				print(executor.statistics)

results	=	waiters.wait_for_all(futs)
print(executor.statistics)

print("Results:	%s"	%	[r.result()	for	r	in	results.done])

Example	2.14.	Output	of	futures-threads-worker

	$	python	examples/futurist-threads-worker.py
<ExecutorStatistics	object	at	0x10b95b820	(failures=0,	executed=0,	runtime=0.00,	cancelled=0)>
<ExecutorStatistics	object	at	0x10b95b820	(failures=0,	executed=8,	runtime=143.76,	cancelled=0)>
Results:	[50458683,	50479504,	50517520,	50510116,	50450298,	50510857,	50530137,	50511422]

First,	futurist	allows	any	application	to	access	statistics	about	the
executor	it	uses.	That	view	is	valuable	for	tracking	the	current	status	of
your	tasks	and	to	report	information	on	how	the	code	runs.

futurist	also	allows	passing	a	function	and	possibly	denying	any	new	job
to	be	submitted	by	using	the	check_and_reject	argument.	This
argument	allows	controlling	the	maximum	size	of	the	queue	in	order	to
avoid	any	memory	overflow.

Example	2.15.	Using	check_and_reject	to	limit	queue	size

import	futurist
from	futurist	import	rejection
import	random

def	compute():
				return	sum(
								[random.randint(1,	100)	for	i	in	range(1000000)])

with	futurist.ThreadPoolExecutor(
								max_workers=8,
								check_and_reject=rejection.reject_when_reached(2))	as	executor:
				futs	=	[executor.submit(compute)	for	_	in	range(20)]
				print(executor.statistics)

results	=	[f.result()	for	f	in	futs]
print(executor.statistics)

print("Results:	%s"	%	results)

Depending	on	the	speed	of	your	computer,	it	is	likely	that	Example	2.15,
“Using	check_and_reject	to	limit	queue	size”	raises	a
futurist.RejectedSubmission	exception	because	the	executor	is
not	fast	enough	to	absorb	the	backlog,	the	size	of	which	is	limited	to	two.
This	example	does	not	catch	the	exception	–	obviously,	any	decent
program	should	handle	that	exception	and	either	retry	later,	or	raise	a
different	exception	to	the	caller.

futurist	addresses	a	widespread	use	case	with	the
futurist.periodics.PeriodicWorker	class.	It	allows	scheduling
functions	to	run	regularly,	based	on	the	system	clock.

Example	2.16.	Using	futurist.periodics

import	time

from	futurist	import	periodics

@periodics.periodic(1)
def	every_one(started_at):
				print("1:	%s"	%	(time.time()	-	started_at))

w	=	periodics.PeriodicWorker([
				(every_one,	(time.time(),),	{}),
])

@periodics.periodic(4)
def	print_stats():
				print("stats:	%s"	%	list(w.iter_watchers()))

w.add(print_stats)
w.start()

Example	2.17.	Output	of	futurist-periodics.py
$	python	examples/futurist-periodics.py
1:	1.00364780426
1:	2.00827693939
1:	3.00964093208
stats:	[<Watcher	object	at	0x1104fc790	(runs=3,	successes=3,	failures=0,	elapsed=0.00,	elapsed_waiting=0.00)>,
								<Watcher	object	at	0x1104fc810	(runs=0,	successes=0,	failures=0,	elapsed=0.00,	elapsed_waiting=0.00)>]
1:	4.00993490219
1:	5.01245594025
1:	6.01481294632
1:	7.0150718689
stats:	[<Watcher	object	at	0x1104fc790	(runs=7,	successes=7,	failures=0,	elapsed=0.00,	elapsed_waiting=0.00)>,
								<Watcher	object	at	0x1104fc810	(runs=1,	successes=1,	failures=0,	elapsed=0.00,	elapsed_waiting=0.00)>]

1:	8.01587891579
1:	9.02099585533
[...]

Example	2.16,	“Using	futurist.periodics”	implements	two	tasks.
One	runs	every	second	and	prints	the	time	elapsed	since	the	start	of	the
task.	The	second	task	runs	every	four	seconds	and	prints	statistics	about
the	running	of	those	tasks.	Again	here,	futurist	offers	internal	access	to	its
statistics,	which	is	very	handy	for	reporting	the	status	of	the	application.

While	not	necessary	to	depend	on,	futurist	is	a	great	improvement	over
concurrent.futures	if	you	need	fine	grained	control	over	the
execution	of	your	threads	or	processes.

2.5.	Daemon	Processes
Being	aware	of	the	difference	between	multithreading	and
multiprocessing	in	Python,	it	becomes	more	clear	that	using	multiple
processes	to	schedule	different	jobs	is	efficient.	A	widespread	use	case	is
to	run	long-running,	background	processes	(often	called	daemons)	that
are	responsible	for	scheduling	some	tasks	regularly	or	processing	jobs
from	a	queue.

It	could	be	possible	to	leverage	concurrent.futures	and	a
ProcessPoolExecutor	to	do	that	as	discussed	in	Section	2.3,	“Using
Futures”.	However,	the	pool	does	not	provide	any	control	regarding	how
it	dispatches	jobs.	The	same	goes	for	using	the	multiprocessing
module.	They	both	make	it	hard	to	efficiently	control	the	running	of
background	tasks.	Think	of	it	as	the	"pets	vs.	cattle"	analogy	for
processes.

In	this	section,	I	would	like	to	introduce	you	to	Cotyledon,	a	Python
library	designed	to	build	long-running	processes.

Example	2.18.	Daemon	using	Cotyledon

import	threading

https://github.com/sileht/cotyledon

import	time

import	cotyledon

class	PrinterService(cotyledon.Service):
				name	=	"printer"

				def	__init__(self,	worker_id):
								super(PrinterService,	self).__init__(worker_id)
								self._shutdown	=	threading.Event()

				def	run(self):
								while	not	self._shutdown.is_set():
												print("Doing	stuff")
												time.sleep(1)

				def	terminate(self):
								self._shutdown.set()

#	Create	a	manager
manager	=	cotyledon.ServiceManager()
#	Add	2	PrinterService	to	run
manager.add(PrinterService,	2)
#	Run	all	of	that
manager.run()

Example	2.18,	“Daemon	using	Cotyledon”	is	a	simple	implementation	of
a	daemon	using	Cotyledon.	It	creates	a	class	named	PrinterService
that	implements	the	needed	method	for	cotyledon.Service:	run
which	contains	the	main	loop,	and	terminate,	which	is	called	by
another	thread	when	it	terminates	the	service.

Cotyledon	uses	several	threads	internally	(at	least	to	handle	signals),
which	is	why	the	threading.Event	object	is	used	to	synchronize	the

run	and	terminate	methods.

This	service	does	not	do	much;	it	simply	prints	the	message	Doing
stuff	every	second.	The	service	is	started	twice	by	passing	two	as	the
number	of	services	to	start	to	manager.add.	That	means	Cotyledon
starts	two	processes,	each	of	them	launching	the	PrinterService.run
method.

When	launching	this	program,	you	can	run	the	ps	command	on	your
system	–	on	Unix	at	least	–	to	see	what	is	running:

74476	ttys004				0:00.09	cotyledon-simple.py:	master	process	[examples/cotyledon-simple.py]
74478	ttys004				0:00.00	cotyledon-simple.py:	printer	worker(0)
74479	ttys004				0:00.00	cotyledon-simple.py:	printer	worker(1)

Cotyledon	runs	a	master	process	that	is	responsible	for	handling	all	of	its
children.	It	then	starts	the	two	instances	of	PrinterService	as	it	was
requested	to	launch.	It	also	gives	them	nice	shiny	process	names,	making
them	easier	to	track	in	the	long	list	of	processes.	If	one	of	the	processes
gets	killed	or	crashes,	it	is	automatically	relaunched	by	Cotyledon.	The
library	does	a	lot	behind	the	scenes,	e.g.,	doing	the	os.fork	calls	and
setting	up	the	right	modes	for	daemons.

Cotyledon	also	supports	all	operating	systems	supported	by	Python	itself,
avoiding	the	developer	needing	to	have	to	think	about	operating	system
portability	–	which	can	be	quite	complex.

Example	2.18,	“Daemon	using	Cotyledon”	is	a	simple	scenario	for
independent	workers	–	they	can	execute	a	job	on	their	own,	and	they	do
not	need	to	communicate	with	each	other.	This	scenario	is	rare,	as	most
services	need	to	exchange	between	one	another.

Example	2.19,	“Producer/consumer	using	Cotyledon”	shows	an
implementation	of	the	common	producer/consumer	pattern.	In	this
pattern,	a	service	fills	a	queue	(the	producer)	and	other	services	(the
consumers)	consume	the	jobs	to	execute	them.

Example	2.19.	Producer/consumer	using	Cotyledon

import	multiprocessing
import	time

import	cotyledon

class	Manager(cotyledon.ServiceManager):
				def	__init__(self):
								super(Manager,	self).__init__()
								queue	=	multiprocessing.Manager().Queue()
								self.add(ProducerService,	args=(queue,))
								self.add(PrinterService,	args=(queue,),	workers=2)

class	ProducerService(cotyledon.Service):
				def	__init__(self,	worker_id,	queue):
								super(ProducerService,	self).__init__(worker_id)
								self.queue	=	queue

				def	run(self):
								i	=	0
								while	True:
												self.queue.put(i)
												i	+=	1
												time.sleep(1)

class	PrinterService(cotyledon.Service):
				name	=	"printer"

				def	__init__(self,	worker_id,	queue):
								super(PrinterService,	self).__init__(worker_id)
								self.queue	=	queue

				def	run(self):
								while	True:
												job	=	self.queue.get(block=True)

												print("I	am	Worker:	%d	PID:	%d	and	I	print	%s"
																		%	(self.worker_id,	self.pid,	job))

Manager().run()

The	program	in	Example	2.19,	“Producer/consumer	using	Cotyledon”
implements	a	custom	cotyledon.ServiceManager	that	is	in	charge
for	creating	the	queue	object.	This	queue	object	is	passed	to	all	the
services.	The	ProducerService	uses	that	queue	and	fills	it	with	an
incremented	integer	every	second,	whereas	the	PrinterService
instances	consume	from	that	queue	and	print	its	content.

When	run,	the	program	outputs	the	following:

I	am	Worker:	0	PID:	24727	and	I	print	0
I	am	Worker:	0	PID:	24727	and	I	print	1
I	am	Worker:	1	PID:	24728	and	I	print	2
I	am	Worker:	0	PID:	24727	and	I	print	3

The	multiprocessing.queues.Queue	object	eases	the
communication	between	different	processes.	It	is	safe	to	use	across
threads	and	processes,	as	it	leverages	locks	internally	to	guarantee	data
safety.

Note

If	you	are	familiar	with	the	Go	programming	language,	this	is	the
basic	pattern	that	is	used	to	implement	the	Go	routines	and
their	channels.	That	common	and	efficient	pattern	made	the	Go
language	very	popular.	In	Go,	forking	new	processes	and	passing
messages	between	them	is	provided	as	a	built-in	element	of	the
language.	Providing	syntactic	sugar	makes	it	quicker	to	write
programs	with	this	pattern.	However,	in	the	end,	you	can	achieve
the	same	thing	in	Python,	though,	with	maybe,	a	little	more	effort.

Last,	but	not	least,	Cotyledon	also	offers	a	few	more	features,	such	as
reloading	the	program	configuration	or	changing	the	number	of	workers
for	a	class	dynamically.

Example	2.20.	Reconfiguring	the	number	of	processes	with
Cotyledon

import	multiprocessing
import	time

import	cotyledon

class	Manager(cotyledon.ServiceManager):
				def	__init__(self):
								super(Manager,	self).__init__()
								queue	=	multiprocessing.Manager().Queue()
								self.add(ProducerService,	args=(queue,))
								self.printer	=	self.add(PrinterService,	args=(queue,),	workers=2)
								self.register_hooks(on_reload=self.reload)

				def	reload(self):
								print("Reloading")
								self.reconfigure(self.printer,	5)

class	ProducerService(cotyledon.Service):
				def	__init__(self,	worker_id,	queue):
								super(ProducerService,	self).__init__(worker_id)
								self.queue	=	queue

				def	run(self):
								i	=	0
								while	True:
												self.queue.put(i)
												i	+=	1
												time.sleep(1)

class	PrinterService(cotyledon.Service):
				name	=	"printer"

				def	__init__(self,	worker_id,	queue):
								super(PrinterService,	self).__init__(worker_id)
								self.queue	=	queue

				def	run(self):
								while	True:
												job	=	self.queue.get(block=True)
												print("I	am	Worker:	%d	PID:	%d	and	I	print	%s"
																		%	(self.worker_id,	self.pid,	job))

Manager().run()

In	Example	2.20,	“Reconfiguring	the	number	of	processes	with
Cotyledon”,	only	two	processes	for	PrinterService	are	started.	As
soon	as	SIGHUP	is	sent	to	the	master	process,	Cotyledon	calls	the
Manager.reload	method	that	reconfigure	the	printer	service	to	now
have	five	processes.	This	is	easy	to	check:

$	ps	ax	|	grep	cotyledon
55530	s002		S+					0:00.12	cotyledon-reconfigure.py:	master	process	[examples/cotyledon-reconfigure.py]
55531	s002		S+					0:00.02	cotyledon-reconfigure.py:	master	process	[examples/cotyledon-reconfigure.py]
55532	s002		S+					0:00.01	cotyledon-reconfigure.py:	ProducerService	worker(0)
55533	s002		S+					0:00.01	cotyledon-reconfigure.py:	printer	worker(0)
55534	s002		S+					0:00.01	cotyledon-reconfigure.py:	printer	worker(1)
$	kill	-HUP	55530
$	ps	ax	|	grep	cotyledon
55530	s002		S+					0:00.27	cotyledon-reconfigure.py:	master	process	[examples/cotyledon-reconfigure.py]
55531	s002		S+					0:00.03	cotyledon-reconfigure.py:	master	process	[examples/cotyledon-reconfigure.py]
55551	s002		S+					0:00.01	cotyledon-reconfigure.py:	printer
55553	s002		S+					0:00.01	cotyledon-reconfigure.py:	printer	worker(3)

55554	s002		S+					0:00.01	cotyledon-reconfigure.py:	printer	worker(4)
55555	s002		S+					0:00.01	cotyledon-reconfigure.py:	printer	worker(1)
55557	s002		S+					0:00.01	cotyledon-reconfigure.py:	ProducerService	worker(0)
55558	s002		S+					0:00.01	cotyledon-reconfigure.py:	printer	worker(0)

Cotyledon	is	an	excellent	library	for	managing	long-running	processes.	I
encourage	everyone	to	leverage	it	to	build	long-running,	background,	job
workers.

2.6.	Mehdi	Abaakouk	on	CPU
Scaling

Hey	Mehdi!	Could	you	start	by	introducing	yourself	and

explaining	how	you	came	to	Python?

Hi!	I	am	Mehdi	Abaakouk,	I	live	in	Toulouse	(France),	and	I	have

been	using	Linux	for	almost	twenty	years.

My	current	job	is	Senior	Software	Engineer	for	Redhat.	My	main

interests	in	computer	sciences	are	open-source	software	and	how	the

Internet	works	under	the	hood,	and	I	like	hacking	both	of	them.

At	the	beginning	of	my	using	Linux,	I	was	frustrated	with	the	music

players	available	at	that	time,	so	I	started	to	write	one.	I	looked	at	the

code	of	many	media	players	and	wanted	to	use	GTK/GStreamer

toolkits.	I	first	tried	it	in	C	by	reusing	some	code	from	Rhythmbox,

but	I	quickly	abandoned	that	because	of	the	slow	progress	I	made

each	coding	session	done	during	my	free	time.	At	my	day	job,,	I	was

more	focusing	on	PHP	and	Java	languages.

Then	I	discovered	a	new	media	player	named	Quodlibet	that	was

completely	written	in	Python	with	some	awesome	code	to	parse	the

metadata	of	media	files.	However,	the	UI,	the	playlists	and	songs

manager	were	not	up	to	my	standards.	So	I	tried	to	rewrite	it,	with

my	user	interface	ideas,	but	in	Python	this	time.	I	was	surprised	by

the	quick	progress	I	made.	It	was	the	first	time	I	used	Python,	but	it

was	so	easy	to	learn!	The	online	documentation	and	examples	were

so	rich	compared	to	other	languages.	The	Python	bindings	for

GTK/GStreamer	were	complete	and	easy	to	use	too.	I	was	able	to

build	something	workable	very	quickly	and	to	focus	on	the	features	I

wanted.	What	did	surprised	me	with	Python	was	how	the	language

hid	complicated	computer	things	and	how	it	was	so	concise.	As	a

young	developer,	it	helped	me	a	lot.	That	is	how	the	Listen	media

player	was	born.	The	project	and	its	small	community	was	alive	for

six	years.

That	was	my	first	Python	and	open-source	project;	it	grew	very

quickly.	I	learned	many	things	about	computers,	open-source	and

Python	itself	because	of	this	project.

After	that,	I	wrote	some	small	tools	in	Python	every	time	I	could	for

my	new	"System	and	Network	Engineer"	job	to	automate	the	team’s

work	instead	of	doing	the	same	tasks	over	and	over	again.	Thanks	to

this	experience	and	my	Python	background,	I	finally	was	employed

to	participate	in	the	OpenStack	project,	a	set	of	open-source	cloud

computing	software.	Now	I	can	finally	participate	in	Python	projects

every	day	with	a	good	understanding	of	how	computers	and

networks	work,	and	not	just	how	the	language	works.

Considering	you	worked	on	a	cloud	computing	platform

and	created	Cotyledon,	I’m	sure	you	have	good	advice

about	scaling	using	threads	and	processes.	What	would

that	be?	What	would	be	the	mistakes	and	trap	to	not	fall

into?

Typical	applications	do	either	I/Os	(reading	and	writing	data)	or	do	a

calculation	using	the	CPU:

When	an	application	does	I/Os,	it	is	constantly	waiting	for	the
operating	system	to	process	those	streams	and	to	return	the
result.	During	that	time,	the	application	is	stuck.

When	an	application	does	a	calculation	using	the	CPU,	it	can	only
use	one	of	those	CPUs:	others	CPUs	are	idle.

To	improve	this	situation,	you	need	to	use	threads	and	processes	to

execute	these	tasks	in	parallel.

My	advice	is	this:	do	not	use	threads	to	manipulate	objects	or

compute	things	with	Python	code.	In	that	case,	because	of	the	GIL,	it

is	indeed	slow.	However,	for	I/Os	operations,	you	can	use	threads.

Their	biggest	advantage	is	that	they	share	the	memory	address	space

of	the	program,	requiring	less	work	for	the	CPUs	to	switch	from	one

thread	to	another.	They	also	help	to	share	network	connections

between	workers,	so	your	program	does	not	have	to	establish

multiple	connections	to	a	server.

For	CPU	intensive	tasks,	use	a	Python	library	written	in	C	or	in

Cython	which	allows	manipulating	your	objects	without	being	locked

by	the	GIL	(a	perfect	example	is	NumPy).

Using	threads	for	concurrency	forces	the	developer	to	pay	attention

http://cython.org
http://numpy.org

to	shared	resources.	You	should	not	write	in	the	same	socket	or

modify	the	same	objects	at	the	same	time	with	two	different	threads.

You	can	use	locks	to	protect	accesses	to	the	resource.	However,	using

locks	has	to	be	avoided	as	it	just	prevents	threads	from	running	in

parallel	efficiently,	because	they	have	to	wait	for	the	lock	to	be	freed

up.

You	can	also	use	processes	to	run	many	tasks	at	once.	At	first	glance,

that	sounds	faster	because	there’s	no	GIL	involved.	However,

processes	do	not	share	any	memory	space.	That	means	your	different

processes	must	work	stateless.	That	also	means	the	CPUs	will	have

more	work	to	do	to	switch	from	one	process	to	another.	An

application	should	not	use	too	many	processes.	A	rule	of	thumb,	is

good	to	have	the	number	of	processes	equal	to	the	number	of	CPUs

available	so	that	each	process	can	stick	to	one	CPU.	That	avoids

doing	context	switching	on	the	CPUs	to	run	other	processes,	which	is

slow.

Another	downside	of	processes	is	that	there’s	a	good	chance	they	will

multiply	the	number	of	open	network	connections.	Sharing	them

across	processes	is	highly	complicated	and	error	prone.

Threads	cannot	be	spread	across	several	computers,	whereas	process

could	be.	That’s	especially	true	if	the	processes	are	stateless.

Also,	having	many	processes	doing	the	same	thing	in	parallel	means

that	you	do	not	have	to	deal	with	their	life-cycle.	If	one	crashes,

restart	it.	You	can	easily	stop	or	restart	all	of	them	at	once	or

propagate	the	signal	handling	between	them.	A	good	way	to	handle

that	is	to	create	a	process	that	only	takes	care	of	the	life	of	the	others

and	does	nothing	else	(a	scheduler).

With	both	solutions,	you	may	have	to	deal	with	signals,	and	they	are

not	concurrency	friendly.	Signals	can	be	received	at	any	time,

freezing	the	code	of	a	random	thread	of	your	process	and	running	the

signal	callback	within	instead.	If	your	signal	callback	does	I/Os	or	a

blocking	operation,	the	process	will	switch	to	another	thread,

without	unfreezing	the	code	executed	previously!

You	could	also	receive	a	second	signal	in	the	meantime,	or	another

thread	could	end	the	thread	that	is	in	charge	of	processing	the	signal.

That	is	a	nightmare	to	handle.	It	leads	to	race	conditions	that	are

hard	to	debug	and	fix.

If	I	had	only	one	piece	of	advice	to	solve	of	all	this:	register	a	signal

callback	that	does	nothing.	Instead,	use	the	main	thread	of	your

application	to	create	a	file	descriptor	with

signal.set_wakeup_fd	and	wait	for	CPython	to	write	in	the	last

signal	number	received.	That	removes	all	the	complexity	of	signal

handling.

Cotyledon	is	a	library	I	wrote	to	easily	manage	the	processes	of

workers.	Just	create	a	worker	class	to	do	the	work	and	tell	Cotyledon

how	many	of	them	you	want	to	run	in	parallel.	It	takes	care	of	their

life	cycle,	it	also	takes	care	of	the	signal	handling	and	ensure	the

application	callbacks	are	always	run	in	the	main	thread	without

interrupting	the	code	violently,	as	I	described.

Finally,	none	of	these	solutions	are	exclusive.	You	can	use	threads	to

do	I/Os	concurrently	and	spawn	many	processes	to	maximize	the

CPU	utilization.	Any	mix	is	possible.	Generate	some	metrics	with

your	application	to	see	which	part	of	your	code	waits	for	I/Os

completion	and	where	it	uses	CPU.	That	should	help	you	to	create

threads	and	processes	at	the	correct	places.

It	sounds	like	running	multiple	processes	is	a	good	first

step	for	scaling	out	Python	horizontally	on	multiple	nodes.

So	when	one	wants	to	do	that,	what’s	your	favorite	design

pattern	to	write	applications	that	can	leverage	that?	What’s

your	go-to	library,	solution,	or	technology	to	help	in

writing	application	for	that?

I	always	start	with	the	same	scheme.	I	write	one	component	to	talk	to

the	user,	often	a	REST	API	within	a	WSGI	application.	Then	I	write

other	components	to	do	the	real	job,	often	called	workers,	executing

background	jobs.	Interactions	between	them	must	be	asynchronous.

Next,	I	pick	a	technology	to	make	the	component	interact	with	each

other.	Depending	of	the	nature	of	the	jobs	that	can	be	a	database,

message	queues,	or	even	both.

In	case	of	multiple	processes	working	on	multiples	nodes,	it	often

makes	sense	to	use	a	pub/sub	mechanism	based	on	a	message

queues	system.	I	like	to	use	Redis	most	of	the	times	because	it	is	easy

to	use	and	deploy	with	the	python-redis	or	python-rq	libraries.	On	a

bigger	scale,	when	the	number	of	messages	waiting	to	be	processed	is

too	high,	or	when	you	have	many	different	kinds	of

producers/consumers,	I	would	switch	to	Kafka,	to	partition	the

workload	across	different	servers	with	confluent-kakfa-python	or

python-kafka	libraries.

On	the	REST	API	side,	I	avoid	waiting	for	the	workers.	The	REST

API	just	publishes	messages	to	the	workers	and	returns	the	fact	that

the	jobs	have	been	accepted.	I	prefer	the	client	to	poll	the	REST	API

to	get	the	status	of	the	jobs	regularly,	instead	of	having	a	request

waiting	on	another	part	of	the	infrastructure.	This	avoids	long	lived

requests	that	add	timeout	everywhere.	Moreover,	since	each	part

works	independently,	it	simplifies	a	lot	of	investigation	during	root

cause	analysis.

Even	better,	I	like	to	produce	an	event	stream	that	can	be	consumed

by	the	client.	For	example,	when	the	client	is	a	browser,	the

Javascript	EventSource	API	allows	subscribing	to	an	HTTP	event

stream	easily.	On	the	server	side,	using	Flask,	a	stream	is	just	a

Python	generator	that	yields	a	JSON,	with	a	response	mime	type	set

to	text/event-stream.	To	consume	this	stream	from	the	REST

application,	I	use	Redis	again:	the	workers	publish	the	jobs	statuses

on	queues,	if	an	HTTP	stream	request	has	subscribed	to	one	of	them,

it	is	yielded	by	the	stream	generator	and	sent	back	to	the	browser	via

the	EventSource	API.	No	polling	at	all:	just	a	bunch	of	HTTP

connections,	idle	most	of	the	time.

I	would	also	recommend	writing	a	dedicated	WSGI	application	for

the	event	stream	REST	endpoint	in	such	cases	–	it	often	needs	some

specific	tuning	to	allow	many	idle	open	connections	in	parallel	that

must	be	kept	open	for	a	long	time.	The	REST	API	should	not	allow

wasting	resources.

To	finish,	if	you	like	all	these	events	based	workflows,	the	new

asyncio	Python	API	fits	perfectly	in	the	event	stream	use	case.

Instead	of	writing	a	blocking	WSGI	application	with	flask/python-

redis,	you	can	switch	to	aiohttp	and	aioredis	just	for	this	REST

endpoint.

Thank	you	Mehdi!

You’re	welcome!

Chapter	3.	Event	Loops
If	event	loops	do	not	ring	a	bell,	maybe	you’ve	heard	of	them	under
another	name,	such	as	message	dispatching.	An	event	loop	is	a	central
control	flow	of	a	program	where	messages	are	pushed	into	a	queue,	and
this	queue	is	consumed	by	the	event	loop,	dispatching	them	to
appropriate	functions.

A	very	simplistic	form	of	event	loop	would	be	something	like	this:

while	True:	message	=	get_message()	if	message	==	quit:	break
				process_message(message)

Each	time	a	message	(which	can	also	be	called	an	event)	is	received,	it	is
processed	–	until	a	final	message	is	received	to	make	the	program	quit.

This	design	is	quite	efficacious	as	it	allows	the	program	to	wait	and	do
nothing	(as	long	as	get_message	is	blocking)	and	waking	up	as	soon	as
a	message	is	received.

As	long	as	there	is	only	one	source	of	message,	this	program	can	be	quite
trivial	to	write.	Consuming	from	a	single	queue	is	precisely	what
distributed	programs	would	do	based	on	queues,	as	described	in
Chapter	5,	Queue-Based	Distribution.

However,	most	programs	do	not	have	a	single	source	of	messages	and
events.	Moreover,	dealing	with	any	event	might	generate	new	sources	of
events,	of	different	types.	That	means	that	the	program	has	to	handle
different	source	of	events.

3.1.	Basic	Pattern
The	most	used	source	of	events	is	I/O	readiness.	Most	read	and	write
operations	are	blocking	in	nature	by	default,	slowing	down	the	program
execution	speed.	If	the	program	has	to	wait	several	seconds	for	a	read	to

be	completed,	it	cannot	do	anything	else	during	that	time.	read	is	a
synchronous	call	and	when	performed	on	a	file,	socket,	etc.,	that	has	no
data	ready	to	be	read,	it	blocks	the	program.

The	solution	to	that	problem	is	to	expect	an	event	when	the	socket,	for
example,	is	ready	to	be	read.	While	this	is	not	the	case,	the	program	can
deal	with	any	other	event	that	might	happen.

Example	3.1,	“A	blocking	socket”	is	a	simple	program	that	sends	an	HTTP
request	to	http://httpbin.org/delay/5.	The	URL	returns	a	JSON
content	after	five	seconds	of	delay.

Example	3.1.	A	blocking	socket

import	socket

s	=	socket.create_connection(("httpbin.org",	80))
s.send(b"GET	/delay/5	HTTP/1.1\r\nHost:	httpbin.org\r\n\r\n")
buf	=	s.recv(1024)
print(buf)

As	expected,	when	this	program	runs,	it	takes	at	least	five	seconds	to
complete:	the	socket.recv	call	hangs	until	the	remote	Web	server
sends	the	reply.

This	is	the	kind	of	situation	that	should	be	avoided:	waiting	for	an	input
or	output	to	complete	before	going	on,	as	the	program	could	be	doing
something	else	rather	than	waiting.

The	solution	here	is	to	put	the	socket	in	asynchronous	mode.	This	can	be
done	using	the	setblocking	method.

Example	3.2.	A	non-blocking	socket

import	socket

s	=	socket.create_connection(("httpbin.org",	80))
s.setblocking(False)

s.send(b"GET	/delay/5	HTTP/1.1\r\nHost:	httpbin.org\r\n\r\n")
buf	=	s.recv(1024)
print(buf)

Running	the	program	in	Example	3.2,	“A	non-blocking	socket”	will	fail
with	an	interesting	error:

Traceback	(most	recent	call	last):
		File	"examples/socket-non-blocking.py",	line	6,	in	<module>
				buf	=	s.recv(1024)
BlockingIOError:	[Errno	35]	Resource	temporarily	unavailable

As	the	socket	does	not	have	any	data	to	be	read,	rather	than	blocking
until	it	has,	Python	raises	a	BlockingIOError,	asking	the	caller	to	retry
at	a	later	time.

At	this	point,	you	can	see	where	this	is	going.	If	the	program	can	get	a
message	as	soon	as	the	socket	is	ready	to	be	handled,	the	code	can	do
something	else	rather	than	actively	waiting.

The	simplest	mechanism	to	do	that	in	Python	is	to	use	the	select
module.	This	module	provides	select.select(rlist,	wlist,
xlist)	function	that	takes	any	number	of	sockets	(or	file	descriptors)	as
input	and	returns	the	ones	that	are	ready	to	read,	write	or	have	errors.

Example	3.3.	Using	select.select	with	sockets

import	select
import	socket

s	=	socket.create_connection(("httpbin.org",	80))
s.setblocking(False)
s.send(b"GET	/delay/1	HTTP/1.1\r\nHost:	httpbin.org\r\n\r\n")
while	True:
				ready_to_read,	ready_to_write,	in_error	=	select.select(
								[s],	[],	[])

				if	s	in	ready_to_read:
								buf	=	s.recv(1024)
								print(buf)
								break

In	Example	3.3,	“Using	select.select	with	sockets”,	the	socket	is
passed	as	an	argument	in	the	list	of	descriptors	we	want	to	watch	for
read-readiness.	As	soon	as	the	socket	has	data	available	to	read,	the
program	can	read	them	without	blocking.

If	you	combine	multiple	sources	of	events	in	a	select	call,	it	is	easy	to
see	how	your	program	can	become	event-driven.	The	select	loop
becomes	the	main	control	flow	of	the	program,	and	everything	revolves
around	it.	As	soon	as	some	file	descriptor	or	socket	is	available	for
reading	or	writing,	it	is	possible	to	continue	operating	on	it.

This	kind	of	mechanism	is	at	the	heart	of	any	program	that	wants	to
handle,	for	example,	thousands	of	connections	at	once.	It	is	the	base
technology	leveraged	by	tools	such	as	really	fast	HTTP	servers	like
NGINX	or	Node.js.

select	is	an	old	but	generic	system	call,	and	it	is	not	the	most	well
performing	out	there.	Different	operating	systems	implement	various
alternative	and	optimizations,	such	as	epoll	in	Linux	or	kqueue	in
FreeBSD.	As	Python	is	a	high-level	language,	it	implements	and	provides
an	abstraction	layer	known	as	asyncio.

3.2.	Using	Asyncio
Now	that	you	have	a	good	idea	of	what	an	event	loop	is	and	of	what	it
provides,	it	is	a	good	time	to	dig	into	the	use	of	a	state-of-the-art	event
loop.	Asyncio	is	new	in	Python	3,	and	it	requires	Python	3.5	or	later	to	use
it	as	described	in	this	section.

Asyncio	is	centered	on	the	concept	of	event	loops,	which	work	in	the	same
way	as	the	select	module	described	in	Section	3.1,	“Basic	Pattern”.

http://nginx.org/en/docs/events.html
https://nodejs.org/

Once	asyncio	has	created	an	event	loop,	an	application	registers	the
functions	to	call	back	when	a	specific	event	happens:	as	time	passes,	a	file
descriptor	is	ready	to	be	read,	or	a	socket	is	ready	to	be	written.

That	type	of	function	is	called	a	coroutine.	It	is	a	particular	type	of
function	that	can	give	back	control	to	the	caller	so	that	the	event	loop	can
continue	running.	It	works	in	the	same	manner	than	a	generator	would,
giving	back	the	control	to	a	caller	using	the	yield	statement.

Example	3.4.	Hello	world	asyncio	coroutine

import	asyncio

async	def	hello_world():
				print("hello	world!")
				return	42

hello_world_coroutine	=	hello_world()
print(hello_world_coroutine)

event_loop	=	asyncio.get_event_loop()
try:
				print("entering	event	loop")
				result	=	event_loop.run_until_complete(hello_world_coroutine)
				print(result)
finally:
				event_loop.close()

The	example	in	Example	3.4,	“Hello	world	asyncio	coroutine”	shows	a
very	straightforward	implementation	of	an	event	loop	using	a	coroutine.
The	coroutine	hello_world	is	defined	as	a	function,	except	that	the
keyword	to	start	its	definition	is	async	def	rather	than	just	def.	This
coroutine	just	prints	a	message	and	return	a	result.

The	event	loop	runs	this	coroutine	and	is	terminated	as	soon	as	the
coroutine	returns,	ending	the	program.	Coroutines	can	return	values,	and

in	this	case,	the	value	42	is	returned	by	the	coroutine,	which	is	then
returned	by	the	event	loop	itself.

Example	3.5.	Output	of	asyncio-basic.py

$	python3	examples/asyncio-basic.py
<coroutine	object	hello_world	at	0x107dad518>
entering	event	loop
hello	world!
42

Coroutines	can	cooperate	–	this	is	why	they	are	named	coroutines	after
all.	You	can,	therefore,	call	a	coroutine	from	a	coroutine.

Example	3.6.	Coroutine	awaiting	on	coroutine

import	asyncio

async	def	add_42(number):
				print("Adding	42")
				return	42	+	number

async	def	hello_world():
				print("hello	world!")
				result	=	await	add_42(23)
				return	result

event_loop	=	asyncio.get_event_loop()
try:
				result	=	event_loop.run_until_complete(hello_world())
				print(result)
finally:
				event_loop.close()

The	await	keyword	is	used	to	run	the	coroutine	cooperatively.	await

gives	the	control	back	to	the	event	loop,	registering	the	coroutine
add_42(23)	into	it.	The	event	loop	can,	therefore,	schedule	whatever	it
needs	to	run.	In	this	case,	only	add_42(23)	is	ready	and	waiting	to	be
executed:	therefore	it	is	one	that	gets	executed.	Once	finished,	the
execution	of	the	hello_world	coroutine	can	be	resumed	by	the	event
loop	scheduler.

Example	3.7.	Output	of	asyncio-coroutines.py

$	python3	examples/asyncio-coroutines.py
hello	world!
Adding	42
65

The	examples	so	far	are	pretty	straightforward,	and	it	is	easy	to	guess	in
which	order	the	various	coroutines	are	executed.	Those	programs	were
barely	leveraging	event	loop	scheduling.

The	example	in	Example	3.8,	“Coroutine	using	asyncio.sleep	and
asyncio.gather.”	introduces	two	new	functions:

asyncio.sleep	is	the	asynchronous	implementation	of
time.sleep.	It	is	a	coroutine	that	sleeps	some	number	of	seconds.
Since	it	is	a	coroutine	and	not	a	function,	it	can	be	used	to	yield	back
the	control	to	the	event	loop.

asyncio.gather	allows	to	wait	for	several	coroutines	at	once	using	a
single	await	keyword.	Rather	than	using	several	sequential	await
keywords,	this	allows	explicitly	stating	to	the	scheduler	that	all	the
results	of	those	operations	are	needed	to	continue	the	execution	of	the
program.	It	makes	sure	the	event	loop	executes	those	coroutines
concurrently.

Example	3.8.	Coroutine	using	asyncio.sleep	and
asyncio.gather.

import	asyncio

async	def	hello_world():
				print("hello	world!")

async	def	hello_python():
				print("hello	Python!")
				await	asyncio.sleep(0.1)

event_loop	=	asyncio.get_event_loop()
try:
				result	=	event_loop.run_until_complete(asyncio.gather(
								hello_world(),
								hello_python(),
))
				print(result)
finally:
				event_loop.close()

In	Example	3.8,	“Coroutine	using	asyncio.sleep	and
asyncio.gather.”,	both	the	hello_world	and	hello_python
coroutines	are	executed	concurrently.	If	the	event	loop	scheduler	starts
with	hello_world,	it	will	be	able	to	continue	only	afterwards	with
hello_python.	hello_python	will	then	inform	the	scheduler	that	it
needs	to	wait	for	the	asyncio.sleep(0.1)	coroutine	to	complete.	The
scheduler	will	execute	this	coroutine,	which	makes	take	into	account	a	0.1
second	delay	before	giving	back	the	execution	to	hello_python.	Once	it
does	that,	the	coroutine	is	finished,	terminating	the	event	loop.

Contrary	to	the	classic	time.sleep	function,	which	makes	Python	sleep
synchronously	and	blocks	it	while	it	waits,	asyncio.sleep	can	be
handled	asynchronously,	so	Python	can	do	something	else	while	it	waits
for	the	specified	delay	to	pass.

In	the	case	where	hello_python	is	the	first	coroutine	to	run,	the
execution	of	hello_world	only	starts	after	that	the	await
asyncio.sleep(0.1)	coroutine	is	yielded	back	to	the	event	loop.	Then
the	rest	of	the	event	loop	continues	its	execution	and	terminates.

The	aiohttp	library	provides	an	asynchronous	HTTP	–	it	is	also	covered
in	Section	9.5,	“Fast	HTTP	Client”.	The	example	in	Example	3.9,	“Using
aiohttp”	is	a	simple	example	of	leveraging	asyncio	for	concurrency.

Example	3.9.	Using	aiohttp

import	aiohttp
import	asyncio

async	def	get(url):
				async	with	aiohttp.ClientSession()	as	session:
								async	with	session.get(url)	as	response:
												return	response

loop	=	asyncio.get_event_loop()

coroutines	=	[get("http://example.com")	for	_	in	range(8)]

results	=	loop.run_until_complete(asyncio.gather(*coroutines))

print("Results:	%s"	%	results)

This	example	creates	several	coroutines,	one	for	each	call	to	get.	Those
coroutines	are	then	gathered,	and	so	they	are	executed	concurrently	by
the	event	loop.	If	the	remote	Web	server	is	far	away	and	needs	a	long
delay	to	reply,	the	event	loop	switches	to	the	next	coroutine	that	is	ready
to	be	resumed,	making	sure	the	connections	that	are	ready	to	be	read	are
read.

Note

The	async	with	keyword	used	in	Example	3.9,	“Using	aiohttp”
is	equivalent	to	the	await	keyword,	but	is	specific	to	context
managers	that	use	await	in	their	__enter__	and	__exit__
methods.

Asyncio	also	provides	a	way	to	call	functions	at	a	later	time.	Rather	than
building	a	waiting	loop	with	asyncio.sleep,	the	methods
call_later	and	call_at	can	be	used	to	call	functions	at	a	relative	or
absolute	future	time	respectively.

Example	3.10.	Using	loop.call_later

import	asyncio

def	hello_world():
				print("Hello	world!")

loop	=	asyncio.get_event_loop()
loop.call_later(1,	hello_world)
loop.run_forever()

The	example	in	Example	3.10,	“Using	loop.call_later”	prints	"Hello
world!"	one	second	after	starting	and	then	blocks	forever	as	the	loop	has
nothing	else	to	do.

Example	3.11.	Using	loop.call_later	repeatedly

import	asyncio

loop	=	asyncio.get_event_loop()

def	hello_world():
				loop.call_later(1,	hello_world)

				print("Hello	world!")

loop	=	asyncio.get_event_loop()
loop.call_later(1,	hello_world)
loop.run_forever()

The	example	in	Example	3.11,	“Using	loop.call_later	repeatedly”	provides
a	hello_world	function	that	leverages	the	call_later	method	to
reschedule	itself	every	second.

Asyncio	is	excellent	at	handling	network	related	tasks.	Its	event	loop	can
handle	thousands	of	concurrent	sockets,	and	therefore	connections,
switching	to	the	one	that	is	ready	to	be	processed	as	soon	as	possible	–	as
long	as	your	program	regularly	yields	back	control	the	event	loop	using
the	await	keyword.	It	obviously	means	programs	need	to	use	code	and
library	that	are	asyncio	compatible	,	which	are	not	always	widely
available	for	all	sorts	of	things.

3.2.1.	Network	Server

Since	asyncio	is	exceptional	at	handling	thousands	of	network
connections,	it	provides	a	useful	framework	for	implementing	network
servers.	The	following	example	implements	a	simplistic	TCP	server,	but	it
is	up	to	you	to	build	any	network	server	you	might	like.

Note

It	is	possible	to	build	an	asyncio	based	Web	server	using	aiohttp.
However,	it	is	not	that	useful	in	most	cases	because	it	will	often	be
slower	than	a	fast,	optimized,	native	WSGI	server	like	uwsgi	or
gunicorn.	As	Python	Web	applications	are	always	using	WSGI,	it
is	easy	to	switch	out	the	WSGI	server	for	a	fast	and	asynchronous
one.

Example	3.12,	“asyncio	TCP	server”	is	a	simple	example	of	a	TCP	server.
This	server	listens	for	strings	terminated	by	\n	and	returns	them	in

upper	case.

Example	3.12.	asyncio	TCP	server

import	asyncio

SERVER_ADDRESS	=	('0.0.0.0',	1234)

class	YellEchoServer(asyncio.Protocol):
				def	connection_made(self,	transport):
								self.transport	=	transport
								print("Connection	received	from:",
														transport.get_extra_info('peername'))

				def	data_received(self,	data):
								self.transport.write(data.upper())

				def	connection_lost(self,	exc):
								print("Client	disconnected")

event_loop	=	asyncio.get_event_loop()

factory	=	event_loop.create_server(YellEchoServer,	*SERVER_ADDRESS)
server	=	event_loop.run_until_complete(factory)

try:
				event_loop.run_forever()
finally:
				server.close()
				event_loop.run_until_complete(server.wait_closed())
				event_loop.close()

To	implement	a	server,	the	first	step	is	to	define	a	class	that	inherits	from
asyncio.Protocol.	It	is	not	strictly	necessary	to	inherit	from	this
class,	but	it	is	a	good	idea	to	get	all	the	basic	methods	defined	–	even	if

they	do	nothing.

The	connection_made(transport)	method	is	called	as	soon	as	a
connection	is	established	by	a	client.	An	asyncio.BaseTransport
object	is	passed	as	the	argument,	which	represents	the	underlying	socket
and	stream	with	the	client.	This	object	offers	several	methods	such	as
get_extra_info	to	get	more	information	on	the	client,	or	close,	to
close	the	transport.	The	connection_lost	is	the	other	end	of	the
connection	handling	code:	it	is	called	when	the	connection	is	terminated.
Both	connection_made	and	connection_lost	are	called	once	per
connection.

The	data_received	method	is	called	each	time	some	data	is	received.
It	might	never	be	called	if	no	data	is	ever	received.	The	eof_received
method	might	be	called	once	if	the	client	sent	an	EOF	signal.

Figure	3.1,	“asyncio.Protocol	state	machine”	describes	the	state
machine	and	the	usual	workflow	that	asyncio.Protocol	provides.

Figure	3.1.	asyncio.Protocol	state	machine

The	simplest	way	to	test	Example	3.12,	“asyncio	TCP	server”	is	to	use	the
netcat	program,	available	as	the	nc	command	on	most	versions	of	Unix.

Example	3.13.	Using	nc	to	connect	to	the	YellEchoServer

$	nc	localhost	1234
hello	world!
HELLO	WORLD!
^D
$

Typing	any	text	followed	by	\n	returns	it	in	upper	case.	Sending	EOF	by
pressing	Control+d	closes	the	connection.

We	have	been	selling	asyncio	as	extremely	fast,	so	it	is	time	to	prove	that
point.	The	same	asyncio.Protocol	class	can	be	used	to	implement	a
client.

Example	3.14.	asyncio	TCP	client

import	asyncio

SERVER_ADDRESS	=	('0.0.0.0',	1234)

class	EchoClientProtocol(asyncio.Protocol):
				def	__init__(self,	message,	loop):
								self.message	=	message
								self.loop	=	loop

				def	talk(self):
								self.transport.write(self.message)

				def	connection_made(self,	transport):
								self.transport	=	transport
								self.talk()

				def	data_received(self,	data):
								self.talk()

				def	connection_lost(self,	exc):

								self.loop.stop()

loop	=	asyncio.get_event_loop()
loop.run_until_complete(loop.create_connection(
				lambda:	EchoClientProtocol(b'Hello	World!',	loop),
				*SERVER_ADDRESS))
try:
				loop.run_forever()
finally:
				loop.close()

The	client	in	Example	3.14,	“asyncio	TCP	client”	connects	to	the
YellEchoServer.	Once	connected,	connection_made	is	called	and	the
client	sends	its	message	via	its	talk	method.	The	server	replies	back	with
that	text	in	upper	case,	and	the	data_received	is	called.	In	this	case,
the	client	talks	again	to	the	server,	creating	an	infinite	loop	of	interaction
between	the	two.

This	is	useful	to	test	the	performance	of	the	server.	By	modifying	some
bits	of	Example	3.12,	“asyncio	TCP	server”	and	adding	some	statistics,	we
can	have	a	rough	idea	of	the	amount	our	server	can	handle.

Example	3.15.	asyncio	TCP	server	with	statistics

import	asyncio
import	time

SERVER_ADDRESS	=	('0.0.0.0',	1234)

class	YellEchoServer(asyncio.Protocol):
				def	__init__(self,	stats):
								self.stats	=	stats
								self.stats['started	at']	=	time.time()

				def	connection_made(self,	transport):

								self.transport	=	transport
								self.stats['connections']	+=	1

				def	data_received(self,	data):
								self.transport.write(data.upper())
								self.stats['messages	sent']	+=	1

event_loop	=	asyncio.get_event_loop()

stats	=	{
				"connections":	0,
				"messages	sent":	0,
}

factory	=	event_loop.create_server(
				lambda:	YellEchoServer(stats),	*SERVER_ADDRESS)
server	=	event_loop.run_until_complete(factory)

try:
				event_loop.run_forever()
except	KeyboardInterrupt:
				pass
finally:
				server.close()
				event_loop.run_until_complete(server.wait_closed())
				event_loop.close()

				ran_for	=	time.time()	-	stats['started	at']
				print("Server	ran	for:	%.2f	seconds"	%	ran_for)
				print("Connections:	%d"	%	stats['connections'])
				print("Messages	sent:	%d"	%	stats['messages	sent'])
				print("Messages	sent	per	second:	%.2f"
										%	(stats['messages	sent']	/	ran_for))

In	Example	3.15,	“asyncio	TCP	server	with	statistics”,	basic	statistics	are
stored,	computed,	and	printed	at	the	end	of	the	program.

Example	3.16.	Testing	the	asyncio	TCP	echo	server

$	python3	examples/asyncio-server-stats.py
^C
Server	ran	for:	71.48	seconds
Connections:	5
Messages	sent:	1656928
Messages	sent	per	second:	23178.68

Run	on	my	laptop	with	five	clients	at	the	same	time,	the	asyncio	server	is
able	to	handle	more	than	23,000	messages	per	second.	Obviously,	this
server	is	not	doing	much	work	–	upper-casing	a	string	is	not	that
impressive	–	but	this	is	still	a	pretty	decent	result.	Keep	in	mind	that	this
server	is	not	using	any	thread	or	any	extra	processes,	so	it	is	only	using
one	single	CPU.

Asyncio	is	a	transcendent	solution	to	write	asynchronous	network	clients
and	servers.	The	protocol	implementation	is	straightforward,	and	the
ability	to	mix	all	kinds	of	asynchronous	workload	makes	the	framework
powerful.

3.3.	Naoki	Inada	on	asyncio

Hey	Naoki!	Could	you	introduce	yourself	and	explain	how

you	came	to	Python?

Hi!	I	have	been	a	core	Python	developer	since	2016.	I	implemented

the	"compact	ordered	dict"	feature	in	Python	3.6,	which	makes	the

ordered	dictionary	smaller	in	memory.	I	work	on	real-time	online

https://docs.python.org/3/whatsnew/3.6.html#whatsnew36-compactdict

game	servers	at	KLab	Inc.	Thanks	to	my	job,	I	can	use	most	of	my

paid-time	to	work	on	open-source	software,	including	CPython.

When	I	was	a	student,	I	did	not	like	scripting	languages	like	Python.

I	was	way	more	into	C++.	I	studied	Perl	and	bash,	but	features	like

implicit	type	conversion	between	string	and	integer	drew	me	away.

After	graduation,	my	first	job	was	to	develop	the	firmware	of	digital

still	camera.	C	was	the	primary	language	used	there,	though	using	C

made	me	spend	way	too	much	time	on	very	simple	tasks.

For	example,	analyzing	and	visualizing	log	data	written	in	a	custom

format	would	require	writing	tons	of	long	and	tedious	C	code.

Therefore	I	looked	into	scripting	languages	to	improve	my

productivity.	I	stumbled	upon	IPython	and	found	it	very	good	for

analytical	tasks.	And	writing	Python	is	way	better	than	writing

Windows	.bat	files!

I	have	read	that	you	worked	on	asyncio.	Can	you	brief	us

on	the	state	of	the	project	right	now?

Well,	back	in	2016,	you	could	have	said	that	Tornado	+	PyPy2	was

faster	than	asyncio.	However,	since	then,	asyncio	increased	its

performances	due	to	various	improvement	that	have	been	made:

It	uses	the	new	"yield	from"	keyword.

Yury	Selivanov	implemented	uvloop	and	asyncpg.	Cython	also
provides	more	performance	for	the	asyncio	stack.

The	async	and	await	keyword	in	CPython	3.6	provides	more
readability	for	asyncio	applications.

C	implementation	of	Future	and	Task	in	CPython	3.6	increase
performances	of	asyncio	based	applications	(I	implemented	that

http://www.klab.com/jp/english/
https://github.com/MagicStack/uvloop
https://github.com/MagicStack/asyncpg
http://cython.org/

with	Yury).

Tornado	supports	asyncio	correctly.	Using	the	asyncio	library
from	Tornado	is	now	possible.

PyPy3.5	was	released	recently,	and	while	it	is	still	in	a	beta	stage,
asyncio	can	run	on	top	of	PyPy	now.	The	performance	gains	from
using	PyPy	are	high.

Therefore	I	think	asyncio	is	now	the	practical	approach	for	writing

high	performance	async	applications	in	Python.

Personally,	I	use	golang	when	building	high-performance	network

applications.	However,	I	hope	that	asyncio	will	become	the	new

standard	for	writing	network	libraries.	An	asyncio-based	library	(e.g.

http2	client)	can	be	used	from	(a)	asyncio	applications,	(b)	Tornado

applications,	and	(c)	normal	synchronous	applications.

At	this	point,	there’s	no	more	reason	not	to	embrace	it.

What	are	the	reasons	that	make	you	prefer	Go	rather	than

Python	to	write	extremely	high	performance	applications?

Do	you	see	Python	being	able	to	catch	up	with	Go	on	those

points?

First	of	all,	Go	is	a	different	language	and	has	a	different	culture

(e.g.,	they	use	tabulations	to	indent).	However,	it	also	has	the	same

Zen.	I	think	Go	is	a	language	that	is	easy	to	learn	and	to	maintain,

similar	to	Python.

However,	Go	is	usually	faster	than	Python	because	it	is	a	static

language.	Cython	might	be	the	final	weapon	for	CPython,	but	I	feel

that	Go	code	is	more	maintainable	than	large	Cython	codebases.

Also,	Go	performance	is	more	predictable	than	PyPy	performance.

https://talks.golang.org/2012/zen.slide#1

Another	reason	is	that	Go	supports	parallelism.	Go	can	use	multiple

cores	in	one	process.	It	makes	it	possible	to	use	more	efficient

techniques	than	multi-processes	architecture,	as	it	is	done	in	Python

usually.	For	example,	in-process	caching	is	going	to	be	more	efficient

in	single-process	architecture.

My	last	reason	is	that	Go	applications	are	easier	to	maintain	than

their	asynchronous	equivalent	in	Python.

For	example,	there	are	many	"unlikely	blocking"	syscalls.	They	are

not	blocking	when	testing	on	your	laptop,	but	they	will	sometimes

block	in	production	environments.	Debugging	such	issues	is	a	very

tough	job.	The	natural	solution	is	to	move	all	the	possibly	blocking

functions	to	a	dedicated	thread.	However,	that	makes	the	application

more	complicated	and	harder	to	maintain.	To	solve	that	problem,

other	languages	such	as	C#	and	node.js	also	have	an	implementation

of	asynchronicity	using	a	thread	pool.

Goroutines	are	unique	here.	Goroutines	run	in	threads.	When	a

goroutine	makes	a	call	using	a	syscall	and	is	blocked,	Go	runtime

starts	a	new	thread	and	moves	the	waiting	goroutines	from	the	old

thread	to	this	new	thread.	Therefore,	blocking	syscalls	do	not	block

the	entire	application.	You	can	write	an	entire	application	with	a

single	programming	model,	instead	of	mixing	the	asynchronous

model	and	threaded	model	like	you	would	have	to	do	in	Python.

The	Go	profiling	tool,	pprof,	is	also	helpful.	You	can	use	it	for	the

memory,	CPU	usage,	and	blocking	profile.	It	makes	it	easy	to

maintain	applications	written	in	Go.

Do	you	see	Python	being	able	to	catch	up	with	Go	on	those

points?

I	do	not	think	Python	can	catch	up	100%	in	terms	of	Go’s	strong

points.

Of	course,	it	is	not	a	reason	to	stop	optimizing	both	Python	and

asyncio.	There	are	many	areas	where	Python	is	more	productive	than

static	languages.

For	example,	you	can	write	large	web	applications	with	Python,	and

use	Go	to	write	some	middleware	or	microservices	that	will	be	used

by	the	application	behind.	Asyncio	can	be	used	to	call	such

microservices	from	a	Python	application.

So	combining	both	languages	can	also	create	original	and	great

solutions!

Chapter	4.	Functional
Programming
Functional	programming	might	not	be	the	first	thing	you	think	of	when
you	think	of	Python,	but	the	support	is	there,	and	it	is	quite	extensive.
Nonetheless,	many	Python	developers	do	not	seem	to	realize	this,	which
is	a	shame:	with	few	exceptions,	functional	programming	allows	you	to
write	more	concise	and	efficient	code.

When	you	write	code	using	a	functional	style,	your	functions	are	designed
to	not	have	side	effects:	they	take	an	input	and	produce	an	output	without
maintaining	state	or	modifying	anything	not	reflected	in	the	return	value.
Functions	that	adhere	to	this	ideal	are	referred	to	as	purely	functional:

A	non-pure	function.	

def	remove_last_item(mylist):
				"""Removes	the	last	item	from	a	list."""
				mylist.pop(-1)		#	This	modifies	mylist

A	pure	function.	

def	butlast(mylist):
				"""Like	butlast	in	Lisp;	returns	the	list	without	the	last	element."""
				return	mylist[:-1]		#	This	returns	a	copy	of	mylist

Python	is	not	strictly	functional,	but	it	allows	you	to	use	that	approach	as
long	as	you	are	rigorous.	Apparently,	the	object-oriented	model	is	not
very	compatible	with	such	a	functional	approach	as	changing	an	object
state	is	the	opposite	of	being	functional,	where	immutability	is	the	rule.

The	functional	approach	is	even	more	important	when	talking	about
scalability.	It	has	a	significant	property	that	helps	a	in	terms	of	lot
building	large-scale	applications:	it	has	no	shared	state.

As	discussed	in	Section	1.2,	“Distributed	Systems”,	not	having	a	shared-
state	allows	entire	parts	of	your	program	to	be	distributed,	as	they	are
designed	as	black	boxes,	taking	data	in	and	outputting	new	data.	Highly
functional	and	distributed	programming	languages	such	as	Erlang	rely	on
this	property	as	a	core	of	their	language	to	provide	scalability	as	a	first-
class	citizen	in	their	programming	experience.

As	was	also	discussed	in	Section	2.5,	“Daemon	Processes”,	this	approach
likewise	enables	you	to	use	other	distributed	patterns,	such	as	queue	and
message	passing,	in	the	same	manner,	that	the	Go	programming
languages	leverages	channels	to	load	balance	tasks	to	execute.

There	are	other	practical	advantages	of	functional	programming,	such	as:

Formal	provability	Admittedly,	this	is	a	pure	theoretical	advantage
as	nobody	is	going	to	mathematically	prove	a	Python	program.

Modularity	Writing	functionally	forces	a	certain	degree	of	separation
in	solving	your	problems	and	eases	reuse	in	other	contexts.

Brevity	Functional	programming	is	often	less	verbose	than	other
paradigms.

Concurrency	Purely	functional	functions	are	thread-safe	and	can	run
concurrently.	While	it	is	not	yet	the	case	in	Python,	some	functional
languages	do	this	automatically,	which	can	be	a	big	help	if	you	ever
need	to	scale	your	application.

Testability	It	is	a	simple	matter	to	test	a	functional	program,	in	that,
all	you	need	is	a	set	of	inputs	and	an	expected	set	of	outputs.	They	are
idempotent.

Tip

If	you	want	to	get	serious	about	functional	programming,	take	my
advice:	take	a	break	from	Python	and	learn	a	more	functional
language	such	as	Lisp.	I	know	it	might	sound	strange	to	talk	about
Lisp	in	a	Python	book,	but	playing	with	Lisp	for	several	years	is
what	taught	me	how	to	"think	functional."	You	simply	won’t
develop	the	thought	processes	necessary	to	make	full	use	of

https://www.erlang.org/
https://golang.org

functional	programming	if	all	your	experience	comes	from
imperative	and	object-oriented	programming.	Lisp	is	not	purely
functional	itself,	but	there’s	more	focus	on	functional
programming	than	you	will	find	in	Python.

4.1.	The	Functional	Toolkit
While	writing	functional	code	will	be	your	responsibility,	Python	also
includes	a	number	of	tools	for	functional	programming.	These	built-in
functions	cover	the	basics,	and	they	should	help	you	write	better	code:

map(function,	iterable)	applies	function	to	each	item	in
iterable	and	returns	either	a	list	in	Python	2	or	an	iterable	map
object	in	Python	3:

>>>	map(lambda	x:	x	+	"bzz!",	["I	think",	"I'm	good"])
<map	object	at	0x7fe7101abdd0>
>>>	list(map(lambda	x:	x	+	"bzz!",	["I	think",	"I'm	good"]))
['I	thinkbzz!',	"I'm	goodbzz!"]

filter(function	or	None,	iterable)	filters	the	items	in
iterable	based	on	the	result	returned	by	function,	and	returns
either	a	list	in	Python	2	or	better,	an	iterable	filter	object	in
Python	3:

>>>	filter(lambda	x:	x.startswith("I	"),	["I	think",	"I'm	good"])
<filter	object	at	0x7f9a0d636dd0>
>>>	list(filter(lambda	x:	x.startswith("I	"),	["I	think",	"I'm	good"]))
['I	think']

Tip

You	can	write	a	function	equivalent	to	filter	or	map	using
generators	and	list	comprehension:

Equivalent	of	map	using	list	comprehension.	

>>>	(x	+	"bzz!"	for	x	in	["I	think",	"I'm	good"])
<generator	object	<genexpr>	at	0x7f9a0d697dc0>
>>>	[x	+	"bzz!"	for	x	in	["I	think",	"I'm	good"]]
['I	thinkbzz!',	"I'm	goodbzz!"]

Equivalent	of	filter	using	list	comprehension.	

>>>	(x	for	x	in	["I	think",	"I'm	good"]	if	x.startswith("I	"))
<generator	object	<genexpr>	at	0x7f9a0d697dc0>
>>>	[x	for	x	in	["I	think",	"I'm	good"]	if	x.startswith("I	")]
['I	think']

Using	generators	like	this	in	Python	2	gives	you	an	iterable	object
rather	than	a	list,	just	like	the	map	and	filter	functions	in
Python	3.

enumerate(iterable[,	start])	returns	an	iterable	enumerate
object	that	yields	a	sequence	of	tuples,	each	consisting	of	an	integer
index	(starting	with	start,	if	provided)	and	the	corresponding	item	in
iterable.	It	is	useful	when	you	need	to	write	code	that	refers	to	array
indexes.	For	example,	instead	of	writing	this:

i	=	0
while	i	<	len(mylist):
				print("Item	%d:	%s"	%	(i,	mylist[i]))
				i	+=	1

You	could	write	this:

for	i,	item	in	enumerate(mylist):
				print("Item	%d:	%s"	%	(i,	item))

sorted(iterable,	key=None,	reverse=False)	returns	a
sorted	version	of	iterable.	The	key	argument	allows	you	to	provide
a	function	that	returns	the	value	to	sort	on.

any(iterable)	and	all(iterable)	both	return	a	Boolean
depending	on	the	values	returned	by	iterable.	These	functions	are
equivalent	to:

def	all(iterable):
				for	x	in	iterable:
								if	not	x:
												return	False
				return	True

def	any(iterable):
				for	x	in	iterable:
								if	x:
												return	True
				return	False

These	functions	are	useful	for	checking	whether	any	or	all	of	the	values	in
an	iterable	satisfy	a	given	condition:

mylist	=	[0,	1,	3,	-1]
if	all(map(lambda	x:	x	>	0,	mylist)):
				print("All	items	are	greater	than	0")
if	any(map(lambda	x:	x	>	0,	mylist)):
				print("At	least	one	item	is	greater	than	0")

zip(iter1	[,iter2	[...]])	takes	multiple	sequences	and
combines	them	into	tuples.	It	is	useful	when	you	need	to	combine	a	list
of	keys	and	a	list	of	values	into	a	dictionary.	Like	the	other	functions
described	above,	it	returns	a	list	in	Python	2	and	an	iterable	in
Python	3:

>>>	keys	=	["foobar",	"barzz",	"ba!"]
>>>	map(len,	keys)
<map	object	at	0x7fc1686100d0>
>>>	zip(keys,	map(len,	keys))
<zip	object	at	0x7fc16860d440>
>>>	list(zip(keys,	map(len,	keys)))
[('foobar',	6),	('barzz',	5),	('ba!',	3)]
>>>	dict(zip(keys,	map(len,	keys)))
{'foobar':	6,	'barzz':	5,	'ba!':	3}

Tip

You	might	have	noticed	that	the	return	types	differ	between
Python	2	and	Python	3.	Most	of	Python’s	purely	functional	built-
in	functions	return	a	list	rather	than	an	iterable	in	Python	2,
making	them	less	memory-efficient	than	their	Python	3.x
equivalents.	If	you	are	planning	to	write	code	using	these
functions,	keep	in	mind	that	you	will	get	the	most	benefit	out	of
them	in	Python	3.	If	you	are	stuck	with	Python	2,	don’t	despair
yet:	the	itertools	module	from	the	standard	library	provides
an	iterator-based	version	of	many	of	these	functions
(itertools.izip,	itertools.imap,	itertools.ifilter,
etc.).

There’s	still	one	essential	tool	missing	from	this	list,	however.	One
common	task	when	working	with	lists	is	finding	the	first	item	that
satisfies	a	specific	condition.	This	is	usually	accomplished	with	a	function
like	this:

def	first_positive_number(numbers):
				for	n	in	numbers:
								if	n	>	0:
												return	n

We	can	also	write	this	in	functional	style:

def	first(predicate,	items):
				for	item	in	items:
								if	predicate(item):
												return	item

first(lambda	x:	x	>	0,	[-1,	0,	1,	2])

Or	more	concisely:

#	Less	efficient
list(filter(lambda	x:	x	>	0,	[-1,	0,	1,	2]))[0]	(1)
#	Efficient	but	for	Python	3
next(filter(lambda	x:	x	>	0,	[-1,	0,	1,	2]))
#	Efficient	but	for	Python	2
next(itertools.ifilter(lambda	x:	x	>	0,	[-1,	0,	1,	2]))

(1)
Note	that	this	may	elicit	an	IndexError	if	no	items	satisfy	the
condition,	causing	list(filter())	to	return	an	empty	list.

For	simple	case	you	can	also	rely	on	next:

>>>	a	=	range(10)
>>>	next(x	for	x	in	a	if	x	>	3)
4

This	will	raise	StopIteration	if	a	condition	can	never	be	satisfied,	so
in	that	case	the	second	argument	of	next	can	be	used:

>>>	a	=	range(10)
>>>	next((x	for	x	in	a	if	x	>	10),	'default')
'default'

Instead	of	writing	this	same	function	in	every	program	you	make,	you	can
include	the	small	but	very	useful	Python	package	first:

https://pypi.python.org/pypi/first

Example	4.1.	Using	first

>>>	from	first	import	first
>>>	first([0,	False,	None,	[],	(),	42])
42
>>>	first([-1,	0,	1,	2])
-1
>>>	first([-1,	0,	1,	2],	key=lambda	x:	x	>	0)
1

The	key	argument	can	be	used	to	provide	a	function	which	receives	each
item	as	an	argument	and	returns	a	Boolean	indicating	whether	it	satisfies
the	condition.

You	will	notice	that	we	used	lambda	in	a	good	number	of	the	examples	so
far	in	this	chapter.	In	the	first	place,	lambda	was	added	to	Python	to
facilitate	functional	programming	functions	such	as	map	and	filter,
which	otherwise	would	have	required	writing	an	entirely	new	function
every	time	you	wanted	to	check	a	different	condition:

import	operator
from	first	import	first

def	greater_than_zero(number):
				return	number	>	0

first([-1,	0,	1,	2],	key=greater_than_zero)

This	code	works	identically	to	the	previous	example,	but	it	is	a	good	deal
more	cumbersome:	if	we	wanted	to	get	the	first	number	in	the	sequence
that	is	greater	than,	say,	42,	then	we	would	need	to	def	an	appropriate
function	rather	than	defining	it	in-line	with	our	call	to	first.

However,	despite	its	usefulness	in	helping	us	avoid	situations	like	this,
lambda	still	has	its	problems.	First	and	most	obviously,	we	cannot	pass	a
key	function	using	lambda	if	it	would	require	more	than	a	single	line	of

code.	In	this	event,	we	are	back	to	the	cumbersome	pattern	of	writing	new
function	definitions	for	each	key	we	need…	or	are	we?

Our	first	step	towards	replacing	lambda	with	a	more	flexible	alternative
is	functools.partial.	It	allows	us	to	create	a	wrapper	function	with	a
twist:	rather	than	changing	the	behavior	of	a	function,	it	instead	changes
the	arguments	it	receives:

from	functools	import	partial
from	first	import	first

def	greater_than(number,	min=0):
				return	number	>	min

first([-1,	0,	1,	2],	key=partial(greater_than,	min=42))

Our	new	greater_than	function	works	just	like	the	old
greater_than_zero	by	default,	but	now	we	can	specify	the	value	we
want	to	compare	our	numbers	to.	In	this	case,	we	pass
functools.partial	our	function	and	the	value	we	want	for	min,	and
we	get	back	a	new	function	that	has	min	set	to	42,	just	like	we	want.	In
other	words,	we	can	write	a	function	and	use	functools.partial	to
customize	what	it	does	to	our	needs	in	any	given	situation.

This	is	still	a	couple	of	lines	more	than	we	strictly	need	in	this	case,
though.	All	we	are	doing	in	this	example	is	comparing	two	numbers;	what
if	Python	had	built-in	functions	for	these	kinds	of	comparisons?	As	it
turns	out,	the	operator	module	has	just	what	we	are	looking	for:

import	operator
from	functools	import	partial
from	first	import	first

first([-1,	0,	1,	2],	key=partial(operator.le,	0))

Here	we	see	that	functools.partial	also	works	with	positional
arguments.	In	this	case,	operator.le(a,	b)	takes	two	numbers	and
returns	whether	the	first	is	less	than	or	equal	to	the	second:	the	0	we	pass
to	functools.partial	gets	sent	to	a,	and	the	argument	passed	to	the
function	returned	by	functools.partial	gets	sent	to	b.	So	this	works
identically	to	our	initial	example,	without	using	lambda	or	defining	any
additional	functions.

Note

functools.partial	is	typically	useful	as	a	replacement	of
lambda	and	it	should	be	considered	as	a	superior	alternative.
lambda	is	to	be	considered	an	anomaly	in	Python	language	[5],
due	to	its	limited	body	size	of	a	single	expression	that	is	one	line
long.	On	the	other	hand,	functools.partial	is	built	as	a	nice
wrapper	around	the	original	function.

The	itertools	module	in	the	Python	standard	library	also	provides	a
bunch	of	useful	functions	that	you	will	want	to	keep	in	mind.	I’ve	seen	too
many	programmers	end	up	writing	their	own	versions	of	these	functions
even	though	Python	itself	provides	them	out-of-the-box:

	accumulate(iterable[,	func])	returns	a	series	of
accumulation	of	items	from	iterables,	or	whatever	is	mapped	to	the	+
operator.

chain(*iterables)	iterates	over	multiple	iterables,	one	after
another	without	building	an	intermediate	list	of	all	items.

combinations(iterable,	r)	generates	all	combination	of	length
r	from	the	given	iterable.

compress(data,	selectors)	applies	a	Boolean	mask	from
selectors	to	data	and	returns	only	the	values	from	data	where	the
corresponding	element	of	selectors	is	true.

count(start,	step)	generates	an	endless	sequence	of	values,
starting	from	start	and	incrementing	a	step	at	a	time	with	each	call.

cycle(iterable)	loops	repeatedly	over	the	values	in	iterable.

repeat(elem[,	n])	repeats	an	element	n	times.

dropwhile(predicate,	iterable)	filters	elements	of	an	iterable
starting	from	the	beginning	until	predicate	is	false.

groupby(iterable,	keyfunc)	creates	an	iterator	grouping	items
by	the	result	returned	by	the	keyfunc	function.

permutations(iterable[,	r])	returns	successive	r-length
permutations	of	the	items	in	iterable.

product(*iterables)	returns	an	iterable	of	the	Cartesian	product
of	iterables	without	using	a	nested	for	loop.

takewhile(predicate,	iterable)	returns	elements	of	an
iterable	starting	from	the	beginning	until	predicate	is	false.

These	functions	are	particularly	useful	in	conjunction	with	the	operator
module.	When	used	together,	itertools	and	operator	can	handle	most
situations	that	programmers	typically	rely	on	lambda	for:

Example	4.2.	Using	the	operator	module	with
itertools.groupby

>>>	import	itertools
>>>	a	=	[{'foo':	'bar'},	{'foo':	'bar',	'x':	42},	{'foo':	'baz',	'y':	43}]
>>>	import	operator
>>>	list(itertools.groupby(a,	operator.itemgetter('foo')))
[('bar',	<itertools._grouper	object	at	0xb000d0>),	('baz',	<itertools._grouper	object	at	0xb00110>)]
>>>	[(key,	list(group))	for	key,	group	in	itertools.groupby(a,	operator.itemgetter('foo'))]
[('bar',	[{'foo':	'bar'},	{'x':	42,	'foo':	'bar'}]),	('baz',	[{'y':	43,	'foo':	'baz'}])]

In	this	case,	we	could	have	also	written	lambda	x:	x['foo'],	but
using	operator	lets	us	avoid	having	to	use	lambda	at	all.

As	previously	explained,	all	of	the	code	and	functions	presented	in	this
section	are	purely	functional.	That	means	they	have	no	side	effects	and
they	moreover	have	no	dependency	on	any	global,	shared	data.	Writing

code	using	that	style	of	programming	is	a	key	to	scalability	as	it	makes	it
easy	to	execute	those	function	in	parallel,	or	even	to	spread	their
execution	on	different	systems	as	will	be	discussed	in	Chapter	5,	Queue-
Based	Distribution.

[5]	lambda	was	was	once	even	planned	for	removal	in	Python	3,	but	in	the
end	it	escaped	this	fate.

Chapter	5.	Queue-Based
Distribution
As	described,	for	example,	in	Section	9.4,	“Asynchronous	HTTP	API”,	it	is
not	always	possible	or	the	best	approach	to	synchronously	reply	to	a
client	request.	Sometimes,	the	best	response	is	to	accept	a	job	and
promise	to	execute	it	later.

Implementing	distributed	system	using	queues	is	a	trade-off,	improving
throughput	with	the	drawback	of	increased	latency.

Looking	at	basic	architecture,	it	is	composed	of	two	elements:	a	queue
that	stores	jobs	and	workers	that	consume	the	jobs	from	a	queue,	process
them,	and	send	the	result	to	another	destination.

Figure	5.1.	Queue	architecture

When	an	application	makes	such	a	promise,	a	job	distribution
mechanism	is	needed.	The	upside	is	that	if	correctly	implemented,	it
allows	the	application	to	scale	its	workload	horizontally	pretty	easily.

Indeed,	as	more	entry	points	add	more	jobs	to	the	queue,	more	workers
(job	processors)	can	be	spawned	as	needed.	In	dynamic	environments
nowadays,	it	is	not	outside	the	realm	of	possibility	that	those	workers

appear	and	disappear	dynamically,	controlled	by	some	external	systems
monitoring	the	health	of	the	processed	queue.

As	no	nodes	have	infinite	memory	or	storage,	it	is	likely	best	that	queues
should	be	bounded	and	limited.	The	limit	is	often	far	from	being	known
in	advance,	so	experimentation	and	experience	play	a	role	here.	Looking
at	it	from	a	different	angle,	if	your	workload	is	bigger	than	your
processing	power,	the	queue	will	never	ever	be	big	enough.

There	are	multiple	queue	processing	systems	available	in	Python,	from
built-in	in	the	standard	library	to	external	packages	that	rely	on	other
pieces	to	build	a	complete	stack.	Some	of	them	are	described	in	this
chapter.

The	other	upside	of	queue-based	architecture	is	that	it	makes	the	testing
and	debugging	of	the	application	easier.	A	worker	(a	piece	of	code
treating	the	jobs	from	the	queue	and	pushing	the	results	somewhere	else)
can	be	treated	as	a	black	box	that	takes	an	input	and	outputs	a	result.	If	it
can	be	properly	written	in	a	purely-functional	manner	(i.e.	without	any
side	effects)	then	that	makes	it	much	easier	to	scale,	replace,	test,	debug
or	even	improve.

5.1.	RQ

The	RQ	library	provides	a	simple	and	direct	approach	to	implementing
queuing	in	any	Python	program.	The	letters	R	and	Q	are	used	to
designate	Redis	and	queue;	this	accurately	summarizes	what	this	library
is	trying	to	achieve.

If	you	don’t	know	Redis,	it	is	an	open-source	in-memory	database	project
implementing	a	networked,	in-memory	key-value	store	with	optional
durability.	It	supports	different	kinds	of	abstract	data	structures,	among

https://github.com/nvie/rq/

them	strings,	lists,	maps,	sets	and	sorted	sets.	That	makes	it	a	nice	fit	for
implementing	a	simple	queue	mechanism.

Note

All	the	examples	in	this	section	assume	that	you	have	a	Redis
server	running	on	localhost.

By	using	RQ,	an	application	can	push	jobs	into	a	Redis	database	and	have
workers	executing	these	jobs	asynchronously.	To	push	a	job	into	a	queue,
the	enqueue	method	of	that	queue	must	be	used,	as	demonstrated	in
Example	5.1,	“Pushing	a	rq	job	in	a	queue”.

Example	5.1.	Pushing	a	rq	job	in	a	queue

import	time

from	rq	import	Queue
from	redis	import	Redis

q	=	Queue(connection=Redis())

job	=	q.enqueue(sum,	[42,	43])
#	Wait	until	the	result	is	ready
while	job.result	is	None:
				time.sleep(1)

print(job.result)

When	starting	the	program	in	Example	5.1,	“Pushing	a	rq	job	in	a	queue”,
a	job	whose	actual	work	is	to	execute	sum([42,	43])	is	pushed	into	a
queue.	However,	for	now,	nothing	is	processing	the	queue,	so	the
program	waits	forever,	sleeping	one	second.

To	start	consuming	those	events,	RQ	provides	an	rq	command	line	tool
that	is	responsible	for	initiating	a	worker.	Once	run,	it	outputs	the
following:

$	rq	worker
RQ	worker	'rq:worker:abydos.87255'	started,	version	0.8.2
Cleaning	registries	for	queue:	default

***	Listening	on	default...
default:	builtins.sum([42,	43])	(631eeb5f-66f2-44f8-817b-2d0ef285f8e3)	
default:	Job	OK	(631eeb5f-66f2-44f8-817b-2d0ef285f8e3)	
Result	is	kept	for	500	seconds	(3)

***	Listening	on	default...

(1) This	is	the	function	to	execute	and	the	UUID	of	the	job

(2) The	job	has	been	correctly	executed

(3) The	result	must	be	retrieved	by	that	time

As	rq	indicates	above,	in	this	case	the	result	of	the	job	is	put	back	into	the
queue	for	500	seconds.	Redis	supports	setting	values	with	a	specific
lifespan,	or	time-to-live,	meaning	that	after	500	seconds	Redis	will
destroy	the	result.

Warning

To	pass	jobs	around,	rq	serializes	the	jobs	using	pickle,	a
Python-specific	serialization	format.	That	implies	several	things:

	The	Python	version	must	be	the	same	on	both	producers	and
workers.

The	code	version	must	be	the	same	on	both	producers	and
workers,	and	both	must	have	the	same	version	of	the	code	so
they	can,	import	the	same	module,	for	example.

It	is	close	to	impossible	to	have	producers	and	workers	using
any	language	other	than	Python.

As	with	all	queuing	systems,	the	called	function	must	not	have	any
dependency	on	any	global	variable	or	context.	As	you	can	see,	having

purely-functional	functions	implemented	is	a	mandatory	element	of
building	distributed	systems	like	this	one.

RQ	provides	several	nifty	features	that	can	help	tweaking	your	workloads,
such	as	specifying	the	time-to-live	of	the	job	itself	(ttl	option)	or	the
time-to-live	of	the	result	(ttl_result	option).	The	queue	name	can	also
be	specified,	making	it	easy	to	dispatch	jobs	to	different	queues.

Example	5.2.	Pushing	a	rq	job	in	a	queue

import	time

from	rq	import	Queue
from	redis	import	Redis
import	requests

q	=	Queue(name="http",	connection=Redis())

job	=	q.enqueue(requests.get,	"http://httpbin.org/delay/1",
																ttl=60,	result_ttl=300)
#	While	the	URL	is	fetched,	it's	possible	to	do	anything	else.
#	Wait	until	the	result	is	ready.
while	job.result	is	None:
				time.sleep(1)

print(job.result)

Running	the	worker	with	a	custom	queue	name	is	possible	by	passing	the
name	as	an	argument	via	the	command	line:

$	rq	worker	http
RQ	worker	'rq:worker:abydos.95246'	started,	version	0.8.2
Cleaning	registries	for	queue:	http

***	Listening	on	http...
http:	requests.api.get('http://httpbin.org/delay/1')	(8cb8ad47-e873-4b78-8cfd-e94f39170343)
http:	Job	OK	(8cb8ad47-e873-4b78-8cfd-e94f39170343)

Result	is	kept	for	300	seconds

***	Listening	on	http...

The	rq	command	line	tool	reveals	information	about	the	state	of	the
queue:

$	rq	info
http									|███	3
failed							|	0
default						|	0
4	queues,	3	jobs	total

0	workers,	4	queues

Updated:	2017-09-27	21:37:38.030541

The	cherry	on	the	cake,	the	rq-dashboard	package	(available	on	PyPI)
allows	for	visual	feedback	and	gives	some	control	over	the	queues	as	you
can	see	in	Figure	5.2,	“rq-dashboard	example”.	Once	installed,	simply	run
it	by	running	the	rq-dashboard	,	using	arguments	to	point	to	the	right
Redis	instance	as	needed.	It	is	then	available	on	port	9181	by	default.

Figure	5.2.	rq-dashboard	example

http://pypi.python.org/pypi/rq-dashboard

As	promised,	RQ	is	very	simple	to	install,	deploy	and	administer.
Obviously,	it	has	its	limitation,	but	it	makes	it	implementing	an
asynchronous	and	distributed	workflow	in	your	application
straightforward.

5.2.	Celery

Celery	is	another	queue	management	system.	In	contrast	to	RQ,	it	is
broker	agnostic	and	can	use	various	software	as	broker,	such	as	Redis,
RabbitMQ	or	Amazon	SQS.	Moreover	if	you	are	brave	enough,	it	is
possible	to	write	your	own	driver.

Celery	also	needs	a	backend	for	storing	the	results	of	the	job.	It	supports
a	bunch	of	solution,	such	as	Redis,	MongoDB,	SQL	databases,
ElasticSearch,	files,	etc.	Just	like	for	brokers,	you	can	also	write	your	own.

Note

Celery	implements	its	own	serialization	format	for	its	jobs.
However,	this	format	is	not	specific	to	Python.	That	means	it	is
possible	to	implement	job	creators	or	consumers	in	different
languages;	there	are	already	clients	in	PHP	and	Javascript.

In	Celery,	tasks	are	functions	that	can	be	called	asynchronously.	When
called,	Celery	puts	them	in	the	broker	queue	for	execution.	Remote
workers	then	execute	the	tasks,	putting	the	task	results	into	the	backend.

When	called,	a	task	returns	a	celery.result.AsyncResult	object.
This	object	offers	a	principal	method,	get,	which	returns	the	result	as
soon	as	it	is	available,	blocking	the	program	in	the	meantime.

Example	5.3.	A	simple	Celery	task

import	celery

app	=	celery.Celery('celery-task',
																				broker='redis://localhost',
																				backend='redis://localhost')

@app.task
def	add(x,	y):
				return	x	+	y

if	__name__	==	'__main__':
				result	=	add.delay(4,	4)
				print("Task	state:	%s"	%	result.state)
				print("Result:	%s"	%	result.get())
				print("Task	state:	%s"	%	result.state)

Example	5.3,	“A	simple	Celery	task”	is	a	simple	implementation	of	a

Celery	task.	The	Celery	application	is	created	with	the	main	module
name	as	its	first	argument,	and	then	the	URL	to	access	the	broker	and
backends.

The	app.task	function	decorator	registers	the	add	task	so	it	can	be	used
asynchronously	in	the	application,	leveraging	Celery	workers	for
execution.

Once	run,	this	program	prints	the	following:

$	python	celery-task.py
python	examples/celery-task.py
Task	state:	PENDING

The	program	is	blocked	and	then	waits	forever.	There	is	no	worker
processing	the	job	queue	yet,	therefore	calling	the	result.get	method
blocks	the	program	until	the	result	is	ready	–	which	is	not	going	to
happen	until	a	worker	starts.

The	celery	command	line	tool	provides	a	broad	set	of	commands	to
manipulate	and	inspect	the	jobs	queue	and	the	workers.	It	is	in	charge	of
starting	the	actual	workers:

$	celery	worker	--app	celery-task

celery@abydos	v4.1.0	(latentcall)

Darwin-17.0.0-x86_64-i386-64bit	2017-10-21	13:05:46

[config]
.>	app:									celery-task:0x102d4e3d0
.>	transport:			redis://localhost:6379//
.>	results:					redis://localhost/
.>	concurrency:	4	(prefork)
.>	task	events:	OFF	(enable	-E	to	monitor	tasks	in	this	worker)

[queues]
.>	celery											exchange=celery(direct)	key=celery

As	soon	as	it	starts,	the	worker	processes	queued	tasks	and	puts	results	in
the	backend.	That	unblocks	the	program	celery-task	started	earlier:

$	python	celery-task.py
Task	state:	PENDING
Result:	8
Task	state:	SUCCESS

This	program	can	be	started	over	and	over	again,	and	it	won’t	hang	for
too	long	as	long	as	a	worker	is	running	and	processing	the	tasks.

5.2.1.	Handling	Failures

Task	executions	might	fail,	and	in	this	case	it	is	crucial	to	handle	that
properly.	It	is	common	for	tasks	to	depend	on	external	services,	such	as	a
remote	database	or	a	REST	API.	Connection	failure	might	be	transient;	it
is	therefore	better	to	deal	with	defeat	and	retry	later.

Example	5.4.	A	Celery	task	with	retry	support

import	celery

app	=	celery.Celery('celery-task-retry',
																				broker='redis://localhost',
																				backend='redis://localhost')

@app.task(bind=True,	retry_backoff=True,
										retry_kwargs={'max_retries':	5})
def	add(self,	x,	y):
				try:
								return	x	+	y

				except	OverflowError	as	exc:
								self.retry(exc=exc)

if	__name__	==	'__main__':
				result	=	add.delay(4,	4)
				print("Task	state:	%s"	%	result.state)
				print("Result:	%s"	%	result.get())
				print("Task	state:	%s"	%	result.state)

Example	5.4,	“A	Celery	task	with	retry	support”	implements	a	simple
retry	logic	if	an	OverflowError	occurs.	The	retry_backoff
argument	makes	sure	that	Celery	retries	using	an	exponential	back-off
algorithm	between	delays	(as	described	in	Section	6.2,	“Retrying	with
Tenacity”),	while	the	max_retries	argument	makes	sure	it	does	not
retry	more	than	five	times.	Limiting	the	number	of	retries	is	important,	as
you	never	want	to	have	jobs	stuck	forever	in	your	queue	because	of	a
permanent	error	or	a	bug.

Retrying	a	task	calls	the	same	function	with	the	same	argument.	That
means	that	the	best	design	for	those	tasks	is,	as	is	usually	the	case,	to	be
entirely	idempotent.	If	a	task	has	side	effects	and	fails	in	the	middle	of	its
execution,	it	might	be	more	complicated	to	handle	the	task	repeat
execution	later	on.	Imagine	the	following	piece	of	code:

@app.task(autoretry_for=(DatabaseError,))
def	record_visit(user_id):
				database.increment_visitor_counter()
				remote_api.record_last_visit_time(user_id)

If	an	error	occurs	while	calling
remote_api.record_last_visit_time,	the	visitor	counter	would
already	be	incremented.	When	the	task	is	retried,	the	counter	will	be
incremented	again,	counting	the	visitor	twice.	Such	a	task	should	be	re-
written	in	a	way	where	if	executed	multiple	times,	it	produces	the	same
result	in	the	final	system.

By	default,	Celery	stores	the	results	in	the	specified	backend.	However,	it
is	sometimes	the	case	that	a	task	has	no	interesting	return	value.	In	that
case,	pass	the	ignore_result=True	to	the	app.task	decorator	to
make	sure	the	result	are	ignored.

5.2.2.	Chaining	Tasks

Celery	supports	chaining	tasks,	which	allows	you	to	build	more	complex
workflows.

Example	5.5.	A	Celery	task	chain

import	celery

app	=	celery.Celery('celery-chain',
																				broker='redis://localhost',
																				backend='redis://localhost')

@app.task
def	add(x,	y):
				return	x	+	y

@app.task
def	multiply(x,	y):
				return	x	*	y

if	__name__	==	'__main__':
				chain	=	celery.chain(add.s(4,	6),	multiply.s(10))
				print("Chain:	%s"	%	chain)
				result	=	chain()
				print("Task	state:	%s"	%	result.state)
				print("Result:	%s"	%	result.get())
				print("Task	state:	%s"	%	result.state)

Example	5.4,	“A	Celery	task	with	retry	support”	shows	how	to	chain	two
tasks.	First,	the	numbers	4	and	6	are	summed	using	the	add	function.
Then	the	result	of	this	function	is	passed	to	multiply	with	10	as	the
second	argument.	This	outputs:

$	python	celery-chain.py
Chain:	celery-chain.add(4,	6)	|	multiply(10)
Task	state:	PENDING
Result:	100
Task	state:	SUCCESS

Building	your	program	with	multiple	idempotent	functions	that	can	be
chained	together	is	something	very	natural	in	functional	programming.
Again,	this	kind	of	design	makes	it	very	easy	to	parallelize	job	execution
and	therefore	make	it	possible	to	increase	the	throughput	of	your
program	and	scale	its	execution	horizontally.

5.2.3.	Multiple	Queues

By	default,	Celery	uses	a	single	queue	named	celery.	However,	it	is
possible	to	use	multiple	queues	to	spread	the	distribution	of	the	tasks.
This	feature	makes	it	possible	to	have	a	more	finely	grained	control	over
the	distribution	of	the	jobs	to	execute.

For	example,	it	is	common	to	have	a	queue	dedicated	to	low-priority	jobs,
where	only	a	few	workers	are	available.

The	queue	for	a	task	can	be	specified	at	call	time	as	shown	in
Example	5.6,	“A	Celery	task	called	with	a	specific	queue”.

Example	5.6.	A	Celery	task	called	with	a	specific	queue

import	celery

app	=	celery.Celery('celery-task-queue',
																				broker='redis://localhost',

																				backend='redis://localhost')

@app.task
def	add(x,	y):
				return	x	+	y

if	__name__	==	'__main__':
				result	=	add.apply_async(args=[4,	6],	queue='low-priority')
				print("Task	state:	%s"	%	result.state)
				print("Result:	%s"	%	result.get())
				print("Task	state:	%s"	%	result.state)

To	treat	queues	other	than	just	the	default	one,	there’s	the	--queues
option:

$	celery	worker	--app	celery-task-queue	--queues	celery,low-priority
celery@abydos	v4.1.0	(latentcall)

Darwin-17.0.0-x86_64-i386-64bit	2017-10-22	12:39:26

[config]
.>	app:									celery-task-queue:0x10ca73690
.>	transport:			redis://localhost:6379//
.>	results:					redis://localhost/
.>	concurrency:	4	(prefork)
.>	task	events:	OFF	(enable	-E	to	monitor	tasks	in	this	worker)

[queues]
.>	celery											exchange=celery(direct)	key=celery
.>	low-priority					exchange=low-priority(direct)	key=low-priority

This	worker	consumes	jobs	from	both	the	default	celery	queue	and	the
low-priority	queues.	Running	other	workers	with	just	the	celery
queue	would	make	sure	that	the	low-priority	queue	is	only	acted	on	by

one	worker	when	the	worker	has	time	to	do	it,	whereas	all	the	other
workers	would	keep	waiting	for	normal	priority	jobs	on	the	default
celery	queue.

There	is	no	magic	recipe	to	determine	the	number	of	queues	that	your
application	may	need.	Using	the	jobs	priority	as	a	criteria	to	split	them	is
the	most	common	and	obvious	use	case.	Queues	give	you	access	to	more
finely	grained	scheduling	possibilities,	so	don’t	hesitate	to	use	them.

5.2.4.	Monitoring

Celery	comes	with	a	lot	of	monitoring	tools	built	in,	and	this	allows	you	to
supervise	things	and	get	information	about	what	is	going	on	inside	the
cluster.	That	also	makes	it	a	great	option	over	a	custom	built	solution
where	all	of	this	would	have	to	be	implemented	again.

The	basic	monitoring	command	is	status,	which	returns	the	state	of	the
workers:

$	celery	status	--app	celery-task-queue
celery@abydos:	OK

1	node	online.

The	inspect	command	accepts	a	few	subcommands,	among	them
active,	which	returns	the	task	currently	being	done:

$	celery	inspect	active	--app	celery-task-queue
->	celery@abydos:	OK
				-	empty	-

Celery	also	comes	with	a	nicely	designed	Web	dashboard	that	allows	for
supervising	the	activity	of	the	workers	and	the	queue.	It	is	named	Flower
and	it	is	easy	to	install	using	pip	install	flower.	It	is	simple	enough
to	start:

$	celery	flower	--app	celery-task-queue
[I	171022	13:06:46	command:139]	Visit	me	at	http://localhost:5555
[I	171022	13:06:46	command:144]	Broker:	redis://localhost:6379//
[I	171022	13:06:46	command:147]	Registered	tasks:
				[u'celery-task-queue.add',
					u'celery.accumulate',
					u'celery.backend_cleanup',
					u'celery.chain',
					u'celery.chord',
					u'celery.chord_unlock',
					u'celery.chunks',
					u'celery.group',
					u'celery.map',
					u'celery.starmap']

Once	started,	it	is	available	on	the	shown	URL:
http://localhost:5555.	It	offers	a	nice	dashboard	as	shown	in
Figure	5.3,	“Celery	Flower	dashboard”.

Figure	5.3.	Celery	Flower	dashboard

Celery	is	widely	used,	and	many	resources	are	available	that	cover	how	to
monitor	it	in	a	production	system.	That	makes	it	safe	bet	in	this	regard!

5.3.	Joshua	Harlow	on	Task
Distribution

Hi	Josh!	Could	you	introduce	yourself	and	explain	how	you

came	to	Python?

Well	hi	there!	I	grew	up	in	upstate	New	York.	I	went	to	school	at	RIT

(and	prior	to	that	Clarkson	University	as	well	as	a	NY	state	college)

and	graduated	in	2007	with	a	Masters	in	Computer	Science.	During

this	time	I	interned	at	IBM	(did	some	automation	work	using

Jython)	and	Intel	(where	I	helped	the	graphics	team	by

interconnecting	Ruby	and	C#).	While	I	was	in	college,	I	got	very

interested	in	distributed	systems,	and	the	interconnect/potential

when	combined	with	AI	(as	well	as	a	stint	in	language	theory	and

applications).

After	graduation,	I	came	to	work	at	Yahoo.	After	working	on	various

projects	such	as	the	homepage	(www.yahoo.com),	I	got	recruited

into	a	sub-team	under	the	CTO	organization	where	we	were	tasked

with	determining	the	cloud	solution	Yahoo	should	invest	in	and	use.

OpenStack	was	a	nascent	open	source	cloud	technology	back	then,

but	it	was	what	we	thought	had	the	most	potential.	Since	OpenStack

was	being	written	entirely	in	Python,	this	is	where	I	got	my	actual

initiation	into	Python.	Over	time	I	have	come	to	enjoy	Python,	come

to	learn	it	deeply,	been	featured	in	a	book	on	it	and	never	looked

back!

What’s	your	experience	with	building	large	scale	systems?

I	have	been	working	in	the	industry	for	around	ten	years.	Two-thirds

of	that	was	working	at	Yahoo	where	I	was	introduced	to	various

patterns	and	systems	around	how	to	design	a	scalable	system.	At

Yahoo,	anything	that	runs	must	be	able	to	scale.	Part	of	my	time

there	was	being	involved	in	the	OpenStack	community	(while	also

being	one	of	the	key	Yahoo	OpenStack	contributors	and	one	of	the

technical	leads/architects	on	the	larger	team	there)	where	I	have

tried	to	work,	inject,	or	at	least	share	some	of	those	same

ideas/lessons	learned	into	various	OpenStack	projects.

Before	this,	I	did	graduate	work	using	a	highly	distributed	paradigm

called	agent-oriented	programming	which	I	applied	to	train	(and

automatically	retrain)	classifier	agents	in	an	unsupervised	manner

(thesis).	This	paradigm	is	similar	to	the	one	that	the	Erlang	language

has	(nearly	built-in),	and	in	general,	it	favors	the	creation	of	small

agents	that	do	specialized	units	of	work,	and	to	accomplish	a

substantial	piece	of	work	those	agents	intercommunicate	over

prescribed	channels.	It	was	my	first	significant	involvement	in	a

highly	distributed	pattern	and	was	a	unique	way	to	combine

distributed	systems	concepts	with	machine	learning/training.	It

likely	is	still	not	fully	explored.

After	Yahoo,	I	moved	over	to	GoDaddy,	as	a	technical	lead	and

architect	and	one	of	their	primary	OSS

contributors/evangelists/strategists.	I	am	continuing	with

OpenStack	and	evolving	the	IAAS	(infrastructure	as	a	service)	and

CAAS	(containers	as	a	service)	landscape	that	GoDaddy	is	actively

involved	in	and	contributing	to	(both	of	which	involve	scale).

I	am	part	owner,	part	maintainer,	and	part	creator	of	multiple

Python	libraries	such	as:

Kazoo	-	the	most	widely	used	ZooKeeper	client/Python	binding
library	(written	in	pure	python)	which	supports	various	async
methodologies	(selectable	by	the	user	using	this	library).

TaskFlow	-	a	Python	library	built	to	help	design	workflows	in	a
programmatic	manner	(by	writing	them	in	Python)	that	once
encoded	and	structured	can	be	ran	across	workers	(similar	to
Celery)	in	the	order	the	workflow	defines	(or	even	in	parallel).	It
also	comes	built-in	with	concepts	that	make	it	easier	to	build	in
HA	execution	of	those	workflows	(in	part	by	using	kazoo).

Tooz	-	A	self-proclaimed	distributed	primitives	build	block	library

https://en.wikipedia.org/wiki/Agent-oriented_programming
http://scholarworks.rit.edu/theses/7888
http://zookeeper.apache.org/
http://www.celeryproject.org/

that	provides	high-level	blocks	and	various	connections	to
different	supporting	backends	(each	with	its	limitations	and
drawbacks)	for	each	of	those	primitives.

Oslo.messaging	-	Widely	used	(inside	of	OpenStack)	messaging
and	RPC	framework	that	is	used	for	internal	service	to	service
communication	inside	most	OpenStack	services.

Fasteners	-	Interprocess	(local	to	the	same	machine)	locking
library	that	also	provides	various	thread	specific	functionality	that
was	found	to	be	missing	as	built-in	to	Python	(used	inside	and
outside	of	OpenStack).

Most	of	these	libraries	are	focused	on	providing	primitives	and

building	blocks	that	help	build	higher	level,	user-centric	features.

The	goal	of	these	libraries	is	to	build	patterns	out	of	the	box	to	aid	in

building	your	application	in	a	scalable,	reliable,	safe	and

straightforward	manner,	from	the	beginning,	instead	of	trying	to

retrofit.

I	also	contribute	to	various	other	cloud	computing	core	projects	such

as	those	in	OpenStack	but	also	ones	that	reach	beyond	OpenStack

such	as	cloud-init	(a	boot-time	program	that	is	used	in	nearly	all

clouds	virtual	machine	images).	I	also	like	dabbling	in	non-

Python/new/upcoming	languages,	libraries	and	system	desig	in	my

spare	time	(among	other	things	that	I	also	partake	in).

You	mention	Erlang	as	one	of	the	languages	that	have	built-

in	helpers	for	distributed	systems.	So	what’s	the	strong

point	of	Python	regarding	distributed	system	in	your

opinion?	On	the	other	hand,	where	does	it	fall	short?

Interesting	question.

I	would	have	to	say	the	strong	point	of	Python	is	its	simplicity	and

http://cloudinit.readthedocs.io/

the	built-ins	that	come	with	it;	it	is	very	manageable	to	hit	the

ground	running	with	Python.	The	number	of	lines	of	code	it	requires

to	set	up	a	small	task	queue	using	Redis	with	producers	putting	work

into	Redis	and	workers	completing	that	work	is	surprisingly	small.

However,	where	it	falls	short	I	feel	is	that	this	kind	of	operations,

e.g.,	connect	into	Redis	and	set	up	a	producer/worker/consumer

system,	is	not	natively	built-in.	This	means	that	it	gets	reinvented

and	that	application	builders	eventually	hit	some	limit	where	they

then	have	to	do	rewrites	to	support	broader	scale.	Other	languages,

such	as	Erlang	(and	to	a	degree,	Go)	build	some	of	these	(but	not	all)

paradigms	right	into	the	language;	this	helps	alleviate	the	need	to

rewrite	at	a	later	date.

Though	I	would	say,	I	have	yet	to	see	a	language	that	natively	builds

in	(as	language	constructs)	all	the	various	primitives	that	I	would

like.	Most	just	pick	a	few,	and	you	have	to	adapt	your	paradigms

either	to	those	or	around	those.	Perhaps	someday	in	the	future,	a

language	with	all	these	built-in	that	is	also	simple	to	use	will	exist

(but	it	does	not	seem	to	have	appeared	yet,	at	least	that	I	am	aware

of).	Maybe	someone	reading	this	will	build	it!

What	would	be	your	advice	to	fulfill	these	shortcomings

when	using	Python,	and	avoid	a	rewrite	later	on?

So	my	advice	around	this	topic	is	slightly	multi-faceted	and	is	broken

up	into	a	few	thought	experiments	that	I	try	to	run	ahead	of	time

(before	getting	too	down	deep	into	the	code	and	getting	locked	into	a

certain	design).

One	key	thing	and	just	a	good	practice,	in	general,	is	to	define	your

interfaces	(the	API	that	external	users	use)	carefully.	Some	of	this

you	learn	over	time,	but	it	applies	that	you	should	try	to	make	it	as

simple	as	possible	and	leave	out	internal	details.	For	example,	as	I

have	seen	it	in	some	OpenStack	projects,	everything	that	can	be

made	an	option	is	made	an	option;	this	is	not	a	good	API.	Even

though	I	do	get	the	reasoning	behind	why	this	happens	–	there	is

always	an	operator	somewhere	that	wants	this	to	be	configurable.

The	less	you	expose	makes	it	easier	to	alter	the	backend	later.

Another	example,	take	the	memcached	API;	it	is	pretty

straightforward	and	simple.	It	is	primarily	composed	of	add,	get,

set,	cas,	delete.	Offering	this	API	and	defining	it	well	has	allowed

for	a	variety	of	different	implementations	of	that	API;	some	that

scale	differently,	some	that	back	the	key	store	with	a	consistent

database	and	so	on.	So	put	some	thought	into	the	API	ahead	of	time,

and	it	usually	pays	off	in	the	long	term	in	regards	to	what	you	can

change	to	scale	and	keep	it	as	simple	as	you	can.

This	also	applies	when	creating	Python	libraries	and	is	a	good

principle	that	goes	back	to	the	UNIX	days	of	do	one	thing	and	do

it	well.

A	second	thing	that	I	have	seen,	and	seems	rather	standard,	is	to

isolate	your	network	I/O	code	behind	a	layer	that	lets	that	layer

switch	to	a	different	implementation.	For	example,	the	Kazoo	library

is	an	example	of	this	where	the	I/O	layer	can	switch	to	eventlet	or

threads	–	or	perhaps	if	someone	submits	the	code	for	it,	to	asyncio.

It	is	typically	an	excellent	pattern	to	implement	because	if	things	are

too	tightly	coupled	then	it	becomes	much	harder	to	alter	the	layer	in

any	manner	at	a	later	time.	Of	course,	you	need	to	benchmark	your

library/application	before	going	about	such	a	change	in	the	first

place.

A	third	thing,	and	one	that	is	relevant	to	not	just	Python	code	but	as

a	general	concept,	is	to	document	thoroughly	what	resources	are

used	and	how	they	are	used	in	the	clearest	way	possible.	Take	as	an

example	a	piece	of	code	running	on	one	machine	that	is	altering

some	resource	X	and	at	the	same	time	another	machine	is	also	trying

to	alter	resource	X.	This	is	a	classic	example	of	a	problem	waiting	to

happen	–	i.e.,	what	happens	when	they	both	modify	X.	It	is	one	of

those	patterns	that	need	to	be	documented	in	the	design	review

phase	of	your	software.	One	thing	that	can	help	here	is	creating	(even

a	simple)	domain-specific	language	(DSL)	that	can	try	to	analyze

your	workflows	at	compilation	time	to	find	potential	locks	(before

your	program	even	starts	running).

What	advice	would	you	have	to	write	a	resilient	Python

application,	one	ready	to	handle	failures?	How	does

Python	help	in	this	regard,	and	where	does	it	need

attention	from	the	developer?

So	a	few	things	that	I	would	suggest;	not	a	complete	comprehensive

listing	but	some	general	points	of	interest	that	I	think	I	have

accumulated	over	the	years;	especially	around	building	a	resilient

application	ready	to	handle	failure.

Build	in	service	discovery	(especially	if	your	app	runs	across
multiple	hosts)	from	the	start	(and	please	do	not	create	it	yourself,
use	existing	technologies	that	already	do	it	better	than	you	will).

Know	where	locks	are	needed	and	where	they	are	not	(and	try	to
avoid	needing	more	than	a	handful	of	them).

Strive	for	crash	tolerance	(and	plan	for	it).	It	is	useful	to	think
about	how	a	database	works	and	understand	what	a	transaction
log	or	journal	is	(and	maybe	such	functionality	can	be	useful	for
your	application/library).

Try	to	be	stateless	(avoids	many	of	the	previously	mentioned
issues	if	you	have	no	state	in	the	first	place).

Don’t	aim	for	the	lowest	bar	(aim	high	from	the	start	and
compromise	as	needed,	vs.	doing	the	reverse);	it	will	likely	end
better	that	way.

Though	those	kinds	of	things	are	healthy	across	just	more	than

Python!

Chapter	6.	Designing	for	Failure
Exception	handling	is	one	of	the	most	brushed	aside	aspects	of	computer
programming.	Errors	are	complicated	to	handle,	and	often	they	are
unlikely,	so	developers	always	forget	to	handle	failures…	sometimes	they
even	forget	on	purpose.

However,	in	a	world	where	applications	are	distributed	over	the	network,
across	miles	of	fiber	optic	cable	and	on	different	computers,	failure	is	not
an	exception.	It	must	be	considered	as	the	norm	for	your	software.
Failure	scenarios	must	be	first-class	citizens	of	the	various	testing
scenarios	being	developed.

In	an	environment	distributed	over	a	network,	anything	that	can	fail	will
fail.

Python	does	not	offer	any	help	in	that	regard,	and	almost	no
programming	language	offers	advanced	error	recovery	or	retrying
capability	–	except	maybe	languages	implementing	condition	systems,
such	as	Common	Lisp.	The	following	sections	give	details	on	some
strategies	that	can	help	handle	failures	and	retry	logic.

6.1.	Naive	Retrying
There’s	a	common	pattern	that	can	be	seen	across	all	sort	of	programs
that	can	be	summarized	with	the	word	"retrying".	It	is	directly	tied	to	the
idea	of	trying	something	again	that	returned	an	error	or	raised	an
exception	when	it	was	not	expected.

The	basic	pattern	that	most	developers	implement	looks	like	what	is
shown	in	Example	6.1,	“Retrying	pattern”.

Example	6.1.	Retrying	pattern

while	True:
				try:

https://en.wikipedia.org/wiki/Exception_handling#Condition_systems

								do_something()
				except:
								pass
				else:
								break

The	example	in	Example	6.1,	“Retrying	pattern”	does	not	provide	any
down	time	for	the	called	function.	Usually,	smarter	strategies	are
implemented.	That	is	especially	important	if	the	code	is	going	to	do
something	like	connecting	to	an	external	system.	The	last	thing	you	want
is	to	repeatedly	hammer	constantly	the	remote	system.	Example	6.2,
“Retrying	pattern	with	sleep”	illustrates	the	most	common
implementation	of	this	retry	and	sleep	pattern.

Example	6.2.	Retrying	pattern	with	sleep

import	time
import	random

def	do_something():
				if	random.randint(0,	1)	==	0:
								print("Failure")
								raise	RuntimeError
				print("Success")

while	True:
				try:
								do_something()
				except:
								#	Sleep	for	one	second	before	retrying
								time.sleep(1)
				else:
								break

This	might	be	one	of	the	most	naive	implementations	that	you	can	use.

The	problem	with	that	simple	approach	is	that	in	complex	systems	it	can
increase	congestion.	If	the	job	is	to	communicate	over	the	network,	the
targeted	system	might	be	hammered	every	second	by	a	bunch	of
programs	trying	to	communicate	with	it,	which	is	not	going	to	help	it	in
terms	of	coping	with	its	potential	load.

This	problem	is	well-known	in	networks,	and	various	techniques	have
been	employed	to	avoid	congestion	collapse.	Among	them,	the
exponential	backoff	algorithm	allows	for	spacing	out	retries.	Example	6.3,
“Retrying	pattern	with	exponential	backoff”	provides	a	straightforward
Python	implementation	of	this	algorithm.

Example	6.3.	Retrying	pattern	with	exponential	backoff

import	time
import	random

def	do_something():
				if	random.randint(0,	1)	==	0:
								print("Failure")
								raise	RuntimeError
				print("Success")

attempt	=	0
while	True:
				try:
								do_something()
				except:
								#	Sleep	for	2^attempt	seconds	before	retrying
								time.sleep(2	**	attempt)
								attempt	+=	1
				else:
								break

On	the	first	attempt,	the	waiting	time	is	1	second.	On	the	second,	it	is

https://en.wikipedia.org/wiki/Exponential_backoff

2	seconds,	then	4	seconds,	then	8	seconds,	and	so	on.	Increasing	the
waiting	delay	makes	sure	that	in	the	case	of	congestion,	the	system	is	not
hit	with	too	many	requests	at	the	same	time	in	order	to	make	sure	that	it
might	be	able	to	recover.

We	could	go	on	and	on	about	the	different	patterns	and	how	to
implement	them	in	Python.	Rather	than	doing	that,	it	is	preferable	to	use
the	tenacity	library	described	in	Section	6.2,	“Retrying	with	Tenacity”

6.2.	Retrying	with	Tenacity
Distributed	applications	often	use	the	retry	pattern	described	in
Section	6.1,	“Naive	Retrying”.	As	soon	as	an	application	scales	over
several	nodes	across	a	network,	it	needs	to	handle	failure	scenarios	that
might	occur.	For	example,	as	soon	as	an	application	sends	some	request
over	HTTP,	there	is	a	possibility	that	the	demand	fails:	the	server	might
be	down,	the	network	might	be	unreachable,	or	the	remote	application
might	have	a	temporary	overload.	The	requester	needs	to	retry	and
handle	all	those	different	conditions	correctly	in	order	to	be	robust.

Since	this	is	a	very	typical	usage,	a	library	called	tenacity	has	been
created	for	Python,	and	it	can	easily	be	used	to	implement	this	strategy
on	any	function	using	a	decorator.

Example	6.4,	“Basic	retrying	with	tenacity”	implements	the	algorithm
shown	in	Example	6.1,	“Retrying	pattern”	in	a	few	lines	using	tenacity.
This	will	make	the	function	do_something	be	called	over	and	over	again
until	it	succeeds	by	not	raising	an	exception	of	any	kind.

Example	6.4.	Basic	retrying	with	tenacity

import	tenacity
import	random

def	do_something():
				if	random.randint(0,	1)	==	0:

https://github.com/jd/tenacity

								print("Failure")
								raise	RuntimeError
				print("Success")

tenacity.Retrying()(do_something)

Obviously,	this	is	a	pretty	rare	case.	Retrying	without	any	delay	is	not
what	most	applications	want,	as	it	can	heavily	burden	the	failing
subsystem.	An	application	usually	needs	to	wait	between	retries.	For	that,
tenacity	offers	a	large	panel	of	waiting	methods.	The	equivalent
implementation	of	Example	6.2,	“Retrying	pattern	with	sleep”	can	be
seen	in	Example	6.5,	“Fixed	waiting	with	tenacity”.

Example	6.5.	Fixed	waiting	with	tenacity

import	tenacity
import	random

def	do_something():
				if	random.randint(0,	1)	==	0:
								print("Failure")
								raise	RuntimeError
				print("Success")

@tenacity.retry(wait=tenacity.wait_fixed(1))
def	do_something_and_retry():
				do_something()

do_something_and_retry()

tenacity	can	also	be	used	as	a	decorator	–	this	is	actually	the	way	it	is
used	most	of	the	time.

The	problem	when	using	a	fixed	time	to	wait	is	that	in	cases	of	temporary
failure,	the	configured	delay	might	be	too	long,	and	in	cases	of	a	more
significant	failure,	the	delay	might	be	too	short.	Since	the	delay	is	fixed,
there	might	be	no	good	choice	between	the	two	options.

An	excellent	alternative	is	to	use	the	exponential	back-off	method,	which
can	be	used	instead	as	shown	in	Example	6.6,	“Exponential	back-off
waiting	with	tenacity”.

Example	6.6.	Exponential	back-off	waiting	with	tenacity

import	tenacity
import	random

def	do_something():
				if	random.randint(0,	1)	==	0:
								print("Failure")
								raise	RuntimeError
				print("Success")

@tenacity.retry(
				wait=tenacity.wait_exponential(multiplier=0.5,	max=30,	exp_base=2),
)
def	do_something_and_retry():
				do_something()

do_something_and_retry()

The	way	the	decorator	is	configured	in	Example	6.6,	“Exponential	back-
off	waiting	with	tenacity”	makes	the	algorithm	retry	after	waiting	first	1
second,	then	waiting	2	seconds,	then	4	seconds,	8	seconds,	16	seconds
and	then	30	seconds,	keeping	that	last	value	for	all	the	subsequent
retries.	The	back-off	algorithm	computes	the	time	to	wait	by	computing
min(multiplier	*	(exp_base^retry_attempt_number),	max)

and	using	that	number	of	seconds.	It	makes	sure	that	if	a	request	is
unable	to	succeed	quickly	after	a	retry,	the	application	waits	longer	and
longer	each	time,	rather	than	repeatedly	hammering	the	targeted
subsystem	at	a	fixed	interval.

tenacity	provides	other	wait	algorithms	such	as	the
wait_random_exponential	which	implements	one	of	the	back-off
algorithms	described	in	an	Amazon	Web	Services	Architecture	blog	post.
This	algorithm	adds	some	variability	to	the	random	exponential	wait	so
retry	attempts	are	spread	evenly	rather	than	packed	when	clients	retry
accessing	a	service.

Another	interesting	point	of	tenacity	is	that	you	can	easily	combine
several	methods.	For	example,	you	can	combine
tenacity.wait.wait_random	with	tenacity.wait.wait_fixed
to	wait	a	number	of	seconds	defined	in	an	interval,	as	done	in
Example	6.7,	“Combining	wait	time	with	tenacity”.

Example	6.7.	Combining	wait	time	with	tenacity

import	tenacity
import	random

def	do_something():
				if	random.randint(0,	1)	==	0:
								print("Failure")
								raise	RuntimeError
				print("Success")

@tenacity.retry(
				wait=tenacity.wait_fixed(10)	+	tenacity.wait_random(0,
)
def	do_something_and_retry():
				do_something()

https://www.awsarchitectureblog.com/2015/03/backoff.html

do_something_and_retry()

This	makes	the	function	being	retried	wait	randomly	for	between	10	and
13	seconds	before	trying	again.

tenacity	offers	more	customization,	such	as	retrying	on	some	exceptions
only.

Example	6.8.	Specific	retry	condition	with	tenacity

import	tenacity
import	random

def	do_something():
				if	random.randint(0,	1)	==	0:
								print("Failure")
								raise	RuntimeError
				print("Success")

@tenacity.retry(wait=tenacity.wait_fixed(1),
																retry=tenacity.retry_if_exception_type(RuntimeError))
def	do_something_and_retry():
				return	do_something()

do_something_and_retry()

In	Example	6.8,	“Specific	retry	condition	with	tenacity”,	tenacity	is
leveraged	to	retry	every	second	to	execute	the	function	only	if	the
exception	raised	by	do_something	is	an	instance	of	RuntimeError.

You	can	combine	several	conditions	easily	by	using	the	|	or	&	binary
operators.	In	Example	6.9,	“Combining	retry	condition	with	tenacity”,
the	conditions	set	up	make	the	code	retry	if	an	RuntimeError	exception

is	raised,	or	if	no	result	is	returned.	Also,	a	stop	condition	is	added	using
the	stop	keyword	arguments.	It	allows	specifying	a	stop	condition	based
on	a	maximum	delay.

Example	6.9.	Combining	retry	condition	with	tenacity

import	tenacity
import	random

def	do_something():
				if	random.randint(0,	1)	==	0:
								print("Failure")
								raise	RuntimeError
				print("Success")
				return	True

@tenacity.retry(wait=tenacity.wait_fixed(1),
																stop=tenacity.stop_after_delay(60),
																retry=(tenacity.retry_if_exception_type(RuntimeError)	|
																							tenacity.retry_if_result(
																											lambda	result:	result	is	None)))
def	do_something_and_retry():
				return	do_something()

do_something_and_retry()

The	functional	approach	of	tenacity	makes	it	easy	and	clean	to	combine
different	conditions	for	various	use	cases	with	simplistic	binary
operators.

tenacity	can	also	be	used	without	a	decorator	by	using	the	object
Retrying,	that	implements	its	main	behavior	and	use	its	call	method.
This	object	allows	one	to	call	any	function	with	different	retry	conditions,
as	in	Example	6.10,	“Using	tenacity	without	decorator”,	or	to	retry	any

piece	of	code	that	does	not	use	the	decorator	at	all	–	like	code	from	an
external	library.

Example	6.10.	Using	tenacity	without	decorator

import	tenacity

r	=	tenacity.Retrying(
				wait=tenacity.wait_fixed(1),
				retry=tenacity.retry_if_exception_type(IOError))
r.call(do_something)

There	should	be	no	need	for	an	application	to	implement	its	own	retry
logic	when	using	tenacity.	At	the	worst,	it	just	needs	to	enhance	it.

Chapter	7.	Lock	Management
When	a	program	tries	to	access	a	resource	that	should	not	be	accessed
concurrently,	a	lock	is	the	easiest	mechanism	for	preventing	shared
access.	Most	operating	systems	provide	local	primitives	for	using	locks,
allowing	different	programs	to	request	access	to	a	resource	without
risking	stepping	on	each	other’s	toes.	Unfortunately,	once	the	application
is	distributed	across	several	nodes	(regardless	what	operating	system),
things	become	complicated.

This	scenario	needs	a	distributed	lock	manager.	It	consists	of	a	central
service,	possibly	spread	across	several	network	nodes,	which	makes	it
possible	to	acquire	and	release	locks	over	the	network.	That	means	that
the	lock	might	be	managed	by	more	than	one	node,	and	so	it	must	be
synchronized	between	the	different	nodes.

Using	a	distributed	lock	manager	makes	it	a	certainty	that	the	application
is	going	to	be	able	to	perform	some	tasks	with	exclusive	access,	avoiding
negative	outcomes	like	data	corruption.

Python	does	not	offer	anything	different	when	compared	to	many
languages	in	this	regard.	There	is	nothing	built	into	the	language,
whereas	it	would	be	the	case	with,	Erlang,	for	example,	which	has	cluster-
wide	locks.	Therefore,	external	services	must	be	relied	upon,	such	as:

ZooKeeper

Redis

etcd

Consul

Those	are	the	most	commonly	used	systems.	There	are	also	other	services
that	can	act	as	lock-managers,	though	they	offer	less	redundancy,	such	as
memcached	or	even	PostgreSQL.

The	following	chapter	digs	into	the	lock	primitives	you	might	need	in
order	to	make	your	application	concurrency-safe,	and	how	to	leverage

https://www.erlang.org/
https://zookeeper.apache.org/
https://redis.io/
https://coreos.com/etcd
https://www.consul.io/
https://memcached.org/
https://www.postgresql.org/

external	services.

7.1.	Thread	Locks
In	order	to	protect	concurrent	accesses	to	resources	by	multiple	threads,
Python	provides	threading.Lock.

For	example,	if	we	consider	stdout	as	a	resource	where	only	one	thread
can	have	access	at	the	same	time,	we	need	to	use	a	threading.Lock
object	to	synchronize	the	access	to	that	resource.	Example	7.1,	“Threads
using	a	lock”	illustrates	how	to	use	a	lock	to	share	access	to	stdout.

Example	7.1.	Threads	using	a	lock

import	threading

stdout_lock	=	threading.Lock()

def	print_something(something):
				with	stdout_lock:
								print(something)

t	=	threading.Thread(target=print_something,	args=("hello",))
t.daemon	=	True
t.start()
print_something("thread	started")

Now	there	are	only	two	outputs	possible:

$	python	examples/chapter7-lock-management/threading-lock.py
hello
thread	started
$	python	examples/chapter7-lock-management/threading-lock.py
thread	started

hello

The	lock	does	not	force	the	order	of	the	execution,	but	it	makes	sure	only
one	of	the	threads	can	use	print	at	the	same	time,	avoiding	any	data
corruption.	Imagine	that	instead	of	stdout	the	thread	would	write	to	the
same	file	–	that	would	be	some	significant	data	corruption!	That	is	why
locks	are	always	required	when	accessing	shared	resources.

Some	data	types	in	Python	have	atomic	operations,	for	example:

list.append

list.extend

list.__getitem__

list.pop

list.__setitem__

list.sort

x	=	y

setattr

dict.__setitem__

dict.update

dict.keys

What	this	means	is	that	when	a	program	calls	mylist.append(1)	and
mylist.append(2)	in	different	threads,	the	list	mylist	contains	1	and
2	and	no	data	corruption	ever	happens	–	see	Example	1.1,	“Thread-unsafe
code	without	the	GIL”.

That	is	good	to	know	since	using	locks	has	a	huge	cost.	When	a	lock	is
acquired,	all	the	other	threads	which	need	that	lock	have	to	wait,	slowing
the	program	down.	However,	since	some	of	the	basic	Python	data	types
expose	atomic	operations,	an	application	can,	for	example,	use	a	list
across	different	threads	and	be	safe	appending	data	to	it	without	the	use

of	a	threading.Lock	object.

In	the	case	that	one	of	your	threads	might	need	to	acquire	a	lock	multiple
times	(e.g.	a	recursive	function),	the	threading.RLock	provides	what	is
called	a	reentrant	lock.	This	type	of	lock	can	be	acquired	multiple	times
by	the	same	thread,	rather	than	being	blocked	when	already	acquired.

Example	7.2.	Threads	using	a	reentrant	lock

import	threading

rlock	=	threading.RLock()

with	rlock:
				with	rlock:
								print("Double	acquired")

If	a	threading.Lock	was	being	used	in	Example	7.2,	“Threads	using	a
reentrant	lock”	instead,	the	program	would	be	in	a	dead-lock	state,
unable	to	continue	its	execution.

The	last	commonly	used	object	for	synchronizing	thread	is
threading.Event.	You	can	think	about	this	object	as	it	is	a	boolean
value,	being	True	or	False.	A	thread	can	set	the	value	to	true	by	calling
threading.Event.set()	and	another	thread	can	wait	for	the	value	to
become	True	by	calling	threading.Event.wait().

One	of	the	most	common	use	cases	for	such	an	object	is	to	synchronize
background	thread	with	your	main	thread	on	exit.

Example	7.3.	Threads	using	an	threading.Event	object

import	threading
import	time

stop	=	threading.Event()

def	background_job():
				while	not	stop.is_set():
								print("I'm	still	running!")
								stop.wait(0.1)

t	=	threading.Thread(target=background_job)
t.start()
print("thread	started")
time.sleep(1)
stop.set()
t.join()

As	boring	as	Example	7.3,	“Threads	using	an	threading.Event	object”
might	be,	it	shows	pretty	well	how	the	main	thread	can	let	the	secondary
thread	know	that	it	is	time	to	stop.	The	usage	of	a	threading.Event
object	for	such	synchronization	between	threads	is	a	popular	design
pattern	when	using	threads.

7.2.	Processes	Locks
When	using	multiple	processes	to	distribute	workload,	an	application
needs	a	dedicated	lock	type	that	can	be	accessed	by	multiple	local
processes.

They	are	two	different	use	cases	for	inter-processes	locks:

All	your	processes	come	from	the	multiprocessing	Python	package
using	the	methods	described	in	Section	2.2,	“Using	Processes”.

You	have	processes	running	independently,	launched	by	os.fork	or
by	an	external	process	manager	–	processes	that	might	not	even	be	in
Python.

We	will	see	how	to	handle	both	situations	in	the	following	sections.

7.2.1.	Multiprocessing	Locks

When	all	programs	accessing	a	shared	resources	are	written	in	Python,
the	natural	method	to	secure	accesses	is	to	use	the
multiprocessing.Lock	objects	provided	by	Python.	That	class	is	built
around	POSIX	or	Windows	semaphores	(depending	on	your	operating
system)	and	allows	use	of	a	lock	across	several	processes.

Example	7.4.	Printing	cats	in	parallel

import	multiprocessing
import	time

def	print_cat():
				#	Add	some	randomness	by	waiting	a	bit
				time.sleep(0.1)
				print("	/_/\\")
				print("(o.o)")
				print("	>	^	<")

with	multiprocessing.Pool(processes=3)	as	pool:
				jobs	=	[]
				for	_	in	range(5):
								jobs.append(pool.apply_async(print_cat))
				for	job	in	jobs:
								job.wait()

Example	7.4,	“Printing	cats	in	parallel”	is	a	very	simple	example	that	uses
multiprocessing.Pool	to	prints	cats	in	ASCII	art.	The	program
launches	up	to	3	processes	that	have	to	print	5	cats	in	parallel.	When
executed,	the	program	outputs	the	following:

$	python	examples/multiprocessing-lock.py
	/_/\

	/_/\
(o.o)
(o.o)
	>	^	<
	>	^	<
	/_/\
(o.o)
	>	^	<
	/_/\
	/_/\
(o.o)
	>	^	<
(o.o)
	>	^	<

The	cats	are	a	bit	mixed	up.	The	standard	output	is	shared	across	all	the
processes	printing	cats,	and	they	are	stepping	on	each	other’s	toes.	The
way	to	fix	that	is	to	lock	the	standard	output	until	the	cat	is	fully	printed
on	the	screen.	This	is	easily	done	by	using	a	multiprocessing.Lock.

Example	7.5.	Printing	cats	in	parallel	with	a	lock

import	multiprocessing
import	time

stdout_lock	=	multiprocessing.Lock()

def	print_cat():
				#	Add	some	randomness	by	waiting	a	bit
				time.sleep(0.1)
				with	stdout_lock:
								print("	/_/\\")
								print("(o.o)")
								print("	>	^	<")

with	multiprocessing.Pool(processes=3)	as	pool:
				jobs	=	[]
				for	_	in	range(5):
								jobs.append(pool.apply_async(print_cat))
				for	job	in	jobs:
								job.wait()

When	running	Example	7.5,	“Printing	cats	in	parallel	with	a	lock”,	the
output	now	looks	much	better:

$	python	examples/multiprocessing-lock.py
	/_/\
(o.o)
	>	^	<
	/_/\
(o.o)
	>	^	<
	/_/\
(o.o)
	>	^	<
	/_/\
(o.o)
	>	^	<
	/_/\
(o.o)
	>	^	<

The	cats	are	never	mixed	up	and	they	are	correctly	drawn	on	the	screen.
The	lock	has	to	be	acquired	by	any	process	trying	to	draw	a	cat	on	the
terminal,	making	sure	it	completes	its	work	before	releasing	it.

7.2.2.	Inter-Processes	Locks

As	stated	earlier,	multiprocessing.Lock	only	works	for	processes
started	from	a	single	Python	process.	If	your	application	is	distributed

across	several	Python	processes	–	such	as	a	daemon	started
independently	–	you	need	an	interprocess	lock	mechanism.

Those	locks	are	usually	not	portable	across	operating	systems.	POSIX,
System	V	or	even	Windows	all	offer	different	interprocess
communication	mechanisms,	and	they	are	not	compatible	with	one
another.	You	may	want	to	look	in	this	direction	if	you	are	not	afraid	of
making	your	software	platform-dependent.

The	fasteners	module	provides	an	excellent	implementation	of	a	generic
solution	based	on	file	locks	in	Python.

Note

Locks	implemented	by	fasteners	are	based	on	file-system	locks.
They	are	not	specific	to	Python.	Therefore	you	could	also
implement	the	same	file-locking	mechanism	in	another
programming	language	in	order	to	have	cross-language	locking.

Fasteners	provides	a	lock	class	fasteners.InterProcessLock	that
takes	a	file	path	as	its	first	argument.	This	file	path	is	going	to	be	the
identifier	for	this	lock,	and	it	can	be	used	across	multiple	independent
processes.	This	is	why	fasteners	is	helpful	to	lock	access	to	resources
across	processes	that	were	started	independently.

Example	7.6.	Using	Fasteners	for	interprocess	locking

import	time

import	fasteners

lock	=	fasteners.InterProcessLock("/tmp/mylock")
with	lock:
				print("Access	locked")
				time.sleep(1)

If	you	run	multiple	copies	of	the	program	in	Example	7.6,	“Using

https://github.com/harlowja/fasteners

Fasteners	for	interprocess	locking”,	they	all	sequentially	print	Access
locked	after	acquiring	the	lock.

There	is	no	helper	provided	by	fasteners	nor	is	there	any	rule	to
determine	which	file	path	should	be	used	by	your	application.	The	usual
convention	is	for	it	to	be	in	a	temporary	directory	that	is	purged	on
system	start,	such	as	$TMPDIR	or	/var/run.	It	is	up	to	you	to	determine
the	directory	where	to	create	the	file	and	to	have	a	filename	that	is	unique
to	your	application,	but	known	to	all	processes.

Fasteners	also	provides	a	function	decorator	to	easily	lock	an	entire
function	as	shown	in	Example	7.7,	“Using	Fasteners	decorator	for
interprocess	locking”.

Example	7.7.	Using	Fasteners	decorator	for	interprocess	locking

import	time

import	fasteners

@fasteners.interprocess_locked('/tmp/tmp_lock_file')
def	locked_print():
				for	i	in	range(10):
								print('I	have	the	lock')
								time.sleep(0.1)

locked_print()

Fasteners	locks	are	reliable	and	efficient.	They	do	not	have	a	single-
point-of-failure	except	the	operating	system	itself,	so	they	are	a	good
choice	for	inter-process	locking	needs	that	are	local	to	a	machine.

7.3.	Using	etcd	for	Distributed

Locking
etcd	is	a	popular	distributed	key/value	store.	It	stores	keys	and	values
and	replicates	them	on	several	nodes	which	can	be	used	to	query	or
update	the	keys.	To	keep	its	member	in	sync,	etcd	implements	the	Raft
algorithm.	Raft	solves	the	consensus	issue	in	distributed	systems	by
electing	a	leader	who	is	responsible	for	maintaining	consistency	across
nodes.	In	short,	Raft	makes	sure	that	data	stored	by	etcd	are	consistent
across	all	nodes,	and	that	if	a	node	crashes,	the	etcd	cluster	can	continue
to	operate	until	its	failed	node	comes	back	to	life.

In	that	regard,	etcd	allows	implementing	a	distributed	lock.	The	basic
idea	behind	the	lock	algorithm	is	to	write	some	value	in	a	pre-determined
key.	All	the	services	in	the	cluster	would	pick,	for	example,	the	key	lock1
and	would	try	to	write	the	value	acquired	in	it.	As	etcd	supports
transactions,	this	operation	would	be	executed	in	a	transaction	that
would	fail	if	the	key	already	existed.	In	that	case,	the	lock	would	be
unable	to	be	acquired.	If	it	succeeds,	the	lock	is	acquired	by	the	process
that	managed	to	create	the	key	and	write	the	value.

To	release	a	lock,	the	client	that	acquired	it	just	has	to	delete	the	key	from
etcd.

etcd	is	able	to	notify	clients	when	a	key	is	modified	or	deleted.	Therefore,
any	client	that	was	unable	to	create	the	key	(and	acquire	the	lock)	can	be
notified	as	soon	as	the	lock	is	released.	Then	it	can	try	to	acquire	it.

If	the	client	that	acquired	the	lock	crashes,	the	lock	becomes	impossible
to	release.	To	avoid	such	cases,	the	keys	have	a	time-to-live	predefined	at
their	creation	and	need	to	be	refreshed	as	long	as	the	lock	is	kept
acquired	by	the	client.

This	workflow	is	a	basic	locking	algorithm	and	it	is	implementable	with
many	other	key/value	stores.

Figure	7.1.	Simple	etcd	lock	algorithm

https://coreos.com/etcd
https://en.wikipedia.org/wiki/Raft_(computer_science)

Rather	than	implementing	this	algorithm	from	scratch	(I’ll	leave	that	to
you	as	an	exercise),	leveraging	the	etcd3.locks.Lock	class	provided
by	the	Python	etcd3	package	is	easier	and	safer,	and	therefore	preferred.

Example	7.8,	“Locking	with	etcd”	shows	how	to	get	a	lock	from	your	local
etcd	server.	As	long	as	the	lock	is	acquired,	no	other	process	can	grab	it.
Since	etcd	is	a	network	service,	you	can	easily	synchronize	your	process
across	a	network	using	this	simple	lock	mechanism.

Note

You	need	to	start	etcd	to	make	examples	work.	Simply	run	etcd
from	the	command	line	once	it	is	installed.

Example	7.8.	Locking	with	etcd

import	etcd3

client	=	etcd3.client()
lock	=	client.lock("foobar")
lock.acquire()
try:
				print("do	something")
finally:
				lock.release()

You	can	also	use	it	with	the	with	statement,	which	makes	it	more
readable	and	handles	exception	in	an	easier	way:

Example	7.9.	Locking	with	etcd	using	the	with	statement

import	etcd3

client	=	etcd3.client()
lock	=	client.lock("foobar")
with	lock:
				print("do	something")

For	more	robustness,	deploying	etcd	as	a	cluster	of	several	nodes	makes
sure	that	if	the	etcd	server	that	your	application	connects	to	goes	down,
the	rest	of	the	cluster	can	continue	to	work,	and	likewise	your	clients,	as
long	as	they	switch	to	a	different	server	when	an	error	occurs	(though	this
feature	is	not	implemented	in	python-etcd3	yet).

Example	7.10,	“Locking	service	with	etcd	and	Cotyledon”	implements	a
distributed	service	using	the	Cotyledon	library	(as	discussed	in
Section	2.5,	“Daemon	Processes”).	It	spawns	four	different	processes,	and
only	one	is	authorized	to	print	at	any	given	time.

Example	7.10.	Locking	service	with	etcd	and	Cotyledon

import	threading
import	time

import	cotyledon

https://github.com/kragniz/python-etcd3/issues/150

import	etcd3

class	PrinterService(cotyledon.Service):
				name	=	"printer"

				def	__init__(self,	worker_id):
								super(PrinterService,	self).__init__(worker_id)
								self._shutdown	=	threading.Event()
								self.client	=	etcd3.client()

				def	run(self):
								while	not	self._shutdown.is_set():
												with	self.client.lock("print"):
																print("I'm	%s	and	I'm	the	only	one	printing"
																						%	self.worker_id)
																time.sleep(1)

				def	terminate(self):
								self._shutdown.set()

#	Create	a	manager
manager	=	cotyledon.ServiceManager()
#	Add	4	PrinterService	to	run
manager.add(PrinterService,	4)
#	Run	all	of	that
manager.run()

You	can	run	this	program	any	number	of	times	on	any	number	of
machines	on	your	network	and	you	can	be	sure	that	one	and	only	one
process	at	a	time	will	own	this	lock	and	be	able	to	print	its	line.	Since	the
lock	is	acquired	for	a	tiny	amount	of	time	(a	print	operation	and	one
second),	we	do	not	expect	it	to	timeout.	The	default	time-to-live	for	a	lock
is	60	seconds,	which	ought	to	be	enough	–	if	the	program	takes	longer	to
print	something	and	sleep	one	second,	then	something	is	wrong,	and	it
might	be	better	to	let	the	lock	expire.

However,	for	sustained	operations,	an	application	should	not	cheat	and
extend	the	time-to-live	value.	The	program	should	keep	the	lock	active	by
regularly	calling	the	Lock.refresh	method.

Combining	such	a	distributed	lock	mechanism	and	a	library	like
Cotyledon	can	make	building	a	distributed	service	straightforward.

7.4.	Using	Tooz	Locking
Abstraction
Picking	a	distributed	lock	mechanism	once	and	for	all	for	your
application	is	not	necessarily	obvious.

First,	some	solutions	are	heavier	than	other	to	deploy	and	maintain.	For
example,	installing	a	memcached	server	is	pretty	straightforward,	but
maintaining	a	ZooKeeper	cluster	is	much	more	complicated.	Clearly,	the
two	solutions	are	not	strictly	equivalent	in	terms	of	safety	and	guaranteed
operation.	However,	as	a	developer,	it	might	be	handy	to	test	using	a
small	backend	and	operate	at	scale	with	a	scalable	backend.

Secondly,	it	is	not	always	obvious	which	solution	to	pick.	A	few	years	ago,
ZooKeeper	was	the	hot	thing	and	the	only	widely	available
implementation	of	the	Paxos	algorithm.	However,	nowadays,	solutions
such	as	etcd	and	its	Raft	implementation	are	getting	more	traction:	the
algorithm	is	simpler	to	understand	and	the	project	is	less	complicated	to
deploy	and	operate.

All	those	backends	offer	different	levels	of	abstraction	on	top	of
distributed	features.	Some	projects	provide	a	full	locking	implementation
whereas	some	others	are	only	key/value	stores.

The	Tooz	library	was	created	a	few	years	ago	to	solve	those	problems.	It
provides	an	abstraction	on	top	of	a	varied	set	of	backends,	making	it	easy
to	switch	from	one	service	to	another.	This	can	be	quite	powerful,	as	it
allows	you	to	use	memcached	to	test	your	distributed	code	on	your
laptop,	for	example,	as	it	is	lightweight	to	run	and	install,	while	you	can

https://pypi.python.org/pypi/tooz

also	support,	something	like	a	ZooKeeper	cluster	as	a	more	robust
solution.	Moreover,	whatever	is	the	backend	you	pick,	the	distributed
feature	that	you	need,	such	as	locking,	are	provided	using	the	same	API
for	your	application,	whatever	the	primitives	provided	by	the	underlying
service.

To	achieve	that,	Tooz	provides	a	Coordinator	object	that	represents	the
coordination	service	your	application	is	connected	to.	The	method
tooz.coordinator.get_coordinator	allows	the	program	to	get	a
new	coordinator.	All	it	needs	is	the	URL	to	connect	to	and	a	unique
identifier	for	the	node,	as	you	can	see	in	Example	7.11,	“Getting	a	Tooz
coordinator”.

Example	7.11.	Getting	a	Tooz	coordinator

import	uuid

from	tooz	import	coordination

#	Generate	a	random	unique	identifier	using	UUID
identifier	=	str(uuid.uuid4())
#	Get	the	Coordinator	object
c	=	coordination.get_coordinator(
				"etcd3://localhost",	identifier)
#	Start	it	(initiate	connection)
c.start(start_heart=True)
#	Stop	when	we're	done
c.stop()

Note

You	will	need	to	start	etcd	to	make	the	examples	work.	Simply	run
etcd	from	the	command	line	once	it	is	installed.	If	you	do	not
have	etcd',	you	can	use	memcached	instead.
Replace	the	`etcd://	URL	with
memcached://localhost.

The	basic	operations	on	a	coordinator	are	pretty	simple.	Once
instantiated,	one	just	needs	to	start	it	and	stop	it	when	the	program	is
done.

The	get_lock	method	provided	by	the	coordinator	allows	getting	a
distributed	lock	from	the	selected	backend.	This	lock	implements	two
main	methods:	acquire	and	release.	They	both	return	True	or
False	based	on	their	success	or	failure	to	operate.

Example	7.12.	Getting	a	lock

import	uuid

from	tooz	import	coordination

#	Generate	a	random	unique	identifier	using	UUID
identifier	=	str(uuid.uuid4())
#	Get	the	Coordinator	object
c	=	coordination.get_coordinator(
				"etcd3://localhost",	identifier)
#	Start	it	(initiate	connection)
c.start(start_heart=True)

lock	=	c.get_lock(b"name_of_the_lock")
#	Grab	and	release	a	lock
assert	lock.acquire()	is	True
assert	lock.release()	is	True

#	You	can't	release	a	lock	you	did	not	acquire
assert	lock.release()	is	False

assert	lock.acquire()	is	True
#	You	can	acquire	without	blocking	and	fail	early
assert	lock.acquire(blocking=False)	is	False
#	Wait	5	seconds	before	giving	up
assert	lock.acquire(blocking=5)	is	False
assert	lock.release()	is	True

#	Stop	when	we're	done
c.stop()

Example	7.12,	“Getting	a	lock”	shows	how	you	can	use	those	methods	to
acquire	and	release	a	lock.	The	acquire	lock	method	accepts	a
blocking	parameter	which	is	True	by	default.	This	makes	the	caller
wait	until	the	lock	is	available	–	which	can	take	forever.	If	forever	is	too
long	for	the	program,	blocking	can	also	be	set	to	the	number	of	seconds
(or	False,	which	is	equivalent	to	zero	second)	to	wait	before	either
succeeding	and	returning	True,	or	giving	up	and	returning	False.

It	is	therefore	easy	to	rewrite	Example	7.9,	“Locking	with	etcd	using	the
with	statement”	using	Tooz	and	getting	the	multiple	backend	support
(which	includes	etcd)	for	free,	as	you	can	see	in	Example	7.13,	“Using
Tooz	lock	and	the	with	statement.”.

Example	7.13.	Using	Tooz	lock	and	the	with	statement.

import	uuid

from	tooz	import	coordination

#	Generate	a	random	unique	identifier	using	UUID
identifier	=	str(uuid.uuid4())
#	Get	the	Coordinator	object
c	=	coordination.get_coordinator(
				"etcd3://localhost",	identifier)
#	Start	it	(initiate	connection)
c.start(start_heart=True)

lock	=	c.get_lock(b"foobar")
with	lock:
				print("do	something")

Unless	you	are	certain	about	the	backend	that	your	application	needs,

using	an	abstraction	layer	such	as	Tooz	can	be	a	great	solution.	This	is
especially	true	for	some	of	the	backends	that	Tooz	supports	such	as
PostgreSQL	or	memcached,	for	example,	as	there	are	no	other	Python
libraries	implementing	a	locking	mechanism	in	contrast	to	etcd	or
ZooKeeper.

Chapter	8.	Group	membership
Distributed	applications	all	show	the	same	set	of	well-known	problems
that	they	need	to	solve.	One	of	them	is	distributed	locking	of	resources	so
that	no	resource	inadvertently	gets	shared	access	as	this	was	discussed	in
Chapter	7,	Lock	Management.	The	second	one	involves	cluster
membership	awareness	and	liveliness.

A	typical	use	case	for	distributed	workers	is	the	need	to	know	how	many
workers	are	alive	in	the	cluster.	This	data	allows	for	implementing
different	scenarios,	such	as	high	availability	(one	node	doing	the	work
and	the	other	one	standing-by)	and	load	balancing	(several	nodes
spreading	some	work	across	each	other).

In	all	cases,	an	external	service	is	needed	to	achieve	this	functionality.
Rather	than	picking	one	and	implementing	all	those	low-level	features	in
your	application,	this	chapter	demonstrates	how	to	use	the	abstraction
layer	and	algorithms	that	the	Tooz	library	provides	to	solve	that
efficiently.

8.1.	Creating,	Joining	and	Leaving
Groups
The	Tooz	library	implements	a	common	pattern	that	it	calls	"group
membership".	The	pattern	is	quite	easy	to	understand	and	is	illustrated	in
Figure	8.1,	“Tooz	membership”.

Figure	8.1.	Tooz	membership

https://pypi.python.org/pypi/tooz

Here	are	the	rules:	a	group	is	a	set	containing	zero	or	more	members.
When	a	node	joins	a	group,	it	becomes	a	member	of	this	group.	A
member	can	leave	the	group	at	any	time:	either	on	its	own	(shutdown)	or
because	it	did	not	renew	membership.	The	membership	tracking	is
automatically	done	by	Tooz	and	the	backend	it	uses.

Note

As	discussed	in	Section	7.4,	“Using	Tooz	Locking	Abstraction”,
Tooz	supports	several	backends,	from	memcached	to	etcd.	The
robustness	of	the	membership	and	liveliness	tracking	depends	on
the	integrity	of	the	backend.	Using	a	backend	such	as	ZooKeeper
and	its	Paxos	consensus	algorithm	is	more	robust	than	using	a
solo	Redis	instance.	I	invite	you	to	dig	look	at	requirements	and
dig	into	all	the	features	provided	by	backends	supported	by	Tooz
for	more	information.

Example	8.1.	Joining	a	group

import	sys
import	time

from	tooz	import	coordination

#	Check	that	a	client	and	group	ids	are	passed	as	arguments
if	len(sys.argv)	!=	3:
				print("Usage:	%s	<client	id>	<group	id>"	%	sys.argv[0])

				sys.exit(1)

#	Get	the	Coordinator	object
c	=	coordination.get_coordinator(
				"etcd3://localhost",
				sys.argv[1].encode())
#	Start	it	(initiate	connection).
c.start(start_heart=True)

group	=	sys.argv[2].encode()

#	Create	the	group
try:
				c.create_group(group).get()
except	coordination.GroupAlreadyExist:
				pass

#	Join	the	group
c.join_group(group).get()

#	Print	the	members	list
members	=	c.get_members(group)
print(members.get())

#	Wait	5	seconds
time.sleep(5)

#	Leave	the	group
c.leave_group(group).get()

#	Stop	when	we're	done
c.stop()

Example	8.1,	“Joining	a	group”	shows	a	complete	workflow	using	Tooz
group	membership	API.

Note

You	will	need	to	start	etcd	to	make	the	examples	work.	Simply	run
etcd	from	the	command	line	once	it	is	installed.	If	you	do	not
have	etcd',	you	can	use	memcached	instead.
Replace	the	`etcd://	URL	with	memcached://.

The	first	step	after	starting	the	coordinator	is	to	create	the	group.	It	is
possible	that	the	group	has	been	already	created,	in	that	another	client
could	have	already	been	joining	that	group.	If	that	is	the	case,	we	just
ignore	the	exception.

The	second	step	is	to	join	the	group.	That	is	done	using	the	join_group
method.	You	might	have	noticed	that	the	get	method	is	called	every	time
on	the	result	of	the	join_group	or	create_group	methods.	Indeed,
Tooz	exposes	an	asynchronous	API;	that	means	that	calling	join_group
starts	the	process	of	joining	the	group,	but	the	group	is	not	fully	joined
for	sure	until	the	application	calls	the	get	method	of	the	returned	value
of	join_group.

Once	the	group	is	joined,	you	can	print	the	list	of	the	members	that	are	in
the	group.	That	is	done	by	using	the	get_members	method.

As	the	example	allows	you	to	specify	the	group	id	and	the	member	id,	you
can	run	any	number	of	those	examples	on	any	number	of	nodes.	As	long
as	they	connect	to	the	same	etcd	service,	they	see	each	other	in	the	same
group.

8.2.	Using	Capabilities
Tooz	provides	a	capability	mechanism	on	top	of	the	group	feature.	When
joining	a	group,	a	member	can	specify	what	its	capabilities	are.	It	can	also
update	them	later	as	needed.

Capabilities	are	any	simple	data	structure	that	your	program	needs	to
share.	It	can	be	as	simple	as	a	string	and	as	a	complicated	as	a	nested
dictionary.	The	typical	usage	of	this	data	structure	is	to	pass	information
about	the	member,	such	as	its	processing	power	or	its	feature	set.	It

allows	filtering	members	based	on	their	functionality	or	weighing	them
differently	based	on	their	computing	power.

Example	8.2,	“Using	Tooz	capabilities”	shows	a	complete	example	of
joining	a	group	with	a	capability	set.	In	this	example,	each	client	can
provide	a	mood	when	joining	a	group.	All	members	can	then	get	member
capabilities	and	retrieve	their	moods.

Example	8.2.	Using	Tooz	capabilities

import	sys
import	time

from	tooz	import	coordination

#	Check	that	a	client	and	group	ids	are	passed	as	arguments
if	len(sys.argv)	!=	4:
				print("Usage:	%s	<client	id>	<group	id>	<mood>"
										%	sys.argv[0])
				sys.exit(1)

#	Get	the	Coordinator	object
c	=	coordination.get_coordinator(
				"etcd3://localhost",
				sys.argv[1].encode())
#	Start	it	(initiate	connection).
c.start(start_heart=True)

group	=	sys.argv[2].encode()

#	Create	the	group
try:
				c.create_group(group).get()
except	coordination.GroupAlreadyExist:
				pass

#	Join	the	group

c.join_group(
				group,
				capabilities={"mood":	sys.argv[3]}
).get()

#	Print	the	members	list	and	their	capabilities.
#	Since	the	API	is	asynchronous,	we	mit	all	the	request	to	get	the	capabilities
#	at	the	same	time	so	they	are	run	in	parallel.
get_capabilities	=	[
				(member,	c.get_member_capabilities(group,	member))
				for	member	in	c.get_members(group).get()
]

for	member,	cap	in	get_capabilities:
				print("Member	%s	has	capabilities:	%s"
										%	(member,	cap.get()))

#	Wait	5	seconds
time.sleep(5)

#	Leave	the	group
c.leave_group(group).get()

#	Stop	when	we're	done
c.stop()

When	Example	8.2,	“Using	Tooz	capabilities”	is	run	twice	at	the	same
time,	you	can	see	the	following	output:

$	python	examples/tooz-capabilities.py	foo	group1	sad	>/dev/null	&
$	python	examples/tooz-capabilities.py	bar	group1	happy
Member	b'foo'	has	capabilities:	{'mood':	'sad'}
Member	b'bar'	has	capabilities:	{'mood':	'happy'}

You	can	run	this	program	as	many	time	as	you	want,	and	use	different
groups	if	you	need	to.	That	should	give	you	a	glimpse	of	all	the	possibility

that	this	API	can	offer	for	your	distributed	application.

8.3.	Using	Watchers	Callbacks
When	a	member	joins	or	leaves	a	group,	applications	usually	want	to	run
an	action.	There	is	a	mechanism	provided	by	Tooz	to	help	with	that
named	watchers.	It	works	by	caching	a	list	of	the	members	and	running
the	specified	callback	functions	each	time	a	member	joins	or	leaves	the
group.

To	use	those	callbacks,	Tooz	provides	the	watch_join_group	and
watch_leave_group	methods	to	register	functions	to	call	on	join	or
leave	events.	If	you	ever	need	to	un-register	a	callback,
unwatch_join_group	and	unwatch_leave_group	provide	this
functionality.

Once	the	callback	functions	are	registered,	they	are	only	run	when	the
run_watcher	method	is	called.	If	your	application	is	thread-safe,	you
can	run	this	method	regularly	in	a	different	thread.	If	not,	you	should	call
it	in	any	loop	your	program	provides.

Example	8.3,	“Using	watchers	with	Tooz”	provides	an	example	of	an
application	joining	a	group	and	checking	when	a	member	joins	or	leaves
that	group.	As	soon	as	this	happens	and	that	run_watchers	is	executed,
it	prints	which	member	joined	or	left	which	group.

Example	8.3.	Using	watchers	with	Tooz

import	sys
import	time

from	tooz	import	coordination

#	Check	that	a	client	and	group	ids	are	passed	as	arguments
if	len(sys.argv)	!=	3:
				print("Usage:	%s	<client	id>	<group	id>"	%	sys.argv[0])

				sys.exit(1)

#	Get	the	Coordinator	object
c	=	coordination.get_coordinator(
				#	Set	a	short	timeout	to	see	effects	faster
				"etcd3://localhost/?timeout=3",
				sys.argv[1].encode())
#	Start	it	(initiate	connection).
c.start(start_heart=True)

group	=	sys.argv[2].encode()

#	Create	the	group
try:
				c.create_group(group).get()
except	coordination.GroupAlreadyExist:
				pass

#	Join	the	group
c.join_group(group).get()

#	Register	the	print	function	on	group	join/leave
c.watch_join_group(group,	print)
c.watch_leave_group(group,	print)

while	True:
				c.run_watchers()
				time.sleep(1)

#	Leave	the	group
c.leave_group(group).get()

#	Stop	when	we're	done
c.stop()

To	see	the	effect	of	this	example,	you	should	run	it	twice	(at	least)	in	two
different	terminals.	That	makes	it	possible	to	see	the	callback	function

being	called.	An	example	transcript	is	provided	in	Example	8.4,	“Example
output	of	Example	8.3,	“Using	watchers	with	Tooz””.

Example	8.4.	Example	output	of	Example	8.3,	“Using	watchers	with
Tooz”

#	Run	the	first	client	in	a	first	terminal
$	python	examples/tooz-run-watchers.py	client1	group

#	In	another	terminal	run	the	second	client
$	python	examples/tooz-run-watchers.py	client2	group

#	In	the	first	terminal	you	will	see
<MemberJoinedGroup:	group	group1:	+member	client2>

#	Interrupt	the	client	from	the	second	terminal	by	pressing	C-C
#	You	will	see	in	the	first	terminal	~3	seconds	later:
<MemberLeftGroup:	group	group1:	-member	client2>

As	soon	as	Ctrl+c	is	pressed	to	interrupt	the	program,	it	loses	its
connection	to	etcd	and	its	keys	will	expire	after	the	configured	timeout.
You	can	see	the	configured	timeout	as	being	passed	in	the	connection
URL	as	?timeout=.

Using	Ctrl+c	to	interrupt	the	program	simulates	a	crash	or	a	violent
interruption,	and	you	can	see	that	this	system	is	pretty	robust	in	this
regard.	Obviously,	the	program	would	also	be	notified	of	the	member
leaving	the	group	if	it	would	have	called	the	leave_group	method.

This	feature	allows	following	all	members	joining	and	leaving	a
distributed	system	and	it	is	very	handy	in	higher-level	applications,	as
discussed	in	Section	8.5,	“Partitioner”.

8.4.	Consistent	Hash	Rings
Being	able	to	manage	distributed	groups	enables	the	utilization	of	several

distributed	algorithms.	One	of	them	is	named	consistent	hash	rings.

A	traditional	way	to	spread	keys	across	a	distributed	systems,	which	is
composed	of	n	nodes,	is	to	compute	which	node	should	be	responsible	for
a	key	by	using:	hash(object)	%	n.	Unfortunately,	as	soon	as	n
changes,	the	result	of	the	modulo	operation	changes	and	therefore	all
keys	are	remapped	to	a	new	node.	This	remapping	causes	a	massive
shuffling	of	data	or	processing	in	a	cluster.

The	point	of	consistent	hashing	is	to	avoid	that.	By	using	a	different
method	of	computing,	when	n	changes,	only	K	/	n	of	the	keys	are
remapped	to	the	remaining	nodes	(where	K	is	the	number	of	keys	and	n
the	number	of	nodes	handling	those	keys).

A	hash	ring	is	a	hashing	space	that	wraps	around	itself	to	form	a	circle	–
that’s	why	it	is	called	a	ring.	Every	key	computed	using	the	consistent
hashing	function	maps	somewhere	on	this	hash	space:	that	means	that	a
key	is	always	in	the	same	place	on	the	ring.	The	ring	is	then	split	into	P
partitions,	where	P	is	a	magnitude	larger	than	the	number	of	nodes.	Each
node	is	then	responsible	for	1	/	n	partitions	of	the	ring.

This	implementation	also	has	the	upside	of	making	it	easy	to	add	a
replication	mechanism,	meaning	a	set	of	keys	managed	by	more	than	just
one	node.	Replication	is	handy	in	case	of	the	failure	of	a	node,	as	the	keys
are	still	managed/stored	by	another	node.

Figure	8.2.	Consistent	hash	ring

As	we	saw	just	before	in	Section	8.1,	“Creating,	Joining	and	Leaving
Groups”,	it	is	easy	to	leverage	Tooz	to	accurately	know	which	nodes	are
alive.	That	is	why	Tooz	also	provides	a	hash	ring	implementation	that	can
be	used	to	map	objects	onto	nodes,	with	as	little	re-balancing	in	case	a
node	leaves	or	joins	a	group.

Example	8.5.	Using	Tooz	hashring

#	-*-	encoding:	utf-8	-*-
from	tooz	import	hashring

NUMBER_OF_NODES	=	16

#	Step	#1	–	create	a	hash	ring	with	16	nodes
hr	=	hashring.HashRing(["node%d"	%	i	for	i	in	range(NUMBER_OF_NODES)])
nodes	=	hr.get_nodes(b"some	data")
print(nodes)
nodes	=	hr.get_nodes(b"some	data",	replicas=2)
print(nodes)
nodes	=	hr.get_nodes(b"some	other	data",	replicas=3)
print(nodes)
nodes	=	hr.get_nodes(b"some	other	of	my	data",	replicas=2)
print(nodes)

#	Step	#2	–	remove	a	node
print("Removing	node8")
hr.remove_node("node8")
nodes	=	hr.get_nodes(b"some	data")
print(nodes)
nodes	=	hr.get_nodes(b"some	data",	replicas=2)
print(nodes)
nodes	=	hr.get_nodes(b"some	other	data",	replicas=3)
print(nodes)
nodes	=	hr.get_nodes(b"some	other	of	my	data",	replicas=2)
print(nodes)

#	Step	#3	–	add	a	new	node
print("Adding	node17")
hr.add_node("node17")
nodes	=	hr.get_nodes(b"some	data")
print(nodes)
nodes	=	hr.get_nodes(b"some	data",	replicas=2)
print(nodes)
nodes	=	hr.get_nodes(b"some	other	data",	replicas=3)
print(nodes)
nodes	=	hr.get_nodes(b"some	other	of	my	data",	replicas=2)
print(nodes)
nodes	=	hr.get_nodes(b"some	data	that	should	end	on	node17",	replicas=2)
print(nodes)

#	Step	#4	–	add	back	a	node	with	a	greater	weight
print("Adding	back	node8	with	weight")
hr.add_node("node8",	weight=100)
nodes	=	hr.get_nodes(b"some	data")
print(nodes)
nodes	=	hr.get_nodes(b"some	data",	replicas=2)
print(nodes)
nodes	=	hr.get_nodes(b"some	other	data",	replicas=3)
print(nodes)
nodes	=	hr.get_nodes(b"some	other	of	my	data",	replicas=2)
print(nodes)

Example	8.5,	“Using	Tooz	hashring”	shows	how	to	use	the	HashRing
object	provided	by	Tooz	and	what	you	can	achieve	with	it.	We	will	cover
the	example	step	by	step,	so	it	is	easy	to	understand.

NUMBER_OF_NODES	=	16

#	Step	#1
hr	=	hashring.HashRing(["node%d"	%	i	for	i	in	range(NUMBER_OF_NODES)])
hr.get_nodes(b"some	data")
hr.get_nodes(b"some	data",	replicas=2)
hr.get_nodes(b"some	other	data",	replicas=3)
hr.get_nodes(b"some	other	of	my	data",	replicas=2)
##	Output:
#	{'node8'}
#	{'node8',	'node11'}
#	{'node6',	'node2',	'node13'}
#	{'node8',	'node7'}

The	first	step	of	this	example	demonstrates	how	to	create	a	hash	ring.	The
hashring	created	has	16	initial	nodes,	named	node1	to	node16.

Once	the	hash	ring	is	created,	the	main	method	for	using	it	is
get_nodes.	It	expects	bytes	as	input.	It	is	up	to	the	application
developer	to	come	up	with	a	chain	of	bytes	that	makes	sense	in	his
application.	It	could	be	a	simple	key	or	a	stringified	version	of	an	object
or	its	hash.

The	return	value	of	get_nodes	is	a	set	of	nodes	that	are	responsible	for
handling	this	piece	of	data.	By	default,	only	one	node	is	returned,	but	the
method	also	accepts	a	number	of	replicas	as	an	argument.	In	this	case,
the	returned	set	will	contain	R	more	nodes,	where	R	is	the	number	of
replicas.

#	Step	#2	–	remove	a	node
hr.remove_node("node8")
hr.get_nodes(b"some	data")

hr.get_nodes(b"some	data",	replicas=2)
hr.get_nodes(b"some	other	data",	replicas=3)
hr.get_nodes(b"some	other	of	my	data",	replicas=2)
##	Output:
#	Removing	node8
#	{'node11'}
#	{'node6',	'node11'}
#	{'node6',	'node2',	'node13'}
#	{'node5',	'node7'}

The	second	step	of	Example	8.5,	“Using	Tooz	hashring”	removes	a	node
from	the	hash	ring.	At	this	stage,	there	are	only	15	nodes	in	this	ring.	The
get_nodes	calls	are	identical	to	step	1,	but	as	you	can	see	the	output	is
quite	different.	Since	we	removed	node8	from	the	hash	ring,	the
partitions	that	it	managed	are	now	handled	by	the	nodes	managing	the
adjacent	partitions	in	the	ring.

For	the	first	key,	node8	is	replaced	by	node11.	For	the	second	key,
node6	is	used	instead.	There	is	no	change	for	the	third	key	as	node8	was
not	a	replica.	Finally,	node5	is	picked	for	the	last	key	instead	of	the
missing	node8.

As	you	can	see,	the	promise	of	the	hash	ring	is	kept.	One	node	has	been
removed,	but	only	some	of	the	keys	were	remapped,	exclusively	the	ones
being	assigned	to	the	removed	node.

#	Step	#3	–	add	a	new	node
print("Adding	node17")
hr.add_node("node17")
hr.get_nodes(b"some	data")
hr.get_nodes(b"some	data",	replicas=2)
hr.get_nodes(b"some	other	data",	replicas=3)
hr.get_nodes(b"some	other	of	my	data",	replicas=2)
hr.get_nodes(b"some	data	that	should	end	on	node17",	replicas=2)
##	Output:
#	Adding	node17

#	{'node11'}
#	{'node6',	'node11'}
#	{'node6',	'node2',	'node13'}
#	{'node5',	'node7'}
#	{'node17',	'node9'}

The	third	step	adds	a	new	node	called	node17	to	the	ring.	Once	again,
the	promise	is	kept,	and	no	re-balancing	of	the	key	we	previously	showed
was	done.	To	show	that	the	node17	was	indeed	responsible	for	some
partitions,	I	have	added	a	get_node	with	a	byte	string	where	a	replica	is
node17	(as	there	is	no	way	to	know	in	advance	where	a	key	will	end	up,	I
have	just	edited	the	key	until	the	returned	node	would	be	node17).

#	Step	#4	–	add	back	a	node	with	a	greater	weight
print("Adding	back	node8	with	weight")
hr.add_node("node8",	weight=100)
hr.get_nodes(b"some	data")
hr.get_nodes(b"some	data",	replicas=2)
hr.get_nodes(b"some	other	data",	replicas=3)
hr.get_nodes(b"some	other	of	my	data",	replicas=2)
##	Output:
#	Adding	back	node8	with	weight
#	{'node8'}
#	{'node11',	'node8'}
#	{'node2',	'node8',	'node6'}
#	{'node8',	'node7'}

In	the	last	step,	node8	is	added	back	to	the	hash	ring,	but	this	time	with	a
weight	of	100,	which	means	it	will	be	responsible	for	up	to	100	times
more	keys	than	the	other	nodes.	As	the	hash	ring	is	deterministic,	the	key
that	node8	was	responsible	for	before	being	removed	are	returned	to	it.
That	means	the	key	some	data	causes	node6	to	be	replaced	by	node8,
in	the	same	spot	it	was	at	the	beginning	of	the	program.	Since	the	weight
is	100,	that	also	means	that	this	time	node8	will	get	a	lot	more	keys	than
the	others.	That	is	why	you	can	notice	that	node8	is	now	one	of	the

replica	of	the	key	some	other	data	instead	of	node13.

Hash	rings	are	very	convenient	though	they	are	not	perfect.	For	one,	the
distribution	of	keys	is	not	uniform,	and	some	nodes	will	be	responsible
for	more	keys	than	others.	This	might	or	might	not	be	a	problem
depending	on	your	application.	Nonetheless,	it	still	offers	interesting
properties	and	once	coupled	with	cluster	membership,	offers	valuable
solutions	as	we	will	see	in	Section	8.5,	“Partitioner”.

8.5.	Partitioner
Now	that	you	know	how	a	hash	ring	works	(see	Section	8.4,	“Consistent
Hash	Rings”)	and	how	to	manage	group	memberships	(see	Section	8.1,
“Creating,	Joining	and	Leaving	Groups”),	we	can	start	thinking	about
mixing	the	two.

On	one	side,	we	have	a	group	system	that	can	tell	us	which	nodes	in	our
distributed	system	are	live,	and	on	the	other	side,	we	have	an	object	that
tells	us	which	node	handle	a	piece	of	data.	By	updating	the	hash	ring
members	using	the	group	system	that	Tooz	offers,	we	can	construct	a	new
object	called	a	partitioned	group.

Instead	of	building	that	into	each	application,	Tooz	provides	an	API	that
can	be	leveraged	while	relying	on	both	those	mechanism.	The
join_partitioned_group	method	allows	an	application	to	join	a
group	in	which	all	members	share	some	workload	using	a	consistent	hash
ring.

Example	8.6.	Using	Tooz	join_partitioned_group	method

import	sys
import	time

from	tooz	import	coordination

#	Check	that	a	client	and	group	ids	are	passed	as	arguments
if	len(sys.argv)	!=	3:

				print("Usage:	%s	<client	id>	<group	id>"	%	sys.argv[0])
				sys.exit(1)

#	Get	the	Coordinator	object
c	=	coordination.get_coordinator(
				"etcd3://localhost",
				sys.argv[1].encode())
#	Start	it	(initiate	connection).
c.start(start_heart=True)

group	=	sys.argv[2].encode()

#	Join	the	partitioned	group
p	=	c.join_partitioned_group(group)

print(p.members_for_object("foobar"))

time.sleep(5)

#	Leave	the	group
c.leave_group(group).get()

#	Stop	when	we're	done
c.stop()

The	Partitioner	object	provides	a	members_for_object	which
returns	a	set	of	members	responsible	for	an	object.

Note

To	compute	a	unique	byte	identifier	for	a	Python	object,	the	Tooz
partitioner	calls	the	__tooz_hash__	method	on	the	object
passed	as	argument	to	members_for_object.	If	this	method
does	not	exist,	the	standard	hash	Python	module	is	called
instead.	Having	this	method	defined	is	important	because	each
object	must	be	uniquely	but	consistently	identified	across	the
cluster.

You	can	run	Example	8.6,	“Using	Tooz	join_partitioned_group
method”	in	parallel	in	different	terminals.	You’ll	see	that	they	will	join	the
same	group,	and	output	the	same	member	id:

$	python	examples/tooz-join-partitioned-group.py	client1	test-group
{b'client1'}
$	python	examples/tooz-join-partitioned-group.py	client2	test-group
{b'client1'}

That	will	obviously	only	work	if	both	clients	are	connected	at	the	same
time	and	are	part	of	the	same	group.	If	you	run	client2	alone,	the
output	will	be	client2,	as	it	is	the	only	member	of	the	group.

Note

In	order	to	work	correctly,	the	Tooz	partitioner	relies	on	the
watchers	(as	seen	in	Section	8.3,	“Using	Watchers	Callbacks”).	Do
not	forget	to	regularly	call
tooz.coordination.Coordinator.run_watchers	so	the
hash	ring	of	the	partitioner	is	kept	aware	of	members	joining	and
leaving	the	partitioned	group.

This	mechanism	is	quite	powerful	and	can	solve	some	problems.

For	example,	you	can	automatically	divide	up	the	workload	across	several
nodes.	Imagine	you	have	100	URLs	to	continuously	fetch	from	the	Web.
You	can	spread	that	workload	pretty	easily	using	this	mechanism.

Example	8.7.	Using	hash	ring	to	spread	Web	pages	fetching

import	itertools
import	uuid

import	requests
from	tooz	import	coordination

class	URL(str):
				def	__tooz_hash__(self):
								#	The	unique	identifier	is	the	URL	itself
								return	self.encode()

urls_to_fetch	=	[
				#	Return	N	bytes	where	the	number	of	bytes
				#	is	the	number	at	the	end	of	the	URL
				URL("https://httpbin.org/bytes/%d"	%	n)
				for	n	in	range(100)
]

GROUP_NAME	=	b"fetcher"
MEMBER_ID	=	str(uuid.uuid4()).encode('ascii')

#	Get	the	Coordinator	object
c	=	coordination.get_coordinator("etcd3://localhost",	MEMBER_ID)
#	Start	it	(initiate	connection)
c.start(start_heart=True)

#	Join	the	partitioned	group
p	=	c.join_partitioned_group(GROUP_NAME)

try:
				for	url	in	itertools.cycle(urls_to_fetch):
								#	Be	sure	no	membership	changed
								c.run_watchers()
								#	print("%s	->	%s"	%	(url,	p.members_for_object(url)))
								if	p.belongs_to_self(url):
												try:
																r	=	requests.get(url)
												except	Exception:
																#	IF	an	error	occur,	just	move	on
																#	to	the	next	item
																pass

												else:
																print("%s:	fetched	%s	(%d)"
																						%	(MEMBER_ID,	r.url,	r.status_code))
finally:
				#	Leave	the	group
				c.leave_group(GROUP_NAME).get()

				#	Stop	when	we're	done
				c.stop()

In	Example	8.7,	“Using	hash	ring	to	spread	Web	pages	fetching”,	the
program	connects	to	the	coordinator,	joins	a	group	named	fetcher	and
then	starts	to	iterate	on	the	pages	to	retrieve.	While	the	program	is	the
only	one	connected	to	the	coordinator,	it	will	fetch	every	page,	as	can	be
seen	in	Example	8.8,	“Running	only	one	Web	page	fetching	program”.

Example	8.8.	Running	only	one	Web	page	fetching	program

b'8e6d3ff7-0dc7-4a71-aa39-8b1405cbc064':	fetched	https://httpbin.org/bytes/0	(200)
b'8e6d3ff7-0dc7-4a71-aa39-8b1405cbc064':	fetched	https://httpbin.org/bytes/1	(200)
b'8e6d3ff7-0dc7-4a71-aa39-8b1405cbc064':	fetched	https://httpbin.org/bytes/2	(200)
[…]

As	soon	as	a	second	instance	of	the	program	starts	and	joins	the	hash
ring,	the	first	instance	of	the	program	starts	skipping	some	of	the	pages.
Those	skipped	pages	are	fetched	by	the	other	running	program	as	you	can
see	in	the	output	of	Example	8.9,	“Running	two	Web	page	fetching
programs”.

Example	8.9.	Running	two	Web	page	fetching	programs

#	Output	from	first	instance:
b'24ed57b0-5a8b-4497-9661-24b2d99e0cdb':	fetched	https://httpbin.org/bytes/7	(200)
b'24ed57b0-5a8b-4497-9661-24b2d99e0cdb':	fetched	https://httpbin.org/bytes/9	(200)
b'24ed57b0-5a8b-4497-9661-24b2d99e0cdb':	fetched	https://httpbin.org/bytes/10	(200)
b'24ed57b0-5a8b-4497-9661-24b2d99e0cdb':	fetched	https://httpbin.org/bytes/11
b'24ed57b0-5a8b-4497-9661-24b2d99e0cdb':	fetched	https://httpbin.org/bytes/14	(200)

b'24ed57b0-5a8b-4497-9661-24b2d99e0cdb':	fetched	https://httpbin.org/bytes/16	(200)
b'24ed57b0-5a8b-4497-9661-24b2d99e0cdb':	fetched	https://httpbin.org/bytes/18	(200)
b'24ed57b0-5a8b-4497-9661-24b2d99e0cdb':	fetched	https://httpbin.org/bytes/23	(200)
b'24ed57b0-5a8b-4497-9661-24b2d99e0cdb':	fetched	https://httpbin.org/bytes/24	(200)
b'24ed57b0-5a8b-4497-9661-24b2d99e0cdb':	fetched	https://httpbin.org/bytes/28	(200)
b'24ed57b0-5a8b-4497-9661-24b2d99e0cdb':	fetched	https://httpbin.org/bytes/29	(200)
b'24ed57b0-5a8b-4497-9661-24b2d99e0cdb':	fetched	https://httpbin.org/bytes/30	(200)
b'24ed57b0-5a8b-4497-9661-24b2d99e0cdb':	fetched	https://httpbin.org/bytes/33
(200)
[…]
#	Output	from	second	instance:
c40306bd-1e5b-4287-8f6d-1477ba98403a:	fetched	https://httpbin.org/bytes/8	(200)
c40306bd-1e5b-4287-8f6d-1477ba98403a:	fetched	https://httpbin.org/bytes/12	(200)
c40306bd-1e5b-4287-8f6d-1477ba98403a:	fetched	https://httpbin.org/bytes/13	(200)
c40306bd-1e5b-4287-8f6d-1477ba98403a:	fetched	https://httpbin.org/bytes/15	(200)
c40306bd-1e5b-4287-8f6d-1477ba98403a:	fetched	https://httpbin.org/bytes/17
c40306bd-1e5b-4287-8f6d-1477ba98403a:	fetched	https://httpbin.org/bytes/19	(200)
c40306bd-1e5b-4287-8f6d-1477ba98403a:	fetched	https://httpbin.org/bytes/20	(200)
c40306bd-1e5b-4287-8f6d-1477ba98403a:	fetched	https://httpbin.org/bytes/21	(200)
c40306bd-1e5b-4287-8f6d-1477ba98403a:	fetched	https://httpbin.org/bytes/22	(200)
c40306bd-1e5b-4287-8f6d-1477ba98403a:	fetched	https://httpbin.org/bytes/25
c40306bd-1e5b-4287-8f6d-1477ba98403a:	fetched	https://httpbin.org/bytes/26	(200)
c40306bd-1e5b-4287-8f6d-1477ba98403a:	fetched	https://httpbin.org/bytes/27	(200)
c40306bd-1e5b-4287-8f6d-1477ba98403a:	fetched	https://httpbin.org/bytes/31	(200)
c40306bd-1e5b-4287-8f6d-1477ba98403a:	fetched	https://httpbin.org/bytes/32	(200)
c40306bd-1e5b-4287-8f6d-1477ba98403a:	fetched	https://httpbin.org/bytes/34
[…]

As	soon	as	a	member	joins	the	group,	the	members	spread	the	URLs	to
fetch	between	them	using	the	hash	ring;	therefore,	it	all	goes	twice	as	fast
as	before.

Of	course,	this	kind	of	mechanism	does	not	fit	every	workload.	Non-cyclic
workloads	which	need	a	queue	are	still	better	handled	by	queue
mechanism	as	discussed	in	Chapter	5,	Queue-Based	Distribution.
However,	it	is	easy	to	imagine	using	that	mechanism	to	distribute	the
consuming	of	multiple	queues	across	workers.

8.6.	Alexys	Jacob-Monier	on
Cluster	Management

Hi	Alexys!	Could	you	introduce	yourself	and	explain	how

you	came	to	Python?

I	tend	to	describe	myself	as	an	autodidact	who	spent	more	time

trying	to	figure	out	how	to	make	something	out	of	his	machines	than

actually	making	them	work.	The	constant	struggle	of	the	fail	and

retry	strategy	taught	me	better	how	not	to	build	things	than	how	to

build	them	right	the	first	try.	I	guess	this	is	why	I	define	empiricism

as	the	art	of	frustration	management!

I	started	my	professional	life	as	a	Flash	web	developer	also	doing

ASP/C#	at	1000mercis	which	was	a	digital	advertising	and

marketing	startup	at	the	time.	Since	we	were	satisfied,	I	started

multitasking	a	lot,	and	my	job	shifted	to	be	a	network	administrator

added	to	a	system	administrator	before	I	became	an	accidental

programmer	after	building	a	somewhat	elaborate	email	parsing

platform	using	bash	(1000+	lines	of	code).

This	insanity	made	me	realize	that	I	needed	a	programming	language

that	would	fit	my	empirical	approach	as	well	as	my	broad	range	of

use	cases.

I	first	heard	about	Python	through	my	interest	and	heavy	usage	of

Gentoo	Linux	which	I	brought	to	production	state	at	work.	Then	a

Linux	Magazine	introducing	Python	came	into	my	mailbox,	and	I

decided	to	give	it	a	shot.	It	was	a	shock.	All	I	needed	was	there,	and	I

felt	so	galvanized	that	I	started	(re)writing	everything	using	Python!

Nowadays	I	am	CTO	at	1000mercis,	which	scaled	into	an

international	group	known	as	Numberly	while	embracing	Linux	and

Python	as	its	central	technological	keystones.	I	am	very	fortunate	to

work	with	a	lot	of	talented	people	who	uses	the	language	to	build

distributed,	reliable	and	performant	data-oriented	platforms	at	scale.

I	am	also	part	of	the	Open	Source	software	community.	I	have	been	a

Gentoo	Linux	developer	since	2011	with	a	particular	interest	in

packaging	and	contributing	to	clustering	and	NoSQL	related	projects

and	their	corresponding	Python	libraries.	I	have	also	given	a	few

talks	at	EuroPython	conferences	related	to	distributed	applications

and	systems.

Over	the	last	couple	of	years,	I	have	also	been	extremely	pleased	to

see	Python	becoming	the	reference	language	for	data	science	and

engineering!

What	do	you	think	makes	Python	great	(or	not)	when

building	distributed	systems?	What	are	the	things	you

consider	to	be	advantages	or	drawbacks?

At	the	risk	of	disappointing	you,	I	actually	think	that	Python	is	a

mediocre	language	to	build	distributed	systems!

To	be	fair,	this	statement	really	depends	on	how	far	you	want	your

application	to	handle	all	the	complexity	that	comes	with	distributed

systems	such	as	inter-node	communication,	fault	tolerance,	partial

failure	management,	split	brain	situations,	consistency	vs.

availability	constraints	and	so	on.

Python	can	be	fabulous	if	you	want	to	build	a	distributed	application

which	relies	on	a	set	of	robust	services	such	as	distributed

coordinators,	key/value	stores,	message	brokers,	metrics	stores,	and

databases.	Those	distributed	services	implement	and	provide

features	such	as	leader	election,	distributed	locks,	service	discovery,

message	queuing/streaming	and	metrics	graphing.	They	can	serve	as

the	building	blocks	of	your	distributed	application.

The	immediate	drawback	is	that	you	have	to	set	up,	operate	and

maintain	those	external	services	before	you	start	working	on	your

application.	They	become	a	firm	dependency,	and	their	features	(or

lack	of	them)	dictate	what	your	application	is	capable	of	doing	or	not.

While	this	is	a	general	acceptance	for	databases,	it	may	be	not	so

innocent	for	distributed	coordinators,	and	those	operational	costs

could	be	a	problem	and	a	burden	depending	on	the	maturity	of	your

organization.

If	you	are	ready	to	accept	that	though,	the	advantage	of	Python	is

that	you	can	concentrate	on	the	application	logic,	and	build	a

prototype	quickly.	Most	importantly	you	have	a	great	chance	of

finding	suitable	client	libraries	to	rely	on	to	interact	with	all	those

external	components	and	services.	Python’s	influence	is	powerful

enough	that	bindings/libraries/drivers	are	almost	always	available

for	widespread	or	serious	projects	nowadays.

It	makes	Python	a	great	client	oriented	language	for	building	the

business	logic	side	of	a	distributed	application.	However,	this	also

means	that	its	internals	and	ecosystem	are	not	good	enough	to	build

the	core	components	needed	by	distributed	systems.

Why	is	that	so?

Well,	let’s	start	by	facing	some	facts	about	the	distributed

components	I	have	been	talking	about	so	far.

Distributed	coordinators:

Zookeeper	is	written	in	Java

Etcd	is	written	in	Go

Consul	is	written	in	Go

Distributed	key/value	stores	and	databases:

Redis	is	written	in	C

MongoDB	is	written	in	C++

Cassandra	is	written	in	Java

Cockroachdb	is	written	in	Go

Riak	is	written	in	Erlang

Distributed	message	brokers:

	Kafka	is	written	in	Java

RabbitMQ	is	written	in	Erlang

Distributed	time-series	databases:

Graphite	is	written	in	Python

InfluxDB	is	written	in	Go

We	can	reasonably	think	that	if	Python	were	great	to	build

distributed	systems,	it	would	have	been	used	to	build	more	than	one

of	those	distributed	server	projects	right?	I	mean,	our	community	is

made	of	equivalently	brilliant	people	in	Java	or	Go…	still,	would	you

imagine	building	a	distributed	and	highly	available	database	using

Python?

In	my	opinion,	the	main	Python	weaknesses	related	to	this	fact	are

its	poor	packaging	and	concurrency	management.	A	quick	look	at

major	Python	conferences’	schedules	suffices	to	see	that	they	are	still

hot	topics	in	2017!

Python	has	no	straightforward	and	standardized	way	to	be
packaged,	deployed	and	run.

Efficient	and	robust	concurrent	coding	is	too	new	(available	since
version	3.5)	and	still	too	low	level	to	be	efficiently	and	widely	used

The	Global	Interpreter	Lock	is	still	here	and	no	Just	In	Time
compiler	is	in	the	process	of	replacing	CPython	(even	if	the	work
of	the	PyPy	team	is	impressive!)

Go	is	becoming	the	leading	language	there	because	it	does	not	suffer

from	those	problems	and	also	because	it	is	often	seen	as	an	efficient

compromise	between	Java,	Erlang,	and	Python.

Another	drawback	is	that	as	a	community,	we	have	not	developed	a

strong	enough	asset	of	higher-level	libraries	to	ease	the	development

of	distributed	systems.	We	have	almost	no	mature,	community

supported	libraries/projects	providing	reliable	multi-node

communication,	coordination,	and	distribution.

Then	we	also	have	to	consider	lower	level	libraries	implementing

research	papers	about	distributed	hash	tables	(DHT)	and	consensus

algorithms	(PAXOS,	Raft)	for	example.	I	am	mentioning	this	because

I	like	the	idea	of	having	a	consensus	algorithm	implemented	at	the

application	level.	I	encourage	you	to	read	this	good	explanation

about	"application	level	consensus"	development:	I	would	love

Python	to	be	a	real	player	there.

Because	acting	is	better	than	ranting,	I	have	created	the	uhashring

project	to	provide	a	feature-rich	library	you	can	rely	on	to	make	use

of	consistent	hashing	in	a	distributed	application.	The	OpenStack

tooz	project	also	offers	a	consistent	hashing	library	with	a	bit	less

flexibility.

Consensus	algorithm	implementations	in	Python	are	almost

nonexistent	and	not	meant	for	production	use	today.	Since	this	is

usually	a	keystone	component	of	any	decent	distributed	system,	I

guess	we	still	have	work	to	do	to	get	there.	I	badly	want	to	create	a

solid	Raft	library,	so	if	I	ever	find	the	time	for	this,	I	would	be	happy

to	try	to	fill	this	gap,	while	hoping	secretly	for	a	smarter	fellow

developer	to	take	on	the	challenge	before	I	do!

To	finish	on	positive	a	note,	I	want	to	mention	and	thank	all	the

contributors	of	the	Python-based	Graphite	and	Grafana	projects.

Their	marvelous	work	allows	Python	to	shine	in	one	of	the	most

critical	components	of	distributed	systems:	metrics	storage	and

graphing.	While	metrics	are	essential	for	any	serious	project,	they	are

fundamental	to	monitor	and	understand	what’s	going	on	in	a

distributed	system,	so	thank	you	again	for	your	work!

Finally,	there	are	three	very	exciting	Python-based	projects	that	I

want	to	highlight:

The	OpenStack	tooz	project	that	I	mentioned	earlier	provides	a
good	set	of	tools	to	build	distributed	systems	relying	on	external

https://weareadaptive.com/wp-content/uploads/2017/04/Application-Level-Consensus.pdf
https://github.com/ultrabug/uhashring
https://github.com/openstack/tooz

components.

The	RPyC	project	is	elegant	and	offers	an	RPC-like	way	to
orchestrate	a	computation	on	multiple	machines.

The	dask	project	is	as	promising	as	it	is	unusual	for	parallel
computation	in	the	data	science	world.	I	have	the	feeling	that	its
core	is	strong	enough	to	be	abused	to	do	way	more	than	data
science	related	distributed	computation.

What	would	be	your	the	top	N	mistakes	to	avoid	or

advice/best	practice	to	follow	when	building	scalable,

distributed	systems	using	Python?

Try	to	avoid	building	distributed	systems	as	much	as	you	can!	No,
most	of	us	do	not	need	a	fully	distributed	application	and	the
complexity	that	comes	with	it.	Do	not	mistake	scaling	out	with
distributing	your	application.

Resist	the	hype	behind	the	“distributed	system”	words.	Leave	your
ego	in	the	locker	room	and	try	hard	to	find	all	the	alternatives	that
you	have	before	considering	moving	on.	I	would	rather	run	a
“standard”	stack	that	delivers	just	fine	than	a	“distributed”	stack
that	can	quickly	get	out	of	control	because	my	organization	and
myself	were	not	prepared	enough	for	it.	Uptime	and	reliability	are
the	words	you	are	looking	for.

Scaling	does	not	mean	turning	your	application	into	a	distributed
system.	While	adding	more	Web	servers	behind	your	load
balancer	to	scale	out	your	Web	application	does	not	make	it	a
distributed	one,	it	is	certainly	the	most	sensible	way	to	grow	your
Web	project!	If	you	chose	your	external	components	wisely
(database,	key/value	store),	they	also	should	be	able	to	scale	out
on	their	own	before	you	need	to	distribute	your	application.	If	not,
try	to	change	them	first!

Be	humble.	You	will	unquestionably	learn	how	not	to	build	your
distributed	application	after	you’ve	built	it.	You	will	make
mistakes,	bad	judgments	and	fail	to	cover	all	the	edge	cases	that
can	happen.	Even	Google	did	not	make	it	right	the	first	time!

https://dask.pydata.org/en/latest/

Design	with	data	locality	and	isolation	in	mind.	Distributing	an
application	means	relying	on	inter-machine	communication	using
unreliable	networks	–	yes,	even	your	LAN.	Networks	being
unstable	means	that	you	should	work	hard	on	avoiding	data
transfers	as	much	as	you	can.	Apply	the	UNIX	philosophy
carefully	and	do	not	fall	into	the	microservices	trap	even	if	you
want	to	be	a	cool	kid	too.	I	gave	a	talk	about	scalability	and
distributed	design	considerations	at	EuroPython	2015.

Meter	everything.	And	I	mean	everything!	Function	execution
time,	the	number	of	queries	per	second	to	every	endpoint	of	your
frontend,	the	queries	per	second	and	response	time	for	your
backends	per	database	and	table,	overall	processing	time,	every
possible	latency	between	components,	and	of	course	any	other
business	related	metric.	Do	not	trust	the	averages,	trust	the
percentiles	and	volumes	comparison	over	time.	Make	it	a	clear
and	readable	dashboard.	Put	it	on	a	screen	on	the	wall	to	have	it
under	your	nose	at	all	times.	Metering	is	also	essential	for	capacity
planning	and	monitoring;	you	will	not	regret	it.

Failing	is	an	art.	When	you	have	entered	the	distributed	systems
world,	“what	if	this	component	fails?”	becomes	the	question	that
you	ask	yourself	most	of	the	time.	Fault	tolerance	is	not	only	about
not	losing	data,	but	it	is	also	about	what	you	decide	to	show	or	not
to	the	user	in	the	face	of	a	problem	for	example.	Failure
management	requires	careful	consideration.

Plan	for	the	worst…	because	it	will	happen,	sooner	than	you
thought.	When	the	shit	hits	the	fan,	you	should	have	worked	out
how	long	your	system	can	sustain	a	failure.	You	will	want	to
implement	mechanisms	to	mitigate	the	impacts	or	to	allow	your
system	to	continue	working	in	a	degraded	way.	Degrading	fast	and
smoothly	is	often	better	than	crashing	late	and	hard.

Get	a	Python	code	deployment	strategy.	Distributed	systems	are
living	systems.	Rolling	out	a	new	version	of	your	code	can	have
dreadful	impacts	so	consider	your	deployment	strategy	very
carefully.	Your	application	should	be	able	to	reload	gracefully	with
failsafe	timeouts	and	in	a	rolling	manner.	It	allows	for	fast	and

https://ep2015.europython.eu/conference/talks/using-service-discovery-a-distributed-application

safe	rollbacks	when	you	see	errors	popping	out.	Progressive
deployment	on	your	nodes	means	that	your	releases	should
always	be	backward	compatible.	Sometimes	this	requires	multi-
stage	deployments	to	roll	out	a	somewhat	breaking	change.	There
are	tools,	stacks	and	application	containers	that	can	help	you	on
this	quest.	Kubernetes,	Gitlab,	and	uWSGI	are	my	favorites	so	far.

If	you	are	still	not	disgusted	at	the	idea	of	building	a	distributed

system,	then	my	last	advice	is	to	step	up	and	help	the	Python

community	address	the	issues	and	challenges	I	listed	before.	We

need	you,	dear	reader!

Chapter	9.	Building	REST	API
When	building	applications	using	service-oriented	architecture,	you	have
to	pick	the	protocol	to	use	to	communicate	between	your	services.	There
is	a	variety	of	protocols	available	out	there.	You	could	also	probably	roll
your	own,	though,	in	most	cases,	it	is	not	a	good	idea.

The	HTTP	protocol	has	been	the	Web	standard	for	the	last	25	years,	and
it	does	not	seem	like	it	is	about	to	change	anytime	soon.	It	certainly	has	a
few	drawbacks	but	also	has	the	amazing	advantages	being	massively
deployed,	simple	to	understand	and	simple	to	debug	for	humans.	It	is
also	cache-able	and	easy	to	transport	on	most	networks:	it	is	rarely
blocked.	The	number	of	tools	surrounding	HTTP	is	huge,	making	it	a
perfect	candidate	for	rapid	development	and	easy	debugging.

A	REST	Web	service	(based	on	HTTP)	has	the	advantage	of	being
stateless.	This	property	is	aligned	with	the	service-oriented	architecture
described	in	Section	1.3,	“Service-Oriented	Architecture”.	Therefore,	this
chapter	covers	the	basics	of	building	a	REST	Web	service	using	Python
along	with	what	you	need	to	know	in	order	to	make	it	scale	properly.

Tip

There	is	no	single	source	of	truth	on	best	practice	for	REST	API.
The	first	thing	to	read	and	follow	is	the	HTTP	RFC:	this	is	the
absolute	references	that	you	cannot	break,	no	matter	what.	There
are	also	a	few	other	references	that	you	should	check,	like	HAT
OAS,	the	OpenAPI	Initiative	or	the	OpenStack	API	Working
Group	Guidelines.	These	documents	are	a	good	source	of	ideas
before	deciding	on	how	to	design	your	API	endpoints.	They
answer	a	lot	of	common	questions	around	creating	semantically
accurate	APIs.

The	software	programming	world	is	not	short	on	frameworks	for	building
a	REST	API,	and	Python	is	no	exception.	It	has	many	Web	libraries	that
make	it	possible	to	achieve	this	goal.

https://en.wikipedia.org/wiki/HATEOAS
https://www.openapis.org/
http://specs.openstack.org/openstack/api-wg/index.html#guidelines

Note

The	most	popular	framework	in	the	Python	world,	Django,	even
has	a	layer	offering	this	feature	and	it’s	called	Django	REST
Framework.	I	am	not	a	particular	fan	of	Django,	which	while
being	nice	to	build	Web	sites,	seems	cluttered	for	this	task.	This	is
a	matter	of	personal	preference,	and	I	do	not	see	anything	wrong
about	building	a	REST	API	with	Django.	The	same	might	be	said
about	many	other	Python	frameworks	out	there.

Flask	is	one	of	the	most	used	Web	frameworks	in	the	Python	ecosystem.
It	is	a	good	pick	for	building	a	REST	API:	it	is	rather	lightweight,
modular,	extendable,	and	it	does	provide	basic	functionality.	This	is	why
it	is	used	in	this	chapter.

Tip

Many	examples	in	this	chapter	use	the	http	command	line	tool	to
interact	with	HTTP	REST	APIs.	This	tool	comes	from	httpie,	a
Python	command	line	interface	that	is	simple	to	use	for	humans,
making	it	easy	to	interact	with	Web	servers,	and	it	has	colorized
output.

9.1.	The	WSGI	Protocol
Before	considering	a	REST	API,	one	needs	to	know	the	first	layer	of
abstraction	of	the	Python	world	when	HTTP	is	involved:	WSGI.

WSGI	stands	for	Web	Server	Gateway	Interface.	It	started	its	life	as	part
of	PEP	0333,	and	was	updated	as	part	of	PEP	3333.	This	PEP	was
designed	to	solve	the	problem	of	mixing	frameworks	and	Web	servers.	It
makes	sure	there	is	a	common	protocol	between	Web	servers	and	Web
frameworks,	so	they	are	not	necessarily	tied	together.	Indeed,	it	would	be
a	shame	to	be	forced	to	provide	a	Web	server	for	each	framework,
wherein	there	is	already	a	vast	collection	of	probably	better	alternatives
out	there.

https://www.djangoproject.com/
http://www.django-rest-framework.org/
https://pypi.python.org/pypi/httpie
https://www.python.org/dev/peps/pep-0333/
https://www.python.org/dev/peps/pep-3333/

The	WSGI	protocol	is	pretty	easy	to	understand,	and	this	understanding
is	also	valuable	as	all	Python	frameworks	are	based	on	it.

When	a	WSGI	Web	server	loads	an	application,	it	looks	for	an	application
object	that	is	callable.	Calling	this	object	must	return	a	result	that	is
shipped	back	to	the	HTTP	client.

The	callable	must	be	named	application	and	will	receive	two
arguments:	a	dict	filled	with	environment	keys	and	values	named
environ,	and	a	function	named	start_response.	The	WSGI
application	must	use	the	latter	to	send	the	status	and	headers	reply	to	the
client,	as	demonstrated	in	Example	9.1,	“Basic	WSGI	application”.

Example	9.1.	Basic	WSGI	application

def	application(environ,	start_response):
				"""Simplest	possible	application	object"""
				status	=	'200	OK'
				response_headers	=	[('Content-type',	'text/plain')]
				start_response(status,	response_headers)
				return	['Hello	world!\n']

A	Web	development	framework	plugs	itself	in	at	this	stage	by	providing
the	application	object	and	letting	the	developer	concentrate	of	the
implementation	of	its	business	logic.

The	WSGI	specification	has	been	built	so	applications	implementing	the
WSGI	protocol	could	be	stacked.	Some	applications	implement	both	sides
of	the	WSGI	protocol	and	are	called	middleware:	that	means	they	can
handle	a	request	and	then	pass	it	to	the	next	WSGI	application	in	the
pipeline	(if	needed).	You	can,	therefore,	chain	WSGI	middlewares	to	do
pre-processing	(e.g.,	ACL	management,	rate	limiting,	etc.)	until	the
pipeline	reaches	the	actual	WSGI	application.

To	serve	a	WSGI	application,	there	are	many	different	Web	servers	that
are	available.	First	off	there	is	Python’s	own	wsgi	module,	which	has	a
built-in	Web	server	that	can	be	used	as	shown	in	Example	9.2,	“Basic

WSGI	application	with	wsgiref.simple_server”.

Example	9.2.	Basic	WSGI	application	with
wsgiref.simple_server

from	wsgiref.simple_server	import	make_server

def	application(environ,	start_response):
				"""Return	the	environ	keys	as	text/plain"""
				body	=	'\n'.join([
								'%s:	%s'	%	(key,	value)	for	key,	value	in	sorted(environ.items())
])

				start_response("200	OK",	[
								('Content-Type',	'text/plain'),
								('Content-Length',	str(len(body)))
])

				return	[body]

#	Instantiate	the	server
httpd	=	make_server('localhost',	8051,	application)
#	Wait	for	a	single	request,	serve	it	and	quit
httpd.handle_request()
#	Run	`curl	-v	http://localhost:8051'	to	see	the	request	and	reply

While	completely	functional,	the	wsgiref	server	should	probably	be
avoided	for	any	serious	use.	It	is	very	limited	and	neither	offers	good
performance	nor	fine	tuning,	both	of	which	are	usually	required	when
deploying	production	systems.

There	are	some	other	WSGI	servers	that	you	can	use:

The	most	famous	is	Apache	httpd	and	its	mod_wsgi	companion.	Both
are	well	tested	and	have	been	supported	for	years,	so	this	is	one	of	the

https://httpd.apache.org/
https://modwsgi.readthedocs.io/en/develop/

safest	choices.	They	allow	a	variety	of	combination	when	deploying,
such	as	deploying	several	WSGI	applications	on	the	same	port	with
different	paths.	A	small	downside	though	is	that	restarting	the	httpd
process	to	reload	the	configuration	usually	restarts	all	the	services	–
which	might	be	a	problem	if	you	deploy	several	WSGI	applications
with	the	same	httpd	process.

Gunicorn	(Green	Unicorn).	It	is	relatively	easy	to	use	and	deploy.

Waitress	is	a	pure-Python	HTTP	server.

uWSGI	is	a	very	complete	and	very	fast	WSGI	server	–	it	is	probably
my	favorite.	It	is	a	bit	harder	to	use	and	configure	as	it	presents	a	lot	of
configuration	options	and	supports	more	than	just	WSGI.	However,
only	a	few	options	are	needed	to	have	a	working	application.	It	even
supports	HTTP	2	and	other	programming	languages	(Perl,	Ruby,	Go,
etc.).

Example	9.3,	“Using	WSGI”	shows	how	to	deploy	a	simple	application
with	uWSGI.

Example	9.3.	Using	WSGI

$	uwsgi	--http	:9090	--master	--wsgi-file	examples/wsgi-application.py
***	Starting	uWSGI	2.0.14	(64bit)	on	[Mon	Jan	16	21:33:38	2017]	***
nodename:	abydos
machine:	x86_64
clock	source:	unix
pcre	jit	disabled
detected	number	of	CPU	cores:	4
current	working	directory:	/Users/jd/Source/scaling-python
detected	binary	path:	/usr/local/Cellar/uwsgi/2.0.14/bin/u
your	processes	number	limit	is	709
your	memory	page	size	is	4096	bytes
detected	max	file	descriptor	number:	4864
lock	engine:	OSX	spinlocks
thunder	lock:	disabled	(you	can	enable	it	with	--thunder-lock)
uwsgi	socket	0	bound	to	TCP	address	:9090	fd	4
Python	version:	2.7.13	(default,	Dec	20	2016,	16:45:12)		[GCC	4.2.1	Compatible	Apple	LLVM	8.0.0	(clang-800.0.42.1)]

http://gunicorn.org/
https://waitress.readthedocs.io/
https://uwsgi-docs.readthedocs.io/

***	Python	threads	support	is	disabled.	You	can	enable	it	with	--enable-threads	***
Python	main	interpreter	initialized	at	0x7fcdca407670
your	server	socket	listen	backlog	is	limited	to	100	connections
your	mercy	for	graceful	operations	on	workers	is	60	seconds
mapped	145520	bytes	(142	KB)	for	1	cores
***	Operational	MODE:	single	process	***
WSGI	app	0	(mountpoint='')	ready	in	0	seconds	on	interpreter	0x7fcdca407670
***	uWSGI	is	running	in	multiple	interpreter	mode	***
spawned	uWSGI	master	process	(pid:	86156)
spawned	uWSGI	worker	1	(pid:	86157,	cores:	1)
#	[from	another	terminal]
$	curl	-v	http://localhost:9090
*	Rebuilt	URL	to:	http://localhost:9090/
*	Connected	to	localhost	(127.0.0.1)	port	9090	(#0)
>	GET	/	HTTP/1.1
>	Host:	localhost:9090
>	User-Agent:	curl/7.51.0
>	Accept:	*/*
>
<	HTTP/1.1	200	OK
<	Content-type:	text/plain
*	no	chunk,	no	close,	no	size.	Assume	close	to	signal	end
<
Hello	world!
*	Curl_http_done:	called	premature	==	0
*	Closing	connection	0

The	performance	of	your	WSGI	server	is	going	to	be	important	if	you
need	to	scale	your	HTTP	application	to	support	a	large	number	of	clients.
There	is	certainly	no	go-to	solution	that	can	fit	all	use	cases.	You	will	have
to	benchmark	your	different	use	cases	and	see	what	fit	the	best.	If	you	do
not	need	any	of	the	fancy	features	that	Apache	httpd	provides,	uWSGI	or
Gunicorn	are	probably	good	picks.

Note

All	the	examples	provided	in	this	chapter	can	be	run	either	using

the	script	directly	or	using	uWSGI	as	described	above.

9.2.	Streaming	Data
A	common	pattern	with	any	HTTP	API	is	the	need	to	receive	events.	In	a
lot	of	cases,	there’s	no	way	to	achieve	this	other	than	polling	the	API
regularly.	That	can	cause	a	lot	of	stress	on	the	HTTP	endpoint,	as	it
requires	setting	up	a	new	connection	–	which	means	a	lot	of	overload
with	TCP	and	SSL.

A	more	efficient	way	is	to	use	streaming.	An	adequate	technology	here	is
Server-Sent	Events	message	protocol	defined	by	HTML5.
Alternatively,	it	would	be	possible	to	use	Transfer-Encoding:
chunked	defined	by	HTTP/1.1	or	even	the	WebSocket	protocol.
However,	chunked	encoding	is	more	complicated	and	the	WebSocket	a
little	bit	overkill	for	the	simple	use	case	presented	here.

To	implement	any	streaming	mechanism	in	a	scalable	and	efficient
manner,	you	need	to	be	sure	that	your	backend	offers	that	feature.	It
could	be	a	messaging	queue,	a	database	or	any	other	software	that
provides	a	stream	of	events	that	the	application	can	subscribe	to.

If	the	offered	API	has	to	poll	its	backend	regularly	to	know	about	new
events,	it	is	simply	moving	the	problem	from	one	layer	to	another.	It	is
better	than	nothing,	but	it	is	far	from	ideal.

The	example	illustrated	in	this	section	is	a	small	application	that	stores
messages	in	Redis	and	provide	access	to	those	messages	via	an	HTTP
REST	API.	Each	message	consists	of	a	channel	number,	a	source	string,
and	a	content	string.	The	backend	used	in	the	examples	in	this	section	is
Redis,	as	it	provides	a	notification	mechanism	that	is	close	to	what	a
message	queue	could	offer.

The	goal	is	to	stream	these	messages	to	the	client	so	that	it	can	process
them	in	real	time	on	its	side.	To	do	this,	we’re	going	to	use	the	Redis
Pub/Sub	mechanism	provided	by	the	PUBLISH	and	SUBSCRIBE
commands.

http://www.w3.org/TR/2009/WD-eventsource-20090423/
https://tools.ietf.org/html/rfc6455
http://redis.org
https://redis.io/topics/pubsub
https://redis.io/commands/publish
https://redis.io/commands/subscribe

These	features	allow	us	to	subscribe	and	receive	messages	sent	by	other
processes.

Example	9.4.	The	PUBLISH	command

import	redis

r	=	redis.Redis()
r.publish("chatroom",	"hello	world")

Example	9.4,	“The	PUBLISH	command”	shows	how	to	publish	a	message
to	a	channel.	The	publish	method	sends	the	message	to	the	channel
passed	as	the	first	argument.	The	second	argument	is	a	string	carrying
the	actual	payload.

It	is	possible	to	check	that	the	trigger	works	by	using	the	SUBSCRIBE
command.	If	everything	is	OK,	it	receives	a	notification	as	soon	as	the
PUBLISH	command	is	executed.

Example	9.5.	Checking	the	SUBSCRIBE	command

$	redis-cli
127.0.0.1:6379>	SUBSCRIBE	chatroom
Reading	messages...	(press	Ctrl-C	to	quit)
1)	"subscribe"	(1)
2)	"chatroom"
3)	(integer)	1
1)	"message"	(2)
2)	"chatroom"
3)	"hello	world"

(1)
This	is	an	automatic	message	sent	by	Redis	to	indicate	that	the
subscription	is	working.

(2) This	is	our	first	actual	message	received.

Example	9.5,	“Checking	the	SUBSCRIBE	command”	shows	how	to	check

that	the	notification	works.	As	soon	as	the	message	is	sent	it	is	received
by	the	Redis	client.

Example	9.6.	Receiving	messages	in	Python

The	application	provided	in	Example	9.6,	“Receiving	messages	in	Python”
connects	to	Redis	using	the	pyredis	library.	The	program	listens	on	the
provided	channel.	As	soon	as	it	receives	a	notification,	it	prints	it	to	the
screen.	Running	the	program	outputs	the	content	from	Example	9.7,
“Output	of	listen.py”.

Example	9.7.	Output	of	listen.py

$	python	listen.py
{'pattern':	None,	'type':	'subscribe',	'channel':	'chatroom',	'data':	1L}
{'pattern':	None,	'type':	'message',	'channel':	'chatroom',	'data':	'hello	world'}

With	that	first	brick	in	place,	what	is	missing	now	is	plugging	that	into	a
Web	API.	Example	9.8,	“Flask	based	streamer	application”	is	an
implementation	of	this	application,	providing	an	endpoint	for	writing	an
endpoint	that	sends	messages	as	a	stream.

Example	9.8.	Flask	based	streamer	application

import	json

import	flask
import	redis

application	=	flask.Flask(__name__)

def	stream_messages(channel):
				r	=	redis.Redis()
				p	=	r.pubsub()

				p.subscribe(channel)
				for	message	in	p.listen():
								if	message["type"]	==	"message":
												yield	"data:	"	+	json.dumps(message["data"].decode())	+	"\n\n"

@application.route("/message/<channel>",	methods=['GET'])
def	get_messages(channel):
				return	flask.Response(
								flask.stream_with_context(stream_messages(channel)),
								mimetype='text/event-stream')

@application.route("/message/<channel>",	methods=['POST'])
def	send_message(channel):
				data	=	flask.request.json
				if	(not	data	or	'source'	not	in	data	or	'content'	not	in	data):
								flask.abort(400)
				r	=	redis.Redis()
				r.publish(channel,	"<{}>	{}".format(data["source"],	data["content"]))
				return	"",	202

Warning

The	above	application	needs	at	least	two	connections	at	the	same
time	when	being	used:	one	for	streaming,	and	one	for	sending
messages.	Therefore	it	requires	a	Web	server	that	can	handle
multiple	connections	at	once,	such	as	a	uWSGI.	The	default	Web
server	provided	by	Flask	would	not	work	as	it	only	handles	one
connection	at	a	time.

The	first	endpoint	is	accessible	by	calling	GET	/message/<channel>.
It	returns	a	response	with	the	mime	type	text/event-stream,	sending
back	a	generator	function	instead	of	a	string.	Flask	calls	this	function	and
sends	the	results	each	time	the	generator	yields	something.

The	generator,	stream_messages,	reuses	the	code	we	wrote	earlier	to

listen	to	Redis	notifications.	It	receives	the	channel	identifier	as	an
argument,	listens	to	that	channel,	and	then	yields	the	payload.

The	second	endpoint	is	accessible	by	calling	GET
/message/<channel>.	It	accepts	a	JSON	payload	that	must	contain
the	source	and	content	field	and	that	is	then	sent	to	Redis.

You	can	run	the	server	using	uWSGI:

$	uwsgi	--http	:5000	--master	\
>		--workers	10	\
>		--wsgi-file	http.py

On	another	terminal,	an	HTTP	client	can	connect	and	retrieve	the	events
as	they	are	sent.

$	http	--stream	GET	http://127.0.0.1:5000/message/chatroom
HTTP/1.1	200	OK
Content-Type:	text/event-stream;	charset=utf-8

In	a	third	terminal,	it	is	possible	to	then	send	a	message	using	the	writing
endpoint:

http	--json	--stream	POST	http://127.0.0.1:5000/message/chatroom
HTTP/1.1	202	ACCEPTED
Content-Length:	0
Content-Type:	text/html;	charset=utf-8

As	soon	as	the	request	returns,	it	is	possible	to	see	messages	coming	into
the	terminal	connected	to	the	event	stream:

$	http	--stream	GET	http://127.0.0.1:5000/message/chatroom
HTTP/1.1	200	OK
Content-Type:	text/event-stream;	charset=utf-8

data:	<jd>	it	works

A	naive	implementation	of	this	application	would	instead	continously
loop	over	a	query	statement	to	poll	for	new	data	inserted	in	Redis	–	or
any	other	database.	However,	as	noted	earlier,	there	is	no	need	to
demonstrate	that	a	push	system	like	this	is	much	more	efficient	than
constantly	polling	a	database.	This	mechanism	can	be	applied	to	many
other	backend	systems,	not	only	Redis.	For	example,	PostgreSQL	has
support	two	commands	LISTEN	and	NOTIFY	that	make	it	possible	to
implement	this	too.

Such	an	application	is	also	horizontally	scalable.	As	it	is	stateless,	you	can
run	as	many	HTTP	servers	as	needed	to	handle	the	number	of	requests
being	received.

9.3.	Using	ETag
An	ETag,	abbreviated	from	entity	tag,	is	a	header	part	of	the	HTTP
standard.	It	allows	a	client	to	make	conditional	requests	using	its	cache,
limiting	bandwidth	and	usage	of	server	resources.

When	a	client	sends	a	request	to	a	server,	the	latter	can	reply	with	a
response	including	an	ETag	header.	Common	methods	of	ETag
generation	include	using	a	collision-resistant	hash	function	of	the
resource’s	content,	a	hash	of	the	last	modification	timestamp,	or	even	just
a	revision	number.

Example	9.9,	“ETag	header”	demonstrates	a	server	reply	with	an	ETag
header.

Example	9.9.	ETag	header

$	http	HEAD	http://gnocchi.xyz
HTTP/1.1	200	OK
Accept-Ranges:	bytes
Connection:	Keep-Alive
Content-Length:	15919

https://www.postgresql.org/docs/9.1/static/sql-listen.html
https://www.postgresql.org/docs/9.1/static/sql-notify.html

Content-Type:	text/html;	charset=UTF-8
Date:	Tue,	12	Sep	2017	09:17:26	GMT
ETag:	"3e2f-558f9d5587b40"
Keep-Alive:	timeout=5,	max=100
Last-Modified:	Tue,	12	Sep	2017	08:28:53	GMT
Server:	Apache

An	application	can	use	the	ETag	value	to	decide	whether	the	page	should
be	downloaded	again	using	an	If-None-Match	header,	as	shown	in
Example	9.10,	“Using	If-None-Match	header”.

Example	9.10.	Using	If-None-Match	header

$	http	GET	http://gnocchi.xyz	If-None-Match:\"3e2f-558f9d5587b40\"
HTTP/1.1	304	Not	Modified
Connection:	Keep-Alive
Date:	Tue,	12	Sep	2017	09:19:28	GMT
ETag:	"3e2f-558f9d5587b40"
Keep-Alive:	timeout=5,	max=100
Server:	Apache

If	the	ETag	of	the	URL	matches	the	value	given	in	the	If-None-Match
header,	the	HTTP	status	code	returned	is	304	Not	Modified	and	no
content	is	returned	by	the	server.	The	client	thus	knows	that	the	content
did	not	change	on	the	server	and	it	can	use	its	cached	copy.

Ideally,	the	computing	of	your	ETag	should	be	minimal	in	order	to	make
it	possible	to	save	both	CPU	usage	and	network	bandwidth.	For	a	file,	a
simple	ETag	could	be	computed	from	the	timestamp	when	the	document
has	last	been	modified	combined	with	its	size	since	they	are	both
available	at	a	low	cost	from	the	operating	system	using	a	single	stat	call
(or	equivalent).	A	more	robust	ETag	could	be	generated	from	computing
the	MD5	hash	of	the	data	about	to	be	returned.	However,	this	could	be
way	more	expensive,	especially	if	the	amount	of	data	is	large.	Be	creative.

The	application	in	Example	9.11,	“Flask	application	example	with	ETag

https://en.wikipedia.org/wiki/MD5

usage”	shows	how	one	can	use	the	ETag	header	to	avoid	returning	the
content	of	a	request	by	checking	the	headers	If-None-Match	and	If-
Match.

Example	9.11.	Flask	application	example	with	ETag	usage

import	unittest

import	flask
import	werkzeug

application	=	flask.Flask(__name__)

class	NotModified(werkzeug.exceptions.HTTPException):
				code	=	304

@application.route("/",	methods=['GET'])
def	get_index():
				#	Since	the	content	here	is	always	the	same,	we	only	have	one	Etag	value
				ETAG	=	"hword"

				if_match	=	flask.request.headers.get("If-Match")
				if	if_match	is	not	None	and	if_match	!=	ETAG:
								raise	NotModified

				if_none_match	=	flask.request.headers.get("If-None-Match")
				if	if_none_match	is	not	None	and	if_none_match	==	ETAG:
								raise	NotModified

				return	flask.Response("hello	world",
																										headers={"ETag":	"hword"})

class	TestApp(unittest.TestCase):

				def	test_get_index(self):
								test_app	=	application.test_client()
								result	=	test_app.get()
								self.assertEqual(200,	result.status_code)

				def	test_get_index_if_match_positive(self):
								test_app	=	application.test_client()
								result	=	test_app.get(headers={"If-Match":	"hword"})
								self.assertEqual(200,	result.status_code)

				def	test_get_index_if_match_negative(self):
								test_app	=	application.test_client()
								result	=	test_app.get(headers={"If-Match":	"foobar"})
								self.assertEqual(304,	result.status_code)

				def	test_get_index_if_none_match_positive(self):
								test_app	=	application.test_client()
								result	=	test_app.get(headers={"If-None-Match":	"hword"})
								self.assertEqual(304,	result.status_code)

				def	test_get_index_if_none_match_negative(self):
								test_app	=	application.test_client()
								result	=	test_app.get(headers={"If-None-Match":	"foobar"})
								self.assertEqual(200,	result.status_code)

if	__name__	==	"__main__":
				application.run()

Tip

Example	9.11,	“Flask	application	example	with	ETag	usage”
embeds	unit	tests	as	an	example,	to	show	how	easy	it	is	to	test	–
you	can	run	them	by	calling	nosetests	examples/flask-
etag.py	if	you	have	nose	installed.	If	not,	you	can	install	it	by
using	pip	and	running	pip	install	nose.

ETags	can	also	be	used	for	optimistic	concurrency	control	to	help	prevent
simultaneous	updates	of	a	resource	from	overwriting	each	other.	By
comparing	the	ETag	received	during	the	first	GET	request	and	by	passing
it	in	a	subsequent	PUT,	POST,	PATCH	or	DELETE	request	[6],	it	is	possible
to	make	sure	that	concurrent	operations	are	not	writing	on	each	other.

The	application	presented	in	Example	9.12,	“Flask	application	example
with	ETag	usage	and	PUT”	implements	two	endpoints:	GET	/	which
returns	an	integer	stored	in	the	global	variable	VALUE	and	POST	/	which
allows	this	variable	to	be	incremented	this	variable	by	1.	The	ETag	is
generated	by	incrementing	a	different	counter	named	ETAG,	and	it	is
incremented	randomly	each	time	the	value	is	changed.

Example	9.12.	Flask	application	example	with	ETag	usage	and	PUT

import	random
import	unittest

import	flask
from	werkzeug	import	exceptions

app	=	flask.Flask(__name__)

class	NotModified(exceptions.HTTPException):
				code	=	304

ETAG	=	random.randint(1000,	5000)
VALUE	=	"hello"

def	check_etag(exception_class):
				global	ETAG

				if_match	=	flask.request.headers.get("If-Match")

				if	if_match	is	not	None	and	if_match	!=	str(ETAG):
								raise	exception_class

				if_none_match	=	flask.request.headers.get("If-None-Match")
				if	if_none_match	is	not	None	and	if_none_match	==	str(ETAG):
								raise	exception_class

@app.route("/",	methods=['GET'])
def	get_index():
				check_etag(NotModified)
				return	flask.Response(VALUE,	headers={"ETag":	ETAG})

@app.route("/",	methods=['PUT'])
def	put_index():
				global	ETAG,	VALUE

				check_etag(exceptions.PreconditionFailed)

				ETAG	+=	random.randint(3,	9)
				VALUE	=	flask.request.data
				return	flask.Response(VALUE,	headers={"ETag":	ETAG})

class	TestApp(unittest.TestCase):
				def	test_put_index_if_match_positive(self):
								test_app	=	app.test_client()
								resp	=	test_app.get()
								etag	=	resp.headers["ETag"]
								new_value	=	b"foobar"
								result	=	test_app.put(headers={"If-Match":	etag},
																														data=new_value)
								self.assertEqual(200,	result.status_code)
								self.assertEqual(new_value,	result.data)

				def	test_put_index_if_match_negative(self):

								test_app	=	app.test_client()
								result	=	test_app.put(headers={"If-Match":	"wrong"})
								self.assertEqual(412,	result.status_code)

if	__name__	==	"__main__":
				app.run()

As	you	can	easily	spot	in	the	unit	tests	I	have	included,	it	is	easy	for	a
client	to	check	that	the	resource	has	not	been	modified	before	overwriting
it:	if	the	data	has	changed,	then	the	ETag	is	going	to	be	different	than	the
one	included	in	If-Matches,	and	therefore	the	request	is	aborted	with	a
412	Precondition	Failed	status	code	being	returned.	The	client	can
then	issue	a	new	GET	/	request	to	retrieve	the	new	content	and	ETag,
redo	any	computation	it	wants	to	do	and	try	again	to	update	it.	The	code
shown	in	Example	9.13,	“Flask	application	example	with	ETag	usage	and
PUT”	implements	such	a	retry	loop	that	implements	this	optimistic
concurrency	model.

Example	9.13.	Flask	application	example	with	ETag	usage	and	PUT

while	True:
				resp	=	client.get()
				etag	=	resp.headers["ETag"]

				new_data	=	do_something(resp.data)

				resp	=	client.put(data=new_data,	headers={"If-Match":	etag})
				if	resp.status_code	==	200:
								break
				elif	resp.status_code	==	412
								continue
				else:
								raise	RuntimeError("Unknown	exception:	%d"	%	resp.status_code)

Note

As	you	may	have	noticed,	there	is	no	delay	between	each	retry
implemented	in	the	example	from	Example	9.13,	“Flask
application	example	with	ETag	usage	and	PUT”.	Hammering	the
HTTP	endpoint	is	not	a	very	good	practice,	as	it	can	overload	the
HTTP	server	easily	until	a	client	wins	the	race.	Since	this	case	is	a
(soft)	failure	scenario,	the	correct	strategies	to	implement	in	order
to	retry	correctly	on	failure	are	described	in	Chapter	6,	Designing
for	Failure.

Using	ETag	header	is	a	great	way	to	implement	basic	concurrency	control
on	your	HTTP	API	while	also	providing	hints	for	clients	to	cache	data	as
needed.	It	improves	scalability	by	reducing	the	network	traffic	and	CPU
usage	of	your	application,	and	moreover	it	allows	consumers	to	work	on
the	same	data	without	conflicting	with	each	other.

9.4.	Asynchronous	HTTP	API
It	is	pretty	common	when	writing	HTTP	API	to	return	a	200	OK	status
code	to	the	caller	to	indicate	the	request	succeeded.	While	easy	and
convenient,	it	is	possible	that	the	action	triggered	by	the	caller	takes	a	lot
of	time.	If	the	call	requires	a	long	delay	to	be	executed,	it	blocks	the	caller
as	it	has	to	wait	for	the	reply,	and	this	increases	the	risk	of	failure.

Indeed,	if	the	connection	lasts	for	too	long	(let’s	say,	a	few	seconds)	and
the	network	is	having	issues,	the	connection	can	be	interrupted.	In	such	a
case,	the	caller	has	to	retry	the	request.	If	that	problem	happens
thousands	of	time	with	flaky	clients,	it	means	that	tons	of	CPU	time	and
network	bandwidth	are	spent	for	nothing.

An	obvious	way	to	avoid	those	problems	is	to	make	lengthy	operations
asynchronous.	This	can	be	done	easily	by	returning	a	202	Accepted
HTTP	status	code	and	returning	little	or	no	content.	This	status	code
indicates	that	the	request	has	been	accepted	and	is	being	processed	by	the
server.	Another	asynchronous	process	can	then	handle	the	request	and
take	care	of	it.

Example	9.14,	“Flask	application	example	using	asynchronous	job

handling”	provides	an	application	implementing	this	mechanism.	The
provided	API	allow	any	client	to	use	its	sum	service:	pass	number	to	this
service,	and	it	sums	them.	The	client	can	later	request	the	results,	as	soon
as	it	is	ready.

Example	9.14.	Flask	application	example	using	asynchronous	job
handling

import	queue		#	Queue	on	Python	2
import	threading
import	uuid

import	flask
from	werkzeug	import	routing

application	=	flask.Flask(__name__)
JOBS	=	queue.Queue()
RESULTS	=	{}

class	UUIDConverter(routing.BaseConverter):

				@staticmethod
				def	to_python(value):
								try:
												return	uuid.UUID(value)
								except	ValueError:
												raise	routing.ValidationError

				@staticmethod
				def	to_url(value):
								return	str(value)

application.url_map.converters['uuid']	=	UUIDConverter

@application.route("/sum/<uuid:job>",	methods=['GET'])
def	get_job(job):
				if	job	not	in	RESULTS:
								return	flask.Response(status=404)
				if	RESULTS[job]	is	None:
								return	flask.jsonify({"status":	"waiting"})
				return	flask.jsonify({"status":	"done",	"result":	RESULTS[job]})

@application.route("/sum",	methods=['POST'])
def	post_job():
				#	Generate	a	random	job	identifier
				job_id	=	uuid.uuid4()
				#	Store	the	job	to	be	executed
				RESULTS[job_id]	=	None
				JOBS.put((job_id,	flask.request.args.getlist('number',	type=float)))
				return	flask.Response(
								headers={"Location":	flask.url_for("get_job",	job=job_id)},
								status=202)

def	compute_jobs():
				while	True:
								job_id,	number	=	JOBS.get()
								RESULTS[job_id]	=	sum(number)

if	__name__	==	"__main__":
				t	=	threading.Thread(target=compute_jobs)
				t.daemon	=	True
				t.start()
				application.run(debug=True)

The	application	offers	two	endpoints.	A	request	made	to	POST	/sum
should	contain	numbers	in	the	query	string.	The	application	stores	those
numbers	in	a	queue.Queue	object	along	with	a	unique	identifier

(UUID).	Python	provides	thread-safe	queues	as	the	queue.Queue
objects.	Since	this	application	uses	a	background	(daemon)	thread,	it
needs	such	a	thread-safe	data	structure.	This	thread	is	responsible	for
computing	the	sum	of	the	numbers	stored	as	part	of	the	sum	job.

The	second	endpoint	allows	the	client	to	retrieve	the	result	of	its
operation	by	querying	the	RESULT	variable	with	the	job	id,	and	returning
the	result	if	available.

$	http	POST	http://localhost:5000/sum	number==42	number==23	number==35
HTTP/1.0	202	ACCEPTED
Content-Length:	0
Content-Type:	text/html;	charset=utf-8
Date:	Tue,	12	Sep	2017	14:17:59	GMT
Location:	http://localhost:5000/sum/0e02e34b-ee31-42d1-8e16-1f6039c12dfc
Server:	Werkzeug/0.11.9	Python/2.7.13

The	reply	contains	the	URL	of	the	result	in	the	Location	header.	The
client	then	only	has	to	send	a	GET	request	to	that	URL	to	retrieve	the
result.

$	http	GET	http://localhost:5000/sum/0e02e34b-ee31-42d1-8e16-1f6039c12dfc
HTTP/1.0	200	OK
Content-Length:	41
Content-Type:	application/json
Date:	Tue,	12	Sep	2017	14:17:43	GMT
Server:	Werkzeug/0.11.9	Python/2.7.13

{
				"result":	100.0,
				"status":	"done"
}

As	expected,	the	reply	of	100.0	is	the	sum	of	the	numbers	sent	via	the
first	call:	42,	23	and	35.	If	the	result	is	not	available,	the	server	would
reply	with	a	{"status":	"waiting"}	response.

Note

If	the	result	is	not	computed	by	the	time	the	request	arrives,	the
server	will	reply	with	a	{"status":	"waiting"}.	The	client
will	have	to	try	again.	This	method	is	often	referred	to	as	polling
as	it	forces	the	client	to	regularly	send	requests	to	retrieve	its	final
result.	This	is	definitely	not	optimal,	so	two	solutions	are	possible
to	improve	this:

Implement	streaming	as	shown	in	Section	9.2,	“Streaming
Data”.	It	is	possible	to	allow	the	client	to	connect	to	a	special
endpoint	where	the	application	will	push	the	result	as	soon	as	it
is	available.

Implement	a	webhook.	The	server	should	store	a	URL	sent	by
the	client	with	the	numbers.	This	URL	will	then	be	called	by	the
application	with	the	result	included.	This	model	is	referred	as
push	since	it	pushes	the	result	to	the	client	as	soon	as	they	are
ready	to	the	client.	However,	that	requires	the	client	to	be	able
to	receive	such	events	by	having	a	Web	server	of	its	own
running.

By	using	this	design	model,	it	can	be	ensured	that	the	service	can	receive
a	substantial	amount	of	jobs	requests	while	being	able	to	handle	those
tasks	in	the	background.	Obviously,	adding	numbers	together	is	not	very
CPU	intensive	nowadays,	but	I	am	sure	you	can	imagine	heavier	jobs	that
would	profit	from	this	design.

9.5.	Fast	HTTP	Client
It	is	more	than	likely	that	you	will	have	to	write	a	client	for	your	server
software,	or	that	at	some	point	your	application	will	have	to	talk	to
another	HTTP	server.	The	ubiquity	of	REST	API	makes	their
optimization	patterns	a	prerequisite	nowadays.

Note

https://en.wikipedia.org/wiki/Webhook

There	are	a	couple	of	ways	to	optimize	the	underlying	TCP
connections,	but	since	many	of	them	rely	on	operating	system
hacking	and	changing	settings,	obviously	they	are	not	covered	in
this	book.

There	are	many	HTTP	clients	in	Python,	but	the	most	widely	used	and
easy	to	work	with	is	requests.

The	first	optimization	to	take	into	account	is	the	use	of	a	persistent
connection	to	the	Web	server.	Persistent	connections	are	a	standard	since
HTTP	1.1	though	many	applications	do	not	leverage	them.	This	lack	of
optimization	is	simple	to	explain	if	you	know	that	when	using	requests	in
its	simple	mode	(e.g.	with	the	get	function)	the	connection	is	closed	on
return.	To	avoid	that,	an	application	needs	to	use	a	Session	object	that
allows	reusing	an	already	opened	connection.

Example	9.15.	Using	Session	with	requests

import	requests

session	=	requests.Session()
session.get("http://example.com")
#	Connection	is	re-used
session.get("http://example.com")

Each	connection	is	stored	in	a	pool	of	connections	(10	by	default),	the	size
of	which	is	also	configurable,	as	shown	in	Example	9.16,	“Configuring
pool	size	with	requests”.

Example	9.16.	Configuring	pool	size	with	requests

import	requests

session	=	requests.Session()
adapter	=	requests.adapters.HTTPAdapter(
				pool_connections=100,

http://docs.python-requests.org/en/master

				pool_maxsize=100)
session.mount('http://',	adapter)
response	=	session.get("http://example.org")

Reusing	the	TCP	connection	to	send	out	several	HTTP	requests	offers	a
number	of	performance	advantages:

Lower	CPU	and	memory	usage	(fewer	connections	opened
simultaneously).

Reduced	latency	in	subsequent	requests	(no	TCP	handshaking).

Exceptions	can	be	raised	without	the	penalty	of	closing	the	TCP
connection.

The	HTTP	protocol	also	provides	pipelining,	which	allows	sending	several
requests	on	the	same	connection	without	waiting	for	the	replies	to	come
(think	batch).	Unfortunately,	this	is	not	supported	by	the	requests	library.
However,	pipelining	requests	may	not	be	as	fast	as	sending	them	in
parallel.	Indeed,	the	HTTP	1.1	protocol	forces	the	replies	to	be	sent	in	the
same	order	as	the	requests	were	sent	–	first-in	first-out.

requests	also	has	one	major	drawback:	it	is	synchronous.	Calling
requests.get("http://example.org")	blocks	the	program	until
the	HTTP	server	replies	completely.	Having	the	application	waiting	and
doing	nothing	can	be	a	drawback	here.	It	is	possible	that	the	program
could	do	something	else	rather	than	sitting	idle.

A	smart	application	can	mitigate	this	problem	by	using	a	pool	of	threads
as	discussed	in	Section	2.3,	“Using	Futures”.	It	allows	parallelizing	the
HTTP	requests	in	a	very	rapid	way.

Example	9.17.	Using	futures	with	requests

from	concurrent	import	futures

import	requests

https://en.wikipedia.org/wiki/HTTP_pipelining

with	futures.ThreadPoolExecutor(max_workers=4)	as	executor:
				futures	=	[
								executor.submit(
												lambda:	requests.get("http://example.org"))
								for	_	in	range(8)
]

results	=	[
				f.result().status_code
				for	f	in	futures
]

print("Results:	%s"	%	results)

This	pattern	being	quite	useful,	it	has	been	packaged	into	a	library	named
requests-futures.	As	you	can	see	in	Example	9.18,	“Using	requests-
futures”,	the	usage	of	Session	objects	is	made	transparent	to	the
developer.

Example	9.18.	Using	requests-futures

from	requests_futures	import	sessions

session	=	sessions.FuturesSession()

futures	=	[
				session.get("http://example.org")
				for	_	in	range(8)
]

results	=	[
				f.result().status_code
				for	f	in	futures
]

print("Results:	%s"	%	results)

https://github.com/ross/requests-futures

By	default	a	worker	with	two	threads	is	created,	but	a	program	can	easily
customize	this	value	by	passing	the	max_workers	argument	or	even	its
own	executor	to	the	FuturSession	object	–	for	example	like	this:
FuturesSession(executor=ThreadPoolExecutor(max_workers=10))

As	explained	earlier,	requests	is	entirely	synchronous.	That	makes	the
application	being	blocked	while	waiting	for	the	server	to	reply,	slowing
down	the	program.	Making	HTTP	requests	in	threads	is	one	solution,	but
threads	do	have	their	own	overhead	and	this	implies	concurrency,	which
is	not	something	everyone	is	always	glad	to	see	in	a	program.

Starting	with	version	3.5,	Python	offers	asynchronicity	as	its	core	using
asyncio.	The	aiohttp	library	provides	an	asynchronous	HTTP	client	built
on	top	of	asyncio.	This	library	allows	sending	requests	in	series	but
without	waiting	for	the	first	reply	to	come	back	before	sending	the	new
one.	In	contrast	to	HTTP	pipelining,	aiohttp	sends	the	requests	over
multiple	connections	in	parallel,	avoiding	the	ordering	issue	explained
earlier.

Example	9.19.	Using	aiohttp

import	aiohttp
import	asyncio

async	def	get(url):
				async	with	aiohttp.ClientSession()	as	session:
								async	with	session.get(url)	as	response:
												return	response

loop	=	asyncio.get_event_loop()

coroutines	=	[get("http://example.com")	for	_	in	range(8)]

results	=	loop.run_until_complete(asyncio.gather(*coroutines))

http://aiohttp.readthedocs.io/

print("Results:	%s"	%	results)

All	those	solutions	(using	sessions,	threads,	futures	or	asyncio)	offer
different	approaches	to	making	HTTP	clients	faster.

Example	9.20,	“Program	to	compare	the	performances	of	different
requests	usage”	is	an	HTTP	client	sending	requests	to	httpbin.org,	an
HTTP	API	that	provides	(among	other	things)	an	endpoint	simulating	a
long	request	(a	second	here).	This	example	implements	all	the	techniques
listed	above	and	times	them.

Example	9.20.	Program	to	compare	the	performances	of	different
requests	usage

import	contextlib
import	time

import	aiohttp
import	asyncio
import	requests
from	requests_futures	import	sessions

URL	=	"http://httpbin.org/delay/1"
TRIES	=	10

@contextlib.contextmanager
def	report_time(test):
				t0	=	time.time()
				yield
				print("Time	needed	for	`%s'	called:	%.2fs"
										%	(test,	time.time()	-	t0))

with	report_time("serialized"):
				for	i	in	range(TRIES):
								requests.get(URL)

session	=	requests.Session()
with	report_time("Session"):
				for	i	in	range(TRIES):
								session.get(URL)

session	=	sessions.FuturesSession(max_workers=2)
with	report_time("FuturesSession	w/	2	workers"):
				futures	=	[session.get(URL)
															for	i	in	range(TRIES)]
				for	f	in	futures:
								f.result()

session	=	sessions.FuturesSession(max_workers=TRIES)
with	report_time("FuturesSession	w/	max	workers"):
				futures	=	[session.get(URL)
															for	i	in	range(TRIES)]
				for	f	in	futures:
								f.result()

async	def	get(url):
				async	with	aiohttp.ClientSession()	as	session:
								async	with	session.get(url)	as	response:
												await	response.read()

loop	=	asyncio.get_event_loop()
with	report_time("aiohttp"):
				loop.run_until_complete(
								asyncio.gather(*[get(URL)
																									for	i	in	range(TRIES)]))

Running	this	program	gives	the	following	output:

Example	9.21.	Output	of	requests-comparison.py

Time	needed	for	`serialized'	called:	12.12s
Time	needed	for	`Session'	called:	11.22s
Time	needed	for	`FuturesSession	w/	2	workers'	called:	5.65s
Time	needed	for	`FuturesSession	w/	max	workers'	called:	1.25s
Time	needed	for	`aiohttp'	called:	1.19s

Without	any	surprise,	the	slower	result	comes	with	the	dumb	serialized
version,	since	all	the	requests	are	made	one	after	another	without	reusing
the	connection.

Using	a	Session	object	and	therefore	reusing	the	connection	means
saving	8%	in	terms	of	time,	which	is	already	a	big	and	easy	win.
Minimally,	you	should	always	use	a	session.

If	your	system	and	program	allow	the	usage	of	threads,	it	is	a	good	call	to
use	them	to	parallelize	the	requests.	However	threads	have	some
overhead,	and	they	are	not	weight-less.	They	need	to	be	created,	started
and	then	joined,	which	does	not	make	them	much	faster.

Unless	you	are	still	using	old	versions	of	Python,	without	a	doubt	using
aiohttp	should	be	the	way	to	go	nowadays	if	you	want	to	write	a	fast	and
asynchronous	HTTP	client.	It	is	the	fastest	and	the	most	scalable	solution
as	it	can	handle	hundreds	of	parallel	requests.	The	alternative,	managing
hundreds	of	threads	in	parallel	is	probably	not	a	great	option.

Another	speed	optimization	that	can	be	efficient	is	streaming	the
requests.	When	making	a	request,	by	default	the	body	of	the	response	is
downloaded	immediately.	The	stream	parameter	provided	by	the
requests	library	or	the	content	attribute	for	aiohttp	both	provide	a
way	to	not	load	the	full	content	in	memory	as	soon	as	the	request	is
executed.

Example	9.22.	Streaming	with	requests

import	requests

#	Use	`with`	to	make	sure	the	response	stream	is	closed	and	the	connection	can
#	be	returned	back	to	the	pool.
with	requests.get('http://example.org',	stream=True)	as	r:
				print(list(r.iter_content()))

Example	9.23.	Streaming	with	aiohttp

import	aiohttp
import	asyncio

async	def	get(url):
				async	with	aiohttp.ClientSession()	as	session:
								async	with	session.get(url)	as	response:
												return	await	response.content.read()

loop	=	asyncio.get_event_loop()
tasks	=	[asyncio.ensure_future(get("http://example.com"))]
loop.run_until_complete(asyncio.wait(tasks))
print("Results:	%s"	%	[task.result()	for	task	in	tasks])

Not	loading	the	full	content	is	extremely	important	in	order	to	avoid
allocating	potentially	hundred	of	megabytes	of	memory	for	nothing.	If
your	program	does	not	need	to	access	the	entire	content	as	a	whole	but
can	work	on	chunks,	it	is	probably	better	to	just	use	those	methods.

9.6.	Testing	REST	API
Writing	REST	APIs	is	nice,	but	writing	REST	APIs	that	work	is	better.
That	is	why	you	should	always	write	and	run	tests	against	those	APIs.	It
can	be	tedious	and	feel	unrewarding;	however,	it	is	always	the	solid	call	in
the	long	run.

Running	a	distributed	system	requires	cooperation	between	developers,
quality	control	and	operations	engineers.	It	also	means	that	all	those

involved	should	be	able	to	make	sure	that	a	service	is	going	to	be	OK.	It	is
important	for	developers	to	be	able	to	do	rapid	prototyping	and	testing	of
an	idea.	It	is	crucial	for	quality	engineers	to	be	able	to	validate	what	is
expected	from	the	developed	service.	It	is	essential	that	engineers
deploying	the	service	can	test	that	it	is	deployed	and	works	as	expected.

With	all	of	that	in	mind,	the	traditional	way	of	writing	Python	unit	and
functional	tests	sounds	a	bit	far	from	this	objective.	However,	there	is	a
Python	tool	that	is	great	at	solving	this	problem:	it	is	named	Gabbi.

Gabbi	is	an	HTTP	testing	tool.	It	allows	writing	testing	scenarios	in	a
declarative	YAML-based	format.	This	file	format	is	powerful	enough	to
write	all	the	tests	you	could	use	and	imagine	while	staying	simple	enough
so	that	it	is	easy	to	write	and	maintain.	Having	an	uncomplicated	way	of
writing	tests	is	helpful	as	it	lowers	the	friction	and	the	barrier	of	entry
when	it	comes	to	writing	tests.	Concretely,	this	means	it	is	less	of	a
burden	for	the	software	engineer	to	write	tests	and	it	is	simpler	for
quality	engineers	to	provide	new	checks.

To	run	tests,	Gabbi	needs	a	YAML	file	per	scenario	to	be	run.	A	scenario
is	a	sequence	of	HTTP	calls,	each	one	described	as	an	entry,	such	as
shown	in	Example	9.24,	“Basic	Gabbi	test	file”.

Example	9.24.	Basic	Gabbi	test	file

tests:
-	name:	A	test
		GET:	/api/resources/id

Writing	tests	is	not	more	complicated	than	this,	and	therefore	it	makes	it
painless	to	add	more	as	the	application	grows.

I	have	replaced	the	tests	based	on	unittest	from	Example	9.11,	“Flask
application	example	with	ETag	usage”	with	a	Gabbi	version	in
Example	9.25,	“Basic	Gabbi	inclusion	in	a	Flask	app”	and	Example	9.26,
“Gabbi	test	file	for	Flask	ETag	application”.

Example	9.25.	Basic	Gabbi	inclusion	in	a	Flask	app

https://github.com/cdent/gabbi

import	os

import	flask
from	gabbi	import	driver
import	werkzeug

application	=	flask.Flask(__name__)

class	NotModified(werkzeug.exceptions.HTTPException):
				code	=	304

@application.route("/",	methods=['GET'])
def	get_index():
				#	Since	the	content	here	is	always	the	same,	we	only	have	one	ETag	value
				ETAG	=	"hword"

				if_match	=	flask.request.headers.get("If-Match")
				if	if_match	is	not	None	and	if_match	!=	ETAG:
								raise	NotModified

				if_none_match	=	flask.request.headers.get("If-None-Match")
				if	if_none_match	is	not	None	and	if_none_match	==	ETAG:
								raise	NotModified

				return	flask.Response("hello	world",
																										headers={"ETag":	"hword"})

#	Run	tests	using:
#	python3	-m	unittest	-v	examples/gabbi/app.py
def	load_tests(loader,	tests,	pattern):
				return	driver.build_tests(os.path.dirname(__file__),
																														loader,	intercept=lambda:	application)

if	__name__	==	"__main__":
				application.run()

Example	9.26.	Gabbi	test	file	for	Flask	ETag	application

tests:
		-	name:	GET	root	with	If-Match	match
				GET:	/
				request_headers:
						If-Match:	hword
				status:	200
				response_headers:
						ETag:	hword

		-	name:	GET	root	with	If-Match	no	match
				GET:	/
				request_headers:
						If-Match:	foobar
				status:	304
				response_forbidden_headers:
						-	ETag

		-	name:	GET	root	with	If-None-Match	no	match
				GET:	/
				request_headers:
						If-None-Match:	hword
				status:	304
				response_forbidden_headers:
						-	ETag

		-	name:	GET	root	with	If-None-Match	match
				GET:	/
				request_headers:
						If-None-Match:	foobar
				status:	200
				response_headers:

						ETag:	hword

The	tests	can	easily	be	run	using	the	unittest	module:

$	python	-m	unittest	-v	app.py
test_request	(gabbi.suitemaker.app_basic_get_root_works)
gabbi.suitemaker.app_basic_get_root_works.test_request	...	ok
test_request	(gabbi.suitemaker.app_basic_get_non-existent)
gabbi.suitemaker.app_basic_get_non-existent.test_request	...	ok
test_request	(gabbi.suitemaker.app_basic_put_root_does_not_work)
gabbi.suitemaker.app_basic_put_root_does_not_work.test_request	...	ok
test_request	(gabbi.suitemaker.app_etag_get_root_with_if-matc
gabbi.suitemaker.app_etag_get_root_with_if-match_match.test_request	...	ok
test_request	(gabbi.suitemaker.app_etag_get_root_with_if-match_no_match)
gabbi.suitemaker.app_etag_get_root_with_if-match_no_match.test_request	...	ok
test_request	(gabbi.suitemaker.app_etag_get_root_with_if-none-match_no_match)
gabbi.suitemaker.app_etag_get_root_with_if-none-match_no_match.test_request
test_request	(gabbi.suitemaker.app_etag_get_root_with_if-none-match_match)
gabbi.suitemaker.app_etag_get_root_with_if-none-match_match.test_request	...	ok

Ran	7	tests	in	0.024s

OK

Another	interesting	aspect	of	Gabbi	is	that	it	can	run	the	tests	from	the
command	line.	This	portable	version	allows	validating	any	deployed
application	–	even	in	production	if	the	tests	are	written	with	that	aspect
in	mind.

Example	9.27.	Running	Gabbi	using	gabbi-run

$	gabbi-run	http://localhost:5000	<	etag.yaml
...	✓	gabbi-runner.input_get_root_with_if-match_match
...	✓	gabbi-runner.input_get_root_with_if-match_no_match
...	✓	gabbi-runner.input_get_root_with_if-none-match_no_match
...	✓	gabbi-runner.input_get_root_with_if-none-match_match

Ran	4	tests	in	0.041s

OK

Using	gabbi-run	as	in	Example	9.27,	“Running	Gabbi	using	gabbi-
run”,	it	is	easy	to	run	the	YAML	scenario	file	on	a	remote	server.	All	it
needs	to	be	passed	as	argument	is	the	root	URL	where	to	send	the
requests	and	a	scenario	on	its	standard	input.	This	tool	can	be	extremely
powerful,	for	example	for	continuous	integration	jobs	where	one	wants	to
do	functional	testing	with	a	service	that	is	really	deployed.

Gabbi	provides	various	other	features,	such	as	the	use	of	content	from
previous	request	to	send	out	subsequent	requests	or	the	usage	of
JSONPath	to	validate	the	returned	content.	Its	characteristics	make	it
incredibly	powerful	to	test	and	validate	HTTP	REST	API	in	Python.

9.7.	Chris	Dent	on	HTTP

Hey	Chris!	Could	you	introduce	yourself	and	explain	how

you	came	to	Python?

I	have	been	working	as	a	sysadmin	or	developer,	somewhere	near	the

Internet,	since	the	early	90s.	These	days	I	write	and	review	code	in

the	world	of	OpenStack.	For	the	ten	or	so	years	before	joining	that

community	I	worked	on	creating	tools	and	processes	to	enhance

small	group	collaboration,	mostly	related	to	wikis.

I	first	used	Python	around	2002	to	hack	some	functionality	into	the

MoinMoin	wiki.	At	the	time	the	programming	language	I	used	the

most	was	Perl,	and	the	meaningful	whitespace	and	other	constraints

presented	by	Python	put	me	off.

Five	years	later,	when	I	finished	working	with	a	medium-sized	team

on	a	large	Perl	codebase	for	an	enterprise	wiki	(Socialtext),	I	was

given	the	freedom	to	choose	a	language	when	starting	my	new

project	(TiddlyWeb).

I	had	narrowed	my	choice	down	to	either	Ruby	or	Python.	I	made	the

choice	to	use	Python	based	on	a	small	number	of	concerns:

I	had	Perl	fatigue.	I	wanted	as	little	syntactic	sugar	as	possible	(no
#,	$,	@,	or	{})	and	as	much	helpful	constraint	as	possible.	This
quickly	ruled	out	Ruby.	Ruby	and	Perl	are	great,	but	in	my
experience	Python	is	better	in	situations	where	there	are	multiple
or	ephemeral	developers.

I	liked	WSGI.

My	project	was	intended	as	a	reference	to	be	replicated	in	other
languages.	Python’s	readability	was	a	big	win.

Since	then	Python	has	become	my	language	of	choice	for	most

projects,	personal	and	professional.

Why	do	you	like	WSGI,	what	do	you	enjoy	in	this

specification?	Does	it	offer	anything	more	than	other

protocols	around?

I	did	my	first	programming	for	the	web	with	CGI.	WSGI	built	on	that

simplicity	and	made	it	better	by	providing	a	very	pure	functional	and

composable	interface	to	go	along	with	the	structure	in	environ.	So

when	I	learned	about	it,	it	was	familiar	but	more	powerful	and	more

flexible.	I	liked	that	it	was	based	on	Python	primitives	and	had	no

requirement	in	terms	of	special	libraries	or	objects.

I	had	been	a	long	time	user	of	mod_perl	under	Apache	and	while	it

worked	well	I	did	not	like	that	using	it	meant	I	was	committed	to

both	mod_perl	and	Apache.	When	I	learned	about	WSGI,	mod_wsgi

was	new	and	just	beginning	to	become	popular.	WSGI	+	mod_wsgi

provided	the	same	"avoid	compilation	per	request"	benefits	of

mod_perl	without	all	the	Apache-specific	overhead	in	mod_perl	or

mod_python.	Initially,	I	appreciated	the	clean	boundary	between

server	and	application	that	WSGI	provided,	even	though	I	was

mostly	using	Apache,	because	it	kept	concerns	separated.	Later	I

liked	that	my	WSGI	application	could	be	run	using	any	WSGI-

capable	server;	using	a	simple	one	for	testing	and	experimentation

and	something	more	configurable	and	capable	(often	NGINX+uwsgi)

for	production.

In	some	ways,	WSGI	was	a	precursor	to	Rack	in	Ruby,	PSGI	in	Perl

and	Jack	or	JSGI	in	JavaScript.	They	all	did	a	similar	thing,	so

apparently	the	functionality	provided	by	a	clean	interface	was

desirable.	As	time	moved	on	people	complained	about	WSGI,	in

particular,	not	being	very	capable	in	concurrent	or	asynchronous

environments.	This	has	never	been	much	of	a	concern	for	me	and	is,

in	fact,	a	useful	constraint:	I	want	the	application	to	be	focused,	as

much	as	possible,	on	one	request	and	one	response.

What	would	be	a	few	pieces	of	advice,	a	set	of	principles,

for	developers	who	are	going	to	build	a	WSGI	application?

What	are	the	pitfalls	to	avoid?

I	do	not	know	that	there	are	any	hard	and	fast	rules,	but	some	things

that	seem	to	be	true	most	of	the	time	for	me	are:

Don’t	use	a	framework	if	you	are	starting	from	scratch.	Assemble
the	best	individual	pieces	to	do	the	work	that	a	framework	does.

Use	a	library	or	your	tooling	that	makes	an	explicit	1:1	association
between	a	URL	and	a	method	and	the	code	that	handles	it.	I	have
used	selector	and	Routes	for	this	in	the	past.	The	important	part	is
that	it	should	be	easy	to	look	in	one	place	in	the	code,	given	a
URL,	and	easily	find	where	the	(one	and	only	one)	handler	is.	This
usually	means	avoiding	frameworks	that	do	"object	dispatch"	or
associate	URLs	with	code	by	way	of	decorators.

If	you	are	the	sort	of	person	who	is	inclined	to	use	objects	to
represent	the	resources	in	your	WSGI	application,	avoid	coupling
persistence	and	serialization	into	those	objects.	Instead,	have
persistence	and	serialization	interfaces	that	can	accept	or	return
those	objects.	Doing	this	makes	it	a	lot	easier	to	add	or	layer
additional	implementations,	such	as	caching	around	a	persistence
system.

Related	to	that:	don’t	get	trapped	by	the	idea	that	the	resources
represented	in	URLs	are	the	same	as	the	entities	represented	in	a
storage	system.	This	is	especially	the	case	when	using	an	RDBMS.
What	makes	sense	at	the	level	of	HTTP	may	not	be	the	same	at	all.

Figure	out	a	way	to	effectively	test	your	HTTP	requests	and
responses	at	the	HTTP	level.	And	test	first.	This	will	result	in	a
more	flexible	application	that	can	handle	unexpected	use	cases.	I
use	wsgi-intercept	and	Gabbi	to	do	testing.

If	you	are	using	middleware	to	handle	authentication,	logging,
encoding,	exception	catching	and	things	like	that,	make	sure	that
it	is	easy	to	compose	the	middleware	and	the	application	easily.
This	can	make	testing	more	straightforward.	For	example,	if	you
need	to	fake	authentication	handling,	you	can	replace	the	default
auth	middleware	with	something	that	fakes	it.

Use	exceptions	to	handle	non-success	HTTP	response	codes	and
let	them	rise	out	of	the	application	to	be	caught	by	middleware.

https://github.com/lukearno/selector/
http://routes.readthedocs.io
https://github.com/cdent/wsgi-intercept
https://gabbi.readthedocs.io

This	centralizes	error	formatting	and	keeps	application	code
cleanly	focused	on	the	happy	path.

Like	all	rules,	there	are	always	very	valid	reasons	to	break	these.

Many	services	these	days	are	designed	as	HTTP	REST	API	–

as	it	is	stateless,	it	makes	it	easier	to	scale	horizontally.

Other	than	this	property,	what	do	you	think	can/should	be

leveraged	in	HTTP	REST	API	to	achieve	better	and	larger

scalability	along	with	improved	performances

I	hesitate	to	use	the	term	REST	when	referring	to	common	HTTP

APIs.	Unless	you	are	using	hypermedia	in	some	form,	it	is	not	truly

REST,	and	the	debates	over	REST	levels	of	"lite-ness"	are	not

particularly	useful.	Given	adequate	tooling	on	the	client	side,

hypermedia	can	be	a	glorious	thing,	but	more	often	than	not	all

anyone	wants	to	do	is	make	some	HTTP	requests	to	a	few	known

URLs	and	make	some	things	happen,	like	changing	state	on	the

server.

I	think	that	rather	than	designing	for	performance	from	the	outset	is

best	to	have	some	good	habits	(like	keeping	statelessness	in	mind	all

the	time)	while	building,	and	design	in	the	capacity	to	measure	the

system	and	change	it	easily.	This	happens	fairly	naturally	if	you	stick

to	good	hygiene	while	developing:	simple	functions	and	classes	(if

you	use	them)	with	single	responsibilities,	small	numbers	of

collaborators	and	minimal	side	effects.	Then	when	you	do	some

profiling	the	fact	that	method	X	is	using	much	time	is	meaningful

because	it	does	not	do	much.	Once	you	have	a	clear	understanding	of

where	the	problems	are	they	can	be	corrected	with	accuracy	rather

than	guessing.

HTTP	APIs	that	are	read	heavy	are	incredibly	amenable	to	caching.

memcached	is	a	reliable	old	friend	for	this.	Consider	using	caching	at

multiple	layers:	when	reading	from	the	database	and	when	creating

external	representations	of	entities	(such	as	JSON	serialization).

Cache	invalidation	can	be	complex,	especially	when	working	with

collections	of	resources.	Namespacing	can	help	with	that,	allowing	a

large	chunk	of	cache	data	to	be	invalidated	simply	by	changing	to	a

different	namespace.	With	namespacing,	even	APIs	which	receive

many	writes	can	be	effectively	cached.

Use	cache	headers	to	ensure	that	clients	only	make	the	requests	they

must.	If	a	client	can	reuse	cached	data,	they	need	not	make	any

request	at	all.	If	cache	headers	make	it	possible	to	validate	locally

cached	data	with	the	server,	then	no	response	body	needs	to	be	sent

over	the	network.	If	the	server	can	effectively	validate	cache	headers

(such	at	ETags)	by	validating	requests	without	talking	to	the	data

store,	work	is	saved.	It	is	possible	to	manage	an	ETag	cache	on	the

server’s	side	using	the	namespacing	mentioned	above.

Try	to	ensure	that	any	GET	request	never	changes	any	state	on	the

server	(except	logs).	More	generally	any	code	pathway	which	is	doing

a	read	should	only	read.	This	simplifies	caching	concerns	and	also

opens	up	the	possibility	for	having	these	read-only	code	paths	use	a

read-only	data	store	separate	from	the	data	store	which	accepts

writes.	In	fact,	it	can	be	entirely	reasonable	for	the	read	pathways	to

be	completely	separate	applications	from	the	writing	pathway.	The

use	of	fast	reverse	proxies	(like	NGINX)	can	make	this	relatively

straightforward.

If	fast	writes	are	required,	and	the	client	does	not	need	100%	reliable

confirmation	that	the	data	has	reached	its	final	resting	place,	accept

https://github.com/memcached/memcached/wiki/ProgrammingTricks#namespacing

the	data	into	a	cache,	return	a	202	and	let	some	other	processes

migrate	the	new	data	from	the	cache	into	the	long-term	persistent

storage.	In	other	words,	do	what	Gnocchi	does.

Finally,	if	managing	writes	that	are	updates	to	existing	resources

(instead	of	always	creating	new	resources),	ETags	provide	a

standards-compliant	way	of	avoiding	the	"Lost	Update	Problem"	that

can	integrate	with	the	above	caching	strategies,	minimizing	wasted

reads	of	the	data	store.

Do	you	have	any	recommendation	on	how	to	test	(unit,

functional)	HTTP	API?	Moreover,	what	about

benchmarking	and	profiling?

I	think	the	most	important	consideration	when	testing,	and	HTTP

API,	is	to	be	sure	you	are	clear	about	what	you	are	testing	in	any

given	set	of	tests.	It	is	easy,	for	example,	to	combine	testing	the

persistence	layer	with	testing	the	HTTP	API	layer.	This	is	probably	a

bad	idea.	We	should	be	able	to	assume	that	the	persistence	layer	is

correct	(has	its	own	robust	tests)	when	testing	the	API	layer.

Similarly	testing	the	API	layer	should	not	replace	testing	the

serialization	layer:	we	do	not	want	to	have	to	verify	the	entire

contents	of	a	response	body	over	and	over	again	when	testing	an

HTTP	API.	Instead,	we	should	validate	that	the	response	is	what	we

expect.

So	what’s	important	is	making	sure	that	the	HTTP	parts	of	the	API

are	in	fact	correct	HTTP	(good	response	codes,	proper	headers).	I

was	frustrated	enough	with	trying	to	do	this	with	other	tools	that	I

made	my	own,	called	Gabbi,	that	makes	it	possible	to	express	a

sequence	of	HTTP	test	in	a	YAML-based	format	that	is	fairly

http://gnocchi.xyz
https://www.w3.org/1999/04/Editing/

readable	and	expresses	an	HTTP	request	and	response	in	a	clear	and

flexible	fashion.	It	can	talk	to	a	WSGI	application	directly	or	to	a

running	service	(doesn’t	have	to	be	Python).

When	using	Gabbi	to	test	an	HTTP	API,	the	result	is	a	suite	of	files

that	form	a	solid	introduction	to	how	the	API	works	explicitly	from

the	HTTP	interactions,	not	a	client	which	hides	the	HTTP.	Besides

being	helpful	for	maintenance	and	new	contributors,	this	helps	to

make	sure	that	the	tested	API	is	usable	and	useful	by	unplanned

clients.

There	are	many	tools	for	benchmarking.	It	is	important	to	do,	but

not	very	informative	without	also	doing	profiling.	These	days,	wrk

and	siege	appear	to	be	common	choices.	It	is	important	to	test	both

lots	of	concurrent	connections	and	well	as	lots	of	serial	connections.

Testing	each	of	these	scenarios	to	failure	will	reveal	different	issues.

For	profiling,	it	is	important	to	narrow	the	scope	of	the	profile	data

so	that	the	Web	server	and	any	middleware	do	not	have	an	impact.

The	way	I	have	done	this	is	to	use	a	profiling	middleware	(werkzeug

has	one)	as	the	last	middleware,	so	only	the	actual	WSGI	application

is	being	profiled.	This	makes	it	possible	to	make	one	request,	create	a

profile	of	just	that	request,	and	do	the	required	analysis.

Of	course,	more	often	than	not	the	time-honored	tradition	of

outputting	time.time()	at	critical	sections	of	the	code	can	be	very

useful	to	get	a	rough	overview	of	where	things	are	slow.

[6]	Or	any	other	method	that	could	modify	an	object	on	the	server.

http://werkzeug.pocoo.org/docs/0.11/contrib/profiler/

Chapter	10.	Deploying	on	PaaS
Deploying	applications	and	managing	their	processes	can	be	tedious.	As
we	have	seen	in	Section	9.1,	“The	WSGI	Protocol”,	you	need	to	setup	and
configure	a	WSGI-compliant	Web	server	to	serve	your	code.	Managing
servers	to	serve	your	application	can	be	hazardous	and	tiresome,
especially	if	it	is	not	your	specialty.	I	am	not	even	mentioning	the	security
concern	and	the	overall	maintenance	you	will	have	to	take	care	of.

Platform	as	a	service,	or	PaaS	for	short,	is	a	cloud	computing	service	that
provides	hosting	for	your	application.	It	allows	managing	your
deployment	without	the	complexity	of	building	and	maintaining	the
needed	infrastructure.	Those	platforms	usually	offer	interesting	features,
such	a	relational	database	system	management	and	auto-scaling.

They	are	exciting	alternatives	with	the	classical	server	of	virtual-machine
deployment,	because	if	you	are	only	a	small	team	of	developers	with	no
expertise	(yet?)	in	infrastructure,	this	can	help	you	save	a	lot	of	time.

There	are	numbers	of	platforms	as	a	service	out	there	–	it	would	not	be
practical	to	cover	them	all	in	this	book.	However,	as	I	think	it	is
interesting	to	demonstrate	what	kind	of	ease	they	can	provide,	I	will	talk
about	a	few	of	them	in	the	following	sections.

Tip

Most	of	those	platforms	are	not	free,	but	offer	a	free-tier	that
allows	you	to	test	them.

10.1.	Heroku
Heroku	is	one	of	the	first	cloud	platforms	out	there,	starting	up	2007.	It
provides	a	platform	which	supports	several	languages,	among	them
Python.	It	also	has	delightfully	good	taste	in	that	it	also	to	provides
PostgreSQL	support	–	a	marvelous	RDBMS.

https://heroku.com
http://postgresql.org

Heroku	is	simple	to	use	for	shipping	any	kind	of	application	in
production.	They	have	extensive	and	complete	documentation	online	that
covers	most	use	cases.

Once	you	have	completed	your	registration	online	via	their	Web	site,	the
heroku	command	line	tool	allows	you	push	and	deploy	your	application.

Heroku	uses	git	to	manage	the	versioning	and	deployment	of
applications.	In	order	to	deploy	an	application,	a	simple	git	push	is
needed.

Heroku	provides	a	process	model,	where	your	application	can	be	made	up
of	one	or	several	processes.	The	usual	default	processes	is	a	WSGI
application	served	by	a	WSGI	server	such	as	gunicorn.	Those	processes
can	be	configured	in	a	Procfile	file,	which	looks	like	this:

Example	10.1.	Profile	for	Heroku

web:	gunicorn	hello.wsgi	--log-file	-

With	this	simple	file	it	is	possible	to	run	an	WSGI	application	from	the
hello.wsgi	module.

Example	10.2.	Deploying	a	Heroku	application

$	ls	-R
Procfile									app.json									hello												requirements.txt	runtime.txt

./hello:
__init__.py	wsgi.py
$	heroku	login
Enter	your	Heroku	credentials.
Email:	python@example.com
Password:
Logged	in	as	python@example.com
$	heroku	create
Creating	app...	done,	⬢	fierce-savannah-40050
https://fierce-savannah-40050.herokuapp.com/	|	https://git.heroku.com/fierce-savannah-40050.git

https://devcenter.heroku.com/

$	git	init
$	git	add	.
$	git	commit	-m	'Initial	import'
$	git	remote	add	heroku	https://git.heroku.com/fierce-savannah-40050.git
$	git	push	heroku	master
Counting	objects:	280,	done.
Delta	compression	using	up	to	4	threads.
Compressing	objects:	100%	(128/128),	done.
Writing	objects:	100%	(280/280),	43.45	KiB	|	0	bytes/s,	done.
Total	280	(delta	134),	reused	274	(delta	133)
remote:	Compressing	source	files...	done.
remote:	Building	source:
remote:
remote:	----->	Python	app	detected
remote:	----->	Installing	python-2.7.13
remote:						$	pip	install	-r	requirements.txt
remote:								Collecting	gunicorn==19.6.0	(from	-r	/tmp/build_a40bfcb639fc016094ca3018a1b1
remote:										Downloading	gunicorn-19.6.0-py2.py3-none-any.whl	(114kB)
remote:								Installing	collected	packages:	gunicorn
remote:								Successfully	installed	gunicorn-19.6.0
remote:
remote:	----->	Discovering	process	types
remote:								Procfile	declares	types	->	web
remote:
remote:	----->	Compressing...
remote:								Done:	36.3M
remote:	----->	Launching...
remote:								Released	v3
remote:								https://fierce-savannah-40050.herokuapp.com/	deployed	to	Heroku
remote:
remote:	Verifying	deploy...	done.
To	https://git.heroku.com/fierce-savannah-40050.git
	*	[new	branch]						master	->	master
$	curl	https://fierce-savannah-40050.herokuapp.com/
Hello	world!

As	Example	10.2,	“Deploying	a	Heroku	application”	illustrates,	it	is	quite

straightforward	to	deploy	a	WSGI	application	to	Heroku’s	platform.	Once
the	source	code	is	ready	and	committed,	a	simple	push	to	Heroku	git
repository	deploys	the	application:	Python	is	installed,	the	dependencies
listed	in	requirements.txt	are	likewise	installed	and	the	processes
listed	in	the	Procfile	as	executed.

If	your	application	needs	more	processing	power,	it	is	then	possible	to
upgrade	the	amount	of	dyno	[7]	based	on	your	needs:

$	heroku	ps:scale	web=5
Scaling	dynos...	done,	now	running	web	at	5:Standard-1X.

Note

Some	features,	such	as	automatically	scaling	your	number	of	dyno
based	on	the	usage	of	your	application	are	in	the	works	as	of	this
writing.

The	Procfile	can	specify	workers	other	than	a	WSGI	server,	such	as	a
daemon	handling	a	queue	or	running	regular	tasks.	This	can	be	done	by
simply	editing	your	Procfile	and	adding	such	a	line:

worker:	python	myherokuapp/myprogram.py

This	also	can	be	scaled	up	and	be	spread	on	multiple	dynos.	The
reference	implementation	for	background	jobs	when	using	Python	on
Heroku	is	to	use	RQ	–	good	thing	RQ	was	discussed	in	Section	5.1,	“RQ”!

Heroku	takes	full	advantage	of	the	technics	we	discussed	so	far.	Having
stateless	Web	servers	and	stateless	queue	workers	make	it
straightforward	to	scale	up	your	application.

Figure	10.1.	Heroku	Web	dashboard

10.2.	Amazon	Beanstalk
Amazon	Web	Services	provides	a	platform	to	execute	code	directly,	which
supports	Python,	called	AWS	Elastic	Beanstalk.	It	makes	it	very	easy	to
run	any	Python	application	in	the	Amazon	cloud.	Elastic	Beanstalk	is
basically	a	service	that	manages	virtual	machines	instances	for	you	(as
provided	by	Amazon	EC2	service).

To	use	this	service,	Amazon	provides	a	Python	command	line	tool	named
eb	that	is	provided	by	the	awsebcli	Python	package.	You	can	install	it
using	pip	install	awsebcli.

Once	your	WSGI	application	is	ready	to	be	deployed,	you	can	call	eb
init	to	initialize	the	project	and	then	eb	create	to	create	an
environment.

Example	10.3.	Deploying	to	Ealstic	Beanstalk	with	eb

$	eb	init	scapytest
$	eb	create
Enter	Environment	Name

https://aws.amazon.com
https://aws.amazon.com/fr/elasticbeanstalk/

(default	is	scapytest-dev):
Enter	DNS	CNAME	prefix
(default	is	scapytest-dev):

Select	a	load	balancer	type
1)	classic
2)	application
(default	is	1):	1

Type	"view"	to	see	the	policy,	or	just	press	ENTER	to	continue:
Creating	application	version	archive	"app-4bd9-170119_180332".
Uploading	scapytest/app-4bd9-170119_180332.zip	to	S3.	This	may	take	a	while.
Upload	Complete.
Environment	details	for:	scapytest-dev
		Application	name:	scapytest
		Region:	us-west-2
		Deployed	Version:	app-4bd9-170119_180332
		Environment	ID:	e-x4uchhqxmk
		Platform:	64bit	Amazon	Linux	2016.09	v2.3.0	running	Python	3.4
		Tier:	WebServer-Standard
		CNAME:	scapytest-dev.us-west-2.elasticbeanstalk.com
		Updated:	2017-01-19	17:03:37.409000+00:00
[…]
INFO:	Environment	health	has	transitioned	from	Pending	to	Ok.	Initialization	completed	7	seconds	ago
INFO:	Added	instance	[i-0a3c269030a13566c]	to	your	environment.
INFO:	Successfully	launched	environment:	scapytest-dev
$	curl	-v	http://scapytest-dev.us-west-2.elasticbeanstalk.com/
*			Trying	54.186.46.232...
*	TCP_NODELAY	set
*	Connected	to	scapytest-dev.us-west-2.elasticbeanstalk.com	(54.186.46.232)	port	80	(#0)
>	GET	/	HTTP/1.1
>	Host:	scapytest-dev.us-west-2.elasticbeanstalk.com
>	User-Agent:	curl/7.51.0
>	Accept:	*/*
>
<	HTTP/1.1	200	OK
<	Content-Type:	text/plain;	charset=UTF-8

<	Date:	Thu,	19	Jan	2017	17:16:57	GMT
<	Server:	Apache/2.4.23	(Amazon)	mod_wsgi/3.5	Python/3.4.3
<	Content-Length:	13
<	Connection:	keep-alive
<
Hello	world!
*	Curl_http_done:	called	premature	==	0
*	Connection	#0	to	host	scapytest-dev.us-west-2.elasticbeanstalk.com	left	intact

As	shown	in	the	transcript	Example	10.3,	“Deploying	to	Ealstic	Beanstalk
with	eb”,	the	command	line	tool	eb	provided	by	awsebcli	makes	it	very
easy	to	deploy	a	Python	application	in	a	few	commands.	And	like	all	cloud
providers,	AWS	provides	autoscaling	features	based	on	several	different
metrics	(CPU	usage,	network	bandwidth,	etc.).

Since	Elastic	Beanstalk	is	based	on	other	Amazon	services	such	as	EC2,	it
can	be	handy	to	use	and	you	can	alsoleverage	other	services.

Figure	10.2.	AWS	Elastic	Beanstalk	dashboard

10.3.	Google	App	Engine

Google	also	has	its	cloud	platform	that	offers	a	large	selection	of	features,
from	virtual	machines	to	application	hosting.	Google	App	Engine	is	the
platform	that	can	host	and	execute	your	code	directly,	including	Python
and	many	other	languages.

Google	provides	a	command-line	tool,	like	everyone	else,	and	this	one	is
called	gcloud.	It	is	rather	straightforward	to	use	and	the	online
documentation	is	pretty	complete	in	terms	of	how	to	deploy	your	WSGI
application.

There	are	only	two	files	needed	to	deploy	a	WSGI	Python	application	in
the	Google	App	Engine:

app.yaml	which	contains	the	application	metadata	and	the	address	of
the	main	module	to	run

At	least	one	Python	file	that	contains	the	code	to	run	–	obviously,	it
can	be	an	entire	Python	module	with	subdirectories.

Example	10.4.	app.yaml	for	Google	App	Engine

runtime:	python27
api_version:	1
threadsafe:	true

handlers:
		-	url:	/.*
				script:	main.app

Example	10.5.	main.py	for	Google	App	Engine

def	app(environ,	start_response):
				"""Simplest	possible	application	object"""
				status	=	'200	OK'
				response_headers	=	[('Content-type',	'text/plain')]
				start_response(status,	response_headers)
				return	['Hello	world!\n']

https://google.com
https://cloud.google.com/appengine/docs

Once	those	files	exist,	you	can	directly	deploy	your	WSGI	application	on
Google	App	Engine	and	access	it	as	Example	10.6,	“Deploying	a	WSGI
application	on	Google	Cloud	App”	shows.

Example	10.6.	Deploying	a	WSGI	application	on	Google	Cloud	App

$	gcloud	app	deploy
You	are	about	to	deploy	the	following	services:
	-	scapytest/default/20170120t170002	(from	[/Users/jd/Source/scaling-pyth
					Deploying	to	URL:	[https://scapytest.appspot.com]

Do	you	want	to	continue	(Y/n)?		y

Beginning	deployment	of	service	[default]...
File	upload	done.
Updating	service	[default]...done.
Deployed	service	[default]	to	[https://scapytest.appspot.com]

You	can	read	logs	from	the	command	line	by	running:
		$	gcloud	app	logs	read	-s	default

To	view	your	application	in	the	web	browser	run:
		$	gcloud	app	browse
abydos	examples/gae-app	➔	curl	https://scapytest.appspot.com/
Hello	world!

Figure	10.3.	Google	App	Engine	dashboard

Like	many	of	the	others	platforms,	Google	App	Engine	provides
scalability	features.	In	this	case,	it	is	automatic	and	there	is	nothing	that
has	to	be	done	if	the	traffic	to	the	application	increases.

The	main	downside	of	Google	App	Engine	is	that	it	only	supports
Python	2.7	in	its	standard	environment	as	of	this	writing	–	Python	3	is
however	available	in	the	flexible	environment.

10.4.	OpenShift
OpenShift	is	a	platform	as	a	service	software	edited	by	Red	Hat.	It	offers
support	for	a	number	of	different	programming	language,	among	them
Python.	It	goes	beyond	what	Heroku	can	offer	as	it	has	a	high	level	of
customization,	being	based	on	Kubernetes	and	Docker.	That	means	it	is
easy	to	support	more	scenarios	than	just	a	Python	application	as	you	can
provide	your	own	Docker	images	and	Kubernetes	templates.

OpenShift	is	available	online	through	OpenShift	Online	as	a	public
cloud	that	is	operated	by	Red	Hat,	through	OpenShift	Dedicated	to
run	and	manage	your	own	service	on	other	cloud	providers	(Amazon,
Google	Compute	Engine,	etc.)	and	through	OpenShift	Container
Platform	to	be	hosted	on	your	own	hardware	and	data	center.	This

https://openshift.com
https://redhat.com
https://kubernetes.io
https://docker.com

allows	you	to	pick	the	best	solution	for	your	projects,	as	you	can
internalize	or	externalize	what	you	want,	from	nothing	to	everything.

The	ability	to	run	your	own	PaaS	platform	can	be	pretty	important	as	it
prevents	being	in	a	situation	in	which	you	are	locked	in	to	a	vendor.

It	is	also	pretty	straightforward	to	run	OpenShift	Origin,	the	free
edition	of	OpenShift,	on	your	own	hardware.	For	example,	I	was	able	to
deploy	OpenShift	on	my	laptop	in	a	few	minutes.	Once	Docker	is	installed
on	your	machine	and	OpenShift	tools	are	deployed,	creating	a	new	cluster
is	easy	enough:

$	oc	cluster	up
--	Checking	OpenShift	client	...	OK
--	Checking	Docker	client	...	OK
--	Checking	Docker	version	...	OK
--	Checking	for	existing	OpenShift	container	...	OK
--	Checking	for	openshift/origin:v1.3.2	image	...
			Pulling	image	openshift/origin:v1.3.2
			Pulled	0/3	layers,	6%	complete
			Pulled	1/3	layers,	70%	complete
			Pulled	2/3	layers,	85%	complete
			Pulled	3/3	layers,	100%	complete
			Extracting
			Image	pull	complete
--	Checking	Docker	daemon	configuration	...	OK
--	Checking	for	available	ports	...	OK
--	Checking	type	of	volume	mount	...
			Using	Docker	shared	volumes	for	OpenShift	volumes
--	Creating	host	directories	...	OK
--	Finding	server	IP	...
			Using	192.168.64.3	as	the	server	IP
--	Starting	OpenShift	container	...
			Creating	initial	OpenShift	configuration
			Starting	OpenShift	using	container	'origin'
			Waiting	for	API	server	to	start	listening
			OpenShift	server	started

--	Installing	registry	...	OK
--	Installing	router	...	OK
--	Importing	image	streams	...	OK
--	Importing	templates	...	OK
--	Login	to	server	...	OK
--	Creating	initial	project	"myproject"	...	OK
--	Server	Information	...
			OpenShift	server	started.
			The	server	is	accessible	via	web	console	at:
							https://192.168.64.3:8443

			You	are	logged	in	as:
							User:					developer
							Password:	developer

			To	login	as	administrator:
							oc	login	-u	system:admin

$	oc	login	-u	system:admin
Logged	into	"https://192.168.64.3:8443"	as	"system:admin"	using	existing	credentials.

You	have	access	to	the	following	projects	and	can	switch	between	them	with	'oc	project	<projectname>':

				default
				kube-system
		*	myproject
				openshift
				openshift-infra

Using	project	"myproject".

Using	OpenShift	to	deploy	a	Python	application	is	straightforward.	The
Web	dashboard	offers	access	to	all	the	features.	It	only	requires	providing
a	git	URL	to	your	project	repository	to	run	your	favorite	WSGI
application.

$	oc	new-app	python~https://github.com/OpenShiftDemos/os-sample-python	--name	scaling-python-test
-->	Found	image	09a1531	(40	hours	old)	in	image	stream	"python"	in	project	"openshift"	under	tag	"3.5"	for	"python"

				Python	3.5

				Platform	for	building	and	running	Python	3.5	applications

				Tags:	builder,	python,	python35,	rh-python35

				*	A	source	build	using	source	code	from	https://github.com/OpenShiftDemos/os-sample-python	will	be	created
						*	The	resulting	image	will	be	pushed	to	image	stream	"scaling-python-test:latest"
						*	Use	'start-build'	to	trigger	a	new	build
				*	This	image	will	be	deployed	in	deployment	config	"scaling-python-test"
				*	Port	8080/tcp	will	be	load	balanced	by	service	"scaling-python-test"
						*	Other	containers	can	access	this	service	through	the	hostname	"scaling-python-test"

-->	Creating	resources	with	label	app=scaling-python-test	...
				imagestream	"scaling-python-test"	created
				buildconfig	"scaling-python-test"	created
				deploymentconfig	"scaling-python-test"	created
				service	"scaling-python-test"	created
-->	Success
				Build	scheduled,	use	'oc	logs	-f	bc/scaling-python-test'
				Run	'oc	status'	to	view	your	app.
$	oc	expose	svc	scaling-python-test
route	"scaling-python-test"	exposed
$	oc	status
In	project	My	Project	(myproject)	on	server	https://192.168.64.3:8443

http://scaling-python-test-myproject.192.168.64.3.xip.io	to	pod	port	8080-tcp	(svc/scaling-python-test)
		dc/scaling-python-test	deploys	istag/scaling-python-test:latest	<-
				bc/scaling-python-test	source	builds	https://github.com/OpenShiftDemos/os-sample-python	on	openshift/python:3.5
				deployment	#1	deployed	44	minutes	ago	-	1	pod
$	curl	-v	http://scaling-python-test-myproject.192.168.64.3.xip.io/
*			Trying	192.168.64.3...
*	TCP_NODELAY	set
*	Connected	to	scaling-python-test-myproject.192.168.64.3.xip.io	(192.168.64.3)	port	80	(#0)

>	GET	/	HTTP/1.1
>	Host:	scaling-python-test-myproject.192.168.64.3.xip.io
>	User-Agent:	curl/7.51.0
>	Accept:	*/*
>
<	HTTP/1.1	200	OK
<	Server:	gunicorn/19.6.0
<	Date:	Thu,	19	Jan	2017	14:32:16	GMT
<	Content-Type:	text/html;	charset=utf-8
<	Content-Length:	12
<	Set-Cookie:	438d0cfdb6e5a6a330e8b3c011196054=1c1350bcc1188bccaeda678ef473a5a5;	path=/;	HttpOnly
<	Cache-control:	private
<
*	Curl_http_done:	called	premature	==	0
*	Connection	#0	to	host	scaling-python-test-myproject.192.168.64.3.xip.io	left	intact
Hello	World!

As	you	can	see,	it	is	quite	comfortable	to	deploy	a	Python	application	to
an	OpenShift	instance.	OpenShift	takes	care	of	cloning	the	git	repository
and	deploying	it	in	a	Python	container.

There	are	numerous	other	features	provided	by	OpenShift	that	allow	for
completing	your	application.	It	can	also	help	deploying	and	managing
network	services	(RDBMS,	REST	API,	key/value	stores,	etc.).

On	the	scaling	side,	OpenShift	makes	it	very	easy	to	scale	your
application	to	several	pods	automatically	based	on	CPU	consumption.	It
monitors	the	application	health	for	you,	and	the	API	or	dashboard	allows
you	to	define	your	scaling	rules	with	a	few	click	or	commands.

Figure	10.4.	OpenShift	Web	dashboard

10.5.	Beyond	PaaS
As	we	have	just	seen,	there	is	a	long	list	of	hosting	platform	that	you	can
use	and	leverage	to	deploy	your	application.	The	above	list	of	cloud
platforms	is	not	exhaustive;	there	is	a	lot	more	of	them	out	there.	They	all
have	different	offerings,	while	the	foundation	is	usually	common:
running	Python	code.

Many	of	those	platforms	include	more	than	just	running	your	Python
code:	database	access,	message	queues,	object	storage.	These	might	be
necessary	building	blocks	of	your	application.	Most	of	those	services	are
scalable	by	design,	and	the	performance	of	those	components	is	the
responsibility	of	the	provider	–	both	an	advantage	and	a	disadvantage,	it
is	up	to	you	to	decide.	However,	studying	those	services,	what	they
provide	and	how	they	do	it,	can	teach	you	a	thing	or	two	about	scalability
and	the	trade-offs	you	might	have	to	choose.

Very	few	of	those	extra	services	are	standardized,	which	means	that	your
application,	which	is	based	on	an	open	source	language,	might	be	subject
to	vendor	lock-in.	Migrating	your	Python	application	from	one	platform
to	another	could	therefore	be	a	daunting	task	or	even	impossible:	the
APIs	are	different,	the	services	are	disparate,	etc.	In	cases	of	prolonged

service	outages	or	a	change	of	policy,	being	tied	to	one	particular	provider
is	rarely	pleasant.	This	can	be	mitigated	by	using	a	platform	that	provides
an	open	API	that	you	could	run	on	your	own,	such	as	OpenShift.

While	Python	hosting	platforms	are	usually	highly	scalable	and	fault-
tolerant,	they	are	not	resilient.	They	can	crash	or	fail,	suffer	server
downtime	or	have	network	issues.	Your	application	should	be	prepared
for	this	eventuality	–	wherever	it	runs.	Using	multiple	distribution	sites	if
available	or	multiple	providers	might	be	a	solution	to	think	about,
depending	on	the	level	of	service	that	you	need	to	provide!

[7]	dyno	is	the	name	Heroku	gives	to	the	containers	running	your
application.

Chapter	11.	Testing	Distributed
Systems
Among	the	types	of	tests	that	are	needed	to	write	and	maintain	proper
software,	unit	tests	are	not	affected	by	scalability.	Whatever	your	code
base	size,	the	way	to	write	and	execute	those	tests	stays	the	same.	Such
checks	are	not	tied	to	anything	other	than	simple	units	of	code,	and	they
should	not	be	dependent	of	the	global	application	architecture.

However,	most	of	the	time,	this	cannot	be	said	of	functional	tests.	They
can	depend	on	other	services	if	the	application	has	been	built	using	a
micro-services	architecture	for	example.	The	same	goes	if	an	application
depends	on	an	external	system,	storage,	relational	database,	etc.

Writing	micro-services	is	an	excellent	solution	for	distributing	your
application	among	several	nodes.	The	problem	is	that	testing	the	multiple
parts	together	might	be	tricky.

There	are	entire	projects	that	build	their	functional	and	integration
testing	orchestration	around	shell	scripts,	which	are	run	by	Travis	or
Jenkins.	While	that	might	work	for	any	application,	in	the	next	chapter
we	will	discuss	using	a	more	Python-oriented	approach	and	go	over	some
tools	that	are	known	to	most	Pythonistas.

The	importance	of	the	functional	and	integration	test	tool-chain	setup	is
being	fast,	repeatable,	and	consistent.	This	makes	sure	that	all	developers
can	run	(most	of)	the	tests	in	their	own	environment	while	making	sure
there	are	no	false-negatives	in	the	tests	results.

11.1.	Setting	Up	Environments
with	tox
As	you	might	already	know,	tox	is	a	tool	that	automates	building	virtual

https://travis-ci.org/
https://jenkins.io/
https://tox.readthedocs.io

Python	environments.	Those	environments	are	isolated	and
straightforward	to	rebuild	while	having	support	for	multiple	Python
versions	at	the	same	time	in	different	environments.

Most	of	the	time,	tox	is	used	to	directly	run	unit	tests	of	a	program,	with	a
file	as	simple	as:

[testenv]
deps=nose
commands=nosetests

Such	a	file	makes	sure	that	the	tests	are	run	in	a	clean	Python
environment	with	the	right	dependencies	installed,	as	specified	by	your
packaging	tools.

Since	it	is	possible	to	run	any	command	by	setting	the	commands
parameter,	it	is	easy	to	envision	a	system	where	you	could	start	other
services	before	running	your	tests.	Therefore,	a	simplistic	technique	to
run	integration	tests	with	memcached,	for	example,	would	be:

[testenv]
commands=memcached	-p	12345	&
									nosetests

The	application	would	then	have	to	set	itself	up	to	use	memcached	on
TCP	port	12345,	and	the	tests	could	run	using	that	instance	of
memcached.

Unfortunately,	this	approach	is	overly	naive:	first,	there’s	no	way	to	know
when	memcached	is	ready	to	accept	connections.	That	could	make	the
first	tests	fail	for	no	good	reason.	This	is	exactly	the	kind	of	false	negative
result	that	you	want	to	avoid	at	all	costs,	as	they	undermine	the
usefulness	of	the	test	suite.

Moreover,	after	the	tests	are	done,	memcached	would	still	be	running.
The	second	run	of	tox	will	spawn	a	new	memcached	instance,	which

would	fail	to	start	because	the	TCP	port	is	already	being	used.	Also,	the
second	test	run	would	connect	to	the	previous	memcached	daemon,
possibly	using	old	entry	and	keys	stored	in	it	–	again	yielding	potential
false	negatives.

This	short	example	demonstrates	that	unfortunately,	the	orchestration	of
external	dependency	for	integration	testing	is	much	more	complicated
than	one	might	hope.	It	does	not	mean	that	it	is	impossible	to	orchestrate
a	whole	deployment	of	resources	before	running	your	tests,	but	to	do	that
you	need	to	take	care	of	the	following	before	running	the	tests:

1.	 Prepare	any	directory	or	resources	needed	by	external	services

2.	 Launch	those	external	services

3.	 Make	sure	those	external	services	are	ready	to	be	used

Then,	after	the	tests	are	run	you	need	to:

1.	 Shut	down	the	external	service	(correctly,	if	possible)

2.	 Clean	everything	the	service	might	have	left	behind	(e.g.	temporary
data)

Taking	care	of	this	is	not	trivial,	but	once	done	well,	it	makes	sure	that
you	can	comfortably	run	tox	and	run	integration	testing	once	and	for	all
with	a	simple	command	line	tox	-e	py36-integration:

[testenv]
deps	=	nose
commands=nosetests

[testenv:py36-integration]
commands={toxinidir}/setup-memcached.sh	nosetests

Example	11.1.	Tests	using	memcached	if	available

import	os
import	socket

import	unittest

class	TestWithMemcached(unittest.TestCase):
				def	setUp(self):
								super(TestWithMemcached,	self).setUp()
								if	not	os.getenv("MEMCACHED_PID"):
												self.skipTest("Memcached	is	not	running")

				def	test_connect(self):
								s	=	socket.socket()
								s.connect(("localhost",	4526))

Example	11.2.	setup-memcached.sh

#!/bin/sh

clean_on_exit	()	{
				test	-n	"$MEMCACHED_DIR"	&&	rm	-rf	"$MEMCACHED_DIR"
}

trap	clean_on_exit	EXIT

wait_for_line	()	{
				while	read	line
				do
								echo	"$line"	|	grep	-q	"$1"	&&	break
				done	<	"$2"
				#	Read	the	fifo	for	ever	otherwise	process	would	block
				cat	"$2"	>/dev/null	&
}

MEMCACHED_DIR=`mktemp	-d`
mkfifo	${MEMCACHED_DIR}/out
memcached	-p	4526	-vv	>	${MEMCACHED_DIR}/out	2>&1	&
export	MEMCACHED_PID=$!

wait_for_line	"server	listening"	${MEMCACHED_DIR}/out

$*

kill	${MEMCACHED_PID}

When	run	normally,	the	test	is	skipped	because	memcached	is	not
detected:

$	tox	-e	py36
GLOB	sdist-make:	/Users/jd/Source/scaling-python/examples/tox-integration/setup.py
py36	create:	/Users/jd/Source/scaling-python/examples/tox-integration/.tox/py36
py36	installdeps:	nose
py36	inst:	/Users/jd/Source/scaling-python/examples/tox-integration/.tox/dist/testmemcached-0.0.1.dev29.zip
py36	installed:	nose==1.3.7,testmemcached==0.0.1.dev29,wheel==0.
py36	runtests:	PYTHONHASHSEED='3256577142'
py36	runtests:	commands[0]	|	nosetests
S

Ran	1	test	in	0.004s

OK	(SKIP=1)
		py36:	commands	succeeded
		congratulations	:)

But	when	run	with	the	py36-integration	target,	memcached	is	set-
up,	and	therefore	the	test	can	be	executed:

tox	-e	py36-integration
GLOB	sdist-make:	/Users/jd/Source/scaling-python/examples/tox-integration/setup.py
py36-integration	create:	/Users/jd/Source/scaling-python/examples/tox-integration/.tox/py36-integration
py36-integration	installdeps:	nose
py36-integration	inst:	/Users/jd/Source/scaling-python/examples/tox-integration/.tox/dist/testmemcached-0.0.1.dev29.zip
py36-integration	installed:	nose==1.3.7,testmemcached==0.0.1.dev29,wheel==0.26.0
py36-integration	runtests:	PYTHONHASHSEED='2013624885'
py36-integration	runtests:	commands[0]	|	/Users/jd/Source/scaling-python/examples/tox-integration/setup-memcached.sh	nosetests

.

Ran	1	test	in	0.006s

OK

		py36-integration:	commands	succeeded
		congratulations	:)

This	is	a	good	strategy	for	making	sure	that	your	tests	can	run	everywhere
smoothly,	and	that	every	engineer	working	on	the	project	can	run	them
with	their	own	system.	Having	concentrated	minutes	or	hours	to	spend
on	setting-up	a	test	environment	is	not	a	genuine	way	to	scale	your
application	testing	beyond	just	doing	unit	testing.

11.2.	Manage	External	Services
with	pifpaf
If	writing	shell	scripts	is	not	your	favorite	pastime,	rest	assured	you	are
normal.	The	error	handling	in	this	kind	of	script	is	often	wonky,	the
verbosity	painful,	and	the	tools	available	to	help	to	build	your	workflow
are	very	restricted.	So	while	shell	scripts	are	handy	to	use	and	write,	they
are	a	pain	to	maintain.	They	can	become	way	too	convoluted	to	handle.

Therefore	this	chapter	will	include	some	shameless	promotion	of	a	tool	I
started	to	write	a	few	months	ago	and	that	I	use	in	many	of	my
applications	nowadays	to	facilitate	integration	testing.	It	is	called	pifpaf.

The	problem	that	pifpaf	solves	is	precisely	the	one	covered	in	Section	11.1,
“Setting	Up	Environments	with	tox”:	how	to	start	and	stop	systems
needed	to	test	integration	with	your	applications.

pifpaf	is	a	command	line	tool	that	allows	starting	any	daemon	from	the
command	line,	without	having	to	set	it	up	on	your	system,	nor	be	an
administrator.	As	long	as	the	software	is	already	installed,	pifpaf	is	able

https://github.com/jd/pifpaf

to	start	it.	For	example,	to	start	PostgreSQL,	you	can	just	run	pifpaf
run	postgresql	as	shown	in	Example	11.3,	“pifpaf	launching
PostgreSQL”.

Example	11.3.	pifpaf	launching	PostgreSQL

$	pifpaf	run	postgresql	$SHELL
$	echo	$PIFPAF_URL
postgresql://localhost/postgres?host=/var/folders/7k/pwdhb_mj2cv4zyr0kyrlzjx40000gq/T/tmprL7nh_&port=9824
$	psql
Expanded	display	is	used	automatically.
Line	style	is	unicode.
SET
psql	(9.6.1)
Type	"help"	for	help.

postgres=#	\l
																														List	of	databases
			Name				│	Owner	│	Encoding	│			Collate			│				Ctype				│	Access	privileges
───────────┼───────┼──────────┼─────────────┼─────────────┼───────────────────
	postgres		│	jd				│	UTF8					│	en_US.UTF-8	│	en_US.UTF-8	│
	template0	│	jd				│	UTF8					│	en_US.UTF-8	│	en_US.UTF-8	│	=c/jd												
											│							│										│													│													│	jd=CTc/jd
	template1	│	jd				│	UTF8					│	en_US.UTF-8	│	en_US.UTF-8	│	=c/jd												
											│							│										│													│													│	jd=CTc/jd
(3	rows)

postgres=#	create	table	foobar	();
CREATE	TABLE
postgres=#	\d	foobar
			Table	"public.foobar"
	Column	│	Type	│	Modifiers
────────┼──────┼───────────

postgres=#	\q
$	exit
$

By	default,	pifpaf	runs	whatever	command	is	given	after	the	run
<daemon>	argument.	In	Example	11.3,	“pifpaf	launching	PostgreSQL”,
the	argument	is	$SHELL	which	is	replaced	by	the	shell	running	(e.g.
/bin/bash).	This	new	shell	has	a	few	environment	variables	exported,
such	as	$PIFPAF_URL	which	contains	the	address	of	the	PostgreSQL
server.	This	URL	format	is	well	understood	by	for	example	SQLALchemy,
one	of	the	standard	SQL	manipulation	libraries	in	Python.	In	the	case	of
PostgreSQL,	pifpaf	also	sets	the	expected	variables	for	psql	to	work	out-
of-the-box.	Once	the	application	is	exited	–	in	this	case	by	typing	exit	in
the	subshell	–	pifpaf	takes	care	of	stopping	PostgreSQL	and	deleting	the
temporary	data	that	has	been	created.

It	is	then	therefore	easy	to	imagine	starting	a	test	suite	rather	than	a
subshell,	and	taking	advantage	of	what	pifpaf	sets	up	for	us.	Rewriting
the	examples	from	Section	11.1,	“Setting	Up	Environments	with	tox”
using	pifpaf	is	as	straightforward	as	replacing	the	custom	shell	script
with	pifpaf:

[testenv]
deps	=	nose
							pifpaf
commands=nosetests

[testenv:py36-integration]
commands=pifpaf	run	memcached	--port	19842	--	nosetests

Example	11.4.	Tests	using	memcached	if	available	with	pifpaf

import	os
import	socket
import	unittest

class	TestWithMemcached(unittest.TestCase):
				def	setUp(self):
								super(TestWithMemcached,	self).setUp()

http://sqlalchemy.org

								if	not	os.getenv("PIFPAF_MEMCACHED_URL"):
												self.skipTest("Memcached	is	not	running")

				def	test_connect(self):
								s	=	socket.socket()
								s.connect(("localhost",	int(os.getenv("PIFPAF_MEMCACHED_PORT"))))

By	using	variables	exported	by	pifpaf,	it	is	easy	to	dynamically	detect
whether	memcached	is	available	for	integration	testing	and	then	connect
to	it	in	order	to	execute	some	tests.

Tip

pifpaf	offers	support	for	a	large	number	of	daemons:	PostgreSQL,
MySQL,	memcached,	etcd,	Redis,	Ceph,	RabbitMQ,	Consul,
CouchDB,	MongoDB,	Gnocchi,	etc.	It	is	written	in	Python	and	is
easily	extensible	to	support	your	own	applications.	Try	it!

It	is	also	possible	to	combine	several	daemons	by	using	the	--	command
separator	and	specifying	several	pifpaf	commands:

$	pifpaf	run	redis	--	pifpaf	-e	PIFPAF2	run	memcached	--	$SHELL
$	env	|	grep	PIFPAF_
PIFPAF_REDIS_URL=redis://localhost:6379
PIFPAF_PID=68205
PIFPAF_DAEMON=redis
PIFPAF_URLS=redis://localhost:6379;memcached://localhost:11212
PIFPAF_DATA=/var/folders/7k/pwdhb_mj2cv4zyr0kyrlzjx40000gq/T/tmpnF2jXa
PIFPAF_REDIS_PORT=6379
PIFPAF_URL=redis://localhost:6379
$	env	|	grep	PIFPAF2_
PIFPAF2_MEMCACHED_PORT=11212
PIFPAF2_DAEMON=memcached
PIFPAF2_MEMCACHED_URL=memcached://localhost:11212
PIFPAF2_PID=68207
PIFPAF2_URL=memcached://localhost:11212
PIFPAF2_DATA=/var/folders/7k/pwdhb_mj2cv4zyr0kyrlzjx40000gq/T/tmpTRsMJc

$	ps
		PID	TTY											TIME	CMD
68206	ttys001				0:00.05	redis-server	*:6379
68208	ttys001				0:00.04	memcached	-vv	-p	11212

There	are	two	servers	started	by	pifpaf,	with	their	own	set	of	URLs.	The
URLs	are	also	available,	separated	by	a	;	in	the	global	PIFPAF_URLS
variable.	It	is	also	possible	to	start	several	instances	of	the	same	daemon
by	using	different	listening	ports	or	sockets.

pifpaf	is	also	able	to	be	used	in	any	shell	script	by	using	the	same	variable
export	system	used	by	ssh-agent,	for	example.	Calling	pifpaf	without	a
command	to	execute	makes	it	behave	in	this	way:

$	pifpaf	run	memcached
export	PIFPAF_DATA="/var/folders/7k/pwdhb_mj2cv4zyr0kyrlzjx40000gq/T/tmpcVaCf4";
export	PIFPAF_MEMCACHED_PORT="11212";
export	PIFPAF_URL="memcached://localhost:11212";
export	PIFPAF_PID=68318;
export	PIFPAF_DAEMON="memcached";
export	PIFPAF_MEMCACHED_URL="memcached://localhost:11212";
export	PIFPAF_URLS="memcached://localhost:11212";
pifpaf_stop	()	{	if	test	-z	"$PIFPAF_PID";	then	echo	'No	PID	found	in	$PIFPAF_PID';	return	-1;	fi;	if	kill	$PIFPAF_PID;	then	unset	PIFPAF_PID;	unset	-f	pifpaf_stop;	fi;	}
$	kill	68318

This	should	indeed	by	called	with	an	eval	command	if	it	is	to	be	really
useful:

$	eval	`pifpaf	run	memcached`
$	echo	$PIFPAF_URL
memcached://localhost:11212
$	pifpaf_stop

This	way	of	running	pifpaf	has	the	advantage	of	not	starting	a	new
program	or	a	subshell.	In	the	context	of	shell	scripts,	for	example,	this
might	be	handy.

11.3.	Using	Fixtures	with	pifpaf
While	it	is	possible	to	run	pifpaf	globally	around	a	test	suite,	it	is	also
possible	to	use	it	inside	tests	and	orchestrate	some	of	its	behavior.

pifpaf	exports	its	drivers	as	test	fixtures.	In	unit	testing,	fixtures
represent	components	that	are	set	up	before	a	test	and	cleaned	up	after
the	test	is	finished.	It	is	usually	a	good	idea	to	build	a	specific	kind	of
component	for	them,	as	they	are	reused	in	a	lot	of	different	places.	In	this
case,	pifpaf	exports	objects	that	represent	the	daemon	launched.	The
object	is	initialized	before	each	test	and	reset	to	its	default	values	when
the	test	is	completed.

In	Example	11.5,	“Tests	using	memcached	fixtures”,	the	test	sets	up	a
memcached	instance	before	running	each	test.	While	this	is	slower	and
more	expensive	than	using	a	memcached	for	all	the	tests,	it	makes	sure
that	each	test	runs	on	top	of	a	clean	and	fresh	memcached	instance,
avoiding	side	effect	that	could	result	from	having	several	tests	running
one	after	another	the	same	instance.

Example	11.5.	Tests	using	memcached	fixtures

import	socket

import	fixtures
from	pifpaf.drivers	import	memcached

class	TestWithMemcached(fixtures.TestWithFixtures):
				def	setUp(self):
								super(TestWithMemcached,	self).setUp()
								self.memcached	=	self.useFixture(memcached.MemcachedDriver(port=9742))

				def	test_connect(self):
								s	=	socket.socket()
								s.connect(("localhost",	self.memcached.port))

This	test	does	not	need	the	pifpaf	daemon	to	run	and	it	does	not	need	any
setup	to	be	done	by	tox,	in	contrast	to	what	we	have	seen	previously	in
Section	11.2,	“Manage	External	Services	with	pifpaf”.

Note

The	approach	used	in	Example	11.5,	“Tests	using	memcached
fixtures”	only	works	if	the	tests	are	run	serially,	as	memcached
uses	the	same	port	for	listening	for	each	test.	Running	tests
concurrently	would	fail,	as	several	memcached	instances	would
try	to	bind	to	the	same	TCP/UDP	ports.	Using	an	incremental
port	number	for	each	test	or	tracking	ports	used	would	solve	this
issue.

While	this	test	is	great	and	allows	testing	the	case	in	which	everything
works	like	a	charm,	it	is	even	more	interesting	to	test	when	things	could
go	wrong.	pifpaf	allows	us	to	manipulate	its	fixture	object	and	do	just
that.

For	example,	an	application	could	test	what	happens	when	the
connection	to	memcached	is	broken.

Example	11.6.	Application	using	memcached	and	fixtures

import	fixtures
from	pifpaf.drivers	import	memcached
from	pymemcache	import	client

class	AppException(Exception):
				pass

class	Application(object):
				def	__init__(self,	memcached=("localhost",	11211)):
								self.memcache	=	client.Client(memcached)

				def	store_settings(self,	settings):

								self.memcache.set("appsettings",	settings)

				def	retrieve_settings(self):
								return	self.memcache.get("appsettings")

class	TestWithMemcached(fixtures.TestWithFixtures):
				def	test_store_and_retrieve_settings(self):
								self.memcached	=	self.useFixture(memcached.MemcachedDriver(port=9742))
								self.app	=	Application(("localhost",	self.memcached.port))
								self.app.store_settings(b"foobar")
								self.assertEqual(b"foobar",	self.app.retrieve_settings())

In	Example	11.6,	“Application	using	memcached	and	fixtures”,	an
imaginary	application	uses	memcached	to	store	and	retrieve	its	settings.
The	canonical	test	case	is	test_store_and_retrieve_settings,
which	starts	memcached	and	tests	whether	everything	works	correctly.
This	is	the	case	that	most	people	write	and	end	up	being	happy	with.

However,	if	memcached	is	stopped	at	store	or	retrieve	time,	or	it	is
restarted,	there	is	no	way	to	know	what	happens.	The	application	does
not	use	any	try/except	around	its	interaction	with	memcached.	If
anything	wrong	happens,	the	user	of	the	application	will	probably	get	an
exception	from	pymemcache.	It	is	unclear	until	it	is	tested.

So	let’s	do	that	and	test	it.

Example	11.7.	Application	using	memcached	and	fixtures,	testing	all
scenarios

import	fixtures
from	pifpaf.drivers	import	memcached
from	pymemcache	import	client
from	pymemcache	import	exceptions

class	AppException(Exception):

				pass

class	Application(object):
				def	__init__(self,	memcached=("localhost",	11211)):
								self.memcache	=	client.Client(memcached)

				def	store_settings(self,	settings):
								try:
												self.memcache.set("appsettings",	settings)
								except	(exceptions.MemcacheError,
																ConnectionRefusedError,
																ConnectionResetError):
												raise	AppException

				def	retrieve_settings(self):
								try:
												return	self.memcache.get("appsettings")
								except	(exceptions.MemcacheError,
																ConnectionRefusedError,
																ConnectionResetError):
												raise	AppException

class	TestWithMemcached(fixtures.TestWithFixtures):
				def	test_store_and_retrieve_settings(self):
								self.memcached	=	self.useFixture(memcached.MemcachedDriver(port=9742))
								self.app	=	Application(("localhost",	self.memcached.port))
								self.app.store_settings(b"foobar")
								self.assertEqual(b"foobar",	self.app.retrieve_settings())

				def	test_connect_fail_on_store(self):
								self.app	=	Application(("localhost",	123))
								self.assertRaises(AppException,
																										self.app.store_settings,
																										b"foobar")

				def	test_connect_fail_on_retrieve(self):
								self.memcached	=	memcached.MemcachedDriver(port=9743)
								self.memcached.setUp()
								self.app	=	Application(("localhost",	self.memcached.port))
								self.app.store_settings(b"foobar")
								self.memcached.cleanUp()
								self.assertRaises(AppException,
																										self.app.retrieve_settings)

				def	test_memcached_restarted(self):
								self.memcached	=	memcached.MemcachedDriver(port=9744)
								self.memcached.setUp()
								self.app	=	Application(("localhost",	self.memcached.port))
								self.app.store_settings(b"foobar")
								self.memcached.reset()
								self.addCleanup(self.memcached.cleanUp)
								self.assertRaises(AppException,
																										self.app.retrieve_settings)

In	Example	11.7,	“Application	using	memcached	and	fixtures,	testing	all
scenarios”,	this	time	all	the	scenarios	are	tested.	The	test
test_connect_fail_on_store	tests	what	happens	if	memcached	is
not	started	at	all	when	the	application	is	being	used.	The	test
test_connect_fail_on_retrieve	tests	what	happens	if	memcached
works	at	the	beginning	but	suddenly	is	shut	down	and	stops	working.
Finally,	the	test	test_memcached_restarted	tests	what	happens	if
memcached	is	restarted.

Writing	all	those	new	tests	and	scenarios	forced	the	application	to	handle
new	exceptions,	such	as	ConnectionRefusedError,	whereas	it	did	not
do	that	before.	This	example	raises	an	AppException	exception,	but	an
attractive	alternative	would	be	to	retry	using	tenacity,	as	described	in
Section	6.2,	“Retrying	with	Tenacity”.

Even	if	pifpaf	might	not	suit	your	needs	or	be	the	best	tool,	the	approach
described	in	the	last	sections	should	still	be	kept	in	mind	when	writing
tests	for	applications	that	leverage	another	component.

Remember:	never	forget	to	cover	failure	scenarios.

Chapter	12.	Caching
Caching	is	an	essential	component	when	scaling	applications	to	large
proportions.	It	can	solve	various	problems:

High	cost	of	computing	data:	caching	allows	reusing	already-computed
results,	so	rather	than	computing	the	same	result	over	and	over	again,
a	database	of	results	can	be	queried	rather	than	compute	the	whole
result	again.	This	is	the	basic	principle	behind	memoization.

High-latency	access	to	data:	some	data	might	be	accessible	but	the
latency	to	access	it	is	too	high.	If	the	data	is	retrieved	enough	times,
storing	it	in	a	closer	(in	terms	of	latency)	data	store	will	improve
performance.	This	introduces	the	well-known	problem	of	cache
invalidity.

Caching	represents	a	good	solution	to	those	problems	and	the	different
techniques	described	next	can	be	combined	to	bring	about	very	high
performances	for	your	applications.

12.1.	Local	Caching
Local	caching	has	the	advantage	of	being	(very)	fast,	as	it	does	not	require
access	to	a	remote	cache	over	the	network.	Usually,	caching	works	by
storing	cached	data	under	a	key	that	identifies	it.	This	technique	makes
Python	dictionary	the	most	obvious	data	structure	for	implementing	a
caching	mechanism.

Example	12.1.	A	basic	caching	example

>>>	cache	=	{}
>>>	cache['key']	=	'value'
>>>	cache	=	{}
>>>	def	compute_length_or_read_in_cache(s):
...					try:
...													return	cache[s]

...					except	KeyError:

...													cache[s]	=	len(s)

...													return	cache[s]

...
>>>	compute_length_or_read_in_cache("foobar")
6
>>>	cache
{'foobar':	6}
>>>	compute_length_or_read_in_cache("foobar")
6
>>>	compute_length_or_read_in_cache("babaz")
5
>>>	cache
{'foobar':	6,	'babaz':	5}

Obviously,	such	a	simple	cache	has	a	few	drawbacks.	First,	its	size	is
unbound,	which	means	it	can	grow	to	a	substantial	size	that	can	fill	up
the	entire	system	memory.	That	would	result	in	the	death	of	either	the
process,	or	even	the	whole	operating	system	in	a	worst-case	scenario.

Therefore,	a	policy	must	be	implemented	to	expire	some	items	out	of	any
cache,	in	order	to	be	sure	that	the	data	store	does	not	grow	out	of	control.
There	are	a	few	algorithms	that	can	be	found	that	are	pretty	simple	to
implement	such	as	the	following:

Least	recently	used	(LRU)	removes	the	least	recently	used	items	first.
This	means	the	last	access	time	for	each	item	must	also	be	stored.

Least	Frequently	Used	(LFU),	which	removes	the	least	frequently	used
items	first.	This	means	the	number	of	accesses	of	each	item	must	be
stored.

Time-to-live	(TTL)	based	removes	any	entry	that	is	older	than	a	certain
period	of	time.	This	has	the	benefit	of	automatically	invalidating	the
cache	after	a	certain	amount	of	time,	whereas	the	LRU	and	LFU
policies	are	only	access-based.

Methods	like	LRU	and	LFU	makes	more	sense	for	memoization	(see

Section	12.2,	“Memoization”).	Other	methods,	such	as	TTL,	are	more
commonly	used	for	a	locally	stored	copy	of	remote	data.

The	cachetools	Python	package	provides	implementations	of	all	those
algorithms	and	it	is	pretty	easy	to	use	as	shown	in	Example	12.2,	“Using
cachetools”.	There	should	be	no	need	to	implement	this	kind	of	cache
yourself.

Example	12.2.	Using	cachetools

>>>	import	cachetools
>>>	cache	=	cachetools.LRUCache(maxsize=3)
>>>	cache['foo']	=	1
>>>	cache['bar']	=	42
>>>	cache
LRUCache([('foo',	1),	('bar',	42)],	maxsize=3,	currsize=2)
>>>	cache['bar']
42
>>>	cache['foo']
1
>>>	cache[12]
Traceback	(most	recent	call	last):
[...]
KeyError:	12
>>>	cache['baz']	=	33
>>>	cache['babar']	=	32
>>>	cache
LRUCache([('baz',	33),	('foo',	1),	('babar',	32)],	maxsize=3,

The	cachetools.LRUCache	class	provides	an	implementation	of	a
LRU	cache	mechanism.	The	maximum	size	is	set	to	three	in	this	example,
so	as	soon	as	a	fourth	item	is	added	to	the	cache,	the	least	recently	used
one	is	discarded.

Example	12.3.	Using	cachetools	to	cache	Web	pages

import	time

http://pythonhosted.org/cachetools/

import	cachetools
import	requests

cache	=	cachetools.TTLCache(maxsize=5,	ttl=5)
URL	=	"http://httpbin.org/uuid"
while	True:
				try:
								print(cache[URL])
				except	KeyError:
								print("Paged	not	cached,	fetching")
								cache[URL]	=	page	=	requests.get("http://httpbin.org/uuid")
								print(page)
				time.sleep(1)

In	Example	12.3,	“Using	cachetools	to	cache	Web	pages”,	a	demo
program	uses	cachetools	to	cache	a	Web	page	for	five	seconds,	wherein
up	to	five	pages	are	cached	for	five	seconds.	When	it	run,	this	program
prints	the	page	every	second	but	it	only	refreshes	it	every	five	seconds.

The	TTLCache	class	accepts	a	different	definition	of	time;	if	needed,	you
can	customize	it	to	not	count	the	time	in	seconds	but	in	any	other	time
unit	that	you	would	like	(iteration,	pings,	requests,	etc.).

12.2.	Memoization
Memoization	is	a	technique	used	to	speed	up	function	calls	by	caching
their	results.	The	results	can	be	cached	only	if	the	function	is	pure	–
meaning	that	it	has	no	side	effects	or	outputs	and	that	it	does	not	depend
on	any	global	state.

A	trivial	function	that	can	be	memoized	is	the	sine	function	sin.

Example	12.4.	A	basic	memoization	technique

>>>	import	math
>>>	_SIN_MEMOIZED_VALUES	=	{}
>>>	def	memoized_sin(x):
...				if	x	not	in	_SIN_MEMOIZED_VALUES:
...								_SIN_MEMOIZED_VALUES[x]	=	math.sin(x)
...				return	_SIN_MEMOIZED_VALUES[x]
>>>	memoized_sin(1)
0.8414709848078965
>>>	_SIN_MEMOIZED_VALUES
{1:	0.8414709848078965}
>>>	memoized_sin(2)
0.9092974268256817
>>>	memoized_sin(2)
0.9092974268256817
>>>	_SIN_MEMOIZED_VALUES
{1:	0.8414709848078965,	2:	0.9092974268256817}
>>>	memoized_sin(1)
0.8414709848078965
>>>	_SIN_MEMOIZED_VALUES
{1:	0.8414709848078965,	2:	0.9092974268256817}

The	first	time	that	memoized_sin	is	called	with	an	argument	that	is	not
stored	in	_SIN_MEMOIZED_VALUES,	the	value	will	be	computed	and
stored	in	this	dictionary.	Later	on,	if	we	call	the	function	with	the	same
value	again,	the	result	will	be	retrieved	from	the	dictionary	rather	than
being	computed	another	time.	While	sin	is	a	function	that	computes
very	quickly,	this	may	not	be	true	for	some	advanced	functions	involving
more	complicated	computations.

Usage	of	memoization	can	be	simplified	in	Python	by	using	a	decorator.
PyPI	lists	a	few	implementations	of	memoization	through	decorators,
from	very	simple	cases	to	the	most	complex	and	comprehensive.

Starting	with	Python	3.3,	the	functools	module	provides	a	LRU	(least
recently	used)	cache	decorator.	This	decorator	provides	the	same
functionality	as	the	memoization	described	here,	but	with	the	benefit	that

it	limits	the	number	of	entries	in	the	cache,	removing	the	least	recently
used	one	when	the	cache	size	reaches	its	maximum.

The	module	also	provides	statistics	on	cache	hits,	misses,	etc.	In	my
opinion,	these	are	a	must-haves	when	implementing	such	a	cache.
There’s	no	point	in	using	memoization	–	or	any	caching	technique	–	if
you	are	unable	to	meter	its	usage	and	usefulness.

In	Example	12.5,	“Using	functools.lru_cache”,	you	can	see	an
example	of	the	example	memoized_sin	function,	using
functools.lru_cache.

Example	12.5.	Using	functools.lru_cache

>>>	import	functools
>>>	import	math
>>>	@functools.lru_cache(maxsize=2)
...	def	memoized_sin(x):
...					return	math.sin(x)
...
>>>	memoized_sin(2)
0.9092974268256817
>>>	memoized_sin.cache_info()
CacheInfo(hits=0,	misses=1,	maxsize=2,	currsize=1)
>>>	memoized_sin(2)
0.9092974268256817
>>>	memoized_sin.cache_info()
CacheInfo(hits=1,	misses=1,	maxsize=2,	currsize=1)
>>>	memoized_sin(3)
0.1411200080598672
>>>	memoized_sin.cache_info()
CacheInfo(hits=1,	misses=2,	maxsize=2,	currsize=2)
>>>	memoized_sin(4)
-0.7568024953079282
>>>	memoized_sin.cache_info()
CacheInfo(hits=1,	misses=3,	maxsize=2,	currsize=2)
>>>	memoized_sin(3)

0.1411200080598672
>>>	memoized_sin.cache_info()
CacheInfo(hits=2,	misses=3,	maxsize=2,	currsize=2)
>>>	memoized_sin.cache_clear()
>>>	memoized_sin.cache_info()
CacheInfo(hits=0,	misses=0,	maxsize=2,	currsize=0)

If	an	older	version	of	Python	is	used,	or	if	a	different	algorithm	is	desired,
the	cachetools	package	as	seen	previously	provides	a	useful	cachetools
module	that	can	be	imported	with	a	wide	variety	of	cache	types	as	shown
in	Example	12.6,	“Using	cachetools	for	memoization”.

Example	12.6.	Using	cachetools	for	memoization

>>>	import	cachetools.func
>>>	import	math
>>>	import	time
>>>	memoized_sin	=	cachetools.func.ttl_cache(ttl=5)(math.sin)
>>>	memoized_sin(3)
0.1411200080598672
>>>	memoized_sin.cache_info()
CacheInfo(hits=0,	misses=1,	maxsize=128,	currsize=1)
>>>	memoized_sin(3)
0.1411200080598672
>>>	memoized_sin.cache_info()
CacheInfo(hits=1,	misses=1,	maxsize=128,	currsize=0)
>>>	time.sleep(5)
>>>	memoized_sin.cache_info()
>>>	CacheInfo(hits=1,	misses=1,	maxsize=128,	currsize=0)

12.3.	Distributed	Caching
Caching	systems	such	as	those	provided	by	cachetools	or
functools.lru_cache	(discussed	in	Section	12.2,	“Memoization”)
present	a	big	flaw	in	relation	to	distributed	system:	their	data	store	is	not
distributed.	As	those	functions	usually	save	data	into	a	Python	dictionary,

they	do	not	offer	a	scalable	and	shared	cache	data	store	which	is	needed
for	large	applications.

When	a	system	is	distributed	across	a	network,	it	also	needs	a	cache	that
is	distributed	across	a	network.	Nowadays,	there	are	plenty	of	network
servers	that	offer	caching	capability,	such	as	memcached,	Redis	and
many	others.

The	simplest	one	to	use	is	probably	memcached,	which	once	installed,
can	simply	be	launched	by	calling	the	memcached	command.	My
preferred	Python	library	for	interacting	with	memcached	is	pymemcache.
I	recommend	using	it.	The	example	in	Example	12.7,	“Connecting	to
memcached”	shows	how	you	can	connect	to	memcached	and	use	it	as	a
network-distributed	cache	across	your	applications.

Example	12.7.	Connecting	to	memcached

from	pymemcache.client	import	base

#	Don't	forget	to	run	`memcached'	before	running
client	=	base.Client(('localhost',	11211))
client.set('some_key',	'some_value')
result	=	client.get('some_key')
print(result)		#	some_value

While	straightforward	enough,	this	example	allows	storing	key/value
tuples	across	the	network	and	accessing	them	through	multiple,
distributed,	nodes.	This	is	simplistic	yet	powerful	and	it	is	a	first	step	that
might	be	a	cheap	enough	means	to	optimize	your	application.

When	storing	data	into	memcached,	it	is	possible	to	set	an	expiration
time	–	a	maximum	number	of	seconds	for	memcached	to	keep	the	key
and	value	around.	After	that	delay,	memcached	removes	the	key	from	its
cache.	There	is	no	magic	number	for	this	delay,	and	it	will	entirely
depend	on	the	type	of	data	and	application	that	you	are	working	with.	It
could	be	a	few	seconds,	or	it	might	be	a	few	hours.

Cache	invalidation,	which	defines	when	to	remove	the	cache	because	it	is

http://memcached.org
https://redis.org
https://pypi.python.org/pypi/pymemcache

out	of	sync	with	the	current	data,	is	also	something	that	your	application
will	have	to	handle	if	presenting	data	that	is	too	old	is	to	be	avoided.	Here
again,	there	is	no	magical	recipe;	it	depends	on	the	type	of	application
you	work	on.

However,	there	are	several	outlying	cases	that	should	be	handled	–	which
are	not	handled	in	Example	12.7,	“Connecting	to	memcached”.

First,	a	caching	server	cannot	grow	infinitely.	This	comes	up	whenever	it
might	be	holding	too	many	keys	and	needs	to	flush	some	out.	Some	keys
might	also	be	expired	because	they	reach	their	time-to-live	delay.	In	those
cases,	the	data	is	lost,	and	the	canonical	source	of	the	data	must	be
queried	again.	This	can	be	handled	simply	as	done	in	Example	12.8,
“Handling	missing	keys	in	memcached”.

Example	12.8.	Handling	missing	keys	in	memcached

from	pymemcache.client	import	base

def	do_some_query():
				#	Replace	with	actual	querying	code	to	a	database,	a	remote	REST	API,	etc.
				return	42

#	Don't	forget	to	run	`memcached'	before	running
client	=	base.Client(('localhost',	11211))
result	=	client.get('some_key')
if	result	is	None:
				#	The	cache	is	empty,	need	to	get	the	value	from	the	canonical	source
				result	=	do_some_query()
				#	Cache	the	result	for	next	time
				client.set('some_key',	result)
print(result)

Handling	missing	keys	is	mandatory	because	of	normal	flush-out
operations.	It	is	also	obligatory	to	handle	the	cold	cache	scenario,	i.e.

when	memcached	has	just	been	started.	In	that	case,	the	cache	will	be
entirely	empty	and	the	cache	needs	to	be	fully	repopulated,	one	request	at
a	time.

Some	of	the	cold	cache	scenarios	cannot	be	prevented,	for	example	a
memcached	crash,	but	some	can,	for	example	migrating	to	a	new
memcached	server.	When	it	is	possible	to	predict	that	a	cold	cache
scenario	will	happen,	it	is	better	to	avoid	it.	A	cache	that	needs	to	be
refilled	means	that	all	of	the	sudden,	the	canonical	storage	of	the	cached
data	will	be	massively	hit	by	all	cache	users	who	lack	a	cache	data	(also
known	as	a	cache	miss).

pymemcache	provides	a	class	named	FallbackClient	that	helps	in
implementing	this	scenario	as	demonstrated	in	Example	12.9,	“Fallback
with	pymemcache”.

Example	12.9.	Fallback	with	pymemcache

from	pymemcache.client	import	base
from	pymemcache	import	fallback

def	do_some_query():
				#	Replace	with	actual	querying	code	to	a	database,	a	remote	REST	API,	etc.
				return	42

#	Set	`ignore_exc=True`	so	it	is	possible	to	shut	down	the	old	cache	before
#	removing	its	usage	from	the	program,	if	ever	necessary.
old_cache	=	base.Client(('localhost',	11211),	ignore_exc=True)
new_cache	=	base.Client(('localhost',	11212))

client	=	fallback.FallbackClient((new_cache,	old_cache))

result	=	client.get('some_key')
if	result	is	None:
				#	The	cache	is	empty,	need	to	get	the	value	from	the	canonical	source
				result	=	do_some_query()

				#	Cache	the	result	for	next	time
				client.set('some_key',	result)
print(result)

The	FallbackClient	queries	the	old	cache	passed	to	its	constructor,
respecting	the	order.	In	this	case,	the	new	cache	server	will	always	be
queried	first,	and	in	case	of	a	cache	miss,	the	old	one	will	be	queried	–
avoiding	a	possible	return-trip	to	the	primary	source	of	data.	If	any	key	is
set,	it	will	only	be	set	to	the	new	cache.	After	some	time,	the	old	cache	can
be	decommissioned	and	the	FallbackClient	can	be	replaced	directed
with	the	new_cache	client.

When	communicating	with	a	remote	cache,	the	usual	concurrency
problem	comes	back:	there	might	be	several	clients	trying	to	access	the
same	key	at	the	same	time.	memcached	provides	a	check	and	set
operation,	shortened	to	CAS,	which	helps	to	solve	this	problem.

The	simplest	example	is	an	application	that	wants	to	count	the	number	of
users	it	has.	Each	time	a	visitor	connects,	a	counter	is	incremented	by	1.
Using	memcached,	a	simple	implementation	is	provided	in
Example	12.10,	“Counting	the	number	of	visitor	in	memcached”.

Example	12.10.	Counting	the	number	of	visitor	in	memcached

def	on_visit(client):
				result	=	client.get('visitors')
				if	result	is	None:
								result	=	1
				else:
								result	+=	1
				client.set('visitors',	result)

However,	what	happens	if	two	instances	of	the	application	try	to	update
this	counter	at	the	same	time.	The	first	call	client.get('visitors')
will	return	the	same	number	of	visitors	for	both	of	them,	let’s	say	it’s	42.
Then	both	will	add	1,	compute	43,	and	set	the	number	of	visitors	to	43.
That	number	is	wrong,	and	the	result	should	be	44,	i.e.	42	+	1	+	1.

To	solve	this	concurrency	issue,	the	CAS	operation	of	memcached	is
handy.	Example	12.11,	“Using	CAS	in	memcached”	implements	the
correct	solution.

Example	12.11.	Using	CAS	in	memcached

def	on_visit(client):
				while	True:
								result,	cas	=	client.gets('visitors')
								if	result	is	None:
												result	=	1
								else:
												result	+=	1
								if	client.cas('visitors',	result,	cas):
												break

The	gets	method	returns	the	value,	just	like	the	get	method,	but	it	also
returns	a	CAS	value.	What	is	in	this	value	is	not	relevant,	but	it	is	used	for
the	next	method	cas	call.	This	method	is	equivalent	to	the	set
operation,	except	that	it	fails	if	the	value	has	changed	since	the	gets
operation.	In	case	of	success,	the	loop	is	broken.	Otherwise,	the	operation
is	restarted	from	the	beginning.

In	the	scenario	where	two	instances	of	the	application	try	to	update	the
counter	at	the	same	time,	only	one	succeeds	to	move	the	counter	from	42
to	43.	The	second	instance	gets	a	False	value	returned	by	the
client.cas	call,	and	have	to	retry	the	loop.	It	will	retrieve	43	as	value
this	time,	will	increment	it	to	44,	and	its	cas	call	will	succeed.	Solving
our	problem.

Tip

Incrementing	a	counter	is	interesting	as	an	example	to	explain
how	CAS	works	because	it	is	simplistic.	However,	memcached
also	provides	the	incr	and	decr	methods	to	increment	or
decrement	an	integer	in	a	single	request,	rather	than	doing
multiple	gets/cas	calls.	In	real-world	applications	gets	and

cas	are	used	for	more	complex	data	type	or	operations

Most	remote	caching	server	and	data	store	provides	such	a	mechanism	to
prevent	concurrency	issue.	It	is	critical	to	be	aware	of	those	cases	to	make
a	proper	use	of	their	features.

12.4.	Jason	Myers	on	Databases

Hi	Jason!	Could	you	introduce	yourself	and	explain	how

you	did	come	to	Python?

I	am	Jason	Myers,	a	Python	developer	at	Juice	Analytics	and	an

author.	I	got	my	start	in	Python	after	switching	from	being	an

Infrastructure	Architect	for	large	mission-critical	networks.	When	I

first	switched	to	development,	I	spent	time	learning	C#	and	working

in	PHP.	I	had	written	code	for	years	in	Perl,	PHP,	and	some	C.	I	got	a

job	doing	Python	web	development	and	never	looked	back.	I	feel	in

love	with	the	highly	readable,	flexible	language	and	soon	the

community	around	it.	I	have	worked	as	a	cloud	OS	engineer,	a	data

engineer,	and	a	web	developer.

You	are	the	author	of	a	book	around	SQLAlchemy

(Essential	SQLAlchemy,	2nd	Edition,	O’Reilly	Media).	With

your	database	and	Python	experts	hat	on,	what	do	you

think	are	the	more	significant	mistakes	developers	do

around	those	technologies	that	dangerously	impact	their

scalability	and	performance?

http://shop.oreilly.com/product/0636920035800.do

I	see	a	few	things	here	that	really	can	come	into	place.

First,	people	fail	to	use	query	caching	like	dogpile	to	store	query

results.	Missing	this	can	have	a	dramatic	impact	on	page	load	and

scalability	as	some	queries	become	nothing	more	than	a	cache	hit.	I

like	to	use	query	result	caching	so	that	I	can	have	multiple	response

formatters	for	different	outputs	or	even	different	parts	of	the

application	leverage	the	same	cache	if	the	query	is	the	same.

Secondly,	often	people	pull	back	way	to	more	data	than	they	need	to

answer	the	question.	This	can	be	can	because	they	feel	more

comfortable	processing	the	data	in	Python	rather	than	in	SQL

functions	or	because	they	pull	back	full	rows	when	they	only	need

columns.	This	can	also	occur	in	ETL	when	people	ingest	more	data

during	the	ETL	process	than	they	need	to	answer	the	questions	asked

in	their	application.	All	of	these	factors	lead	to	higher	memory	usage

and	slower	query	time.

Finally,	I	do	not	see	people	leaning	on	things	like	pgbouncer	and

pgpool	to	provide	better	connection	pooling	and	smoother	failovers

as	much	as	I	think	they	should.	By	keeping	fewer	connections	open

longer	and	recycling	them	less	often	we	can	cut	down	on	a	lot	of	the

overhead	on	the	server	required	to	service	a	large	number	of

connections	and	the	connection	startup	time.

Do	you	have	any	specific	strategy	or	Python-ready	solution

to	store	results	from	queries?	Alternatively,	do	you	build

something	from	scratch	each	time	you	need	it?

I	really	like	the	dogpile.cache	library	for	this.	I	have	used	it

religiously	with	SQLAlchemy,	and	I	also	like	the	cached_property

http://dogpilecache.readthedocs.io
https://pgbouncer.github.io/
http://www.pgpool.net

decorator	when	working	in	Django.	By	default	in	Django	all

noncallable	attributes	of	a	model	are	cached,	but	with	the

cached_property	decorator	you	can	take	that	even	further.

Is	there	native	support	for	providing	better	connection

pooling	with	libraries	such	as	psycopg2	or	SQLAlchemy	for

example?	Can	you	use	them	right	out	of	the	box?	Is	there

equivalent	mechanisms	and	tricks	that	can	be	used	outside

PostgreSQL?

pgbouncer	and	pgpool	are	PostgreSQL	proxies	you	stand	up	and

treat	like	PostgreSQL	servers.	psycopg2	and	SQLAlchemy	do	not

even	know	that	magic	is	being	done	for	them.	You	can	also	tune	the

connection	pools	used	by	SQLAlchemy	and	PostgreSQL	to	have	a

size	that	matches	your	checkout	rate.	While	there	is	a	ton	of	words

spewed	at	this	topic,	I	like	the	groundwork	laid	out	in	saautopool

(about	3ish	years	ago).	It	chooses	a	pool	size	that	reacted	to	the

number	of	currently	checked	out	connections	and	the	number

opened	on	average	in	a	fixed	(5	seconds	by	default)	window.

You	recently	talked	about	object	versioning.	Could	you

explain	what	they	are	and	how	they	are	useful?

Version	objects	are	objects	that	contain	an	attribute	that	tells	you

what	version	of	code	they	were	created	under	so	that	we	can	have	a

data	model	within	a	project	independent	of	external	APIs	or

database	schema	for	the	purposes	of	providing	upgrade	compatibility

across	distributed	services.

For	example,	you	have	an	initial	users	service	which	is	version	1:	it

sets	the	version	attribute	to	1	on	the	user	model.	Whenever	this

model	is	input	or	output	say	for	an	API	request,	that	version	will	be

passed	with	it.	This	allows	the	receiving	system	to	know	exactly	how

to	handle	that	object.

That	might	not	sound	very	useful	if	you	keep	all	your	systems	in

lockstep.	However,	in	a	world	of	distributed	systems	and	rolling

updates,	it	is.	When	deploying	the	version	2	of	the	users	model,	we

can	do	many	things	to	separate	the	"new"	users	model	structure	from

the	old	one	like	version	our	API	endpoints.	Though,	we	could	also

just	have	the	API	endpoint	accept	multiple	versions	and	handle	the

differences	both	in	input	and	output	so	one	container	running

version	1	and	one	container	that	got	upgraded	to	version	2	can	still

process	requests	for	all	the	clients	on	the	same	endpoints.

This	multiple	version	feels	unusual	to	those	who	are	used	to	the

normal	REST	API	version	scheme,	but	it	creates	a	very	natural	flow

where	the	same	endpoints	can	be	reused	and	updated	and	act	as	a

translation	boundary	not	only	between	services	but	also	between

object	versions.	This	method	really	shines	in	things	like	RPC,	queues,

user-facing	APIs,	etc,	where	versions	might	need	to	be	fluid,	but	the

endpoints	are	well	known	and	don’t	lend	themselves	to	immediate

changes.

I	really	like	to	connect	this	with	the	JSONAPI	spec	(jsonapi.org)	and

in	Python	I	find	myself	using	marshmallow	and	marshmallow	json-

api	to	define	my	schemas.	We	highjack	the	"type"	field	in	the

JSONAPI	Object	definition	to	contain	our	type	and	a	version	for

example	"user:1"	vs	"user:3"	in	that	field	would	be	handled

differently	internally,	but	the	API	consumer	has	no	idea	and	doesn’t

have	to	care.	They	request	with	the	type	they	have	and	can	upgrade

to	the	new	type	when	they	are	ready.

This	concept	also	grants	me	some	more	piece	of	mind	when	I	am

working	with	document	stores	instead	of	an	RDBMS.

Thanks	Jason!

Chapter	13.	Performance
	 Early	optimization	is	the	root	of	all	evil. 	

	 --	Donald	Knuth

There	will	come	a	time	when	optimizing	for	better	performance	will	be
the	right	thing	to	do.	This	should	probably	even	be	before	thinking	about
distributing	your	application	or	dividing	it	up	in	micro-services.

Many	developers	focus	on	the	wrong	thing	when	doing	optimization,
guessing	where	Python	might	be	slower	or	faster.	Rather	than
speculating,	this	chapter	will	help	you	understand	how	to	profile	your
application,	so	you	will	know	what	part	of	your	program	is	slowing
things	down	and	where	the	bottlenecks	are.

13.1.	Memory	and	CPU	Profiling
Profiling	a	Python	program	means	doing	a	dynamic	analysis	that
measures	the	execution	time	of	the	program	and	everything	that	involves.
That	means	measuring	the	time	spent	in	each	of	its	functions.	This	data
gives	you	info	about	where	your	program	is	spending	time,	and	what	area
might	be	worth	optimizing.

This	is	a	very	interesting	exercise.	Many	people	focus	on	local
optimization,	such	as	determining,	for	example,	which	of	the	Python	2
functions	range	or	xrange	is	going	to	be	faster.	It	turns	out	that
knowing	which	one	is	faster	may	never	be	an	issue	in	your	program,	and
that	the	time	gained	by	using	one	of	the	functions	above	might	not	be
worth	the	time	you	spend	researching	it	xor	arguing	about	it	with	your
colleague.

Trying	to	blindly	optimize	a	program	without	measuring	where	it	is
actually	spending	its	time	is	a	useless	exercise.	Following	your	gut	alone
is	not	always	sufficient.

There	are	many	types	of	profiling,	as	there	are	many	things	that	you	can
measure.	Here	we	focus	on	CPU	and	memory	utilization	profiling,
meaning	the	time	spent	by	each	function	executing	instructions	or
allocating	memory.

Since	its	2.5	version,	Python	provides	a	few	built-in	tools	to	help	you	in
achieving	that	task.	The	standard	one	is	cProfile	and	it	is	easy	enough
to	use.

Example	13.1.	Basic	usage	of	cProfile

>>>	import	cProfile
>>>	cProfile.run('2	+	2')
									2	function	calls	in	0.000	seconds

			Ordered	by:	standard	name

			ncalls		tottime		percall		cumtime		percall	filename:lineno(function)
								1				0.000				0.000				0.000				0.000	<string>:1(<module>)
								1				0.000				0.000				0.000				0.000	{method	'disable'	of	'_lsprof.Profiler'	objects}

You	can	also	use	a	script	as	an	argument	as	shown	in	Example	13.2,
“Using	the	cProfile	module	with	a	program”.

Example	13.2.	Using	the	cProfile	module	with	a	program

$	python	-m	cProfile	myscript.py
									343	function	calls	(342	primitive	calls)	in	0.000	seconds

			Ordered	by:	standard	name

			ncalls		tottime		percall		cumtime		percall	filename:lineno(function)
								1				0.000				0.000				0.000				0.000	:0(_getframe)
								1				0.000				0.000				0.000				0.000	:0(len)
						104				0.000				0.000				0.000				0.000	:0(setattr)
								1				0.000				0.000				0.000				0.000	:0(setprofile)
								1				0.000				0.000				0.000				0.000	:0(startswith)

						2/1				0.000				0.000				0.000				0.000	<string>:1(<module>)
								1				0.000				0.000				0.000				0.000	StringIO.py:30(<module>)
								1				0.000				0.000				0.000				0.000	StringIO.py:42(StringIO)

The	results	list	indicates	the	number	of	times	each	function	was	called,
and	the	time	spent	on	its	execution.	You	can	use	the	-s	option	to	sort	by
any	fields,	e.g.	-s	time	sorts	by	internal	time.

While	this	is	handy,	it	is	a	bit	rough	to	use	and	parse.	However,	if	you
have	coded	in	C,	you	probably	already	know	about	the	fantastic	Valgrind
tool,	that	–	among	other	things	–	can	provide	profiling	data	for	C
programs.	The	data	that	it	provides	can	then	be	visualized	by	another
great	tool	called	KCacheGrind.

You	will	be	happy	to	know	that	the	profiling	information	generated	by
cProfile	can	easily	be	converted	to	a	call	tree	that	can	be	read	by
KCacheGrind.	The	cProfile	module	has	a	-o	option	that	allows	you	to
save	the	profiling	data,	and	pyprof2calltree	can	convert	from	one	format
to	the	other.

$	python	-m	cProfile	-o	myscript.cprof	myscript.py
$	pyprof2calltree	-k	-i	myscript.cprof

Figure	13.1.	KCacheGrind	example

http://valgrind.org/
http://kcachegrind.sourceforge.net/html/Home.html
https://pypi.python.org/pypi/pyprof2calltree

This	provides	a	lot	of	information	that	will	allow	you	to	determine	what
part	of	your	program	might	be	consuming	too	many	resources.

There	is	also	another	handy	tool	for	visualizing	profiling	information
which	is	called	RunSnakeRun.	It	is	simple	to	install	using	pip	install
runsnakerun	[8].	Then	you	can	use	it	without	much	difficulty:

$	python	-m	cProfile	-o	myscript.cprof	myscript.py
$	runsnake	myscript.cprof

Figure	13.2.	RunSnake	example

http://www.vrplumber.com/programming/runsnakerun/

RunSnake	offers	the	same	kind	of	functionality	as	KCacheGrind,	though
it	has	a	little	less	choice	regarding	what’s	displayed.	However,	it	feels	a
little	more	interactive,	and	the	navigation	through	the	profiling
information	might	be	more	accessible.

If	only	one	of	them	is	available	on	your	platform,	that	is	good	enough.
However,	if	you	can	try	and	use	both	because,	they	might	complement
each	other	well	until	you	get	used	to	using	one	or	the	other.

13.2.	Profiling	Strategy	and	a
Case
To	profile	a	program,	you	need	to	run	it.	Nonetheless,	running	the	whole
program	in	profiling	mode	can	generate	a	lot	of	data	that	you	do	not	care
about,	and	this	adds	noise	to	what	you	might	be	trying	to	understand.	A

good	strategy	to	leverage,	if	your	program	has	unit	or	functional	tests,	is
to	use	them	to	profile	your	code.	They	are	little	scenarios	that	can	be	very
useful	when	you	want	to	obtain	profiling	data.

Using	tests	is	a	good	strategy	for	a	curious	and	naive	first-pass	profiling.
Though	there’s	no	way	to	make	sure	that	the	hot	spots	seen	in	the
unit/functional	tests	are	the	actual	hot	spots	that	an	application
encounters	in	production.

This	means	that	a	profiling	session	executed	with	the	same	conditions	as
the	production	environment	and	with	a	scenario	that	mimics	what	is	seen
in	this	environment	is	often	a	necessity	if	you	need	to	push	your	program
optimization	further	and	want	to	achieve	perceptible	and	valuable	gains.

I	wrote	a	little	library	called	Carbonara	and	doing	time	series	computing.
To	check	its	performance	and	possibly	make	it	faster,	I	profiled	it	using
one	of	its	unit	tests	named	test_fetch.	The	test	is	pretty	simple:	it	puts
data	in	a	time	series	object,	and	then	fetch	the	computed	aggregation
result.

Figure	13.3.	Carbonara	profiling	information	before
optimization

The	list	of	calls	in	Figure	13.3,	“Carbonara	profiling	information	before
optimization”	shows	that	88%	of	the	ticks	are	spent	in	set_values	(44
ticks	over	50)	–	a	tick	is	a	computing	cycle	unit.	This	function	is	used	to
insert	values	into	the	time	series,	and	not	to	fetch	the	values.	That	means
that	it	is	really	slow	to	insert	data,	and	pretty	fast	to	retrieve	it.

Reading	the	rest	of	the	list	reveals	that	several	functions	share	the	rest	of
the	ticks,	update,	_first_block_timestamp,	_truncate,
_resample,	etc.	Some	of	the	functions	in	the	list	are	not	part	of
Carbonara,	so	there’s	no	point	in	looking	to	optimize	them	(yet).	The
only	thing	that	can	sometimes	be	optimized	is	the	number	of	times	they
are	called.

Figure	13.4.	Carbonara	call	graph	before	optimization

The	call	graph	in	Figure	13.4,	“Carbonara	call	graph	before	optimization”
gives	a	bit	more	insight	into	what’s	going	on.	Using	knowledge	about	how
Carbonara	works	internally,	it	does	not	seem	like	the	whole	stack	on	the
left	for	_first_block_timestamp	makes	much	sense.	This	function	is
supposed	to	find	the	first	timestamp	for	a	particular	time	series	–	for
example	if	a	time	series	starts	with	a	timestamp	of	13:34:45	and	has	a
period	of	5	minutes,	the	function	should	return	13:30:00.	The	way	it
works	currently	is	by	calling	the	resample	function	from	Pandas	[9]	on	a
time	series	with	only	one	element.	However,	that	operation	seems	to	be
very	slow:	it	represents	25%	of	the	time	spent	by	set_values	(11	ticks
on	44).

By	implementing	my	own	simpler	version	of	that	rounding	algorithm	[10]

named	_round_timestamp,	it	is	possible	to	rewrite	the	code	this	way:

def	_first_block_timestamp(self):
-								ts	=	self.ts[-1:].resample(self.block_size)
-								return	(ts.index[-1]	-	(self.block_size	*	self.back_window))
+								rounded	=	self._round_timestamp(self.ts.index[-1],	self.block_size)
+								return	rounded	-	(self.block_size	*	self.back_window)

Figure	13.5.	Carbonara	profiling	information	after
optimization

Running	the	test	again	to	profile	the	code	again	shows	a	different	output.
The	list	of	functions	called	in	Figure	13.5,	“Carbonara	profiling
information	after	optimization”	is	different,	and	the	amount	of	time	spent
by	set_values	dropped	from	88%	to	71%.

Figure	13.6.	Carbonara	call	graph	after	optimization

The	call	stack	for	set_values	does	not	even	show	the	calls	to
_first_block_timestamp	function	anymore.	Indeed,	it	became	so
fast	that	its	execution	time	is	now	insignificant,	so	KCachegrind	no
longer	displays	it.

In	that	case,	in	a	matter	of	minutes,	it	was	possible	to	achieve	a	25%
performance	improvement	with	just	a	naive	approach	and	using	a	code
scenario	that	already	exists.	There	should	be	no	reason	that	your
application	cannot	do	that	too	–	given	that	it	has	unit	tests.

13.3.	Zero-Copy
Often	programs	have	to	deal	with	an	enormous	amount	of	data	in	the
form	of	large	arrays	of	bytes.	Handling	such	a	massive	amount	of	data	in
strings	can	be	very	ineffective	once	you	start	manipulating	it	through
copying,	slicing	and	modifying.

Let’s	consider	a	small	program	that	reads	a	large	file	of	binary	data,	and
partially	copies	it	into	another	file.	To	examine	our	memory	usage,	we
will	use	memory_profiler,	a	nice	Python	package	that	allows	us	to	see	the
memory	usage	of	a	program	line	by	line.

Example	13.3.	Using	memory_profiler

@profile
def	read_random():
				with	open("/dev/urandom",	"rb")	as	source:
								content	=	source.read(1024	*	10000)
								content_to_write	=	content[1024:]
				print("Content	length:	%d,	content	to	write	length	%d"	%
										(len(content),	len(content_to_write)))
				with	open("/dev/null",	"wb")	as	target:
								target.write(content_to_write)

if	__name__	==	'__main__':
				read_random()

https://pypi.python.org/pypi/memory_profiler

We	then	run	the	program	in	Example	13.3,	“Using	memory_profiler”
using	memory_profiler:

$	python	-m	memory_profiler	memoryview-copy.py
Content	length:	10240000,	content	to	write	length	10238976
Filename:	memoryview/copy.py

Mem	usage				Increment			Line	Contents
======================================
																									@profile
	9.883	MB					0.000	MB			def	read_random():
	9.887	MB					0.004	MB							with	open("/dev/urandom",	"rb")	as	source:
19.656	MB					9.770	MB											content	=	source.read(1024	*	10000)	
29.422	MB					9.766	MB											content_to_write	=	content[1024:]	
29.422	MB					0.000	MB							print("Content	length:	%d,	content	to	write	length	%d"	%
29.434	MB					0.012	MB													(len(content),	len(content_to_write)))
29.434	MB					0.000	MB							with	open("/dev/null",	"wb")	as	target:
29.434	MB					0.000	MB											target.write(content_to_write)

(1)
We	are	reading	10	MB	from	/dev/urandom	and	not	doing	much	with
it.	Python	needs	to	allocate	around	10	MB	of	memory	to	store	this
data	as	a	string.

(2)
We	copy	the	entire	block	of	data	minus	the	first	kilobyte	–	because
we	won’t	be	writing	those	first	1024	bytes	to	the	target	file.

What	is	interesting	in	this	example	is	that,	as	you	can	see,	the	memory
usage	of	the	program	is	increased	by	about	10	MB	when	building	the
variable	content_to_write.	In	fact,	the	slice	operator	is	copying	the
entirety	of	content,	minus	the	first	KB,	into	a	new	string	object.

When	dealing	with	big	amount	of	data,	performing	this	kind	of	operation
on	large	byte	arrays	is	going	to	be	a	disaster.	If	you	happen	to	have
experience	writing	C	code,	you	know	that	using	malloc	and	memcpy	has
a	significant	cost,	both	in	terms	of	memory	usage	and	regarding	general
performance:	allocation	and	copying	memory	is	slow.

However,	as	a	C	programmer,	you	also	know	that	strings	are	arrays	of
characters	and	that	nothing	stops	you	from	looking	at	only	part	of	this
array	without	copying	it,	through	the	use	of	pointer	arithmetic	–
assuming	that	the	entire	string	is	in	a	contiguous	memory	area.

This	is	possible	in	Python	using	objects	that	implement	the	buffer
protocol.	The	buffer	protocol	is	defined	in	PEP	3118,	which	explains	the	C
API	used	to	provide	this	protocol	to	various	types,	such	as	strings.

When	an	object	implements	this	protocol,	you	can	use	the	memoryview
class	constructor	on	it	to	build	a	new	memoryview	object	that	references
the	original	object	memory.

Here	is	an	example:

>>>	s	=	b"abcdefgh"
>>>	view	=	memoryview(s)
>>>	view[1]
98	(1)
>>>	limited	=	view[1:3]
<memory	at	0x7fca18b8d460>
>>>	bytes(view[1:3])
b'bc'

(1) This	is	the	ASCII	code	for	the	letter	b.

Example	13.4.	Using	slice	on	memoryview	objects

In	this	case,	we	are	going	to	make	use	of	the	fact	that	the	memoryview

http://www.python.org/dev/peps/pep-3118/

object’s	slice	operator	itself	returns	a	memoryview	object.	That	means	it
does	not	copy	any	data,	but	merely	references	a	particular	slice	of	it.

With	this	in	mind,	we	can	now	rewrite	the	program,	this	time	referencing
the	data	we	want	to	write	using	a	memoryview	object.

@profile
def	read_random():
				with	open("/dev/urandom",	"rb")	as	source:
								content	=	source.read(1024	*	10000)
								content_to_write	=	memoryview(content)[1024:]
				print("Content	length:	%d,	content	to	write	length	%d"	%
										(len(content),	len(content_to_write)))
				with	open("/dev/null",	"wb")	as	target:
								target.write(content_to_write)

if	__name__	==	'__main__':
				read_random()

And	this	program	will	have	half	the	memory	usage	of	the	first	version:

$	python	-m	memory_profiler	memoryview/copy-memoryview.py
Content	length:	10240000,	content	to	write	length	10238976
Filename:	memoryview/copy-memoryview.py

Mem	usage				Increment			Line	Contents
======================================
																									@profile
	9.887	MB					0.000	MB			def	read_random():
	9.891	MB					0.004	MB							with	open("/dev/urandom",
19.660	MB					9.770	MB											content	=	source.read(1024	*	10000)	
19.660	MB					0.000	MB											content_to_write	=	memoryview(content)[1024:]	
19.660	MB					0.000	MB							print("Content	length:	%d,	content	to	write	length	%d"	%
19.672	MB					0.012	MB													(len(content),	len(content_to_write)))
19.672	MB					0.000	MB							with	open("/dev/null",	"wb")	as	target:
19.672	MB					0.000	MB											target.write(content_to_write)

(1)
Read	10	MB	from	/dev/urandom	and	not	doing	much	with	it.	Python
needs	to	allocate	around	10	MB	of	memory	to	store	this	data	as	a
string.

(2)
Reference	the	entire	block	of	data	minus	the	first	KB	–	because	we
don’t	write	this	first	kilobyte	to	the	target	file.	No	copying	means	that
no	more	memory	is	used!

This	kind	of	trick	is	especially	useful	when	dealing	with	sockets.	As	you
may	know,	when	data	is	sent	over	a	socket,	it	might	not	send	all	the	data
in	a	single	call.	A	simple	implementation	would	be	to	write:

import	socket

s	=	socket.socket(…)
s.connect(…)
data	=	b"a"	*	(1024	*	100000)	(1)
while	data:
				sent	=	s.send(data)
				data	=	data[sent:]	(2)

(1) Build	a	bytes	object	with	more	than	100	millions	times	the	letter	a.

(2) Remove	the	first	sent	bytes	sent.

Obviously,	using	such	a	mechanism,	you	are	going	to	copy	the	data	over
and	over	until	the	socket	has	sent	everything.	Using	memoryview,	we	can
achieve	the	same	functionality	without	copying	data	–	hence,	zero	copy:

import	socket

s	=	socket.socket(…)
s.connect(…)
data	=	b"a"	*	(1024	*	100000)	(1)
mv	=	memoryview(data)
while	mv:
				sent	=	s.send(mv)

				mv	=	mv[sent:]	(2)

(1) Build	a	bytes	object	with	more	than	100	millions	times	the	letter	a.

(2)
Build	a	new	memoryview	object	pointing	to	the	data	that	remains	to
be	sent.

This	code	does	not	copy	anything,	and	it	won’t	use	any	more	memory
than	the	100	MB	initially	needed	for	our	data	variable.

We	have	now	seen	memoryview	objects	used	to	write	data	efficiently,	but
the	same	method	can	also	be	used	to	read	data.	Most	I/O	operations	in
Python	know	how	to	deal	with	objects	implementing	the	buffer	protocol.
They	can	read	from	it,	and	they	can	also	write	to	it.	In	this	case,	we	do	not
need	memoryview	objects	–	we	can	just	ask	an	I/O	function	to	write	into
our	pre-allocateds	object:

>>>	ba	=	bytearray(8)
>>>	ba
bytearray(b'\x00\x00\x00\x00\x00\x00\x00\x00')
>>>	with	open("/dev/urandom",	"rb")	as	source:
...					source.readinto(ba)
...
8
>>>	ba
bytearray(b'`m.z\x8d\x0fp\xa1')

With	such	techniques,	it	is	easy	to	pre-allocate	a	buffer	(as	you	would	do
in	C	to	mitigate	the	number	of	calls	to	malloc)	and	fill	it	at	your
convenience.	Using	memoryview,	you	can	even	place	data	at	any	point	in
the	memory	area:

>>>	ba	=	bytearray(8)
>>>	ba_at_4	=	memoryview(ba)[4:]	(1)
>>>	with	open("/dev/urandom",	"rb")	as	source:
...					source.readinto(ba_at_4)	(2)

...
4
>>>	ba
bytearray(b'\x00\x00\x00\x00\x0b\x19\xae\xb2')

(1) We	reference	the	bytearray	from	offset	4	to	its	end.

(2)
We	write	the	content	of	/dev/urandom	from	offset	4	to	the	end	of	the
bytearray,	effectively	reading	4	bytes	only.

Tip

Both	the	objects	in	the	array	module	and	the	functions	in	the
struct	module	can	handle	the	buffer	protocol	correctly,	and	they
can,	therefore,	perform	efficiently	when	targeting	zero	copy.

A	typical	pattern	in	network-oriented	applications	is	to	send	files	to	a
remote	client.	It	usually	means	opening	a	file,	reading	its	contents	and
writing	this	to	a	socket:

import	socket

s	=	socket.socket(…)
s.connect(…)
with	open("file.txt",	"r")	as	f:
				content	=	f.read()
s.send(content)

The	downside	with	such	a	piece	of	code	is	that	it	needs	to	allocate	and
copy	a	big	piece	of	memory	to	store	the	contents	of	the	file	in	the
content	variable	before	writing	it.	That	is	slow.

Modern	operating	systems	provide	a	system	call	named	sendfile	that
solves	this	problem.	This	system	call	is	not	portable,	but	if	you	target	the
right	systems	then	it	is	good	to	use	it.	This	system	call	is	exposed	as
os.sendfile(out,	in,	offset,	count)	in	Python:	out	is	the
socket	to	write	to,	in	is	the	file	descriptor	to	read	from,	offset	indicates

at	which	byte	number	to	start	reading	the	file	and	count	the	number	of
bytes	to	copy	from	it.

A	higher-level	wrapper	is	provided	as	socket.socket.sendfile:

import	socket
import	os

s	=	socket.socket(…)
s.connect(…)
with	open("file.txt",	"r")	as	f:
				s.sendfile(f)

The	sendfile	method	passes	the	correct	file	descriptors	to	the
operating	system,	making	sure	the	Python	program	does	not	have	any
memory	to	allocate	–	making	it	as	fast	as	possible!

Stay	aware	of	how	you	allocate	and	copy	data	when	using	Python.	It	is	a
high-level	language	that	covers	the	plumbing	from	the	developers,	but	it
often	has	a	hidden	cost.

13.4.	Disassembling	Code
Sometimes,	it	helps	to	have	a	microscopic	view	of	some	part	of	the	code.
When	that	is	the	case,	I	find	it	better	to	rely	on	the	dis	module	to	find
out	what’s	going	on	behind	the	scenes.	The	dis	module	is	a	disassembler
for	Python	byte	code.	It	is	simple	enough	to	use:

>>>	def	x():
...					return	42
...
>>>	import	dis
>>>	dis.dis(x)
		2											0	LOAD_CONST															1	(42)
														3	RETURN_VALUE

The	dis.dis	function	disassembles	the	function	that	you	passed	on	as	a
parameter,	and	prints	the	list	of	bytecode	instructions	that	are	run	by	the
function.	It	can	be	useful	to	understand	what’s	really	behind	each	line	of
code	that	you	write	in	order	to	be	able	to	optimize	your	code	correctly.

The	following	code	defines	two	functions,	each	of	which	does	the	same
thing	–	concatenates	three	letters:

abc	=	('a',	'b',	'c')

def	concat_a_1():
				for	letter	in	abc:
												abc[0]	+	letter

def	concat_a_2():
				a	=	abc[0]
				for	letter	in	abc:
												a	+	letter

Both	appear	to	do	the	same	thing,	but	if	we	disassemble	them,	we	see	that
the	generated	bytecode	is	a	bit	different:

>>>	dis.dis(concat_a_1)
		2											0	SETUP_LOOP														26	(to	29)
														3	LOAD_GLOBAL														0	(abc)
														6	GET_ITER
								>>				7	FOR_ITER																18	(to	28)
													10	STORE_FAST															0	(letter)

		3										13	LOAD_GLOBAL														0	(abc)
													16	LOAD_CONST															1	(0)
													19	BINARY_SUBSCR
													20	LOAD_FAST																0	(letter)
													23	BINARY_ADD
													24	POP_TOP
													25	JUMP_ABSOLUTE												7

								>>			28	POP_BLOCK
								>>			29	LOAD_CONST															0	(None)
													32	RETURN_VALUE

>>>	dis.dis(concat_a_2)
		2											0	LOAD_GLOBAL														0	(abc)
														3	LOAD_CONST															1	(0)
														6	BINARY_SUBSCR
														7	STORE_FAST															0	(a)

		3										10	SETUP_LOOP														22	(to	35)
													13	LOAD_GLOBAL														0	(abc)
													16	GET_ITER
								>>			17	FOR_ITER																14	(to	34)
													20	STORE_FAST															1	(letter)

		4										23	LOAD_FAST																0	(a)
													26	LOAD_FAST																1	(letter)
													29	BINARY_ADD
													30	POP_TOP
													31	JUMP_ABSOLUTE											17
								>>			34	POP_BLOCK
								>>			35	LOAD_CONST															0	(None)
													38	RETURN_VALUE

In	the	second	version,	we	store	abc[0]	in	a	temporary	variable	before
running	the	loop.	This	variable	makes	the	bytecode	executed	inside	the
loop	a	little	smaller,	as	we	avoid	having	to	do	the	abc[0]	lookup	for	each
iteration.	Measured	using	timeit,	the	second	version	is	10%	faster	than
the	first	one;	it	takes	a	whole	microsecond	less	to	execute!	Obviously,	this
microsecond	is	not	worth	the	optimization	unless	you	call	this	function
millions	of	times	–	but	this	is	the	kind	of	insight	that	the	dis	module	can
provide.

Whether	you	really	need	to	rely	on	such	"tricks"	as	storing	the	value
outside	the	loop	is	debatable	–	ultimately,	it	should	be	the	compiler’s	job

to	optimize	this	kind	of	thing.	On	the	other	hand,	as	the	Python	language
is	amazingly	dynamic,	it	is	difficult	for	the	compiler	to	be	sure	that	an
optimization	would	not	result	in	contradictory	side	effects.	The	takeaway:
be	careful	when	writing	your	code!

Another	bad	habit	I	have	often	encountered	when	reviewing	code	is	the
defining	of	functions	inside	functions	for	no	reason.	It	has	a	cost,	as	the
function	is	going	to	be	redundantly	redefined	over	and	over	again.

Example	13.5.	A	function	defined	in	a	function,	disassembled

>>	import	dis
>>>	def	x():
...					return	42
...
>>>	dis.dis(x)
		2											0	LOAD_CONST															1	(42)
														3	RETURN_VALUE
>>>	def	x():
...					def	y():
...													return	42
...					return	y()
...
>>>	dis.dis(x)
		2											0	LOAD_CONST															1	(<code	object	y	at	0x100ce7e30,	file	"<stdin>",	line
														3	MAKE_FUNCTION												0
														6	STORE_FAST															0	(y)

		4											9	LOAD_FAST																0	(y)
													12	CALL_FUNCTION												0
													15	RETURN_VALUE

We	can	see	in	Example	13.5,	“A	function	defined	in	a	function,
disassembled”	that	the	code	is	needlessly	complicated,	calling
MAKE_FUNCTION,	STORE_FAST,	LOAD_FAST	and	CALL_FUNCTION
instead	of	just	LOAD_CONST.	That	requires	more	opcodes	for	no	good
reason	–	and	function	calling	in	Python	is	already	inefficient.

The	only	case	in	which	it	is	required	to	define	a	function	within	a	function
is	when	building	a	function	closure,	and	this	is	a	perfectly	defined	use
case	in	Python’s	opcodes.

Example	13.6.	Disassembling	a	closure

>>>	def	x():
...					a	=	42
...					def	y():
...													return	a
...					return	y()
...
>>>	dis.dis(x)
		2											0	LOAD_CONST															1	(42)
														3	STORE_DEREF														0	(a)

		3											6	LOAD_CLOSURE													0	(a)
														9	BUILD_TUPLE														1
													12	LOAD_CONST															2	(<code	object	y	at	0x100d139b0,	file	"<stdin>",	line	3>)
													15	MAKE_CLOSURE													0
													18	STORE_FAST															0	(y)

		5										21	LOAD_FAST																0	(y)
													24	CALL_FUNCTION												0
													27	RETURN_VALUE

The	dis	module	is	a	great	tool	for	digging	into	the	code	of	your	program.
Together	with	profiling,	it	is	a	powerful	tool	when	it	comes	to
understanding	why	a	piece	of	code	might	be	slow.

13.5.	Victor	Stinner	on
Performance

Hi	Victor!	Could	you	introduce	yourself	and	explain	how

you	came	to	Python?

Hi,	my	name	is	Victor	Stinner,	I	am	working	for	Red	Hat	on

OpenStack,	and	I	have	been	a	CPython	core	developer	since	2010.

I	was	always	programming.	I	tried	a	wide	range	of	programming

languages	from	the	lowest	level	Intel	x86	assembler	to	high-level

languages	like	Javascript	and	BASIC.	Even	if	I	now	really	enjoy

writing	C	code	for	best	performance,	Python	fits	my	requirements

better	for	my	daily	job.	Since	it	is	easy	to	write	Python	code,	and	I	am

not	annoyed	by	memory	management	or	analyzing	crashes,	I	use	the

"free"	time	to	write	more	unit	tests,	take	care	of	the	coding	style,	and

do	all	the	tiny	stuff	which	makes	software	into	a	"good	software".

After	10	years	of	professional	programming,	I	can	now	say	that	I

spent	more	time	on	reading	"old"	code	and	fixing	old	twisted	corner

cases,	than	writing	new	code	from	scratch.	Having	an	extensible	test

suite	makes	me	relaxed.	Having	to	work	under	pressure	without	a

net	is	likely	to	lead	to	burnout,	or	more	simply	to	quit	a	job.

I	completely	agree.	You	spent	so	much	time	analyzing

performances	around	Python	–	how	does	having	a	test

suite	help	with	that?	Are	there	any	other	sound	habits	that

can	help	with	profiling	or	code	optimization?

I	spent	multiple	months	experimenting	with	large	Python	changes	to

globally	optimize	Python,	but	my	work	was	quickly	blocked	by	the

benchmarks.	CPython	had	a	benchmark	suite	called	"benchmarks"

made	up	of	44	benchmarks,	but	there	was	no	documentation	on	how

to	run	it,	especially	how	to	get	reproducible	and	reliable	results.

I	spent	six	more	months	investigating	why	benchmark	results

changed	for	no	(apparent)	reasons.	The	list	of	reasons	is	quite	long:

system	noise	("jitter")	and	noisy	applications,	advanced	CPU	features

like	Turbo	Boost,	code	placement	(CPU	instruction	cache),	average

versus	minimum,	etc.	I	just	gave	a	talk	at	FOSDEM	(Belgium,

Brussels)	describing	these	issues.

My	goal	was	to	provide	a	benchmark	suite	usable	by	everyone,	so	I

implemented	a	new	perf	module,	which	provides	a	simple	API	to	run

benchmarks:	it	spawns	multiple	worker	processes	sequentially	and

computes	the	average	of	samples,	ignoring	warm-up	samples.

I	rewrote	the	"benchmarks"	project	using	my	new	perf	module.	I

renamed	the	project	as	"performance"	to	be	able	to	publish	it	on

PyPI	(to	make	it	as	easy	as	possible	to	use	it)	and	moved	it	from

hg.python.org	(Mercurial)	to	github.com	(Git)	since	Python

has	moved	to	GitHub.

I	cleaned	up	the	performance	code	and	modified	it	to	make	it	more

and	more	reliable.	In	the	end,	I	removed	old	benchmark	results	from

speed.python.org	and	published	new	results	computed	with

performance	and	the	best	practice	to	get	stable	results.	I	am	happy

because	results	were	very	stable	for	a	whole	year!

I	can	trust	benchmark	results	again.	It	became	possible	to	identify

performance	regressions.

https://fosdem.org/2017/schedule/event/python_stable_benchmark/
http://speed.python.org

More	generally,	when	you	run	benchmarks:	don’t	run	them	once,	run

them	multiple	times,	regularly,	for	example	once	a	week	during	a

month.	It	is	common	that	results	are	very	stable	for	2	weeks	and	that

"suddenly"	become	20%	slower	or	20%	faster	even	if	no	link	is

apparent	between	the	code	changes	and	the	performance	changes.

For	profiling,	I	use	a	lot	the	Linux	perf	tool	which	is	amazing.	perf

stat	--repeat	computes	the	average	and	standard	deviation	on

low-level	metrics	like	CPU	caches,	memory	loads,	etc.	"perf	record"	+

"perf	report"	is	a	lightweight	statistical	profiler:	it	collects	the	stack

trace	up	to	100,000	times	per	second,	and	analyzes	in	which

functions	your	code	spent	the	most	time.	The	tool	works	on	a	single

process	or	even	system-wide!	Sadly,	it	does	not	support	Python

frames	yet,	and	so	it	only	shows	C	functions	on	a	Python	application.

Finally,	don’t	reinvent	the	wheel:	reuse	existing	well	optimized

Python	built-in	types	and	existing	libraries	on	PyPI.

You	have	spent	a	lot	of	time	writing	those	performance

tools	to	run	benchmarks	because	you	try	to	make	Python

go	faster.	What	is	the	greatest	improvement	you	made?

Sadly,	it	is	quite	hard	to	get	tremendous	improvement	in	CPython

because	of	the	backward	compatibility,	especially	of	the	C	API.	This

API	is	very	important	for	a	large	part	of	our	community	(particularly

in	the	sciences	area,	SciPy,	NumPy,	Pandas,	etc.).	I	was	told	recently

that	without	its	C	API,	the	Python	language	would	never	be	as

popular	as	it	is.	CPython	is	a	super	cool	glue	language,	which	allows

reusing	battle-tested	code	written	years	ago	like	BLAS	library	written

in	FORTRAN	77.

The	CPython	C	API	uses	reference	counting,	a	specific

implementation	of	a	garbage	collector,	C	structures,	memory

allocators,	the	well	known	GIL	(Global	Interpreter	Lock),	etc.	In

short,	these	things	cannot	be	changed,	so	tricks	are	required	to	find

room	for	performance	improvements.

In	Python	3.6,	multiple	optimizations	were	implemented.

The	bytecode	format	changed	from	variable	size	(1	or	3	bytes)	to

fixed	size	(2	bytes	units).	The	bytecode	to	call	functions

(CALL_FUNCTION)	was	also	redesigned	and	optimized.	To	call	a

function	with	keyword	arguments,	the	name	of	the	keywords	are	now

packed	into	a	constant	tuple	to	reduce	the	number	of	LOAD_CONST

instructions.

I	implemented	debug	hooks	to	ensure	that	applications	hold	the	GIL

when	calling	PyMem_Malloc().	It	is	now	possible	to	use	debug

hooks	on	a	release	build	using	PYTHONMALLOC=debug	environment

variable.	Previously,	Python	had	to	be	rebuilt	in	debug	mode	which

caused	various	issues.	Thanks	to	these	checks,	I	was	allowed	to

modify	PyMem_Malloc()	to	use	Python	fast	memory	allocator

optimized	for	small	objects	with	a	short	lifetime,	rather	than	using

system	malloc().

I	spent	most	of	my	time	on	FASTCALL:	an	internal	optimization	to

avoid	creating	a	temporary	tuple	to	pass	positional	arguments,	and

also	avoiding	a	temporary	dictionary	to	pass	keyword	arguments.

The	temporary	tuple	only	has	a	cost	of	20	nanoseconds:	it	is	not	a	lot,

but	many	Python	functions	are	implemented	in	C	and	take	less	than

100	nanoseconds:	the	tuple	represented	20%	of	its	runtime!

Where	do	you	see	Python	performances	going	to	over	the

next	few	years?

I	hope	that	someone	will	succeed	in	writing	a	JIT	compiler	for

CPython.	Sadly,	Pyston	and	Pyjion,	two	projects	adding	a	JIT

compiler	to	CPython,	are	no	longer	being	actively	developed	:-(

I	also	hope	that	Larry	Hastings	gilectomy	project	to	remove	the	GIL

from	CPython	succeeds	in	making	CPython	faster	when	using

multiple	CPUs.

At	least,	PyPy	is	already	much	faster	than	CPython.	Its	emulation

layer	for	the	CPython	C	API	is	faster	on	each	release,	and	they	are

now	actively	working	on	Python	3	support.

Do	you	have	any	useful	tricks	or	advice	about	things	to

avoid	when	writing	Python	code	because	they	are	slow	or

slower?

If	you	start	optimizing	a	project	with	"micro-optimizations",	you	are

doing	things	backward.	You	should	start	at	the	very	high	level,	take	a

look	at	the	"big	picture",	at	the	architecture	of	the	whole	project:	not

on	individual	components,	but	more	relations	between	components.

For	example	for	a	Web	server,	start	by	feeding	all	CPUs	with	enough

worker	processes.	Use	a	profiler	to	identify	in	which	parts	of	the	code

the	project	spends	most	of	its	time.	Moreover,	never	forget	to	run

benchmarks.	An	optimization	not	validated	by	a	benchmark	is

worthless.	It	is	common	that	an	"optimization"	makes	a	function

slower	in	practice	because	of	wrong	assumptions.

Even	if	your	project	spends	90%	of	its	time	on	a	single	Python

instruction,	it	does	not	mean	that	you	must	optimize	this	specific

instruction.	It	only	means	that	you	should	start	to	look	at	code

around	this	instruction.	For	example,	a	crazy	optimization	will

never	be	as	efficient	as	a	very	simple	cache	to	avoid	calling	the

function.	Adding	a	cache	takes	a	few	seconds,	so	it	is	easy	to

experiment,	whereas	writing	a	cryptic	optimization	can	take	several

days	and	introduce	subtle	bugs.	Later	you	may	want	to	spend	more

time	on	tuning	the	cache	size,	cache	invalidation,	etc.

The	Internet	is	full	of	bad	advice	on	micro-optimization,	which	can

make	the	code	uglier	and	more	expensive	to	maintain.	Just	don’t

waste	your	time	on	micro-optimizations	and	use	faster	algorithms

and	data	structures.	;-)

Thanks	Victor!

[8]	Unfortunately,	it	seems	that	for	now	RunSnakeRun	only	still	works
with	Python	2.

[9]	Pandas	is	a	Python	data	analysis	library,	see	http://pandas.pydata.org.

[10]	One	in	pure	Python	that	does	not	need	Pandas	at	all.

http://pandas.pydata.org

Epilogue
With	this	book,	I	tried	to	give	you	a	handful	of	tips	and	a	high-level	view
of	how	applications	can	be	made	in	a	distributed	and	scalable	way	in
Python.	As	we	have	seen,	there	are	plenty	of	architectural	decisions	that
are	not	specific	to	Python,	such	as	using	a	queue-based	system	to
distribute	jobs	or	leveraging	a	consistent	hash	ring.

Python	itself	does	not	solve	all	the	problems,	and	as	you	have	noticed,
your	future	application	will	have	to	depend	on	external	systems	that	do	a
great	job	with	caching	or	building	consensus.	Some	of	those	services
deserve	entire	dedicated	books,	so	I	only	covered	them	briefly	here.	It	will
be	up	to	you	to	discover	such	systems	more	thoroughly	and	learn	the
specific	characteristics	and	features.

Nevertheless,	I	think	Python	can	shine	in	large-scale	applications,	and	I
hope	this	book	makes	that	clear.	There	are	certainly	plenty	of	traps	to
avoid	falling	into,	for	sure	–	the	chapters	you’ve	just	read	should	guide
you	in	the	right	direction.

If	you	ever	want	to	learn	more	about	Python	development	tips	and
improve	your	coding	skills	in	general,	I	would	encourage	you	to	read	my
first	book	entitled	The	Hacker’s	Guide	to	Python!

In	the	meantime,	have	fun	building	distributed	and	scalable	applications
in	Python.	Happy	hacking!

	The Hacker’s Guide to Scaling Python
	About this Book
	1. Scaling?
	1.1. Across CPUs
	1.2. Distributed Systems
	1.3. Service-Oriented Architecture

	2. CPU Scaling
	2.1. Using Threads
	2.2. Using Processes
	2.3. Using Futures
	2.4. Advanced Futures Usage
	2.5. Daemon Processes
	2.6. Mehdi Abaakouk on CPU Scaling

	3. Event Loops
	3.1. Basic Pattern
	3.2. Using Asyncio
	3.2.1. Network Server

	3.3. Naoki Inada on asyncio

	4. Functional Programming
	4.1. The Functional Toolkit

	5. Queue-Based Distribution
	5.1. RQ
	5.2. Celery
	5.2.1. Handling Failures
	5.2.2. Chaining Tasks
	5.2.3. Multiple Queues
	5.2.4. Monitoring

	5.3. Joshua Harlow on Task Distribution

	6. Designing for Failure
	6.1. Naive Retrying
	6.2. Retrying with Tenacity

	7. Lock Management
	7.1. Thread Locks
	7.2. Processes Locks
	7.2.1. Multiprocessing Locks
	7.2.2. Inter-Processes Locks

	7.3. Using etcd for Distributed Locking
	7.4. Using Tooz Locking Abstraction

	8. Group membership
	8.1. Creating, Joining and Leaving Groups
	8.2. Using Capabilities
	8.3. Using Watchers Callbacks
	8.4. Consistent Hash Rings
	8.5. Partitioner
	8.6. Alexys Jacob-Monier on Cluster Management

	9. Building REST API
	9.1. The WSGI Protocol
	9.2. Streaming Data
	9.3. Using ETag
	9.4. Asynchronous HTTP API
	9.5. Fast HTTP Client
	9.6. Testing REST API
	9.7. Chris Dent on HTTP

	10. Deploying on PaaS
	10.1. Heroku
	10.2. Amazon Beanstalk
	10.3. Google App Engine
	10.4. OpenShift
	10.5. Beyond PaaS

	11. Testing Distributed Systems
	11.1. Setting Up Environments with tox
	11.2. Manage External Services with pifpaf
	11.3. Using Fixtures with pifpaf

	12. Caching
	12.1. Local Caching
	12.2. Memoization
	12.3. Distributed Caching
	12.4. Jason Myers on Databases

	13. Performance
	13.1. Memory and CPU Profiling
	13.2. Profiling Strategy and a Case
	13.3. Zero-Copy
	13.4. Disassembling Code
	13.5. Victor Stinner on Performance

	Epilogue

