

 فقط کتاب

 مرجع معتبر دانلود کتاب‌هاي تخصصی

Faghatketab.ir

Building Blockchain Projects

Develop real-time practical DApps using Ethereum and
JavaScript

Narayan Prusty

BIRMINGHAM - MUMBAI

Building Blockchain Projects

Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: April 2017

Production reference: 1240417

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78712-214-7

www.packtpub.com

http://www.packtpub.com

Credits

Author

Narayan Prusty

Copy Editor

Stuti Srivastava

Reviewers

Imran Bahsir
Daniel Kraft
Gaurang Torvekar

Project Coordinator

Nidhi Joshi

Commissioning Editor

Veena Pagare

Proofreader

Safis Editing

Acquisition Editor

Vinay Argekar

Indexer

Pratik Shirodkar

Content Development Editor

Mayur Pawanikar

Graphics

Tania Dutta

Technical Editor

Prasad Ramesh

Production Coordinator

Melwyn Dsa

About the Author
Narayan Prusty is a full-stack developer, with five years of experience in the field. He
specializes in Blockchain and JavaScript. His commitment has led him to build scalable
products for startups, the government, and enterprises across India, Singapore, USA, and
UAE.

At present, Ethereum, Bitcoin, Hyperledger, IPFS, Ripple, and so on are some of the things
he uses on a regular basis to build decentralized applications. Currently, he is a full-time
Blockchain SME (Subject-Matter Expert) at Emirates National Bank of Dubai.

He has already written two books on JavaScript titled Learning ECMAScript 6 and Modern
JavaScript Applications. Both these books were reviewed and published by Packt.

He starts working on something immediately if he feels it’s exciting and solves real work
problems. He built an MP3 search engine at the age of 18, and since then, he has built
various other applications, which are used by people around the globe. His ability to to
build scalable applications from top to bottom is what makes him special.

Currently, he is on a mission to make things easier, faster, and cheaper using the blockchain
technology. Also, he is looking at possibilities to prevent corruptions, fraud, and to bring
transparency to the world using blockchain technology.
You can learn more from him from his blog h t t p ://q n i m a t e . c o m and you can reach him
out at LinkedIn h t t p s ://w w w . l i n k e d i n . c o m /i n /n a r a y a n p r u s t y /.

http://qnimate.com
http://qnimate.com
http://qnimate.com
http://qnimate.com
http://qnimate.com
http://qnimate.com
http://qnimate.com
http://qnimate.com
http://qnimate.com
http://qnimate.com
http://qnimate.com
http://qnimate.com
http://qnimate.com
http://qnimate.com
http://qnimate.com
http://qnimate.com
http://qnimate.com
http://qnimate.com
http://qnimate.com
http://qnimate.com
http://qnimate.com
http://qnimate.com
http://qnimate.com
http://qnimate.com
http://qnimate.com
http://qnimate.com
http://qnimate.com
http://qnimate.com
http://qnimate.com
http://qnimate.com
https://www.linkedin.com/in/narayanprusty/
https://www.linkedin.com/in/narayanprusty/
https://www.linkedin.com/in/narayanprusty/
https://www.linkedin.com/in/narayanprusty/
https://www.linkedin.com/in/narayanprusty/
https://www.linkedin.com/in/narayanprusty/
https://www.linkedin.com/in/narayanprusty/
https://www.linkedin.com/in/narayanprusty/
https://www.linkedin.com/in/narayanprusty/
https://www.linkedin.com/in/narayanprusty/
https://www.linkedin.com/in/narayanprusty/
https://www.linkedin.com/in/narayanprusty/
https://www.linkedin.com/in/narayanprusty/
https://www.linkedin.com/in/narayanprusty/
https://www.linkedin.com/in/narayanprusty/
https://www.linkedin.com/in/narayanprusty/
https://www.linkedin.com/in/narayanprusty/
https://www.linkedin.com/in/narayanprusty/
https://www.linkedin.com/in/narayanprusty/
https://www.linkedin.com/in/narayanprusty/
https://www.linkedin.com/in/narayanprusty/
https://www.linkedin.com/in/narayanprusty/
https://www.linkedin.com/in/narayanprusty/
https://www.linkedin.com/in/narayanprusty/
https://www.linkedin.com/in/narayanprusty/
https://www.linkedin.com/in/narayanprusty/
https://www.linkedin.com/in/narayanprusty/
https://www.linkedin.com/in/narayanprusty/
https://www.linkedin.com/in/narayanprusty/
https://www.linkedin.com/in/narayanprusty/
https://www.linkedin.com/in/narayanprusty/
https://www.linkedin.com/in/narayanprusty/
https://www.linkedin.com/in/narayanprusty/
https://www.linkedin.com/in/narayanprusty/
https://www.linkedin.com/in/narayanprusty/
https://www.linkedin.com/in/narayanprusty/
https://www.linkedin.com/in/narayanprusty/
https://www.linkedin.com/in/narayanprusty/
https://www.linkedin.com/in/narayanprusty/
https://www.linkedin.com/in/narayanprusty/
https://www.linkedin.com/in/narayanprusty/
https://www.linkedin.com/in/narayanprusty/
https://www.linkedin.com/in/narayanprusty/
https://www.linkedin.com/in/narayanprusty/
https://www.linkedin.com/in/narayanprusty/
https://www.linkedin.com/in/narayanprusty/
https://www.linkedin.com/in/narayanprusty/
https://www.linkedin.com/in/narayanprusty/
https://www.linkedin.com/in/narayanprusty/
https://www.linkedin.com/in/narayanprusty/
https://www.linkedin.com/in/narayanprusty/
https://www.linkedin.com/in/narayanprusty/
https://www.linkedin.com/in/narayanprusty/
https://www.linkedin.com/in/narayanprusty/
https://www.linkedin.com/in/narayanprusty/
https://www.linkedin.com/in/narayanprusty/
https://www.linkedin.com/in/narayanprusty/
https://www.linkedin.com/in/narayanprusty/
https://www.linkedin.com/in/narayanprusty/
https://www.linkedin.com/in/narayanprusty/
https://www.linkedin.com/in/narayanprusty/
https://www.linkedin.com/in/narayanprusty/
https://www.linkedin.com/in/narayanprusty/
https://www.linkedin.com/in/narayanprusty/
https://www.linkedin.com/in/narayanprusty/
https://www.linkedin.com/in/narayanprusty/
https://www.linkedin.com/in/narayanprusty/
https://www.linkedin.com/in/narayanprusty/
https://www.linkedin.com/in/narayanprusty/
https://www.linkedin.com/in/narayanprusty/
https://www.linkedin.com/in/narayanprusty/
https://www.linkedin.com/in/narayanprusty/
https://www.linkedin.com/in/narayanprusty/

About the Reviewers
Imran Bashir has an M.Sc. degree in Information Security from Royal Holloway, University
of London, and has a background in software development, solution architecture,
infrastructure management, and IT service management. He is also a member of the
Institute of Electrical and Electronics Engineers (IEEE) and the British Computer Society
(BCS). Imran has sixteen years of experience in public and financial sector. He had worked
on large-scale IT projects for the public sector before moving to the financial services
industry. Since then, he worked in various technical roles for different financial companies
in Europe’s financial capital, London. He is currently working for an investment bank in
London as Vice President in the technology department.

Daniel Kraft has studied mathematics and physics and holds a PhD degree in applied
mathematics from the University of Graz in Austria. He has been involved in development
with cryptocurrencies since 2013, has been the lead developer and chief scientist for both
Namecoin and Huntercoin since 2014, and has published two research papers about
cryptocurrency in peer-reviewed journals. He works as a software engineer and is a
cofounder of Crypto Realities Ltd, a start-up that works on building decentralized
multiplayer game worlds with blockchain technology.

Gaurang Torvekar has a master's degree in Information Systems from Singapore
Management University. He is the cofounder and CTO of Attores, a Smart Contracts as a
Service company, based in Singapore. He has extensive experience in Ethereum and
Hyperledger application development. He has been a speaker at several blockchain
conferences, conducted many hands on blockchain courses in Polytechnics in Singapore,
and is also a Blockchain mentor at Angelhack.

www.PacktPub.com
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

h t t p s ://w w w . p a c k t p u b . c o m /m a p t

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt
books and video courses, as well as industry-leading tools to help you plan your personal
development and advance your career.

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt

Customer Feedback
Thanks for purchasing this Packt book. At Packt, quality is at the heart of our editorial
process. To help us improve, please leave us an honest review on this book's Amazon page
at h t t p s ://w w w . a m a z o n . c o m /d p /178712214X .

If you'd like to join our team of regular reviewers, you can e-mail us at
customerreviews@packtpub.com. We award our regular reviewers with free eBooks and
videos in exchange for their valuable feedback. Help us be relentless in improving our
products!

https://www.amazon.com/dp/178712214X
https://www.amazon.com/dp/178712214X
https://www.amazon.com/dp/178712214X
https://www.amazon.com/dp/178712214X
https://www.amazon.com/dp/178712214X
https://www.amazon.com/dp/178712214X
https://www.amazon.com/dp/178712214X
https://www.amazon.com/dp/178712214X
https://www.amazon.com/dp/178712214X
https://www.amazon.com/dp/178712214X
https://www.amazon.com/dp/178712214X
https://www.amazon.com/dp/178712214X
https://www.amazon.com/dp/178712214X
https://www.amazon.com/dp/178712214X
https://www.amazon.com/dp/178712214X
https://www.amazon.com/dp/178712214X
https://www.amazon.com/dp/178712214X
https://www.amazon.com/dp/178712214X
https://www.amazon.com/dp/178712214X
https://www.amazon.com/dp/178712214X
https://www.amazon.com/dp/178712214X
https://www.amazon.com/dp/178712214X
https://www.amazon.com/dp/178712214X
https://www.amazon.com/dp/178712214X
https://www.amazon.com/dp/178712214X
https://www.amazon.com/dp/178712214X
https://www.amazon.com/dp/178712214X
https://www.amazon.com/dp/178712214X
https://www.amazon.com/dp/178712214X
https://www.amazon.com/dp/178712214X
https://www.amazon.com/dp/178712214X
https://www.amazon.com/dp/178712214X
https://www.amazon.com/dp/178712214X
https://www.amazon.com/dp/178712214X
https://www.amazon.com/dp/178712214X
https://www.amazon.com/dp/178712214X
https://www.amazon.com/dp/178712214X
https://www.amazon.com/dp/178712214X
https://www.amazon.com/dp/178712214X
https://www.amazon.com/dp/178712214X
https://www.amazon.com/dp/178712214X
https://www.amazon.com/dp/178712214X
https://www.amazon.com/dp/178712214X
https://www.amazon.com/dp/178712214X

Table of Contents
Preface 1

Chapter 1: Understanding Decentralized Applications 6

What is a DApp? 7
Advantages of decentralized applications 8
Disadvantages of decentralized applications 8

Decentralized autonomous organization 9
User identity in DApps 9
User accounts in DApps 11
Accessing the centralized apps 11
Internal currency in DApps 12

Disadvantages of internal currency in DApps 13
What are permissioned DApps? 13
Popular DApps 13

Bitcoin 14
What is a ledger? 14
What is blockchain? 14
Is Bitcoin legal? 15
Why would someone use Bitcoin? 15

Ethereum 15
The Hyperledger project 16
IPFS 16

How does it work? 17
Filecoin 17

Namecoin 18
.bit domains 18

Dash 19
Decentralized governance and budgeting 20
Decentralized service 20

BigChainDB 21
OpenBazaar 21
Ripple 22

Summary 23

Chapter 2: Understanding How Ethereum Works 24

Overview of Ethereum 25
Ethereum accounts 25

[ii]

Transactions 26
Consensus 26
Timestamp 28
Nonce 28
Block time 29
Forking 32
Genesis block 32
Ether denominations 33
Ethereum virtual machine 33
Gas 34
Peer discovery 35
Whisper and Swarm 35
Geth 36

Installing geth 36
OS X 37
Ubuntu 37
Windows 37

JSON-RPC and JavaScript console 37
Sub-commands and options 38

Connecting to the mainnet network 38
Creating a private network 38

Creating accounts 38
Mining 39
Fast synchronization 39

Ethereum Wallet 40
Mist 41
Weaknesses 43

Sybil attack 43
51% attack 43

Serenity 43
Payment and state channels 44
Proof-of-stake and casper 44
Sharding 45

Summary 45

Chapter 3: Writing Smart Contracts 46

Solidity source files 46
The structure of a smart contract 47
Data location 48
What are the different data types? 49

Arrays 50

[iii]

Strings 51
Structs 52
Enums 52
Mappings 53
The delete operator 54
Conversion between elementary types 55
Using var 56

Control structures 56
Creating contracts using the new operator 57
Exceptions 58
External function calls 58
Features of contracts 59

Visibility 60
Function modifiers 62
The fallback function 64
Inheritance 64

The super keyword 66
Abstract contracts 67

Libraries 67
Using for 69

Returning multiple values 70
Importing other Solidity source files 71
Globally available variables 71

Block and transaction properties 71
Address type related 72
Contract related 72

Ether units 72
Proof of existence, integrity, and ownership contract 73
Compiling and deploying contracts 74
Summary 76

Chapter 4: Getting Started with web3.js 77

Introduction to web3.js 77
Importing web3.js 78
Connecting to nodes 78
The API structure 79
BigNumber.js 80
Unit conversion 80
Retrieving gas price, balance, and transaction details 81
Sending ether 83

[iv]

Working with contracts 84
Retrieving and listening to contract events 86

Building a client for an ownership contract 89
The project structure 90
Building the backend 91
Building the frontend 93
Testing the client 98

Summary 101

Chapter 5: Building a Wallet Service 102

Difference between online and offline wallets 102
hooked-web3-provider and ethereumjs-tx libraries 103
What is a hierarchical deterministic wallet? 107
Introduction to key derivation functions 107
Introduction to LightWallet 108

HD derivation path 109
Building a wallet service 110

Prerequisites 110
Project structure 110
Building the backend 111
Building the frontend 111
Testing 119

Summary 124

Chapter 6: Building a Smart Contract Deployment Platform 125

Calculating a transaction's nonce 125
Introducing solcjs 127

Installing solcjs 127
solcjs APIs 128

Using a different compiler version 129
Linking libraries 130
Updating the ABI 131

Building a contract deployment platform 131
The project structure 132
Building the backend 132
Building the frontend 138
Testing 143

Summary 144

Chapter 7: Building a Betting App 145

Introduction to Oraclize 145

[v]

How does it work? 146
Data sources 146
Proof of authenticity 147
Pricing 149
Getting started with the Oraclize API 149

Setting the proof type and storage location 150
Sending queries 150
Scheduling queries 151
Custom gas 151
Callback functions 152
Parsing helpers 153
Getting the query price 154

Encrypting queries 154
Decrypting the data source 155

Oraclize web IDE 155
Working with strings 156
Building the betting contract 158
Building a client for the betting contract 161

Projecting the structure 161
Building the backend 162
Building the frontend 164
Testing the client 173

Summary 179

Chapter 8: Building Enterprise Level Smart Contracts 180

Exploring ethereumjs-testrpc 181
Installation and usage 181

The testrpc command-line application 181
Using ethereumjs-testrpc as a web3 provider or as an HTTP server 183

Available RPC methods 184
What are event topics? 185
Getting started with truffle-contract 187

Installing and importing truffle-contract 188
Setting up a testing environment 189
The truffle-contract API 190

The contract abstraction API 190
Creating contract instances 195

The contract instance API 197
Introduction to truffle 198

Installing truffle 198
Initializing truffle 198
Compiling contracts 200

[vi]

Configuration files 201
Deploying contracts 202

Migration files 202
Writing migrations 203

Unit testing contracts 205
Writing tests in JavaScript 206
Writing tests in Solidity 208

How to send ether to a test contract 211
Running tests 212

Package management 212
Package management via NPM 213
Package management via EthPM 213
Using contracts of packages within your contracts 214
Using artifacts of packages within your JavaScript code 215
Accessing a package's contracts deployed addresses in Solidity 215

Using truffle's console 216
Running external scripts in truffle's context 217
Truffle's build pipeline 217

Running an external command 218
Running a custom function 218
Truffle's default builder 219

Building a client 221
Truffle's server 225

Summary 227

Chapter 9: Building a Consortium Blockchain 228

What is a consortium blockchain? 229
What is Proof-of-Authority consensus? 229
Introduction to parity 230

Understanding how Aura works 230
Getting parity running 232

Installing rust 232
Linux 232
OS X 232
Windows 232

Downloading, installing and running parity 233
Creating a private network 233

Creating accounts 233
Creating a specification file 234
Launching nodes 237
Connecting nodes 238

Permissioning and privacy 239
Summary 240

Index 241

Preface
Blockchain is a decentralized ledger that maintains a continuously growing list of data
records secured from tampering and revision. Every user is allowed to connect to the
network, send new transactions to it, verify transactions, and create new blocks.

This book will teach you what Blockchain is, how it maintains data integrity, and how to
create real-world Blockchain projects using Ethereum. With interesting real-world projects,
you will know learn how to write smart contracts which run exactly as programmed
without any chance of fraud, censorship or third-party interference, and build end-to-end
applications for Blockchain. You will learn concepts such as cryptography in
cryptocurrencies, ether security, mining, smart contracts, and solidity.

The blockchain is the main technical innovation of bitcoin, where it serves as the public
ledger for bitcoin transactions.

What this book covers
Chapter 1, Understanding Decentralized Applications, will explain what DApps are and
provide an an overview of how they work.

Chapter 2, Understanding How Ethereum Works, explains how Ethereum works.

Chapter 3, Writing Smart Contracts, shows how to write smart contracts and use geth's
interactive console to deploy and broadcast transactions using web3.js.

Chapter 4, Getting Started with web3.js, introduces web3js and how to import, connect to
geth, and explains use it in Node.js or client-side JavaScript.

Chapter 5, Building a Wallet Service, explains how to build a wallet service that users can
create and manage Ethereum Wallets easily, even offline. We will specifically use the
LightWallet library to achieve this.

Chapter 6, Building a Smart Contract Deployment Platform, shows how to compile smart
contracts using web3.js and deploy it using web3.js and EthereumJS.

Chapter 7, Building a Betting App, explains how to use Oraclize to make HTTP requests
from Ethereum smart contracts to access data from World Wide Web. We will also learn
how to access files stored in IPFS, use the strings library to work with strings, and more.

Preface

[2]

Chapter 8, Building Enterprise Level Smart Contracts, explains how to use Truffle, which
makes it easy to build enterprise-level DApps. We will learn about Truffle by building an
alt-coin.

Chapter 9, Building a Consortium Blockchain, we will discuss consortium blockchain.

What you need for this book
You require Windows 7 SP1+, 8, 10 or Mac OS X 10.8+.

Who this book is for
This book is for JavaScript developers who now want to create tamper-proof data (and
transaction) applications using Blockchain and Ethereum. Those who are interested in
cryptocurrencies and the logic and database empowering it will find this book extremely
useful.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "Then,
run the app using the node app.js command inside the Final directory."

A block of code is set as follows:

var solc = require("solc");
var input = "contract x { function g() {} }";
var output = solc.compile(input, 1); // 1 activates the optimizer
for (var contractName in output.contracts) {
 // logging code and ABI
 console.log(contractName + ": " +
output.contracts[contractName].bytecode);
 console.log(contractName + "; " +
JSON.parse(output.contracts[contractName].interface));
}

Preface

[3]

Any command-line input or output is written as follows:

 npm install -g solc

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "Now select the same file
again and click on the Get Info button."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book-what you liked or disliked. Reader feedback is important for us as it helps us develop
titles that you will really get the most out of.
To send us general feedback, simply e-mail feedback@packtpub.com, and mention the
book's title in the subject of your message.
If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at h t t p ://w w w . p

a c k t p u b . c o m . If you purchased this book elsewhere, you can visit h t t p ://w w w . p a c k t p u b . c

o m /s u p p o r t and register to have the files e-mailed directly to you.

http://www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support

Preface

[4]

You can download the code files by following these steps:

Log in or register to our website using your e-mail address and password.1.
Hover the mouse pointer on the SUPPORT tab at the top.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box.4.
Select the book for which you're looking to download the code files.5.
Choose from the drop-down menu where you purchased this book from.6.
Click on Code Download.7.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at h t t p s ://g i t h u b . c o m /P a c k t P u b l

i s h i n g /B u i l d i n g - B l o c k c h a i n - P r o j e c t s . We also have other code bundles from our rich
catalog of books and videos available at h t t p s ://g i t h u b . c o m /P a c k t P u b l i s h i n g /. Check
them out!

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams used
in this book. The color images will help you better understand the changes in the output.
You can download this file from h t t p s ://w w w . p a c k t p u b . c o m /s i t e s /d e f a u l t /f i l e s /d o w n

l o a d s /B u i l d i n g B l o c k c h a i n P r o j e c t s _ C o l o r I m a g e s . p d f .

https://github.com/PacktPublishing/Building-Blockchain-Projects
https://github.com/PacktPublishing/Building-Blockchain-Projects
https://github.com/PacktPublishing/Building-Blockchain-Projects
https://github.com/PacktPublishing/Building-Blockchain-Projects
https://github.com/PacktPublishing/Building-Blockchain-Projects
https://github.com/PacktPublishing/Building-Blockchain-Projects
https://github.com/PacktPublishing/Building-Blockchain-Projects
https://github.com/PacktPublishing/Building-Blockchain-Projects
https://github.com/PacktPublishing/Building-Blockchain-Projects
https://github.com/PacktPublishing/Building-Blockchain-Projects
https://github.com/PacktPublishing/Building-Blockchain-Projects
https://github.com/PacktPublishing/Building-Blockchain-Projects
https://github.com/PacktPublishing/Building-Blockchain-Projects
https://github.com/PacktPublishing/Building-Blockchain-Projects
https://github.com/PacktPublishing/Building-Blockchain-Projects
https://github.com/PacktPublishing/Building-Blockchain-Projects
https://github.com/PacktPublishing/Building-Blockchain-Projects
https://github.com/PacktPublishing/Building-Blockchain-Projects
https://github.com/PacktPublishing/Building-Blockchain-Projects
https://github.com/PacktPublishing/Building-Blockchain-Projects
https://github.com/PacktPublishing/Building-Blockchain-Projects
https://github.com/PacktPublishing/Building-Blockchain-Projects
https://github.com/PacktPublishing/Building-Blockchain-Projects
https://github.com/PacktPublishing/Building-Blockchain-Projects
https://github.com/PacktPublishing/Building-Blockchain-Projects
https://github.com/PacktPublishing/Building-Blockchain-Projects
https://github.com/PacktPublishing/Building-Blockchain-Projects
https://github.com/PacktPublishing/Building-Blockchain-Projects
https://github.com/PacktPublishing/Building-Blockchain-Projects
https://github.com/PacktPublishing/Building-Blockchain-Projects
https://github.com/PacktPublishing/Building-Blockchain-Projects
https://github.com/PacktPublishing/Building-Blockchain-Projects
https://github.com/PacktPublishing/Building-Blockchain-Projects
https://github.com/PacktPublishing/Building-Blockchain-Projects
https://github.com/PacktPublishing/Building-Blockchain-Projects
https://github.com/PacktPublishing/Building-Blockchain-Projects
https://github.com/PacktPublishing/Building-Blockchain-Projects
https://github.com/PacktPublishing/Building-Blockchain-Projects
https://github.com/PacktPublishing/Building-Blockchain-Projects
https://github.com/PacktPublishing/Building-Blockchain-Projects
https://github.com/PacktPublishing/Building-Blockchain-Projects
https://github.com/PacktPublishing/Building-Blockchain-Projects
https://github.com/PacktPublishing/Building-Blockchain-Projects
https://github.com/PacktPublishing/Building-Blockchain-Projects
https://github.com/PacktPublishing/Building-Blockchain-Projects
https://github.com/PacktPublishing/Building-Blockchain-Projects
https://github.com/PacktPublishing/Building-Blockchain-Projects
https://github.com/PacktPublishing/Building-Blockchain-Projects
https://github.com/PacktPublishing/Building-Blockchain-Projects
https://github.com/PacktPublishing/Building-Blockchain-Projects
https://github.com/PacktPublishing/Building-Blockchain-Projects
https://github.com/PacktPublishing/Building-Blockchain-Projects
https://github.com/PacktPublishing/Building-Blockchain-Projects
https://github.com/PacktPublishing/Building-Blockchain-Projects
https://github.com/PacktPublishing/Building-Blockchain-Projects
https://github.com/PacktPublishing/Building-Blockchain-Projects
https://github.com/PacktPublishing/Building-Blockchain-Projects
https://github.com/PacktPublishing/Building-Blockchain-Projects
https://github.com/PacktPublishing/Building-Blockchain-Projects
https://github.com/PacktPublishing/Building-Blockchain-Projects
https://github.com/PacktPublishing/Building-Blockchain-Projects
https://github.com/PacktPublishing/Building-Blockchain-Projects
https://github.com/PacktPublishing/Building-Blockchain-Projects
https://github.com/PacktPublishing/Building-Blockchain-Projects
https://github.com/PacktPublishing/Building-Blockchain-Projects
https://github.com/PacktPublishing/Building-Blockchain-Projects
https://github.com/PacktPublishing/Building-Blockchain-Projects
https://github.com/PacktPublishing/Building-Blockchain-Projects
https://github.com/PacktPublishing/Building-Blockchain-Projects
https://github.com/PacktPublishing/Building-Blockchain-Projects
https://github.com/PacktPublishing/Building-Blockchain-Projects
https://github.com/PacktPublishing/Building-Blockchain-Projects
https://github.com/PacktPublishing/Building-Blockchain-Projects
https://github.com/PacktPublishing/Building-Blockchain-Projects
https://github.com/PacktPublishing/Building-Blockchain-Projects
https://github.com/PacktPublishing/Building-Blockchain-Projects
https://github.com/PacktPublishing/Building-Blockchain-Projects
https://github.com/PacktPublishing/Building-Blockchain-Projects
https://github.com/PacktPublishing/Building-Blockchain-Projects
https://github.com/PacktPublishing/Building-Blockchain-Projects
https://github.com/PacktPublishing/Building-Blockchain-Projects
https://github.com/PacktPublishing/Building-Blockchain-Projects
https://github.com/PacktPublishing/Building-Blockchain-Projects
https://github.com/PacktPublishing/Building-Blockchain-Projects
https://github.com/PacktPublishing/Building-Blockchain-Projects
https://github.com/PacktPublishing/Building-Blockchain-Projects
https://github.com/PacktPublishing/Building-Blockchain-Projects
https://github.com/PacktPublishing/Building-Blockchain-Projects
https://github.com/PacktPublishing/Building-Blockchain-Projects
https://github.com/PacktPublishing/Building-Blockchain-Projects
https://github.com/PacktPublishing/Building-Blockchain-Projects
https://github.com/PacktPublishing/Building-Blockchain-Projects
https://github.com/PacktPublishing/Building-Blockchain-Projects
https://github.com/PacktPublishing/Building-Blockchain-Projects
https://github.com/PacktPublishing/Building-Blockchain-Projects
https://github.com/PacktPublishing/Building-Blockchain-Projects
https://github.com/PacktPublishing/Building-Blockchain-Projects
https://github.com/PacktPublishing/Building-Blockchain-Projects
https://github.com/PacktPublishing/Building-Blockchain-Projects
https://github.com/PacktPublishing/Building-Blockchain-Projects
https://github.com/PacktPublishing/Building-Blockchain-Projects
https://github.com/PacktPublishing/Building-Blockchain-Projects
https://github.com/PacktPublishing/Building-Blockchain-Projects
https://github.com/PacktPublishing/Building-Blockchain-Projects
https://github.com/PacktPublishing/Building-Blockchain-Projects
https://github.com/PacktPublishing/Building-Blockchain-Projects
https://github.com/PacktPublishing/Building-Blockchain-Projects
https://github.com/PacktPublishing/Building-Blockchain-Projects
https://github.com/PacktPublishing/Building-Blockchain-Projects
https://github.com/PacktPublishing/Building-Blockchain-Projects
https://github.com/PacktPublishing/Building-Blockchain-Projects
https://github.com/PacktPublishing/Building-Blockchain-Projects
https://github.com/PacktPublishing/Building-Blockchain-Projects
https://github.com/PacktPublishing/Building-Blockchain-Projects
https://github.com/PacktPublishing/Building-Blockchain-Projects
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingBlockchainProjects_ColorImages.pdf

Preface

[5]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting h t t p ://w w w . p a c k t p u b . c o m /s u b m i t - e r r a t a , selecting
your book, clicking on the Errata Submission Form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded to our website or added to any list of existing errata under the Errata section of
that title.

To view the previously submitted errata, go to h t t p s ://w w w . p a c k t p u b . c o m /b o o k s /c o n t e n

t /s u p p o r t and enter the name of the book in the search field. The required information will
appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions
If you have a problem with any aspect of this book, you can contact us
at questions@packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

1
Understanding Decentralized

Applications
Almost all of the Internet-based applications we have been using are centralized, that is, the
servers of each application are owned by a particular company or person. Developers have
been building centralized applications and users have been using them for a pretty long
time. But there are a few concerns with centralized applications that make it next to
impossible to build certain types of apps and every app ends up having some common
issues. Some issues with centralized apps are that they are less transparent, they have a
single point of failure, they fail to prevent net censorship, and so on. Due to these concerns,
a new technology emerged for the building of Internet-based apps called decentralized
applications (DApps). In this chapter, we will learn about decentralized apps.

In this chapter, we'll cover the following topics:

What are DApps?
What is the difference between decentralized, centralized, and distributed
applications?
Advantages and disadvantages of centralized and decentralized applications.
An overview of the data structures, algorithms, and protocols used by some of
the most popular DApps
Learning about some popular DApps that are built on top of other DApps.

Understanding Decentralized Applications

[7]

What is a DApp?
A DApp is a kind of Internet application whose backend runs on a decentralized peer-to-
peer network and its source code is open source. No single node in the network has
complete control over the DApp.

Depending on the functionality of the DApp, different data structures are used to store
application data. For example, the Bitcoin DApp uses the blockchain data structure.

These peers can be any computer connected to the Internet; therefore, it becomes a big
challenge to detect and prevent peers from making invalid changes to the application data
and sharing wrong information with others. So we need some sort of consensus between
the peers regarding whether the data published by a peer is right or wrong. There is no
central server in a DApp to coordinate the peers and decide what is right and wrong;
therefore, it becomes really difficult to solve this challenge. There are certain protocols
(specifically called consensus protocols) to tackle this challenge. Consensus protocols are
designed specifically for the type of data structure the DApp uses. For example, Bitcoin uses
the proof-of-work protocol to achieve consensus.

Every DApp needs a client for the user to use the DApp. To use a DApp, we first need a
node in the network by running our own node server of the DApp and then connecting the
client to the node server. Nodes of a DApp provide an API only and let the developer
community develop various clients using the API. Some DApp developers officially
provide a client. Clients of DApps should be open source and should be downloaded for
use; otherwise, the whole idea of decentralization will fail.

But this architecture of a client is cumbersome to set up, especially if the user is a non-
developer; therefore, clients are usually hosted and/or nodes are hosted as a service to make
the process of using a DApp easier.

What are distributed applications?
Distributed applications are those applications that are spread across
multiple servers instead of just one. This is necessary when application
data and traffic becomes huge and application downtime is not affordable.
In distributed applications, data is replicated among various servers to
achieve high availability of data. Centralized applications may or may not
be distributed, but decentralized applications are always distributed. For
example, Google, Facebook, Slack, Dropbox, and so on are distributed,
whereas a simple portfolio site or a personal blog are not usually
distributed until traffic is very high.

Understanding Decentralized Applications

[8]

Advantages of decentralized applications
Here are some of the advantages of decentralized applications:

DApps are fault-tolerant as there is no single point of failure because they are
distributed by default.
They prevent violation of net censorship as there is no central authority to whom
the government can pressurize to remove some content. Governments cannot
even block the app's domain or IP address as DApps are not accessed via a
particular IP address or domain. Obviously the government can track individual
nodes in the network by their IP address and shut them down, but if the network
is huge, then it becomes next to impossible to shut down the app, especially if the
nodes are distributed among various different countries.
It is easy for users to trust the application as it's not controlled by a single
authority that could possibly cheat the users for profit.

Disadvantages of decentralized applications
Obviously, every system has some advantages and disadvantages. Here are some of the
disadvantages of decentralized applications:

Fixing bugs or updating DApps is difficult, as every peer in the network has to
update their node software.
Some applications require verification of user identity (that is, KYC), and as there
is no central authority to verify the user identity, it becomes an issue while
developing such applications.
They are difficult to build because they use very complex protocols to achieve
consensus and they have to be built to scale from the start itself. So we cannot just
implement an idea and then later on add more features and scale it.
Applications are usually independent of third-party APIs to get or store
something. DApps shouldn't depend on centralized application APIs, but DApps
can be dependent on other DApps. As there isn't a large ecosystem of DApps yet,
it is difficult to build a DApp. Although DApps can be dependent on other
DApps theoretically, it is very difficult to tightly couple DApps practically.

Understanding Decentralized Applications

[9]

Decentralized autonomous organization
Typically, signed papers represent organizations, and the government has influence over
them. Depending on the type of organization, the organization may or may not have
shareholders.

Decentralized autonomous organization (DAO) is an organization that is represented by a
computer program (that is, the organization runs according to the rules written in the
program), is completely transparent, and has total shareholder control and no influence of
the government.

To achieve these goals, we need to develop a DAO as a DApp. Therefore, we can say that
DAO is a subclass of DApp.

Dash, and the DAC are a few example of DAOs.

What is a decentralized autonomous corporation (DAC)?
There is still no clear difference between DAC and DAO. Many people
consider them to be the same whereas some people define DAC as DAO
when DAO is intended to make profits for shareholders.

User identity in DApps
One of the major advantages of DApps is that it generally guarantees user anonymity. But
many applications require the process of verifying user identity to use the app. As there is
no central authority in a DApp, it become a challenge to verify the user identity.

In centralized applications, humans verify user identity by requesting the user to submit
certain scanned documents, OTP verification, and so on. This process is called know your
customer (KYC). But as there is no human to verify user identity in DApps, the DApp has
to verify the user identity itself. Obviously DApps cannot understand and verify scanned
documents, nor can they send SMSes; therefore, we need to feed them with digital identities
that they can understand and verify. The major problem is that hardly any DApps have
digital identities and only a few people know how to get a digital identity.

Understanding Decentralized Applications

[10]

There are various forms of digital identities. Currently, the most recommended and popular
form is a digital certificate. A digital certificate (also called a public key certificate or
identity certificate) is an electronic document used to prove ownership of a public key.
Basically, a user owns a private key, public key, and digital certificate. The private key is
secret and the user shouldn't share it with anyone. The public key can be shared with
anyone. The digital certificate holds the public key and information about who owns the
public key. Obviously, it's not difficult to produce this kind of certificate; therefore, a digital
certificate is always issued by an authorized entity that you can trust. The digital certificate
has an encrypted field that's encrypted by the private key of the certificate authority. To
verify the authenticity of the certificate, we just need to decrypt the field using the public
key of the certificate authority, and if it decrypts successfully, then we know that the
certificate is valid.

Even if users successfully get digital identities and they are verified by the DApp, there is a
still a major issue; that is, there are various digital certificate issuing authorities, and to
verify a digital certificate, we need the public key of the issuing authority. It is really
difficult to include the public keys of all the authorities and update/add new ones. Due to
this issue, the procedure of digital identity verification is usually included on the client side
so that it can be easily updated. Just moving this verification procedure to the client side
doesn't completely solve this issue because there are lots of authorities issuing digital
certificates and keeping track of all of them, and adding them to the client side, is
cumbersome.

Why do users not verify each other's identity?
Often, while we do trading in real life, we usually verify the identity of the
other person ourselves or we bring in an authority to verify the identity.
This idea can be applied to DApps as well. Users can verify each other's
identity manually before performing trade with each other. This idea
works for specific kinds of DApps, that is, for DApps in which people
trade with each other. For example, if a DApp is a decentralized social
network, then obviously a profile cannot be verified by this means. But if
the DApp is for people to buy/sell something, then before making a
payment, the buyer and seller can both verify each other's identity.
Although this idea may seem fine while doing trading, when you think
practically, it becomes very difficult because you may not want to do
identity verification every time you trade and everyone not knows how to
do identity verification. For example, if the DApp is a cab-booking app,
then you will obviously not want to perform identity verification before
booking a cab every time. But if you trade sometimes and you know how
to verify identity, then it's fine to follow this procedure.

Understanding Decentralized Applications

[11]

Due to these issues, the only option we are currently left with is verifying user identity
manually by an authorized person of the company that provides the client. For example, to
create a Bitcoin account, we don't need an identification, but while withdrawing Bitcoin to
flat currency, the exchanges ask for proof of identification. Clients can omit the unverified
users and not let them use the client. And they can keep the client open for users whose
identity has been verified by them. This solution also ends up with minor issues; that is, if
you switch the client, you will not find the same set of users to interact with because
different clients have different sets of verified users. Due to this, all users may decide to use
a particular client only, thus creating a monopoly among clients. But this isn't a major issue
because if the client fails to properly verify users, then users can easily move to another
client without losing their critical data, as they are stored as decentralized.

The idea of verifying user identity in applications is to make it difficult for
users to escape after performing some sort of fraudulent activity,
preventing users with a fraud/criminal background from using the
application, and providing the means for other users in the network to
believe a user to be whom the user is claiming to be. It doesn't matter what
procedure is used to verify user identity; they are always ways for users to
represent themselves to be someone else. It doesn't matter whether we use
digital identities or scanned documents for verification because both can
be stolen and reused. What's important is just to make it difficult for users
to represent themselves to be someone else and also collect enough data to
track a user and prove that the user has done a fraudulent activity.

User accounts in DApps
Many applications need user accounts' functionality. Data associated with an account
should be modifiable by the account owner only. DApps simply cannot have the same
username- and password-based account functionality as do centralized applications
because passwords cannot prove that the data change for an account has been requested by
the owner.

There are quite a few ways to implement user accounts in DApps. But the most popular
way is using a public-private key pair to represent an account. The hash of the public key is
the unique identifier of the account. To make a change to the account's data, the user needs
to sign the change using his/her private key. We need to assume that users will store their
private keys safely. If users lose their private keys, then they lose access to their account
forever.

Understanding Decentralized Applications

[12]

Accessing the centralized apps
A DApp shouldn't depend on centralized apps because of a single point of failure. But in
some cases, there is no other option. For example, if a DApp wants to read a football score,
then where will it get the data from? Although a DApp can depend on another DApp, why
will FIFA create a DApp? FIFA will not create a DApp just because other DApps want the
data. This is because a DApp to provide scores is of no benefit as it will ultimately be
controlled by FIFA completely.

So in some cases, a DApp needs to fetch data from a centralized application. But the major
problem is how the DApp knows that the data fetched from a domain is not tampered by a
middle service/man and is the actual response. Well, there are various ways to resolve this
depending on the DApp architecture. For example, in Ethereum, for the smart contracts to
access centralized APIs, they can use the Oraclize service as a middleman as smart contracts
cannot make direct HTTP requests. Oraclize provides a TLSNotary proof for the data it
fetches for the smart contract from centralized services.

Internal currency in DApps
For a centralized application to sustain for a long time, the owner of the app needs to make
a profit in order to keep it running. DApps don't have an owner, but still, like any other
centralized app, the nodes of a DApp need hardware and network resources to keep it
running. So the nodes of a DApp need something useful in return to keep the DApp
running. That's where internal currency comes into play. Most DApps have a built-in
internal currency, or we can say that most successful DApps have a built-in internal
currency.

The consensus protocol is what decides how much currency a node receives. Depending on
the consensus protocol, only certain kinds of nodes earn currency. We can also say that the
nodes that contribute to keeping the DApp secure and running are the ones that earn
currency. Nodes that only read data are not rewarded with anything. For example, in
Bitcoin, only miners earn Bitcoins for successfully mining blocks.

The biggest question is since this is a digital currency, why would someone value it? Well,
according to economics, anything that has demand and whose supply is insufficient will
have value.

Making users pay to use the DApp using the internal currency solves the demand problem.
As more and more users use the DApp, the demand also increases and, therefore, the value
of the internal currency increases as well.

Understanding Decentralized Applications

[13]

Setting a fixed amount of currency that can be produced makes the currency scarce, giving
it a higher value.

The currency is supplied over time instead of supplying all the currency at a go. This is
done so that new nodes that enter the network to keep it secure and running also earn the
currency.

Disadvantages of internal currency in DApps
The only demerit of having internal currency in DApps is that the DApps are not free for
use anymore. This is one of the places where centralized applications get the upper hand as
centralized applications can be monetized using ads, providing premium APIs for third-
party apps, and so and can be made free for users.

In DApps, we cannot integrate ads because there is no one to check the advertising
standards; the clients may not display ads because there is no benefit for them in displaying
ads.

What are permissioned DApps?
Until now, we have been learning about DApps, which are completely open and
permissionless; that is, anyone can participate without establishing an identity.

On the other hand, permissioned DApps are not open for everyone to participate.
Permissioned DApps inherit all properties of permissionless DApps, except that you need
permission to participate in the network. Permission systems vary between permissioned
DApps.

To join a permissioned DApp, you need permission, so consensus protocols of
permissionless DApps may not work very well in permissioned DApps; therefore, they
have different consensus protocols than permissionless DApps. Permissioned DApps don't
have internal currency.

Popular DApps
Now that we have some high-level knowledge about what DApps are and how they are
different from centralized apps, let's explore some of the popular and useful DApps. While
exploring these DApps, we will explore them at a level that is enough to understand how
they work and tackle various issues instead of diving too deep.

Understanding Decentralized Applications

[14]

Bitcoin
Bitcoin is a decentralized currency. Bitcoin is the most popular DApp and its success is
what showed how powerful DApps can be and encouraged people to build other DApps.

Before we get into further details about how Bitcoin works and why people and the
government consider it to be a currency, we need to learn what ledgers and blockchains are.

What is a ledger?
A ledger is basically a list of transactions. A database is different from a ledger. In a ledger,
we can only append new transactions, whereas in a database, we can append, modify, and
delete transactions. A database can be used to implement a ledger.

What is blockchain?
A blockchain is a data structure used to create a decentralized ledger. A blockchain is
composed of blocks in a serialized manner. A block contains a set of transactions, a hash of
the previous block, timestamp (indicating when the block was created), block reward, block
number, and so on. Every block contains a hash of the previous block, thus creating a chain
of blocks linked with each other. Every node in the network holds a copy of the blockchain.

Proof-of-work, proof-of-stake, and so on are various consensus protocols used to keep the
blockchain secure. Depending on the consensus protocol, the blocks are created and added
to the blockchain differently. In proof-of-work, blocks are created by a procedure called
mining, which keeps the blockchain safe. In the proof-of-work protocol, mining involves
solving complex puzzles. We will learn more about blockchain and its consensus protocols
later in this book.

The blockchain in the Bitcoin network holds Bitcoin transactions. Bitcoins are supplied to
the network by rewarding new Bitcoins to the nodes that successfully mine blocks.

The major advantage of blockchain data structure is that it automates
auditing and makes an application transparent yet secure. It can prevent
fraud and corruption. It can be used to solve many other problems
depending on how you implement and use it.

Understanding Decentralized Applications

[15]

Is Bitcoin legal?
First of all, Bitcoin is not an internal currency; rather, it's a decentralized currency. Internal
currencies are mostly legal because they are an asset and their use is obvious.

The main question is whether currency-only DApps are legal or not. The straight answer is
that it's legal in many countries. Very few countries have made it illegal and most are yet to
decide.

Here are a few reasons why some countries have made it illegal and most are yet to decide:

Due to the identity issue in DApps, user accounts don't have any identity
associated with them in Bitcoin; therefore, it can be used for money laundering
These virtual currencies are very volatile, so there is a higher risk of people losing
money
It is really easy to evade taxes when using virtual currencies

Why would someone use Bitcoin?
The Bitcoin network is used to only send/receive Bitcoins and nothing else. So you must be
wondering why there would be demand for Bitcoin.

Here are some reasons why people use Bitcoin:

The major advantage of using Bitcoin is that it makes sending and receiving
payments anywhere in the world easy and fast
Online payment transaction fees are expensive compared to Bitcoin transaction
fees
Hackers can steal your payment information from merchants, but in the case of
Bitcoin, stealing Bitcoin addresses is completely useless because for a transaction
to be valid, it must be signed with its associated private key, which the user
doesn't need to share with anyone to make a payment.

Ethereum
Ethereum is a decentralized platform that allows us to run DApps on top of it. These
DApps are written using smart contracts. One or more smart contracts can form a DApp
together. An Ethereum smart contract is a program that runs on Ethereum. A smart contract
runs exactly as programmed without any possibility of downtime, censorship, fraud, and
third-party interference.

Understanding Decentralized Applications

[16]

The main advantage of using Ethereum to run smart contracts is that it makes it easy for
smart contracts to interact with each other. Also, you don't have to worry about integrating
consensus protocol and other things; instead, you just need to write the application logic.
Obviously, you cannot build any kind of DApp using Ethereum; you can build only those
kinds of DApps whose features are supported by Ethereum.

Ethereum has an internal currency called ether. To deploy smart contracts or execute
functions of the smart contracts, you need ether.

This book is dedicated to building DApps using Ethereum. Throughout this book, you will
learn every bit of Ethereum in depth.

The Hyperledger project
Hyperledger is a project dedicated to building technologies to build permissioned DApps.
Hyperledger fabric (or simply fabric) is an implementation of the Hyperledger project.
Other implementations include Intel Sawtooth and R3 Corda.

Fabric is a permissioned decentralized platform that allows us to run permissioned DApps
(called chaincodes) on top of it. We need to deploy our own instance of fabric and then
deploy our permissioned DApps on top of it. Every node in the network runs an instance of
fabric. Fabric is a plug-and-play system where you can easily plug and play various
consensus protocols and features.

Hyperledger uses the blockchain data structure. Hyperledger-based blockchains can
currently choose to have no consensus protocols (that is, the NoOps protocol) or else use
the PBFT (Practical Byzantine Fault Tolerance) consensus protocol. It has a special node
called certificate authority, which controls who can join the network and what they can do.

IPFS
IPFS (InterPlanetary File System) is a decentralized filesystem. IPFS uses DHT
(distributed hash table) and Merkle DAG (directed acyclic graph) data structures. It uses a
protocol similar to BitTorrent to decide how to move data around the network. One of the
advanced features of IPFS is that it supports file versioning. To achieve file versioning, it
uses data structures similar to Git.

Understanding Decentralized Applications

[17]

Although it called a decentralized filesystem, it doesn't adhere to a major property of a
filesystem; that is, when we store something in a filesystem, it is guaranteed to be there
until deleted. But IPFS doesn't work that way. Every node doesn't hold all files; it stores the
files it needs. Therefore, if a file is less popular, then obviously many nodes won't have it;
therefore, there is a huge chance of the file disappearing from the network. Due to this,
many people prefer to call IPFS a decentralized peer-to-peer file-sharing application. Or
else, you can think of IPFS as BitTorrent, which is completely decentralized; that is, it
doesn't have a tracker and has some advanced features.

How does it work?
Let's look at an overview of how IPFS works. When we store a file in IPFS, it's split into
chunks < 256 KB and hashes of each of these chunks are generated. Nodes in the network
hold the IPFS files they need and their hashes in a hash table.

There are four types of IPFS files: blob, list, tree, and commit. A blob represents a chunk of
an actual file that's stored in IPFS. A list represents a complete file as it holds the list of
blobs and other lists. As lists can hold other lists, it helps in data compression over the
network. A tree represents a directory as it holds a list of blobs, lists, other trees, and
commits. And a commit file represents a snapshot in the version history of any other file. As
lists, trees, and commits have links to other IPFS files, they form a Merkle DAG.

So when we want to download a file from the network, we just need the hash of the IPFS
list file. Or if we want to download a directory, then we just need the hash of the IPFS tree
file.

As every file is identified by a hash, the names are not easy to remember. If we update a file,
then we need to share a new hash with everyone that wants to download that file. To tackle
this issue, IPFS uses the IPNS feature, which allows IPFS files to be pointed using self-
certified names or human-friendly names.

Filecoin
The major reason that is stopping IPFS from becoming a decentralized filesystem is that
nodes only store the files they need. Filecoin is a decentralized filesystem similar to IPFS
with an internal currency to incentivize nodes to store files, thus increasing file availability
and making it more like a filesystem.

Nodes in the network will earn Filecoins to rent disk space, and to store/retrieve files, you
need to spend Filecoins.

Understanding Decentralized Applications

[18]

Along with IPFS technologies, Filecoin uses the blockchain data structure and the proof-of-
retrievability consensus protocol.

At the time of writing this, Filecoin is still under development, so many things are still
unclear.

Namecoin
Namecoin is a decentralized key-value database. It has an internal currency too, called
Namecoins. Namecoin uses the blockchain data structure and the proof-of-work consensus
protocol.

In Namecoin, you can store key-value pairs of data. To register a key-value pair, you need
to spend Namecoins. Once you register, you need to update it once in every 35,999 blocks;
otherwise, the value associated with the key will expire. To update, you need Namecoins as
well. There is no need to renew the keys; that is, you don't need to spend any Namecoins to
keep the key after you have registered it.

Namecoin has a namespace feature that allows users to organize different kinds of keys.
Anyone can create namespaces or use existing ones to organize keys.

Some of the most popular namespaces are a (application specific data), d (domain name
specifications), ds (secure domain name), id (identity), is (secure identity), p (product),
and so on.

.bit domains
To access a website, a browser first finds the IP address associated with the domain. These
domain name and IP address mappings are stored in DNS servers, which are controlled by
large companies and governments. Therefore, domain names are prone to censorship.
Governments and companies usually block domain names if the website is doing
something illegal or making loss for them or due to some other reason.

Due to this, there was a need for a decentralized domain name database. As Namecoin
stores key-value data just like DNS servers, Namecoin can be used to implement a
decentralized DNS, and this is what it has already been used for. The d and ds namespaces
contain keys ending with .bit, representing .bit domain names. Technically, a
namespace doesn't have any naming convention for the keys but all the nodes and clients of
Namecoin agree to this naming convention. If we try to store invalid keys in d and ds
namespaces, then clients will filter invalid keys.

Understanding Decentralized Applications

[19]

A browser that supports .bit domains needs to look up in the Namecoin's d and ds
namespace to find the IP address associated with the .bit domain.

The difference between the d and ds namespaces is that ds stores domains that support TLS
and d stores the ones that don't support TLS. We have made DNS decentralized; similarly,
we can also make the issuing of TLS certificates decentralized.

This is how TLS works in Namecoin. Users create self-signed certificates and store the
certificate hash in Namecoin. When a client that supports TLS for .bit domains tries to
access a secured .bit domain, it will match the hash of the certificate returned by the
server with the hash stored in Namecoin, and if they match, then they proceed with further
communication with the server.

A decentralized DNS formed using Namecoin is the first solution to the
Zooko triangle. The Zooko triangle defines applications that have three
properties, that is, decentralized, identity, and secure. Digital identity is
used not only to represent a person, but it can also represent a domain,
company, or something else.

Dash
Dash is a decentralized currency similar to Bitcoin. Dash uses the blockchain data structure
and the proof-of-work consensus protocol. Dash solves some of the major issues that are
caused by Bitcoin. Here are some issues related to Bitcoin:

Transactions take a few minutes to complete, and in today's world, we need
transactions to complete instantly. This is because the mining difficulty in the
Bitcoin network is adjusted in such a way that a block gets created once in an
average of every 10 minutes. We will learn more about mining later on in this
book.
Although accounts don't have an identity associated with them, trading Bitcoins
for real currency on an exchange or buying stuff with Bitcoins is traceable;
therefore, these exchanges or merchants can reveal your identity to governments
or other authorities. If you are running your own node to send/receive
transactions, then your ISP can see the Bitcoin address and trace the owner using
the IP address because broadcasted messages in the Bitcoin network are not
encrypted.

Dash aims to solve these problems by making transactions settle almost instantly and
making it impossible to identify the real person behind an account. It also prevents your ISP
from tracking you.

Understanding Decentralized Applications

[20]

In the Bitcoin network, there are two kinds of nodes, that is, miners and ordinary nodes. But
in Dash, there are three kinds of nodes, that is, miners, masternodes, and ordinary nodes.
Masternodes are what makes Dash so special.

Decentralized governance and budgeting
To host a masternode, you need to have 1,000 Dashes and a static IP address. In the Dash
network, both masternodes and miners earn Dashes. When a block is mined, 45% reward
goes to the miner, 45% goes to the masternodes, and 10% is reserved for the budget system.

Masternodes enable decentralized governance and budgeting. Due to the decentralized
governance and budgeting system, Dash is called a DAO because that's exactly what it is.

Masternodes in the network act like shareholders; that is, they have rights to take decisions
regarding where the 10% Dash goes. This 10% Dash is usually used to funds other projects.
Each masternode is given the ability to use one vote to approve a project.

Discussions on project proposals happen out of the network. But the voting happens in the
network.

Masternodes can provide a possible solution to verify user identity in
DApps; that is, masternodes can democratically select a node to verify
user identity. The person or business behind this node can manually verify
user documents. A part of this reward can also go to this node. If the node
doesn't provide good service, then the masternodes can vote for a different
node. This can be a fine solution to the decentralized identity issue.

Decentralized service
Instead of just approving or rejecting a proposal, masternodes also form a service layer that
provides various services. The reason that masternodes provide services is that the more
services they provide, the more feature-rich the network becomes, thus increasing users and
transactions, which increases prices for Dash currency and the block reward also gets high,
therefore helping masternodes earn more profit.

Masternodes provide services such as PrivateSend (a coin-mixing service that provides
anonymity), InstantSend (a service that provides almost instant transactions), DAPI (a
service that provides a decentralized API so that users don't need to run a node), and so on.

Understanding Decentralized Applications

[21]

At a given time, only 10 masternodes are selected. The selection algorithm uses the current
block hash to select the masternodes. Then, we request a service from them. The response
that's received from the majority of nodes is said to be the correct one. This is how
consensus is achieved for services provided by the masternodes.

The proof-of-service consensus protocol is used to make sure that the masternodes are
online, are responding, and have their blockchain up-to-date.

BigChainDB
BigChainDB allows you to deploy your own permissioned or permissionless decentralized
database. It uses the blockchain data structure along with various other database-specific
data structures. BigChainDB, at the time of writing this, is still under development, so many
things are not clear yet.

It also provides many other features, such as rich permissions, querying, linear scaling, and
native support for multi-assets and the federation consensus protocol.

OpenBazaar
OpenBazaar is a decentralized e-commerce platform. You can buy or sell goods using
OpenBazaar. Users are not anonymous in the OpenBazaar network as their IP address is
recorded. A node can be a buyer, seller, or a moderator.

It uses a Kademlia-style distributed hash table data structure. A seller must host a node and
keep it running in order to make the items visible in the network.

It prevents account spam by using the proof-of-work consensus protocol. It prevents ratings
and reviews spam using proof-of-burn, CHECKLOCKTIMEVERIFY, and security deposit
consensus protocols.

Buyers and sellers trade using Bitcoins. A buyer can add a moderator while making a
purchase. The moderator is responsible for resolving a dispute if anything happens between
the buyer and the seller. Anyone can be a moderator in the network. Moderators earn
commission by resolving disputes.

Understanding Decentralized Applications

[22]

Ripple
Ripple is decentralized remittance platform. It lets us transfer fiat currencies, digital
currencies, and commodities. It uses the blockchain data structure and has its own
consensus protocol. In ripple docs, you will not find the term blocks and blockchain; they
use the term ledger instead.

In ripple, money and commodity transfer happens via a trust chain in a manner similar to
how it happens in a hawala network. In ripple, there are two kinds of nodes, that is,
gateways and regular nodes. Gateways support deposit and withdrawal of one or more
currencies and/or commodities. To become a gateway in a ripple network, you need
permission as gateways to form a trust chain. Gateways are usually registered financial
institutions, exchanges, merchants, and so on.

Every user and gateway has an account address. Every user needs to add a list of gateways
they trust by adding the gateway addresses to the trust list. There is no consensus to find
whom to trust; it all depends on the user, and the user takes the risk of trusting a gateway.
Even gateways can add the list of gateways they trust.

Let's look at an example of how user X living in India can send 500 USD to user Y living in
the USA. Assuming that there is a gateway XX in India, which takes cash (physical cash or
card payments on their website) and gives you only the INR balance on ripple, X will visit
the XX office or website and deposit 30,000 INR and then XX will broadcast a transaction
saying I owe X 30,000 INR. Now assume that there is a gateway YY in the USA, which
allows only USD transactions and Y trusts YY gateway. Now, say, gateways XX and YY
don't trust each other. As X and Y don't trust a common gateway, XX and YY don't trust
each other, and finally, XX and YY don't support the same currency. Therefore, for X to
send money to Y, he needs to find intermediary gateways to form a trust chain. Assume
there is another gateway, ZZ, that is trusted by both XX and YY and it supports USD and
INR. So now X can send a transaction by transferring 50,000 INR from XX to ZZ and it gets
converted to USD by ZZ and then ZZ sends the money to YY, asking YY to give the money
to Y. Now instead of X owing Y $500, YY owes $500 to Y, ZZ owes $500 to YY, and XX owes
30,000 INR to ZZ. But it's all fine because they trust each other, whereas earlier, X and Y
didn't trust each other. But XX, YY, and ZZ can transfer the money outside of ripple
whenever they want to, or else a reverse transaction will deduct this value.

Ripple also has an internal currency called XRP (or ripples). Every transaction sent to the
network costs some ripples. As XRP is the ripple's native currency, it can be sent to anyone
in the network without trust. XRP can also be used while forming a trust chain. Remember
that every gateway has its own currency exchange rate. XRP isn't generated by a mining
process; instead, there are total of 100 billion XRPs generated in the beginning and owned
by the ripple company itself. XRP is supplied manually depending on various factors.

Understanding Decentralized Applications

[23]

All the transactions are recorded in the decentralized ledger, which forms an immutable
history. Consensus is required to make sure that all nodes have the same ledger at a given
point of time. In ripple, there is a third kind of node called validators, which are part of the
consensus protocol. Validators are responsible for validating transactions. Anyone can
become a validator. But other nodes keep a list of validators that can be actually trusted.
This list is known as UNL (unique node list). A validator also has a UNL; that is, the
validators it trusts as validators also want to reach a consensus. Currently, ripple decides
the list of validators that can be trusted, but if the network thinks that validators selected by
ripple are not trustworthy, then they can modify the list in their node software.

You can form a ledger by taking the previous ledger and applying all the transactions that
have happened since then. So to agree on the current ledger, nodes must agree on the
previous ledger and the set of transactions that have happened since then. After a new
ledger is created, a node (both regular nodes and validators) starts a timer (of a few
seconds, approximately 5 seconds) and collects the new transactions that arrived during the
creation of the previous ledger. When the timer expires, it takes those transactions that are
valid according to at least 80% of the UNLs and forms the next ledger. Validators broadcast
a proposal (a set of transactions they think are valid to form the next ledger) to the network.
Validators can broadcast proposals for the same ledger multiple times with a different set of
transactions if they decide to change the list of valid transactions depending on proposals
from their UNLs and other factors. So you only need to wait 5-10 seconds for your
transaction to be confirmed by the network.

Some people wonder whether this can lead to many different versions of the ledger since
each node may have a different UNL. As long as there is a minimal degree of inter-
connectivity between UNLs, a consensus will rapidly be reached. This is primarily because
every honest node's primary goal is to achieve a consensus.

Summary
In this chapter, we learned what DApps are and got an an overview of how they work. We
looked at some of the challenges faced by DApps and the various solutions to these issues.
Finally, we saw some of the popular DApps and had an overview of what makes them
special and how they work. Now you should be comfortable explaining what a DApp is
and how it works.

2
Understanding How Ethereum

Works
In the previous chapter, we saw what DApps are. We also saw an overview of some of the
popular DApps. One of them was Ethereum. At present, Ethereum is the most popular
DApp after bitcoin. In this chapter, we will learn in depth about how Ethereum works and
what we can develop using Ethereum. We will also see the important Ethereum clients and
node implementations.

In this chapter, we will cover the following topics:

Ethereum user accounts
What are smart contracts and how do they work?
Ethereum virtual machine
How does mining work in the proof-of-work consensus protocol?
Learning how to use the geth command
Setting up the Ethereum Wallet and Mist
Overview of Whisper and Swarm
The future of Ethereum

Understanding How Ethereum Works

[25]

Overview of Ethereum
Ethereum is a decentralized platform, which allows us to deploy DApps on top of it. Smart
contracts are written using the solidity programming language. DApps are created using
one or more smart contracts. Smart contracts are programs that run exactly as programmed
without any possibility of downtime, censorship, fraud, or third party interface. In
Ethereum, smart contracts can be written in several programming languages, including
Solidity, LLL, and Serpent. Solidity is the most popular of those languages. Ethereum has
an internal currency called ether. To deploy smart contracts or to call their methods, we
need ether. There can be multiple instances of a smart contract just like any other DApp,
and each instance is identified by its unique address. Both user accounts and smart
contracts can hold ether.

Ethereum uses blockchain data structure and proof-of-work consensus protocol. A method
of a smart contract can be invoked via a transaction or via another method. There are two
kinds of nodes in the network: regular nodes and miners. Regular nodes are the ones that
just have a copy of the blockchain, whereas miners build the blockchain by mining blocks.

Ethereum accounts
To create an Ethereum account, we just need an asymmetric key pair. There are various
algorithms, such as RSA, ECC, and so on, for generating asymmetric encryption keys.
Ethereum uses elliptic curve cryptography (ECC). ECC has various parameters. These
parameters are used to adjust speed and security. Ethereum uses the secp256k1 parameter.
To go in depth about ECC and its parameters will require mathematical knowledge, and it's
not necessary to understand it in depth for building DApps using Ethereum.

Ethereum uses 256-bit encryption. An Ethereum private/public key is a 256-bit number. As
processors cannot represent such big numbers, it's encoded as a hexadecimal string of
length 64.

Every account is represented by an address. Once we have the keys we need to generate the
address, here is the procedure to generate the address from the public key:

First, generate the keccak-256 hash of the public key. It will give you a 256-bit1.
number.
Drop the first 96 bits, that is, 12 bytes. You should now have 160 bits of binary2.
data, that is, 20 bytes.
Now encode the address as a hexadecimal string. So finally, you will have a3.
bytestring of 40 characters, which is your account address.

Understanding How Ethereum Works

[26]

Now anyone can send ether to this address.

Transactions
A transaction is a signed data package to transfer ether from an account to another account
or to a contract, invoke methods of a contract, or deploy a new contract. A transaction is
signed using ECDSA (Elliptic Curve Digital Signature Algorithm), which is a digital
signature algorithm based on ECC. A transaction contains the recipient of the message, a
signature identifying the sender and proving their intention, the amount of ether to transfer,
the maximum number of computational steps the transaction execution is allowed to take
(called the gas limit), and the cost the sender of the transaction is willing to pay for each
computational step (called the gas price). If the transaction's intention is to invoke a method
of a contract, it also contains input data, or if its intention is to deploy a contract, then it can
contain the initialization code. The product of gas used and gas price is called transaction
fees. To send ether or to execute a contract method, you need to broadcast a transaction to
the network. The sender needs to sign the transaction with its private key.

A transaction is said to be confirmed if we are sure that it will always
appear in the blockchain. It is recommended to wait for 15 confirmations
before assuming a transaction to be confirmed.

Consensus
Every node in the Ethereum network holds a copy of the blockchain. We need to make sure
that nodes cannot tamper with the blockchain, and we also need a mechanism to check
whether a block is valid or not. And also, if we encounter two different valid blockchains,
we need to have a way to find out which one to choose.

Ethereum uses the proof-of-work consensus protocol to keep the blockchain tamper-proof.
A proof-of-work system involves solving a complex puzzle to create a new block. Solving
the puzzle should require a significant amount of computational power thereby making it
difficult to create blocks. The process of creating blocks in the proof-of-work system is
called mining. Miners are the nodes in the network that mine blocks. All the DApps that use
proof-of-work do not implement exactly the same set of algorithms. They may differ in
terms of what the puzzle miners need to solve, how difficult the puzzle is, how much time it
takes to solve it, and so on. We will learn about proof-of-work with respect to Ethereum.

Understanding How Ethereum Works

[27]

Anyone can become a miner in the network. Every miner solves the puzzle individually; the
first miner to solve the puzzle is the winner and is rewarded with five ether and transaction
fees of all the transactions in that block. If you have a more powerful processor than any
other node in the network, that doesn't mean that you will always succeed because the
parameters for the puzzle are not exactly same for all the miners. But instead, if you have a
more powerful processor than any other node in the network, it gives you a higher chance
at succeeding. Proof-of-work behaves like a lottery system, and processing power can be
thought as the number of lottery tickets a person has. Networks security is not measured by
total number of miners; instead, it's measured by the total processing power of the network.

There is no limit to the number of blocks the blockchain can have, and there is no limit to
the total ether that can be produced. Once a miner successfully mines a block, it broadcasts
the block to all other nodes in the network. A block has a header and a set of transactions.
Every block holds hash of the previous block, thereby creating a connected chain.

Let's see what the puzzle the miners need to solve is and how it's solved at a high level. To
mine a block, first of all, a miner collects the new un-mined transactions broadcasted to it,
and then it filters out the not-valid transactions. A transaction to be valid must be properly
signed using the private key, the account must have enough balance to make the
transaction, and so on. Now the miner creates a block, which has a header and content.
Content is the list of transactions that the block contains. The header contains things such as
the hash of the previous block, block number, nonce, target, timestamp, difficulty, address
of the miner, and so on. The timestamp represents the time at the block's inception. Then
nonce is a meaningless value, which is adjusted in order to find the solution to the puzzle.
The puzzle is basically to find such nonce values with which when the block is hashed, the
hash is less than or equal to the target. Ethereum uses ethash hashing algorithm. The only
way to find the nonce is to enumerate all possibilities. The target is a 256-bit number, which
is calculated based on various factors. The difficulty value in the header is a different
representation of the target to make it easier to deal with. The lower the target, the more
time it takes to find the nonce, and the higher the target, the less time it takes to find the
nonce. Here is the formula to calculate the difficulty of the puzzle:

current_block_difficulty = previous_block_difficulty +
previous_block_difficulty // 2048 * max(1 - (current_block_timestamp -
previous_blocktimestamp) // 10, -99) + int(2 ** ((current_block_number //
100000) - 2))

Now any node in the network can check whether the blockchain they have is valid or not by
first checking whether the transactions in the blockchain are valid, the timestamp
validation, then whether the target and nonce of all the blocks are valid, a miner has
assigned a valid reward itself, and so on.

Understanding How Ethereum Works

[28]

If a node in the network receives two different valid blockchains, then the
blockchain whose combined difficulty of all blocks is higher is considered
to be the valid blockchain.

Now, for example, if a node in the network alters some transactions in a block, then the
node needs to calculate the nonce of all the succeeding blocks. By the time it re-finds the
nonce of the succeeding blocks, the network would have mined many more blocks and
therefore reject this blockchain as its combined difficulty would be lower.

Timestamp
The formula to calculate the target of a block requires the current timestamp, and also every
block has the current timestamp attached to its header. Nothing can stop a miner from
using some other timestamp instead of the current timestamp while mining a new block,
but they don't usually because timestamp validation would fail and other nodes won't
accept the block, and it would be a waste of resources of the miner. When a miner
broadcasts a newly mined block, its timestamp is validated by checking whether the
timestamp is greater than the timestamp of the previous block. If a miner uses a timestamp
greater than the current timestamp, the difficulty will be low as difficulty is inversely
proportional to the current timestamp; therefore, the miner whose block timestamp is the
current timestamp would be accepted by the network as it would have a higher difficulty. If
a miner uses a timestamp greater than the previous block timestamp and less than the
current timestamp, the difficulty would be higher, and therefore, it would take more time to
mine the block; by the time the block is mined, the network would have produced more
blocks, therefore, this block will get rejected as the blockchain of the malicious miner will
have a lower difficulty than the blockchain the network has. Due to these reasons, miners
always use accurate timestamps, otherwise they gain nothing.

Nonce
The nonce is a 64-bit unsigned integer. The nonce is the solution to the puzzle. A miner
keeps incrementing the nonce until it finds the solution. Now you must be wondering if
there is a miner who has hash power more than any other miner in the network, would the
miner always find nonce first? Well, it wouldn't.

Understanding How Ethereum Works

[29]

The hash of the block that the miners are mining is different for every miner because the
hash depends on things such as the timestamp, miner address, and so on, and it's unlikely
that it will be the same for all miners. Therefore, it's not a race to solve the puzzle; rather, it's
a lottery system. But of course, a miner is likely to get lucky depending on its hash power,
but that doesn't mean the miner will always find the next block.

Block time
The block difficulty formula we saw earlier uses a 10-second threshold to make sure that the
difference between the time a parent and child block mines is in is between 10-20 seconds.
But why is it 10-20 seconds and not some other value? And why there such a constant time
difference restriction instead of a constant difficulty?

Imagine that we have a constant difficulty, and miners just need to find a nonce to get the
hash of the block less and equal to the difficulty. Suppose the difficulty is high; then in this
case, users will have no way to find out how long it will take to send ether to another user.
It may take a very long time if the computational power of the network is not enough to
find the nonce to satisfy the difficulty quickly. Sometimes the network may get lucky and
find the nonce quickly. But this kind of system will find it difficult to gain attraction from
users as users will always want to know how much time it should take for a transaction to
be completed, just like when we transfer money from one bank account to another bank
account, we are given a time period within which it should get completed. If the constant
difficulty is low, it will harm the security of the blockchain because large miners can mine
blocks much faster than small miners, and the largest miner in the network will have the
ability to control the DApp. It is not possible to find a constant difficulty value that can
make the network stable because the network's computational power is not constant.

Now we know why we should always have an average time for how long it should take for
the network to mine a block. Now the question is what the most suitable average time is as
it can be anything from 1 second to infinite seconds. A smaller average time can be achieved
by lowering the difficulty, and higher average time can be achieved by increasing the
difficulty. But what are the merits and demerits of a lower and higher average time? Before
we discuss this, we need to first know what stale blocks are.

What happens if two miners mine the next block at nearly the same time? Both the blocks
will be valid for sure, but the blockchain cannot hold two blocks with the same block
number, and also, both the miners cannot be awarded. Although this is a common issue, the
solution is simple. In the end, the blockchain with the higher difficulty will be the one
accepted by the network. So the valid blocks that are finally left out are called stale blocks.

Understanding How Ethereum Works

[30]

The total number of stale blocks produced in the network is inversely proportional to the
average time it takes to generate a new block. Shorter block generation time means there
would be less time for the newly mined block to propagate throughout the network and a
bigger chance of more than one miner finding a solution to the puzzle, so by the time the
block is propagated through the network, some other miner would have also solved the
puzzle and broadcasted it, thereby creating stales. But if the average block generation time
is bigger, there is less chance that multiple miners will be able to solve the puzzle, and even
if they solve it, there is likely to be time gap between when they solved it, during which the
first solved block can be propagated and the other miners can stop mining that block and
proceed towards mining the next block. If stale blocks occur frequently in the network, they
cause major issues, but if they occur rarely, they do no harm.

But what's the problem with stale blocks? Well, they delay the confirmation of a transaction.
When two miners mine a block at nearly the same time, they may not have the same set of
transactions, so if our transactions appears in one of them, we cannot say that it's confirmed
as the block in which the transaction appeared may be stale. And we should wait for a few
more blocks to be mined. Due to stale blocks, the average confirmation time is not equal to
average block generation time.

Do stale blocks impact blockchain security? Yes, they do. We know that the network's
security is measured by the total computation power of the miners in the network. When
computation power increases, the difficulty is increased to make sure that blocks aren't
generated earlier than the average block time. So more difficulty means a more secure
blockchain, as for a node to tamper, the blockchain will need much more hash power now,
which makes it more difficult to tamper with the blockchain; therefore, the blockchain is
said to be more secure. When two blocks are mined at nearly the same time, we will have
the network parted in two, working on two different blockchains, but one is going to be the
final blockchain. So the part of the network working on the stale block mines the next block
on top of the stale block, which ends up in loss of hash power of the network as hash power
is being used for something unnecessary. The two parts of the network are likely to take
longer than the average block time to mine the next block as they have lost hash power;
therefore, after mining the next block, there will be decrease in difficulty as it took more
time than the average block time to mine the block. The decrease in difficulty impacts the
overall blockchain security. If the stale rate is too high, it will affect the blockchain security
by a huge margin.

Understanding How Ethereum Works

[31]

Ethereum tackles the security issue caused by stale blocks using something known as ghost
protocol. Ethereum uses a modified version of the actual ghost protocol. The ghost protocol
covers up the security issue by simply adding the stale blocks into the main blockchain,
thereby increasing the overall difficulty of the blockchain, as overall difficulty of the
blockchain also includes the sum of difficulties of the stale blocks. But how are stale blocks
inserted into the main blockchain without transactions conflicting? Well, any block can
specify 0 or more stales. To incentivize miners to include stale blocks, the miners are
rewarded for including stale blocks. And also, the miners of the stale blocks are rewarded.
The transactions in the stale blocks are not used for calculating confirmations, and also, the
stale block miners don't receive the transaction fees of the transactions included in the stale
blocks. Note that Ethereum calls stale blocks uncle blocks.

Here is the formula to calculate how much reward a miner of a stale block receives. The rest
of the reward goes to the nephew block, that is, the block that includes the orphan block:

(uncle_block_number + 8 - block_number) * 5 / 8

As not rewarding the miners of stale blocks doesn't harm any security, you must be
wondering why miners of stale blocks get rewarded? Well, there is another issue caused
when stale blocks occur frequently in the network, which is solved by rewarding the miners
of stale blocks. A miner should earn a percentage of reward similar to the percentage of
hash power it contributes to the network. When a block is mined at nearly the same time by
two different miners, then the block mined by the miner with more hash power is more
likely to get added to the final blockchain because of the miner's efficiency to mine the next
block; therefore, the small miner will lose reward. If the stale rate is low, it's not a big issue
because the big miner will get a little increase in reward; but if the stale rate is high, it
causes a big issue, that is, the big miner in the network will end up taking much more
rewards than it should receive. The ghost protocol balances this by rewarding the miners of
stale blocks. As the big miner doesn't take all the rewards but much more than it should get,
we don't award stale block miners the same as the nephew block; instead, we award a lesser
amount to balance it. The preceding formula balances it pretty well.

Ghost limits the total number of stale blocks a nephew can reference so that miners don't
simply mine stale blocks and stall the blockchain.

So wherever a stale block appears in the network, it somewhat affects the network. The
more the frequency of stale blocks, the more the network is affected by it.

Understanding How Ethereum Works

[32]

Forking
A fork is said to have happened when there is a conflict among the nodes regarding the
validity of a blockchain, that is, more than one blockchain happens to be in the network,
and every blockchain is validated for some miners. There are three kinds of forks: regular
forks, soft fork, and hard fork.

A regular fork is a temporary conflict occurring due to two or more miners finding a block
at nearly the same time. It's resolved when one of them has more difficulty than the other.

A change to the source code could cause conflicts. Depending on the type of conflict, it may
require miners with more than 50% of hash power to upgrade or all miners to upgrade to
resolve the conflict. When it requires miners with more than 50% of hash power to upgrade
to resolve the conflict, its called a soft fork, whereas when it requires all the miners to
upgrade to resolve the conflict, its called a hard fork. An example of a soft fork would be if
update to the source code invalidates subset of old blocks/transactions, then it can be
resolved when miners more than 50% of hash power have upgraded so that the new
blockchain will have more difficulty and finally get accepted by the whole network. An
example of a hard fork would be an if update in the source code was to change the rewards
for miners, then all the miners needs to upgrade to resolve the conflict.

Ethereum has gone through various hard and soft forks since its release.

Genesis block
A genesis block is the first block of the blockchain. It's assigned to block number 0. It's the
only block in the blockchain that doesn't reference to a previous block because there isn't
any. It doesn't hold any transactions because there isn't any ether produced yet.

Two nodes in a network will only pair with each other if they both have the same genesis
block, that is, blocks synchronization will only happen if both peers have the same genesis
block, otherwise they both will reject each other. A different genesis block of high difficulty
cannot replace a lower difficult one. Every node generates its own genesis block. For
various networks, the genesis block is hardcoded into the client.

Understanding How Ethereum Works

[33]

Ether denominations
Ether has various denominations just like any other currency. Here are the denominations:

1 Ether = 1000000000000000000 Wei
1 Ether = 1000000000000000 Kwei
1 Ether = 1000000000000 Mwei
1 Ether = 1000000000 Gwei
1 Ether = 1000000 Szabo
1 Ether = 1000 Finney
1 Ether = 0.001 Kether
1 Ether = 0.000001 Mether
1 Ether = 0.000000001 Gether
1 Ether = 0.000000000001 Tether

Ethereum virtual machine
EVM (or Ethereum virtual machine) is the Ethereum smart contracts byte-code execution
environment. Every node in the network runs EVM. All the nodes execute all the
transactions that point to smart contracts using EVM, so every node does the same
calculations and stores the same values. Transactions that only transfer ether also require
some calculation, that is, to find out whether the address has a balance or not and deduct
the balance accordingly.

Every node executes the transactions and stores the final state due to various reasons. For
example, if there is a smart contract that stores the names and details of everyone attending
a party, whenever a new person is added, a new transaction is broadcasted to the network.
For any node in the network to display details of everyone attending the party, they simply
need to read the final state of the contract.

Every transaction requires some computation and storage in the network. Therefore, there
needs to be a transaction cost, otherwise the whole network will be flooded with spam
transactions, and also without a transaction cost, miners will have no reason to include
transactions in blocks, and they will start mining empty blocks. Every transaction requires
different amount of computation and storage; therefore, every transaction has different
transaction costs.

Understanding How Ethereum Works

[34]

There are two implementations of EVM, that is, byte-code VM and JIT-
VM. At the time of writing this book, JIT-VM is available for use, but its
development is still not completed. In either case, the Solidity code is
compiled to byte code. In the case of JIT-VM, the byte code is further
compiled. JIT-VM is more efficient than it's counterpart.

Gas
Gas is a unit of measurement for computational steps. Every transaction is required to
include a gas limit and a fee that it is willing to pay per gas (that is, pay per computation);
miners have the choice of including the transaction and collecting the fee. If the gas used by
the transaction is less than or equal to the gas limit, the transaction processes. If the total gas
exceeds the gas limit, then all changes are reverted, except that the transaction is still valid
and the fee (that is, the product of the maximum gas that can be used and gas price) can still
be collected by the miner.

The miners decide the gas price (that is, price per computation). If a transaction has a lower
gas price than the gas price decided by a miner, the miner will refuse to mine the
transaction. The gas price is an amount in a wei unit. So, a miner can refuse to include a
transaction in a block if the gas price is lower than what it needs.

Each operation in EVM is assigned a number of how much gas it
consumes.

Transaction costs affect the maximum ether an account can transfer to another account. For
example, if an account has an ether balance of five, it cannot transfer all five ethers to
another account because if all ethers are transferred, there would be no balance in the
account to deduct transaction fees from.

If a transaction invokes a contract method and the method sends some ether or invokes
some other contract method, the transaction fee is deducted from the account that invoked
the contract method.

Understanding How Ethereum Works

[35]

Peer discovery
For a node to be part of the network, it needs to connect to some other nodes in the network
so that it can broadcast transactions/blocks and listen to new transactions/blocks. A node
doesn't need to connect to every node in the network; instead, a node connects to a few
other nodes. And these nodes connect to a few other nodes. In this way, the whole network
is connected to each other.

But how does a node find some other nodes in the network as there is no central server that
everyone can connect to so as to exchange their information? Ethereum has its own node
discovery protocol to solve this problem, which is based on the Kadelima protocol. In the
node discovery protocol, we have special kind of nodes called Bootstrap nodes. Bootstrap
nodes maintain a list of all nodes that are connected to them over a period of time. They
don't hold the blockchain itself. When peers connect to the Ethereum network, they first
connect to the Bootstrap nodes ,which share the lists of peers that have connected to them in
the last predefined time period. The connecting peers then connect and synchronize with
the peers.

There can be various Ethereum instances, that is, various networks, each having its own
network ID. The two major Ethereum networks are mainnet and testnet. The mainnet one is
the one whose ether is traded on exchanges, whereas testnet is used by developers to test.
Until now, we have learned everything with regards to the mainnet blockchain.

Bootnode is the most popular implementation of an Ethereum Bootstrap
node. If you want to host your own Bootstrap node, you can use bootnode.

Whisper and Swarm
Whisper and Swarm are a decentralized communication protocol and a decentralized
storage platform respectively, being developed by Ethereum developers. Whisper is a
decentralized communication protocol, whereas Swarm is a decentralized filesystem.

Whisper lets nodes in the network communicate with each other. It supports broadcasting,
user-to-user, encrypted messages, and so on. It's not designed to transfer bulk data. You can
learn more about Whisper at h t t p s ://g i t h u b . c o m /e t h e r e u m /w i k i /w i k i /W h i s p e r , and
you can see a code example overview at h t t p s ://g i t h u b . c o m /e t h e r e u m /w i k i /w i k i /W h i s p

e r - O v e r v i e w .

https://github.com/ethereum/wiki/wiki/Whisper
https://github.com/ethereum/wiki/wiki/Whisper
https://github.com/ethereum/wiki/wiki/Whisper
https://github.com/ethereum/wiki/wiki/Whisper
https://github.com/ethereum/wiki/wiki/Whisper
https://github.com/ethereum/wiki/wiki/Whisper
https://github.com/ethereum/wiki/wiki/Whisper
https://github.com/ethereum/wiki/wiki/Whisper
https://github.com/ethereum/wiki/wiki/Whisper
https://github.com/ethereum/wiki/wiki/Whisper
https://github.com/ethereum/wiki/wiki/Whisper
https://github.com/ethereum/wiki/wiki/Whisper
https://github.com/ethereum/wiki/wiki/Whisper
https://github.com/ethereum/wiki/wiki/Whisper
https://github.com/ethereum/wiki/wiki/Whisper
https://github.com/ethereum/wiki/wiki/Whisper
https://github.com/ethereum/wiki/wiki/Whisper
https://github.com/ethereum/wiki/wiki/Whisper
https://github.com/ethereum/wiki/wiki/Whisper
https://github.com/ethereum/wiki/wiki/Whisper
https://github.com/ethereum/wiki/wiki/Whisper
https://github.com/ethereum/wiki/wiki/Whisper
https://github.com/ethereum/wiki/wiki/Whisper
https://github.com/ethereum/wiki/wiki/Whisper
https://github.com/ethereum/wiki/wiki/Whisper
https://github.com/ethereum/wiki/wiki/Whisper
https://github.com/ethereum/wiki/wiki/Whisper
https://github.com/ethereum/wiki/wiki/Whisper
https://github.com/ethereum/wiki/wiki/Whisper
https://github.com/ethereum/wiki/wiki/Whisper
https://github.com/ethereum/wiki/wiki/Whisper
https://github.com/ethereum/wiki/wiki/Whisper
https://github.com/ethereum/wiki/wiki/Whisper
https://github.com/ethereum/wiki/wiki/Whisper
https://github.com/ethereum/wiki/wiki/Whisper
https://github.com/ethereum/wiki/wiki/Whisper
https://github.com/ethereum/wiki/wiki/Whisper
https://github.com/ethereum/wiki/wiki/Whisper
https://github.com/ethereum/wiki/wiki/Whisper
https://github.com/ethereum/wiki/wiki/Whisper
https://github.com/ethereum/wiki/wiki/Whisper
https://github.com/ethereum/wiki/wiki/Whisper
https://github.com/ethereum/wiki/wiki/Whisper
https://github.com/ethereum/wiki/wiki/Whisper
https://github.com/ethereum/wiki/wiki/Whisper
https://github.com/ethereum/wiki/wiki/Whisper
https://github.com/ethereum/wiki/wiki/Whisper
https://github.com/ethereum/wiki/wiki/Whisper
https://github.com/ethereum/wiki/wiki/Whisper
https://github.com/ethereum/wiki/wiki/Whisper
https://github.com/ethereum/wiki/wiki/Whisper
https://github.com/ethereum/wiki/wiki/Whisper
https://github.com/ethereum/wiki/wiki/Whisper
https://github.com/ethereum/wiki/wiki/Whisper
https://github.com/ethereum/wiki/wiki/Whisper
https://github.com/ethereum/wiki/wiki/Whisper
https://github.com/ethereum/wiki/wiki/Whisper
https://github.com/ethereum/wiki/wiki/Whisper
https://github.com/ethereum/wiki/wiki/Whisper
https://github.com/ethereum/wiki/wiki/Whisper
https://github.com/ethereum/wiki/wiki/Whisper
https://github.com/ethereum/wiki/wiki/Whisper
https://github.com/ethereum/wiki/wiki/Whisper
https://github.com/ethereum/wiki/wiki/Whisper
https://github.com/ethereum/wiki/wiki/Whisper
https://github.com/ethereum/wiki/wiki/Whisper
https://github.com/ethereum/wiki/wiki/Whisper
https://github.com/ethereum/wiki/wiki/Whisper
https://github.com/ethereum/wiki/wiki/Whisper
https://github.com/ethereum/wiki/wiki/Whisper
https://github.com/ethereum/wiki/wiki/Whisper
https://github.com/ethereum/wiki/wiki/Whisper
https://github.com/ethereum/wiki/wiki/Whisper
https://github.com/ethereum/wiki/wiki/Whisper
https://github.com/ethereum/wiki/wiki/Whisper
https://github.com/ethereum/wiki/wiki/Whisper
https://github.com/ethereum/wiki/wiki/Whisper-Overview
https://github.com/ethereum/wiki/wiki/Whisper-Overview
https://github.com/ethereum/wiki/wiki/Whisper-Overview
https://github.com/ethereum/wiki/wiki/Whisper-Overview
https://github.com/ethereum/wiki/wiki/Whisper-Overview
https://github.com/ethereum/wiki/wiki/Whisper-Overview
https://github.com/ethereum/wiki/wiki/Whisper-Overview
https://github.com/ethereum/wiki/wiki/Whisper-Overview
https://github.com/ethereum/wiki/wiki/Whisper-Overview
https://github.com/ethereum/wiki/wiki/Whisper-Overview
https://github.com/ethereum/wiki/wiki/Whisper-Overview
https://github.com/ethereum/wiki/wiki/Whisper-Overview
https://github.com/ethereum/wiki/wiki/Whisper-Overview
https://github.com/ethereum/wiki/wiki/Whisper-Overview
https://github.com/ethereum/wiki/wiki/Whisper-Overview
https://github.com/ethereum/wiki/wiki/Whisper-Overview
https://github.com/ethereum/wiki/wiki/Whisper-Overview
https://github.com/ethereum/wiki/wiki/Whisper-Overview
https://github.com/ethereum/wiki/wiki/Whisper-Overview
https://github.com/ethereum/wiki/wiki/Whisper-Overview
https://github.com/ethereum/wiki/wiki/Whisper-Overview
https://github.com/ethereum/wiki/wiki/Whisper-Overview
https://github.com/ethereum/wiki/wiki/Whisper-Overview
https://github.com/ethereum/wiki/wiki/Whisper-Overview
https://github.com/ethereum/wiki/wiki/Whisper-Overview
https://github.com/ethereum/wiki/wiki/Whisper-Overview
https://github.com/ethereum/wiki/wiki/Whisper-Overview
https://github.com/ethereum/wiki/wiki/Whisper-Overview
https://github.com/ethereum/wiki/wiki/Whisper-Overview
https://github.com/ethereum/wiki/wiki/Whisper-Overview
https://github.com/ethereum/wiki/wiki/Whisper-Overview
https://github.com/ethereum/wiki/wiki/Whisper-Overview
https://github.com/ethereum/wiki/wiki/Whisper-Overview
https://github.com/ethereum/wiki/wiki/Whisper-Overview
https://github.com/ethereum/wiki/wiki/Whisper-Overview
https://github.com/ethereum/wiki/wiki/Whisper-Overview
https://github.com/ethereum/wiki/wiki/Whisper-Overview
https://github.com/ethereum/wiki/wiki/Whisper-Overview
https://github.com/ethereum/wiki/wiki/Whisper-Overview
https://github.com/ethereum/wiki/wiki/Whisper-Overview
https://github.com/ethereum/wiki/wiki/Whisper-Overview
https://github.com/ethereum/wiki/wiki/Whisper-Overview
https://github.com/ethereum/wiki/wiki/Whisper-Overview
https://github.com/ethereum/wiki/wiki/Whisper-Overview
https://github.com/ethereum/wiki/wiki/Whisper-Overview
https://github.com/ethereum/wiki/wiki/Whisper-Overview
https://github.com/ethereum/wiki/wiki/Whisper-Overview
https://github.com/ethereum/wiki/wiki/Whisper-Overview
https://github.com/ethereum/wiki/wiki/Whisper-Overview
https://github.com/ethereum/wiki/wiki/Whisper-Overview
https://github.com/ethereum/wiki/wiki/Whisper-Overview
https://github.com/ethereum/wiki/wiki/Whisper-Overview
https://github.com/ethereum/wiki/wiki/Whisper-Overview
https://github.com/ethereum/wiki/wiki/Whisper-Overview
https://github.com/ethereum/wiki/wiki/Whisper-Overview
https://github.com/ethereum/wiki/wiki/Whisper-Overview
https://github.com/ethereum/wiki/wiki/Whisper-Overview
https://github.com/ethereum/wiki/wiki/Whisper-Overview
https://github.com/ethereum/wiki/wiki/Whisper-Overview
https://github.com/ethereum/wiki/wiki/Whisper-Overview
https://github.com/ethereum/wiki/wiki/Whisper-Overview
https://github.com/ethereum/wiki/wiki/Whisper-Overview
https://github.com/ethereum/wiki/wiki/Whisper-Overview
https://github.com/ethereum/wiki/wiki/Whisper-Overview
https://github.com/ethereum/wiki/wiki/Whisper-Overview
https://github.com/ethereum/wiki/wiki/Whisper-Overview
https://github.com/ethereum/wiki/wiki/Whisper-Overview
https://github.com/ethereum/wiki/wiki/Whisper-Overview
https://github.com/ethereum/wiki/wiki/Whisper-Overview
https://github.com/ethereum/wiki/wiki/Whisper-Overview
https://github.com/ethereum/wiki/wiki/Whisper-Overview
https://github.com/ethereum/wiki/wiki/Whisper-Overview
https://github.com/ethereum/wiki/wiki/Whisper-Overview
https://github.com/ethereum/wiki/wiki/Whisper-Overview
https://github.com/ethereum/wiki/wiki/Whisper-Overview
https://github.com/ethereum/wiki/wiki/Whisper-Overview
https://github.com/ethereum/wiki/wiki/Whisper-Overview
https://github.com/ethereum/wiki/wiki/Whisper-Overview
https://github.com/ethereum/wiki/wiki/Whisper-Overview
https://github.com/ethereum/wiki/wiki/Whisper-Overview
https://github.com/ethereum/wiki/wiki/Whisper-Overview
https://github.com/ethereum/wiki/wiki/Whisper-Overview
https://github.com/ethereum/wiki/wiki/Whisper-Overview
https://github.com/ethereum/wiki/wiki/Whisper-Overview
https://github.com/ethereum/wiki/wiki/Whisper-Overview
https://github.com/ethereum/wiki/wiki/Whisper-Overview
https://github.com/ethereum/wiki/wiki/Whisper-Overview
https://github.com/ethereum/wiki/wiki/Whisper-Overview
https://github.com/ethereum/wiki/wiki/Whisper-Overview
https://github.com/ethereum/wiki/wiki/Whisper-Overview
https://github.com/ethereum/wiki/wiki/Whisper-Overview
https://github.com/ethereum/wiki/wiki/Whisper-Overview
https://github.com/ethereum/wiki/wiki/Whisper-Overview

Understanding How Ethereum Works

[36]

Swarm is similar to Filecoin, that is, it differs mostly in terms of technicalities and
incentives. Filecoin doesn't penalize stores, whereas Swarm penalizes stores; therefore, this
increases the file availability further. You must be wondering how incentive works in
swarm. Does it have an internal currency? Actually, Swarm doesn't have an internal
currency, rather it uses ether for incentives. There is a smart contract in Ethereum, which
keeps track of incentives. Obviously, the smart contract cannot communicate with Swarm;
instead, swarm communicates with the smart contract. So basically, you pay the stores via
the smart contract, and the payment is released to the stores after the expiry date. You can
also report file missing to the smart contract, in which case it can penalize the respective
stores. You can learn more about the difference between Swarm and IPFS/Filecoin at h t t p s

://g i t h u b . c o m /e t h e r s p h e r e /g o - e t h e r e u m /w i k i /I P F S - &- S W A R M and see the smart
contract code at h t t p s ://g i t h u b . c o m /e t h e r s p h e r e /g o - e t h e r e u m /b l o b /b z z - c o n f i g /b z z

/b z z c o n t r a c t /s w a r m . s o l .

At the time of writing this book, Whisper and Swarm are still under development; so, many
things are still not clear.

Geth
Geth (or called as go-ethereum) is an implementation of Ethereum, Whisper, and Swarm
nodes. Geth can be used to be part of all of these or only selected ones. The reason for
combining them is to make them look like a single DApp and also so that via one node, a
client can access all three DApps.

Geth is a CLI application. It's written in the go programming language. It's available for all
the major operating systems. The current version of geth doesn't yet support Swarm and
supports whisper a some of the features of Whisper. At the time of writing this book, the
latest version of geth was 1.3.5.

Installing geth
Geth is available for OS X, Linux, and Windows. It supports two types of installation:
binary and scripted installation. At the time of writing this book, the latest stable version of
geth is 1.4.13. Let's see how to install it in various operating systems using the binary
installation method. Scripted installation is used when you have to modify something in the
geth source code and install it. We don't want to make any changes to the source code,
therefore, we will go with binary installation.

https://github.com/ethersphere/go-ethereum/wiki/IPFS-&-SWARM
https://github.com/ethersphere/go-ethereum/wiki/IPFS-&-SWARM
https://github.com/ethersphere/go-ethereum/wiki/IPFS-&-SWARM
https://github.com/ethersphere/go-ethereum/wiki/IPFS-&-SWARM
https://github.com/ethersphere/go-ethereum/wiki/IPFS-&-SWARM
https://github.com/ethersphere/go-ethereum/wiki/IPFS-&-SWARM
https://github.com/ethersphere/go-ethereum/wiki/IPFS-&-SWARM
https://github.com/ethersphere/go-ethereum/wiki/IPFS-&-SWARM
https://github.com/ethersphere/go-ethereum/wiki/IPFS-&-SWARM
https://github.com/ethersphere/go-ethereum/wiki/IPFS-&-SWARM
https://github.com/ethersphere/go-ethereum/wiki/IPFS-&-SWARM
https://github.com/ethersphere/go-ethereum/wiki/IPFS-&-SWARM
https://github.com/ethersphere/go-ethereum/wiki/IPFS-&-SWARM
https://github.com/ethersphere/go-ethereum/wiki/IPFS-&-SWARM
https://github.com/ethersphere/go-ethereum/wiki/IPFS-&-SWARM
https://github.com/ethersphere/go-ethereum/wiki/IPFS-&-SWARM
https://github.com/ethersphere/go-ethereum/wiki/IPFS-&-SWARM
https://github.com/ethersphere/go-ethereum/wiki/IPFS-&-SWARM
https://github.com/ethersphere/go-ethereum/wiki/IPFS-&-SWARM
https://github.com/ethersphere/go-ethereum/wiki/IPFS-&-SWARM
https://github.com/ethersphere/go-ethereum/wiki/IPFS-&-SWARM
https://github.com/ethersphere/go-ethereum/wiki/IPFS-&-SWARM
https://github.com/ethersphere/go-ethereum/wiki/IPFS-&-SWARM
https://github.com/ethersphere/go-ethereum/wiki/IPFS-&-SWARM
https://github.com/ethersphere/go-ethereum/wiki/IPFS-&-SWARM
https://github.com/ethersphere/go-ethereum/wiki/IPFS-&-SWARM
https://github.com/ethersphere/go-ethereum/wiki/IPFS-&-SWARM
https://github.com/ethersphere/go-ethereum/wiki/IPFS-&-SWARM
https://github.com/ethersphere/go-ethereum/wiki/IPFS-&-SWARM
https://github.com/ethersphere/go-ethereum/wiki/IPFS-&-SWARM
https://github.com/ethersphere/go-ethereum/wiki/IPFS-&-SWARM
https://github.com/ethersphere/go-ethereum/wiki/IPFS-&-SWARM
https://github.com/ethersphere/go-ethereum/wiki/IPFS-&-SWARM
https://github.com/ethersphere/go-ethereum/wiki/IPFS-&-SWARM
https://github.com/ethersphere/go-ethereum/wiki/IPFS-&-SWARM
https://github.com/ethersphere/go-ethereum/wiki/IPFS-&-SWARM
https://github.com/ethersphere/go-ethereum/wiki/IPFS-&-SWARM
https://github.com/ethersphere/go-ethereum/wiki/IPFS-&-SWARM
https://github.com/ethersphere/go-ethereum/wiki/IPFS-&-SWARM
https://github.com/ethersphere/go-ethereum/wiki/IPFS-&-SWARM
https://github.com/ethersphere/go-ethereum/wiki/IPFS-&-SWARM
https://github.com/ethersphere/go-ethereum/wiki/IPFS-&-SWARM
https://github.com/ethersphere/go-ethereum/wiki/IPFS-&-SWARM
https://github.com/ethersphere/go-ethereum/wiki/IPFS-&-SWARM
https://github.com/ethersphere/go-ethereum/wiki/IPFS-&-SWARM
https://github.com/ethersphere/go-ethereum/wiki/IPFS-&-SWARM
https://github.com/ethersphere/go-ethereum/wiki/IPFS-&-SWARM
https://github.com/ethersphere/go-ethereum/wiki/IPFS-&-SWARM
https://github.com/ethersphere/go-ethereum/wiki/IPFS-&-SWARM
https://github.com/ethersphere/go-ethereum/wiki/IPFS-&-SWARM
https://github.com/ethersphere/go-ethereum/wiki/IPFS-&-SWARM
https://github.com/ethersphere/go-ethereum/wiki/IPFS-&-SWARM
https://github.com/ethersphere/go-ethereum/wiki/IPFS-&-SWARM
https://github.com/ethersphere/go-ethereum/wiki/IPFS-&-SWARM
https://github.com/ethersphere/go-ethereum/wiki/IPFS-&-SWARM
https://github.com/ethersphere/go-ethereum/wiki/IPFS-&-SWARM
https://github.com/ethersphere/go-ethereum/wiki/IPFS-&-SWARM
https://github.com/ethersphere/go-ethereum/wiki/IPFS-&-SWARM
https://github.com/ethersphere/go-ethereum/wiki/IPFS-&-SWARM
https://github.com/ethersphere/go-ethereum/wiki/IPFS-&-SWARM
https://github.com/ethersphere/go-ethereum/wiki/IPFS-&-SWARM
https://github.com/ethersphere/go-ethereum/wiki/IPFS-&-SWARM
https://github.com/ethersphere/go-ethereum/wiki/IPFS-&-SWARM
https://github.com/ethersphere/go-ethereum/wiki/IPFS-&-SWARM
https://github.com/ethersphere/go-ethereum/wiki/IPFS-&-SWARM
https://github.com/ethersphere/go-ethereum/wiki/IPFS-&-SWARM
https://github.com/ethersphere/go-ethereum/wiki/IPFS-&-SWARM
https://github.com/ethersphere/go-ethereum/wiki/IPFS-&-SWARM
https://github.com/ethersphere/go-ethereum/wiki/IPFS-&-SWARM
https://github.com/ethersphere/go-ethereum/wiki/IPFS-&-SWARM
https://github.com/ethersphere/go-ethereum/wiki/IPFS-&-SWARM
https://github.com/ethersphere/go-ethereum/wiki/IPFS-&-SWARM
https://github.com/ethersphere/go-ethereum/wiki/IPFS-&-SWARM
https://github.com/ethersphere/go-ethereum/wiki/IPFS-&-SWARM
https://github.com/ethersphere/go-ethereum/wiki/IPFS-&-SWARM
https://github.com/ethersphere/go-ethereum/wiki/IPFS-&-SWARM
https://github.com/ethersphere/go-ethereum/wiki/IPFS-&-SWARM
https://github.com/ethersphere/go-ethereum/wiki/IPFS-&-SWARM
https://github.com/ethersphere/go-ethereum/wiki/IPFS-&-SWARM
https://github.com/ethersphere/go-ethereum/wiki/IPFS-&-SWARM
https://github.com/ethersphere/go-ethereum/wiki/IPFS-&-SWARM
https://github.com/ethersphere/go-ethereum/wiki/IPFS-&-SWARM
https://github.com/ethersphere/go-ethereum/wiki/IPFS-&-SWARM
https://github.com/ethersphere/go-ethereum/wiki/IPFS-&-SWARM
https://github.com/ethersphere/go-ethereum/wiki/IPFS-&-SWARM
https://github.com/ethersphere/go-ethereum/wiki/IPFS-&-SWARM
https://github.com/ethersphere/go-ethereum/wiki/IPFS-&-SWARM
https://github.com/ethersphere/go-ethereum/wiki/IPFS-&-SWARM
https://github.com/ethersphere/go-ethereum/wiki/IPFS-&-SWARM
https://github.com/ethersphere/go-ethereum/wiki/IPFS-&-SWARM
https://github.com/ethersphere/go-ethereum/wiki/IPFS-&-SWARM
https://github.com/ethersphere/go-ethereum/wiki/IPFS-&-SWARM
https://github.com/ethersphere/go-ethereum/wiki/IPFS-&-SWARM
https://github.com/ethersphere/go-ethereum/wiki/IPFS-&-SWARM
https://github.com/ethersphere/go-ethereum/wiki/IPFS-&-SWARM
https://github.com/ethersphere/go-ethereum/wiki/IPFS-&-SWARM
https://github.com/ethersphere/go-ethereum/wiki/IPFS-&-SWARM
https://github.com/ethersphere/go-ethereum/wiki/IPFS-&-SWARM
https://github.com/ethersphere/go-ethereum/wiki/IPFS-&-SWARM
https://github.com/ethersphere/go-ethereum/wiki/IPFS-&-SWARM
https://github.com/ethersphere/go-ethereum/wiki/IPFS-&-SWARM
https://github.com/ethersphere/go-ethereum/wiki/IPFS-&-SWARM
https://github.com/ethersphere/go-ethereum/wiki/IPFS-&-SWARM
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol
https://github.com/ethersphere/go-ethereum/blob/bzz-config/bzz/bzzcontract/swarm.sol

Understanding How Ethereum Works

[37]

OS X
The recommended way of installing geth in OS X is using brew. Run these two commands
in the terminal to install geth:

brew tap ethereum/ethereum
brew install ethereum

Ubuntu
The recommended way to install geth in Ubuntu is to use apt-get. Run these commands
in Ubuntu terminal to install geth:

sudo apt-get install software-properties-common
sudo add-apt-repository -y ppa:ethereum/ethereum
sudo apt-get update
sudo apt-get install ethereum

Windows
Geth comes as an executable file for Windows. Download the zip file from h t t p s ://g i t h u b

. c o m /e t h e r e u m /g o - e t h e r e u m /w i k i /I n s t a l l a t i o n - i n s t r u c t i o n s - f o r - W i n d o w s , and
extract it. Inside it, you will find the geth.exe file.

To find more about installing geth on various operating systems, visit h t t

p s ://g i t h u b . c o m /e t h e r e u m /g o - e t h e r e u m /w i k i /B u i l d i n g - E t h e r e u m .

JSON-RPC and JavaScript console
Geth provides JSON-RPC APIs for other applications to communicate with it. Geth serves
JSON-RPC APIs using HTTP, WebSocket, and other protocols. The APIs provided by JSON-
RPC are divided into these categories: admin, debug, eth, miner, net, personal, shh, txpool,
and web3. You can find more information about it these h t t p s ://g i t h u b . c o m /e t h e r e u m /g

o - e t h e r e u m /w i k i /J a v a S c r i p t - C o n s o l e .

Geth also provides an interactive JavaScript console to interact with it programmatically
using JavaScript APIs. This interactive console uses JSON-RPC over IPC to communicate
with geth. We will learn more about the JSON-RPC and the JavaScript APIs in later
chapters.

https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Installation-instructions-for-Windows
https://github.com/ethereum/go-ethereum/wiki/Building-Ethereum
https://github.com/ethereum/go-ethereum/wiki/Building-Ethereum
https://github.com/ethereum/go-ethereum/wiki/Building-Ethereum
https://github.com/ethereum/go-ethereum/wiki/Building-Ethereum
https://github.com/ethereum/go-ethereum/wiki/Building-Ethereum
https://github.com/ethereum/go-ethereum/wiki/Building-Ethereum
https://github.com/ethereum/go-ethereum/wiki/Building-Ethereum
https://github.com/ethereum/go-ethereum/wiki/Building-Ethereum
https://github.com/ethereum/go-ethereum/wiki/Building-Ethereum
https://github.com/ethereum/go-ethereum/wiki/Building-Ethereum
https://github.com/ethereum/go-ethereum/wiki/Building-Ethereum
https://github.com/ethereum/go-ethereum/wiki/Building-Ethereum
https://github.com/ethereum/go-ethereum/wiki/Building-Ethereum
https://github.com/ethereum/go-ethereum/wiki/Building-Ethereum
https://github.com/ethereum/go-ethereum/wiki/Building-Ethereum
https://github.com/ethereum/go-ethereum/wiki/Building-Ethereum
https://github.com/ethereum/go-ethereum/wiki/Building-Ethereum
https://github.com/ethereum/go-ethereum/wiki/Building-Ethereum
https://github.com/ethereum/go-ethereum/wiki/Building-Ethereum
https://github.com/ethereum/go-ethereum/wiki/Building-Ethereum
https://github.com/ethereum/go-ethereum/wiki/Building-Ethereum
https://github.com/ethereum/go-ethereum/wiki/Building-Ethereum
https://github.com/ethereum/go-ethereum/wiki/Building-Ethereum
https://github.com/ethereum/go-ethereum/wiki/Building-Ethereum
https://github.com/ethereum/go-ethereum/wiki/Building-Ethereum
https://github.com/ethereum/go-ethereum/wiki/Building-Ethereum
https://github.com/ethereum/go-ethereum/wiki/Building-Ethereum
https://github.com/ethereum/go-ethereum/wiki/Building-Ethereum
https://github.com/ethereum/go-ethereum/wiki/Building-Ethereum
https://github.com/ethereum/go-ethereum/wiki/Building-Ethereum
https://github.com/ethereum/go-ethereum/wiki/Building-Ethereum
https://github.com/ethereum/go-ethereum/wiki/Building-Ethereum
https://github.com/ethereum/go-ethereum/wiki/Building-Ethereum
https://github.com/ethereum/go-ethereum/wiki/Building-Ethereum
https://github.com/ethereum/go-ethereum/wiki/Building-Ethereum
https://github.com/ethereum/go-ethereum/wiki/Building-Ethereum
https://github.com/ethereum/go-ethereum/wiki/Building-Ethereum
https://github.com/ethereum/go-ethereum/wiki/Building-Ethereum
https://github.com/ethereum/go-ethereum/wiki/Building-Ethereum
https://github.com/ethereum/go-ethereum/wiki/Building-Ethereum
https://github.com/ethereum/go-ethereum/wiki/Building-Ethereum
https://github.com/ethereum/go-ethereum/wiki/Building-Ethereum
https://github.com/ethereum/go-ethereum/wiki/Building-Ethereum
https://github.com/ethereum/go-ethereum/wiki/Building-Ethereum
https://github.com/ethereum/go-ethereum/wiki/Building-Ethereum
https://github.com/ethereum/go-ethereum/wiki/Building-Ethereum
https://github.com/ethereum/go-ethereum/wiki/Building-Ethereum
https://github.com/ethereum/go-ethereum/wiki/Building-Ethereum
https://github.com/ethereum/go-ethereum/wiki/Building-Ethereum
https://github.com/ethereum/go-ethereum/wiki/Building-Ethereum
https://github.com/ethereum/go-ethereum/wiki/Building-Ethereum
https://github.com/ethereum/go-ethereum/wiki/Building-Ethereum
https://github.com/ethereum/go-ethereum/wiki/Building-Ethereum
https://github.com/ethereum/go-ethereum/wiki/Building-Ethereum
https://github.com/ethereum/go-ethereum/wiki/Building-Ethereum
https://github.com/ethereum/go-ethereum/wiki/Building-Ethereum
https://github.com/ethereum/go-ethereum/wiki/Building-Ethereum
https://github.com/ethereum/go-ethereum/wiki/Building-Ethereum
https://github.com/ethereum/go-ethereum/wiki/Building-Ethereum
https://github.com/ethereum/go-ethereum/wiki/Building-Ethereum
https://github.com/ethereum/go-ethereum/wiki/Building-Ethereum
https://github.com/ethereum/go-ethereum/wiki/Building-Ethereum
https://github.com/ethereum/go-ethereum/wiki/Building-Ethereum
https://github.com/ethereum/go-ethereum/wiki/Building-Ethereum
https://github.com/ethereum/go-ethereum/wiki/Building-Ethereum
https://github.com/ethereum/go-ethereum/wiki/Building-Ethereum
https://github.com/ethereum/go-ethereum/wiki/Building-Ethereum
https://github.com/ethereum/go-ethereum/wiki/Building-Ethereum
https://github.com/ethereum/go-ethereum/wiki/Building-Ethereum
https://github.com/ethereum/go-ethereum/wiki/Building-Ethereum
https://github.com/ethereum/go-ethereum/wiki/Building-Ethereum
https://github.com/ethereum/go-ethereum/wiki/Building-Ethereum
https://github.com/ethereum/go-ethereum/wiki/Building-Ethereum
https://github.com/ethereum/go-ethereum/wiki/Building-Ethereum
https://github.com/ethereum/go-ethereum/wiki/Building-Ethereum
https://github.com/ethereum/go-ethereum/wiki/Building-Ethereum
https://github.com/ethereum/go-ethereum/wiki/Building-Ethereum
https://github.com/ethereum/go-ethereum/wiki/Building-Ethereum
https://github.com/ethereum/go-ethereum/wiki/Building-Ethereum
https://github.com/ethereum/go-ethereum/wiki/Building-Ethereum
https://github.com/ethereum/go-ethereum/wiki/Building-Ethereum
https://github.com/ethereum/go-ethereum/wiki/Building-Ethereum
https://github.com/ethereum/go-ethereum/wiki/Building-Ethereum
https://github.com/ethereum/go-ethereum/wiki/Building-Ethereum
https://github.com/ethereum/go-ethereum/wiki/Building-Ethereum
https://github.com/ethereum/go-ethereum/wiki/Building-Ethereum
https://github.com/ethereum/go-ethereum/wiki/Building-Ethereum
https://github.com/ethereum/go-ethereum/wiki/Building-Ethereum
https://github.com/ethereum/go-ethereum/wiki/Building-Ethereum
https://github.com/ethereum/go-ethereum/wiki/Building-Ethereum
https://github.com/ethereum/go-ethereum/wiki/Building-Ethereum
https://github.com/ethereum/go-ethereum/wiki/Building-Ethereum
https://github.com/ethereum/go-ethereum/wiki/Building-Ethereum
https://github.com/ethereum/go-ethereum/wiki/Building-Ethereum
https://github.com/ethereum/go-ethereum/wiki/Building-Ethereum
https://github.com/ethereum/go-ethereum/wiki/Building-Ethereum
https://github.com/ethereum/go-ethereum/wiki/Building-Ethereum
https://github.com/ethereum/go-ethereum/wiki/Building-Ethereum
https://github.com/ethereum/go-ethereum/wiki/Building-Ethereum
https://github.com/ethereum/go-ethereum/wiki/Building-Ethereum
https://github.com/ethereum/go-ethereum/wiki/Building-Ethereum
https://github.com/ethereum/go-ethereum/wiki/Building-Ethereum
https://github.com/ethereum/go-ethereum/wiki/Building-Ethereum
https://github.com/ethereum/go-ethereum/wiki/Building-Ethereum
https://github.com/ethereum/go-ethereum/wiki/Building-Ethereum
https://github.com/ethereum/go-ethereum/wiki/Building-Ethereum
https://github.com/ethereum/go-ethereum/wiki/Building-Ethereum
https://github.com/ethereum/go-ethereum/wiki/Building-Ethereum
https://github.com/ethereum/go-ethereum/wiki/Building-Ethereum
https://github.com/ethereum/go-ethereum/wiki/JavaScript-Console
https://github.com/ethereum/go-ethereum/wiki/JavaScript-Console
https://github.com/ethereum/go-ethereum/wiki/JavaScript-Console
https://github.com/ethereum/go-ethereum/wiki/JavaScript-Console
https://github.com/ethereum/go-ethereum/wiki/JavaScript-Console
https://github.com/ethereum/go-ethereum/wiki/JavaScript-Console
https://github.com/ethereum/go-ethereum/wiki/JavaScript-Console
https://github.com/ethereum/go-ethereum/wiki/JavaScript-Console
https://github.com/ethereum/go-ethereum/wiki/JavaScript-Console
https://github.com/ethereum/go-ethereum/wiki/JavaScript-Console
https://github.com/ethereum/go-ethereum/wiki/JavaScript-Console
https://github.com/ethereum/go-ethereum/wiki/JavaScript-Console
https://github.com/ethereum/go-ethereum/wiki/JavaScript-Console
https://github.com/ethereum/go-ethereum/wiki/JavaScript-Console
https://github.com/ethereum/go-ethereum/wiki/JavaScript-Console
https://github.com/ethereum/go-ethereum/wiki/JavaScript-Console
https://github.com/ethereum/go-ethereum/wiki/JavaScript-Console
https://github.com/ethereum/go-ethereum/wiki/JavaScript-Console
https://github.com/ethereum/go-ethereum/wiki/JavaScript-Console
https://github.com/ethereum/go-ethereum/wiki/JavaScript-Console
https://github.com/ethereum/go-ethereum/wiki/JavaScript-Console
https://github.com/ethereum/go-ethereum/wiki/JavaScript-Console
https://github.com/ethereum/go-ethereum/wiki/JavaScript-Console
https://github.com/ethereum/go-ethereum/wiki/JavaScript-Console
https://github.com/ethereum/go-ethereum/wiki/JavaScript-Console
https://github.com/ethereum/go-ethereum/wiki/JavaScript-Console
https://github.com/ethereum/go-ethereum/wiki/JavaScript-Console
https://github.com/ethereum/go-ethereum/wiki/JavaScript-Console
https://github.com/ethereum/go-ethereum/wiki/JavaScript-Console
https://github.com/ethereum/go-ethereum/wiki/JavaScript-Console
https://github.com/ethereum/go-ethereum/wiki/JavaScript-Console
https://github.com/ethereum/go-ethereum/wiki/JavaScript-Console
https://github.com/ethereum/go-ethereum/wiki/JavaScript-Console
https://github.com/ethereum/go-ethereum/wiki/JavaScript-Console
https://github.com/ethereum/go-ethereum/wiki/JavaScript-Console
https://github.com/ethereum/go-ethereum/wiki/JavaScript-Console
https://github.com/ethereum/go-ethereum/wiki/JavaScript-Console
https://github.com/ethereum/go-ethereum/wiki/JavaScript-Console
https://github.com/ethereum/go-ethereum/wiki/JavaScript-Console
https://github.com/ethereum/go-ethereum/wiki/JavaScript-Console
https://github.com/ethereum/go-ethereum/wiki/JavaScript-Console
https://github.com/ethereum/go-ethereum/wiki/JavaScript-Console
https://github.com/ethereum/go-ethereum/wiki/JavaScript-Console
https://github.com/ethereum/go-ethereum/wiki/JavaScript-Console
https://github.com/ethereum/go-ethereum/wiki/JavaScript-Console
https://github.com/ethereum/go-ethereum/wiki/JavaScript-Console
https://github.com/ethereum/go-ethereum/wiki/JavaScript-Console
https://github.com/ethereum/go-ethereum/wiki/JavaScript-Console
https://github.com/ethereum/go-ethereum/wiki/JavaScript-Console
https://github.com/ethereum/go-ethereum/wiki/JavaScript-Console
https://github.com/ethereum/go-ethereum/wiki/JavaScript-Console
https://github.com/ethereum/go-ethereum/wiki/JavaScript-Console
https://github.com/ethereum/go-ethereum/wiki/JavaScript-Console
https://github.com/ethereum/go-ethereum/wiki/JavaScript-Console
https://github.com/ethereum/go-ethereum/wiki/JavaScript-Console
https://github.com/ethereum/go-ethereum/wiki/JavaScript-Console
https://github.com/ethereum/go-ethereum/wiki/JavaScript-Console
https://github.com/ethereum/go-ethereum/wiki/JavaScript-Console
https://github.com/ethereum/go-ethereum/wiki/JavaScript-Console
https://github.com/ethereum/go-ethereum/wiki/JavaScript-Console
https://github.com/ethereum/go-ethereum/wiki/JavaScript-Console
https://github.com/ethereum/go-ethereum/wiki/JavaScript-Console
https://github.com/ethereum/go-ethereum/wiki/JavaScript-Console
https://github.com/ethereum/go-ethereum/wiki/JavaScript-Console
https://github.com/ethereum/go-ethereum/wiki/JavaScript-Console
https://github.com/ethereum/go-ethereum/wiki/JavaScript-Console
https://github.com/ethereum/go-ethereum/wiki/JavaScript-Console
https://github.com/ethereum/go-ethereum/wiki/JavaScript-Console
https://github.com/ethereum/go-ethereum/wiki/JavaScript-Console
https://github.com/ethereum/go-ethereum/wiki/JavaScript-Console
https://github.com/ethereum/go-ethereum/wiki/JavaScript-Console
https://github.com/ethereum/go-ethereum/wiki/JavaScript-Console
https://github.com/ethereum/go-ethereum/wiki/JavaScript-Console
https://github.com/ethereum/go-ethereum/wiki/JavaScript-Console
https://github.com/ethereum/go-ethereum/wiki/JavaScript-Console
https://github.com/ethereum/go-ethereum/wiki/JavaScript-Console
https://github.com/ethereum/go-ethereum/wiki/JavaScript-Console
https://github.com/ethereum/go-ethereum/wiki/JavaScript-Console
https://github.com/ethereum/go-ethereum/wiki/JavaScript-Console
https://github.com/ethereum/go-ethereum/wiki/JavaScript-Console
https://github.com/ethereum/go-ethereum/wiki/JavaScript-Console
https://github.com/ethereum/go-ethereum/wiki/JavaScript-Console
https://github.com/ethereum/go-ethereum/wiki/JavaScript-Console
https://github.com/ethereum/go-ethereum/wiki/JavaScript-Console
https://github.com/ethereum/go-ethereum/wiki/JavaScript-Console
https://github.com/ethereum/go-ethereum/wiki/JavaScript-Console
https://github.com/ethereum/go-ethereum/wiki/JavaScript-Console
https://github.com/ethereum/go-ethereum/wiki/JavaScript-Console
https://github.com/ethereum/go-ethereum/wiki/JavaScript-Console
https://github.com/ethereum/go-ethereum/wiki/JavaScript-Console
https://github.com/ethereum/go-ethereum/wiki/JavaScript-Console
https://github.com/ethereum/go-ethereum/wiki/JavaScript-Console
https://github.com/ethereum/go-ethereum/wiki/JavaScript-Console
https://github.com/ethereum/go-ethereum/wiki/JavaScript-Console
https://github.com/ethereum/go-ethereum/wiki/JavaScript-Console
https://github.com/ethereum/go-ethereum/wiki/JavaScript-Console
https://github.com/ethereum/go-ethereum/wiki/JavaScript-Console
https://github.com/ethereum/go-ethereum/wiki/JavaScript-Console
https://github.com/ethereum/go-ethereum/wiki/JavaScript-Console
https://github.com/ethereum/go-ethereum/wiki/JavaScript-Console
https://github.com/ethereum/go-ethereum/wiki/JavaScript-Console
https://github.com/ethereum/go-ethereum/wiki/JavaScript-Console
https://github.com/ethereum/go-ethereum/wiki/JavaScript-Console
https://github.com/ethereum/go-ethereum/wiki/JavaScript-Console
https://github.com/ethereum/go-ethereum/wiki/JavaScript-Console
https://github.com/ethereum/go-ethereum/wiki/JavaScript-Console
https://github.com/ethereum/go-ethereum/wiki/JavaScript-Console
https://github.com/ethereum/go-ethereum/wiki/JavaScript-Console
https://github.com/ethereum/go-ethereum/wiki/JavaScript-Console
https://github.com/ethereum/go-ethereum/wiki/JavaScript-Console
https://github.com/ethereum/go-ethereum/wiki/JavaScript-Console

Understanding How Ethereum Works

[38]

Sub-commands and options
Let's learn some of the important sub-commands and options of the geth command using
examples. You can find the list of all sub-commands and options by using the help sub-
command. We will see a lot more about geth and its commands throughout the following
chapters.

Connecting to the mainnet network
Nodes in the Ethereum network, by default, communicate using 30303 port. But nodes are
also free to listen on some other port numbers.

To connect to the mainnet network, you just need to run the geth command. Here is an
example of how to specify the network ID explicitly and specify a custom directory where
geth will store the downloaded blockchain:

 geth --datadir "/users/packt/ethereum" --networkid 1

The --datadir option is used to specify where to store the blockchain. If it's not provided,
the default path is $HOME/.ethereum.

--networkid is used to specify the network ID. 1 is the ID of the mainnet network. If it's
not provided, the default value is 1. The network ID of testnet is 2.

Creating a private network
To create a private network, you just need to give a random network ID. Private networks
are usually created for development purposes. Geth also provide various flags related to
logging and debugging, which are useful during development. So, instead of giving a
random network ID and putting the various logging and debugging flags, we can simply
use the --dev flag, which runs a private network with various debugging and logging flags
enabled.

Creating accounts
Geth also lets us create accounts, that is, generate keys and addresses associated with them.
To create an account, use the following command:

 geth account new

Understanding How Ethereum Works

[39]

When you run this command, you will be asked to enter a password to encrypt your
account. If you forget your password, there is no way to access your account.

To get a list of all accounts in your local Wallet, use the following command:

 geth account list

The preceding command will print a list of all the addresses of the accounts. Keys are, by
default, stored in the --datadir path, but you can use the --keystore option to specify a
different directory.

Mining
By default, geth doesn't start mining. To instruct geth to start mining, you just need to
provide the --mine option. There are a few other options related to mining:

 geth --mine --minerthreads 16 --minergpus '0,1,2' --etherbase
'489b4e22aab35053ecd393b9f9c35f4f1de7b194' --unlock
'489b4e22aab35053ecd393b9f9c35f4f1de7b194'

Here, along with the --mine option, we have provided various other options. The --
minerthreads option specifies the total number of threads to use while hashing. By
default, eight threads are used. Etherbase is the address to which the reward earned by
mining is deposited. By default, accounts are encrypted. So to access the ether in the
account, we need to unlock it, that is, decrypt the account. Decryption is used to decrypt the
private key associated with the account. To start mining, we don't need to unlock it because
only the address is required to deposit the mining rewards. One or more accounts can be
unlocked using the -unlock option. Multiple addresses can be provided by separating the
addresses using comma.

--minergpus is used to specify the GPUs to use for mining. To get the list of GPUs, use the
geth gpuinfo command. For each GPU, you need to have 1-2 GB of RAM. By default, it
doesn't use GPUs, instead only CPU.

Fast synchronization
At the time of writing this book, the blockchain size is around 30 GB. Downloading it may
take several hours or days if you have a slow Internet connection. Ethereum implements a
fast synchronization algorithm, which can download the blockchain faster.

Understanding How Ethereum Works

[40]

Fast synchronization doesn't download the entire blocks; instead, it only downloads the
block headers, transactions receipts, and the recent state database. So, we don't have to
download and replay all transactions. To check blockchain integrity, the algorithm
downloads a full block after every defined number of blocks. To learn more about fast
synchronization algorithm, visit h t t p s ://g i t h u b . c o m /e t h e r e u m /g o - e t h e r e u m /p u l l /1889.

To use fast sync while downloading the blockchain, you need to use the --fast flag while
running geth.

Due to security reasons, fast sync will only run during an initial sync (that is, when the
node's own blockchain is empty). After a node manages to successfully sync with the
network, fast sync is forever disabled. As an additional safety feature, if a fast sync fails
close to or after the random pivot point, it is disabled as a safety precaution, and the node
reverts to full, block-processing-based synchronization.

Ethereum Wallet
Ethereum Wallet is an Ethereum UI client that lets you create account, send ether, deploy
contracts, invoke methods of contracts, and much more.

Ethereum Wallet comes with geth bundled. When you run Ethereum, it tries to find a local
geth instance and connects to it, and if it cannot find geth running, it launches its own geth
node. Ethereum Wallet communicates with geth using IPC. Geth supports file-based IPC.

If you change the data directory while running geth, you are also changing
the IPC file path. So for Ethereum Wallet to find and connect to your geth
instance, you need to use the --ipcpath option to specify the IPC file
location to its default location so that Ethereum Wallet can find it;
otherwise Ethereum Wallet won't be able to find it and will start its own
geth instance. To find the default IPC file path, run geth help, and it will
show the default path next to the --ipcpath option.

Visit h t t p s ://g i t h u b . c o m /e t h e r e u m /m i s t /r e l e a s e s to download Ethereum Wallet. It's
available for Linux, OS X, and Windows. Just like geth, it has two installation modes: binary
and scripted installation.

https://github.com/ethereum/go-ethereum/pull/1889
https://github.com/ethereum/go-ethereum/pull/1889
https://github.com/ethereum/go-ethereum/pull/1889
https://github.com/ethereum/go-ethereum/pull/1889
https://github.com/ethereum/go-ethereum/pull/1889
https://github.com/ethereum/go-ethereum/pull/1889
https://github.com/ethereum/go-ethereum/pull/1889
https://github.com/ethereum/go-ethereum/pull/1889
https://github.com/ethereum/go-ethereum/pull/1889
https://github.com/ethereum/go-ethereum/pull/1889
https://github.com/ethereum/go-ethereum/pull/1889
https://github.com/ethereum/go-ethereum/pull/1889
https://github.com/ethereum/go-ethereum/pull/1889
https://github.com/ethereum/go-ethereum/pull/1889
https://github.com/ethereum/go-ethereum/pull/1889
https://github.com/ethereum/go-ethereum/pull/1889
https://github.com/ethereum/go-ethereum/pull/1889
https://github.com/ethereum/go-ethereum/pull/1889
https://github.com/ethereum/go-ethereum/pull/1889
https://github.com/ethereum/go-ethereum/pull/1889
https://github.com/ethereum/go-ethereum/pull/1889
https://github.com/ethereum/go-ethereum/pull/1889
https://github.com/ethereum/go-ethereum/pull/1889
https://github.com/ethereum/go-ethereum/pull/1889
https://github.com/ethereum/go-ethereum/pull/1889
https://github.com/ethereum/go-ethereum/pull/1889
https://github.com/ethereum/go-ethereum/pull/1889
https://github.com/ethereum/go-ethereum/pull/1889
https://github.com/ethereum/go-ethereum/pull/1889
https://github.com/ethereum/go-ethereum/pull/1889
https://github.com/ethereum/go-ethereum/pull/1889
https://github.com/ethereum/go-ethereum/pull/1889
https://github.com/ethereum/go-ethereum/pull/1889
https://github.com/ethereum/go-ethereum/pull/1889
https://github.com/ethereum/go-ethereum/pull/1889
https://github.com/ethereum/go-ethereum/pull/1889
https://github.com/ethereum/go-ethereum/pull/1889
https://github.com/ethereum/go-ethereum/pull/1889
https://github.com/ethereum/go-ethereum/pull/1889
https://github.com/ethereum/go-ethereum/pull/1889
https://github.com/ethereum/go-ethereum/pull/1889
https://github.com/ethereum/go-ethereum/pull/1889
https://github.com/ethereum/go-ethereum/pull/1889
https://github.com/ethereum/go-ethereum/pull/1889
https://github.com/ethereum/go-ethereum/pull/1889
https://github.com/ethereum/go-ethereum/pull/1889
https://github.com/ethereum/go-ethereum/pull/1889
https://github.com/ethereum/go-ethereum/pull/1889
https://github.com/ethereum/go-ethereum/pull/1889
https://github.com/ethereum/go-ethereum/pull/1889
https://github.com/ethereum/go-ethereum/pull/1889
https://github.com/ethereum/go-ethereum/pull/1889
https://github.com/ethereum/go-ethereum/pull/1889
https://github.com/ethereum/go-ethereum/pull/1889
https://github.com/ethereum/go-ethereum/pull/1889
https://github.com/ethereum/go-ethereum/pull/1889
https://github.com/ethereum/go-ethereum/pull/1889
https://github.com/ethereum/go-ethereum/pull/1889
https://github.com/ethereum/go-ethereum/pull/1889
https://github.com/ethereum/go-ethereum/pull/1889
https://github.com/ethereum/go-ethereum/pull/1889
https://github.com/ethereum/go-ethereum/pull/1889
https://github.com/ethereum/go-ethereum/pull/1889
https://github.com/ethereum/go-ethereum/pull/1889
https://github.com/ethereum/go-ethereum/pull/1889
https://github.com/ethereum/go-ethereum/pull/1889
https://github.com/ethereum/go-ethereum/pull/1889
https://github.com/ethereum/go-ethereum/pull/1889
https://github.com/ethereum/go-ethereum/pull/1889
https://github.com/ethereum/go-ethereum/pull/1889
https://github.com/ethereum/go-ethereum/pull/1889
https://github.com/ethereum/go-ethereum/pull/1889
https://github.com/ethereum/go-ethereum/pull/1889
https://github.com/ethereum/go-ethereum/pull/1889
https://github.com/ethereum/go-ethereum/pull/1889
https://github.com/ethereum/go-ethereum/pull/1889
https://github.com/ethereum/go-ethereum/pull/1889
https://github.com/ethereum/mist/releases
https://github.com/ethereum/mist/releases
https://github.com/ethereum/mist/releases
https://github.com/ethereum/mist/releases
https://github.com/ethereum/mist/releases
https://github.com/ethereum/mist/releases
https://github.com/ethereum/mist/releases
https://github.com/ethereum/mist/releases
https://github.com/ethereum/mist/releases
https://github.com/ethereum/mist/releases
https://github.com/ethereum/mist/releases
https://github.com/ethereum/mist/releases
https://github.com/ethereum/mist/releases
https://github.com/ethereum/mist/releases
https://github.com/ethereum/mist/releases
https://github.com/ethereum/mist/releases
https://github.com/ethereum/mist/releases
https://github.com/ethereum/mist/releases
https://github.com/ethereum/mist/releases
https://github.com/ethereum/mist/releases
https://github.com/ethereum/mist/releases
https://github.com/ethereum/mist/releases
https://github.com/ethereum/mist/releases
https://github.com/ethereum/mist/releases
https://github.com/ethereum/mist/releases
https://github.com/ethereum/mist/releases
https://github.com/ethereum/mist/releases
https://github.com/ethereum/mist/releases
https://github.com/ethereum/mist/releases
https://github.com/ethereum/mist/releases
https://github.com/ethereum/mist/releases
https://github.com/ethereum/mist/releases
https://github.com/ethereum/mist/releases
https://github.com/ethereum/mist/releases
https://github.com/ethereum/mist/releases
https://github.com/ethereum/mist/releases
https://github.com/ethereum/mist/releases
https://github.com/ethereum/mist/releases
https://github.com/ethereum/mist/releases
https://github.com/ethereum/mist/releases
https://github.com/ethereum/mist/releases
https://github.com/ethereum/mist/releases
https://github.com/ethereum/mist/releases
https://github.com/ethereum/mist/releases
https://github.com/ethereum/mist/releases
https://github.com/ethereum/mist/releases
https://github.com/ethereum/mist/releases
https://github.com/ethereum/mist/releases
https://github.com/ethereum/mist/releases
https://github.com/ethereum/mist/releases
https://github.com/ethereum/mist/releases
https://github.com/ethereum/mist/releases
https://github.com/ethereum/mist/releases
https://github.com/ethereum/mist/releases
https://github.com/ethereum/mist/releases
https://github.com/ethereum/mist/releases
https://github.com/ethereum/mist/releases
https://github.com/ethereum/mist/releases
https://github.com/ethereum/mist/releases
https://github.com/ethereum/mist/releases
https://github.com/ethereum/mist/releases
https://github.com/ethereum/mist/releases
https://github.com/ethereum/mist/releases
https://github.com/ethereum/mist/releases
https://github.com/ethereum/mist/releases
https://github.com/ethereum/mist/releases
https://github.com/ethereum/mist/releases
https://github.com/ethereum/mist/releases
https://github.com/ethereum/mist/releases
https://github.com/ethereum/mist/releases

Understanding How Ethereum Works

[41]

Here is an image that shows what Ethereum Wallet looks like:

Mist
Mist is a client for Ethereum, Whisper, and Swarm. It lets us send transactions, send
Whisper messages, inspect blockchains, and so on.

The relation between Mist and geth is similar to the relation between Ethereum Wallet and
geth.

Understanding How Ethereum Works

[42]

The most popular feature of Mist is that it comes with a browser. Currently, the frontend
JavaScript running in the browser can access the web3 APIs of the geth node using the
web3.js library (a library that provides Ethereum console's JavaScript APIs for other
applications to communicate with geth).

The basic idea of Mist is to build the third generation web (Web 3.0), which would wipe out
the need to have servers by using Ethereum, Whisper, and Swarm as replacements for
centralized servers.

Here is an image, showing what Mist looks like:

Understanding How Ethereum Works

[43]

Weaknesses
Every system has some weaknesses. Similarly, Ethereum also has some weaknesses.
Obviously, just like any other application, Ethereum source code can have bugs. And also
just like any other network-based application, Ethereum is also exposed to DoS attacks. But
let's see the unique and most important weaknesses of Ethereum.

Sybil attack
An attacker can attempt to fill the network with regular nodes controlled by him; you
would then be very likely to connect only to the attacker nodes. Once you have connected to
the attacker nodes, the attacker can refuse to relay blocks and transactions from everyone,
thereby disconnecting you from the network. The attacker can relay only blocks that he
creates, thereby putting you on a separate network, and so on.

51% attack
If the attacker controls more than half of the network hashrate, the attacker can generate
blocks faster than the rest of the network. The attacker can simply preserve his private fork
until it becomes longer than the branch built by the honest network and then broadcast it.

With more than 50% of hash power, the miner can reverse transactions, prevent all/some
transactions from getting mined, and prevent other miners' mined blocks from getting
inserted to the blockchain.

Serenity
Serenity is the name of the next major update for Ethereum. At the time of writing this
book, serenity is still under development. This update will require a hard fork. Serenity will
change the consensus protocol to casper, and will integrate state channels and sharding.
Complete details of how these will work is still unclear at this point of time. Let's see a high
level overview of what these are.

Understanding How Ethereum Works

[44]

Payment and state channels
Before getting into state channels, we need to know what payment channels are. A payment
channel is a feature that allows us to combine more than two transactions of sending ether
to another account into two transactions. Here is how it works. Suppose X is the owner of a
video streaming website, and Y is a user. X charges one ether for every minute. Now X
wants Y to pay after every minute while watching the video. Of course, Y can broadcast a
transaction every minute, but there are few issues here, such as X has to wait for
confirmation, so the video will be paused for sometime, and so on. This is the problem
payment channels solve. Using payment channels, Y can lock some ether (maybe 100 ether)
for a period of time (maybe 24 hours) for X by broadcasting a lock transaction. Now after
watching a 1 minute video, Y will send a signed record indicating that the lock can be
unlocked and one ether will go to X's account and the rest to Y's account. After another
minute, Y will send a signed record indicating that the lock can be unlocked, and two ether
will go to X's account, and the rest will go to Y's account. This process will keep going as Y
watches the video on X's website. Now once Y has watched 100 hours of video or 24 hours
of time is about to be reached, X will broadcast the final signed record to the network to
withdraw funds to his account. If X fails to withdraw in 24 hours, the complete refund is
made to Y. So in the blockchain, we will see only two transactions: lock and unlock.

Payment channel is for transactions related to sending ether. Similarly, a state channel
allows us to combine transactions related to smart contracts.

Proof-of-stake and casper
Before we get into what the casper consensus protocol is, we need to understand how the
proof-of-stake consensus protocol works.

Proof-of-stake is the most common alternative to proof-of-work. Proof-of-work wastes too
many computational resources. The difference between POW and POS is that in POS, a
miner doesn't need to solve the puzzle; instead the miner needs to prove ownership of the
stake to mine the block. In the POS system, ether in accounts is treated as a stake, and the
probability of a miner mining the block is directly proportional to the stake the miner holds.
So if the miner holds 10% of the stake in the network, it will mine 10% of the blocks.

But the question is how will we know who will mine the next block? We cannot simply let
the miner with the highest stake always mine the next block because this will create
centralization. There are various algorithms for next block selection, such as randomized
block selection, and coin-age-based selection.

Casper is a modified version of POS that tackles various problems of POS.

Understanding How Ethereum Works

[45]

Sharding
At present, every node needs to download all transactions, which is huge. At the rate at
which blockchain size is increasing, in the next few years, it will be very difficult to
download the whole blockchain and keep it in sync.

If you are familiar with distributed database architecture, you must be familiar with
sharding. If not, then sharding is a method of distributing data across multiple computers.
Ethereum will implement sharding to partition and distribute the blockchain across nodes.

You can learn more about sharding a blockchain at h t t p s ://g i t h u b . c o m /e t h e r e u m /w i k i /w

i k i /S h a r d i n g - F A Q .

Summary
In this chapter, we learned in detail about how Ethereum works. We learned how block
time affects security and about the weaknesses of Ethereum. We also saw what Mist and
Ethereum Wallet are and how to install them. We also saw some of the important
commands of geth. Finally, we learned what is going to be new in Serenity updates for
Ethereum.

In the next chapter, we will learn about the various ways to store and protect ether.

https://github.com/ethereum/wiki/wiki/Sharding-FAQ
https://github.com/ethereum/wiki/wiki/Sharding-FAQ
https://github.com/ethereum/wiki/wiki/Sharding-FAQ
https://github.com/ethereum/wiki/wiki/Sharding-FAQ
https://github.com/ethereum/wiki/wiki/Sharding-FAQ
https://github.com/ethereum/wiki/wiki/Sharding-FAQ
https://github.com/ethereum/wiki/wiki/Sharding-FAQ
https://github.com/ethereum/wiki/wiki/Sharding-FAQ
https://github.com/ethereum/wiki/wiki/Sharding-FAQ
https://github.com/ethereum/wiki/wiki/Sharding-FAQ
https://github.com/ethereum/wiki/wiki/Sharding-FAQ
https://github.com/ethereum/wiki/wiki/Sharding-FAQ
https://github.com/ethereum/wiki/wiki/Sharding-FAQ
https://github.com/ethereum/wiki/wiki/Sharding-FAQ
https://github.com/ethereum/wiki/wiki/Sharding-FAQ
https://github.com/ethereum/wiki/wiki/Sharding-FAQ
https://github.com/ethereum/wiki/wiki/Sharding-FAQ
https://github.com/ethereum/wiki/wiki/Sharding-FAQ
https://github.com/ethereum/wiki/wiki/Sharding-FAQ
https://github.com/ethereum/wiki/wiki/Sharding-FAQ
https://github.com/ethereum/wiki/wiki/Sharding-FAQ
https://github.com/ethereum/wiki/wiki/Sharding-FAQ
https://github.com/ethereum/wiki/wiki/Sharding-FAQ
https://github.com/ethereum/wiki/wiki/Sharding-FAQ
https://github.com/ethereum/wiki/wiki/Sharding-FAQ
https://github.com/ethereum/wiki/wiki/Sharding-FAQ
https://github.com/ethereum/wiki/wiki/Sharding-FAQ
https://github.com/ethereum/wiki/wiki/Sharding-FAQ
https://github.com/ethereum/wiki/wiki/Sharding-FAQ
https://github.com/ethereum/wiki/wiki/Sharding-FAQ
https://github.com/ethereum/wiki/wiki/Sharding-FAQ
https://github.com/ethereum/wiki/wiki/Sharding-FAQ
https://github.com/ethereum/wiki/wiki/Sharding-FAQ
https://github.com/ethereum/wiki/wiki/Sharding-FAQ
https://github.com/ethereum/wiki/wiki/Sharding-FAQ
https://github.com/ethereum/wiki/wiki/Sharding-FAQ
https://github.com/ethereum/wiki/wiki/Sharding-FAQ
https://github.com/ethereum/wiki/wiki/Sharding-FAQ
https://github.com/ethereum/wiki/wiki/Sharding-FAQ
https://github.com/ethereum/wiki/wiki/Sharding-FAQ
https://github.com/ethereum/wiki/wiki/Sharding-FAQ
https://github.com/ethereum/wiki/wiki/Sharding-FAQ
https://github.com/ethereum/wiki/wiki/Sharding-FAQ
https://github.com/ethereum/wiki/wiki/Sharding-FAQ
https://github.com/ethereum/wiki/wiki/Sharding-FAQ
https://github.com/ethereum/wiki/wiki/Sharding-FAQ
https://github.com/ethereum/wiki/wiki/Sharding-FAQ
https://github.com/ethereum/wiki/wiki/Sharding-FAQ
https://github.com/ethereum/wiki/wiki/Sharding-FAQ
https://github.com/ethereum/wiki/wiki/Sharding-FAQ
https://github.com/ethereum/wiki/wiki/Sharding-FAQ
https://github.com/ethereum/wiki/wiki/Sharding-FAQ
https://github.com/ethereum/wiki/wiki/Sharding-FAQ
https://github.com/ethereum/wiki/wiki/Sharding-FAQ
https://github.com/ethereum/wiki/wiki/Sharding-FAQ
https://github.com/ethereum/wiki/wiki/Sharding-FAQ
https://github.com/ethereum/wiki/wiki/Sharding-FAQ
https://github.com/ethereum/wiki/wiki/Sharding-FAQ
https://github.com/ethereum/wiki/wiki/Sharding-FAQ
https://github.com/ethereum/wiki/wiki/Sharding-FAQ
https://github.com/ethereum/wiki/wiki/Sharding-FAQ
https://github.com/ethereum/wiki/wiki/Sharding-FAQ
https://github.com/ethereum/wiki/wiki/Sharding-FAQ
https://github.com/ethereum/wiki/wiki/Sharding-FAQ
https://github.com/ethereum/wiki/wiki/Sharding-FAQ
https://github.com/ethereum/wiki/wiki/Sharding-FAQ
https://github.com/ethereum/wiki/wiki/Sharding-FAQ
https://github.com/ethereum/wiki/wiki/Sharding-FAQ
https://github.com/ethereum/wiki/wiki/Sharding-FAQ
https://github.com/ethereum/wiki/wiki/Sharding-FAQ
https://github.com/ethereum/wiki/wiki/Sharding-FAQ
https://github.com/ethereum/wiki/wiki/Sharding-FAQ
https://github.com/ethereum/wiki/wiki/Sharding-FAQ
https://github.com/ethereum/wiki/wiki/Sharding-FAQ
https://github.com/ethereum/wiki/wiki/Sharding-FAQ
https://github.com/ethereum/wiki/wiki/Sharding-FAQ
https://github.com/ethereum/wiki/wiki/Sharding-FAQ
https://github.com/ethereum/wiki/wiki/Sharding-FAQ
https://github.com/ethereum/wiki/wiki/Sharding-FAQ
https://github.com/ethereum/wiki/wiki/Sharding-FAQ
https://github.com/ethereum/wiki/wiki/Sharding-FAQ
https://github.com/ethereum/wiki/wiki/Sharding-FAQ
https://github.com/ethereum/wiki/wiki/Sharding-FAQ
https://github.com/ethereum/wiki/wiki/Sharding-FAQ
https://github.com/ethereum/wiki/wiki/Sharding-FAQ

3
Writing Smart Contracts

In the previous chapter, we learned how the Ethereum blockchain works and how the PoW
consensus protocol keeps it safe. Now it's time to start writing smart contracts as we have
have a good grasp of how Ethereum works. There are various languages to write Ethereum
smart contracts in, but Solidity is the most popular one. In this chapter, we will learn the
Solidity programming language. We will finally build a DApp for proof of existence,
integrity, and ownership at given a time, that is, a DApp that can prove that a file was with
a particular owner at a specific time.

In this chapter, we'll cover the following topics:

The layout of Solidity source files
Understanding Solidity data types
Special variables and functions of contracts
Control structures
Structure and features of contracts
Compiling and deploying contracts

Solidity source files
A Solidity source file is indicated using the .sol extension. Just like any other
programming language, there are various versions of Solidity. The latest version at the time
of writing this book is 0.4.2.

In the source file, you can mention the compiler version for which the code is written for
using the pragma Solidity directive.

Writing Smart Contracts

[47]

For example, take a look at the following:

pragma Solidity ^0.4.2;

Now the source file will not compile with a compiler earlier than version 0.4.2, and it will
also not work on a compiler starting from version 0.5.0 (this second condition is added
using ^). Compiler versions between 0.4.2 to 0.5.0 are most likely to include bug fixes
instead of breaking anything.

It is possible to specify much more complex rules for the compiler version;
the expression follows those used by npm.

The structure of a smart contract
A contract is like a class. A contract contains state variables, functions, function modifiers,
events, structures, and enums. Contracts also support inheritance. Inheritance is
implemented by copying code at the time of compiling. Smart contracts also support
polymorphism.

Let's look at an example of a smart contract to get an idea about what it looks like:

contract Sample
{
 //state variables
 uint256 data;
 address owner;

 //event definition
 event logData(uint256 dataToLog);

 //function modifier
 modifier onlyOwner() {
 if (msg.sender != owner) throw;
 _;
 }

 //constructor
 function Sample(uint256 initData, address initOwner){
 data = initData;
 owner = initOwner;
 }

 //functions

Writing Smart Contracts

[48]

 function getData() returns (uint256 returnedData){
 return data;
 }

 function setData(uint256 newData) onlyOwner{
 logData(newData);
 data = newData;
 }
}

Here is how the preceding code works:

At first, we declared a contract using the contract keyword.
Then, we declared two state variables; data holds some data and owner holds
the Ethereum wallet address of the owner, that is, the address in which the
contract was deployed.
Then, we defined an event. Events are used to notify the client about something.
We will trigger this event whenever data changes. All events are kept in the
blockchain.
Then, we defined a function modifier. Modifiers are used to automatically check
a condition prior to executing a function. Here, the modifier checks whether the
owner of the contract is invoking the function or not. If not, then it throws an
exception.
Then, we have the contract constructor. While deploying the contract, the
constructor is invoked. The constructor is used to initialize the state variables.
Then, we defined two methods. The first method was to get the value of the data
state variable and the second was a method to change the data value.

Before getting any further deeper into the features of smart contracts, let's learn some other
important things related to Solidity. And then we will come back to contracts.

Data location
All programming languages you would have learned so far store their variables in memory.
But in Solidity, variables are stored in the memory and the filesystem depending on the
context.

Writing Smart Contracts

[49]

Depending on the context, there is always a default location. But for complex data types,
such as strings, arrays, and structs, it can be overridden by appending either storage or
memory to the type. The default for function parameters (including return parameters) is
memory, the default for local variables is storage. and the location is forced to storage, for
state variables (obviously).

Data locations are important because they change how assignments behave:

Assignments between storage variables and memory variables always create an
independent copy. But assignments from one memory-stored complex type to
another memory-stored complex type do not create a copy.
Assignment to a state variable (even from other state variables) always creates an
independent copy.
You cannot assign complex types stored in memory to local storage variables.
In case of assigning state variables to local storage variables, the local storage
variables point to the state variables; that is, local storage variables become
pointers.

What are the different data types?
Solidity is a statically typed language; the type of data a variable holds needs to be
predefined. By default, all bits of the variables are assigned to 0. In Solidity, variables are
function scoped; that is, a variable declared anywhere within a function will be in scope for
the entire function regardless of where it is declared.

Now let's look at the various data types provided by Solidity:

The most simple data type is bool. It can hold either true or false.
uint8, uint16, uint24 ... uint256 are used to hold unsigned integers of 8 bits,
16 bits, 24 bits ... 256 bits, respectively. Similarly, int8, int16 ... int256 are used
to hold signed integers of 8 bits, 16 bits ... 256 bits, respectively. uint and int are
aliases for uint256 and int256. Similar to uint and int, ufixed and fixed
represent fractional numbers. ufixed0x8, ufixed0x16 ... ufixed0x256 are used
to hold unsigned fractional numbers of 8 bits, 16 bits ... 256 bits, respectively.
Similarly, fixed0x8, fixed0x16 ... fixed0x256 are used to hold signed
fractional numbers of 8 bits, 16 bits ... 256 bits, respectively. If it's a number
requiring more than 256 bits, then 256 bits data type is used, in which case the
approximation of the number is stored.

Writing Smart Contracts

[50]

address is used to store up to a 20 byte value by assigning a hexadecimal literal.
It is used to store Ethereum addresses. The address type exposes two properties:
balance and send. balance is used to check the balance of the address and
send is used to transfer Ether to the address. The send method takes the amount
of wei that needs to be transferred and returns true or false depending on
whether the transfer was successful or not. The wei is deducted from the contract
that invokes the send method. You can use the 0x prefix in Solidity to assign a
hexadecimal-encoded representation of values to variables.

Arrays
Solidity supports both generic and byte arrays. It supports both fixed size and dynamic
arrays. It also supports multidimensional arrays.

bytes1, bytes2, bytes3, ..., bytes32 are types for byte arrays. byte is an alias for
bytes1.

Here is an example that shows generic array syntaxes:

contract sample{
 //dynamic size array
 //wherever an array literal is seen a new array is created. If the
array literal is in state than it's stored in storage and if it's found
inside function than its stored in memory
 //Here myArray stores [0, 0] array. The type of [0, 0] is decided based
on its values.
 //Therefore you cannot assign an empty array literal.
 int[] myArray = [0, 0];

 function sample(uint index, int value){

 //index of an array should be uint256 type
 myArray[index] = value;

 //myArray2 holds pointer to myArray
 int[] myArray2 = myArray;

 //a fixed size array in memory
 //here we are forced to use uint24 because 99999 is the max value
and 24 bits is the max size required to hold it.
 //This restriction is applied to literals in memory because memory
is expensive. As [1, 2, 99999] is of type uint24 therefore myArray3 also
has to be the same type to store pointer to it.
 uint24[3] memory myArray3 = [1, 2, 99999]; //array literal

Writing Smart Contracts

[51]

 //throws exception while compiling as myArray4 cannot be assigned
to complex type stored in memory
 uint8[2] myArray4 = [1, 2];
 }
}

Here are some important things you need to know about arrays:

Arrays also have a length property that is used to find the length of an array.
You can also assign a value to the length property to change the size of the array.
However, you cannot resize an array in memory or resize a nondynamic array.
If you try to access an unset index of a dynamic array, an exception is thrown.

Remember that arrays, structs, and maps cannot be parameters of
functions and also cannot be returned by functions.

Strings
In Solidity, there are two ways to create strings: using bytes and string. bytes is used to
create a raw string, whereas string is used to create a UTF-8 string. The length of string is
always dynamic.

Here is an example that shows string syntaxes:

contract sample{
 //wherever a string literal is seen a new string is created. If the
string literal is in state than it's stored in storage and if it's found
inside function than its stored in memory
 //Here myString stores "" string.
 string myString = ""; //string literal
 bytes myRawString;

 function sample(string initString, bytes rawStringInit){
 myString = initString;

 //myString2 holds a pointer to myString
 string myString2 = myString;

 //myString3 is a string in memory
 string memory myString3 = "ABCDE";

 //here the length and content changes
 myString3 = "XYZ";

Writing Smart Contracts

[52]

 myRawString = rawStringInit;

 //incrementing the length of myRawString
 myRawString.length++;

 //throws exception while compiling
 string myString4 = "Example";

 //throws exception while compiling
 string myString5 = initString;
 }
}

Structs
Solidity also supports structs. Here is an example that shows struct syntaxes:

contract sample{
 struct myStruct {
 bool myBool;
 string myString;
 }

 myStruct s1;

 //wherever a struct method is seen a new struct is created. If the
struct method is in state than it's stored in storage and if it's found
inside function than its stored in memory
 myStruct s2 = myStruct(true, ""); //struct method syntax

 function sample(bool initBool, string initString){

 //create a instance of struct
 s1 = myStruct(initBool, initString);

 //myStruct(initBool, initString) creates a instance in memory
 myStruct memory s3 = myStruct(initBool, initString);
 }
}

Note that a function parameter cannot be a struct and a function cannot
return a struct.

Writing Smart Contracts

[53]

Enums
Solidity also supports enums. Here is an example that shows enum syntaxes:

contract sample {

 //The integer type which can hold all enum values and is the smallest
is chosen to hold enum values
 enum OS { Windows, Linux, OSX, UNIX }

 OS choice;

 function sample(OS chosen){
 choice = chosen;
 }

 function setLinuxOS(){
 choice = OS.Linux;
 }

 function getChoice() returns (OS chosenOS){
 return choice;
 }
}

Mappings
A mapping data type is a hash table. Mappings can only live in storage, not in memory.
Therefore, they are declared only as state variables. A mapping can be thought of as
consisting of key/value pairs. The key is not actually stored; instead, the keccak256 hash of
the key is used to look up for the value. Mappings don't have a length. Mappings cannot be
assigned to another mapping.

Here is an example of how to create and use a mapping:

contract sample{
 mapping (int => string) myMap;

 function sample(int key, string value){
 myMap[key] = value;

 //myMap2 is a reference to myMap
 mapping (int => string) myMap2 = myMap;
 }
}

Writing Smart Contracts

[54]

Remember that if you try to access an unset key, it gives us all 0 bits.

The delete operator
The delete operator can be applied to any variable to reset it to its default value. The
default value is all bits assigned to 0.

It we apply delete to a dynamic array, then it deletes all of its elements and the length
becomes 0. And if we apply it to a static array, then all of its indices are reset. You can also
apply delete to specific indices, in which case the indices are reset.

Nothing happens if you apply delete to a map type. But if you apply delete to a key of a
map, then the value associated with the key is deleted.

Here is an example to demonstrate the delete operator:

contract sample {

 struct Struct {
 mapping (int => int) myMap;
 int myNumber;
 }

 int[] myArray;
 Struct myStruct;

 function sample(int key, int value, int number, int[] array) {

 //maps cannot be assigned so while constructing struct we ignore
the maps
 myStruct = Struct(number);

 //here set the map key/value
 myStruct.myMap[key] = value;

 myArray = array;
 }

 function reset(){

 //myArray length is now 0
 delete myArray;

Writing Smart Contracts

[55]

 //myNumber is now 0 and myMap remains as it is
 delete myStruct;
 }

 function deleteKey(int key){

 //here we are deleting the key
 delete myStruct.myMap[key];
 }

}

Conversion between elementary types
Other than arrays, strings, structs, enums, and maps, everything else is called elementary
types.

If an operator is applied to different types, the compiler tries to implicitly convert one of the
operands into the type of the other. In general, an implicit conversion between value-types
is possible if it makes sense semantically and no information is lost: uint8 is convertible to
uint16 and int128 to int256, but int8 is not convertible to uint256 (because uint256
cannot hold, for example, -1). Furthermore, unsigned integers can be converted into bytes of
the same or larger size, but not vice versa. Any type that can be converted into uint160 can
also be converted into address.

Solidity also supports explicit conversion. So if the compiler doesn't allow implicit
conversion between two data types, then you can go for explicit conversion. It is always
recommended that you avoid explicit conversion because it may give you unexpected
results.

Let's look at an example of explicit conversion:

uint32 a = 0x12345678;
uint16 b = uint16(a); // b will be 0x5678 now

Here we are converting uint32 type to uint16 explicitly, that is, converting a large type to
a smaller type; therefore, higher-order bits are cut-off.

Writing Smart Contracts

[56]

Using var
Solidity provides the var keyword to declare variables. The type of the variable in this case
is decided dynamically depending on the first value assigned to it. Once a value is assigned,
the type is fixed, so if you assign another type to it, it will cause type conversion.

Here is an example to demonstrate var:

int256 x = 12;

//y type is int256
var y = x;

uint256 z= 9;

//exception because implicit conversion not possible
y = z;

Remember that var cannot be used when defining arrays and maps. And
it cannot be used to define function parameters and state variables.

Control structures
Solidity supports if, else, while, for, break, continue, return, ? : control structures.

Here is an example to demonstrate the control structures:

contract sample{
 int a = 12;
 int[] b;

 function sample()
 {
 //"==" throws exception for complex types
 if(a == 12)
 {
 }
 else if(a == 34)
 {
 }
 else
 {
 }

Writing Smart Contracts

[57]

 var temp = 10;

 while(temp < 20)
 {
 if(temp == 17)
 {
 break;
 }
 else
 {
 continue;
 }

 temp++;
 }

 for(var iii = 0; iii < b.length; iii++)
 {

 }
 }
}

Creating contracts using the new operator
A contract can create a new contract using the new keyword. The complete code of the
contract being created has to be known.

Here is an example to demonstrate this:

contract sample1
{
 int a;

 function assign(int b)
 {
 a = b;
 }
}

contract sample2{
 function sample2()
 {
 sample1 s = new sample1();
 s.assign(12);

Writing Smart Contracts

[58]

 }
}

Exceptions
There are some cases where exceptions are thrown automatically. You can use throw to
throw an exception manually. The effect of an exception is that the currently executing call
is stopped and reverted (that is, all changes to the state and balances are undone). Catching
exceptions is not possible:

contract sample
{
 function myFunction()
 {
 throw;
 }
}

External function calls
There are two kinds of function calls in Solidity: internal and external function calls. An
internal function call is when a function calls another function in the same contract.

An external function call is when a function calls a function of another contract. Let's look at
an example:

contract sample1
{
 int a;

 //"payable" is a built-in modifier
 //This modifier is required if another contract is sending Ether while
calling the method
 function sample1(int b) payable
 {
 a = b;
 }

 function assign(int c)
 {
 a = c;
 }

Writing Smart Contracts

[59]

 function makePayment(int d) payable
 {
 a = d;
 }
}

contract sample2{

 function hello()
 {
 }

 function sample2(address addressOfContract)
 {
 //send 12 wei while creating contract instance
 sample1 s = (new sample1).value(12)(23);

 s.makePayment(22);

 //sending Ether also
 s.makePayment.value(45)(12);

 //specifying the amount of gas to use
 s.makePayment.gas(895)(12);

 //sending Ether and also specifying gas
 s.makePayment.value(4).gas(900)(12);

 //hello() is internal call whereas this.hello() is external call
 this.hello();

 //pointing a contract that's already deployed
 sample1 s2 = sample1(addressOfContract);

 s2.makePayment(112);

 }
}

Calls made using the this keyword are called as external calls. The this
keyword inside functions represents the current contract instance.

Writing Smart Contracts

[60]

Features of contracts
Now it's time to get deeper into contracts. We will look at some new features and also get
deeper into the features we have already seen.

Visibility
The visibility of a state variable or a function defines who can see it. There are four kinds of
visibilities for function and state variables: external, public, internal, and private.

By default, the visibility of functions is public and the visibility of state variables is
internal. Let's look at what each of these visibility functions mean:

external: External functions can be called only from other contracts or via
transactions. An external function f cannot be called internally; that is, f() will
not work, but this.f() works. You cannot apply the external visibility to
state variables.
public: Public functions and state variables can be accessed in all ways possible.
The compiler generated accessor functions are all public state variables. You
cannot create your own accessors. Actually, it generates only getters, not setters.
internal: Internal functions and state variables can only be accessed internally,
that is, from within the current contract and the contracts inheriting it. You
cannot use this to access it.
private: Private functions and state variables are like internal ones, but they
cannot be accessed by the inheriting contracts.

Here is a code example to demonstrate visibility and accessors:

contract sample1
{
 int public b = 78;
 int internal c = 90;

 function sample1()
 {
 //external access
 this.a();

 //compiler error
 a();

 //internal access

Writing Smart Contracts

[61]

 b = 21;

 //external access
 this.b;

 //external access
 this.b();

 //compiler error
 this.b(8);

 //compiler error
 this.c();

 //internal access
 c = 9;
 }

 function a() external
 {

 }
}

contract sample2
{
 int internal d = 9;
 int private e = 90;
}

//sample3 inherits sample2
contract sample3 is sample2
{
 sample1 s;

 function sample3()
 {
 s = new sample1();

 //external access
 s.a();

 //external access
 var f = s.b;

 //compiler error as accessor cannot used to assign a value
 s.b = 18;

Writing Smart Contracts

[62]

 //compiler error
 s.c();

 //internal access
 d = 8;

 //compiler error
 e = 7;
 }
}

Function modifiers
We saw earlier what a function modifier is, and we wrote a basic function modifier. Now
let's look at modifiers in depth.

Modifiers are inherited by child contracts, and child contracts can override them. Multiple
modifiers can be applied to a function by specifying them in a whitespace-separated list and
will be evaluated in order. You can also pass arguments to modifiers.

Inside the modifier, the next modifier body or function body, whichever comes next, is
inserted where _; appears.

Let's take a look at a complex code example of function modifiers:

contract sample
{
 int a = 90;

 modifier myModifier1(int b) {
 int c = b;
 _;
 c = a;
 a = 8;
 }

 modifier myModifier2 {
 int c = a;
 _;
 }

 modifier myModifier3 {
 a = 96;
 return;
 _;
 a = 99;

Writing Smart Contracts

[63]

 }

 modifier myModifier4 {
 int c = a;
 _;
 }

 function myFunction() myModifier1(a) myModifier2 myModifier3 returns
(int d)
 {
 a = 1;
 return a;
 }
}

This is how myFunction() is executed:

int c = b;
 int c = a;
 a = 96;
 return;
 int c = a;
 a = 1;
 return a;
 a = 99;
c = a;
a = 8;

Here, when you call the myFunction method, it will return 0. But after that, when you try
to access the state variable a, you will get 8.

return in a modifier or function body immediately leaves the whole function and the
return value is assigned to whatever variable it needs to be.

In the case of functions, the code after return is executed after the caller's code execution is
finished. And in the case of modifiers, the code after _; in the previous modifier is executed
after the caller's code execution is finished. In the earlier example, line numbers 5, 6, and 7
are never executed. After line number 4, the execution starts from line numbers 8 to 10.

return inside modifiers cannot have a value associated with it. It always returns 0 bits.

Writing Smart Contracts

[64]

The fallback function
A contract can have exactly one unnamed function called the fallback function. This
function cannot have arguments and cannot return anything. It is executed on a call to the
contract if none of the other functions match the given function identifier.

This function is also executed whenever the contract receives Ether without any function
call; that is, the transaction sends Ether to the contracts and doesn't invoke any method. In
such a context, there is usually very little gas available to the function call (to be precise,
2,300 gas), so it is important to make fallback functions as cheap as possible.

Contracts that receive Ether but do not define a fallback function throw an exception,
sending back the Ether. So if you want your contract to receive Ether, you have to
implement a fallback function.

Here is an example of a fallback function:

contract sample
{
 function() payable
 {
 //keep a note of how much Ether has been sent by whom
 }
}

Inheritance
Solidity supports multiple inheritance by copying code including polymorphism. Even if a
contract inherits from multiple other contracts, only a single contract is created on the
blockchain; the code from the parent contracts is always copied into the final contract.

Here is an example to demonstrate inheritance:

contract sample1
{
 function a(){}

 function b(){}
}

//sample2 inherits sample1
contract sample2 is sample1
{
 function b(){}

Writing Smart Contracts

[65]

}

contract sample3
{
 function sample3(int b)
 {

 }
}

//sample4 inherits from sample1 and sample2
//Note that sample1 is also parent of sample2, yet there is only a single
instance of sample1
contract sample4 is sample1, sample2
{
 function a(){}

 function c(){

 //this executes the "a" method of sample3 contract
 a();

 //this executes the 'a" method of sample1 contract
 sample1.a();

 //calls sample2.b() because it's in last in the parent contracts
list and therefore it overrides sample1.b()
 b();
 }
}

//If a constructor takes an argument, it needs to be provided at the
constructor of the child contract.
//In Solidity child constructor doesn't call parent constructor instead
parent is initialized and copied to child
contract sample5 is sample3(122)
{

}

Writing Smart Contracts

[66]

The super keyword
The super keyword is used to refer to the next contract in the final inheritance chain. Let's
take a look at an example to understand this:

contract sample1
{
}

contract sample2
{
}

contract sample3 is sample2
{
}

contract sample4 is sample2
{
}

contract sample5 is sample4
{
 function myFunc()
 {
 }
}

contract sample6 is sample1, sample2, sample3, sample5
{
 function myFunc()
 {
 //sample5.myFunc()
 super.myFunc();
 }
}

The final inheritance chain with respect to the sample6 contract is sample6, sample5,
sample4, sample2, sample3, sample1. The inheritance chain starts with the most derived
contracts and ends with the least derived contract.

Writing Smart Contracts

[67]

Abstract contracts
Contracts that only contain the prototype of functions instead of implementation are called
abstract contracts. Such contracts cannot be compiled (even if they contain implemented
functions alongside nonimplemented functions). If a contract inherits from an abstract
contract and does not implement all nonimplemented functions by overriding, it will itself
be abstract.

These abstract contracts are only provided to make the interface known to the compiler.
This is useful when you are referring to a deployed contract and calling its functions.

Here is an example to demonstrate this:

contract sample1
{
 function a() returns (int b);
}

contract sample2
{
 function myFunc()
 {
 sample1 s = sample1(0xd5f9d8d94886e70b06e474c3fb14fd43e2f23970);

 //without abstract contract this wouldn't have compiled
 s.a();
 }
}

Libraries
Libraries are similar to contracts, but their purpose is that they are deployed only once at a
specific address and their code is reused by various contracts. This means that if library
functions are called, their code is executed in the context of the calling contract; that is, this
points to the calling contract, and especially, the storage from the calling contract can be
accessed. As a library is an isolated piece of source code, it can only access state variables of
the calling contract if they are explicitly supplied (it would have no way to name them
otherwise).

Libraries cannot have state variables; they don't support inheritance and they cannot receive
Ether. Libraries can contain structs and enums.

Writing Smart Contracts

[68]

Once a Solidity library is deployed to the blockchain, it can be used by anyone, assuming
you know its address and have the source code (with only prototypes or complete
implementation). The source code is required by the Solidity compiler so that it can make
sure that the methods you are trying to access actually exist in the library.

Let's take a look at an example:

library math
{
 function addInt(int a, int b) returns (int c)
 {
 return a + b;
 }
}

contract sample
{
 function data() returns (int d)
 {
 return math.addInt(1, 2);
 }
}

We cannot add the address of the library in the contract source code; instead, we need to
provide the library address during compilation to the compiler.

Libraries have many use cases. The two major use cases of libraries are as follows:

If you have many contracts that have some common code, then you can deploy
that common code as a library. This will save gas as gas depends on the size of
the contract too. Therefore, we can think of a library as a base contract of the
contract that uses it. Using a base contract instead of a library to split the common
code won't save gas because in Solidity, inheritance works by copying code. Due
to the reason that libraries are thought of as base contracts, functions with the
internal visibility in a library are copied to the contract that uses it; otherwise,
functions with the internal visibility of a library cannot be called by the contract
that uses the library, as an external call would be required and functions with the
internal visibility cannot be invoked using the external call. Also, structs and
enums in a library are copied to the contract that uses the library.

Writing Smart Contracts

[69]

Libraries can be used to add member functions to data types.

If a library contains only internal functions and/or structs/enums, then the
library doesn't need to be deployed, as everything that's there in the
library is copied to the contract that uses it.

Using for
The using A for B; directive can be used to attach library functions (from the library A to
any type B). These functions will receive the object they are called on as their first
parameter.

The effect of using A for *; is that the functions from the library A are attached to all
types.

Here is an example to demonstrate for:

library math
{
 struct myStruct1 {
 int a;
 }

 struct myStruct2 {
 int a;
 }

 //Here we have to make 's' location storage so that we get a reference.
 //Otherwise addInt will end up accessing/modifying a different instance
of myStruct1 than the one on which its invoked
 function addInt(myStruct1 storage s, int b) returns (int c)
 {
 return s.a + b;
 }

 function subInt(myStruct2 storage s, int b) returns (int c)
 {
 return s.a + b;
 }
}

contract sample
{
 //"*" attaches the functions to all the structs

Writing Smart Contracts

[70]

 using math for *;
 math.myStruct1 s1;
 math.myStruct2 s2;

 function sample()
 {
 s1 = math.myStruct1(9);
 s2 = math.myStruct2(9);

 s1.addInt(2);

 //compiler error as the first parameter of addInt is of type
myStruct1 so addInt is not attached to myStruct2
 s2.addInt(1);
 }
}

Returning multiple values
Solidity allows functions to return multiple values. Here is an example to demonstrate this:

contract sample
{
 function a() returns (int a, string c)
 {
 return (1, "ss");
 }

 function b()
 {
 int A;
 string memory B;

 //A is 1 and B is "ss"
 (A, B) = a();

 //A is 1
 (A,) = a();

 //B is "ss"
 (, B) = a();
 }
}

Writing Smart Contracts

[71]

Importing other Solidity source files
Solidity allows a source file to import other source files. Here is an example to demonstrate
this:

//This statement imports all global symbols from "filename" (and symbols
imported there) into the current global scope. "filename" can be a absolute
or relative path. It can only be a HTTP URL
import "filename";

//creates a new global symbol symbolName whose members are all the global
symbols from "filename".
import * as symbolName from "filename";

//creates new global symbols alias and symbol2 which reference symbol1 and
symbol2 from "filename", respectively.
import {symbol1 as alias, symbol2} from "filename";

//this is equivalent to import * as symbolName from "filename";.
import "filename" as symbolName;

Globally available variables
There are special variables and functions that always exist globally. They are discussed in
the upcoming sections.

Block and transaction properties
The block and transaction properties are as follows:

block.blockhash(uint blockNumber) returns (bytes32): The hash of
the given block only works for the 256 most recent blocks.
block.coinbase (address): The current block miner's address.
block.difficulty (uint): The current block difficulty.
block.gaslimit (uint): The current block gas limit. It defines the maximum
amount of gas that all transactions in the whole block combined are allowed to
consume. Its purpose is to keep the block propagation and processing time low,
thereby allowing a sufficiently decentralized network. Miners have the right to
set the gas limit for the current block to be within ~0.0975% (1/1,024) of the gas
limit of the last block, so the resulting gas limit should be the median of miners'
preferences.

Writing Smart Contracts

[72]

block.number (uint): The current block number.
block.timestamp (uint): The current block timestamp.
msg.data (bytes): The complete call data holds the function and its arguments
that the transaction invokes.
msg.gas (uint): The remaining gas.
msg.sender (address): The sender of the message (the current call).
msg.sig (bytes4): The first four bytes of the call data (the function identifier).
msg.value (uint): The number of wei sent with the message.
now (uint): The current block timestamp (alias for block.timestamp).
tx.gasprice (uint): The gas price of the transaction.
tx.origin (address): The sender of the transaction (full call chain).

Address type related
The address type related variables are as follows:

<address>.balance (uint256): The balance of the address in wei
<address>.send(uint256 amount) returns (bool): Sends the given
amount of wei to address; returns false on failure

Contract related
The contract related variables are as follows:

this: The current contract, explicitly convertible to the address type.
selfdestruct(address recipient): Destroys the current contract, sending
its funds to the given address.

Ether units
A literal number can take a suffix of wei, finney, szabo, or Ether to convert between the
subdenominations of Ether, where Ether currency numbers without a postfix are assumed
to be wei; for example, 2 Ether == 2000 finney evaluates to true.

Writing Smart Contracts

[73]

Proof of existence, integrity, and ownership
contract
Let's write a Solidity contract that can prove file ownership without revealing the actual file.
It can prove that the file existed at a particular time and finally check for document
integrity.

We will achieve proof of ownership by storing the hash of the file and the owner's name as
pairs. We will achieve proof of existence by storing the hash of the file and the block
timestamp as pairs. Finally, storing the hash itself proves the file integrity; that is, if the file
was modified, then its hash will change and the contract won't be able to find any such file,
therefore proving that the file was modified.

Here is the code for the smart contract to achieve all this:

contract Proof
{
 struct FileDetails
 {
 uint timestamp;
 string owner;
 }

 mapping (string => FileDetails) files;

 event logFileAddedStatus(bool status, uint timestamp, string owner,
string fileHash);

 //this is used to store the owner of file at the block timestamp
 function set(string owner, string fileHash)
 {
 //There is no proper way to check if a key already exists or not
therefore we are checking for default value i.e., all bits are 0
 if(files[fileHash].timestamp == 0)
 {
 files[fileHash] = FileDetails(block.timestamp, owner);

 //we are triggering an event so that the frontend of our app
knows that the file's existence and ownership details have been stored
 logFileAddedStatus(true, block.timestamp, owner, fileHash);
 }
 else
 {
 //this tells to the frontend that file's existence and
ownership details couldn't be stored because the file's details had already

Writing Smart Contracts

[74]

been stored earlier
 logFileAddedStatus(false, block.timestamp, owner, fileHash);
 }
 }

 //this is used to get file information
 function get(string fileHash) returns (uint timestamp, string owner)
 {
 return (files[fileHash].timestamp, files[fileHash].owner);
 }
}

Compiling and deploying contracts
Ethereum provides the solc compiler, which provides a command-line interface to compile
.sol files. Visit h t t p ://s o l i d i t y . r e a d t h e d o c s . i o /e n /d e v e l o p /i n s t a l l i n g - s o l i d i t y . h

t m l #b i n a r y - p a c k a g e s to find instructions to install it and visit h t t p s ://S o l i d i t y . r e a d t h

e d o c s . i o /e n /d e v e l o p /u s i n g - t h e - c o m p i l e r . h t m l to find instructions on how to use it.
We won't be using the solc compiler directly; instead, we will be using solcjs and Solidity
browser. Solcjs allows us to compile Solidity programmatically in Node.js, whereas browser
Solidity is an IDE, which is suitable for small contracts.

For now, let's just compile the preceding contract using a browser Solidity provided by
Ethereum. Learn more about it at h t t p s ://E t h e r e u m . g i t h u b . i o /b r o w s e r - S o l i d i t y /. You
can also download this browser Solidity source code and use it offline. Visit h t t p s ://g i t h u

b . c o m /E t h e r e u m /b r o w s e r - S o l i d i t y /t r e e /g h - p a g e s to download it.

A major advantage of using this browser Solidity is that it provides an editor and also
generates code to deploy the contract.

In the editor, copy and paste the preceding contract code. You will see that it compiles and
gives you the web3.js code to deploy it using the geth interactive console.

You will get this output:

var proofContract =
web3.eth.contract([{"constant":false,"inputs":[{"name":"fileHash","type":"s
tring"}],"name":"get","outputs":[{"name":"timestamp","type":"uint256"},{"na
me":"owner","type":"string"}],"payable":false,"type":"function"},{"constant
":false,"inputs":[{"name":"owner","type":"string"},{"name":"fileHash","type
":"string"}],"name":"set","outputs":[],"payable":false,"type":"function"},{
"anonymous":false,"inputs":[{"indexed":false,"name":"status","type":"bool"}
,{"indexed":false,"name":"timestamp","type":"uint256"},{"indexed":false,"na
me":"owner","type":"string"},{"indexed":false,"name":"fileHash","type":"str

http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
http://solidity.readthedocs.io/en/develop/installing-solidity.html#binary-packages
https://Solidity.readthedocs.io/en/develop/using-the-compiler.html
https://Solidity.readthedocs.io/en/develop/using-the-compiler.html
https://Solidity.readthedocs.io/en/develop/using-the-compiler.html
https://Solidity.readthedocs.io/en/develop/using-the-compiler.html
https://Solidity.readthedocs.io/en/develop/using-the-compiler.html
https://Solidity.readthedocs.io/en/develop/using-the-compiler.html
https://Solidity.readthedocs.io/en/develop/using-the-compiler.html
https://Solidity.readthedocs.io/en/develop/using-the-compiler.html
https://Solidity.readthedocs.io/en/develop/using-the-compiler.html
https://Solidity.readthedocs.io/en/develop/using-the-compiler.html
https://Solidity.readthedocs.io/en/develop/using-the-compiler.html
https://Solidity.readthedocs.io/en/develop/using-the-compiler.html
https://Solidity.readthedocs.io/en/develop/using-the-compiler.html
https://Solidity.readthedocs.io/en/develop/using-the-compiler.html
https://Solidity.readthedocs.io/en/develop/using-the-compiler.html
https://Solidity.readthedocs.io/en/develop/using-the-compiler.html
https://Solidity.readthedocs.io/en/develop/using-the-compiler.html
https://Solidity.readthedocs.io/en/develop/using-the-compiler.html
https://Solidity.readthedocs.io/en/develop/using-the-compiler.html
https://Solidity.readthedocs.io/en/develop/using-the-compiler.html
https://Solidity.readthedocs.io/en/develop/using-the-compiler.html
https://Solidity.readthedocs.io/en/develop/using-the-compiler.html
https://Solidity.readthedocs.io/en/develop/using-the-compiler.html
https://Solidity.readthedocs.io/en/develop/using-the-compiler.html
https://Solidity.readthedocs.io/en/develop/using-the-compiler.html
https://Solidity.readthedocs.io/en/develop/using-the-compiler.html
https://Solidity.readthedocs.io/en/develop/using-the-compiler.html
https://Solidity.readthedocs.io/en/develop/using-the-compiler.html
https://Solidity.readthedocs.io/en/develop/using-the-compiler.html
https://Solidity.readthedocs.io/en/develop/using-the-compiler.html
https://Solidity.readthedocs.io/en/develop/using-the-compiler.html
https://Solidity.readthedocs.io/en/develop/using-the-compiler.html
https://Solidity.readthedocs.io/en/develop/using-the-compiler.html
https://Solidity.readthedocs.io/en/develop/using-the-compiler.html
https://Solidity.readthedocs.io/en/develop/using-the-compiler.html
https://Solidity.readthedocs.io/en/develop/using-the-compiler.html
https://Solidity.readthedocs.io/en/develop/using-the-compiler.html
https://Solidity.readthedocs.io/en/develop/using-the-compiler.html
https://Solidity.readthedocs.io/en/develop/using-the-compiler.html
https://Solidity.readthedocs.io/en/develop/using-the-compiler.html
https://Solidity.readthedocs.io/en/develop/using-the-compiler.html
https://Solidity.readthedocs.io/en/develop/using-the-compiler.html
https://Solidity.readthedocs.io/en/develop/using-the-compiler.html
https://Solidity.readthedocs.io/en/develop/using-the-compiler.html
https://Solidity.readthedocs.io/en/develop/using-the-compiler.html
https://Solidity.readthedocs.io/en/develop/using-the-compiler.html
https://Solidity.readthedocs.io/en/develop/using-the-compiler.html
https://Solidity.readthedocs.io/en/develop/using-the-compiler.html
https://Solidity.readthedocs.io/en/develop/using-the-compiler.html
https://Solidity.readthedocs.io/en/develop/using-the-compiler.html
https://Solidity.readthedocs.io/en/develop/using-the-compiler.html
https://Solidity.readthedocs.io/en/develop/using-the-compiler.html
https://Solidity.readthedocs.io/en/develop/using-the-compiler.html
https://Solidity.readthedocs.io/en/develop/using-the-compiler.html
https://Solidity.readthedocs.io/en/develop/using-the-compiler.html
https://Solidity.readthedocs.io/en/develop/using-the-compiler.html
https://Solidity.readthedocs.io/en/develop/using-the-compiler.html
https://Solidity.readthedocs.io/en/develop/using-the-compiler.html
https://Solidity.readthedocs.io/en/develop/using-the-compiler.html
https://Solidity.readthedocs.io/en/develop/using-the-compiler.html
https://Solidity.readthedocs.io/en/develop/using-the-compiler.html
https://Solidity.readthedocs.io/en/develop/using-the-compiler.html
https://Solidity.readthedocs.io/en/develop/using-the-compiler.html
https://Solidity.readthedocs.io/en/develop/using-the-compiler.html
https://Solidity.readthedocs.io/en/develop/using-the-compiler.html
https://Solidity.readthedocs.io/en/develop/using-the-compiler.html
https://Solidity.readthedocs.io/en/develop/using-the-compiler.html
https://Solidity.readthedocs.io/en/develop/using-the-compiler.html
https://Solidity.readthedocs.io/en/develop/using-the-compiler.html
https://Solidity.readthedocs.io/en/develop/using-the-compiler.html
https://Solidity.readthedocs.io/en/develop/using-the-compiler.html
https://Solidity.readthedocs.io/en/develop/using-the-compiler.html
https://Solidity.readthedocs.io/en/develop/using-the-compiler.html
https://Solidity.readthedocs.io/en/develop/using-the-compiler.html
https://Solidity.readthedocs.io/en/develop/using-the-compiler.html
https://Solidity.readthedocs.io/en/develop/using-the-compiler.html
https://Solidity.readthedocs.io/en/develop/using-the-compiler.html
https://Solidity.readthedocs.io/en/develop/using-the-compiler.html
https://Solidity.readthedocs.io/en/develop/using-the-compiler.html
https://Solidity.readthedocs.io/en/develop/using-the-compiler.html
https://Solidity.readthedocs.io/en/develop/using-the-compiler.html
https://Solidity.readthedocs.io/en/develop/using-the-compiler.html
https://Solidity.readthedocs.io/en/develop/using-the-compiler.html
https://Solidity.readthedocs.io/en/develop/using-the-compiler.html
https://Solidity.readthedocs.io/en/develop/using-the-compiler.html
https://Solidity.readthedocs.io/en/develop/using-the-compiler.html
https://Solidity.readthedocs.io/en/develop/using-the-compiler.html
https://Solidity.readthedocs.io/en/develop/using-the-compiler.html
https://Solidity.readthedocs.io/en/develop/using-the-compiler.html
https://Solidity.readthedocs.io/en/develop/using-the-compiler.html
https://Solidity.readthedocs.io/en/develop/using-the-compiler.html
https://Solidity.readthedocs.io/en/develop/using-the-compiler.html
https://Solidity.readthedocs.io/en/develop/using-the-compiler.html
https://Solidity.readthedocs.io/en/develop/using-the-compiler.html
https://Solidity.readthedocs.io/en/develop/using-the-compiler.html
https://Solidity.readthedocs.io/en/develop/using-the-compiler.html
https://Solidity.readthedocs.io/en/develop/using-the-compiler.html
https://Solidity.readthedocs.io/en/develop/using-the-compiler.html
https://Solidity.readthedocs.io/en/develop/using-the-compiler.html
https://Solidity.readthedocs.io/en/develop/using-the-compiler.html
https://Solidity.readthedocs.io/en/develop/using-the-compiler.html
https://Solidity.readthedocs.io/en/develop/using-the-compiler.html
https://Solidity.readthedocs.io/en/develop/using-the-compiler.html
https://Solidity.readthedocs.io/en/develop/using-the-compiler.html
https://Solidity.readthedocs.io/en/develop/using-the-compiler.html
https://Solidity.readthedocs.io/en/develop/using-the-compiler.html
https://Solidity.readthedocs.io/en/develop/using-the-compiler.html
https://Solidity.readthedocs.io/en/develop/using-the-compiler.html
https://Solidity.readthedocs.io/en/develop/using-the-compiler.html
https://Solidity.readthedocs.io/en/develop/using-the-compiler.html
https://Solidity.readthedocs.io/en/develop/using-the-compiler.html
https://Solidity.readthedocs.io/en/develop/using-the-compiler.html
https://Solidity.readthedocs.io/en/develop/using-the-compiler.html
https://Solidity.readthedocs.io/en/develop/using-the-compiler.html
https://Solidity.readthedocs.io/en/develop/using-the-compiler.html
https://Solidity.readthedocs.io/en/develop/using-the-compiler.html
https://Solidity.readthedocs.io/en/develop/using-the-compiler.html
https://Solidity.readthedocs.io/en/develop/using-the-compiler.html
https://Solidity.readthedocs.io/en/develop/using-the-compiler.html
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://ethereum.github.io/browser-solidity/
https://github.com/Ethereum/browser-Solidity/tree/gh-pages
https://github.com/Ethereum/browser-Solidity/tree/gh-pages
https://github.com/Ethereum/browser-Solidity/tree/gh-pages
https://github.com/Ethereum/browser-Solidity/tree/gh-pages
https://github.com/Ethereum/browser-Solidity/tree/gh-pages
https://github.com/Ethereum/browser-Solidity/tree/gh-pages
https://github.com/Ethereum/browser-Solidity/tree/gh-pages
https://github.com/Ethereum/browser-Solidity/tree/gh-pages
https://github.com/Ethereum/browser-Solidity/tree/gh-pages
https://github.com/Ethereum/browser-Solidity/tree/gh-pages
https://github.com/Ethereum/browser-Solidity/tree/gh-pages
https://github.com/Ethereum/browser-Solidity/tree/gh-pages
https://github.com/Ethereum/browser-Solidity/tree/gh-pages
https://github.com/Ethereum/browser-Solidity/tree/gh-pages
https://github.com/Ethereum/browser-Solidity/tree/gh-pages
https://github.com/Ethereum/browser-Solidity/tree/gh-pages
https://github.com/Ethereum/browser-Solidity/tree/gh-pages
https://github.com/Ethereum/browser-Solidity/tree/gh-pages
https://github.com/Ethereum/browser-Solidity/tree/gh-pages
https://github.com/Ethereum/browser-Solidity/tree/gh-pages
https://github.com/Ethereum/browser-Solidity/tree/gh-pages
https://github.com/Ethereum/browser-Solidity/tree/gh-pages
https://github.com/Ethereum/browser-Solidity/tree/gh-pages
https://github.com/Ethereum/browser-Solidity/tree/gh-pages
https://github.com/Ethereum/browser-Solidity/tree/gh-pages
https://github.com/Ethereum/browser-Solidity/tree/gh-pages
https://github.com/Ethereum/browser-Solidity/tree/gh-pages
https://github.com/Ethereum/browser-Solidity/tree/gh-pages
https://github.com/Ethereum/browser-Solidity/tree/gh-pages
https://github.com/Ethereum/browser-Solidity/tree/gh-pages
https://github.com/Ethereum/browser-Solidity/tree/gh-pages
https://github.com/Ethereum/browser-Solidity/tree/gh-pages
https://github.com/Ethereum/browser-Solidity/tree/gh-pages
https://github.com/Ethereum/browser-Solidity/tree/gh-pages
https://github.com/Ethereum/browser-Solidity/tree/gh-pages
https://github.com/Ethereum/browser-Solidity/tree/gh-pages
https://github.com/Ethereum/browser-Solidity/tree/gh-pages
https://github.com/Ethereum/browser-Solidity/tree/gh-pages
https://github.com/Ethereum/browser-Solidity/tree/gh-pages
https://github.com/Ethereum/browser-Solidity/tree/gh-pages
https://github.com/Ethereum/browser-Solidity/tree/gh-pages
https://github.com/Ethereum/browser-Solidity/tree/gh-pages
https://github.com/Ethereum/browser-Solidity/tree/gh-pages
https://github.com/Ethereum/browser-Solidity/tree/gh-pages
https://github.com/Ethereum/browser-Solidity/tree/gh-pages
https://github.com/Ethereum/browser-Solidity/tree/gh-pages
https://github.com/Ethereum/browser-Solidity/tree/gh-pages
https://github.com/Ethereum/browser-Solidity/tree/gh-pages
https://github.com/Ethereum/browser-Solidity/tree/gh-pages
https://github.com/Ethereum/browser-Solidity/tree/gh-pages
https://github.com/Ethereum/browser-Solidity/tree/gh-pages
https://github.com/Ethereum/browser-Solidity/tree/gh-pages
https://github.com/Ethereum/browser-Solidity/tree/gh-pages
https://github.com/Ethereum/browser-Solidity/tree/gh-pages
https://github.com/Ethereum/browser-Solidity/tree/gh-pages
https://github.com/Ethereum/browser-Solidity/tree/gh-pages
https://github.com/Ethereum/browser-Solidity/tree/gh-pages
https://github.com/Ethereum/browser-Solidity/tree/gh-pages
https://github.com/Ethereum/browser-Solidity/tree/gh-pages
https://github.com/Ethereum/browser-Solidity/tree/gh-pages
https://github.com/Ethereum/browser-Solidity/tree/gh-pages
https://github.com/Ethereum/browser-Solidity/tree/gh-pages
https://github.com/Ethereum/browser-Solidity/tree/gh-pages
https://github.com/Ethereum/browser-Solidity/tree/gh-pages
https://github.com/Ethereum/browser-Solidity/tree/gh-pages
https://github.com/Ethereum/browser-Solidity/tree/gh-pages
https://github.com/Ethereum/browser-Solidity/tree/gh-pages
https://github.com/Ethereum/browser-Solidity/tree/gh-pages
https://github.com/Ethereum/browser-Solidity/tree/gh-pages
https://github.com/Ethereum/browser-Solidity/tree/gh-pages
https://github.com/Ethereum/browser-Solidity/tree/gh-pages
https://github.com/Ethereum/browser-Solidity/tree/gh-pages
https://github.com/Ethereum/browser-Solidity/tree/gh-pages
https://github.com/Ethereum/browser-Solidity/tree/gh-pages
https://github.com/Ethereum/browser-Solidity/tree/gh-pages
https://github.com/Ethereum/browser-Solidity/tree/gh-pages
https://github.com/Ethereum/browser-Solidity/tree/gh-pages
https://github.com/Ethereum/browser-Solidity/tree/gh-pages
https://github.com/Ethereum/browser-Solidity/tree/gh-pages
https://github.com/Ethereum/browser-Solidity/tree/gh-pages
https://github.com/Ethereum/browser-Solidity/tree/gh-pages
https://github.com/Ethereum/browser-Solidity/tree/gh-pages
https://github.com/Ethereum/browser-Solidity/tree/gh-pages
https://github.com/Ethereum/browser-Solidity/tree/gh-pages
https://github.com/Ethereum/browser-Solidity/tree/gh-pages
https://github.com/Ethereum/browser-Solidity/tree/gh-pages
https://github.com/Ethereum/browser-Solidity/tree/gh-pages
https://github.com/Ethereum/browser-Solidity/tree/gh-pages
https://github.com/Ethereum/browser-Solidity/tree/gh-pages
https://github.com/Ethereum/browser-Solidity/tree/gh-pages
https://github.com/Ethereum/browser-Solidity/tree/gh-pages
https://github.com/Ethereum/browser-Solidity/tree/gh-pages
https://github.com/Ethereum/browser-Solidity/tree/gh-pages
https://github.com/Ethereum/browser-Solidity/tree/gh-pages
https://github.com/Ethereum/browser-Solidity/tree/gh-pages
https://github.com/Ethereum/browser-Solidity/tree/gh-pages
https://github.com/Ethereum/browser-Solidity/tree/gh-pages
https://github.com/Ethereum/browser-Solidity/tree/gh-pages
https://github.com/Ethereum/browser-Solidity/tree/gh-pages
https://github.com/Ethereum/browser-Solidity/tree/gh-pages
https://github.com/Ethereum/browser-Solidity/tree/gh-pages

Writing Smart Contracts

[75]

ing"}],"name":"logFileAddedStatus","type":"event"}]);
var proof = proofContract.new(
 {
 from: web3.eth.accounts[0],
 data: '60606040526......,
 gas: 4700000
 }, function (e, contract){
 console.log(e, contract);
 if (typeof contract.address !== 'undefined') {
 console.log('Contract mined! address: ' + contract.address + '
transactionHash: ' + contract.transactionHash);
 }
})

data represents the compiled version of the contract (bytecode) that the EVM understands.
The source code is first converted into opcode, and then opcode are converted into
bytecode. Each opcode has gas associated with it.

The first argument to the web3.eth.contract is the ABI definition. The ABI definition is
used when creating transactions, as it contains the prototype of all the methods.

Now run geth in the developer mode with the mining enabled. To do this, run the following
command:

geth --dev --mine

Now open another command-line window and in that, enter this command to open geth's
interactive JavaScript console:

geth attach

This should connect the JS console to the geth instance running in the other window.

On the right-hand side panel of the browser Solidity, copy everything that's there in the
web3 deploy textarea and paste it in the interactive console. Now press Enter. You will first
get the transaction hash, and after waiting for some time, you will get the contract address
after the transaction is mined. The transaction hash is the hash of the transaction, which is
unique for every transaction. Every deployed contract has a unique contract address to
identity the contract in the blockchain.

The contract address is deterministically computed from the address of its creator (the from
address) and the number of transactions the creator has sent (the transaction nonce). These
two are RLP-encoded and then hashed using the keccak-256 hashing algorithm. We will
learn more about the transaction nonce later. You can learn more about RLP at
https://github.com/Ethereum/wiki/wiki/RLP.

https://github.com/Ethereum/wiki/wiki/RLP

Writing Smart Contracts

[76]

Now let's store the file details and retrieve them.

Place this code to broadcast a transaction to store a file's details:

var contract_obj =
proofContract.at("0x9220c8ec6489a4298b06c2183cf04fb7e8fbd6d4");
contract_obj.set.sendTransaction("Owner Name",
"e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855", {
 from: web3.eth.accounts[0],
}, function(error, transactionHash){
 if (!err)
 console.log(transactionHash);
})

Here, replace the contract address with the contract address you got. The first argument of
the proofContract.at method is the contract address. Here, we didn't provide the gas, in
which case, it's automatically calculated.

Now let's find the file's details. Run this code in order to find the file's details:

contract_obj.get.call("e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495
991b7852b855");

You will get this output:

[1477591434, "Owner Name"]

The call method is used to call a contract's method on EVM with the current state. It doesn't
broadcast a transaction. To read data, we don't need to broadcast because we will have our
own copy of the blockchain.

We will learn more about web3.js in the coming chapters.

Summary
In this chapter, we learned the Solidity programming language. We learned about data
location, data types, and advanced features of contracts. We also learned the quickest and
easiest way to compile and deploy a smart contract. Now you should be comfortable with
writing smart contracts.

In the next chapter, we will build a frontend for the smart contract, which will make it easy
to deploy the smart contract and run transactions.

4
Getting Started with web3.js

In the previous chapter, we learned how to write smart contracts and used geth's interactive
console to deploy and broadcast transactions using web3.js. In this chapter, we will learn
web3.js and how to import, connect to geth, and use it in Node.js or client-side JavaScript.
We will also learn how to build a web client using web3.js for the smart contract that we
created in the previous chapter.

In this chapter, we'll cover the following topics:

Importing web3.js in Node.js and client-side JavaScript
Connecting to geth
Exploring the various things that can be done using web3.js
Discovering various most used APIs of web3.js
Building a Node.js application for an ownership contract

Introduction to web3.js
web3.js provides us with JavaScript APIs to communicate with geth. It uses JSON-RPC
internally to communicate with geth. web3.js can also communicate with any other kind of
Ethereum node that supports JSON-RPC. It exposes all JSON-RPC APIs as JavaScript APIs;
that is, it doesn't just support all the Ethereum-related APIs; it also supports APIs related to
Whisper and Swarm.

You will learn more and more about web3.js as we build various projects, but for now, let's
go through some of the most used APIs of web3.js and then we will build a frontend for our
ownership smart contract using web3.js.

At the time of writing this, the latest version of web3.js is 0.16.0. We will learn everything
with respect to this version.

Getting Started with web3.js

[78]

web3.js is hosted at h t t p s ://g i t h u b . c o m /e t h e r e u m /w e b 3. j s and the complete
documentation is hosted at h t t p s ://g i t h u b . c o m /e t h e r e u m /w i k i /w i k i /J a v a S c r i p t - A P I .

Importing web3.js
To use web3.js in Node.js, you can simply run npm install web3 inside your project
directory, and in the source code, you can import it using require("web3");.

To use web3.js in client-side JavaScript, you can enqueue the web3.js file, which can be
found inside the dist directory of the project source code. Now you will have the Web3
object available globally.

Connecting to nodes
web3.js can communicate with nodes using HTTP or IPC. We will use HTTP to set up
communication with nodes. web3.js allows us to establish connections with multiple nodes.
An instance of web3 represents a connection with a node. The instance exposes the APIs.

When an app is running inside Mist, it automatically makes an instance of web3 available
that's connected to the mist node. The variable name of the instance is web3.

Here is the basic code to connect to a node:

if (typeof web3 !== 'undefined') {
 web3 = new Web3(new
Web3.providers.HttpProvider("http://localhost:8545"));
}

At first, we check here whether the code is running inside mist by checking whether web3 is
undefined or not. If web3 is defined, then we use the already available instance; otherwise,
we create an instance by connecting to our custom node. If you want to connect to the
custom node regardless of whether the app is running inside mist or not, then remove the
if condition form the preceding code. Here, we are assuming that our custom node is
running locally on port number 8545.

The Web3.providers object exposes constructors (called providers in this context) to
establish connection and transfer messages using various protocols.
Web3.providers.HttpProvider lets us establish an HTTP connection, whereas
Web3.providers.IpcProvider lets us establish an IPC connection.

https://github.com/ethereum/web3.js
https://github.com/ethereum/web3.js
https://github.com/ethereum/web3.js
https://github.com/ethereum/web3.js
https://github.com/ethereum/web3.js
https://github.com/ethereum/web3.js
https://github.com/ethereum/web3.js
https://github.com/ethereum/web3.js
https://github.com/ethereum/web3.js
https://github.com/ethereum/web3.js
https://github.com/ethereum/web3.js
https://github.com/ethereum/web3.js
https://github.com/ethereum/web3.js
https://github.com/ethereum/web3.js
https://github.com/ethereum/web3.js
https://github.com/ethereum/web3.js
https://github.com/ethereum/web3.js
https://github.com/ethereum/web3.js
https://github.com/ethereum/web3.js
https://github.com/ethereum/web3.js
https://github.com/ethereum/web3.js
https://github.com/ethereum/web3.js
https://github.com/ethereum/web3.js
https://github.com/ethereum/web3.js
https://github.com/ethereum/web3.js
https://github.com/ethereum/web3.js
https://github.com/ethereum/web3.js
https://github.com/ethereum/web3.js
https://github.com/ethereum/web3.js
https://github.com/ethereum/web3.js
https://github.com/ethereum/web3.js
https://github.com/ethereum/web3.js
https://github.com/ethereum/web3.js
https://github.com/ethereum/web3.js
https://github.com/ethereum/web3.js
https://github.com/ethereum/web3.js
https://github.com/ethereum/web3.js
https://github.com/ethereum/web3.js
https://github.com/ethereum/web3.js
https://github.com/ethereum/web3.js
https://github.com/ethereum/web3.js
https://github.com/ethereum/web3.js
https://github.com/ethereum/web3.js
https://github.com/ethereum/web3.js
https://github.com/ethereum/web3.js
https://github.com/ethereum/web3.js
https://github.com/ethereum/web3.js
https://github.com/ethereum/web3.js
https://github.com/ethereum/web3.js
https://github.com/ethereum/web3.js
https://github.com/ethereum/web3.js
https://github.com/ethereum/web3.js
https://github.com/ethereum/web3.js
https://github.com/ethereum/web3.js
https://github.com/ethereum/web3.js
https://github.com/ethereum/web3.js
https://github.com/ethereum/web3.js
https://github.com/ethereum/web3.js
https://github.com/ethereum/wiki/wiki/JavaScript-API
https://github.com/ethereum/wiki/wiki/JavaScript-API
https://github.com/ethereum/wiki/wiki/JavaScript-API
https://github.com/ethereum/wiki/wiki/JavaScript-API
https://github.com/ethereum/wiki/wiki/JavaScript-API
https://github.com/ethereum/wiki/wiki/JavaScript-API
https://github.com/ethereum/wiki/wiki/JavaScript-API
https://github.com/ethereum/wiki/wiki/JavaScript-API
https://github.com/ethereum/wiki/wiki/JavaScript-API
https://github.com/ethereum/wiki/wiki/JavaScript-API
https://github.com/ethereum/wiki/wiki/JavaScript-API
https://github.com/ethereum/wiki/wiki/JavaScript-API
https://github.com/ethereum/wiki/wiki/JavaScript-API
https://github.com/ethereum/wiki/wiki/JavaScript-API
https://github.com/ethereum/wiki/wiki/JavaScript-API
https://github.com/ethereum/wiki/wiki/JavaScript-API
https://github.com/ethereum/wiki/wiki/JavaScript-API
https://github.com/ethereum/wiki/wiki/JavaScript-API
https://github.com/ethereum/wiki/wiki/JavaScript-API
https://github.com/ethereum/wiki/wiki/JavaScript-API
https://github.com/ethereum/wiki/wiki/JavaScript-API
https://github.com/ethereum/wiki/wiki/JavaScript-API
https://github.com/ethereum/wiki/wiki/JavaScript-API
https://github.com/ethereum/wiki/wiki/JavaScript-API
https://github.com/ethereum/wiki/wiki/JavaScript-API
https://github.com/ethereum/wiki/wiki/JavaScript-API
https://github.com/ethereum/wiki/wiki/JavaScript-API
https://github.com/ethereum/wiki/wiki/JavaScript-API
https://github.com/ethereum/wiki/wiki/JavaScript-API
https://github.com/ethereum/wiki/wiki/JavaScript-API
https://github.com/ethereum/wiki/wiki/JavaScript-API
https://github.com/ethereum/wiki/wiki/JavaScript-API
https://github.com/ethereum/wiki/wiki/JavaScript-API
https://github.com/ethereum/wiki/wiki/JavaScript-API
https://github.com/ethereum/wiki/wiki/JavaScript-API
https://github.com/ethereum/wiki/wiki/JavaScript-API
https://github.com/ethereum/wiki/wiki/JavaScript-API
https://github.com/ethereum/wiki/wiki/JavaScript-API
https://github.com/ethereum/wiki/wiki/JavaScript-API
https://github.com/ethereum/wiki/wiki/JavaScript-API
https://github.com/ethereum/wiki/wiki/JavaScript-API
https://github.com/ethereum/wiki/wiki/JavaScript-API
https://github.com/ethereum/wiki/wiki/JavaScript-API
https://github.com/ethereum/wiki/wiki/JavaScript-API
https://github.com/ethereum/wiki/wiki/JavaScript-API
https://github.com/ethereum/wiki/wiki/JavaScript-API
https://github.com/ethereum/wiki/wiki/JavaScript-API
https://github.com/ethereum/wiki/wiki/JavaScript-API
https://github.com/ethereum/wiki/wiki/JavaScript-API
https://github.com/ethereum/wiki/wiki/JavaScript-API
https://github.com/ethereum/wiki/wiki/JavaScript-API
https://github.com/ethereum/wiki/wiki/JavaScript-API
https://github.com/ethereum/wiki/wiki/JavaScript-API
https://github.com/ethereum/wiki/wiki/JavaScript-API
https://github.com/ethereum/wiki/wiki/JavaScript-API
https://github.com/ethereum/wiki/wiki/JavaScript-API
https://github.com/ethereum/wiki/wiki/JavaScript-API
https://github.com/ethereum/wiki/wiki/JavaScript-API
https://github.com/ethereum/wiki/wiki/JavaScript-API
https://github.com/ethereum/wiki/wiki/JavaScript-API
https://github.com/ethereum/wiki/wiki/JavaScript-API
https://github.com/ethereum/wiki/wiki/JavaScript-API
https://github.com/ethereum/wiki/wiki/JavaScript-API
https://github.com/ethereum/wiki/wiki/JavaScript-API
https://github.com/ethereum/wiki/wiki/JavaScript-API
https://github.com/ethereum/wiki/wiki/JavaScript-API
https://github.com/ethereum/wiki/wiki/JavaScript-API
https://github.com/ethereum/wiki/wiki/JavaScript-API
https://github.com/ethereum/wiki/wiki/JavaScript-API
https://github.com/ethereum/wiki/wiki/JavaScript-API
https://github.com/ethereum/wiki/wiki/JavaScript-API
https://github.com/ethereum/wiki/wiki/JavaScript-API
https://github.com/ethereum/wiki/wiki/JavaScript-API
https://github.com/ethereum/wiki/wiki/JavaScript-API
https://github.com/ethereum/wiki/wiki/JavaScript-API
https://github.com/ethereum/wiki/wiki/JavaScript-API
https://github.com/ethereum/wiki/wiki/JavaScript-API
https://github.com/ethereum/wiki/wiki/JavaScript-API
https://github.com/ethereum/wiki/wiki/JavaScript-API
https://github.com/ethereum/wiki/wiki/JavaScript-API
https://github.com/ethereum/wiki/wiki/JavaScript-API
https://github.com/ethereum/wiki/wiki/JavaScript-API
https://github.com/ethereum/wiki/wiki/JavaScript-API
https://github.com/ethereum/wiki/wiki/JavaScript-API
https://github.com/ethereum/wiki/wiki/JavaScript-API
https://github.com/ethereum/wiki/wiki/JavaScript-API
https://github.com/ethereum/wiki/wiki/JavaScript-API
https://github.com/ethereum/wiki/wiki/JavaScript-API
https://github.com/ethereum/wiki/wiki/JavaScript-API
https://github.com/ethereum/wiki/wiki/JavaScript-API

Getting Started with web3.js

[79]

The web3.currentProvider property is automatically assigned to the current provider
instance. After creating a web3 instance, you can change its provider using the
web3.setProvider() method. It takes one argument, that is, the instance of the new
provider.

Remember that geth has HTTP-RPC disabled by default. So enable it by
passing the --rpc option while running geth. By default, HTTP-RPC runs
on port 8545.

web3 exposes a isConnected() method, which can be used to check whether it's
connected to the node or not. It returns true or false depending on the connection status.

The API structure
web3 contains an eth object (web3.eth) specifically for Ethereum blockchain interactions
and an shh object (web3.shh) for whisper interaction. Most APIs of web3.js are inside these
two objects.

All the APIs are synchronous by default. If you want to make an asynchronous request, you
can pass an optional callback as the last parameter to most functions. All callbacks use an
error-first callback style.

Some APIs have an alias for asynchronous requests. For example, web3.eth.coinbase()
is synchronous, whereas web3.eth.getCoinbase() is asynchronous.

Here is an example:

//sync request
try
{
 console.log(web3.eth.getBlock(48));
}
catch(e)
{
 console.log(e);
}

//async request
web3.eth.getBlock(48, function(error, result){
 if(!error)
 console.log(result)
 else

Getting Started with web3.js

[80]

 console.error(error);
})

getBlock is used to get information on a block using its number or hash. Or, it can take a
string such as "earliest" (the genesis block), "latest" (the top block of the blockchain),
or "pending" (the block that's being mined). If you don't pass an argument, then the
default is web3.eth.defaultBlock, which is assigned to "latest" by default.

All the APIs that need a block identification as input can take a number, hash, or one of the
readable strings. These APIs use web3.eth.defaultBlock by default if the value is not
passed.

BigNumber.js
JavaScript is natively poor at handling big numbers correctly. Therefore, applications that
require you to deal with big numbers and need perfect calculations use the BigNumber.js
library to work with big numbers.

web3.js also depends on BigNumber.js. It adds it automatically. web3.js always returns the
BigNumber object for number values. It can take JavaScript numbers, number strings, and
BigNumber instances as input.

Here is an example to demonstrate this:

web3.eth.getBalance("0x27E829fB34d14f3384646F938165dfcD30cFfB7c").toString(
);

Here, we use the web3.eth.getBalance() method to get the balance of an address. This
method returns a BigNumber object. We need to call toString() on a BigNumber object to
convert it into a number string.

BigNumber.js fails to correctly handle numbers with more than 20 floating point digits;
therefore, it is recommended that you store the balance in a wei unit and while displaying,
convert it to other units. web3.js itself always returns and takes the balance in wei. For
example, the getBalance() method returns the balance of the address in the wei unit.

Unit conversion
web3.js provides APIs to convert the wei balance into any other unit and any other unit
balance into wei.

Getting Started with web3.js

[81]

The web3.fromWei() method is used to convert a wei number into any other unit,
whereas the web3.toWei() method is used to convert a number in any other unit into wei.
Here is example to demonstrate this:

web3.fromWei("1000000000000000000", "ether");
web3.toWei("0.000000000000000001", "ether");

In the first line, we convert wei into ether, and in the second line, we convert ether into wei.
The second argument in both methods can be one of these strings:

kwei/ada

mwei/babbage

gwei/shannon

szabo

finney

ether

kether/grand/einstein

mether

gether

tether

Retrieving gas price, balance, and transaction
details
Let's take a look at the APIs to retrieve the gas price, the balance of an address, and
information on a mined transaction:

//It's sync. For async use getGasPrice
console.log(web3.eth.gasPrice.toString());

console.log(web3.eth.getBalance("0x407d73d8a49eeb85d32cf465507dd71d507100c1
", 45).toString());

console.log(web3.eth.getTransactionReceipt("0x9fc76417374aa880d4449a1f7f31e
c597f00b1f6f3dd2d66f4c9c6c445836d8b"));

Getting Started with web3.js

[82]

The output will be of this form:

20000000000
30000000000
{
 "transactionHash":
"0x9fc76417374aa880d4449a1f7f31ec597f00b1f6f3dd2d66f4c9c6c445836d8b ",
 "transactionIndex": 0,
 "blockHash":
"0xef95f2f1ed3ca60b048b4bf67cde2195961e0bba6f70bcbea9a2c4e133e34b46",
 "blockNumber": 3,
 "contractAddress": "0xa94f5374fce5edbc8e2a8697c15331677e6ebf0b",
 "cumulativeGasUsed": 314159,
 "gasUsed": 30234
}

Here is how the preceding method works:

web3.eth.gasPrice(): Determines the gas price by the x latest blocks' median
gas price.
web3.ethgetBalance(): Returns the balance of any given address. All the
hashes should be provided as hexadecimal strings to the web3.js APIs, not as
hexadecimal literals. The input for the solidity address type should also be
hexadecimal strings.
web3.eth.getTransactionReceipt(): This is used to get details about a
transaction using its hash. It returns a transaction receipt object if the transaction
was found in the blockchain; otherwise, it returns null. The transaction receipt
object contains the following properties:

blockHash: The hash of the block where this transaction was
blockNumber: The block number where this transaction was
transactionHash: The hash of the transaction
transactionIndex: The integer of the transactions' index position
in the block
from: The address of the sender
to: The address of the receiver; null when it's a contract creation
transaction
cumulativeGasUsed: The total amount of gas used when this
transaction was executed in the block
gasUsed: The amount of gas used by this specific transaction alone

Getting Started with web3.js

[83]

contractAddress: The contract address created if the transaction
was a contract creation; otherwise, null
logs: The array of log objects that this transaction generated

Sending ether
Let's look at how to send ether to any address. To send ether, you need to use the
web3.eth.sendTransaction() method. This method can be used to send any kind of
transaction but is mostly used to send ether because deploying a contract or calling a
method of contract using this method is cumbersome as it requires you to generate the data
of the transaction rather than automatically generating it. It takes a transaction object that
has the following properties:

from: The address for the sending account. Uses the
web3.eth.defaultAccount property if not specified.
to: This is optional. It's the destination address of the message and is left
undefined for a contract-creation transaction.
value: This is optional. The value is transferred for the transaction in wei as well
as the endowment if it's a contract-creation transaction.
gas: This is optional. It's the amount of gas to use for the transaction (unused gas
is refunded). If not provided, then it's automatically determined.
gasPrice: This is optional. It's the price of gas for this transaction in wei, and it
defaults to the mean network gas price.
data: This is optional. It's either a byte string containing the associated data of
the message, or in the case of a contract-creation transaction, the initialization
code.
nonce: This is optional. It's an integer. Every transaction has a nonce associated
with it. A nonce is a counter that indicates the number of transactions sent by the
sender of the transaction. If not provided, then it is automatically determined. It
helps prevent replay attacks. This nonce is not the nonce associated with a block.
If we are using a nonce greater than the nonce the transaction should have, then
the transaction is put in a queue until the other transactions arrive. For example,
if the next transaction nonce should be 4 and if we set the nonce to 10, then geth
will wait for the middle six transactions before broadcasting this transaction. The
transaction with nonce 10 is called a queued transaction, and it's not a pending
transaction.

Getting Started with web3.js

[84]

Let's look at an example of how to send ether to an address:

var txnHash = web3.eth.sendTransaction({
 from: web3.eth.accounts[0],
 to: web3.eth.accounts[1],
 value: web3.toWei("1", "ether")
});

Here, we send one ether from account number 0 to account number 1. Make sure that both
the accounts are unlocked using the unlock option while running geth. In the geth
interactive console, it prompts for passwords, but the web3.js API outside of the interactive
console will throw an error if the account is locked. This method returns the transaction
hash of the transaction. You can then check whether the transaction is mined or not using
the getTransactionReceipt() method.

You can also use the web3.personal.listAccounts(),
web3.personal.unlockAccount(addr, pwd), and web3.personal.newAccount(pwd)
APIs to manage accounts at runtime.

Working with contracts
Let's learn how to deploy a new contract, get a reference to a deployed contract using it's
address, send ether to a contract, send a transaction to invoke a contract method, and
estimate the gas of a method call.

To deploy a new contract or to get a reference to an already deployed contract, you need to
first create a contract object using the web3.eth.contract() method. It takes the contract
ABI as an argument and returns the contract object.

Here is the code to create a contract object:

var proofContract =
web3.eth.contract([{"constant":false,"inputs":[{"name":"fileHash","type":"s
tring"}],"name":"get","outputs":[{"name":"timestamp","type":"uint256"},{"na
me":"owner","type":"string"}],"payable":false,"type":"function"},{"constant
":false,"inputs":[{"name":"owner","type":"string"},{"name":"fileHash","type
":"string"}],"name":"set","outputs":[],"payable":false,"type":"function"},{
"anonymous":false,"inputs":[{"indexed":false,"name":"status","type":"bool"}
,{"indexed":false,"name":"timestamp","type":"uint256"},{"indexed":false,"na
me":"owner","type":"string"},{"indexed":false,"name":"fileHash","type":"str
ing"}],"name":"logFileAddedStatus","type":"event"}]);

Getting Started with web3.js

[85]

Once you have the contract, you can deploy it using the new method of the contract object
or get a reference to an already deployed contract that matches the ABI using the at
method.

Let's take a look at an example of how to deploy a new contract:

var proof = proofContract.new({
 from: web3.eth.accounts[0],
 data: "0x606060405261068...",
 gas: "4700000"
 },
 function (e, contract){
 if(e)
 {
 console.log("Error " + e);
}
else if(contract.address != undefined)
 {
 console.log("Contract Address: " + contract.address);
 }
else
 {
 console.log("Txn Hash: " + contract.transactionHash)
 }
})

Here, the new method is called asynchronously, so the callback is fired twice if the
transaction was created and broadcasted successfully. The first time, it's called after the
transaction is broadcasted, and the second time, it's called after the transaction is mined. If
you don't provide a callback, then the proof variable will have the address property set to
undefined. Once the contract is mined, the address property will be set.

In the proof contract, there is no constructor, but if there is a constructor, then the
arguments for the constructor should be placed at the beginning of the new method. The
object we passed contains the from address, the byte code of the contract, and the maximum
gas to use. These three properties must be present; otherwise, the transaction won't be
created. This object can have the properties that are present in the object passed to the
sendTransaction() method, but here, data is the contract byte code and the to property
is ignored.

You can use the at method to get a reference to an already deployed contract. Here is the
code to demonstrate this:

var proof = proofContract.at("0xd45e541ca2622386cd820d1d3be74a86531c14a1");

Getting Started with web3.js

[86]

Now let's look at how to send a transaction to invoke a method of a contract. Here is an
example to demonstrate this:

proof.set.sendTransaction("Owner Name",
"e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855", {

from: web3.eth.accounts[0],
}, function(error, transactionHash){

if (!err)

console.log(transactionHash);
})

Here, we call the sendTransaction method of the object of the method namesake. The
object passed to this sendTransaction method has the same properties as
web3.eth.sendTransaction(), except that the data and to properties are ignored.

If you want to invoke a method on the node itself instead of creating a transaction and
broadcasting it, then you can use call instead of sendTransaction. Here is an example to
demonstrate this:

var returnValue =
proof.get.call("e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b785
2b855");

Sometimes, it is necessary to find out the gas that would be required to invoke a method so
that you can decide whether to invoke it or not. web3.eth.estimateGas can be used for
this purpose. However, using web3.eth.estimateGas() directly requires you to generate
the data of the transaction; therefore, we can use the estimateGas() method of the object
of the method namesake. Here is an example to demonstrate this:

var estimatedGas =
proof.get.estimateGas("e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495
991b7852b855");

If you want to just send some ether to a contract without invoking any
method, then you can simply use the web3.eth.sendTransaction
method.

Getting Started with web3.js

[87]

Retrieving and listening to contract events
Now let's look at how to watch for events from a contract. Watching for events is very
important because the result of method invocations by transactions are usually returned by
triggering events.

Before we get into how to retrieve and watch for events, we need to learn
indexed parameters of events. A maximum of three parameters of an
event can have the indexed attribute. This attribute is used to signal the
node to index it so that the app client can search for events with matching
return values. If you don't use the indexed attribute, then it will have to
retrieve all the events from the node and filter the ones needed. For
example, you can write the logFileAddedStatus event this way:

event logFileAddedStatus(bool indexed status, uint indexed timestamp,
string owner, string indexed fileHash);

Here is an example to demonstrate how to listen to contract events:

var event = proof.logFileAddedStatus(null, {
fromBlock: 0,
toBlock: "latest"
});
event.get(function(error, result){
if(!error)
{
 console.log(result);
}
else
{
 console.log(error);
}
})
event.watch(function(error, result){
if(!error)
{
 console.log(result.args.status);
}
else
{
 console.log(error);
}
})
setTimeout(function(){
event.stopWatching();
}, 60000)

Getting Started with web3.js

[88]

 var events = proof.allEvents({
fromBlock: 0,
 toBlock: "latest"
});
events.get(function(error, result){
if(!error)
{
 console.log(result);
}
else
{
 console.log(error);
}
})
events.watch(function(error, result){
if(!error)
{
 console.log(result.args.status);
}
else
{
 console.log(error);
}
})
setTimeout(function(){
events.stopWatching();
}, 60000)

This is how the preceding code works:

At first, we get the event object by calling the method of the event namesake on a1.
contract instance. This method takes two objects as arguments, which are used to
filter events:

The first object is used to filter events by indexed return values: for
example, {'valueA': 1, 'valueB': [myFirstAddress,
mySecondAddress]}. By default, all filter values are set to null. This
means that they will match any event of a given type sent from this
contract.
The next object can contain three properties: fromBlock (the earliest
block; by default, it is "latest"), toBlock (the latest block; by default,
it is "latest"), and address (a list of addresses to only get logs from;
by default, the contract address).

Getting Started with web3.js

[89]

The event object exposes three methods: get, watch, and stopWatching. get is2.
used to get all the events in the block range. watch is like get but it watches for
changes after getting the events. And stopWatching can be used to stop
watching for changes.
Then, we have the allEvents method of the contract instance. It is used to3.
retrieve all the events of a contract.
Every event is represented by an object that contains the following properties:4.

args: An object with the arguments from the event
event: A string representing the event name
logIndex: An integer representing the log index position in the block
transactionIndex: An integer representing the transactions the
index position log was created from
transactionHash: A string representing the hash of the transactions
this log was created from
address: A string representing the address from which this log
originated
blockHash: A string representing the hash of the block where this log
was in; null when its pending
blockNumber: The block number where this log was in; null when its
pending

web3.js provides a web3.eth.filter API to retrieve and watch for
events. You can use this API, but the earlier method's way of handling
events is much easier. You can learn more about it at
https://github.com/ethereum/wiki/wiki/JavaScript-API#web3ethfilt

er.

Building a client for an ownership contract
In the previous chapter, we wrote Solidity code for the ownership contract, and in both the
previous chapter and this chapter, we learned web3.js and how to invoke the methods of
the contract using web3.js. Now, it's time to build a client for our smart contract so that
users can use it easily.

https://github.com/ethereum/wiki/wiki/JavaScript-API#web3ethfilter
https://github.com/ethereum/wiki/wiki/JavaScript-API#web3ethfilter

Getting Started with web3.js

[90]

We will build a client where a user selects a file and enters owner details and then clicks on
Submit to broadcast a transaction to invoke the contract's set method with the file hash
and the owner's details. Once the transaction is successfully broadcasted, we will display
the transaction hash. The user will also be able to select a file and get the owner's details
from the smart contract. The client will also display the recent set transactions mined in
real time.

We will use sha1.js to get the hash of the file on the frontend, jQuery for DOM
manipulation, and Bootstrap 4 to create a responsive layout. We will use express.js and
web3.js on the backend. We will use socket.io so that the backend pushes recently mined
transactions to the frontend without the frontend requesting for data after every equal
interval of time.

web3.js can be used in the frontend. But for this application, it will be a
security risk; that is, we are using accounts stored in geth and exposing the
geth node URL to the frontend, which will put the ether stored in those
accounts at risk.

The project structure
In the exercise files of this chapter, you will find two directories: Final and Initial.
Final contains the final source code of the project, whereas Initial contains the empty
source code files and libraries to get started with building the application quickly.

To test the Final directory, you will need to run npm install inside it
and replace the hardcoded contract address in app.js with the contract
address you got after deploying the contract. Then, run the app using the
node app.js command inside the Final directory.

In the Initial directory, you will find a public directory and two files named app.js
and package.json. package.json contains the backend dependencies of our app, and
app.js is where you will place the backend source code.

The public directory contains files related to the frontend. Inside public/css, you will
find bootstrap.min.css, which is the Bootstrap library; inside public/html, you will
find index.html, where you will place the HTML code of our app; and in the public/js
directory, you will find JS files for jQuery, sha1, and socket.io. Inside public/js, you will
also find a main.js file, where you will place the frontend JS code of our app.

Getting Started with web3.js

[91]

Building the backend
Let's first build the backend of the app. First of all, run npm install inside the Initial
directory to install the required dependencies for our backend. Before we get into coding
the backend, make sure geth is running with rpc enabled. If you are running geth on a
private network, then make sure mining is also enabled. Finally, make sure that account 0
exists and is unlocked. You can run geth on a private network with rpc and mining enabled
and also unlocking account 0:

geth --dev --mine --rpc --unlock=0

One final thing you need to do before getting started with coding is deploy the ownership
contract using the code we saw in the previous chapter and copy the contract address.

Now let's create a single server, which will serve the HTML to the browser and also accept
socket.io connections:

var express = require("express");
var app = express();
var server = require("http").createServer(app);
var io = require("socket.io")(server);
server.listen(8080);

Here, we are integrating both the express and socket.io servers into one server running
on port 8080.

Now let's create the routes to serve the static files and also the home page of the app. Here
is the code to do this:

app.use(express.static("public"));
app.get("/", function(req, res){
 res.sendFile(__dirname + "/public/html/index.html");
})

Here, we are using the express.static middleware to serve static files. We are asking it
to find static files in the public directory.

Getting Started with web3.js

[92]

Now let's connect to the geth node and also get a reference to the deployed contract so that
we can send transactions and watch for events. Here is the code to do this:

var Web3 = require("web3");

web3 = new Web3(new Web3.providers.HttpProvider("http://localhost:8545"));

var proofContract =
web3.eth.contract([{"constant":false,"inputs":[{"name":"fileHash","type":"s
tring"}],"name":"get","outputs":[{"name":"timestamp","type":"uint256"},{"na
me":"owner","type":"string"}],"payable":false,"type":"function"},{"constant
":false,"inputs":[{"name":"owner","type":"string"},{"name":"fileHash","type
":"string"}],"name":"set","outputs":[],"payable":false,"type":"function"},{
"anonymous":false,"inputs":[{"indexed":false,"name":"status","type":"bool"}
,{"indexed":false,"name":"timestamp","type":"uint256"},{"indexed":false,"na
me":"owner","type":"string"},{"indexed":false,"name":"fileHash","type":"str
ing"}],"name":"logFileAddedStatus","type":"event"}]);

var proof = proofContract.at("0xf7f02f65d5cd874d180c3575cb8813a9e7736066");

The code is self-explanatory. Just replace the contract address with the one you got.

Now let's create routes to broadcast transactions and get information about a file. Here is
the code to do this:

app.get("/submit", function(req, res){
var fileHash = req.query.hash;
var owner = req.query.owner;
proof.set.sendTransaction(owner, fileHash, {
from: web3.eth.accounts[0],
}, function(error, transactionHash){
if (!error)
{
 res.send(transactionHash);
}
else
{
 res.send("Error");
}
})
})
app.get("/getInfo", function(req, res){
var fileHash = req.query.hash;
var details = proof.get.call(fileHash);
res.send(details);
})

Getting Started with web3.js

[93]

Here, the /submit route is used to create and broadcast transactions. Once we get the
transaction hash, we send it to the client. We are not doing anything to wait for the
transaction to mine. The /getInfo route calls the get method of the contract on the node
itself instead of creating a transaction. It simply sends back whatever response it got.

Now let's watch for the events from the contract and broadcast it to all the clients. Here is
the code to do this:

proof.logFileAddedStatus().watch(function(error, result){
if(!error)
{
 if(result.args.status == true)
 {
 io.send(result);
 }
}
})

Here, we check whether the status is true, and if it's true, only then do we broadcast the
event to all the connected socket.io clients.

Building the frontend
Let's begin with the HTML of the app. Put this code in the index.html file:

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta name="viewport" content="width=device-width, initial-scale=1,
shrink-to-fit=no">
 <link rel="stylesheet" href="/css/bootstrap.min.css">
 </head>
 <body>
 <div class="container">
 <div class="row">
 <div class="col-md-6 offset-md-3 text-xs-center">

 <h3>Upload any file</h3>

 <div>
 <div class="form-group">
 <label class="custom-file text-xs-left">
 <input type="file" id="file" class="custom-
file-input">

Getting Started with web3.js

[94]

 </label>
 </div>
 <div class="form-group">
 <label for="owner">Enter owner name</label>
 <input type="text" class="form-control"
id="owner">
 </div>
 <button onclick="submit()" class="btn btn-
primary">Submit</button>
 <button onclick="getInfo()" class="btn btn-
primary">Get Info</button>

 <div class="alert alert-info" role="alert"
id="message">
 You can either submit file's details or get
information about it.
 </div>
 </div>
 </div>
 </div>
 <div class="row">
 <div class="col-md-6 offset-md-3 text-xs-center">

 <h3>Live Transactions Mined</h3>

 <ol id="events_list">No Transaction Found
 </div>
 </div>
 </div>
 <script type="text/javascript" src="/js/sha1.min.js"></script>
 <script type="text/javascript" src="/js/jquery.min.js"></script>
 <script type="text/javascript" src="/js/socket.io.min.js"></script>
 <script type="text/javascript" src="/js/main.js"></script>
 </body>
</html>

Here is how the code works:

At first, we display Bootstrap's file input field so that the user can select a file.1.
Then, we display a text field where the user can enter the owner's details.2.
Then, we have two buttons. The first one is to store the file hash and the owner's3.
details in the contract, and the second button is to get information on the file from
the contract. Clicking on the Submit button triggers the submit() method,
whereas clicking on the Get Info button triggers the getInfo() method.

Getting Started with web3.js

[95]

Then, we have an alert box to display messages.4.
Finally, we display an ordered list to display the transactions of the contract that5.
gets mined while the user is on the page.

Now let's write the implementation for the getInfo() and submit() methods, establish a
socket.io connect with the server, and listen for socket.io messages from the server.
Here is the code to this. Place this code in the main.js file:

 function submit()
 {
 var file = document.getElementById("file").files[0];
 if(file)
 {
 var owner = document.getElementById("owner").value;
 if(owner == "")
 {
 alert("Please enter owner name");
 }
 else
 {
 var reader = new FileReader();
 reader.onload = function (event) {
 var hash = sha1(event.target.result);
 $.get("/submit?hash=" + hash + "&owner=" + owner, function(data){
 if(data == "Error")
 {
 $("#message").text("An error occured.");
 }
 else
 {
 $("#message").html("Transaction hash: " + data);
 }
 });
 };
 reader.readAsArrayBuffer(file);
 }
}
 else
 {
 alert("Please select a file");
 }
}
function getInfo()
{
 var file = document.getElementById("file").files[0];
 if(file)
 {

Getting Started with web3.js

[96]

 var reader = new FileReader();
 reader.onload = function (event) {
 var hash = sha1(event.target.result);
 $.get("/getInfo?hash=" + hash, function(data){
 if(data[0] == 0 && data[1] == "")
 {
 $("#message").html("File not found");
 }
 else
 {
 $("#message").html("Timestamp: " + data[0] + " Owner: " + data[1]);
 }
 });
};
reader.readAsArrayBuffer(file);
}
else
 {
 alert("Please select a file");
 }
}
var socket = io("http://localhost:8080");
socket.on("connect", function () {
socket.on("message", function (msg) {
if($("#events_list").text() == "No Transaction Found")
{
 $("#events_list").html("Txn Hash: " + msg.transactionHash +
"nOwner: " + msg.args.owner + "nFile Hash: " + msg.args.fileHash +
"");
}
else
{
 $("#events_list").prepend("Txn Hash: " + msg.transactionHash +
"nOwner: " + msg.args.owner + "nFile Hash: " + msg.args.fileHash +
"");
}
 });
});

Getting Started with web3.js

[97]

This is how the preceding code works:

At first, we defined the submit() method. In the submit method, we make sure1.
that a file is selected and the text field is not empty. Then, we read the content of
the file as an array buffer and pass the array buffer to the sha1() method
exposed by sha1.js to get the hash of content inside the array buffer. Once we
have the hash, we use jQuery to make an AJAX request to the /submit route and
then we display the transaction hash in the alert box.
We define the getInfo() method next. It first makes sure that a file is selected.2.
Then, it generates the hash like the one it generated earlier and makes a request
to the /getInfo endpoint to get information about that file.
Finally, we establish a socket.io connection using the io() method exposed by3.
the socket.io library. Then, we wait for the connect event to the trigger, which
indicates that a connection has been established. After the connection is
established, we listen for messages from the server and display the details about
the transactions to the user.

We aren't storing the file in the Ethereum blockchain because storing files
is very expensive as it requires a lot of gas. For our case, we actually don't
need to store files because nodes in the network will be able to see the file;
therefore, if the users want to keep the file content secret, then they won't
be able to. Our application's purpose is just to prove ownership of a file,
not to store and serve the file like a cloud service.

Getting Started with web3.js

[98]

Testing the client
Now run the app.js node to run the application server. Open you favorite browser and
visit http://localhost:8080/. You will see this output in the browser:

Getting Started with web3.js

[99]

Now select a file and enter the owner's name and click on Submit. The screen will change to
this:

Getting Started with web3.js

[100]

Here, you can see that the transaction hash is displayed. Now wait until the transaction is
mined. Once the transaction is mined, you will be able to see the transaction in the live
transactions list. Here is how the screen would look:

Getting Started with web3.js

[101]

Now select the same file again and click on the Get Info button. You will see this output:

Here, you can see the timestamp and the owner's details. Now we have finished building
the client for our first DApp.

Summary
In this chapter, we first learned about the fundamentals of web3.js with examples. We
learned how to connect to a node, basic APIs, sending various kinds of transactions, and
watching for events. Finally, we built a proper production use client for our ownership
contract. Now you will be comfortable with writing smart contracts and building UI clients
for them in order to ease their use.

In the next chapter, we will build a wallet service, where users can create and manage
Ethereum Wallets easily, and that too is offline. We will specifically use the LightWallet
library to achieve this.

5
Building a Wallet Service

A wallet service is used to send and receive funds. Major challenges for building a wallet
service are security and trust. Users must feel that their funds are secure and the
administrator of the wallet service doesn't steal their funds. The wallet service we will build
in this chapter will tackle both these issues.

In this chapter, we'll cover the following topics:

Difference between online and offline wallets
Using hooked-web3-provider and ethereumjs-tx to make it easier to create and
sign transactions using accounts not managed by an Ethereum node
Understanding what a HD wallet is and also its uses
Creating an HD wallet and a transaction signer using lightwallet.js
Building a wallet service

Difference between online and offline wallets
A wallet is a collection of accounts, and an account is a combination of an address and its
associated private key.

A wallet is said to be an online wallet when it is connected to the Internet. For example,
wallets stored in geth, any website/database, and so on are called online wallets. Online
wallets are also called hot wallets, web wallets, hosted wallets, and so on. Online wallets are
not recommended at least when storing large amounts of ether or storing ether for a long
time because they are risky. Also, depending on where the wallet is stored, it may require
trusting a third party.

Building a Wallet Service

[103]

For example, most of the popular wallet services store the private keys of the wallets with
themselves and allow you to access the wallet via an e-mail and password, so basically, you
don't have actual access to the wallet, and if they want, they can steal the funds in the
wallets.

A wallet is said to be an offline wallet when it is not connected to the Internet. For example,
wallets stored in pen drives, papers, text files, and so on. Offline wallets are also called cold
wallets. Offline wallets are more secure than online wallets because to steal funds, someone
will need physical access to the storage. The challenges with offline storage is that you need
to find a location that you won't delete accidentally or forget, or nobody else can have
access to. Many people store the wallet in paper and keep the paper in a safe locker if they
want to hold some funds safely for a very long time. If you want to frequently send funds
from your account, then you can store it in a password-protected pen drive and also in a
safe locker. It is a little risker to store wallets in a digital device only because digital devices
can corrupt anytime and you may lose access to your wallet; that's why along with storing
in a pen drive, you should also put it in a safe locker. You can also find a better solution
depending on your needs, but just make sure it's safe and that you accidentally don't lose
access to it.

hooked-web3-provider and ethereumjs-tx
libraries
Until now, all the examples of Web3.js library's sendTransaction() method we saw were
using the from address that's present in the Ethereum node; therefore, the Ethereum node
was able to sign the transactions before broadcasting. But if you have the private key of a
wallet stored somewhere else, then geth cannot find it. Therefore, in this case, you will need
to use the web3.eth.sendRawTransaction() method to broadcast transactions.

web3.eth.sendRawTransaction() is used to broadcast raw transactions, that is, you will
have to write code to create and sign raw transactions. The Ethereum node will directly
broadcast it without doing anything else to the transaction. But writing code to broadcast
transactions using web3.eth.sendRawTransaction() is difficult because it requires
generating the data part, creating raw transactions, and also signing the transactions.

Building a Wallet Service

[104]

The Hooked-Web3-Provider library provides us with a custom provider, which
communicates with geth using HTTP; but the uniqueness of this provider is that it lets us
sign the sendTransaction() calls of contract instances using our keys. Therefore, we
don't need to create data part of the transactions anymore. The custom provider actually
overrides the implementation of the web3.eth.sendTransaction() method. So basically,
it lets us sign both the sendTransaction() calls of contract instances and also the
web3.eth.sendTransaction() calls. The sendTransaction() method of contract
instances internally generate data of the transaction and
calls web3.eth.sendTransaction() to broadcast the transaction.

EthereumJS is a collection of those libraries related to Ethereum. ethereumjs-tx is one of
those that provide various APIs related to transactions. For example, it lets us create raw
transactions, sign the raw transactions, check whether transactions are signed using proper
keys or not, and so on.

Both of these libraries are available for Node.js and client-side JavaScript. Download the
Hooked-Web3-Provider from h t t p s ://w w w . n p m j s . c o m /p a c k a g e /h o o k e d - w e b 3- p r o v i d e r ,
and download ethereumjs-tx from h t t p s ://w w w . n p m j s . c o m /p a c k a g e /e t h e r e u m j s - t x .

At the time of writing this book, the latest version of Hooked-Web3-Provider is 1.0.0 and
the latest version of ethereumjs-tx is 1.1.4.

Let's see how to use these libraries together to send a transaction from an account that's not
managed by geth.

var provider = new HookedWeb3Provider({
 host: "http://localhost:8545",
 transaction_signer: {
 hasAddress: function(address, callback){
 callback(null, true);
 },
 signTransaction: function(tx_params, callback){
 var rawTx = {
 gasPrice: web3.toHex(tx_params.gasPrice),
 gasLimit: web3.toHex(tx_params.gas),
 value: web3.toHex(tx_params.value)
 from: tx_params.from,
 to: tx_params.to,
 nonce: web3.toHex(tx_params.nonce)
 };

 var privateKey =
EthJS.Util.toBuffer('0x1a56e47492bf3df9c9563fa7f66e4e032c661de9d68c3f36f358
e6bc9a9f69f2', 'hex');
 var tx = new EthJS.Tx(rawTx);

https://www.npmjs.com/package/hooked-web3-provider
https://www.npmjs.com/package/hooked-web3-provider
https://www.npmjs.com/package/hooked-web3-provider
https://www.npmjs.com/package/hooked-web3-provider
https://www.npmjs.com/package/hooked-web3-provider
https://www.npmjs.com/package/hooked-web3-provider
https://www.npmjs.com/package/hooked-web3-provider
https://www.npmjs.com/package/hooked-web3-provider
https://www.npmjs.com/package/hooked-web3-provider
https://www.npmjs.com/package/hooked-web3-provider
https://www.npmjs.com/package/hooked-web3-provider
https://www.npmjs.com/package/hooked-web3-provider
https://www.npmjs.com/package/hooked-web3-provider
https://www.npmjs.com/package/hooked-web3-provider
https://www.npmjs.com/package/hooked-web3-provider
https://www.npmjs.com/package/hooked-web3-provider
https://www.npmjs.com/package/hooked-web3-provider
https://www.npmjs.com/package/hooked-web3-provider
https://www.npmjs.com/package/hooked-web3-provider
https://www.npmjs.com/package/hooked-web3-provider
https://www.npmjs.com/package/hooked-web3-provider
https://www.npmjs.com/package/hooked-web3-provider
https://www.npmjs.com/package/hooked-web3-provider
https://www.npmjs.com/package/hooked-web3-provider
https://www.npmjs.com/package/hooked-web3-provider
https://www.npmjs.com/package/hooked-web3-provider
https://www.npmjs.com/package/hooked-web3-provider
https://www.npmjs.com/package/hooked-web3-provider
https://www.npmjs.com/package/hooked-web3-provider
https://www.npmjs.com/package/hooked-web3-provider
https://www.npmjs.com/package/hooked-web3-provider
https://www.npmjs.com/package/hooked-web3-provider
https://www.npmjs.com/package/hooked-web3-provider
https://www.npmjs.com/package/hooked-web3-provider
https://www.npmjs.com/package/hooked-web3-provider
https://www.npmjs.com/package/hooked-web3-provider
https://www.npmjs.com/package/hooked-web3-provider
https://www.npmjs.com/package/hooked-web3-provider
https://www.npmjs.com/package/hooked-web3-provider
https://www.npmjs.com/package/hooked-web3-provider
https://www.npmjs.com/package/hooked-web3-provider
https://www.npmjs.com/package/hooked-web3-provider
https://www.npmjs.com/package/hooked-web3-provider
https://www.npmjs.com/package/hooked-web3-provider
https://www.npmjs.com/package/hooked-web3-provider
https://www.npmjs.com/package/hooked-web3-provider
https://www.npmjs.com/package/hooked-web3-provider
https://www.npmjs.com/package/hooked-web3-provider
https://www.npmjs.com/package/hooked-web3-provider
https://www.npmjs.com/package/hooked-web3-provider
https://www.npmjs.com/package/hooked-web3-provider
https://www.npmjs.com/package/hooked-web3-provider
https://www.npmjs.com/package/hooked-web3-provider
https://www.npmjs.com/package/hooked-web3-provider
https://www.npmjs.com/package/hooked-web3-provider
https://www.npmjs.com/package/hooked-web3-provider
https://www.npmjs.com/package/hooked-web3-provider
https://www.npmjs.com/package/hooked-web3-provider
https://www.npmjs.com/package/hooked-web3-provider
https://www.npmjs.com/package/hooked-web3-provider
https://www.npmjs.com/package/hooked-web3-provider
https://www.npmjs.com/package/hooked-web3-provider
https://www.npmjs.com/package/hooked-web3-provider
https://www.npmjs.com/package/hooked-web3-provider
https://www.npmjs.com/package/hooked-web3-provider
https://www.npmjs.com/package/hooked-web3-provider
https://www.npmjs.com/package/hooked-web3-provider
https://www.npmjs.com/package/hooked-web3-provider
https://www.npmjs.com/package/hooked-web3-provider
https://www.npmjs.com/package/hooked-web3-provider
https://www.npmjs.com/package/hooked-web3-provider
https://www.npmjs.com/package/hooked-web3-provider
https://www.npmjs.com/package/hooked-web3-provider
https://www.npmjs.com/package/hooked-web3-provider
https://www.npmjs.com/package/hooked-web3-provider
https://www.npmjs.com/package/hooked-web3-provider
https://www.npmjs.com/package/hooked-web3-provider
https://www.npmjs.com/package/hooked-web3-provider
https://www.npmjs.com/package/hooked-web3-provider
https://www.npmjs.com/package/hooked-web3-provider
https://www.npmjs.com/package/hooked-web3-provider
https://www.npmjs.com/package/hooked-web3-provider
https://www.npmjs.com/package/hooked-web3-provider
https://www.npmjs.com/package/hooked-web3-provider
https://www.npmjs.com/package/hooked-web3-provider
https://www.npmjs.com/package/hooked-web3-provider
https://www.npmjs.com/package/hooked-web3-provider
https://www.npmjs.com/package/hooked-web3-provider
https://www.npmjs.com/package/ethereumjs-tx
https://www.npmjs.com/package/ethereumjs-tx
https://www.npmjs.com/package/ethereumjs-tx
https://www.npmjs.com/package/ethereumjs-tx
https://www.npmjs.com/package/ethereumjs-tx
https://www.npmjs.com/package/ethereumjs-tx
https://www.npmjs.com/package/ethereumjs-tx
https://www.npmjs.com/package/ethereumjs-tx
https://www.npmjs.com/package/ethereumjs-tx
https://www.npmjs.com/package/ethereumjs-tx
https://www.npmjs.com/package/ethereumjs-tx
https://www.npmjs.com/package/ethereumjs-tx
https://www.npmjs.com/package/ethereumjs-tx
https://www.npmjs.com/package/ethereumjs-tx
https://www.npmjs.com/package/ethereumjs-tx
https://www.npmjs.com/package/ethereumjs-tx
https://www.npmjs.com/package/ethereumjs-tx
https://www.npmjs.com/package/ethereumjs-tx
https://www.npmjs.com/package/ethereumjs-tx
https://www.npmjs.com/package/ethereumjs-tx
https://www.npmjs.com/package/ethereumjs-tx
https://www.npmjs.com/package/ethereumjs-tx
https://www.npmjs.com/package/ethereumjs-tx
https://www.npmjs.com/package/ethereumjs-tx
https://www.npmjs.com/package/ethereumjs-tx
https://www.npmjs.com/package/ethereumjs-tx
https://www.npmjs.com/package/ethereumjs-tx
https://www.npmjs.com/package/ethereumjs-tx
https://www.npmjs.com/package/ethereumjs-tx
https://www.npmjs.com/package/ethereumjs-tx
https://www.npmjs.com/package/ethereumjs-tx
https://www.npmjs.com/package/ethereumjs-tx
https://www.npmjs.com/package/ethereumjs-tx
https://www.npmjs.com/package/ethereumjs-tx
https://www.npmjs.com/package/ethereumjs-tx
https://www.npmjs.com/package/ethereumjs-tx
https://www.npmjs.com/package/ethereumjs-tx
https://www.npmjs.com/package/ethereumjs-tx
https://www.npmjs.com/package/ethereumjs-tx
https://www.npmjs.com/package/ethereumjs-tx
https://www.npmjs.com/package/ethereumjs-tx
https://www.npmjs.com/package/ethereumjs-tx
https://www.npmjs.com/package/ethereumjs-tx
https://www.npmjs.com/package/ethereumjs-tx
https://www.npmjs.com/package/ethereumjs-tx
https://www.npmjs.com/package/ethereumjs-tx
https://www.npmjs.com/package/ethereumjs-tx
https://www.npmjs.com/package/ethereumjs-tx
https://www.npmjs.com/package/ethereumjs-tx
https://www.npmjs.com/package/ethereumjs-tx
https://www.npmjs.com/package/ethereumjs-tx
https://www.npmjs.com/package/ethereumjs-tx
https://www.npmjs.com/package/ethereumjs-tx
https://www.npmjs.com/package/ethereumjs-tx
https://www.npmjs.com/package/ethereumjs-tx
https://www.npmjs.com/package/ethereumjs-tx
https://www.npmjs.com/package/ethereumjs-tx
https://www.npmjs.com/package/ethereumjs-tx
https://www.npmjs.com/package/ethereumjs-tx
https://www.npmjs.com/package/ethereumjs-tx
https://www.npmjs.com/package/ethereumjs-tx
https://www.npmjs.com/package/ethereumjs-tx
https://www.npmjs.com/package/ethereumjs-tx
https://www.npmjs.com/package/ethereumjs-tx
https://www.npmjs.com/package/ethereumjs-tx
https://www.npmjs.com/package/ethereumjs-tx
https://www.npmjs.com/package/ethereumjs-tx
https://www.npmjs.com/package/ethereumjs-tx
https://www.npmjs.com/package/ethereumjs-tx
https://www.npmjs.com/package/ethereumjs-tx
https://www.npmjs.com/package/ethereumjs-tx
https://www.npmjs.com/package/ethereumjs-tx
https://www.npmjs.com/package/ethereumjs-tx
https://www.npmjs.com/package/ethereumjs-tx
https://www.npmjs.com/package/ethereumjs-tx
https://www.npmjs.com/package/ethereumjs-tx

Building a Wallet Service

[105]

 tx.sign(privateKey);

 callback(null, tx.serialize().toString('hex'));
 }
 }
});

var web3 = new Web3(provider);

web3.eth.sendTransaction({
 from: "0xba6406ddf8817620393ab1310ab4d0c2deda714d",
 to: "0x2bdbec0ccd70307a00c66de02789e394c2c7d549",
 value: web3.toWei("0.1", "ether"),
 gasPrice: "20000000000",
 gas: "21000"
}, function(error, result){
 console.log(error, result)
})

Here is how the code works:

At first, we created a HookedWeb3Provider instance. This is provided by the1.
Hooked-Web3-Provider library. This constructor takes an object that has two
properties, which must be provided. host is the HTTP URL of the node and
transaction_signer is an object that the custom provider communicates with
to get the transaction signed.
The transaction_signer object has two properties: hasAddress and2.
signTransaction. hasAddress is invoked to check whether the transaction can
be signed, that is, to check whether the transaction signer has the private key of
the from address account. This method receives the address and a callback. The
callback should be called with the first argument as an error message and the
second argument as false if the private key of the address is not found. And if
the private key is found, the first argument should be null, and the second
argument should be true.

Building a Wallet Service

[106]

If the private key for the address is found, then the custom provider invokes the3.
signTransaction method to get the transaction signed. This method has two
parameters, that is, the transactions parameters and a callback. Inside the
method, at first, we convert the transaction parameters to raw transaction
parameters, that is, the raw transaction parameters values are encoded as
hexadecimal strings. Then we create a buffer to hold the private key. The buffer is
created using the EthJS.Util.toBuffer() method, which is part of the
ethereumjs-util library. The ethereumjs-util library is imported by the
ethereumjs-tx library. We then create a raw transaction and sign it, after which
we serialize and convert it to hexadecimal strings. Finally, we need to provide the
hexadecimal string of the signed raw transaction to the custom provider using
the callback. In case there is an error inside the method, then the first argument of
the callback should be an error message.
Now the custom provider takes the raw transactions and broadcasts it using4.
web3.eth.sendRawTransaction().
Finally, we call the web3.eth.sendTransaction function to send some ether to5.
another account. Here, we need to provide all the transaction parameters except
nonce because the custom provider can calculate nonce. Earlier, many of these
were optional because we were leaving it to the Ethereum node to calculate them,
but now as we are signing it ourselves, we need to provide all of them. The gas is
always 21,000 when the transaction doesn't have any data associated with it.

What about the public key?
In the preceding code, nowhere did we mention anything about the public
key of the signing address. You must be wondering how a miner will
verify the authenticity of a transaction without the public key. Miners use
a unique property of ECDSA, which allows you to calculate the public key
from the message and signature. In a transaction, the message indicates
the intention of the transaction, and the signature is used to find whether
the message is signed using the correct private key. This is what makes
ECDSA so special. ethereumjs-tx provides an API to verify transactions.

Building a Wallet Service

[107]

What is a hierarchical deterministic wallet?
A hierarchical deterministic wallet is a system of deriving addresses and keys from a single
starting point called a seed. Deterministic indicates that for the same seed, the same
addresses and keys will be generated, and hierarchical indicates that the addresses and keys
will be generated in the same order. This makes it easier to back up and store multiple
accounts, as you just have to store the seed, not the individual keys and addresses.

Why will users need multiple accounts?
You must be wondering why users will need multiple accounts. The
reason is to hide their wealth. The balance of accounts is available publicly
in the blockchain. So, if user A shares an address with user B to receive
some ether, then user B can check how much ether is present in that
address. Therefore, users usually distribute their wealth across various
accounts.

There are various types of HD wallets, which differ in terms of seed format and the
algorithm to generate addresses and keys, for instance, BIP32, Armory, Coinkite, Coinb.in,
and so on.

What are BIP32, BIP44, and BIP39?
A Bitcoin Improvement Proposal (BIP) is a design document providing
information to the Bitcoin community, or describing a new feature for
Bitcoin or its processes or environment. The BIP should provide a concise
technical specification of the feature and a rationale for the feature. At the
time of writing this book, there are 152 BIPS (Bitcoin Improvement
Proposals). BIP32 and BIP39 provide information about an algorithm to
implement an HD wallet and mnemonic seed specification respectively.
You can learn more about these at h t t p s ://g i t h u b . c o m /b i t c o i n /b i p s .

Introduction to key derivation functions
Asymmetric cryptography algorithms define the nature of their keys and how the keys
should be generated because the keys need to be related. For example, the RSA key
generation algorithm is deterministic.

Symmetric cryptography algorithms only define key sizes. It's up to us to generate the keys.
There are various algorithms to generate these keys. One such algorithm is KDF.

https://github.com/bitcoin/bips
https://github.com/bitcoin/bips
https://github.com/bitcoin/bips
https://github.com/bitcoin/bips
https://github.com/bitcoin/bips
https://github.com/bitcoin/bips
https://github.com/bitcoin/bips
https://github.com/bitcoin/bips
https://github.com/bitcoin/bips
https://github.com/bitcoin/bips
https://github.com/bitcoin/bips
https://github.com/bitcoin/bips
https://github.com/bitcoin/bips
https://github.com/bitcoin/bips
https://github.com/bitcoin/bips
https://github.com/bitcoin/bips
https://github.com/bitcoin/bips
https://github.com/bitcoin/bips
https://github.com/bitcoin/bips
https://github.com/bitcoin/bips
https://github.com/bitcoin/bips
https://github.com/bitcoin/bips
https://github.com/bitcoin/bips
https://github.com/bitcoin/bips
https://github.com/bitcoin/bips
https://github.com/bitcoin/bips
https://github.com/bitcoin/bips
https://github.com/bitcoin/bips
https://github.com/bitcoin/bips
https://github.com/bitcoin/bips
https://github.com/bitcoin/bips
https://github.com/bitcoin/bips
https://github.com/bitcoin/bips
https://github.com/bitcoin/bips
https://github.com/bitcoin/bips
https://github.com/bitcoin/bips
https://github.com/bitcoin/bips
https://github.com/bitcoin/bips
https://github.com/bitcoin/bips
https://github.com/bitcoin/bips
https://github.com/bitcoin/bips
https://github.com/bitcoin/bips
https://github.com/bitcoin/bips
https://github.com/bitcoin/bips
https://github.com/bitcoin/bips
https://github.com/bitcoin/bips
https://github.com/bitcoin/bips
https://github.com/bitcoin/bips
https://github.com/bitcoin/bips
https://github.com/bitcoin/bips
https://github.com/bitcoin/bips
https://github.com/bitcoin/bips

Building a Wallet Service

[108]

A key derivation function (KDF) is a deterministic algorithm to derive a symmetric key
from some secret value (such as master key, password, or passphrase). There are various
types of KDFs, such as bcrypt, crypt, PBKDF2, scrypt, HKDF, and so on. You can learn more
about KDFs at h t t p s ://e n . w i k i p e d i a . o r g /w i k i /K e y _ d e r i v a t i o n _ f u n c t i o n .

To generate multiple keys from a single secret value, you can concatenate
a number and increment it.

A password-based key derivation function takes a password and generates a symmetric
key. Due to the fact that users usually use weak passwords, password-based key derivation
functions are designed to be slower and take a lot of memory to make it difficult to launch
brute force attacks and other kinds of attacks. Password-based key derivation functions are
used widely because it's difficult to remember secret keys, and storing them somewhere is
risky as it can be stolen. PBKDF2 is an example of a password-based key derivation
function.

A master key or passphrase is difficult to be cracked using a brute force attack; therefore, in
case you want to generate a symmetric key from a master key or passphrase, you can use a
non-password-based key derivation function, such as HKDF. HKDF is much faster
compared to PBKDF2.

Why not just use a hash function instead of KDFs?
The output of hash functions can be used as symmetric keys. So you must
be wondering what is the need for KDFs. Well, if you are using a master
key, passphrase, or a strong password, you can simply use a hash
function. For example, HKDF simply uses a hash function to generate the
key. But if you cannot guarantee that users will use a strong password, it's
better to use a password derived hash function.

Introduction to LightWallet
LightWallet is an HD wallet that implements BIP32, BIP39, and BIP44. LightWallet provides
APIs to create and sign transactions or encrypt and decrypt data using the addresses and
keys generated using it.

https://en.wikipedia.org/wiki/Key_derivation_function
https://en.wikipedia.org/wiki/Key_derivation_function
https://en.wikipedia.org/wiki/Key_derivation_function
https://en.wikipedia.org/wiki/Key_derivation_function
https://en.wikipedia.org/wiki/Key_derivation_function
https://en.wikipedia.org/wiki/Key_derivation_function
https://en.wikipedia.org/wiki/Key_derivation_function
https://en.wikipedia.org/wiki/Key_derivation_function
https://en.wikipedia.org/wiki/Key_derivation_function
https://en.wikipedia.org/wiki/Key_derivation_function
https://en.wikipedia.org/wiki/Key_derivation_function
https://en.wikipedia.org/wiki/Key_derivation_function
https://en.wikipedia.org/wiki/Key_derivation_function
https://en.wikipedia.org/wiki/Key_derivation_function
https://en.wikipedia.org/wiki/Key_derivation_function
https://en.wikipedia.org/wiki/Key_derivation_function
https://en.wikipedia.org/wiki/Key_derivation_function
https://en.wikipedia.org/wiki/Key_derivation_function
https://en.wikipedia.org/wiki/Key_derivation_function
https://en.wikipedia.org/wiki/Key_derivation_function
https://en.wikipedia.org/wiki/Key_derivation_function
https://en.wikipedia.org/wiki/Key_derivation_function
https://en.wikipedia.org/wiki/Key_derivation_function
https://en.wikipedia.org/wiki/Key_derivation_function
https://en.wikipedia.org/wiki/Key_derivation_function
https://en.wikipedia.org/wiki/Key_derivation_function
https://en.wikipedia.org/wiki/Key_derivation_function
https://en.wikipedia.org/wiki/Key_derivation_function
https://en.wikipedia.org/wiki/Key_derivation_function
https://en.wikipedia.org/wiki/Key_derivation_function
https://en.wikipedia.org/wiki/Key_derivation_function
https://en.wikipedia.org/wiki/Key_derivation_function
https://en.wikipedia.org/wiki/Key_derivation_function
https://en.wikipedia.org/wiki/Key_derivation_function
https://en.wikipedia.org/wiki/Key_derivation_function
https://en.wikipedia.org/wiki/Key_derivation_function
https://en.wikipedia.org/wiki/Key_derivation_function
https://en.wikipedia.org/wiki/Key_derivation_function
https://en.wikipedia.org/wiki/Key_derivation_function
https://en.wikipedia.org/wiki/Key_derivation_function
https://en.wikipedia.org/wiki/Key_derivation_function
https://en.wikipedia.org/wiki/Key_derivation_function
https://en.wikipedia.org/wiki/Key_derivation_function
https://en.wikipedia.org/wiki/Key_derivation_function
https://en.wikipedia.org/wiki/Key_derivation_function
https://en.wikipedia.org/wiki/Key_derivation_function
https://en.wikipedia.org/wiki/Key_derivation_function
https://en.wikipedia.org/wiki/Key_derivation_function
https://en.wikipedia.org/wiki/Key_derivation_function
https://en.wikipedia.org/wiki/Key_derivation_function
https://en.wikipedia.org/wiki/Key_derivation_function
https://en.wikipedia.org/wiki/Key_derivation_function
https://en.wikipedia.org/wiki/Key_derivation_function
https://en.wikipedia.org/wiki/Key_derivation_function
https://en.wikipedia.org/wiki/Key_derivation_function
https://en.wikipedia.org/wiki/Key_derivation_function
https://en.wikipedia.org/wiki/Key_derivation_function
https://en.wikipedia.org/wiki/Key_derivation_function
https://en.wikipedia.org/wiki/Key_derivation_function
https://en.wikipedia.org/wiki/Key_derivation_function
https://en.wikipedia.org/wiki/Key_derivation_function
https://en.wikipedia.org/wiki/Key_derivation_function
https://en.wikipedia.org/wiki/Key_derivation_function
https://en.wikipedia.org/wiki/Key_derivation_function
https://en.wikipedia.org/wiki/Key_derivation_function
https://en.wikipedia.org/wiki/Key_derivation_function
https://en.wikipedia.org/wiki/Key_derivation_function
https://en.wikipedia.org/wiki/Key_derivation_function
https://en.wikipedia.org/wiki/Key_derivation_function
https://en.wikipedia.org/wiki/Key_derivation_function
https://en.wikipedia.org/wiki/Key_derivation_function
https://en.wikipedia.org/wiki/Key_derivation_function
https://en.wikipedia.org/wiki/Key_derivation_function
https://en.wikipedia.org/wiki/Key_derivation_function
https://en.wikipedia.org/wiki/Key_derivation_function
https://en.wikipedia.org/wiki/Key_derivation_function
https://en.wikipedia.org/wiki/Key_derivation_function
https://en.wikipedia.org/wiki/Key_derivation_function
https://en.wikipedia.org/wiki/Key_derivation_function
https://en.wikipedia.org/wiki/Key_derivation_function
https://en.wikipedia.org/wiki/Key_derivation_function
https://en.wikipedia.org/wiki/Key_derivation_function
https://en.wikipedia.org/wiki/Key_derivation_function
https://en.wikipedia.org/wiki/Key_derivation_function
https://en.wikipedia.org/wiki/Key_derivation_function
https://en.wikipedia.org/wiki/Key_derivation_function
https://en.wikipedia.org/wiki/Key_derivation_function
https://en.wikipedia.org/wiki/Key_derivation_function
https://en.wikipedia.org/wiki/Key_derivation_function
https://en.wikipedia.org/wiki/Key_derivation_function
https://en.wikipedia.org/wiki/Key_derivation_function
https://en.wikipedia.org/wiki/Key_derivation_function
https://en.wikipedia.org/wiki/Key_derivation_function
https://en.wikipedia.org/wiki/Key_derivation_function
https://en.wikipedia.org/wiki/Key_derivation_function
https://en.wikipedia.org/wiki/Key_derivation_function

Building a Wallet Service

[109]

LightWallet API is divided into four namespaces, that is, keystore, signing,
encryption, and txutils. signing, encrpytion, and txutils provide APIs to sign
transactions, asymmetric cryptography, and create transactions respectively, whereas a
keystore namespace is used to create a keystore, generated seed, and so on. keystore is
an object that holds the seed and keys encrypted. The keystore namespace implements
transaction signer methods that requires signing the we3.eth.sendTransaction() calls if
we are using Hooked-Web3-Provider. Therefore the keystore namespace can
automatically create and sign transactions for the addresses that it can find in it. Actually,
LightWallet is primarily intended to be a signing provider for the Hooked-Web3-Provider.

A keystore instance can be configured to either create and sign transactions or encrypt
and decrypt data. For signing transactions, it uses the secp256k1 parameter, and for
encryption and decryption, it uses the curve25519 parameter.

The seed of LightWallet is a 12-word mnemonic, which is easy to remember yet difficult to
hack. It cannot be any 12 words; instead, it should be a seed generated by LightWallet. A
seed generated by LightWallet has certain properties in terms of selection of words and
other things.

HD derivation path
The HD derivation path is a string that makes it easy to handle multiple crypto currencies
(assuming they all use the same signature algorithms), multiple blockchains, multiple
accounts, and so on.

HD derivation path can have as many parameters as needed, and using different values for
the parameters, we can produce different group of addresses and their associated keys.

By default, LightWallet uses the m/0'/0'/0' derivation path. Here, /n' is a parameter,
and n is the parameter value.

Every HD derivation path has a curve, and purpose. purpose can be either sign or
asymEncrypt. sign indicates that the path is used for signing transactions, and
asymEncrypt indicates that the path is used for encryption and decryption. curve
indicates the parameters of ECC. For signing, the parameter must be secp256k1, and for
asymmetric encryption, the curve must be curve25591 because LightWallet forces us to
use these paramters due to their benefits in those purposes.

Building a Wallet Service

[110]

Building a wallet service
Now we have learned enough theory about LightWallet, it's time to build a wallet service
using LightWallet and hooked-web3-provider. Our wallet service will let users generate a
unique seed, display addresses and their associated balance, and finally, the service will let
users send ether to other accounts. All the operations will be done on the client side so that
users can trust us easily. Users will either have to remember the seed or store it somewhere.

Prerequisites
Before you start building the wallet service, make sure that you are running the geth
development instance, which is mining, has the HTTP-RPC server enabled, allows client-
side requests from any domain, and finally has account 0 unlocked. You can do all these by
running this:

 geth --dev --rpc --rpccorsdomain "*" --rpcaddr "0.0.0.0" --rpcport
"8545" --mine --unlock=0

Here, --rpccorsdomain is used to allow certain domains to communicate with geth. We
need to provide a list of domains space separated, such as "http://localhost:8080
https://mySite.com *". It also supports the * wildcard character. --rpcaddr indicates
to which IP address the geth server is reachable. The default for this is 127.0.0.1, so if it's
a hosted server, you won't be able to reach it using the public IP address of the server.
Therefore, we changed it's value to 0.0.0.0, which indicates that the server can be reached
using any IP address.

Project structure
In the exercise files of this chapter, you will find two directories, that is, Final and
Initial. Final contains the final source code of the project, whereas Initial contains
the empty source code files and libraries to get started with building the application
quickly.

To test the Final directory, you will need to run npm install inside it
and then run the app using the node app.js command inside the Final
directory.

Building a Wallet Service

[111]

In the Initial directory, you will find a public directory and two files named app.js
and package.json. package.json contains the backend dependencies. Our app, app.js,
is where you will place the backend source code.

The public directory contains files related to the frontend. Inside public/css, you will
find bootstrap.min.css, which is the bootstrap library. Inside public/html, you will
find index.html, where you will place the HTML code of our app, and finally, in the
public/js directory, you will find .js files for Hooked-Web3-Provider, web3js, and
LightWallet. Inside public/js, you will also find a main.js file where you will place the
frontend JS code of our app.

Building the backend
Let's first build the backend of the app. First of all, run npm install inside the initial
directory to install the required dependencies for our backend.

Here is the complete backend code to run an express service and serve the index.html file
and static files:

var express = require("express");
var app = express();

app.use(express.static("public"));

app.get("/", function(req, res){
 res.sendFile(__dirname + "/public/html/index.html");
})

app.listen(8080);

The preceding code is self-explanatory.

Building the frontend
Now let's build the frontend of the app. The frontend will consists of the major
functionalities, that is, generating seed, displaying addresses of a seed, and sending ether.

Now let's write the HTML code of the app. Place this code in the index.html file:

<!DOCTYPE html>
 <html lang="en">
 <head>

Building a Wallet Service

[112]

 <meta charset="utf-8">
 <meta name="viewport" content="width=device-width, initial-
scale=1, shrink-to-fit=no">
 <meta http-equiv="x-ua-compatible" content="ie=edge">
 <link rel="stylesheet" href="/css/bootstrap.min.css">
 </head>
 <body>
 <div class="container">
 <div class="row">
 <div class="col-md-6 offset-md-3">

 <div class="alert alert-info" id="info" role="alert">
 Create or use your existing wallet.
 </div>
 <form>
 <div class="form-group">
 <label for="seed">Enter 12-word seed</label>
 <input type="text" class="form-control"
id="seed">
 </div>
 <button type="button" class="btn btn-primary"
onclick="generate_addresses()">Generate Details</button>
 <button type="button" class="btn btn-primary"
onclick="generate_seed()">Generate New Seed</button>
 </form>
 <hr>
 <h2 class="text-xs-center">Address, Keys and Balances
of the seed</h2>
 <ol id="list">

 <hr>
 <h2 class="text-xs-center">Send ether</h2>
 <form>
 <div class="form-group">
 <label for="address1">From address</label>
 <input type="text" class="form-control"
id="address1">
 </div>
 <div class="form-group">
 <label for="address2">To address</label>
 <input type="text" class="form-control"
id="address2">
 </div>
 <div class="form-group">
 <label for="ether">Ether</label>
 <input type="text" class="form-control"
id="ether">
 </div>

Building a Wallet Service

[113]

 <button type="button" class="btn btn-primary"
onclick="send_ether()">Send Ether</button>
 </form>
 </div>
 </div>
 </div>

 <script src="/js/web3.min.js"></script>
 <script src="/js/hooked-web3-provider.min.js"></script>
 <script src="/js/lightwallet.min.js"></script>
 <script src="/js/main.js"></script>
 </body>
 </html>

Here is how the code works:

At first, we enqueue a Bootstrap 4 stylesheet.1.
Then we display an information box, where we will display various messages to2.
the user.
And then we have a form with an input box and two buttons. The input box is3.
used to enter the seed, or while generating new seed, the seed is displayed there.
The Generate Details button is used to display addresses and Generate New4.
Seed is used to generate a new unique seed. When Generate Details is clicked,
we call the generate_addresses() method, and when the Generate New Seed
button is clicked, we call the generate_seed() method.
Later, we have an empty ordered list. Here, we will dynamically display the5.
addresses, their balances, and associated private keys of a seed when a user clicks
on the Generate Details button.
Finally, we have another form that takes a from address and a to address and the6.
amount of ether to transfer. The from address must be one of the addresses that's
currently displayed in the unordered list.

Now let's write the implementation of each of the functions that the HTML code calls. At
first, let's write the code to generate a new seed. Place this code in the main.js file:

function generate_seed()
{
 var new_seed = lightwallet.keystore.generateRandomSeed();

 document.getElementById("seed").value = new_seed;

 generate_addresses(new_seed);
}

Building a Wallet Service

[114]

The generateRandomSeed() method of the keystore namespace is used to generate a
random seed. It takes an optional parameter, which is a string that indicates the extra
entropy.

Entropy is the randomness collected by an application for use in some
algorithm or somewhere else that requires random data. Usually, entropy
is collected from hardware sources, either pre-existing ones such as mouse
movements or specially provided randomness generators.

To produce a unique seed, we need really high entropy. LightWallet is already built with
methods to produce unique seeds. The algorithm LightWallet uses to produce entropy
depends on the environment. But if you feel you can generate better entropy, you can pass
the generated entropy to the generateRandomSeed() method, and it will get concatenated
with the entropy generated by generateRandomSeed() internally.

After generating a random seed, we call the generate_addresses method. This method
takes a seed and displays addresses in it. Before generating addresses, it prompts the user to
ask how many addresses they want.

Here is the implementation of the generate_addresses() method. Place this code in the
main.js file:

var totalAddresses = 0;

function generate_addresses(seed)
{
 if(seed == undefined)
 {
 seed = document.getElementById("seed").value;
 }

 if(!lightwallet.keystore.isSeedValid(seed))
 {
 document.getElementById("info").innerHTML = "Please enter a valid seed";
 return;
 }

 totalAddresses = prompt("How many addresses do you want to generate");

 if(!Number.isInteger(parseInt(totalAddresses)))
 {
 document.getElementById("info").innerHTML = "Please enter valid number of
addresses";
 return;
 }

Building a Wallet Service

[115]

 var password = Math.random().toString();

 lightwallet.keystore.createVault({
 password: password,
 seedPhrase: seed
 }, function (err, ks) {
 ks.keyFromPassword(password, function (err, pwDerivedKey) {
 if(err)
 {
 document.getElementById("info").innerHTML = err;
 }
 else
 {
 ks.generateNewAddress(pwDerivedKey, totalAddresses);
 var addresses = ks.getAddresses();

 var web3 = new Web3(new
Web3.providers.HttpProvider("http://localhost:8545"));

 var html = "";

 for(var count = 0; count < addresses.length; count++)
 {
 var address = addresses[count];
 var private_key = ks.exportPrivateKey(address, pwDerivedKey);
 var balance = web3.eth.getBalance("0x" + address);

 html = html + "";
 html = html + "<p>Address: 0x" + address + "</p>";
 html = html + "<p>Private Key: 0x" + private_key + "</p>";
 html = html + "<p>Balance: " + web3.fromWei(balance, "ether") +
" ether</p>";
 html = html + "";
 }

 document.getElementById("list").innerHTML = html;
 }
 });
 });
}

Here is how the code works:

At first, we have a variable named totalAddresses, which holds a number1.
indicating the total number of addresses the user wants to generate.

Building a Wallet Service

[116]

Then we check whether the seed parameter is defined or not. If it's undefined,2.
we fetch the seed from the input field. We are doing this so that the
generate_addressess() method can be used to display the information seed
while generating a new seed and also if the user clicks on the Generate Details
button.

Then we validate the seed using the isSeedValid() method of the keystore3.
namespace.
We then ask for the user's input regarding how many addresses they want to4.
generate and display. And then we validate the input.
The private keys in the keystore namespace are always stored encrypted. While5.
generating keys, we need to encrypt them, and while signing transactions, we
need to decrypt the keys. The password for deriving a symmetric encryption key
can be taken as input from the user or by supplying a random string as a
password. For better user experience, we generate a random string and use it as
the password. The symmetric key is not stored inside the keystore namespace;
therefore, we need to generate the key from the password whenever we do
operations related to the private key, such as generating keys, accessing keys, and
so on.
Then we use the createVault method to create a keystore instance.6.
createVault takes an object and a callback. The object can have four properties:
password, seedPharse, salt, and hdPathString. password is compulsory,
and everything else is optional. If we don't provide a seedPharse, it will
generate and use a random seed. salt is concatenated to the password to
increase the security of the symmetric key as the attacker has to also find the salt
along with the password. If the salt is not provided, it's randomly generated. The
keystore namespace holds the salt unencrypted. hdPathString is used to
provide the default derivation path for the keystore namespace, that is, while
generating addresses, signing transactions, and so on. If we don't provide a
derivation path, then this derivation path is used. If we don't provide
hdPathString, then the default value is m/0'/0'/0'. The default purpose of
this derivation path is sign. You can create new derivation paths or overwrite
the purpose of derivation paths present using the addHdDerivationPath()
method of a keystore instance. You can also change the default derivation path
using the setDefaultHdDerivationPath() method of a keystore instance.
Finally, once the keystore namespace is created, the instance is returned via the
callback. So here, we created a keystore using a password and seed only.

Building a Wallet Service

[117]

Now we need to generate the number of addresses and their associated keys the7.
user needs. As we can generate millions of addresses from a seed, keystore
doesn't generate any address until we want it to because it doesn't know how
many addresses we want to generate. After creating the keystore, we generate
the symmetric key from the password using the keyFromPassword method. And
then we call the generateNewAddress() method to generate addresses and
their associated keys.

generateNewAddress() takes three arguments: password derived key, number8.
of addresses to generate, and derivation path. As we haven't provided a
derivation path, it uses the default derivation path of the keystore. If you call
generateNewAddress() multiple times, it resumes from the address it created
in the last call. For example, if you call this method twice, each time generating
two addresses, you will have the first four addresses.
Then we use getAddresses() to get all the addresses stored in the keystore.9.
We decrypt and retrieve private keys of the addresses using the10.
exportPrivateKey method.
We use web3.eth.getBalance() to get balances of the address.11.
And finally, we display all the information inside the unordered list.12.

Now we know how to generate the address and their private keys from a seed. Now let's
write the implementation of the send_ether() method, which is used to send ether from
one of the addresses generated from the seed.

Here is the code for this. Place this code in the main.js file:

function send_ether()
{
 var seed = document.getElementById("seed").value;

 if(!lightwallet.keystore.isSeedValid(seed))
 {
 document.getElementById("info").innerHTML = "Please enter a valid seed";
 return;
 }

 var password = Math.random().toString();

 lightwallet.keystore.createVault({
 password: password,
 seedPhrase: seed
 }, function (err, ks) {
 ks.keyFromPassword(password, function (err, pwDerivedKey) {

Building a Wallet Service

[118]

 if(err)
 {
 document.getElementById("info").innerHTML = err;
 }
 else
 {
 ks.generateNewAddress(pwDerivedKey, totalAddresses);

 ks.passwordProvider = function (callback) {
 callback(null, password);
 };

 var provider = new HookedWeb3Provider({
 host: "http://localhost:8545",
 transaction_signer: ks
 });

 var web3 = new Web3(provider);

 var from = document.getElementById("address1").value;
 var to = document.getElementById("address2").value;
 var value = web3.toWei(document.getElementById("ether").value,
"ether");

 web3.eth.sendTransaction({
 from: from,
 to: to,
 value: value,
 gas: 21000
 }, function(error, result){
 if(error)
 {
 document.getElementById("info").innerHTML = error;
 }
 else
 {
 document.getElementById("info").innerHTML = "Txn hash: " + result;
 }
 })
 }
 });
 });
}

Building a Wallet Service

[119]

Here, the code up and until generating addresses from the seed is self explanatory. After
that, we assign a callback to the passwordProvider property of ks. This callback is
invoked during transaction signing to get the password to decrypt the private key. If we
don't provide this, LightWallet prompts the user to enter the password. And then, we create
a HookedWeb3Provider instance by passing the keystore as the transaction signer. Now
when the custom provider wants a transaction to be signed, it calls the hasAddress and
signTransactions methods of ks. If the address to be signed is not among the generated
addresses, ks will give an error to the custom provider. And finally, we send some ether
using the web3.eth.sendTransaction method.

Testing
Now that we have finished building our wallet service, let's test it to make sure it works as
expected. First, run node app.js inside the initial directory, and then visit
http://localhost:8080 in your favorite browser. You will see this screen:

Building a Wallet Service

[120]

Now click on the Generate New Seed button to generate a new seed. You will be prompted
to enter a number indicating the number of addresses to generate. You can provide any
number, but for testing purposes, provide a number greater than 1. Now the screen will
look something like this:

Building a Wallet Service

[121]

Now to test sending ether, you need to send some ether to one of the generated addresses
from the coinbase account. Once you have sent some ether to one of the generated
addresses, click on the Generate Details button to refresh the UI, although it's not necessary
to test sending ether using the wallet service. Make sure the same address is generated
again. Now the screen will look something like this:

Building a Wallet Service

[122]

Now in the from address field, enter the account address from the list that has the balance
in the from address field. Then enter another address in the to address field. For testing
purposes, you can enter any of the other addresses displayed. Then enter some ether
amount that is less than or equal to the ether balance of the from address account. Now
your screen will look something like this:

Building a Wallet Service

[123]

Now click on the Send Ether button, and you will see the transaction hash in the
information box. Wait for sometime for it to get mined. Meanwhile, you can check whether
the transactions got mined or not by clicking on the Generate Details button in a very short
span of time. Once the transaction is mined, your screen will look something like this:

Building a Wallet Service

[124]

If everything goes the same way as explained, your wallet service is ready. You can actually
deploy this service to a custom domain and make it available for use publicly. It's
completely secure, and users will trust it.

Summary
In this chapter, you learned about three important Ethereum libraries: Hooked-Web3-
Provider, ethereumjs-tx, and LightWallet. These libraries can be used to manage accounts
and sign transactions outside of the Ethereum node. While developing clients for most
kinds of DApps, you will find these libraries useful.

And finally, we created a wallet service that lets users manage their accounts that share
private keys or any other information related to their wallet with the backend of the service.

In the next chapter, we will build a platform to build and deploy smart contracts.

6
Building a Smart Contract

Deployment Platform
Some clients may need to compile and deploy contracts at runtime. In our proof-of-
ownership DApp, we deployed the smart contract manually and hardcoded the contract
address in the client-side code. But some clients may need to deploy smart contracts at
runtime. For example, if a client lets schools record students' attendance in the blockchain,
then it will need to deploy a smart contract every time a new school is registered so that
each school has complete control over their smart contract. In this chapter, we will learn
how to compile smart contracts using web3.js and deploy it using web3.js and EthereumJS.

In this chapter, we'll cover the following topics:

Calculating the nonce of a transaction
Using the transaction pool JSON-RPC API
Generating data of a transaction for contract creation and method invocation
Estimating the gas required by a transaction
Finding the current spendable balance of an account
Compiling smart contracts using solcjs
Developing a platform to write, compile, and deploy smart contracts

Calculating a transaction's nonce
For the accounts maintained by geth, we don't need to worry about the transaction nonce
because geth can add the correct nonce to the transactions and sign them. While using
accounts that aren't managed by geth, we need to calculate the nonce ourselves.

Building a Smart Contract Deployment Platform

[126]

To calculate the nonce ourselves, we can use the getTransactionCount method provided
by geth. The first argument should be the address whose transaction count we need and the
second argument is the block until we need the transaction count. We can provide the
"pending" string as the block to include transactions from the block that's currently being
mined. As we discussed in an earlier chapter, geth maintains a transaction pool in which it
keeps pending and queued transactions. To mine a block, geth takes the pending
transactions from the transaction pool and starts mining the new block. Until the block is
not mined, the pending transactions remain in the transaction pool and once mined, the
mined transactions are removed from the transaction pool. The new incoming transactions
received while a block is being mined are put in the transaction pool and are mined in the
next block. So when we provide "pending" as the second argument while calling
getTransactionCount, it doesn't look inside the transaction pool; instead, it just considers
the transactions in the pending block.

So if you are trying to send transactions from accounts not managed by geth, then count the
total number of transactions of the account in the blockchain and add it with the
transactions pending in the transaction pool. If you try to use pending transactions from the
pending block, then you will fail to get the correct nonce if transactions are sent to geth
within a few seconds of the interval because it takes 12 seconds on average to include a
transaction in the blockchain.

In the previous chapter, we relied on the hooked-web3-provider to add nonce to the
transaction. Unfortunately, the hooked-web3-provider doesn't try to get the nonce the
correct way. It maintains a counter for every account and increments it every time you send
a transaction from that account. And if the transaction is invalid (for example, if the
transaction is trying to send more ether than it has), then it doesn't decrement the counter.
Therefore, the rest of the transactions from that account will be queued and never be mined
until the hooked-web3-provider is reset, that is, the client is restarted. And if you create
multiple instances of the hooked-web3-provider, then these instances cannot sync the nonce
of an account with each other, so you may end up with the incorrect nonce. But before you
add the nonce to the transaction, the hooked-web3-provider always gets the transaction
count until the pending block and compares it with its counter and uses whichever is
greater. So if the transaction from an account managed by the hooked-web3-provider is sent
from another node in the network and is included in the pending block, then the hooked-
web3-provider can see it. But the overall hooked-web3-provider cannot be relied on to
calculate the nonce. It's great for quick prototyping of client-side apps and is fit to use in
apps where the user can see and resend transactions if they aren't broadcasted to the
network and the hooked-web3-provider is reset frequently. For example, in our wallet
service, the user will frequently load the page, so a new hooked-web3-provider instance is
created frequently. And if the transaction is not broadcasted, not valid, or not mined, then
the user can refresh the page and resend transactions.

Building a Smart Contract Deployment Platform

[127]

Introducing solcjs
solcjs is a Node.js library and command-line tool that is used to compile solidity files. It
doesn't use the solc command-line compiler; instead, it compiles purely using JavaScript, so
it's much easier to install than solc.

Solc is the actual Solidity compiler. Solc is written in C++. The C++ code is compiled to
JavaScript using emscripten. Every version of solc is compiled to JavaScript. At h t t p s ://g i

t h u b . c o m /e t h e r e u m /s o l c - b i n /t r e e /g h - p a g e s /b i n , you can find the JavaScript-based
compilers of each solidity version. solcjs just uses one of these JavaScript-based compilers to
compile the solidity source code. These JavaScript-based compilers can run in both browser
and Node.js environments.

The browser Solidity uses these JavaScript-based compilers to compile the
Solidity source code.

Installing solcjs
solcjs is available as an npm package with the name solc. You can install the solcjs npm
package locally or globally just like any other npm package. If this package is installed
globally, then solcjs, a command-line tool, will be available. So, in order to install the
command-line tool, run this command:

 npm install -g solc

Now go ahead and run this command to see how to compile solidity files using the
command-line compiler:

 solcjs -help

We won't be exploring the solcjs command-line tool; instead, we will learn about the solcjs
APIs to compile solidity files.

By default, solcjs uses compiler version matching as its version. For
example, if you install solcjs version 0.4.8, then it will use the 0.4.8
compiler version to compile by default. solcjs can be configured to use
some other compiler versions too. At the time of writing this, the latest
version of solcjs is 0.4.8.

https://github.com/ethereum/solc-bin/tree/gh-pages/bin
https://github.com/ethereum/solc-bin/tree/gh-pages/bin
https://github.com/ethereum/solc-bin/tree/gh-pages/bin
https://github.com/ethereum/solc-bin/tree/gh-pages/bin
https://github.com/ethereum/solc-bin/tree/gh-pages/bin
https://github.com/ethereum/solc-bin/tree/gh-pages/bin
https://github.com/ethereum/solc-bin/tree/gh-pages/bin
https://github.com/ethereum/solc-bin/tree/gh-pages/bin
https://github.com/ethereum/solc-bin/tree/gh-pages/bin
https://github.com/ethereum/solc-bin/tree/gh-pages/bin
https://github.com/ethereum/solc-bin/tree/gh-pages/bin
https://github.com/ethereum/solc-bin/tree/gh-pages/bin
https://github.com/ethereum/solc-bin/tree/gh-pages/bin
https://github.com/ethereum/solc-bin/tree/gh-pages/bin
https://github.com/ethereum/solc-bin/tree/gh-pages/bin
https://github.com/ethereum/solc-bin/tree/gh-pages/bin
https://github.com/ethereum/solc-bin/tree/gh-pages/bin
https://github.com/ethereum/solc-bin/tree/gh-pages/bin
https://github.com/ethereum/solc-bin/tree/gh-pages/bin
https://github.com/ethereum/solc-bin/tree/gh-pages/bin
https://github.com/ethereum/solc-bin/tree/gh-pages/bin
https://github.com/ethereum/solc-bin/tree/gh-pages/bin
https://github.com/ethereum/solc-bin/tree/gh-pages/bin
https://github.com/ethereum/solc-bin/tree/gh-pages/bin
https://github.com/ethereum/solc-bin/tree/gh-pages/bin
https://github.com/ethereum/solc-bin/tree/gh-pages/bin
https://github.com/ethereum/solc-bin/tree/gh-pages/bin
https://github.com/ethereum/solc-bin/tree/gh-pages/bin
https://github.com/ethereum/solc-bin/tree/gh-pages/bin
https://github.com/ethereum/solc-bin/tree/gh-pages/bin
https://github.com/ethereum/solc-bin/tree/gh-pages/bin
https://github.com/ethereum/solc-bin/tree/gh-pages/bin
https://github.com/ethereum/solc-bin/tree/gh-pages/bin
https://github.com/ethereum/solc-bin/tree/gh-pages/bin
https://github.com/ethereum/solc-bin/tree/gh-pages/bin
https://github.com/ethereum/solc-bin/tree/gh-pages/bin
https://github.com/ethereum/solc-bin/tree/gh-pages/bin
https://github.com/ethereum/solc-bin/tree/gh-pages/bin
https://github.com/ethereum/solc-bin/tree/gh-pages/bin
https://github.com/ethereum/solc-bin/tree/gh-pages/bin
https://github.com/ethereum/solc-bin/tree/gh-pages/bin
https://github.com/ethereum/solc-bin/tree/gh-pages/bin
https://github.com/ethereum/solc-bin/tree/gh-pages/bin
https://github.com/ethereum/solc-bin/tree/gh-pages/bin
https://github.com/ethereum/solc-bin/tree/gh-pages/bin
https://github.com/ethereum/solc-bin/tree/gh-pages/bin
https://github.com/ethereum/solc-bin/tree/gh-pages/bin
https://github.com/ethereum/solc-bin/tree/gh-pages/bin
https://github.com/ethereum/solc-bin/tree/gh-pages/bin
https://github.com/ethereum/solc-bin/tree/gh-pages/bin
https://github.com/ethereum/solc-bin/tree/gh-pages/bin
https://github.com/ethereum/solc-bin/tree/gh-pages/bin
https://github.com/ethereum/solc-bin/tree/gh-pages/bin
https://github.com/ethereum/solc-bin/tree/gh-pages/bin
https://github.com/ethereum/solc-bin/tree/gh-pages/bin
https://github.com/ethereum/solc-bin/tree/gh-pages/bin
https://github.com/ethereum/solc-bin/tree/gh-pages/bin
https://github.com/ethereum/solc-bin/tree/gh-pages/bin
https://github.com/ethereum/solc-bin/tree/gh-pages/bin
https://github.com/ethereum/solc-bin/tree/gh-pages/bin
https://github.com/ethereum/solc-bin/tree/gh-pages/bin
https://github.com/ethereum/solc-bin/tree/gh-pages/bin
https://github.com/ethereum/solc-bin/tree/gh-pages/bin
https://github.com/ethereum/solc-bin/tree/gh-pages/bin
https://github.com/ethereum/solc-bin/tree/gh-pages/bin
https://github.com/ethereum/solc-bin/tree/gh-pages/bin
https://github.com/ethereum/solc-bin/tree/gh-pages/bin
https://github.com/ethereum/solc-bin/tree/gh-pages/bin
https://github.com/ethereum/solc-bin/tree/gh-pages/bin
https://github.com/ethereum/solc-bin/tree/gh-pages/bin
https://github.com/ethereum/solc-bin/tree/gh-pages/bin
https://github.com/ethereum/solc-bin/tree/gh-pages/bin
https://github.com/ethereum/solc-bin/tree/gh-pages/bin
https://github.com/ethereum/solc-bin/tree/gh-pages/bin
https://github.com/ethereum/solc-bin/tree/gh-pages/bin
https://github.com/ethereum/solc-bin/tree/gh-pages/bin
https://github.com/ethereum/solc-bin/tree/gh-pages/bin
https://github.com/ethereum/solc-bin/tree/gh-pages/bin
https://github.com/ethereum/solc-bin/tree/gh-pages/bin
https://github.com/ethereum/solc-bin/tree/gh-pages/bin
https://github.com/ethereum/solc-bin/tree/gh-pages/bin
https://github.com/ethereum/solc-bin/tree/gh-pages/bin
https://github.com/ethereum/solc-bin/tree/gh-pages/bin
https://github.com/ethereum/solc-bin/tree/gh-pages/bin
https://github.com/ethereum/solc-bin/tree/gh-pages/bin
https://github.com/ethereum/solc-bin/tree/gh-pages/bin
https://github.com/ethereum/solc-bin/tree/gh-pages/bin
https://github.com/ethereum/solc-bin/tree/gh-pages/bin
https://github.com/ethereum/solc-bin/tree/gh-pages/bin
https://github.com/ethereum/solc-bin/tree/gh-pages/bin
https://github.com/ethereum/solc-bin/tree/gh-pages/bin

Building a Smart Contract Deployment Platform

[128]

solcjs APIs
solcjs provides a compiler method, which is used to compile solidity code. This method
can be used in two different ways depending on whether the source code has any imports
or not. If the source code doesn't have any imports, then it takes two arguments; that is, the
first argument is solidity source code as a string and a Boolean indicating whether to
optimize the byte code or not. If the source string contains multiple contracts, then it will
compile all of them.

Here is an example to demonstrate this:

var solc = require("solc");
var input = "contract x { function g() {} }";
var output = solc.compile(input, 1); // 1 activates the optimiser
for (var contractName in output.contracts) {
 // logging code and ABI
 console.log(contractName + ": " +
output.contracts[contractName].bytecode);
 console.log(contractName + "; " +
JSON.parse(output.contracts[contractName].interface));
}

If your source code contains imports, then the first argument will be an object whose keys
are filenames and values are the contents of the files. So whenever the compiler sees an
import statement, it doesn't look for the file in the filesystem; instead, it looks for the file
contents in the object by matching the filename with the keys. Here is an example to
demonstrate this:

var solc = require("solc");
var input = {
 "lib.sol": "library L { function f() returns (uint) { return 7; } }",
 "cont.sol": "import 'lib.sol'; contract x { function g() { L.f(); } }"
};
var output = solc.compile({sources: input}, 1);
for (var contractName in output.contracts)
 console.log(contractName + ": " +
output.contracts[contractName].bytecode);

Building a Smart Contract Deployment Platform

[129]

If you want to read the imported file contents from the filesystem during compilation or
resolve the file contents during compilation, then the compiler method supports a third
argument, which is a method that takes the filename and should return the file content.
Here is an example to demonstrate this:

var solc = require("solc");
var input = {
 "cont.sol": "import 'lib.sol'; contract x { function g() { L.f(); } }"
};
function findImports(path) {
 if (path === "lib.sol")
 return { contents: "library L { function f() returns (uint) {
return 7; } }" }
 else
 return { error: "File not found" }
}
var output = solc.compile({sources: input}, 1, findImports);
for (var contractName in output.contracts)
 console.log(contractName + ": " +
output.contracts[contractName].bytecode);

Using a different compiler version
In order to compile contracts using a different version of solidity, you need to use the
useVersion method to get a reference of a different compiler. useVersion takes a string
that indicates the JavaScript filename that holds the compiler, and it looks for the file in the
/node_modules/solc/bin directory.

solcjs also provides another method called loadRemoteVersion, which takes the compiler
filename that matches the filename in the solc-bin/bin directory of the solc-bin
repository (https://github.com/ethereum/solc-bin) and downloads and uses it.

Finally, solcjs also provides another method called setupMethods, which is similar to
useVersion but can load the compiler from any directory.

Here is an example to demonstrate all three methods:

var solc = require("solc");

var solcV047 = solc.useVersion("v0.4.7.commit.822622cf");
var output = solcV011.compile("contract t { function g() {} }", 1);

solc.loadRemoteVersion('soljson-v0.4.5.commit.b318366e', function(err,
solcV045) {
 if (err) {

https://github.com/ethereum/solc-bin

Building a Smart Contract Deployment Platform

[130]

 // An error was encountered, display and quit
 }

 var output = solcV045.compile("contract t { function g() {} }", 1);
});

var solcV048 = solc.setupMethods(require("/my/local/0.4.8.js"));
var output = solcV048.compile("contract t { function g() {} }", 1);

solc.loadRemoteVersion('latest', function(err, latestVersion) {
 if (err) {
 // An error was encountered, display and quit
 }
 var output = latestVersion.compile("contract t { function g() {} }",
1);
});

To run the preceding code, you need to first download the v0.4.7.commit.822622cf.js
file from the solc-bin repository and place it in the node_modules/solc/bin directory.
And then you need to download the compiler file of solidity version 0.4.8 and place it
somewhere in the filesystem and point the path in the setupMethods call to that directory.

Linking libraries
If your solidity source code references libraries, then the generated byte code will contain
placeholders for the real addresses of the referenced libraries. These have to be updated via
a process called linking before deploying the contract.

solcjs provides the linkByteCode method to link library addresses to the generated byte
code.

Here is an example to demonstrate this:

var solc = require("solc");

var input = {
 "lib.sol": "library L { function f() returns (uint) { return 7; } }",
 "cont.sol": "import 'lib.sol'; contract x { function g() { L.f(); } }"
};

var output = solc.compile({sources: input}, 1);

var finalByteCode = solc.linkBytecode(output.contracts["x"].bytecode, {
'L': '0x123456...' });

Building a Smart Contract Deployment Platform

[131]

Updating the ABI
The ABI of a contract provides various kinds of information about the contract other than
implementation. The ABI generated by two different versions of compilers may not match
as higher versions support more solidity features than lower versions; therefore, they will
include extra things in the ABI. For example, the fallback function was introduced in the
0.4.0 version of Solidity so the ABI generated using compilers whose version is less than
0.4.0 will have no information about fallback functions, and these smart contracts behave
like they have a fallback function with an empty body and a payable modifier. So, the API
should be updated so that applications that depend on the ABI of newer solidity versions
can have better information about the contract.

solcjs provides an API to update the ABI. Here is an example code to demonstrate this:

var abi = require("solc/abi");

var inputABI =
[{"constant":false,"inputs":[],"name":"hello","outputs":[{"name":"","type":
"string"}],"payable":false,"type":"function"}];
var outputABI = abi.update("0.3.6", inputABI)

Here, 0.3.6 indicates that the ABI was generated using the 0.3.6 version of the compiler. As
we are using solcjs version 0.4.8, the ABI will be updated to match the ABI generated by the
0.4.8 compiler version, not above it.

The output of the preceding code will be as follows:

[{"constant":false,"inputs":[],"name":"hello","outputs":[{"name":"","type":
"string"}],"payable":true,"type":"function"},{"type":"fallback","payable":t
rue}]

Building a contract deployment platform
Now that we have learned how to use solcjs to compile solidity source code, it's time to
build a platform that lets us write, compile, and deploy contracts. Our platform will let
users provide their account address and private key, using which our platform will deploy
contracts.

Building a Smart Contract Deployment Platform

[132]

Before you start building the application, make sure that you are running the geth
development instance, which is mining, has rpc enabled, and exposes eth, web3, and
txpool APIs over the HTTP-RPC server. You can do all these by running this:

 geth --dev --rpc --rpccorsdomain "*" --rpcaddr "0.0.0.0" --rpcport
"8545" --mine --rpcapi "eth,txpool,web3"

The project structure
In the exercise files of this chapter, you will find two directories, that is, Final and
Initial. Final contains the final source code of the project, whereas Initial contains
the empty source code files and libraries to get started with building the application
quickly.

To test the Final directory, you will need to run npm install inside it
and then run the app using the node app.js command inside the Final
directory.

In the Initial directory, you will find a public directory and two files named app.js
and package.json. The package.json file contains the backend dependencies on our
app. app.js is where you will place the backend source code.

The public directory contains files related to the frontend. Inside public/css, you will
find bootstrap.min.css, which is the bootstrap library, and you will also find the
codemirror.css file, which is CSS of the codemirror library. Inside public/html, you
will find index.html, where you will place the HTML code of our app and in the
public/js directory, you will find .js files for codemirror and web3.js. Inside
public/js, you will also find a main.js file, where you will place the frontend JS code of
our app.

Building the backend
Let's first build the backend of the app. First of all, run npm install inside the Initial
directory to install the required dependencies for our backend.

Building a Smart Contract Deployment Platform

[133]

Here is the backend code to run an express service and serve the index.html file and static
files:

var express = require("express");
var app = express();

app.use(express.static("public"));

app.get("/", function(req, res){
 res.sendFile(__dirname + "/public/html/index.html");
})

app.listen(8080);

The preceding code is self-explanatory. Now let's proceed further. Our app will have two
buttons, that is, Compile and Deploy. When the user clicks on the compile button, the
contract will be compiled and when the deploy button is clicked on, the contract will be
deployed.

We will be compiling and deploying contracts in the backend. Although this can be done in
the frontend, we will do it in the backend because solcjs is available only for Node.js
(although the JavaScript-based compilers it uses work on the frontend).

To learn how to compile on the frontend, go through the source code of
solcjs, which will give you an idea about the APIs exposed by the
JavaScript-based compiler.

When the user clicks on the compile button, the frontend will make a GET request to the
/compile path by passing the contract source code. Here is the code for the route:

var solc = require("solc");

app.get("/compile", function(req, res){
 var output = solc.compile(req.query.code, 1);
 res.send(output);
})

Building a Smart Contract Deployment Platform

[134]

At first, we import the solcjs library here. Then, we define the /compile route and inside
the route callback, we simply compile the source code sent by the client with the optimizer
enabled. And then we just send the solc.compile method's return value to the frontend
and let the client check whether the compilation was successful or not.

When the user clicks on the deploy button, the frontend will make a GET request to the
/deploy path by passing the contract source code and constructor arguments from the
address and private key. When the user clicks on this button, the contract will be deployed
and the transaction hash will be returned to the user.

Here is the code for this:

var Web3 = require("web3");
var BigNumber = require("bignumber.js");
var ethereumjsUtil = require("ethereumjs-util");
var ethereumjsTx = require("ethereumjs-tx");

var web3 = new Web3(new
Web3.providers.HttpProvider("http://localhost:8545"));

function etherSpentInPendingTransactions(address, callback)
{
 web3.currentProvider.sendAsync({
 method: "txpool_content",
 params: [],
 jsonrpc: "2.0",
 id: new Date().getTime()
 }, function (error, result) {
 if(result.result.pending)
 {
 if(result.result.pending[address])
 {
 var txns = result.result.pending[address];
 var cost = new BigNumber(0);

 for(var txn in txns)
 {
 cost = cost.add((new BigNumber(parseInt(txns[txn].value))).add((new
BigNumber(parseInt(txns[txn].gas))).mul(new
BigNumber(parseInt(txns[txn].gasPrice)))));
 }

 callback(null, web3.fromWei(cost, "ether"));
 }
 else
 {
 callback(null, "0");

Building a Smart Contract Deployment Platform

[135]

 }
 }
 else
 {
 callback(null, "0");
 }
 })
}

function getNonce(address, callback)
{
 web3.eth.getTransactionCount(address, function(error, result){
 var txnsCount = result;

 web3.currentProvider.sendAsync({
 method: "txpool_content",
 params: [],
 jsonrpc: "2.0",
 id: new Date().getTime()
 }, function (error, result) {
 if(result.result.pending)
 {
 if(result.result.pending[address])
 {
 txnsCount = txnsCount +
Object.keys(result.result.pending[address]).length;
 callback(null, txnsCount);
 }
 else
 {
 callback(null, txnsCount);
 }
 }
 else
 {
 callback(null, txnsCount);
 }
 })
 })
}

app.get("/deploy", function(req, res){
 var code = req.query.code;
 var arguments = JSON.parse(req.query.arguments);
 var address = req.query.address;

 var output = solc.compile(code, 1);

Building a Smart Contract Deployment Platform

[136]

 var contracts = output.contracts;

 for(var contractName in contracts)
 {
 var abi = JSON.parse(contracts[contractName].interface);
 var byteCode = contracts[contractName].bytecode;

 var contract = web3.eth.contract(abi);

 var data = contract.new.getData.call(null, ...arguments, {
 data: byteCode
 });

 var gasRequired = web3.eth.estimateGas({
 data: "0x" + data
 });

 web3.eth.getBalance(address, function(error, balance){
 var etherAvailable = web3.fromWei(balance, "ether");
 etherSpentInPendingTransactions(address, function(error, balance){
 etherAvailable = etherAvailable.sub(balance)
 if(etherAvailable.gte(web3.fromWei(new
BigNumber(web3.eth.gasPrice).mul(gasRequired), "ether")))
 {
 getNonce(address, function(error, nonce){
 var rawTx = {
 gasPrice: web3.toHex(web3.eth.gasPrice),
 gasLimit: web3.toHex(gasRequired),
 from: address,
 nonce: web3.toHex(nonce),
 data: "0x" + data
 };

 var privateKey = ethereumjsUtil.toBuffer(req.query.key, 'hex');
 var tx = new ethereumjsTx(rawTx);
 tx.sign(privateKey);

 web3.eth.sendRawTransaction("0x" + tx.serialize().toString('hex'),
function(err, hash) {
 res.send({result: {
 hash: hash,
 }});
 });
 })
 }
 else
 {
 res.send({error: "Insufficient Balance"});

Building a Smart Contract Deployment Platform

[137]

 }
 })
 })

 break;
 }
})

This is how the preceding code works:

At first, the Web imports the web3.js, BigNumber.js, ethereumjs-util, and1.
ethereumjs-tx libraries. Then, we create an instance of Web3.
Then, we define a function named etherInSpentPendingTransactions,2.
which calculates the total ether that's being spent in the pending transactions of
an address. As web3.js doesn't provide JavaScript APIs related to the
transaction pool, we make a raw JSON-RPC call using
web3.currentProvider.sendAsync. sendAsync is used to make raw JSON-
RPC calls asynchronously. If you want to make this call synchronously, then use
the send method instead of sendAsync. While calculating the total ether in the
pending transactions of an address, we look for pending transactions in the
transaction pool instead of the pending block due to the issue we discussed
earlier. While calculating the total ether, we add the value and gas of each
transaction as gas also deducted the ether balance.
Next, we define a function called getNonce, which retrieves the nonce of an3.
address using the technique we discussed earlier. It simply adds the total number
of mined transactions to the total number of pending transactions.
Finally, we declare the /deploy endpoint. At first, we compile the contract. Then,4.
we deploy only the first contract. Our platform is designed to deploy the first
contract if multiple contracts are found in the provided source code. You can later
enhance the app to deploy all the compiled contracts instead of just the first one.
Then, we create a contract object using web3.eth.contract.

Building a Smart Contract Deployment Platform

[138]

As we aren't using the hooked-web3-provider or any hack to intercept5.
sendTransactions and convert them into the sendRawTransaction call, in
order to deploy the contract, we now need to generate the data part of the
transaction, which will have the contract byte code and constructor arguments
combined and encoded as a hexadecimal string. The contract object actually lets
us generate the data of the transaction. This can be done by calling the getData
method with function arguments. If you want to get data to deploy the contract,
then call contract.new.getData, and if you want to call a function of the
contract, then call contract.functionName.getData. In both the cases,
provide the arguments to the getData method. So, in order to generate the data
of a transaction, you just need the contract's ABI. To learn how the function name
and arguments are combined and encoded to generate data, you can check out h t

t p s ://g i t h u b . c o m /e t h e r e u m /w i k i /w i k i /E t h e r e u m - C o n t r a c t - A B I #e x a m p l e s ,
but this won't be required if you have the ABI of the contract or know how to
create the ABI manually.
Then, we use web3.eth.estimateGas to calculate the amount of gas that would6.
be required to deploy the contract.
Later, we check whether the address has enough ether to pay for the gas required7.
to deploy the contract. We find this out by retrieving the balance of the address
and subtracting it with the balance spent in the pending transactions and then
checking whether the remaining balance is greater than or equal to the amount of
ether required for the gas.
And finally, we get the nonce, signing and broadcasting the transactions. We8.
simply return the transaction hash to the frontend.

Building the frontend
Now let's build the frontend of our application. Our frontend will contain an editor, using
which the user writes code. And when the user clicks on the compile button, we will
dynamically display input boxes where each input box will represent a constructor
argument. When the deploy button is clicked on, the constructor argument values are taken
from these input boxes. The user will need to enter the JSON string in these input boxes.

We will be using the codemirror library to integrate the editor in our
frontend. To learn more about how to use codemirror, refer to h t t p ://c o d

e m i r r o r . n e t /.

https://github.com/ethereum/wiki/wiki/Ethereum-Contract-ABI#examples
https://github.com/ethereum/wiki/wiki/Ethereum-Contract-ABI#examples
https://github.com/ethereum/wiki/wiki/Ethereum-Contract-ABI#examples
https://github.com/ethereum/wiki/wiki/Ethereum-Contract-ABI#examples
https://github.com/ethereum/wiki/wiki/Ethereum-Contract-ABI#examples
https://github.com/ethereum/wiki/wiki/Ethereum-Contract-ABI#examples
https://github.com/ethereum/wiki/wiki/Ethereum-Contract-ABI#examples
https://github.com/ethereum/wiki/wiki/Ethereum-Contract-ABI#examples
https://github.com/ethereum/wiki/wiki/Ethereum-Contract-ABI#examples
https://github.com/ethereum/wiki/wiki/Ethereum-Contract-ABI#examples
https://github.com/ethereum/wiki/wiki/Ethereum-Contract-ABI#examples
https://github.com/ethereum/wiki/wiki/Ethereum-Contract-ABI#examples
https://github.com/ethereum/wiki/wiki/Ethereum-Contract-ABI#examples
https://github.com/ethereum/wiki/wiki/Ethereum-Contract-ABI#examples
https://github.com/ethereum/wiki/wiki/Ethereum-Contract-ABI#examples
https://github.com/ethereum/wiki/wiki/Ethereum-Contract-ABI#examples
https://github.com/ethereum/wiki/wiki/Ethereum-Contract-ABI#examples
https://github.com/ethereum/wiki/wiki/Ethereum-Contract-ABI#examples
https://github.com/ethereum/wiki/wiki/Ethereum-Contract-ABI#examples
https://github.com/ethereum/wiki/wiki/Ethereum-Contract-ABI#examples
https://github.com/ethereum/wiki/wiki/Ethereum-Contract-ABI#examples
https://github.com/ethereum/wiki/wiki/Ethereum-Contract-ABI#examples
https://github.com/ethereum/wiki/wiki/Ethereum-Contract-ABI#examples
https://github.com/ethereum/wiki/wiki/Ethereum-Contract-ABI#examples
https://github.com/ethereum/wiki/wiki/Ethereum-Contract-ABI#examples
https://github.com/ethereum/wiki/wiki/Ethereum-Contract-ABI#examples
https://github.com/ethereum/wiki/wiki/Ethereum-Contract-ABI#examples
https://github.com/ethereum/wiki/wiki/Ethereum-Contract-ABI#examples
https://github.com/ethereum/wiki/wiki/Ethereum-Contract-ABI#examples
https://github.com/ethereum/wiki/wiki/Ethereum-Contract-ABI#examples
https://github.com/ethereum/wiki/wiki/Ethereum-Contract-ABI#examples
https://github.com/ethereum/wiki/wiki/Ethereum-Contract-ABI#examples
https://github.com/ethereum/wiki/wiki/Ethereum-Contract-ABI#examples
https://github.com/ethereum/wiki/wiki/Ethereum-Contract-ABI#examples
https://github.com/ethereum/wiki/wiki/Ethereum-Contract-ABI#examples
https://github.com/ethereum/wiki/wiki/Ethereum-Contract-ABI#examples
https://github.com/ethereum/wiki/wiki/Ethereum-Contract-ABI#examples
https://github.com/ethereum/wiki/wiki/Ethereum-Contract-ABI#examples
https://github.com/ethereum/wiki/wiki/Ethereum-Contract-ABI#examples
https://github.com/ethereum/wiki/wiki/Ethereum-Contract-ABI#examples
https://github.com/ethereum/wiki/wiki/Ethereum-Contract-ABI#examples
https://github.com/ethereum/wiki/wiki/Ethereum-Contract-ABI#examples
https://github.com/ethereum/wiki/wiki/Ethereum-Contract-ABI#examples
https://github.com/ethereum/wiki/wiki/Ethereum-Contract-ABI#examples
https://github.com/ethereum/wiki/wiki/Ethereum-Contract-ABI#examples
https://github.com/ethereum/wiki/wiki/Ethereum-Contract-ABI#examples
https://github.com/ethereum/wiki/wiki/Ethereum-Contract-ABI#examples
https://github.com/ethereum/wiki/wiki/Ethereum-Contract-ABI#examples
https://github.com/ethereum/wiki/wiki/Ethereum-Contract-ABI#examples
https://github.com/ethereum/wiki/wiki/Ethereum-Contract-ABI#examples
https://github.com/ethereum/wiki/wiki/Ethereum-Contract-ABI#examples
https://github.com/ethereum/wiki/wiki/Ethereum-Contract-ABI#examples
https://github.com/ethereum/wiki/wiki/Ethereum-Contract-ABI#examples
https://github.com/ethereum/wiki/wiki/Ethereum-Contract-ABI#examples
https://github.com/ethereum/wiki/wiki/Ethereum-Contract-ABI#examples
https://github.com/ethereum/wiki/wiki/Ethereum-Contract-ABI#examples
https://github.com/ethereum/wiki/wiki/Ethereum-Contract-ABI#examples
https://github.com/ethereum/wiki/wiki/Ethereum-Contract-ABI#examples
https://github.com/ethereum/wiki/wiki/Ethereum-Contract-ABI#examples
https://github.com/ethereum/wiki/wiki/Ethereum-Contract-ABI#examples
https://github.com/ethereum/wiki/wiki/Ethereum-Contract-ABI#examples
https://github.com/ethereum/wiki/wiki/Ethereum-Contract-ABI#examples
https://github.com/ethereum/wiki/wiki/Ethereum-Contract-ABI#examples
https://github.com/ethereum/wiki/wiki/Ethereum-Contract-ABI#examples
https://github.com/ethereum/wiki/wiki/Ethereum-Contract-ABI#examples
https://github.com/ethereum/wiki/wiki/Ethereum-Contract-ABI#examples
https://github.com/ethereum/wiki/wiki/Ethereum-Contract-ABI#examples
https://github.com/ethereum/wiki/wiki/Ethereum-Contract-ABI#examples
https://github.com/ethereum/wiki/wiki/Ethereum-Contract-ABI#examples
https://github.com/ethereum/wiki/wiki/Ethereum-Contract-ABI#examples
https://github.com/ethereum/wiki/wiki/Ethereum-Contract-ABI#examples
https://github.com/ethereum/wiki/wiki/Ethereum-Contract-ABI#examples
https://github.com/ethereum/wiki/wiki/Ethereum-Contract-ABI#examples
https://github.com/ethereum/wiki/wiki/Ethereum-Contract-ABI#examples
https://github.com/ethereum/wiki/wiki/Ethereum-Contract-ABI#examples
https://github.com/ethereum/wiki/wiki/Ethereum-Contract-ABI#examples
https://github.com/ethereum/wiki/wiki/Ethereum-Contract-ABI#examples
https://github.com/ethereum/wiki/wiki/Ethereum-Contract-ABI#examples
https://github.com/ethereum/wiki/wiki/Ethereum-Contract-ABI#examples
https://github.com/ethereum/wiki/wiki/Ethereum-Contract-ABI#examples
https://github.com/ethereum/wiki/wiki/Ethereum-Contract-ABI#examples
https://github.com/ethereum/wiki/wiki/Ethereum-Contract-ABI#examples
https://github.com/ethereum/wiki/wiki/Ethereum-Contract-ABI#examples
https://github.com/ethereum/wiki/wiki/Ethereum-Contract-ABI#examples
https://github.com/ethereum/wiki/wiki/Ethereum-Contract-ABI#examples
https://github.com/ethereum/wiki/wiki/Ethereum-Contract-ABI#examples
https://github.com/ethereum/wiki/wiki/Ethereum-Contract-ABI#examples
https://github.com/ethereum/wiki/wiki/Ethereum-Contract-ABI#examples
https://github.com/ethereum/wiki/wiki/Ethereum-Contract-ABI#examples
https://github.com/ethereum/wiki/wiki/Ethereum-Contract-ABI#examples
https://github.com/ethereum/wiki/wiki/Ethereum-Contract-ABI#examples
https://github.com/ethereum/wiki/wiki/Ethereum-Contract-ABI#examples
https://github.com/ethereum/wiki/wiki/Ethereum-Contract-ABI#examples
https://github.com/ethereum/wiki/wiki/Ethereum-Contract-ABI#examples
https://github.com/ethereum/wiki/wiki/Ethereum-Contract-ABI#examples
https://github.com/ethereum/wiki/wiki/Ethereum-Contract-ABI#examples
https://github.com/ethereum/wiki/wiki/Ethereum-Contract-ABI#examples
https://github.com/ethereum/wiki/wiki/Ethereum-Contract-ABI#examples
https://github.com/ethereum/wiki/wiki/Ethereum-Contract-ABI#examples
https://github.com/ethereum/wiki/wiki/Ethereum-Contract-ABI#examples
https://github.com/ethereum/wiki/wiki/Ethereum-Contract-ABI#examples
https://github.com/ethereum/wiki/wiki/Ethereum-Contract-ABI#examples
https://github.com/ethereum/wiki/wiki/Ethereum-Contract-ABI#examples
https://github.com/ethereum/wiki/wiki/Ethereum-Contract-ABI#examples
https://github.com/ethereum/wiki/wiki/Ethereum-Contract-ABI#examples
https://github.com/ethereum/wiki/wiki/Ethereum-Contract-ABI#examples
https://github.com/ethereum/wiki/wiki/Ethereum-Contract-ABI#examples
https://github.com/ethereum/wiki/wiki/Ethereum-Contract-ABI#examples
https://github.com/ethereum/wiki/wiki/Ethereum-Contract-ABI#examples
https://github.com/ethereum/wiki/wiki/Ethereum-Contract-ABI#examples
https://github.com/ethereum/wiki/wiki/Ethereum-Contract-ABI#examples
https://github.com/ethereum/wiki/wiki/Ethereum-Contract-ABI#examples
https://github.com/ethereum/wiki/wiki/Ethereum-Contract-ABI#examples
https://github.com/ethereum/wiki/wiki/Ethereum-Contract-ABI#examples
https://github.com/ethereum/wiki/wiki/Ethereum-Contract-ABI#examples
https://github.com/ethereum/wiki/wiki/Ethereum-Contract-ABI#examples
https://github.com/ethereum/wiki/wiki/Ethereum-Contract-ABI#examples
https://github.com/ethereum/wiki/wiki/Ethereum-Contract-ABI#examples
https://github.com/ethereum/wiki/wiki/Ethereum-Contract-ABI#examples
http://codemirror.net/
http://codemirror.net/
http://codemirror.net/
http://codemirror.net/
http://codemirror.net/
http://codemirror.net/
http://codemirror.net/
http://codemirror.net/
http://codemirror.net/
http://codemirror.net/
http://codemirror.net/
http://codemirror.net/
http://codemirror.net/
http://codemirror.net/
http://codemirror.net/
http://codemirror.net/
http://codemirror.net/
http://codemirror.net/
http://codemirror.net/
http://codemirror.net/
http://codemirror.net/
http://codemirror.net/
http://codemirror.net/
http://codemirror.net/
http://codemirror.net/
http://codemirror.net/
http://codemirror.net/
http://codemirror.net/
http://codemirror.net/
http://codemirror.net/
http://codemirror.net/
http://codemirror.net/
http://codemirror.net/
http://codemirror.net/
http://codemirror.net/
http://codemirror.net/

Building a Smart Contract Deployment Platform

[139]

Here is the frontend HTML code of our app. Place this code in the index.html file:

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <meta name="viewport" content="width=device-width, initial-scale=1,
shrink-to-fit=no">
 <meta http-equiv="x-ua-compatible" content="ie=edge">
 <link rel="stylesheet" href="/css/bootstrap.min.css">
 <link rel="stylesheet" href="/css/codemirror.css">
 <style type="text/css">
 .CodeMirror
 {
 height: auto;
 }
 </style>
 </head>
 <body>
 <div class="container">
 <div class="row">
 <div class="col-md-6">

 <textarea id="editor"></textarea>

 <button type="button" id="compile" class="btn btn-
primary">Compile</button>
 </div>
 <div class="col-md-6">

 <form>
 <div class="form-group">
 <label for="address">Address</label>
 <input type="text" class="form-control"
id="address" placeholder="Prefixed with 0x">
 </div>
 <div class="form-group">
 <label for="key">Private Key</label>
 <input type="text" class="form-control"
id="key" placeholder="Prefixed with 0x">
 </div>
 <hr>
 <div id="arguments"></div>
 <hr>
 <button type="button" id="deploy" class="btn btn-
primary">Deploy</button>
 </form>

Building a Smart Contract Deployment Platform

[140]

 </div>
 </div>
 </div>
 <script src="/js/codemirror.js"></script>
 <script src="/js/main.js"></script>
 </body>
</html>

Here, you can see that we have a textarea. The textarea tag will hold whatever the user
will enter in the codemirror editor. Everything else in the preceding code is self-
explanatory.

Here is the complete frontend JavaScript code. Place this code in the main.js file:

var editor = CodeMirror.fromTextArea(document.getElementById("editor"), {
 lineNumbers: true,
});

var argumentsCount = 0;

document.getElementById("compile").addEventListener("click", function(){
 editor.save();
 var xhttp = new XMLHttpRequest();

 xhttp.onreadystatechange = function() {
 if (this.readyState == 4 && this.status == 200) {
 if(JSON.parse(xhttp.responseText).errors != undefined)
 {
 document.getElementById("errors").innerHTML =
JSON.parse(xhttp.responseText).errors + "

";
 }
 else
 {
 document.getElementById("errors").innerHTML = "";
 }

 var contracts = JSON.parse(xhttp.responseText).contracts;

 for(var contractName in contracts)
 {
 var abi = JSON.parse(contracts[contractName].interface);

 document.getElementById("arguments").innerHTML = "";

 for(var count1 = 0; count1 < abi.length; count1++)
 {
 if(abi[count1].type == "constructor")
 {

Building a Smart Contract Deployment Platform

[141]

 argumentsCount = abi[count1].inputs.length;

 document.getElementById("arguments").innerHTML =
'<label>Arguments</label>';

 for(var count2 = 0; count2 < abi[count1].inputs.length; count2++)
 {
 var inputElement = document.createElement("input");
 inputElement.setAttribute("type", "text");
 inputElement.setAttribute("class", "form-control");
 inputElement.setAttribute("placeholder",
abi[count1].inputs[count2].type);
 inputElement.setAttribute("id", "arguments-" + (count2 + 1));

 var br = document.createElement("br");

 document.getElementById("arguments").appendChild(br);
 document.getElementById("arguments").appendChild(inputElement);
 }

 break;
 }
 }

 break;
 }
 }
 };

 xhttp.open("GET", "/compile?code=" +
encodeURIComponent(document.getElementById("editor").value), true);
 xhttp.send();
})

document.getElementById("deploy").addEventListener("click", function(){
 editor.save();

 var arguments = [];

 for(var count = 1; count <= argumentsCount; count++)
 {
 arguments[count - 1] = JSON.parse(document.getElementById("arguments-" +
count).value);
 }

 var xhttp = new XMLHttpRequest();

 xhttp.onreadystatechange = function() {

Building a Smart Contract Deployment Platform

[142]

 if (this.readyState == 4 && this.status == 200)
 {
 var res = JSON.parse(xhttp.responseText);

 if(res.error)
 {
 alert("Error: " + res.error)
 }
 else
 {
 alert("Txn Hash: " + res.result.hash);
 }
 }
 else if(this.readyState == 4)
 {
 alert("An error occured.");
 }
 };

 xhttp.open("GET", "/deploy?code=" +
encodeURIComponent(document.getElementById("editor").value) + "&arguments="
+ encodeURIComponent(JSON.stringify(arguments)) + "&address=" +
document.getElementById("address").value + "&key=" +
document.getElementById("key").value, true);
 xhttp.send();
})

Here is how the preceding code works:

At first, we add the code editor to the web page. The code editor will be1.
displayed in place of textarea and textarea will be hidden.
Then we have the compile button's click event handler. Inside it, we save the2.
editor, which copies the content of the editor to textarea. When the compile
button is clicked on, we make a request to the /compile path, and once we get
the result, we parse it and display the input boxes so that the user can enter the
constructor arguments. Here, we only read the constructor arguments for the first
contract. But you can enhance the UI to display input boxes for constructors of all
the contracts if there are more than one.
And finally, we have the deploy button's click event handler. Here, we read the3.
constructor arguments' value, parsing and putting them in an array. And then we
add a request to the /deploy endpoint by passing the address, key, code, and
argument value. If there is an error, then we display that in a popup; otherwise,
we display the transaction hash in the popup.

Building a Smart Contract Deployment Platform

[143]

Testing
To test the app, run the app.js node inside the Initial directory and visit
localhost:8080. You will see what is shown in the following screenshot:

Now enter some solidity contract code and press the compile button. Then, you will be able
to see new input boxes appearing on the right-hand side. For example, take a look at the
following screenshot:

Building a Smart Contract Deployment Platform

[144]

Now enter a valid address and its associated private key. And then enter values for the
constructor arguments and click on deploy. If everything goes right, then you will see an
alert box with the transaction hash. For example, take a look at the following screenshot:

Summary
In this chapter, we learned how to use the transaction pool API, how to calculate a proper
nonce, calculate a spendable balance, generate the data of a transaction, compile contracts,
and so on. We then built a complete contract compilation and deployment platform. Now
you can go ahead and enhance the application we have built to deploy all the contracts
found in the editor, handle imports, add libraries, and so on.

In the next chapter, we will learn about Oraclize by building a decentralized betting app.

7
Building a Betting App

Sometimes, it is necessary for smart contracts to access data from other dapps or from the
World Wide Web. But it's really complicated to let smart contracts access outside data due
to technical and consensus challenges. Therefore, currently, Ethereum smart contracts don't
have native support to access outside data. But there are third-party solutions for Ethereum
smart contracts to access data from some popular dapps and from the World Wide Web. In
this chapter, we will learn how to use Oraclize to make HTTP requests from Ethereum
smart contracts to access data from the World Wide Web. We will also learn how to access
files stored in IPFS, use the strings library to work with strings, and so on. We will learn all
this by building a football-betting smart contract and a client for it.

In this chapter, we'll cover the following topics:

How does Oraclize work?
What are Oraclize's various data sources and how do each of them work?
How does consensus work in Oraclize?
Integrating Oraclize in Ethereum smart contracts
Using strings the Solidity library to make it easy to work with strings
Building a football betting app

Introduction to Oraclize
Oraclize is a service that aims to enable smart contracts to access data from other
blockchains and the World Wide Web. This service is currently live on bitcoin and
Ethereum's testnet and mainnet. What makes Oraclize so special is that you don't need to
trust it because it provides proof of authenticity of all data it provides to smart contracts.

Building a Betting App

[146]

In this chapter, our aim is to learn how Ethereum smart contracts can use the Oraclize
service to fetch data from the World Wide Web.

How does it work?
Let's look at the process by which an Ethereum smart contract can fetch data from other
blockchains and the World Wide Web using Oraclize.

To fetch data that exists outside of the Ethereum blockchain, an Ethereum smart contract
needs to send a query to Oraclize, mentioning the data source (representing where to fetch
the data from) and the input for the data source (representing what to fetch).

Sending a query to Oraclize Oraclize means sending a contract call (that is, an internal
transaction) to the Oraclize contract present in the Ethereum blockchain.

The Oraclize server keeps looking for new incoming queries to its smart contract. Whenever
it sees a new query, it fetches the result and sends it back to your contract by calling the
_callback method of your contract.

Data sources
Here is a list of sources from which Oraclize lets smart contracts fetch data:

URL: The URL data source provides you with the ability to make an HTTP GET
or POST request, that is, fetch data from the WWW.
WolframAlpha: The WolframAlpha data source provides you with the ability to
submit a query to the WolframAlpha knowledge engine and get the answer.
Blockchain: The blockchain data source provides you with ability to access
data from other blockchains. Possible queries that can be submitted to the
blockchain data source are bitcoin blockchain height, litecoin
hashrate, bitcoin difficulty, 1NPFRDJuEdyqEn2nmLNaWMfojNksFjbL4S
balance, and so on.
IPFS: The IPFS data source provides you with the ability to fetch the content of a
file stored in IPFS.

Building a Betting App

[147]

Nested: The nested data source is a metadata source; it does not provide access
to additional services. It was designed to provide a simple aggregation logic,
enabling a single query to leverage sub-queries based on any available data
source and producing a single string as a result; for example:

[WolframAlpha] temperature in ${[IPFS]
QmP2ZkdsJG7LTw7jBbizTTgY1ZBeen64PqMgCAWz2koJBL}.

Computation: The computation data source enables the auditable execution of
a given application into a secure off-chain context; that is, it lets us fetch the result
of an off-chain execution of an application. This application has to print the query
result on the last line (on the standard output) before its quits. The execution
context has to be described by a Dockerfile, where building and running it should
start your main application straight away. The Dockerfile initialization plus your
application execution should terminate as soon as possible: the maximum
execution timeout is 5 minutes on an AWS t2.micro instance. Here, we are
considering an AWS t2.micro instance because that's what Oraclize will use to
execute the application. As the input for the data source is the IPFS multihash of a
ZIP archive containing such files (Dockerfile plus any external file dependencies,
and the Dockerfile has to be placed in the archive root), you should take care of
preparing this archive and pushing it to IPFS beforehand.

These data sources are available at the time of writing this book. But many more data
sources are likely to be available in the future.

Proof of authenticity
Although Oraclize is a trusted service, you may still want to check whether the data
returned by Oraclize is authentic or not, that is, whether it was manipulated by Oraclize or
someone else in transit.

Optionally, Oraclize provides the TLSNotary proof of result that's returned from the URL,
blockchain, and nested and computation data sources. This proof is not available for
WolframAlpha and IPFS data sources. Currently, Oraclize only supports the TLSNotary
proof, but in the future, they may support some other ways to authenticate. Currently, the
TLSNotary proof needs to be validated manually, but Oraclize is already working on on-
chain proof verification; that is, your smart contract code can verify the TLSNotary proof on
its own while receiving the data from Oraclize so that this data is discarded if the proof
turns out to be invalid.

Building a Betting App

[148]

This tool (https://github.com/Oraclize/proof-verification-tool) is an open source
tool provided by Oraclize to validate the TLSNotary proof in case you want to.

Understanding how TLSNotary works is not required to use Oraclize or to
verify the proof. The tool to validate the TLSNotary proof is open source;
therefore, if it contains any malicious code, then it can easily be caught, so
this tool can be trusted.

Let's look at a high-level overview of how TLSNotary works. To understand how
TLSNotary works, you need to first understand how TLS works. The TLS protocol provides
a way for the client and server to create an encrypted session so that no one else can read or
manipulate what is transferred between the client and server. The server first sends its
certificate (issued to the domain owner by a trusted CA) to the client. The certificate will
contain the public key of the server. The client uses the CA's public key to decrypt the
certificate so that it can verify that the certificate is actually issued by the CA and get the
server's public key. Then, the client generates a symmetric encryption key and a MAC key
and encrypts them using the server's public key and sends it to the server. The server can
only decrypt this message as it has the private key to decrypt it. Now the client and server
share the same symmetric and MAC keys and no one else knows about these keys and they
can start sending and receiving data from each other. The symmetric key is used to encrypt
and decrypt the data where the MAC key and the symmetric key together are used to
generate a signature for the encrypted message so that in case the message is modified by
an attacker, the other party can know about it.

TLSNotary is a modification of TLS, which is used by Oraclize to provide cryptography
proof showing that the data they provided to your smart contract was really the one the
data source gave to Oraclize at a specific time. Actually the TLSNotary protocol is an open
source technology, developed and used by the PageSigner project.

TLSNotary works by splitting the symmetric key and the MAC key among three parties,
that is, the server, an auditee, and an auditor. The basic idea of TLSNotary is that the
auditee can prove to the auditor that a particular result was returned by the server at a
given time.

So here is an overview of how exactly TLSNotary lets us achieve this. The auditor calculates
the symmetric key and MAC key and gives only the symmetric key to the auditee. The
MAC key is not needed by the auditee as the MAC signature check ensures that the TLS
data from the server was not modified in transit. With the symmetric encryption key, the
auditee can now decrypt data from the server. Because all messages are "signed" by the
bank using the MAC key and only the server and the auditor know the MAC key, a correct
MAC signature can serve as proof that certain messages came from the bank and were not
spoofed by the auditee.

https://github.com/oraclize/proof-verification-tool

Building a Betting App

[149]

In the case of the Oraclize service, Oraclize is the auditee, while a locked-down AWS
instance of a specially designed, open source Amazon machine image acts as the auditor.

The proof data they provide are the signed attestations of this AWS instance that a proper
TLSnotary proof did occur. They also provide some additional proof regarding the software
running in the AWS instance, that is, whether it has been modified since being initialized.

Pricing
The first Oraclize query call coming from any Ethereum address is completely free of
charge. Oraclize calls are free when used on testnets! This works for moderate usage in test
environments only.

From the second call onward, you have to pay in ether for queries. While sending a query to
Oraclize (that is, while making an internal transaction call), a fee is deducted by transferring
ether from the calling contract to the Oraclize contract. The amount of ether to deduct
depends on the data source and proof type.

Here is a table that shows the number of ether that is deducted while sending a query:

Data source Without proof With TLSNotary proof

URL $0.01 $0.05

Blockchain $0.01 $0.05

WolframAlpha $0.03 $0.03

IPFS $0.01 $0.01

So if you are making a HTTP request and you want the TLSNotary proof too, then the
calling contract must have an ether worth of $0.05; otherwise, an exception is thrown.

Getting started with the Oraclize API
For a contract to use the Oraclize service, it needs to inherit the usingOraclize contract.
You can find this contract at https://github.com/Oraclize/Ethereum-api.

https://github.com/oraclize/ethereum-api

Building a Betting App

[150]

The usingOraclize contract acts as the proxy for the OraclizeI and
OraclizeAddrResolverI contracts. Actually, usingOraclize makes it easy to make calls
to the OraclizeI and OraclizeAddrResolverI contracts, that is, it provides simpler
APIs. You can also directly make calls to the OraclizeI and OraclizeAddrResolverI
contracts if you feel comfortable. You can go through the source code of these contracts to
find all the available APIs. We will only learn the most necessary ones.

Let's look at how to set proof type, set proof storage location, make queries, find the cost of
a query, and so on.

Setting the proof type and storage location
Whether you need the TLSNotary proof from Oraclize or not, you have to specify the proof
type and proof storage location before making queries.

If you don't want proof, then put this code in your contract:

oraclize_setProof(proofType_NONE)

And if you want proof, then put this code in your contract:

oraclize_setProof(proofType_TLSNotary | proofStorage_IPFS)

Currently, proofStorage_IPFS is the only proof storage location available; that is,
TLSNotary proof is only stored in IPFS.

You may execute any of these methods just once, for instance, in the constructor or at any
other time if, for instance, you need the proof for certain queries only.

Sending queries
To send a query to Oraclize, you will need to call the oraclize_query function. This
function expects at least two arguments, that is, the data source and the input for the given
data source. The data source argument is not case-sensitive.

Here are some basic examples of the oraclize_query function:

oraclize_query("WolframAlpha", "random number between 0 and 100");

oraclize_query("URL",
"https://api.kraken.com/0/public/Ticker?pair=ETHXBT");

oraclize_query("IPFS", "QmdEJwJG1T9rzHvBD8i69HHuJaRgXRKEQCP7Bh1BVttZbU");

Building a Betting App

[151]

oraclize_query("URL", "https://xyz.io/makePayment", '{"currency": "USD",
"amount": "1"}');

Here is how the preceding code works:

If the first argument is a string, it is assumed to be the data source and the second
argument is assumed to be the input for the data source. In the first call, the data
source is WolframAlpha and the search query we sent to it was random number
between 0 and 100.
In the second call, we make an HTTP GET request to the URL present in the second
argument.
In the third call, we fetch the content of the
QmdEJwJG1T9rzHvBD8i69HHuJaRgXRKEQCP7Bh1BVttZbU file from IPFS.
If two consecutive arguments after the data source are strings, then it's assumed
to be a POST request. In the last call, we make an HTTP POST request to
https://xyz.io/makePayment and the POST request body content is the string
in the third argument. Oraclize is intelligent enough to detect the content-type
header based on the string format.

Scheduling queries
If you want Oraclize to execute your query at a scheduled future time, just specify the delay
(in seconds) from the current time as the first argument.

Here is an example:

oraclize_query(60, "WolframAlpha", "random number between 0 and 100");

The preceding query will be executed by Oraclize 60 seconds after it's been seen. So if the
first argument is a number, then it's assumed that we are scheduling a query.

Custom gas
The transaction originating from Oraclize to your __callback function costs gas, just like
any other transaction. You need to pay Oraclize the gas cost. The ether oraclize_query
charges to make a query are also used to provide gas while calling the __callback
function. By default, Oraclize provides 200,000 gas while calling the __callback function.

Building a Betting App

[152]

This return gas cost is actually in your control since you write the code in the __callback
method and as such, can estimate it. So, when placing a query with Oraclize, you can also
specify how much the gasLimit should be on the __callback transaction. Note, however,
that since Oraclize sends the transaction, any unspent gas is returned to Oraclize, not you.

If the default, and minimum, value of 200,000 gas is not enough, you can increase it by
specifying a different gasLimit in this way:

oraclize_query("WolframAlpha", "random number between 0 and 100", 500000);

Here, you can see that if the last argument is a number, then it's assumed to be the custom
gas. In the preceding code, Oraclize will use a 500k gasLimit for the callback transaction
instead of 200k. Because we are asking Oraclize to provide more gas, Oraclize will deduct
more ether (depending on how much gas is required) while calling oraclize_query.

Note that if you offer too low a gasLimit, and your __callback method
is long, you may never see a callback. Also note that the custom gas has to
be more than 200k.

Callback functions
Once your result is ready, Oraclize will send a transaction back to your contract address
and invoke one of these three methods:

either __callback(bytes32 myid, string result). Myid is a unique ID for
every query. This ID is returned by the oraclize_query method. If you have
multiple oraclize_query calls in your contract, then this is used to match the
query this result is for.
If you requested for the TLS Notary proof, this is the result:
__callback(bytes32 myid, string result, bytes proof)

As a last resort, if the other methods are absent, the fallback function is
function()

Here is an example of the __callback function:

function __callback(bytes32 myid, string result) {
 if (msg.sender != oraclize_cbAddress()) throw; // just to be sure the
calling address is the Oraclize authorized one

 //now doing something with the result..
}

Building a Betting App

[153]

Parsing helpers
The result returned from an HTTP request can be HTML, JSON, XML, binary, and so on. In
Solidity, it is difficult and expensive to parse the result. Due to this, Oraclize provides
parsing helpers to let it handle the parsing on its servers, and you get only the part of the
result that you need.

To ask Oraclize to parse the result, you need to wrap the URL with one of these parsing
helpers:

xml(..) and json(..) helpers let you ask Oraclize to only return part of the
JSON or XML-parsed response; for example, take a look at the following:

In order to get the whole response back, you use the URL data
source with the
api.kraken.com/0/public/Ticker?pair=ETHUSD URL
argument
If all you want is the last-price field, you need to use the JSON
parsing call as
json(api.kraken.com/0/public/Ticker?pair=ETHUSD).res
ult.XETHZUSD.c.0

The html(..).xpath(..) helper is useful for HTML scraping. Just specify the
XPATH you want as the xpath(..) argument; for example, take a look at the
following:

To fetch the text of a specific tweet, use
html(https://twitter.com/oraclizeit/status/671316655
893561344).xpath(//*[contains(@class, 'tweet-

text')]/text()).
The binary(..) helper is useful in getting binary files such as certificate files:

To fetch only a portion of the binary file, you can use
slice(offset,length); the first parameter is the offset, while
the second one is the length of the slice you want back (both in
bytes).
Example: Fetch only the first 300 bytes from a binary CRL,
binary(https://www.sk.ee/crls/esteid/esteid2015.crl)

.slice(0,300). The binary helper must be used with the slice
option, and only binary files (not encoded) are accepted.

If and when the server is not responding or is unreachable, we will send
you an empty response. You can test queries using
http://app.Oraclize.it/home/test_query.

http://app.oraclize.it/home/test_query

Building a Betting App

[154]

Getting the query price
If you would like to know how much a query would cost before making the actual query,
then you can use the Oraclize.getPrice() function to get the amount of wei required.
The first argument it takes is the data source, and the second argument is optional, which is
the custom gas.

One popular use case of this is to notify the client to add ether to the contract if there isn't
enough to make the query.

Encrypting queries
Sometimes, you may not want to reveal the data source and/or the input for the data source.
For example: you may not want to reveal the API key in the URL if there is any. Therefore,
Oraclize provides a way to store queries encrypted in the smart contract and only Oraclize's
server has the key to decrypt it.

Oraclize provides a Python tool (https://github.com/Oraclize/encrypted-queries),
which can be used to encrypt the data source and/or the data input. It generates a non-
deterministic encrypted string.

The CLI command to encrypt an arbitrary string of text is as follows:

 python encrypted_queries_tools.py -e -p
044992e9473b7d90ca54d2886c7addd14a61109af202f1c95e218b0c99eb060c7134c4ae463
45d0383ac996185762f04997d6fd6c393c86e4325c469741e64eca9 "YOUR DATASOURCE or
INPUT"

The long hexadecimal string you see is the public key of Oraclize's server. Now you can use
the output of the preceding command in place of the data source and/or the input for the
data source.

In order to prevent the misuse of encrypted queries (that is, replay attacks)
the first contract querying Oraclize with a specific encrypted query
becomes its rightful owner. Any other contract reusing the exact same
string will not be allowed to use it and will receive an empty result. As a
consequence, remember to always generate a newly encrypted string
when redeploying contracts using encrypted queries.

https://github.com/oraclize/encrypted-queries

Building a Betting App

[155]

Decrypting the data source
There is another data source called decrypt. It is used to decrypt an encrypted string. But
this data source doesn't return any result; otherwise, anyone would have the ability to
decrypt the data source and input for the data source.

It was specifically designed to be used within the nested data source to enable partial query
encryption. It is its only use case.

Oraclize web IDE
Oraclize provides a web IDE, using which you can write, compile, and test Oraclize-based
applications. You can find it at http://dapps.Oraclize.it/browser-Solidity/.

If you visit the link, then you will notice that it looks exactly the same as browser Solidity.
And it's actually browser Solidity with one extra feature. To understand what that feature
is, we need to understand browser Solidity more in depth.

Browser Solidity not only lets us write, compile, and generate web3.js code for our
contracts, but it also lets us test those contracts there itself. Until now, in order to test our
contract, we were setting up an Ethereum node and sending transactions to it. But browser
Solidity can execute contracts without connecting to any node and everything happens in
memory. It achieves this using ethereumjs-vm, which is a JavaScript implementation of
EVM. Using ethereumjs-vm, you can create our own EVM and run byte code. If we want,
we can configure browser Solidity to use the Ethereum node by providing the URL to
connect to. The UI is very informative; therefore, you can try all these by yourself.

What's special about the Oraclize web IDE is that it deploys the Oraclize contract in the in-
memory execution environment so that you don't have to connect to the testnet or mainnet
node, but if you use browser Solidity, then you have to connect to the testnet or mainnet
node to test Oraclize APIs.

You can find more resources related to integrating Oraclize at
https://dev.Oraclize.it/.

http://dapps.oraclize.it/browser-solidity/
https://dev.oraclize.it/

Building a Betting App

[156]

Working with strings
Working with strings in Solidity is not as easy as working with strings in other high-level
programming languages, such as JavaScript, Python, and so on. Therefore, many Solidity
programmers have come up with various libraries and contracts to make it easy to work
with strings.

The strings library is the most popular strings utility library. It lets us join, concatenate,
split, compare, and so on by converting a string to something called a slice. A slice is a
struct that holds the length of the string and the address of the string. Since a slice only has
to specify an offset and a length, copying and manipulating slices is a lot less expensive
than copying and manipulating the strings they reference.

To further reduce gas costs, most functions on slice that need to return a slice modify the
original one instead of allocating a new one; for instance, s.split(".") will return the text
up to the first ".", modifying s to only contain the remainder of the string after the ".". In
situations where you do not want to modify the original slice, you can make a copy with
.copy(), for example, s.copy().split("."). Try and avoid using this idiom in loops;
since Solidity has no memory management, it will result in allocating many short-lived
slices that are later discarded.

Functions that have to copy string data will return strings rather than slices; these can be
cast back to slices for further processing if required.

Let's look at a few examples of working with strings using the strings library:

pragma Solidity ^0.4.0;

import "github.com/Arachnid/Solidity-stringutils/strings.sol";

contract Contract
{
 using strings for *;

 function Contract()
 {
 //convert string to slice
 var slice = "xyz abc".toSlice();

 //length of string
 var length = slice.len();

 //split a string
 //subslice = xyz
 //slice = abc

Building a Betting App

[157]

 var subslice = slice.split(" ".toSlice());

 //split a string into an array
 var s = "www.google.com".toSlice();
 var delim = ".".toSlice();
 var parts = new string[](s.count(delim));
 for(uint i = 0; i < parts.length; i++) {
 parts[i] = s.split(delim).toString();
 }

 //Converting a slice back to a string
 var myString = slice.toString();

 //Concatenating strings
 var finalSlice = subslice.concat(slice);

 //check if two strings are equal
 if(slice.equals(subslice))
 {

 }
 }
}

The preceding code is self-explanatory.

Functions that return two slices come in two versions: a nonallocating version that takes the
second slice as an argument, modifying it in place, and an allocating version that allocates
and returns the second slice; for example, let's take a look at the following:

var slice1 = "abc".toSlice();

//moves the string pointer of slice1 to point to the next rune (letter)
//and returns a slice containing only the first rune
var slice2 = slice1.nextRune();

var slice3 = "abc".toSlice();
var slice4 = "".toSlice();

//Extracts the first rune from slice3 into slice4, advancing the slice to
point to the next rune and returns slice4.
var slice5 = slice3.nextRune(slice4);

You can learn more about the strings library at h t t p s ://g i t h u b . c o m /A r a c

h n i d /S o l i d i t y - s t r i n g u t i l s .

https://github.com/Arachnid/solidity-stringutils
https://github.com/Arachnid/solidity-stringutils
https://github.com/Arachnid/solidity-stringutils
https://github.com/Arachnid/solidity-stringutils
https://github.com/Arachnid/solidity-stringutils
https://github.com/Arachnid/solidity-stringutils
https://github.com/Arachnid/solidity-stringutils
https://github.com/Arachnid/solidity-stringutils
https://github.com/Arachnid/solidity-stringutils
https://github.com/Arachnid/solidity-stringutils
https://github.com/Arachnid/solidity-stringutils
https://github.com/Arachnid/solidity-stringutils
https://github.com/Arachnid/solidity-stringutils
https://github.com/Arachnid/solidity-stringutils
https://github.com/Arachnid/solidity-stringutils
https://github.com/Arachnid/solidity-stringutils
https://github.com/Arachnid/solidity-stringutils
https://github.com/Arachnid/solidity-stringutils
https://github.com/Arachnid/solidity-stringutils
https://github.com/Arachnid/solidity-stringutils
https://github.com/Arachnid/solidity-stringutils
https://github.com/Arachnid/solidity-stringutils
https://github.com/Arachnid/solidity-stringutils
https://github.com/Arachnid/solidity-stringutils
https://github.com/Arachnid/solidity-stringutils
https://github.com/Arachnid/solidity-stringutils
https://github.com/Arachnid/solidity-stringutils
https://github.com/Arachnid/solidity-stringutils
https://github.com/Arachnid/solidity-stringutils
https://github.com/Arachnid/solidity-stringutils
https://github.com/Arachnid/solidity-stringutils
https://github.com/Arachnid/solidity-stringutils
https://github.com/Arachnid/solidity-stringutils
https://github.com/Arachnid/solidity-stringutils
https://github.com/Arachnid/solidity-stringutils
https://github.com/Arachnid/solidity-stringutils
https://github.com/Arachnid/solidity-stringutils
https://github.com/Arachnid/solidity-stringutils
https://github.com/Arachnid/solidity-stringutils
https://github.com/Arachnid/solidity-stringutils
https://github.com/Arachnid/solidity-stringutils
https://github.com/Arachnid/solidity-stringutils
https://github.com/Arachnid/solidity-stringutils
https://github.com/Arachnid/solidity-stringutils
https://github.com/Arachnid/solidity-stringutils
https://github.com/Arachnid/solidity-stringutils
https://github.com/Arachnid/solidity-stringutils
https://github.com/Arachnid/solidity-stringutils
https://github.com/Arachnid/solidity-stringutils
https://github.com/Arachnid/solidity-stringutils
https://github.com/Arachnid/solidity-stringutils
https://github.com/Arachnid/solidity-stringutils
https://github.com/Arachnid/solidity-stringutils
https://github.com/Arachnid/solidity-stringutils
https://github.com/Arachnid/solidity-stringutils
https://github.com/Arachnid/solidity-stringutils
https://github.com/Arachnid/solidity-stringutils
https://github.com/Arachnid/solidity-stringutils
https://github.com/Arachnid/solidity-stringutils
https://github.com/Arachnid/solidity-stringutils
https://github.com/Arachnid/solidity-stringutils
https://github.com/Arachnid/solidity-stringutils
https://github.com/Arachnid/solidity-stringutils
https://github.com/Arachnid/solidity-stringutils
https://github.com/Arachnid/solidity-stringutils
https://github.com/Arachnid/solidity-stringutils
https://github.com/Arachnid/solidity-stringutils
https://github.com/Arachnid/solidity-stringutils
https://github.com/Arachnid/solidity-stringutils
https://github.com/Arachnid/solidity-stringutils
https://github.com/Arachnid/solidity-stringutils
https://github.com/Arachnid/solidity-stringutils
https://github.com/Arachnid/solidity-stringutils
https://github.com/Arachnid/solidity-stringutils
https://github.com/Arachnid/solidity-stringutils
https://github.com/Arachnid/solidity-stringutils
https://github.com/Arachnid/solidity-stringutils
https://github.com/Arachnid/solidity-stringutils
https://github.com/Arachnid/solidity-stringutils
https://github.com/Arachnid/solidity-stringutils
https://github.com/Arachnid/solidity-stringutils
https://github.com/Arachnid/solidity-stringutils
https://github.com/Arachnid/solidity-stringutils
https://github.com/Arachnid/solidity-stringutils
https://github.com/Arachnid/solidity-stringutils

Building a Betting App

[158]

Building the betting contract
In our betting application, two people can choose to bet on a football match with one person
supporting the home team and the other person supporting the away team. They both
should bet the same amount of money, and the winner takes all the money. If the match is a
draw, then they both will take back their money.

We will use the FastestLiveScores API to find out the result of matches. It provides a free
API, which lets us make 100 requests per hour for free. First, go ahead and create an
account and then generate an API key. To create an account, visit
https://customer.fastestlivescores.com/register, and once the account is created, you
will have the API key visible at https://customer.fastestlivescores.com/. You can find
the API documentation at https://docs.crowdscores.com/.

For every bet between two people in our application, a betting contract will be deployed.
The contract will contain the match ID retrieved from the FastestLiveScores API, the
amount of wei each of the parties need to invest, and the addresses of the parties. Once both
parties have invested in the contract, they will find out the result of the match. If the match
is not yet finished, then they will try to check the result after every 24 hours.

Here is the code for the contract:

pragma Solidity ^0.4.0;

import "github.com/Oraclize/Ethereum-api/oraclizeAPI.sol";
import "github.com/Arachnid/Solidity-stringutils/strings.sol";

contract Betting is usingOraclize
{
 using strings for *;

 string public matchId;
 uint public amount;
 string public url;

 address public homeBet;
 address public awayBet;

 function Betting(string _matchId, uint _amount, string _url)
 {
 matchId = _matchId;
 amount = _amount;
 url = _url;

 oraclize_setProof(proofType_TLSNotary | proofStorage_IPFS);

https://customer.fastestlivescores.com/register
https://customer.fastestlivescores.com/
https://docs.crowdscores.com/

Building a Betting App

[159]

 }

 //1 indicates home team
 //2 indicates away team
 function betOnTeam(uint team) payable
 {

 if(team == 1)
 {
 if(homeBet == 0)
 {
 if(msg.value == amount)
 {
 homeBet = msg.sender;
 if(homeBet != 0 && awayBet != 0)
 {
 oraclize_query("URL", url);
 }
 }
 else
 {
 throw;
 }
 }
 else
 {
 throw;
 }
 }
 else if(team == 2)
 {
 if(awayBet == 0)
 {
 if(msg.value == amount)
 {
 awayBet = msg.sender;

 if(homeBet != 0 && awayBet != 0)
 {
 oraclize_query("URL", url);
 }
 }
 else
 {
 throw;
 }
 }
 else

Building a Betting App

[160]

 {
 throw;
 }
 }
 else
 {
 throw;
 }
 }

 function __callback(bytes32 myid, string result, bytes proof) {
 if (msg.sender != oraclize_cbAddress())
 {
 throw;
 }
 else
 {
 if(result.toSlice().equals("home".toSlice()))
 {
 homeBet.send(this.balance);
 }
 else if(result.toSlice().equals("away".toSlice()))
 {
 awayBet.send(this.balance);
 }
 else if(result.toSlice().equals("draw".toSlice()))
 {
 homeBet.send(this.balance / 2);
 awayBet.send(this.balance / 2);
 }
 else
 {
 if (Oraclize.getPrice("URL") < this.balance)
 {
 oraclize_query(86400, "URL", url);
 }
 }
 }
 }
}

The contract code is self-explanatory. Now compile the preceding code using solc.js or
browser Solidity depending on whatever you are comfortable with. You will not need to
link the strings library because all the functions in it are set to the internal visibility.

Building a Betting App

[161]

In browser Solidity, when specifying to import a library or contract from
the HTTP URL, make sure that it's hosted on GitHub; otherwise, it won't
fetch it. In that GitHub file URL, make sure that you remove the protocol
as well as blob/{branch-name}.

Building a client for the betting contract
To make it easy to find match's IDs, deploy, and invest in contracts, we need to build a UI
client. So let's get started with building a client, which will have two paths, that is, the home
path to deploy contracts and bet on matches and the other path to find the list of matches.
We will let users deploy and bet using their own offline accounts so that the entire process
of betting happens in a decentralized manner and nobody can cheat.

Before we start building our client, make sure that you have testnet synced because Oraclize
works only on Ethereum's testnet/mainnet and not on private networks. You can switch to
testnet and start downloading the testnet blockchain by replacing the --dev option with the
--testnet option. For example, take a look at the following:

geth --testnet --rpc --rpccorsdomain "*" --rpcaddr "0.0.0.0" --rpcport
"8545"

Projecting the structure
In the exercise files of this chapter, you will find two directories, that is, Final and Initial.
Final contains the final source code of the project, whereas Initial contains the empty source
code files and libraries to get started with building the application quickly.

To test the Final directory, you will need to run npm install inside it
and then run the app using the node app.js command inside the Final
directory.

In the Initial directory, you will find a public directory and two files named app.js
and package.json. The package.json file contains the backend dependencies of our app,
and app.js is where you will place the backend source code.

Building a Betting App

[162]

The public directory contains files related to the frontend. Inside public/css, you will
find bootstrap.min.css, which is the bootstrap library. Inside public/html, you will
find the index.html and matches.ejs files, where you will place the HTML code of our
app, and in the public/js directory, you will find js files for web3.js, and ethereumjs-tx.
Inside public/js, you will also find a main.js file, where you will place the frontend JS
code of our app. You will also find the Oraclize Python tool to encrypt queries.

Building the backend
Let's first build the backend of the app. First of all, run npm install inside the Initial
directory to install the required dependencies for our backend.

Here is the backend code to run an express service and serve the index.html file and static
files and set the view engine:

var express = require("express");
var app = express();

app.set("view engine", "ejs");

app.use(express.static("public"));

app.listen(8080);

app.get("/", function(req, res) {
 res.sendFile(__dirname + "/public/html/index.html");
})

The preceding code is self-explanatory. Now let's proceed further. Our app will have
another page, which will display a list of recent matches with matches' IDs and result if a
match has finished. Here is the code for the endpoint:

var request = require("request");
var moment = require("moment");

app.get("/matches", function(req, res) {
request("https://api.crowdscores.com/v1/matches?api_key=7b7a988932de4eaab4e
d1b4dcdc1a82a", function(error, response, body) {
 if (!error && response.statusCode == 200) {
 body = JSON.parse(body);

 for (var i = 0; i < body.length; i++) {
 body[i].start = moment.unix(body[i].start /
 1000).format("YYYY MMM DD hh:mm:ss");
 }

Building a Betting App

[163]

 res.render(__dirname + "/public/html/matches.ejs", {
 matches: body
 });
 } else {
 res.send("An error occured");
 }
 })
})

Here, we are making the API request to fetch the list of recent matches and then we are
passing the result to the matches.ejs file so that it can render the result in a user-friendly
UI. The API results give us the match start time as a timestamp; therefore, we are using
moment to convert it to a human readable format. We make this request from the backend
and not from the frontend so that we don't expose the API key to the users.

Our backend will provide an API to the frontend, using which the frontend can encrypt the
query before deploying the contract. Our application will not prompt users to create an API
key, as it would be a bad UX practice. The application's developer controlling the API key
will cause no harm as the developer cannot modify the result from the API servers;
therefore, users will still trust the app even after the application's developer knows the API
key.

Here is code for the encryption endpoint:

var PythonShell = require("python-shell");

app.get("/getURL", function(req, res) {
 var matchId = req.query.matchId;

 var options = {
 args: ["-e", "-p",
"044992e9473b7d90ca54d2886c7addd14a61109af202f1c95e218b0c99eb060c7134c4ae46
345d0383ac996185762f04997d6fd6c393c86e4325c469741e64eca9",
"json(https://api.crowdscores.com/v1/matches/" + matchId +
"?api_key=7b7a988932de4eaab4ed1b4dcdc1a82a).outcome.winner"],
 scriptPath: __dirname
 };

 PythonShell.run("encrypted_queries_tools.py", options, function
 (err, results) {
 if(err)
 {
 res.send("An error occured");
 }
 else
 {
 res.send(results[0]);

Building a Betting App

[164]

 }
 });
})

We have already seen how to use this tool. To run this endpoint successfully, make sure
that Python is installed on your system. Even if Python is installed, this endpoint may show
errors, indicating that Python's cryptography and base58 modules aren't installed. So make
sure you install these modules if the tool prompts you to.

Building the frontend
Now let's build the frontend of our application. Our frontend will let users see the list of
recent matches, deploy the betting contract, bet on a game, and let them see information
about a betting contract.

Let's first implement the matches.ejs file, which will display the list of recent matches.
Here is the code for this:

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <meta name="viewport" content="width=device-width, initial-
scale=1, shrink-to-fit=no">
 <meta http-equiv="x-ua-compatible" content="ie=edge">
 <link rel="stylesheet" href="/css/bootstrap.min.css">
 </head>
 <body>
 <div class="container">

 <div class="row m-t-1">
 <div class="col-md-12">
 Home
 </div>
 </div>

 <div class="row">
 <div class="col-md-12">
 <table class="table table-inverse">
 <thead>
 <tr>
 <th>Match ID</th>
 <th>Start Time</th>
 <th>Home Team</th>
 <th>Away Team</th>

Building a Betting App

[165]

 <th>Winner</th>
 </tr>
 </thead>
 <tbody>
 <% for(var i=0; i < matches.length; i++) {
%>
 <tr>
 <td><%= matches[i].dbid %></td>
 <% if (matches[i].start) { %>
 <td><%= matches[i].start %></td>
 <% } else { %>
 <td>Time not finalized</td>
 <% } %>
 <td><%= matches[i].homeTeam.name
%></td>
 <td><%= matches[i].awayTeam.name
%></td>
 <% if (matches[i].outcome) { %>
 <td><%= matches[i].outcome.winner
%></td>
 <% } else { %>
 <td>Match not finished</td>
 <% } %>
 </tr>
 <% } %>
 </tbody>
 </table>
 </div>
 </div>
 </div>
 </body>
 </html>

The preceding code is self-explanatory. Now let's write the HTML code for our home page.
Our home page will display three forms. The first form is to deploy a betting contract, the
second form is to invest in a betting contract, and the third form is to display information on
a deployed betting contract.

Here is the HTML code for the home page. Place this code in the index.html page:

<!DOCTYPE html>
 <html lang="en">
 <head>
 <meta charset="utf-8">
 <meta name="viewport" content="width=device-width, initial-
scale=1, shrink-to-fit=no">
 <meta http-equiv="x-ua-compatible" content="ie=edge">
 <link rel="stylesheet" href="/css/bootstrap.min.css">

Building a Betting App

[166]

 </head>
 <body>
 <div class="container">

 <div class="row m-t-1">
 <div class="col-md-12">
 Matches
 </div>
 </div>

 <div class="row">
 <div class="col-md-4">
 <h3>Deploy betting contract</h3>
 <form id="deploy">
 <div class="form-group">
 <label>From address: </label>
 <input type="text" class="form-control"
id="fromAddress">
 </div>
 <div class="form-group">
 <label>Private Key: </label>
 <input type="text" class="form-control"
id="privateKey">
 </div>
 <div class="form-group">
 <label>Match ID: </label>
 <input type="text" class="form-control"
id="matchId">
 </div>
 <div class="form-group">
 <label>Bet Amount (in ether): </label>
 <input type="text" class="form-control"
id="betAmount">
 </div>
 <p id="message" style="word-wrap: break-word"></p>
 <input type="submit" value="Deploy" class="btn
btn-primary" />
 </form>
 </div>
 <div class="col-md-4">
 <h3>Bet on a contract</h3>
 <form id="bet">
 <div class="form-group">
 <label>From address: </label>
 <input type="text" class="form-control"
id="fromAddress">
 </div>
 <div class="form-group">

Building a Betting App

[167]

 <label>Private Key: </label>
 <input type="text" class="form-control"
id="privateKey">
 </div>
 <div class="form-group">
 <label>Contract Address: </label>
 <input type="text" class="form-control"
id="contractAddress">
 </div>
 <div class="form-group">
 <label>Team: </label>
 <select class="form-control" id="team">
 <option>Home</option>
 <option>Away</option>
 </select>
 </div>
 <p id="message" style="word-wrap: break-word"></p>
 <input type="submit" value="Bet" class="btn btn-
primary" />
 </form>
 </div>
 <div class="col-md-4">
 <h3>Display betting contract</h3>
 <form id="find">
 <div class="form-group">
 <label>Contract Address: </label>
 <input type="text" class="form-control"
 d="contractAddress">
 </div>
 <p id="message"></p>
 <input type="submit" value="Find" class="btn btn-
primary" />
 </form>
 </div>
 </div>
 </div>

 <script type="text/javascript" src="/js/web3.min.js"></script>
 <script type="text/javascript" src="/js/ethereumjs-
tx.js"></script>
 <script type="text/javascript" src="/js/main.js"></script>
 </body>
</html>

Building a Betting App

[168]

The preceding code is self-explanatory. Now let's write JavaScript code to actually deploy
the contract, invest in contracts, and display information on contracts. Here is the code for
all this. Place this code in the main.js file:

var bettingContractByteCode = "6060604...";
var bettingContractABI =
[{"constant":false,"inputs":[{"name":"team","type":"uint256"}],"name":"betO
nTeam","outputs":[],"payable":true,"type":"function"},{"constant":false,"in
puts":[{"name":"myid","type":"bytes32"},{"name":"result","type":"string"}],
"name":"__callback","outputs":[],"payable":false,"type":"function"},{"const
ant":false,"inputs":[{"name":"myid","type":"bytes32"},{"name":"result","typ
e":"string"},{"name":"proof","type":"bytes"}],"name":"__callback","outputs"
:[],"payable":false,"type":"function"},{"constant":true,"inputs":[],"name":
"url","outputs":[{"name":"","type":"string"}],"payable":false,"type":"funct
ion"},{"constant":true,"inputs":[],"name":"matchId","outputs":[{"name":"","
type":"string"}],"payable":false,"type":"function"},{"constant":true,"input
s":[],"name":"amount","outputs":[{"name":"","type":"uint256"}],"payable":fa
lse,"type":"function"},{"constant":true,"inputs":[],"name":"homeBet","outpu
ts":[{"name":"","type":"address"}],"payable":false,"type":"function"},{"con
stant":true,"inputs":[],"name":"awayBet","outputs":[{"name":"","type":"addr
ess"}],"payable":false,"type":"function"},{"inputs":[{"name":"_matchId","ty
pe":"string"},{"name":"_amount","type":"uint256"},{"name":"_url","type":"st
ring"}],"payable":false,"type":"constructor"}];

var web3 = new Web3(new
Web3.providers.HttpProvider("http://localhost:8545"));

function getAJAXObject()
{
 var request;
 if (window.XMLHttpRequest) {
 request = new XMLHttpRequest();
 } else if (window.ActiveXObject) {
 try {
 request = new ActiveXObject("Msxml2.XMLHTTP");
 } catch (e) {
 try {
 request = new ActiveXObject("Microsoft.XMLHTTP");
 } catch (e) {}
 }
 }

 return request;
}

document.getElementById("deploy").addEventListener("submit", function(e){
 e.preventDefault();

Building a Betting App

[169]

 var fromAddress = document.querySelector("#deploy #fromAddress").value;
 var privateKey = document.querySelector("#deploy #privateKey").value;
 var matchId = document.querySelector("#deploy #matchId").value;
 var betAmount = document.querySelector("#deploy #betAmount").value;

 var url = "/getURL?matchId=" + matchId;

 var request = getAJAXObject();

 request.open("GET", url);

 request.onreadystatechange = function() {
 if (request.readyState == 4) {
 if (request.status == 200) {
 if(request.responseText != "An error occured")
 {
 var queryURL = request.responseText;

 var contract = web3.eth.contract(bettingContractABI);
 var data = contract.new.getData(matchId,
 web3.toWei(betAmount, "ether"), queryURL, {
 data: bettingContractByteCode
 });

 var gasRequired = web3.eth.estimateGas({ data: "0x" + data
 });

 web3.eth.getTransactionCount(fromAddress, function(error, nonce){

 var rawTx = {
 gasPrice: web3.toHex(web3.eth.gasPrice),
 gasLimit: web3.toHex(gasRequired),
 from: fromAddress,
 nonce: web3.toHex(nonce),
 data: "0x" + data,
 };

 privateKey = EthJS.Util.toBuffer(privateKey, "hex");

 var tx = new EthJS.Tx(rawTx);
 tx.sign(privateKey);

 web3.eth.sendRawTransaction("0x" +
 tx.serialize().toString("hex"), function(err, hash) {
 if(!err)
 {document.querySelector("#deploy #message").
 innerHTML = "Transaction Hash: " + hash + ".
 Transaction is mining...";

Building a Betting App

[170]

 var timer = window.setInterval(function(){
 web3.eth.getTransactionReceipt(hash, function(err, result){
 if(result)
 {window.clearInterval(timer);
 document.querySelector("#deploy #message").innerHTML =
 "Transaction Hash: " + hash + " and contract address is: " +
 result.contractAddress;}
 })
 }, 10000)
 }
 else
 {document.querySelector("#deploy #message").innerHTML = err;
 }
 });
 })

 }
 }
 }
 };

 request.send(null);

}, false)

document.getElementById("bet").addEventListener("submit", function(e){
 e.preventDefault();

 var fromAddress = document.querySelector("#bet #fromAddress").value;
 var privateKey = document.querySelector("#bet #privateKey").value;
 var contractAddress = document.querySelector("#bet
#contractAddress").value;
 var team = document.querySelector("#bet #team").value;

 if(team == "Home")
 {
 team = 1;
 }
 else
 {
 team = 2;
 }

 var contract =
web3.eth.contract(bettingContractABI).at(contractAddress);
 var amount = contract.amount();

 var data = contract.betOnTeam.getData(team);

Building a Betting App

[171]

 var gasRequired = contract.betOnTeam.estimateGas(team, {
 from: fromAddress,
 value: amount,
 to: contractAddress
 })

 web3.eth.getTransactionCount(fromAddress, function(error, nonce){

 var rawTx = {
 gasPrice: web3.toHex(web3.eth.gasPrice),
 gasLimit: web3.toHex(gasRequired),
 from: fromAddress,
 nonce: web3.toHex(nonce),
 data: data,
 to: contractAddress,
 value: web3.toHex(amount)
 };

 privateKey = EthJS.Util.toBuffer(privateKey, "hex");

 var tx = new EthJS.Tx(rawTx);
 tx.sign(privateKey);

 web3.eth.sendRawTransaction("0x" + tx.serialize().toString("hex"),
function(err, hash) {
 if(!err)
 {
 document.querySelector("#bet #message").innerHTML = "Transaction
 Hash: " + hash;
 }
 else
 {
 document.querySelector("#bet #message").innerHTML = err;
 }
 })
 })
 }, false)

document.getElementById("find").addEventListener("submit", function(e){
 e.preventDefault();

 var contractAddress = document.querySelector("#find
 #contractAddress").value;
 var contract =
 web3.eth.contract(bettingContractABI).at(contractAddress);

 var matchId = contract.matchId();
 var amount = contract.amount();

Building a Betting App

[172]

 var homeAddress = contract.homeBet();
 var awayAddress = contract.awayBet();

 document.querySelector("#find #message").innerHTML = "Contract balance
is: " + web3.fromWei(web3.eth.getBalance(contractAddress), "ether") + ",
Match ID is: " + matchId + ", bet amount is: " + web3.fromWei(amount,
"ether") + " ETH, " + homeAddress + " has placed bet on home team and " +
awayAddress + " has placed bet on away team";
}, false)

This is how the preceding code works:

At first, we store the contract byte code and ABI in the1.
bettingContractByteCode and bettingContractABI variables, respectively.
Then, we are create a Web3 instance, which is connected to our testnet node.2.
Then, we have the getAJAXObject function (a cross-browser compatible3.
function), which returns an AJAX object.
Then, we attach a submit event listener to the first form, which is used to deploy4.
the contract. In the event listener's callback, we make a request to the getURL
endpoint by passing matchId to get the encrypted query string. And then, we
generate the data to deploy the contract. Then, we find out the gasRequired. We
use the function object's estimateGas method to calculate the gas required, but
you can use the web3.eth.estimateGas method too. They both differ in terms of
arguments; that is, in the preceding case, you don't need to pass the transaction
data. Remember that estimateGas will return the block gas limit if the function
call throws an exception. Then, we calculate the nonce. Here, we just use the
getTransactionCount method instead of the actual procedure we learned
earlier. We do this just for simplification of the code. Then, we create the raw
transaction, signing it and broadcasting it. Once the transaction is mined, we
display the contract address.

Building a Betting App

[173]

Then, we attach a submit event listener for the second form, which is used to5.
invest in a contract. Here, we generate the data part of the transaction,
calculating the gas required, creating the raw transaction, signing it, and
broadcasting it. While calculating the gas required for the transaction, we pass
the contract address from the account address and value object properties as it's a
function call, and the gas differs depending on the value, the from address, and
contract address. Remember that while finding the gas required to call a
contract's function, you can pass the to, from,and value properties because gas
depends on these values.
Finally, we have a submit event listener for the third form, that is, to display6.
information on a deployed betting contract.

Testing the client
Now that we have finished building our betting platform, it's time to test it. Before testing,
make sure the testnet blockchain is completely downloaded and is looking for new
incoming blocks.

Now using our wallet service we built earlier, generate three account. Add one ether to each
of the accounts using http://faucet.ropsten.be:3001/.

http://faucet.ropsten.be:3001/

Building a Betting App

[174]

Then, run node app.js inside the Initial directory and then visit
http://localhost:8080/matches, and you will see what is shown in this screenshot:

Building a Betting App

[175]

Here, you can copy any match ID. Let's assume you want to test with the first match, that is,
123945. Now visit http://localhost:8080 and you will see what is shown in this
screenshot:

Building a Betting App

[176]

Now deploy the contract by filling the input fields in the first form and clicking on the
Deploy button, as shown here. Use your first account to deploy the contract.

Building a Betting App

[177]

Now bet on the contract's home team from the second account and the away team from the
third account , as shown in the following screenshot:

Building a Betting App

[178]

Now put the contract address on the third form and click on the Find button to see the
details about the contract. You will see something similar to what is shown in the following
screenshot:

Building a Betting App

[179]

Once both the transactions are mined, check the details of the contract again, and you will
see something similar to what is shown in the following screenshot:

Here, you can see that the contract doesn't have any ether and all the ether was transferred
to the account that put the bet on the home team.

Summary
In this chapter, we learned about Oraclize and the strings library in depth. We used them
together to build a decentralized betting platform. Now you can go ahead and customize
the contract and the client based on your requirements. To enhance the app, you can add
events to the contract and display notifications on the client. The objective was to
understand the basic architecture of a decentralized betting app.

In the next chapter, we will learn how to build enterprise-level Ethereum smart contracts
using truffle by building our own crypto currency.

8
Building Enterprise Level Smart

Contracts
Until now, we were using browser Solidity to write and compile Solidity code. And we
were testing our contracts using web3.js. We could have also used the Solidity online IDE to
test them. This seemed alright as we were only compiling a single small contract and it had
very few imports. As you start building large and complicated smart contracts, you will
start facing problems with compiling and testing using the current procedure. In this
chapter, we will learn about truffle, which makes it easy to build enterprise-level DApps, by
building an altcoin. All the crypto-currencies other than bitcoin are called altcoins.

In this chapter, we'll cover the following topics:

What the ethereumjs-testrpc node is and how to use it?
What are topics of events?
Working with contracts using the truffle-contract package.
Installing truffle and exploring the truffle command-line tool and configuration
file
Compiling, deploying, and testing Solidity code using truffle
Package management via NPM and EthPM
Using the truffle console and writing external scripts
Building clients for the DApp using truffle

Building Enterprise Level Smart Contracts

[181]

Exploring ethereumjs-testrpc
ethereumjs-testrpc is a Node.js-based Ethereum node used for testing and
development. It simulates full-node behavior and makes the development of Ethereum
applications much faster. It also includes all popular RPC functions and features (such as
events) and can be run deterministically to make development a breeze.

It's written in JavaScript and is distributed as an npm package. At the time of writing this,
the latest version of ethereumjs-testrpc is 3.0.3 and requires at least Node.js version
6.9.1 to run properly.

It holds everything in memory; therefore, whenever the node is restarted,
it loses the previous state.

Installation and usage
There are three ways to simulate an Ethereum node using ethereumjs-testrpc. Each of
these ways has its own use cases. Let's explore them.

The testrpc command-line application
The testrpc command can be used to simulate an Ethereum node. To install this
command-line app, you need to install ethereumjs-testrpc globally:

npm install -g ethereumjs-testrpc

Here are the various options that can be provided:

-a or --accounts: This specifies the number of accounts to be generated at
startup.

-b or --blocktime: This specifies the blocktime in seconds for automatic
mining. The default is 0, and there's no auto-mining.
-d or --deterministic: Whenever the node is run, it will generate 10
deterministic addresses; that is, when you provide this flag, the same set of
addresses are generated every time. This option can be used to generate
deterministic addresses based on a predefined mnemonic as well.

Building Enterprise Level Smart Contracts

[182]

-n or --secure: Locks the available accounts by default. When this option is
used without the --unlock option, the HD wallet will not be created.
-m or --mnemonic: Uses a specific HD wallet mnemonic to generate initial
addresses.
-p or --port: The port number to listen on. Defaults to 8545.
-h or --hostname: The hostname to listen on. Defaults to Node's
server.listen() default.
-s or --seed: The arbitrary data to generate the HD wallet mnemonic to be used.
-g or --gasPrice: Uses a custom gas price (defaults to 1). If the gas price is not
provided while sending the transaction to the node, then this gas price is used.
-l or --gasLimit: Uses a custom limit (defaults to 0x47E7C4). If the gas limit is
not provided while sending the transaction to node, then this gas limit is used.
-f or --fork: This is the fork from another currently running Ethereum node at
a given block. The input should be the HTTP location and port of the other client;
for example, http://localhost:8545. Optionally, you can specify the block to
fork from using an @ sign: http://localhost:8545@1599200.
--debug: Outputs VM opcodes for debugging.
--account: This option is used to import accounts. It specifies --account=...
any number of times, passing arbitrary private keys and their associated balances
to generate initial addresses. An testrpc --account="privatekey,balance"
[--account="privatekey,balance"] an HD wallet will not be created for
you when using --account.
-u or --unlock: Specifies --unlock ... any number of times, passing either an
address or an account index to unlock specific accounts. When used in
conjunction with --secure, --unlock will override the locked state of the
specified accounts: testrpc --secure --unlock "0x1234..." --unlock
"0xabcd...". You can also specify a number, unlocking accounts by their index:
testrpc --secure -u 0 -u 1. This feature can also be used to impersonate
accounts and unlock addresses you wouldn't otherwise have access to. When
used with the --fork feature, you can use the testrpc to make transactions as
any address on the blockchain, which is very useful in testing and dynamic
analysis.
--networkId: Used to specify a network ID that this node is part of.

Note that private keys are 64 characters long and must be input as a 0x-prefixed hex string.
The balance can either be input as an integer or a 0x-prefixed hex value specifying the
amount of wei in that account.

Building Enterprise Level Smart Contracts

[183]

Using ethereumjs-testrpc as a web3 provider or as an
HTTP server
You can use ethereumjs-testrpc as a web3 provider like this:

var TestRPC = require("ethereumjs-testrpc");
web3.setProvider(TestRPC.provider());

You can use ethereumjs-testrpc as a general HTTP server like this:

var TestRPC = require("ethereumjs-testrpc");
var server = TestRPC.server();
server.listen(port, function(err, blockchain) {});

Both provider() and server() take a single object that allows you to specify the behavior
of the ethereumjs-testrpc. This parameter is optional. The available options are as
follows:

accounts: Value is an array of objects. Each object should have a balance key
with a hexadecimal value. The secretKey key can also be specified, which
represents the account's private key. If there's no secretKey, the address is
autogenerated with the given balance. If specified, the key is used to determine
the account's address.
debug: Outputs VM opcodes for debugging.
logger: Value is an object that implements a log() function.
mnemonic: Uses a specific HD wallet mnemonic to generate initial addresses.
port: The port number to listen on when running as a server.
seed: Arbitrary data to generate the HD wallet mnemonic to be used.
total_accounts: The number of accounts to generate at start up.
fork: The same as the preceding --fork option.
network_id: The same as the --networkId option. Used to specify a network
ID that this node is part of.
time: The date that the first block should start. Use this feature along with the
evm_increaseTime method to test time-dependent code.
locked: Specifies whether or not accounts are locked by default.
unlocked_accounts: An array of addresses or address indexes specifying
which accounts should be unlocked.

Building Enterprise Level Smart Contracts

[184]

Available RPC methods
Here is the list of RPC methods made available with ethereumjs-testrpc:

eth_accounts

eth_blockNumber

eth_call

eth_coinbase

eth_compileSolidity

eth_estimateGas

eth_gasPrice

eth_getBalance

eth_getBlockByNumber

eth_getBlockByHash

eth_getBlockTransactionCountByHash

eth_getBlockTransactionCountByNumber

eth_getCode (only supports block number "latest")

eth_getCompilers

eth_getFilterChanges

eth_getFilterLogs

eth_getLogs

eth_getStorageAt

eth_getTransactionByHash

eth_getTransactionByBlockHashAndIndex

eth_getTransactionByBlockNumberAndIndex

eth_getTransactionCount

eth_getTransactionReceipt

eth_hashrate

eth_mining

eth_newBlockFilter

eth_newFilter (includes log/event filters)

eth_sendTransaction

eth_sendRawTransaction

eth_sign

eth_syncing

Building Enterprise Level Smart Contracts

[185]

eth_uninstallFilter

net_listening

net_peerCount

net_version

miner_start

miner_stop

rpc_modules

web3_clientVersion

web3_sha3

There are also special nonstandard methods that aren't included within the original RPC
specification:

evm_snapshot: Snapshots the state of the blockchain at the current block. Takes
no parameters. Returns the integer ID of the snapshot created.
evm_revert: Reverts the state of the blockchain to a previous snapshot. Takes a
single parameter, which is the snapshot ID to revert to. If no snapshot ID is
passed, it will revert to the latest snapshot. Returns true.
evm_increaseTime: Jumps forward in time. Takes one parameter, which is the
amount of time to increase in seconds. Returns the total time adjustment in
seconds.
evm_mine: Forces a block to be mined. Takes no parameters. Mines a block
independent of whether or not mining is started or stopped.

What are event topics?
Topics are values used for indexing events. You cannot search for events without topics.
Whenever an event is invoked, a default topic is generated, which is considered the first
topic of the event. There can be up to four topics for an event. Topics are always generated
in the same order. You can search for an event using one or more of its topics.

The first topic is the signature of the event. The rest of the three topics are the values of
indexed parameters. If the index parameter is string, bytes, or array, then the
keccak-256 hash of it is the topic instead.

Building Enterprise Level Smart Contracts

[186]

Let's take an example to understand topics. Suppose there is an event of this form:

event ping(string indexed a, int indexed b, uint256 indexed c, string d,
int e);

//invocation of event
ping("Random String", 12, 23, "Random String", 45);

Here, these four topics are generated. They are as follows:

0xb62a11697c0f56e93f3957c088d492b505b9edd7fb6e7872a93b41cdb2020

644: This is the first topic. It is generated using
web3.sha3("ping(string,int256,uint256,string,int256)"). Here, you
can see that all types are of a canonical form.
0x30ee7c926ebaf578d95b278d78bc0cde445887b0638870a26dcab901ba21d

3f2: This is the second topic. It is generated using web3.sha3("Random
String").
The third and fourth topics are
0x000

00c and
0x000

017, respectively, that is, hexadecimal representation of the values . They are
calculated using
EthJS.Util.bufferToHex(EthJS.Util.setLengthLeft(12, 32)) and
EthJS.Util.bufferToHex(EthJS.Util.setLengthLeft(23, 32)),
respectively.

Internally, your Ethereum node will build indexes using topics so that you can easily find
events based on signatures and indexed values.

Suppose you want to get event calls of the preceding event, where the first argument is
Random String and the third argument is either 23 or 78; then, you can find them using
web3.eth.getFilter this way:

var filter = web3.eth.filter({
 fromBlock: 0,
 toBlock: "latest",
 address: "0x853cdcb4af7a6995808308b08bb78a74de1ef899",
 topics:
["0xb62a11697c0f56e93f3957c088d492b505b9edd7fb6e7872a93b41cdb2020644",
"0x30ee7c926ebaf578d95b278d78bc0cde445887b0638870a26dcab901ba21d3f2", null,
[EthJS.Util.bufferToHex(EthJS.Util.setLengthLeft(23, 32)),
EthJS.Util.bufferToHex(EthJS.Util.setLengthLeft(78, 32))]]
});

Building Enterprise Level Smart Contracts

[187]

filter.get(function(error, result){
 if (!error)
 console.log(result);
});

So here, we are asking the node to return all events from the blockchain that have been fired
by the 0x853cdcb4af7a6995808308b08bb78a74de1ef899 contract address, whose first
topic is
0xb62a11697c0f56e93f3957c088d492b505b9edd7fb6e7872a93b41cdb2020644, the
second topic is
0x30ee7c926ebaf578d95b278d78bc0cde445887b0638870a26dcab901ba21d3f2, and
the third topic is either
0x0017 or
0x004e.

In the preceding code, note the order of the topics array values. The
order is important.

Getting started with truffle-contract
It is important to learn truffle-contract before learning truffle because truffle-
contract is tightly integrated into truffle. Truffle tests, code to interact with contracts in
truffle, deployment code, and so on are written using truffle-contract.

The truffle-contract API is a JavaScript and Node.js library, which makes it easy to
work with ethereum smart contracts. Until now, we have been using web3.js to deploy and
call smart contracts functions, which is fine, but truffle-contract aims to make it even
easier to work with ethereum smart contracts. Here are some features of truffle-
contract that make it a better choice then web3.js in order to work with smart contracts:

Synchronized transactions for better control flow (that is, transactions won't
finish until you're guaranteed they've been mined).
Promise-based API. No more callback hell. Works well with ES6 and async/await.
Default values for transactions, such as from address or gas.
Returning logs, transaction receipt, and transaction hash of every synchronized
transaction.

Building Enterprise Level Smart Contracts

[188]

Before we get into truffle-contract, you need to know that it doesn't allow us to sign
transactions using accounts stored outside of the ethereum node; that is, it doesn't have
anything similar to sendRawTransaction. The truffle-contract API assumes that
every user of your DApp has their own ethereum node running and they have their
accounts stored in that node. Actually this is how DApps should work because if every
DApp's client starts letting users create and manage accounts, then it will be a concern for
users to manage so many accounts and painful for developers to develop a wallet manager
every time for every client they build. Now, the question is how will clients know where the
user has stored the accounts and in what format? So, for portability reasons, it's
recommended that you assume that users have their accounts stored in their personal node,
and to manage the account, they use something like the ethereum Wallet app. As accounts
stored in the Ethereum node are signed by the ethereum node itself, there is no need for
sendRawTransaction anymore. Every user needs to have their own node and cannot
share a node because when an account is unlocked, it will be open for anyone to use it,
which will enable users to steal other's ether and make transactions from others' accounts.

If you are using an app that requires you to host your own node and
manage accounts in it, then make sure you don't allow everyone to make
JSON-RPC calls to that node; instead, only local apps should be able to
make calls. Also, make sure that you don't keep the accounts unlocked for
very long and lock them as soon as you don't need the account.

If your applications require the functionality of creating and signing raw transactions, then
you can use truffle-contract just to develop and test smart contracts, and in your
application, you can interact with contracts just like we were doing earlier.

Installing and importing truffle-contract
At the time of writing this, the latest version of the truffle-contract API is 1.1.10. Before
importing truffle-contract, you need to first import web3.js as you will need to create a
provider to work with the truffle-contract APIs so that truffle-contract will
internally use the provider to make JSON-RPC calls.

To install truffle-contract in the Node.js app, you need to simply run this in your app
directory:

npm install truffle-contract

And then use this code to import it:

var TruffleContract = require("truffle-contract");

Building Enterprise Level Smart Contracts

[189]

To use truffle-contract in a browser, you can find the browser distribution inside the
dist directory in the https://github.com/trufflesuite/truffle-contract repository.

In HTML, you can enqueue it this way:

<script type="text/javascript" src="./dist/truffle-
contract.min.js"></script>

Now you will have a TruffleContract global variable available.

Setting up a testing environment
Before we start learning about truffle-contract APIs, we need to set up a testing
environment, which will help us test our code while learning.

First of all, run the ethereumjs-testrpc node representing network ID 10 by just running
the testrpc --networkId 10 command. We have randomly chosen network ID 10 for
development purposes, but you are free to choose any other network ID. Just make sure it's
not 1 as mainnet is always used in live apps and not for development and testing purposes.

Then, create an HTML file and place this code in it:

<!doctype html>
<html>
 <body>
 <script type="text/javascript" src="./web3.min.js"></script>
 <script type="text/javascript" src="./truffle-
 contract.min.js"></script>
 <script type="text/javascript">
 //place your code here
 </script>
 </body>
</html>

Download web3.min.js and truffle-contract.min.js. You can find the truffle-
contract browser build at
https://github.com/trufflesuite/truffle-contract/tree/master/dist.

https://github.com/trufflesuite/truffle-contract
https://github.com/trufflesuite/truffle-contract/tree/master/dist

Building Enterprise Level Smart Contracts

[190]

The truffle-contract API
Now let's explore truffle-contract APIs. Basically, truffle-contract has two APIs,
that is, the contract abstraction API and the contract instance API. A contract abstraction
API represents various kinds of information about the contract (or a library), such: as its
ABI; unlinked byte code; if the contract is already deployed, then its address in various
ethereum networks; addresses of the libraries it depends on for various ethereum networks
if deployed; and events of the contract. The abstraction API is a set of functions that exist for
all contract abstractions. A contract instance represents a deployed contract in a specific
network. The instance API is the API available to contract instances. It is created
dynamically based on functions available in your Solidity source file. A contract instance
for a specific contract is created from a contract abstraction that represents the same
contract.

The contract abstraction API
The contract abstraction API is something that makes truffle-contract very special
compared to web3.js. Here is why it's special:

It will automatically fetch default values, such as library addresses, contract
addresses, and so on, depending on which network it's connected to; therefore,
you don't have to edit the source code every time you change the network.
You may choose to listen to certain events in certain networks only.
It makes it easy to link libraries to contract's byte code at runtime. There are
several other benefits you will find out once you have explored how to use the
API.

Before we get into how to create a contract abstraction and its methods, let's write a sample
contract, which the contract abstraction will represent. Here is the sample contract:

pragma Solidity ^0.4.0;

import "github.com/pipermerriam/ethereum-string-
utils/contracts/StringLib.sol";

contract Sample
{
 using StringLib for *;

 event ping(string status);

 function Sample()
 {

Building Enterprise Level Smart Contracts

[191]

 uint a = 23;
 bytes32 b = a.uintToBytes();

 bytes32 c = "12";
 uint d = c.bytesToUInt();

 ping("Conversion Done");
 }
}

This contract converts uint into bytes32 and bytes32 into uint using the StringLib
library. StringLib is available at the
0xcca8353a18e7ab7b3d094ee1f9ddc91bdf2ca6a4 address on the main network, but on
other networks, we need to deploy it to test the contract. Before you proceed further,
compile it using browser Solidity, as you will need the ABI and byte code.

Now let's create a contract abstraction representing the Sample contract and the StringLib
library. Here is the code for this. Place it in the HTML file:

var provider = new Web3.providers.HttpProvider("http://localhost:8545");
var web3 = new Web3(provider);

var SampleContract = TruffleContract({
 abi:
[{"inputs":[],"payable":false,"type":"constructor"},{"anonymous":false,"inp
uts":[{"indexed":false,"name":"status","type":"string"}],"name":"ping","typ
e":"event"}],
 unlinked_binary:
"6060604052341561000c57fe5b5b6000600060006000601793508373__StringLib__6394e
8767d90916000604051602001526040518263ffffffff167c01000000000000000000000000
000000000000000000000000000000000281526004018082815260200191505060206040518
083038186803b151561008b57fe5b60325a03f4151561009857fe5b50505060405180519050
92507f31320091508
16000191673__StringLib__6381a33a6f90916000604051602001526040518263ffffffff1
67c010002815260040180
826000191660001916815260200191505060206040518083038186803b151561014557fe5b6
0325a03f4151561015257fe5b5050506040518051905090507f3adb191b3dee3c3ccbe8c657
275f608902f13e3a020028b12c0d825510439e5660405180806020018281038252600f81526
02001807f436f6e76657273696f6e20446f6e65000000000000000000000000000000000081
525060200191505060405180910390a15b505050505b6033806101da6000396000f30060606
040525bfe00a165627a7a7230582056ebda5c1e4ba935e5ad61a271ce8d59c95e0e4bca4ad2
0e7f07d804801e95c60029",
 networks: {
 1: {
 links: {
 "StringLib": "0xcca8353a18e7ab7b3d094ee1f9ddc91bdf2ca6a4"
 },

Building Enterprise Level Smart Contracts

[192]

 events: {
"0x3adb191b3dee3c3ccbe8c657275f608902f13e3a020028b12c0d825510439e56": {
 "anonymous": false,
 "inputs": [
 {
 "indexed": false,
 "name": "status",
 "type": "string"
 }
],
 "name": "ping",
 "type": "event"
 }
 }
 },
 10: {
 events: {
"0x3adb191b3dee3c3ccbe8c657275f608902f13e3a020028b12c0d825510439e56": {
 "anonymous": false,
 "inputs": [
 {
 "indexed": false,
 "name": "status",
 "type": "string"
 }
],
 "name": "ping",
 "type": "event"
 }
 }
 }
 },
 contract_name: "SampleContract",
});

SampleContract.setProvider(provider);
SampleContract.detectNetwork();

SampleContract.defaults({
 from: web3.eth.accounts[0],
 gas: "900000",
 gasPrice: web3.eth.gasPrice,
})

var StringLib = TruffleContract({
 abi:
[{"constant":true,"inputs":[{"name":"v","type":"bytes32"}],"name":"bytesToU
Int","outputs":[{"name":"ret","type":"uint256"}],"payable":false,"type":"fu

Building Enterprise Level Smart Contracts

[193]

nction"},{"constant":true,"inputs":[{"name":"v","type":"uint256"}],"name":"
uintToBytes","outputs":[{"name":"ret","type":"bytes32"}],"payable":false,"t
ype":"function"}],
 unlinked_binary:
"6060604052341561000c57fe5b5b6102178061001c6000396000f30060606040526000357c
0100900463ffffffff168
06381a33a6f1461004657806394e8767d14610076575bfe5b61006060048080356000191690
60200190919050506100aa565b6040518082815260200191505060405180910390f35b61008
c6004808035906020019091905050610140565b604051808260001916600019168152602001
91505060405180910390f35b6000600060006000600102846000191614156100c5576100005
65b600090505b60208110156101355760ff81601f0360080260020a85600190048115156100
ed57fe5b0416915060008214156100ff57610135565b603082108061010e5750603982115b1
561011857610000565b5b600a8302925060308203830192505b80806001019150506100ca56
5b8292505b5050919050565b60006000821415610173577f300000000000000000000000000
000000000000000000000000000000000000090506101e2565b5b60008211156101e1576101
00816001900481151561018e57fe5b0460010290507f0100000000000000000000000000000
0000000000000000000000000000000006030600a848115156101c357fe5b06010260010281
179050600a828115156101d957fe5b049150610174565b5b8090505b9190505600a165627a7
a72305820d2897c98df4e1a3a71aefc5c486aed29c47c80cfe77e38328ef5f4cb5efcf2f100
29",
 networks: {
 1: {
 address: "0xcca8353a18e7ab7b3d094ee1f9ddc91bdf2ca6a4"
 }
 },
 contract_name: "StringLib",
})

StringLib.setProvider(provider);
StringLib.detectNetwork();

StringLib.defaults({
 from: web3.eth.accounts[0],
 gas: "900000",
 gasPrice: web3.eth.gasPrice,
})

Here is how the preceding code works:

At first, we create a provider. Using this provider, truffle-contract will 1.
communicate with the node.

Building Enterprise Level Smart Contracts

[194]

Then, we create a contract abstraction for the Sample contract. To create a2.
contract abstraction, we use the TruffleContract function. This function takes
an object, which contains various kinds of information about the contract. This
object can be termed as an artifacts object. The abi and unlinked_binary
properties are compulsory. The other properties of the object are optional. The
abi property points to the ABI of the contract, whereas the unlinked_binary
property points to the unlinked binary code of the contract.
Then, we have a property network that indicates various kinds of information3.
about the contract in various networks. Here, we are saying that in network ID 1,
the StringLib dependency is deployed at the
0xcca8353a18e7ab7b3d094ee1f9ddc91bdf2ca6a4 address so that at the time
of deploying the Sample contract in network 1, it will link it automatically. Under
a network object, we can also put an address property, indicating that the
contract is already deployed to this network and this is the contract address. We
also have an events objects in the networks object, which specifies the events of
the contract we are interested in catching. The keys of the events object are
topics of events and the values are the ABI of events.
Then, we call the setProvider method of the SampleContract object by4.
passing a new provider instance. This is a way to pass the provider so that
truffle-contract can communicate with the node. The truffle-contract
API doesn't provide a way to set the provider globally; instead, you need to set a
provider for every contract abstraction. This is a feature that lets us connect and
work on multiple networks at once with ease.
Then, we call the detectNetwork method of the SampleContract object. This is5.
the way to set the network ID that the contract abstraction is currently
representing; that is, during all the operations on the contract abstraction, the
values mapped to this network ID are used. This method will automatically
detect which network ID our node is connected to and will set it automatically. If
you want to manually set the network ID or change it at runtime, then you can
use SampleContract.setNetwork(network_id). If you change the network
ID, then make sure that the provider is also pointing to the node of the same
network since truffle-contract won't be able to map the network ID with
correct links, addresses, and events otherwise.
Then, we set default values for transactions made for SampleContract. This6.
method gets and, optionally, sets transaction defaults. If called without any
parameters, it will simply return an object representing the current defaults. If an
object is passed, this will set new defaults.
We did the same for the StringLib library in order to create a contract7.
abstraction for it.

Building Enterprise Level Smart Contracts

[195]

Creating contract instances
A contract instance represents a deployed contract in a particular network. Using a contract
abstraction instance, we need to create a contract instance. There are three methods to create
a contract instance:

SampleContract.new([arg1, arg2, ...], [tx params]): This function
takes whatever constructor parameters your contract requires and deploys a new
instance of the contract to the network to which the contract abstraction is set to
use. There's an optional last argument, which you can use to pass transaction
parameters, including the transaction from address, gas limit, and gas price. This
function returns a promise that resolves into a new instance of the contract
abstraction at the newly deployed address when the transaction is mined. This
method doesn't make any changes to the artifacts object the contract abstraction
represents. Before using this method, make sure that it can find the libraries'
addresses that the byte code is dependent on for the network it's set to use.
SampleContract.at(address): This function creates a new instance of the
contract abstraction representing the contract at the passed-in address. It returns
a "thenable" object (not yet an actual promise for backward compatibility). It
resolves to a contract abstraction instance after ensuring that the code exists at the
specified address in the network it's set to use.
SampleContract.deployed(): This is just like at(), but the address is
retrieved from the artifacts object. Like at(), deployed() is tenable and will
resolve to a contract instance representing the deployed contract after ensuring
that the code exists at that location and that the address exists on the network that
the contract abstraction is set to use.

Let's deploy and get a contract instance of the Sample contract. In network ID 10, we
need to use new() to deploy the StringLib library first and then add the deployed address
of the StringLib library to the StringLib abstraction, link the StringLib abstraction to
the SampleContract abstraction, and then deploy the Sample contract using new() to get
an instance of the Sample contract. But in network ID 1, we just need to deploy
SampleContract and get its instance, as we already have StringLib deployed there. Here
is the code to do all this:

web3.version.getNetwork(function(err, network_id) {
 if(network_id == 1)
 {
 var SampleContract_Instance = null;

 SampleContract.new().then(function(instance){
 SampleContract.networks[SampleContract.network_id]
 ["address"] = instance.address;

Building Enterprise Level Smart Contracts

[196]

 SampleContract_Instance = instance;
 })
 }
 else if(network_id == 10)
 {
 var StringLib_Instance = null;
 var SampleContract_Instance = null;

 StringLib.new().then(function(instance){
 StringLib_Instance = instance;
 }).then(function(){
 StringLib.networks[StringLib.network_id] = {};
 StringLib.networks[StringLib.network_id]["address"] =
 StringLib_Instance.address;
 SampleContract.link(StringLib);
 }).then(function(result){
 return SampleContract.new();
 }).then(function(instance){
 SampleContract.networks[SampleContract.network_id]
 ["address"] = instance.address;
 SampleContract_Instance = instance;
 })
 }
});

This is how the preceding code works:

At first, we detect the network ID. If the network ID is 10, then we deploy both1.
the contract and library, and if the network ID is 10, then we only deploy the
contract.
In network ID 10, we deploy the StringLib contract and get the contract2.
instance of it.
Then, we update the StringLib abstraction so that it knows about the address of3.
the contract in the current network it represents. The interface to update the
abstraction is similar to updating the artifacts object directly. If you are connected
to network ID 1, then it will override the StringLib address, which is already
set.
Then, we link the deployed StringLib to the SampleContract abstraction.4.
Linking updates the links and copies the events of the library to the
SampleContract abstraction's current network it represents. Libraries can be
linked multiple times and will overwrite their previous linkage.

Building Enterprise Level Smart Contracts

[197]

We deploy SampleContract to the current network.5.
We update the SampleContract abstraction to store the address of the contract6.
in the current network it's representing so that we can use deployed() to get the
instance later on.
In the case of network ID 1, we just deploy SampleContract and that's it.7.
Now you can simply change the network that your node is connected to and8.
restart your app, and your app will behave accordingly. So for example, on a
developer's machine, the app will be connected to a development network and on
a production server, it will be connected to the main network. Obviously, you
may not want to deploy the contracts every time the preceding file is run, so you
can actually update the artifacts objects once the contracts are deployed and in
the code you can check whether the contract is deployed or not. If not deployed,
only then should you deploy it. Instead of updating the artifacts object manually,
you can store the artifacts in a DB or in a file and write code to update them
automatically after the contract deployment is done.

The contract instance API
Each contract instance is different based on the source Solidity contract, and the API is
created dynamically. Here are the various the APIs of a contract instance:

allEvents: This is a function of a contract instance that takes a callback that is
invoked whenever an event is fired by the contract matching the event signature
under the current network ID in the contract artifacts object. You can also use
event name-specific functions to catch specific events instead of all of them.
In the preceding contract, to catch ping events, you can use
SampleContract_Instance.ping(function(e, r){}).
send: This function is used to send ether to the contract. It takes two arguments;
that is, the first argument is the amount of wei to transfer and the second
argument is an optional object that can used to set the from of the transaction,
which indicates from which address the ether is being sent. This call returns a
promise, and the promise resolves to the details about the transaction when its
mined.

Building Enterprise Level Smart Contracts

[198]

We can invoke any method of the contract using
SampleContract.functionName() or
SampleContract.functionName.call(). The first one sends a transaction,
whereas the second one invokes the method on the EVM only, and the changes
are not persistent. Both of these methods return a promise. In the first case, the
promise resolves to the result of the transaction, that is, an object holding a
transaction hash, logs, and transaction receipt. And in the second case, it resolves
to the return value of the method call. Both the methods take function
arguments and an optional last argument, which is an object to set from, gas,
value, and so on of the transaction.

Introduction to truffle
Truffle is a development environment (providing a command-line tool to compile, deploy,
test, and build), framework (providing various packages to make it easy to write tests,
deployment code, build clients, and so on) and asset pipeline (publishing packages and
using packages published by others) to build ethereum-based DApps.

Installing truffle
Truffle works on OS X, Linux, and Windows. Truffle requires you to have Node.js version
5.0+ installed. At the time of writing this, the latest stable version of truffle is 3.1.2, and we
will be using this version. To install truffle, you just need to run this command:

npm install -g truffle

Before we go ahead, make sure you are running testrpc with network ID 10. The reason is
the same as the one discussed earlier.

Initializing truffle
First, you need to create a directory for your app. Name the directory altcoin. Inside the
altcoin directory, run this command to initialize your project:

truffle init

Building Enterprise Level Smart Contracts

[199]

Once completed, you'll have a project structure with the following items:

contracts: The directory where truffle expects to find Solidity contracts.
migrations: The directory to place files that contain contract deployment code.
test: The location of test files to test your smart contracts.
truffle.js: The main truffle configuration file.

By default, truffle init gives you a set of example contracts (MetaCoin and
ConvertLib), which act like a simple altcoin built on top of ethereum.

Here is the source code of the MetaCoin smart contract just for reference:

pragma Solidity ^0.4.4;

import "./ConvertLib.sol";

contract MetaCoin {
 mapping (address => uint) balances;

 event Transfer(address indexed _from, address indexed _to, uint256
_value);

 function MetaCoin() {
 balances[tx.origin] = 10000;
 }

 function sendCoin(address receiver, uint amount) returns(bool
sufficient) {
 if (balances[msg.sender] < amount) return false;
 balances[msg.sender] -= amount;
 balances[receiver] += amount;
 Transfer(msg.sender, receiver, amount);
 return true;
 }

 function getBalanceInEth(address addr) returns(uint){
 return ConvertLib.convert(getBalance(addr),2);
 }

 function getBalance(address addr) returns(uint) {
 return balances[addr];
 }
}

Building Enterprise Level Smart Contracts

[200]

MetaCoin assigns 10 k metacoins to the account address that deployed the contract. 10 k is
the total amount of bitcoins that exists. Now this user can send these metacoins to anyone
using the sendCoin() function. You can find the balance of your account using
getBalance()anytime. Assuming that one metacoin is equal to two ethers, you can get the
balance in ether using getBalanceInEth().

The ConvertLib library is used to calculate the value of metacoins in ether. For this
purpose, it provides the convert() method.

Compiling contracts
Compiling contracts in truffle results in generating artifact objects with the abi and
unlinked_binary set. To compile, run this command:

truffle compile

Truffle will compile only the contracts that have been changed since the last compilation in
order to avoid any unnecessarily compilation. If you'd like to override this behavior, run the
preceding command with the --all option.

You can find the artifacts in the build/contracts directory. You are free to edit these files
according to your needs. These files get modified at the time of running the compile and
migrate commands.

Here are a few things you need to take care of before compiling:

Truffle expects your contract files to define contracts that match their filenames
exactly. For instance, if you have a file called MyContract.sol, one of these
should exist within the contract file: contract MyContract{} or library
myContract{}.
Filename matching is case-sensitive, which means that if your filename isn't
capitalized, your contract name shouldn't be capitalized either.
You can declare contract dependencies using Solidity's import command. Truffle
will compile contracts in the correct order and link libraries automatically when
necessary. Dependencies must be specified as relative to the current Solidity file,
beginning with either ./ or ../.

Truffle version 3.1.2 uses compiler version 0.4.8. Truffle doesn't currently
support changing the compiler version, so it's fixed.

Building Enterprise Level Smart Contracts

[201]

Configuration files
The truffle.js file is a JavaScript file used to configure the project. This file can execute
any code necessary to create the configuration for the project. It must export an object
representing your project configuration. Here is the default content of the file:

module.exports = {
 networks: {
 development: {
 host: "localhost",
 port: 8545,
 network_id: "*" // Match any network id
 }
 }
};

There are various properties this object can contain. But the most basic one is networks.
The networks property specifies which networks are available for deployment as well as
specific transaction parameters when interacting with each network (such as gasPrice,
from, gas, and so on). The default gasPrice is 100,000,000,000, gas is 4712388, and from is
the first available contract in the ethereum client.

You can specify as many networks as you want. Go ahead and edit the configuration file to
this:

module.exports = {
 networks: {
 development: {
 host: "localhost",
 port: 8545,
 network_id: "10"
 },
 live: {
 host: "localhost",
 port: 8545,
 network_id: "1"
 }
 }
};

In the preceding code, we are defining two networks with the names development and
live.

Building Enterprise Level Smart Contracts

[202]

When using Command Prompt on Windows, the default configuration
filename can cause a conflict with the truffle executable. If this is the
case, we recommend that you use Windows PowerShell or Git BASH as
these shells do not have this conflict. Alternatively, you can rename the
configuration file to truffle-config.js in order to avoid this conflict.

Deploying contracts
Even the smallest project will interact with at least two blockchains: one on the developer's
machine, such as the EthereumJS TestRPC, and the other representing the network where
the developer will eventually deploy their application (this could be the main ethereum
network or a private consortium network, for instance).

Because the network is auto-detected by the contract abstractions at runtime, it means that
you only need to deploy your application or frontend once. When your application is run,
the running ethereum client will determine which artifacts are used, and this will make
your application very flexible.

JavaScript files that contain code to deploy contracts to the ethereum network are called
migrations. These files are responsible for staging your deployment tasks, and they're
written under the assumption that your deployment needs will change over time. As your
project evolves, you'll create new migration scripts to further this evolution on the
blockchain. A history of previously run migrations is recorded on the blockchain through a
special Migrations contract. If you have seen the contents of the contracts and
build/contracts directory, then you would have noticed the Migrations contract's
existence there. This contract should always be there and shouldn't be touched unless you
know what you are doing.

Migration files
In the migrations directory, you will notice that the filenames are prefixed with a number;
that is, you will find 1_initial_migration.js and 2_deploy_contracts.js files. The
numbered prefix is required in order to record whether the migration ran successfully.

The Migrations contract stores (in last_completed_migration) a number that
corresponds to the last applied migration script found in the migrations folder. The
Migrations contract is always deployed first. The numbering convention is
x_script_name.js, with x starting at 1. Your app contracts would typically come in
scripts starting at 2.

Building Enterprise Level Smart Contracts

[203]

So, as this Migrations contract stores the number of the last deployment script applied,
truffle will not run these scripts again. On the other hand, in future, your app may need to
have a modified, or new, contract deployed. For that to happen, you create a new script
with an increased number that describes the steps that need to take place. Then, again, after
they have run once, they will not run again.

Writing migrations
At the beginning of a migration file, we tell truffle which contracts we'd like to interact with
via the artifacts.require() method. This method is similar to Node's require, but in
our case, it specifically returns a contract abstraction that we can use within the rest of our
deployment script.

All migrations must export a function via the module.exports syntax. The function
exported by each migration should accept a deployer object as its first parameter. This
object assists in deployment both by providing a clear API to deploy smart contracts as well
as performing some of the deployment's more mundane duties, such as saving deployed
artifacts in the artifacts files for later use, linking libraries, and so on. The deployer object
is your main interface for the staging of deployment tasks.

Here are the methods of the deployer object. All the methods are synchronous:

deployer.deploy(contractAbstraction, args..., options): Deploys a
specific contract specified by the contract abstraction object, with optional
constructor arguments. This is useful for singleton contracts, so that only one
instance of this contract exists for your DApp. This will set the address of the
contract after deployment (that is, the address property in the artifacts file will
equal the newly deployed address), and it will override any previous address
stored. You can optionally pass an array of contracts, or an array of arrays, to
speed up the deployment of multiple contracts. Additionally, the last argument is
an optional object that can contain a single key, overwrite. If overwrite is set
to false, the deployer won't deploy this contract if one has already been
deployed. This method returns a promise.
deployer.link(library, destinations): Links an already deployed library
to a contract or multiple contracts. The destinations argument can be a single
contract abstraction or an array of multiple contract abstractions. If any contract
within the destination doesn't rely on the library being linked, the deployer will
ignore that contract. This method returns a promise.

Building Enterprise Level Smart Contracts

[204]

deployer.then(function(){}): This is used to run an arbitrary deployment
step. Use it to call specific contract functions during your migration to add, edit,
and reorganize contract data. Inside the callback function, you would use the
contract abstraction APIs to deploy and link contracts.

It is possible to run the deployment steps conditionally based on the network being
deployed to. To conditionally stage the deployment steps, write your migrations so that
they accept a second parameter called network. One example use case can be that many of
the popular libraries are already deployed to the main network; therefore, when using these
networks, we will not deploy the libraries again and just link them instead. Here is a code
example:

module.exports = function(deployer, network) {
 if (network != "live") {
 // Perform a different step otherwise.
 } else {
 // Do something specific to the network named "live".
 }
}

In the project, you will find two migration files, that is, 1_initial_migration.js and
2_deploy_contracts.js. The first file shouldn't be edited unless you know what you are
doing. You are free to do anything with the other file. Here is the code for the
2_deploy_contracts.js file:

var ConvertLib = artifacts.require("./ConvertLib.sol");
var MetaCoin = artifacts.require("./MetaCoin.sol");

module.exports = function(deployer) {
 deployer.deploy(ConvertLib);
 deployer.link(ConvertLib, MetaCoin);
 deployer.deploy(MetaCoin);
};

Here, we are creating abstractions for the CovertLib library and the MetaCoin contract at
first. Regardless of which network is being used, we are deploying the ConvertLib library
and then linking the library to the MetaCoin network and finally deploying the MetaCoin
network.

To run the migrations, that is, to deploy the contracts, run this command:

truffle migrate --network development

Building Enterprise Level Smart Contracts

[205]

Here, we are telling truffle to run migrations on the development network. If we don't
provide the --network option, then it will use the network with the name development
by default.

After you run the preceding command, you will notice that truffle will automatically
update the ConvertLib library and MetaCoin contract addresses in the artifacts files and
also update the links.

Here are some other important options you can provide to the migrate sub-command:

--reset: Runs all migrations from the beginning instead of running from the last
completed migration.
-f number: Runs contracts from a specific migration.

You can find the address of the contracts and libraries of your project in
various networks using the truffle networks command anytime.

Unit testing contracts
Unit testing is a type of testing an app. It is a process in which the smallest testable parts of
an application, called units, are individually and independently examined for proper
operation. Unit testing can be done manually but is often automated.

Truffle comes with a unit testing framework by default to automate the testing of your
contracts. It provides a clean room environment when running your test files; that is, truffle
will rerun all of your migrations at the beginning of every test file to ensure you have a
fresh set of contracts to test against.

Truffle lets you write simple and manageable tests in two different ways:

In JavaScript, to exercise your contracts from the app client
In Solidity, to exercise your contracts from other contracts

Both styles of tests have their advantages and drawbacks. We will learn both ways of
writing tests.

All test files should be located in the ./test directory. Truffle will run test files only with
these file extensions: .js, .es, .es6, and .jsx, and .sol. All other files are ignored.

Building Enterprise Level Smart Contracts

[206]

The ethereumjs-testrpc is significantly faster than other clients when
running automated tests. Moreover, testrpc contains special features
that truffle takes advantage of to speed up the test runtime by almost 90
percent. As a general workflow, we recommend that you use testrpc
during normal development and testing and then run your tests once
against go-ethereum or another official ethereum client when you're
gearing up to deploy to live or production networks.

Writing tests in JavaScript
Truffle's JavaScript testing framework is built on top of mocha. Mocha is a JavaScript
framework to write tests, whereas chai is an assertion library.

Testing frameworks are used to organize and execute tests, whereas assertion libraries
provide utilities to verify that things are correct. Assertion libraries make it a lot easier to
test your code so you don't have to perform thousands of if statements. Most of the testing
frameworks don't have an assertion library included and let the user plug which one they
want to use.

Before continuing further, you need to learn how to write tests with
mocha and chai. To learn mocha, visit https://mochajs.org/ and to learn
chai, visit h t t p ://c h a i j s . c o m /.

Your tests should exist in the ./test directory, and they should end with a .js extension.

Contract abstractions are the basis for making contract interaction possible from JavaScript.
Because truffle has no way of detecting which contracts you'll need to interact with within
your tests, you'll need to ask for these contracts explicitly. You do this by using the
artifacts.require() method. So the first thing that should be done in test files is to
create abstractions for the contracts that you want to test.

Then, the actual tests should be written. Structurally, your tests should remain largely
unchanged from those of mocha. The test files should contain code that mocha will
recognize as an automated test. What makes truffle tests different from mocha is the
contract() function: this function works exactly like describe(), except that it signals
truffle to run all migrations. The contract() function works like this:

Before each contract() function is run, your contracts are redeployed to the
running ethereum node, so the tests within it run with a clean contract state
The contract() function provides a list of accounts made available by your
ethereum node, which you can use to write tests

https://mochajs.org/
http://chaijs.com/
http://chaijs.com/
http://chaijs.com/
http://chaijs.com/
http://chaijs.com/
http://chaijs.com/
http://chaijs.com/
http://chaijs.com/
http://chaijs.com/
http://chaijs.com/
http://chaijs.com/
http://chaijs.com/
http://chaijs.com/
http://chaijs.com/
http://chaijs.com/
http://chaijs.com/
http://chaijs.com/
http://chaijs.com/
http://chaijs.com/
http://chaijs.com/
http://chaijs.com/
http://chaijs.com/
http://chaijs.com/
http://chaijs.com/
http://chaijs.com/
http://chaijs.com/
http://chaijs.com/
http://chaijs.com/
http://chaijs.com/

Building Enterprise Level Smart Contracts

[207]

Since truffle uses mocha under the hood, you can still use describe() to
run normal mocha tests whenever truffle features are unnecessary.

Here is the default test code generated by truffle to test the MetaCoin contract. You will
find this code in the metacoin.js file:

// Specifically request an abstraction for MetaCoin.sol
var MetaCoin = artifacts.require("./MetaCoin.sol");

contract('MetaCoin', function(accounts) {
 it("should put 10000 MetaCoin in the first account", function() {
 return MetaCoin.deployed().then(function(instance) {
 return instance.getBalance.call(accounts[0]);
 }).then(function(balance) {
 assert.equal(balance.valueOf(), 10000, "10000 wasn't in the first
account");
 });
 });
 it("should send coin correctly", function() {
 var meta;

 // Get initial balances of first and second account.
 var account_one = accounts[0];
 var account_two = accounts[1];

 var account_one_starting_balance;
 var account_two_starting_balance;
 var account_one_ending_balance;
 var account_two_ending_balance;

 var amount = 10;

 return MetaCoin.deployed().then(function(instance) {
 meta = instance;
 return meta.getBalance.call(account_one);
 }).then(function(balance) {
 account_one_starting_balance = balance.toNumber();
 return meta.getBalance.call(account_two);
 }).then(function(balance) {
 account_two_starting_balance = balance.toNumber();
 return meta.sendCoin(account_two, amount, {from: account_one});
 }).then(function() {
 return meta.getBalance.call(account_one);
 }).then(function(balance) {
 account_one_ending_balance = balance.toNumber();

Building Enterprise Level Smart Contracts

[208]

 return meta.getBalance.call(account_two);
 }).then(function(balance) {
 account_two_ending_balance = balance.toNumber();

 assert.equal(account_one_ending_balance, account_one_starting_balance
- amount, "Amount wasn't correctly taken from the sender");
 assert.equal(account_two_ending_balance, account_two_starting_balance
+ amount, "Amount wasn't correctly sent to the receiver");
 });
 });
});

In the preceding code, you can see that all the contract's interaction code is written using the
truffle-contract library. The code is self-explanatory.

Finally, truffle gives you access to mocha's configuration so you can change how mocha
behaves. mocha's configuration is placed under a mocha property in the truffle.js file's
exported object. For example, take a look at this:

mocha: {
 useColors: true
}

Writing tests in Solidity
Solidity test code is put in .sol files. Here are the things you need to note about Solidity
tests before writing tests using Solidity:

Solidity tests shouldn't extend from any contract. This makes your tests as
minimal as possible and gives you complete control over the contracts you write.
Truffle provides a default assertion library for you, but you can change this
library at any time to fit your needs.
You should be able to run your Solidity tests against any ethereum client.

To learn how to write tests in Solidity, let's explore the default Solidity test code generated
by truffle. This is the code, and it can be found in the TestMetacoin.sol file:

pragma Solidity ^0.4.2;

import "truffle/Assert.sol";
import "truffle/DeployedAddresses.sol";
import "../contracts/MetaCoin.sol";

contract TestMetacoin {

Building Enterprise Level Smart Contracts

[209]

 function testInitialBalanceUsingDeployedContract() {
 MetaCoin meta = MetaCoin(DeployedAddresses.MetaCoin());

 uint expected = 10000;

 Assert.equal(meta.getBalance(tx.origin), expected, "Owner should have
10000 MetaCoin initially");
 }

 function testInitialBalanceWithNewMetaCoin() {
 MetaCoin meta = new MetaCoin();

 uint expected = 10000;

 Assert.equal(meta.getBalance(tx.origin), expected, "Owner should have
10000 MetaCoin initially");
 }

}

Here is how the preceding code works:

Assertion functions such as Assert.equal() are provided to you by the
truffle/Assert.sol library. This is the default assertion library; however, you
can include your own assertion library as long as the library loosely integrates
with truffle's test runner by triggering the correct assertion events. Assertion
functions fire events, which are caught by truffle, and information is displayed.
This is the architecture of Solidity assertion libraries in truffle. You can find all the
available assertion functions in Assert.sol
(https://github.com/ConsenSys/truffle/blob/beta/lib/testing/Assert.sol)
.
In the import path, truffle/Assert.sol, truffle is the package name. We
will learn more about packages later.
The addresses of your deployed contracts (that is, contracts that were deployed
as part of your migrations) are available through the
truffle/DeployedAddresses.sol library. This is provided by truffle and is
recompiled and relinked before each test suite is run. This library provides
functions for all of your deployed contracts in the form of
DeployedAddresses.<contract name>(). This will return an address that
you can then use to access that contract.

https://github.com/ConsenSys/truffle/blob/beta/lib/testing/Assert.sol

Building Enterprise Level Smart Contracts

[210]

In order to use the deployed contract, you'll have to import the contract code into
your test suite. Notice import "../contracts/MetaCoin.sol"; in the
preceding example. This import is relative to the test contract, which exists in the
./test directory, and it goes outside of the test directory in order to find the
MetaCoin contract. It then uses that contract to cast the address to the MetaCoin
type.
All test contracts must start with Test, using an uppercase T. This distinguishes
this contract from test helpers and project contracts (that is, the contracts under
test), letting the test runner know which contracts represent test suites.
Like test contract names, all test functions must start with test, in lowercase.
Each test function is executed as a single transaction in order of appearance in the
test file (such as your JavaScript tests). Assertion functions provided by
truffle/Assert.sol trigger events that the test runner evaluates to determine
the result of the test. Assertion functions return a Boolean that represents the
outcome of the assertion, which you can use to return from the test early to
prevent execution errors (that is, errors that testrpc will expose).
You are provided with many test hooks, shown in the following example. These
hooks are beforeAll, beforeEach, afterAll, and afterEach, which are the
same hooks provided by mocha in your JavaScript tests. You can use these hooks
to perform setup and teardown actions before and after each test or before and
after each suite is run. Like test functions, each hook is executed as a single
transaction. Note that some complex tests will need to perform a significant
amount of setup that might overflow the gas limit of a single transaction; you can
get around this limitation by creating many hooks with different suffixes, as
shown in the following example:

import "truffle/Assert.sol";

contract TestHooks {
 uint someValue;

 function beforeEach() {
 someValue = 5;
 }

 function beforeEachAgain() {
 someValue += 1;
 }

 function testSomeValueIsSix() {
 uint expected = 6;

 Assert.equal(someValue, expected, "someValue should have been 6");

Building Enterprise Level Smart Contracts

[211]

 }
}

This test contract also shows that your test functions and hook functions all
share the same contract state. You can set up the contract data before the test, use
that data during the test, and reset it afterward in preparation for the next one.
Note that just like your JavaScript tests, your next test function will continue from
the state of the previous test function that ran.

Truffle doesn't provide a direct way to test whether your contract should
and shouldn't throw exception (that is, for contracts that use throw to
signify an expected error). But a hacky solution is there for this, which you
can find at
http://truffleframework.com/tutorials/testing-for-throws-in-Soli

dity-tests.

How to send ether to a test contract
To send ether to your Solidity test contract, it should have a public function that returns
uint, called initialBalance in that contract. This can be written directly as a function or
a public variable. When your test contract is deployed to the network, truffle will send that
amount of ether from your test account to your test contract. Your test contract can then use
that ether to script ether interactions within your contract under test. Note that
initialBalance is optional and not required. For example, take a look at the following
code:

import "truffle/Assert.sol";
import "truffle/DeployedAddresses.sol";
import "../contracts/MyContract.sol";

contract TestContract {
 // Truffle will send the TestContract one Ether after deploying the
contract.
 public uint initialBalance = 1 ether;

 function testInitialBalanceUsingDeployedContract() {
 MyContract myContract = MyContract(DeployedAddresses.MyContract());

 // perform an action which sends value to myContract, then assert.
 myContract.send(...);
 }

 function () {
 // This will NOT be executed when Ether is sent. o/
 }

http://truffleframework.com/tutorials/testing-for-throws-in-solidity-tests
http://truffleframework.com/tutorials/testing-for-throws-in-solidity-tests

Building Enterprise Level Smart Contracts

[212]

}

Truffle sends ether to your test contract in a way that does not execute a
fallback function, so you can still use the fallback function within your
Solidity tests for advanced test cases.

Running tests
To run your test scripts, just run this command:

truffle test

Alternatively, you can specify a path to a specific file you want to run. For example, take a
look at this:

truffle test ./path/to/test/file.js

Package management
A truffle package is a collection of smart contracts and their artifacts. A package can depend
on zero or more packages, that is, you use the package's smart contracts and artifacts. When
using a package within your own project, it is important to note that there are two places
where you will be using the package's contracts and artifacts: within your project's contracts
and within your project's JavaScript code (migrations and tests).

Projects created with truffle have a specific layout by default, which enables them to be
used as packages. The most important directories in a truffle package are the following:

/contracts

/build/contracts (created by truffle)

The first directory is your contracts directory, which includes your raw Solidity contracts.
The second directory is the /build/contracts directory, which holds build artifacts in the
form of .json files.

Truffle supports two kinds of package builds: npm and ethpm packages. You must know
what npm packages are, but let's look at what ethpm packages are. Ethpm is a package
registry for ethereum. You can find all ethpm packages at https://www.ethpm.com/. It
follows the ERC190 (https://github.com/ethereum/EIPs/issues/190) spec for publishing
and consuming smart contract packages.

https://www.ethpm.com/
https://github.com/ethereum/EIPs/issues/190

Building Enterprise Level Smart Contracts

[213]

Package management via NPM
Truffle comes with npm integration by default and is aware of the node_modules directory
in your project, if it exists. This means that you can use and distribute contracts or libraries
via npm, making your code available to others and other's code available to you. You can
also have a package.json file in your project. You can simply install any npm package in
your project and import it in any of the JavaScript files, but it would be called a truffle
package only if it contains the two directories mentioned earlier. Installing an npm package
in a truffle project is the same as installing an npm package in any Node.js app.

Package management via EthPM
When installing EthPM packages, an installed_contracts directory is created if it
doesn't exist. This directory can be treated in a manner similar to the node_modules
directory.

Installing a package from EthPM is nearly as easy as installing a package via NPM. You can
simply run the following command:

truffle install <package name>

You can also install a package at a specific version:

truffle install <package name>@<version>

Like NPM, EthPM versions follow semver. Your project can also define an ethpm.json file,
which is similar to package.json for npm packages. To install all dependencies listed in
the ethpm.json file, run the following:

truffle install

An example ethpm.json file looks like this:

{
 "package_name": "adder",
 "version": "0.0.3",
 "description": "Simple contract to add two numbers",
 "authors": [
 "Tim Coulter <tim.coulter@consensys.net>"
],
 "keywords": [
 "ethereum",
 "addition"
],
 "dependencies": {

Building Enterprise Level Smart Contracts

[214]

 "owned": "^0.0.1"
 },
 "license": "MIT"
}

Creating and publishing an npm package for truffle is the same process as
creating any other npm package. To learn how to create and publish an
ethpm package, visit
http://truffleframework.com/docs/getting_started/packages-ethpm#

publishing-your-own-package. Regardless of whether you are publishing
your package as an npm package or ethpm package, you need to run the
truffle networks --clean command. When this command is run, it
deletes artifacts for all those networks IDs that match only the * wildcard
character in the configuration file. This is done as these addresses will be
invalid for the other projects consuming this package, as these networks
are most likely to be private as they are used for development purpose
only. You shouldn't omit this command unless you know what you are
doing. It will fail to delete any artifacts for private networks listed as a
constant, so you need to delete them manually.

Using contracts of packages within your contracts
To use a package's contracts within your contracts, it can be as simple as Solidity's import
statement. When your import path isn't explicitly relative or absolute, it signifies to truffle
that you're looking for a file from a specific named package. Consider this example using
the example-truffle-library (h t t p s ://g i t h u b . c o m /C o n s e n S y s /e x a m p l e - t r u f f l e - l i

b r a r y):

import "example-truffle-library/contracts/SimpleNameRegistry.sol";

Since the path didn't start with ./, truffle knows to look in your project's node_modules or
installed_contracts directory for the example-truffle-library folder. From there,
it resolves the path to provide you with the contract you requested.

http://truffleframework.com/docs/getting_started/packages-ethpm#publishing-your-own-package
http://truffleframework.com/docs/getting_started/packages-ethpm#publishing-your-own-package
https://github.com/ConsenSys/example-truffle-library
https://github.com/ConsenSys/example-truffle-library
https://github.com/ConsenSys/example-truffle-library
https://github.com/ConsenSys/example-truffle-library
https://github.com/ConsenSys/example-truffle-library
https://github.com/ConsenSys/example-truffle-library
https://github.com/ConsenSys/example-truffle-library
https://github.com/ConsenSys/example-truffle-library
https://github.com/ConsenSys/example-truffle-library
https://github.com/ConsenSys/example-truffle-library
https://github.com/ConsenSys/example-truffle-library
https://github.com/ConsenSys/example-truffle-library
https://github.com/ConsenSys/example-truffle-library
https://github.com/ConsenSys/example-truffle-library
https://github.com/ConsenSys/example-truffle-library
https://github.com/ConsenSys/example-truffle-library
https://github.com/ConsenSys/example-truffle-library
https://github.com/ConsenSys/example-truffle-library
https://github.com/ConsenSys/example-truffle-library
https://github.com/ConsenSys/example-truffle-library
https://github.com/ConsenSys/example-truffle-library
https://github.com/ConsenSys/example-truffle-library
https://github.com/ConsenSys/example-truffle-library
https://github.com/ConsenSys/example-truffle-library
https://github.com/ConsenSys/example-truffle-library
https://github.com/ConsenSys/example-truffle-library
https://github.com/ConsenSys/example-truffle-library
https://github.com/ConsenSys/example-truffle-library
https://github.com/ConsenSys/example-truffle-library
https://github.com/ConsenSys/example-truffle-library
https://github.com/ConsenSys/example-truffle-library
https://github.com/ConsenSys/example-truffle-library
https://github.com/ConsenSys/example-truffle-library
https://github.com/ConsenSys/example-truffle-library
https://github.com/ConsenSys/example-truffle-library
https://github.com/ConsenSys/example-truffle-library
https://github.com/ConsenSys/example-truffle-library
https://github.com/ConsenSys/example-truffle-library
https://github.com/ConsenSys/example-truffle-library
https://github.com/ConsenSys/example-truffle-library
https://github.com/ConsenSys/example-truffle-library
https://github.com/ConsenSys/example-truffle-library
https://github.com/ConsenSys/example-truffle-library
https://github.com/ConsenSys/example-truffle-library
https://github.com/ConsenSys/example-truffle-library
https://github.com/ConsenSys/example-truffle-library
https://github.com/ConsenSys/example-truffle-library
https://github.com/ConsenSys/example-truffle-library
https://github.com/ConsenSys/example-truffle-library
https://github.com/ConsenSys/example-truffle-library
https://github.com/ConsenSys/example-truffle-library
https://github.com/ConsenSys/example-truffle-library
https://github.com/ConsenSys/example-truffle-library
https://github.com/ConsenSys/example-truffle-library
https://github.com/ConsenSys/example-truffle-library
https://github.com/ConsenSys/example-truffle-library
https://github.com/ConsenSys/example-truffle-library
https://github.com/ConsenSys/example-truffle-library
https://github.com/ConsenSys/example-truffle-library
https://github.com/ConsenSys/example-truffle-library
https://github.com/ConsenSys/example-truffle-library
https://github.com/ConsenSys/example-truffle-library
https://github.com/ConsenSys/example-truffle-library
https://github.com/ConsenSys/example-truffle-library
https://github.com/ConsenSys/example-truffle-library
https://github.com/ConsenSys/example-truffle-library
https://github.com/ConsenSys/example-truffle-library
https://github.com/ConsenSys/example-truffle-library
https://github.com/ConsenSys/example-truffle-library
https://github.com/ConsenSys/example-truffle-library
https://github.com/ConsenSys/example-truffle-library
https://github.com/ConsenSys/example-truffle-library
https://github.com/ConsenSys/example-truffle-library
https://github.com/ConsenSys/example-truffle-library
https://github.com/ConsenSys/example-truffle-library
https://github.com/ConsenSys/example-truffle-library
https://github.com/ConsenSys/example-truffle-library
https://github.com/ConsenSys/example-truffle-library
https://github.com/ConsenSys/example-truffle-library
https://github.com/ConsenSys/example-truffle-library
https://github.com/ConsenSys/example-truffle-library
https://github.com/ConsenSys/example-truffle-library
https://github.com/ConsenSys/example-truffle-library
https://github.com/ConsenSys/example-truffle-library
https://github.com/ConsenSys/example-truffle-library
https://github.com/ConsenSys/example-truffle-library
https://github.com/ConsenSys/example-truffle-library
https://github.com/ConsenSys/example-truffle-library
https://github.com/ConsenSys/example-truffle-library
https://github.com/ConsenSys/example-truffle-library
https://github.com/ConsenSys/example-truffle-library
https://github.com/ConsenSys/example-truffle-library
https://github.com/ConsenSys/example-truffle-library

Building Enterprise Level Smart Contracts

[215]

Using artifacts of packages within your JavaScript code
To interact with a package's artifacts within JavaScript code, you simply need to require
that package's .json files and then use truffle-contract to turn them into usable
abstractions:

var contract = require("truffle-contract");
var data = require("example-truffle-
library/build/contracts/SimpleNameRegistry.json");
var SimpleNameRegistry = contract(data);

Accessing a package's contracts deployed addresses in
Solidity
Sometimes, you may want your contracts to interact with the package's previously
deployed contracts. Since the deployed addresses exist within the package's .json files,
Solidity code cannot directly read contents of these files. So, the flow of making Solidity
code access the addresses in .json files is by defining functions in Solidity code to set
dependent contract addresses, and after the contract is deployed, call those functions using
JavaScript to set the dependent contract addresses.

So you can define your contract code like this:

import "example-truffle-library/contracts/SimpleNameRegistry.sol";

contract MyContract {
 SimpleNameRegistry registry;
 address public owner;

 function MyContract {
 owner = msg.sender;
 }

 // Simple example that uses the deployed registry from the package.
 function getModule(bytes32 name) returns (address) {
 return registry.names(name);
 }

 // Set the registry if you're the owner.
 function setRegistry(address addr) {
 if (msg.sender != owner) throw;

 registry = SimpleNameRegistry(addr);
 }
}

Building Enterprise Level Smart Contracts

[216]

This is what your migration should look like:

var SimpleNameRegistry = artifacts.require("example-truffle-
library/contracts/SimpleNameRegistry.sol");

module.exports = function(deployer) {
 // Deploy our contract, then set the address of the registry.
 deployer.deploy(MyContract).then(function() {
 return MyContract.deployed();
 }).then(function(deployed) {
 return deployed.setRegistry(SimpleNameRegistry.address);
 });
};

Using truffle's console
Sometimes, it's nice to work with your contracts interactively for testing and debugging
purposes or to execute transactions by hand. Truffle provides you with an easy way to do
this via an interactive console, with your contracts available and ready to use.

To open the console, run this command:

truffle console

The console connects to an ethereum node based on your project configuration. The
preceding command also takes a --network option to specify a specific node to connect to.

Here are the features of the console:

You can run the command in the console. For instance, you can type migrate --
reset within the console, and it will be interpreted the same as if you ran
truffle migrate --reset from outside the console.
All of your compiled contracts are available and ready for use.
After each command (such as migrate --reset), your contracts are re-
provisioned, so you can start using the newly assigned addresses and binaries
immediately.
The web3 object is made available and is set to connect to your ethereum node.
All commands that return a promise will automatically be resolved and the result
printed, removing the need to use .then() for simple commands. For example,
you can write code like this:
MyContract.at("0xabcd...").getValue.call();

Building Enterprise Level Smart Contracts

[217]

Running external scripts in truffle's context
Often, you may want to run external scripts that interact with your contracts. Truffle
provides an easy way to do this, bootstrapping your contracts based on your desired
network and connecting to your ethereum node automatically as per your project
configuration.

To run an external script, run this command:

truffle exec <path/to/file.js>

In order for external scripts to be run correctly, truffle expects them to export a function that
takes a single parameter as a callback. You can do anything you'd like within this script as
long as the callback is called when the script finishes. The callback accepts an error as its
first and only parameter. If an error is provided, execution will halt and the process will
return a nonzero exit code.

This is the structure external scripts must follow:

module.exports = function(callback) {
 // perform actions
 callback();
}

Truffle's build pipeline
Now that you know how to compile, deploy, and test smart contracts using truffle, it's time
to build a client for our altcoin. Before we get into how to build a client using truffle, you
need to know that it doesn't allow us to sign transactions using accounts stored outside of
the ethereum node; that is, it doesn't have anything similar to sendRawTransaction and
the reasons are the same as those for truffle-contract.

Building a client using truffle means first integrating truffle's artifacts in your client source
code and then preparing the client's source code for deployment.

To build a client, you need to run this command:

truffle build

When this command is run, truffle will check how to build the client by inspecting the
build property in the project's configuration file.

Building Enterprise Level Smart Contracts

[218]

Running an external command
A command-line tool can be used to build a client. When the build property is a string,
truffle assumes that we want to run a command to build the client, so it runs the string as a
command. The command is given ample environment variables with which to integrate
with truffle.

You can make truffle run a command-line tool to build the client using similar
configuration code:

module.exports = {
 // This will run the `webpack` command on each build.
 //
 // The following environment variables will be set when running the
command:
 // WORKING_DIRECTORY: root location of the project
 // BUILD_DESTINATION_DIRECTORY: expected destination of built assets
 // BUILD_CONTRACTS_DIRECTORY: root location of your build contract files
(.sol.js)
 //
 build: "webpack"
}

Running a custom function
A JavaScript function can be used to build a client. When the build property is a function,
truffle will run that function whenever we want to build the client. The function is given a
lot of information about the project with which to integrate with truffle.

You can make truffle run a function to build the client using similar configuration code:

module.exports = {
 build: function(options, callback) {
 // Do something when a build is required. `options`
contains these values:
 //
 // working_directory: root location of the project
 // contracts_directory: root directory of .sol files
 // destination_directory: directory where truffle expects the built
assets (important for `truffle serve`)
 }
}

Building Enterprise Level Smart Contracts

[219]

You could also create an object, which contains a build method like the
one here. This is great for those who want to publish a package to build a
client.

Truffle's default builder
Truffle provides the truffle-default-builder npm package, which is termed the
default builder for truffle. This builder exports an object, which has a build method, which
works exactly like the previously mentioned method.

The default builder can be used to build a web client for your DApp, whose server only
serves static files, and all the functionality is on the frontend.

Before we get further into how to use the default builder, first install it using this command:

npm install truffle-default-builder --save

Now change your configuration file to this:

var DefaultBuilder = require("truffle-default-builder");

module.exports = {
 networks: {
 development: {
 host: "localhost",
 port: 8545,
 network_id: "10"
 },
 live: {
 host: "localhost",
 port: 8545,
 network_id: "1"
 }
 },
 build: new DefaultBuilder({
 "index.html": "index.html",
 "app.js": [
 "javascripts/index.js"
],
 "bootstrap.min.css": "stylesheets/bootstrap.min.css"
 })
};

Building Enterprise Level Smart Contracts

[220]

The default builder gives you complete control over how you want to organize the files and
folders of your client.

This configuration describes targets (left-hand side) with files, folders, and arrays of files
that make up the targets contents (right-hand side). Each target will be produced by
processing the files on the right-hand side based on their file extension, concatenating the
results together, and then saving the resultant file (the target) into the build destination.
Here, a string is specified on the right-hand side instead of an array, and that file will be
processed, if needed, and then copied over directly. If the string ends in a "/", it will be
interpreted as a directory and the directory will be copied over without further processing.
All paths specified on the right-hand side are relative to the app/ directory.

You can change this configuration and directory structure at any time. You aren't required
to have a javascripts and stylesheets directory, for example, but make sure you edit
your configuration accordingly.

If you want the default builder to integrate truffle on the frontend of your
web application, make sure you have a build target called app.js, which
the default builder can append code to. It will not integrate truffle with
any other filename.

Here are the features of the default builder:

Automatically imports your compiled contract artifacts, deployed contract
information, and ethereum node configuration into the client source code
Includes recommended dependencies, including web3 and truffle-contract
Compiles ES6 and JSX files
Compiles SASS files
Minifies asset files

You can use the truffle watch command, which watches for changes in
the contracts directory, the app directory, and the configuration file.
When there's a change, it recompiles the contracts and generates new
artifact files and then rebuilds the client. But it doesn't run migrations and
tests.

Building Enterprise Level Smart Contracts

[221]

Building a client
Now let's write a client for our DApp and build it using truffle's default builder. First of all,
create files and directories based on the preceding configuration we set: create an app
directory and inside it, create an index.html file and two directories called javascripts
and styelsheets. Inside the javascripts directory, create a file called index.js and in
the stylesheets directory, download and place the CSS file of Bootstrap 4. You can find it
at
https://v4-alpha.getbootstrap.com/getting-started/download/#bootstrap-css-and-j

s.

In the index.html file, place this code:

<!doctype html>
<html>
 <head>
 <link rel="stylesheet" type="text/css" href="bootstrap.min.css">
 </head>
 <body>
 <div class="container">
 <div class="row">
 <div class="col-md-6">

 <h2>Send Metacoins</h2>
 <hr>
 <form id="sendForm">
 <div class="form-group">
 <label for="fromAddress">Select Account Address</label>
 <select class="form-control" id="fromAddress">
 </select>
 </div>
 <div class="form-group">
 <label for="amount">How much metacoin do you want to send?
 </label>
 <input type="text" class="form-control" id="amount">
 </div>
 <div class="form-group">
 <label for="toAddress">Enter the address to which you want to
 send matacoins</label>
 <input type="text" class="form-control" id="toAddress"
 placeholder="Prefixed with 0x">
 </div>
 <button type="submit" class="btn btn-primary">Submit</button>
 </form>
 </div>
 <div class="col-md-6">

https://v4-alpha.getbootstrap.com/getting-started/download/#bootstrap-css-and-js
https://v4-alpha.getbootstrap.com/getting-started/download/#bootstrap-css-and-js

Building Enterprise Level Smart Contracts

[222]

 <h2>Find Balance</h2>
 <hr>
 <form id="findBalanceForm">
 <div class="form-group">
 <label for="address">Select Account Address</label>
 <select class="form-control" id="address">
 </select>
 </div>
 <button type="submit" class="btn btn-primary">Check
 Balance</button>
 </form>
 </div>
 </div>
 </div>
 <script type="text/javascript" src="/app.js"></script>
 </body>
</html>

<!doctype html>
 <html>
 <head>
 <link rel="stylesheet" type="text/css" href="bootstrap.min.css">
 </head>
 <body>
 <div class="container">
 <div class="row">
 <div class="col-md-6">

 <h2>Send Metacoins</h2>
 <hr>
 <form id="sendForm">
 <div class="form-group">
 <label for="fromAddress">Select Account
Address</label>
 <select class="form-control" id="fromAddress">
 </select>
 </div>
 <div class="form-group">
 <label for="amount">How much metacoin you want
to send?</label>
 <input type="text" class="form-control"
id="amount">
 </div>
 <div class="form-group">
 <label for="toAddress">Enter the address to
which you want to send matacoins</label>
 <input type="text" class="form-control"

Building Enterprise Level Smart Contracts

[223]

id="toAddress" placeholder="Prefixed with 0x">
 </div>
 <button type="submit" class="btn btn-
primary">Submit</button>
 </form>
 </div>
 <div class="col-md-6">

 <h2>Find Balance</h2>
 <hr>
 <form id="findBalanceForm">
 <div class="form-group">
 <label for="address">Select Account
Address</label>
 <select class="form-control" id="address">
 </select>
 </div>
 <button type="submit" class="btn btn-
primary">Check Balance</button>
 </form>
 </div>
 </div>
 </div>
 <script type="text/javascript" src="/app.js"></script>
 </body>
 </html>

In the preceding code, we are loading the bootstrap.min.css and app.js files. We have
two forms: one is to send metacoins to a different account and the other one is to check the
metacoins balance of an account. In the first form, the user has to select an account and then
enter the amount of metacoin to send and the address that it wants to send to. And in the
second form, the user simply has to select the address whose metacoin balance it wants to
check.

In the index.js file, place this code:

window.addEventListener("load", function(){
 var accounts = web3.eth.accounts;

 var html = "";

 for(var count = 0; count < accounts.length; count++)
 {
 html = html + "<option>" + accounts[count] + "</option>";
 }

 document.getElementById("fromAddress").innerHTML = html;

Building Enterprise Level Smart Contracts

[224]

 document.getElementById("address").innerHTML = html;

 MetaCoin.detectNetwork();
})

document.getElementById("sendForm").addEventListener("submit", function(e){
 e.preventDefault();

 MetaCoin.deployed().then(function(instance){
 return
instance.sendCoin(document.getElementById("toAddress").value,
document.getElementById("amount").value, {
 from:
document.getElementById("fromAddress").options[document.getElementById("fro
mAddress").selectedIndex].value
 });
 }).then(function(result){
 alert("Transaction mined successfully. Txn Hash: " + result.tx);
 }).catch(function(e){
 alert("An error occured");
 })
})

document.getElementById("findBalanceForm").addEventListener("submit",
function(e){
 e.preventDefault();

 MetaCoin.deployed().then(function(instance){
 return
instance.getBalance.call(document.getElementById("address").value);
 }).then(function(result){
 console.log(result);
 alert("Balance is: " + result.toString() + " metacoins");
 }).catch(function(e){
 alert("An error occured");
 })
})

Here is how the code works:

The truffle-default-builder makes artifacts objects available under the1.
__contracts__ global object.
It also makes available contract abstractions for all the contracts available as2.
global variables with the variable name the same as the contract name.

Building Enterprise Level Smart Contracts

[225]

It also provides the web3 object by already setting the provider. It also sets the3.
provider for the contract abstractions. It makes the web3 object connect to the
network with the name development and if it doesn't exist, then the default
value is http://localhost:8545.
In the preceding code, at first, we wait for the page to load, and once loaded, we4.
retrieve the list of accounts in the connected node and display them in both the
forms. And we call the detectNetwork() method of the MetaCoin abstraction
as well.

Then, we have submit event handlers for both the forms. They both do what5.
they are supposed to do and display the result in a popup.
When the first form is submitted, we get the MetaCoin contract's deployed6.
instance and call the sendCoin method with the correct arguments.
When the second form is submitted, we retrieve the balance of the selected7.
account by calling the getBalance method in the EVM instead of broadcasting a
transaction.

Now go ahead and run the truffle build command, and you will notice that truffle will
create index.html, app.js, and bootstrap.min.css files in the build directory and put
the client's final deployment code in them.

Truffle's server
Truffle comes with an in-built web server. This web server simply serves the files in the
build directory with a proper MIME type set. Apart from this, it's not configured to do
anything else.

To run the web server, run this command:

truffle serve

The server runs on port number 8080 by default. But you can use the -p option to specify a
different port number.

Similar to truffle watch, this web server also watches for changes in the contracts
directory, the app directory, and the configuration file. When there's a change, it recompiles
the contracts and generates new artifacts files and then rebuilds the client. But it doesn't run
migrations and tests.

Building Enterprise Level Smart Contracts

[226]

As the truffle-default-builder places the final deployable code in the build directory, you
can simply run truffle serve to serve the files via the Web.

Let's test our web client. Visit http://localhost:8080, and you will see this screenshot:

The account addresses in the selected boxes will differ for you. Now at the time of
deploying the contract, the contract assigns all the metacoins to the address that deploys the
contract; so here, the first account will have a balance of 10,000 metacoins. Now send five
metacoins from the first account to the second account and click on Submit. You will see a
screen similar to what is shown in the following screenshot:

Building Enterprise Level Smart Contracts

[227]

Now check the balance of the second account by selecting the second account in the select
box of the second form and then click on the Check Balance button. You will see a screen
similar to what is shown in the following screenshot:

Summary
In this chapter, we learned in depth how to build DApps and their respective clients using
truffle. We look at how truffle makes it really easy to write, compile, deploy, and test
DApps. We also saw how easy it is to switch between networks in clients using truffle-
contract without touching the source code. Now you are ready to start building
enterprise-level DApps using truffle.

In the next chapter, we will build a decentralized alarm clock app that pays you to wake up
on time using the truffle and ethereum alarm clock DApp.

Just replace the i.e. with a colon ":".

9
Building a Consortium

Blockchain
Consortiums (an association, typically of several participants such as banks, e-commerce
sites, government entities, hospitals, and so on) can use blockchain technology to solve
many problems and make things faster and cheaper. Although they figure out how
blockchain can help them, an Ethereum implementation of blockchain doesn't specifically
fit them for all cases. Although there are other implementations of blockchain (for example,
Hyperledger) that are built specially for consortium, as we learned Ethereum throughout
the book, we will see how we can hack Ethereum to build a consortium blockchain.
Basically, we will be using parity to build a consortium blockchain. Although there are
other alternatives to parity, such as J.P. Morgan's quorum, we will use parity as at the time
of writing this book, it has been in existence for some time, and many enterprises are
already using it, whereas other alternatives are yet to be used by any enterprises. But for
your requirements, parity may not be the best solution; therefore, investigate all the others
too before deciding which one to use.

In this chapter, we'll cover the following topics:

Why is Ethereum unfit for consortium blockchain?
What is parity node and what are its features?
What is the Proof-of-Authority consensus protocol and what types of PoA are
supported by parity?
How does the Aura consensus protocol work?
Downloading and installing parity
Building a consortium blockchain using parity

Building a Consortium Blockchain

[229]

What is a consortium blockchain?
To understand what a consortium blockchain is, or, in other words, what kind of blockchain
implementation consortiums need, let's check out an example. Banks want to build a
blockchain to make money transfers easier, faster, and cheaper. In this case, here are the
things they need:

Speed: They need a blockchain network that can confirm transactions in near-real1.
time. Currently, the Ethereum blockchain network block time is 12 seconds, and
clients usually wait for a couple of minutes before confirming a transaction.
Permissioned: They want the blockchain to be permissioned. Permissioning itself2.
means various different things. For example: permissioning can include taking
permission to join the network, it can include taking permission to to be able
create blocks, it can also be taking permission to be able to send specific
transactions and so on.
Security: PoW isn't secure enough for private networks as there is a limited3.
number of participants; therefore, there isn't enough hash power produced to
make it secure. So, there is a need for a consensus protocol that can keep the
blockchain secure and immutable.
Privacy: Although the network is private, there is still a need for privacy in the4.
network itself. There are two kinds of privacy:
Identity privacy: Identity privacy is the act of making the identity untraceable.5.
The solution we saw earlier to gain identity privacy was to use multiple
Ethereum account addresses. But if multiple Ethereum accounts are used, then
smart contracts will fail ownership validation as there is no way to know whether
all of these accounts actually belong to the same user.
Data privacy: Sometimes, we don't want the data to be visible to all the nodes in6.
the network, but to specific nodes only.

Overall, in this chapter, we will learn how to solve these issues in Ethereum.

What is Proof-of-Authority consensus?
PoA is a consensus mechanism for blockchain in which consensus is achieved by referring
to a list of validators (referred to as authorities when they are linked to physical entities).
Validators are a group of accounts/nodes that are allowed to participate in the consensus;
they validate the transactions and blocks.

Building a Consortium Blockchain

[230]

Unlike PoW or PoS, there is no mining mechanism involved. There are various types of PoA
protocols, and they vary depending on how they actually work. Hyperledger and Ripple
are based on PoA. Hyperledger is based on PBFT, whereas ripple uses an iterative process.

Introduction to parity
Parity is an Ethereum node written from the ground up for correctness/verifiability,
modularization, low footprint, and high performance. It is written in Rust programming
language, a hybrid imperative/OO/functional language with an emphasis on efficiency. It is
professionally developed by Parity Technologies. At the time of writing this book, the latest
version of parity is 1.7.0, and we will be using this version. We will learn as much as
is required to build a consortium blockchain. To learn parity in depth, you can refer to the
official documentation.

It has a lot more features than go-ethereum, such as web3 dapp browser, much more
advanced account management, and so on. But what makes it special is that it supports
Proof-of-Authority (PoA) along with PoW. Parity currently su+-pports Aura and
Tendermint PoA protocols. In future, it may support some more PoA protocols. Currently,
parity recommends the use of Aura instead of Tendermint as Tendermint is still under
development.

Aura is a much better solution for permissioned blockchains than PoW as it has better block
time and provides much better security in private networks.

Understanding how Aura works
Let's see at a high level how Aura works. Aura requires the same list of validators to be
specified in each node. This is a list of account addresses that participate in the consensus. A
node may or may not be a validating node. Even a validating node needs to have this list so
that it can itself reach a consensus.

This list can either be provided as a static list in the genesis file if the list of validators is
going to remain the same forever, or be provided in a smart contract so that it can be
dynamically updated and every node knows about it. In a smart contract, you can configure
various strategies regarding who can add new validators.

Building a Consortium Blockchain

[231]

The block time is configurable in the genesis file. It's up to you to decide the block time. In
private networks, a block time as low as three seconds works well. In Aura, after every
three seconds, one of the validators is selected and this validator is responsible for creating,
verifying, signing, and broadcasting the block. We don't need to understand much about
the actual selection algorithm as it won't impact our dapp development. But this is the
formula to calculate the next validator, (UNIX_TIMESTAMP / BLOCK_TIME %
NUMBER_OF_TOTAL_VALIDATORS). The selection algorithm is smart enough to give equal
chances to everyone When other nodes receive a block, they check whether it's from the
next valid validator or not; and if not, they reject it. Unlike PoW, when a validator creates a
block, it is not rewarded with ether. In Aura, it's up to us to decide whether to generate
empty blocks or not when there are no transactions.

You must be wondering what will happen if the next validator node, due to some reason,
fails to create and broadcast the next block. To understand this, let's take an example:
suppose A is the validator for the next block, which is the fifth block, and B is the validator
for the sixth block. Assume block time is five seconds. If A fails to broadcast a block, then
after five seconds when B's turn arrives, it will broadcast a block. So nothing serious
happens actually. The block timestamp will reveal these details.

You might also be wondering whether there are chances of networks ending up with
multiple different blockchains as it happens in PoW when two miners mine at the same
time. Yes, there are many ways this can happen. Let's take an example and understand one
way in which this can happen and how the network resolves it automatically. Suppose
there are five validators: A, B, C, D, and E. Block time is five seconds. Suppose A is selected
first and it broadcasts a block, but the block doesn't reach D and E due to some reason; so
they will think A didn't broadcast the block. Now suppose the selection algorithm selects B
to generate the next block; then B will generate the next block on top of A's block and
broadcast to all the nodes. D and E will reject it because the previous block hash will not
match. Due to this, D and E will form a different chain, and A, B, and C will form a different
chain. A, B, and C will reject blocks from D and E, and D and E will reject blocks from A, B,
and C. This issue is resolved among the nodes as the blockchain that is with A, B and C is
more accurate than the blockchain with D and E; therefore D and E will replace their
version of blockchain with the blockchain held with A, B, and C. Both these versions of the
blockchain will have different accuracy scores, and the score of the first blockchain will be
more than the second one. When B broadcasts its block, it will also provide the score of its
blockchain, and as its score is higher, D and E will have replaced their blockchain with B's
blockchain. This is how conflicts are resolved. The chain score of blockchain is calculated
using (U128_max * BLOCK_NUMBER_OF_LATEST_BLOCK -
(UNIX_TIMESTAMP_OF_LATEST_BLOCK / BLOCK_TIME)). Chains are scored first by their
length (the more blocks, the better). For chains of equal length, the chain whose last block is
older is chosen.

Building a Consortium Blockchain

[232]

You can learn more about Aura in depth at
https://github.com/paritytech/parity/wiki/Aura.

Getting parity running
Parity requires Rust version 1.16.0 to build. It is recommended to install Rust through
rustup.

Installing rust
If you don't already have rustup, you can install it like this.

Linux
On Linux-based operating systems, run this command:

curl https://sh.rustup.rs -sSf | sh

Parity also requires the gcc, g++, libssl-dev/openssl, libudev-dev, and pkg-config
packages to be installed.

OS X
On OS X, run this command:

curl https://sh.rustup.rs -sSf | sh

Parity also requires clang. Clang comes with Xcode command-line tools or can be installed
with Homebrew.

Windows
Make sure you have Visual Studio 2015 with C++ support installed. Next, download and
run the rustup installer from
https://static.rust-lang.org/rustup/dist/x86_64-pc-windows-msvc/rustup-

init.exe, start "VS2015 x64 Native Tools Command Prompt", and use the following
command to install and set up the msvc toolchain:

rustup default stable-x86_64-pc-windows-msvc

https://github.com/paritytech/parity/wiki/Aura
https://static.rust-lang.org/rustup/dist/x86_64-pc-windows-msvc/rustup-init.exe
https://static.rust-lang.org/rustup/dist/x86_64-pc-windows-msvc/rustup-init.exe

Building a Consortium Blockchain

[233]

Downloading, installing and running parity
Now, once you have rust installed on your operating system, you can run this simple one-
line command to install parity:

cargo install --git https://github.com/paritytech/parity.git parity

To check whether parity is installed or not, run this command:

parity --help

If parity is installed successfully, then you will see a list of sub-commands and options.

Creating a private network
Now it's time to set up our consortium blockchain. We will create two validating nodes
connected to each other using Aura for consensus. We will set up both on the same
computer.

Creating accounts
First, open two shell windows. The first one is for the first validator and the second one is
for the second validator. The first node will contain two accounts and the second node will
contain one account. The second account of first node will be assigned to some initial ether
so that the network will have some ether.

In the first shell, run this command twice:

parity account new -d ./validator0

Both the times it will ask you to enter a password. For now just put the same password for
both accounts.

In the second shell, run this command once only:

parity account new -d ./validator1

Just as before, enter the password.

Building a Consortium Blockchain

[234]

Creating a specification file
Nodes of every network share a common specification file. This file tells the node about the
genesis block, who the validators are, and so on. We will create a smart contract, which will
contain the validators list. There are two types of validator contracts: non-reporting contract
and reporting contract. We have to provide only one.

The difference is that non-reporting contract only returns a list of validators, whereas
reporting contract can take action for benign (benign misbehaviour may be simply not
receiving a block from a designated validator) and malicious misbehavior (malicious
misbehaviour would be releasing two different blocks for the same step).

The non-reporting contract should have at least this interface:

{"constant":true,"inputs":[],"name":"getValidators","outputs":[{"name":"","
type":"address[]"}],"payable":false,"type":"function"}

The getValidators function will be called on every block to determine the current list.
The switching rules are then determined by the contract implementing that method.

A reporting contract should have at least this interface:

[
{"constant":true,"inputs":[],"name":"getValidators","outputs":[{"name":"","
type":"address[]"}],"payable":false,"type":"function"},
{"constant":false,"inputs":[{"name":"validator","type":"address"}],"name":"
reportMalicious","outputs":[],"payable":false,"type":"function"},
{"constant":false,"inputs":[{"name":"validator","type":"address"}],"name":"
reportBenign","outputs":[],"payable":false,"type":"function"}
]

When there is benign or malicious behavior, the consensus engine calls the reportBenign
and reportMalicious functions respectively.

Let's create a reporting contract. Here is a basic example:

contract ReportingContract {
 address[] public validators =
[0x831647ec69be4ca44ea4bd1b9909debfbaaef55c,
0x12a6bda0d5f58538167b2efce5519e316863f9fd];
 mapping(address => uint) indices;
 address public disliked;

 function ReportingContract() {
 for (uint i = 0; i < validators.length; i++) {
 indices[validators[i]] = i;
 }

Building a Consortium Blockchain

[235]

 }

 // Called on every block to update node validator list.
 function getValidators() constant returns (address[]) {
 return validators;
 }

 // Expand the list of validators.
 function addValidator(address validator) {
 validators.push(validator);
 }

 // Remove a validator from the list.
 function reportMalicious(address validator) {
 validators[indices[validator]] = validators[validators.length-1];
 delete indices[validator];
 delete validators[validators.length-1];
 validators.length--;
 }

 function reportBenign(address validator) {
 disliked = validator;
 }
}

This code is self-explanatory. Make sure that in the validators array replaces the addresses
with the first address of validator 1 and validator 2 nodes as we will be using those
addresses for validation. Now compile the preceding contract using whatever you feel
comfortable with.

Now let's create the specification file. Create a file named spec.json, and place this code in
it:

{
 "name": "ethereum",
 "engine": {
 "authorityRound": {
 "params": {
 "gasLimitBoundDivisor": "0x400",
 "stepDuration": "5",
 "validators" : {
 "contract": "0x0000000000000000000000000000000000000005"
 }
 }
 }
 },
 "params": {

Building a Consortium Blockchain

[236]

 "maximumExtraDataSize": "0x20",
 "minGasLimit": "0x1388",
 "networkID" : "0x2323"
 },
 "genesis": {
 "seal": {
 "authorityRound": {
 "step": "0x0",
 "signature": "0x000
 00
 00000000000000000000000000000000000"
 }
 },
 "difficulty": "0x20000",
 "gasLimit": "0x5B8D80"
 },
 "accounts": {
 "0x0000000000000000000000000000000000000001": { "balance": "1",
"builtin": { "name": "ecrecover", "pricing": { "linear": { "base": 3000,
"word": 0 } } } },
 "0x0000000000000000000000000000000000000002": { "balance": "1",
"builtin": { "name": "sha256", "pricing": { "linear": { "base": 60, "word":
12 } } } },
 "0x0000000000000000000000000000000000000003": { "balance": "1",
"builtin": { "name": "ripemd160", "pricing": { "linear": { "base": 600,
"word": 120 } } } },
 "0x0000000000000000000000000000000000000004": { "balance": "1",
"builtin": { "name": "identity", "pricing": { "linear": { "base": 15,
"word": 3 } } } },
 "0x0000000000000000000000000000000000000005": { "balance": "1",
"constructor" : "0x606060405260406040519081016040528073831647" },
 "0x004ec07d2329997267Ec62b4166639513386F32E": { "balance":
"10000000000000000000000" }
 }
}

Here is how the preceding file works:

The engine property is used to set the consensus protocol and the protocol-
specific parameters. Here, the engine is authorityRound, which is aura.
gasLimitBoundDivisor determines gas limit adjustment and has the usual
ethereum value. In the validators property, we have a contract property,
which is the address of the reporting contract. stepDuration is the block time in
seconds.

Building a Consortium Blockchain

[237]

In the params property, only the network ID is what matters; others are standard
for all chains.
genesis has some standard values for the authorityRound consensus.
accounts is used to list the initial accounts and contracts that exist in the
network. The first four are standard Ethereum built-in contracts; these should be
included to use the Solidity contract writing language. The fifth one is the
reporting contract. Make sure you replace the byte code with your byte code in
the constructor param. The last account is the second account we generated in
the validator 1 shell. It is used to supply ether to the network. Replace this
address with yours.

Before we proceed further, create another file called as node.pwds. In that file, place the
password of the accounts you created. This file will be used by the validators to unlock the
accounts to sign the blocks.

Launching nodes
Now we have all basic requirements ready to launch our validating nodes. In the first shell,
run this command to launch the first validating node:

parity --chain spec.json -d ./validator0 --force-sealing --engine-signer
"0x831647ec69be4ca44ea4bd1b9909debfbaaef55c" --port 30300 --jsonrpc-port
8540 --ui-port 8180 --dapps-port 8080 --ws-port 8546 --jsonrpc-apis
web3,eth,net,personal,parity,parity_set,traces,rpc,parity_accounts --
password "node.pwds"

Here is how the preceding command works:

--chain is used to specify the path of the specification file.
-d is used to specify the data directory.
--force-sealing ensures that blocks are produced even if there are no
transactions.
--engine-signer is used to specify the address using which the node will sign
blocks, that is, the address of the validator. If malicious authorities are possible,
then --force-sealing is advised; this will ensure that the correct chain is the
longest. Make sure you change the address to the one you generated, that is, the
first address generated on this shell.
--password is used to specify the password file.

Building a Consortium Blockchain

[238]

In the second shell, run this command to launch second validating node:

parity --chain spec.json -d ./validator1 --force-sealing --engine-signer
"0x12a6bda0d5f58538167b2efce5519e316863f9fd" --port 30301 --jsonrpc-port
8541 --ui-port 8181 --dapps-port 8081 --ws-port 8547 --jsonrpc-apis
web3,eth,net,personal,parity,parity_set,traces,rpc,parity_accounts --
password "/Users/narayanprusty/Desktop/node.pwds"

Here, make sure you change the address to the one you generated that is, the address
generated on this shell.

Connecting nodes
Now finally, we need to connect both the nodes. Open a new shell window and run this
command to find the URL to connect to the second node:

curl --data '{"jsonrpc":"2.0","method":"parity_enode","params":[],"id":0}'
-H "Content-Type: application/json" -X POST localhost:8541

You will get this sort of output:

{"jsonrpc":"2.0","result":"enode://7bac3c8cf914903904a408ecd71635966331990c
5c9f7c7a291b531d5912ac3b52e8b174994b93cab1bf14118c2f24a16f75c49e83b93e0864e
b099996ec1af9@[::0.0.1.0]:30301","id":0}

Now run this command by replacing the encode URL and IP address in the enode URL to
127.0.0.1:

curl --data
'{"jsonrpc":"2.0","method":"parity_addReservedPeer","params":["enode://7ba.
.."],"id":0}' -H "Content-Type: application/json" -X POST localhost:8540

You should get this output:

{"jsonrpc":"2.0","result":true,"id":0}

Building a Consortium Blockchain

[239]

The nodes should indicate 0/1/25 peers in the console, which means they are connected to
each other. Here is a reference image:

Permissioning and privacy
We saw how parity solves the issues of speed and security. Parity currently doesn't provide
anything specific to permissioning and privacy. Let's see how to achieve this in parity:

Permissioning: A parity network can implement permissioning to decide who1.
can join and who cannot by configuring each node's server to allow connections
from only specific IP addresses. Even if IP addresses aren't blocked, to connect to
a node in the network, a new node will needs an enode address, which we saw
earlier, and that's not guessable. So by default, there is a basic protection. But
there is nothing to enforce this. Every node in the network has to take care about
this at its end. Similar permissioning for who can create blocks and who cannot
can be done through a smart contract. Finally what kind of transactions a node
can send is not configurable at the moment.

Building a Consortium Blockchain

[240]

Identity privacy: There is a technique to achieve identity privacy by still enabling2.
ownership checks. At the time of setting ownership, the owner needs to specify a
public key of an un-deterministic asymmetric cryptography. Whenever it wants
ownership checks to pass, it will provide an encrypted form of common text,
which will be decrypted by the contract and see whether the account is owner or
not. The contract should make sure the same encrypted data is not checked twice.
Data privacy: If you are using blockchain to just store data, you can use3.
symmetric encryption to encrypt data and store and share the key with people
who you want to see the data. But operations on encrypted data is not possible.
And if you need operations on input data and still gain privacy, then the parties
have to set up a different blockchain network completely.

Summary
Overall in this chapter, we learned how to use parity and how aura works and some
techniques to achieve permissioning and privacy in parity. Now you must be confident
enough to at least build a proof-of-concept for a consortium using blockchain. Now you can
go ahead and explore other solutions, such as Hyperledger 1.0 and quorum for building
consortium blockchains. Currently, Ethereum is officially working on making more suitable
for consortiums; therefore, keep a close eye on various blockchain information sources to
learn about anything new that comes in the market.

Index

A
asymmetric cryptography algorithms 107
Aura
 reference link 232
 working 230, 231

B
betting contract
 building 158, 160
BigChainDB 21
BigNumber.js 80
Bitcoin
 about 14
 advantages 15
 legal issues, checking 15
block time 29, 31
blockchain 14
build pipeline, truffle
 about 217
 custom function, running 218
 default builder 219
 external command, running 218

C
centralized apps
 accessing 12
client, for betting contract
 backend, building 162
 building 161
 frontend, building 164, 165, 168, 172
 project structure 161
 testing 173, 175, 176, 177, 178, 179
client, for ownership contract
 backend, building 91, 92, 93
 building 89, 90
 frontend, building 93, 95, 97

 project structure 90
 testing 98, 99, 100, 101
compiler version
 using 129
consensus 26
consortium blockchain
 about 229
 data privacy 229
 identity privacy 229
 permissioned 229
 privacy 229
 security 229
 speed 229
contract abstraction API
 about 190, 193
 contract instances, creating 195, 197
contract deployment platform
 backend, building 132, 133, 134, 138
 building 131, 132
 frontend, building 138, 142
 structure 132
 testing 143, 144
contract deployment, truffle
 about 202
 migration files 202
 migrations, writing 203, 204
contract instance API 197
contracts
 compiling 74, 76
 creating, new operator used 57
 deploying 74, 76
 features 60
 file integrity, proving 73
 file ownership, proving 73
 proof of existence 73
control structures, Solidity 56

[242]

D
Dash
 about 19
 advantages 19
 decentralized governance and budgeting 20
 decentralized service 20, 21
data location 48, 49
data types, Solidity
 about 49
 arrays 50
 conversion, between elementary types 55
 delete operator 54
 enums 53
 mappings 53
 strings 51
 structs 52
 var, using 56
decentralized applications (DApps)
 about 6, 7
 advantages 8
 BigChainDB 21
 Bitcoin 14
 Dash 19
 disadvantages 8
 Ethereum 15
 exploring 13
 Hyperledger project 16
 internal currency 12
 IPFS 16
 Namecoin 18
 OpenBazaar 21
 permissioned DApps 13
 Ripple 22
 user accounts 11
 user identity 9, 10, 11
decentralized autonomous organization (DAO) 9
default builder, truffle
 about 219
 client, building 221, 224
 features 220
directed acyclic graph (DAG) 16
distributed hash table (DHT) 16

E
elliptic curve cryptography (ECC) 25
Elliptic Curve Digital Signature Algorithm (ECDSA)

26

Ether denominations 33
Ether units 72
Ethereum virtual machine (EVM) 33
Ethereum Wallet 40
Ethereum
 about 15, 25
 account, creating 25
 limitations 43
 serenity 43
ethereumjs-testrpc
 exploring 181
 installation 181
 RPC methods 184
 testrpc command-line application 181
 usage 181
 using, as HTTP server 183
 using, as web3 provider 183
ethereumjs-tx library 103, 104, 106
event topics 185, 186
exceptions 58
external function calls 58

F
fallback function 64
features, contracts
 about 60
 fallback function 64
 function modifiers 62
 inheritance 64
 visibility 60
Filecoin 17
forking 32
function modifiers 62

G
gas 34
genesis block 32
geth
 about 36
 accounts, creating 38

[243]

 fast synchronization 39
 installing 36
 installing, on OS X 37
 installing, on Ubuntu 37
 installing, on Windows 37
 JavaScript console 37
 JSON-RPC 37
 mainnet network, connecting to 38
 mining, starting 39
 private network, creating 38
 sub-commands and options 38
globally available variables
 about 71
 address type related variables 72
 block and transaction properties 71
 contract related variables 72

H
hierarchical deterministic wallet 107
hooked-web3-provider library 103, 104, 106
Hyperledger project 16

I
inheritance
 about 64
 abstract contracts 67
 super keyword 66
internal currency, DApps
 about 12
 disadvantages 13
IPFS (InterPlanetary File System)
 about 16, 17
 working 17

K
key derivation functions (KDF)
 about 107, 108
 reference 108
know your customer (KYC) 9

L
ledger 14
libraries
 about 67, 68

 use cases 68
 using for directive 69
LightWallet
 about 108, 109
 HD derivation path 109
limitations, Ethereum
 51% attack 43
 about 43
 Sybil attack 43

M
Mist 41
multiple values
 returning 70

N
Namecoin
 .bit domains 18
 about 18
NoOps protocol 16

O
offline wallets
 about 103
online wallet
 about 102
OpenBazaar 21
Oraclize API
 callback functions 152
 custom gas 151
 getting started process 149
 parsing helpers 153
 proof type, setting 150
 queries, scheduling 151
 queries, sending 150
 query price, obtaining 154
 storage location, setting 150
Oraclize web IDE 155
Oraclize
 about 145
 data source, decrypting 155
 data sources 146
 pricing 149
 proof of authenticity 147
 queries, encrypting 154

[244]

 working 146

P
package management, truffle
 about 212
 package's artifacts, using within JavaScript code

215

 package's contracts deployed addresses,
accessing in Solidity 215

 package's contracts, using within contracts 214
 via EthPM 213
 via NPM 213
parity
 about 230
 data privacy 240
 downloading 233
 executing 232, 233
 identity privacy 240
 installing 233
 permissioning 239
 privacy 239
 private network, creating 233
 rust, installing 232
parsing helpers, Oraclize API 153
PBFT (Practical Byzantine Fault Tolerance) 16
peer discovery 35
permissioned DApps 13
private network
 accounts, creating 233
 creating 233
 nodes, connecting 238, 239
 nodes, launching 237, 238
 specification file, creating 234, 237
Proof-of-Authority (PoA)
 about 230
 Aura, working 230, 231
 consensus 229, 230
public key 106

R
Ripple 22, 23
RPC methods 184
rust, parity
 Linux 232
 OS X 232

 Windows 232
rustup installer
 URL, for downloading 232

S
serenity, Ethereum
 about 43
 casper 44
 payment channels 44
 proof-of-stake 44
 sharding 45
 state channel 44
smart contract
 about 47
 structure 47
solc
 reference link 127
solcjs APIs
 ABI, updating 131
 about 128, 129
 compiler version, using 129
 libraries, linking 130
solcjs
 about 127
 installing 127
Solidity source files
 about 46, 47
 importing 71
Solidity
 control structures 56
 data types 49
 external function calls 58
strings
 working with 156
Swarm 36
symmetric cryptography algorithms
 about 107

T
timestamp 28
transaction nonce
 calculating 125
transaction object
 properties 83
transactions 26

truffle-contract API
 about 190
 contract abstraction API 190, 193
 contract instance API 197
truffle-contract
 about 187
 importing 188
 installing 188
 testing environment, setting up 189
truffle
 about 198
 build pipeline 217
 configuration files 201
 console, using 216
 contracts, compiling 200
 contracts, deploying 202
 external scripts, running 217
 features, of console 216
 initializing 198
 installing 198
 package management 212
 unit testing contracts 205
 web server 225, 227

U
unit testing contracts
 about 205
 ether, sending to 211
 tests, running 212
 tests, writing in JavaScript 206, 208
 tests, writing in Solidity 208, 211
user accounts, DApps 11
user identity, DApps 9, 10, 11

V
visibility
 about 60
 functions 60

W
wallet service
 about 102
 backend, building 111
 building 110
 frontend, building 111, 114, 116, 117
 prerequisites 110
 project structure 110, 111
 testing 119, 120, 121, 122, 123, 124
wallet
 about 102
 offline wallet 103
 online wallet 102
web3.js
 about 77
 API structure 79
 balance of address, retrieving 81, 82
 BigNumber.js 80
 contract events, listening to 88, 89
 contract events, retrieving 87, 89
 contracts, working with 84, 85
 ether, sending 83, 84
 gas price, retrieving 81, 82
 importing 78
 nodes, connecting to 78, 79
 references 78
 transaction details, retrieving 81, 82
 unit conversion 80
Whisper 35

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Customer Feedback
	Table of Contents
	Preface
	Chapter 1: Understanding Decentralized Applications
	What is a DApp?
	Advantages of decentralized applications
	Disadvantages of decentralized applications

	Decentralized autonomous organization
	User identity in DApps
	User accounts in DApps
	Accessing the centralized apps
	Internal currency in DApps
	Disadvantages of internal currency in DApps

	What are permissioned DApps?
	Popular DApps
	Bitcoin
	What is a ledger?
	What is blockchain?
	Is Bitcoin legal?
	Why would someone use Bitcoin?

	Ethereum
	The Hyperledger project
	IPFS
	How does it work?
	Filecoin

	Namecoin
	.bit domains

	Dash
	Decentralized governance and budgeting
	Decentralized service

	BigChainDB
	OpenBazaar
	Ripple

	Summary

	Chapter 2: Understanding How Ethereum Works
	Overview of Ethereum
	Ethereum accounts
	Transactions
	Consensus
	Timestamp
	Nonce
	Block time
	Forking
	Genesis block
	Ether denominations
	Ethereum virtual machine
	Gas
	Peer discovery
	Whisper and Swarm
	Geth
	Installing geth
	OS X
	Ubuntu
	Windows

	JSON-RPC and JavaScript console
	Sub-commands and options
	Connecting to the mainnet network
	Creating a private network

	Creating accounts
	Mining
	Fast synchronization

	Ethereum Wallet
	Mist
	Weaknesses
	Sybil attack
	51% attack

	Serenity
	Payment and state channels
	Proof-of-stake and casper
	Sharding

	Summary

	Chapter 3: Writing Smart Contracts
	Solidity source files
	The structure of a smart contract
	Data location
	What are the different data types?
	Arrays
	Strings
	Structs
	Enums
	Mappings
	The delete operator
	Conversion between elementary types
	Using var

	Control structures
	Creating contracts using the new operator
	Exceptions
	External function calls
	Features of contracts
	Visibility
	Function modifiers
	The fallback function
	Inheritance
	The super keyword
	Abstract contracts

	Libraries
	Using for

	Returning multiple values
	Importing other Solidity source files
	Globally available variables
	Block and transaction properties
	Address type related
	Contract related

	Ether units
	Proof of existence, integrity, and ownership contract
	Compiling and deploying contracts
	Summary

	Chapter 4: Getting Started with web3.js
	Introduction to web3.js
	Importing web3.js
	Connecting to nodes
	The API structure
	BigNumber.js
	Unit conversion
	Retrieving gas price, balance, and transaction details
	Sending ether
	Working with contracts
	Retrieving and listening to contract events

	Building a client for an ownership contract
	The project structure
	Building the backend
	Building the frontend
	Testing the client

	Summary

	Chapter 5: Building a Wallet Service
	Difference between online and offline wallets
	hooked-web3-provider and ethereumjs-tx libraries
	What is a hierarchical deterministic wallet?
	Introduction to key derivation functions
	Introduction to LightWallet
	HD derivation path

	Building a wallet service
	Prerequisites
	Project structure
	Building the backend
	Building the frontend
	Testing

	Summary

	Chapter 6: Building a Smart Contract Deployment Platform
	Calculating a transaction's nonce
	Introducing solcjs
	Installing solcjs
	solcjs APIs
	Using a different compiler version
	Linking libraries
	Updating the ABI

	Building a contract deployment platform
	The project structure
	Building the backend
	Building the frontend
	Testing

	Summary

	Chapter 7: Building a Betting App
	Introduction to Oraclize
	How does it work?
	Data sources
	Proof of authenticity
	Pricing
	Getting started with the Oraclize API
	Setting the proof type and storage location
	Sending queries
	Scheduling queries
	Custom gas
	Callback functions
	Parsing helpers
	Getting the query price

	Encrypting queries
	Decrypting the data source

	Oraclize web IDE

	Working with strings
	Building the betting contract
	Building a client for the betting contract
	Projecting the structure
	Building the backend
	Building the frontend
	Testing the client

	Summary

	Chapter 8: Building Enterprise Level Smart Contracts
	Exploring ethereumjs-testrpc
	Installation and usage
	The testrpc command-line application
	Using ethereumjs-testrpc as a web3 provider or as an HTTP server

	Available RPC methods

	What are event topics?
	Getting started with truffle-contract
	Installing and importing truffle-contract
	Setting up a testing environment
	The truffle-contract API
	The contract abstraction API
	Creating contract instances

	The contract instance API

	Introduction to truffle
	Installing truffle
	Initializing truffle
	Compiling contracts
	Configuration files
	Deploying contracts
	Migration files
	Writing migrations

	Unit testing contracts
	Writing tests in JavaScript
	Writing tests in Solidity
	How to send ether to a test contract

	Running tests

	Package management
	Package management via NPM
	Package management via EthPM
	Using contracts of packages within your contracts
	Using artifacts of packages within your JavaScript code
	Accessing a package's contracts deployed addresses in Solidity

	Using truffle's console
	Running external scripts in truffle's context
	Truffle's build pipeline
	Running an external command
	Running a custom function
	Truffle's default builder
	Building a client

	Truffle's server

	Summary

	Chapter 9: Building a Consortium Blockchain
	What is a consortium blockchain?
	What is Proof-of-Authority consensus?
	Introduction to parity
	Understanding how Aura works
	Getting parity running
	Installing rust
	Linux
	OS X
	Windows

	Downloading, installing and running parity

	Creating a private network
	Creating accounts
	Creating a specification file
	Launching nodes
	Connecting nodes

	Permissioning and privacy

	Summary

	Index

