

Instant OSGi Starter

The essential guide to modular development with OSGi

Johan Edstrom

Jamie Goodyear

 BIRMINGHAM - MUMBAI

Instant OSGi Starter

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: January 2013

Production Reference: 1170113

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84951-992-2

www.packtpub.com

Credits
Authors

Johan Edstrom

Jamie Goodyear

Reviewer

Tomek Lipski

Acquisition Editor

Joanna Finchen

Commissioning Editor

Meeta Rajani

Technical Editors

Ameya Sawant

Vrinda Amberkar

Copy Editor

Alfida Paiva

Project Coordinator

Michelle Quadros

Proofreader

Maria Gould

Graphics

Aditi Gajjar

Production Coordinator

Prachali Bhiwandkar

Cover Work

Prachali Bhiwandkar

Cover Image

Conidon Miranda

About the authors
Johan Edstrom is an open source software evangelist, Apache developer, and a seasoned
architect working with Savoir Technologies. He has created Java architectures for large and
scalable, high transaction monitoring, financial, and open source systems. He has worked as a
development lead, an infrastructure manager, an IT lead, and a programmer. He has also guided
several large companies to succeed in the use of open source software components. Lately, he
has been helping some of the world's largest networking companies and medical startups in
achieving high availability, scalability, and dynamically adapting SOA systems. Johan divides
his time between writing software, mentoring development teams, and teaching people how
to use Apache ServiceMix, Camel, CXF, and ActiveMQ effectively and make them scalable for
enterprise installations.

Johan blogs at http://johan-edstrom.blogspot.com/.

Jamie Goodyear is an Apache developer and computer systems analyst working with Savoir
Technologies. He has designed and critiqued architectures for large organizations worldwide.
He has worked as a systems administrator, a software quality assurance tester, and a senior
software developer. He has attained the committer status on Apache Karaf, ServiceMix, and
Felix, and is a Project Management Committee member for Apache Karaf. Jamie divides his
time between providing high-level reviews of architectures, helping to grow the Apache Karaf
community, and teaching developers about the Apache Way.

Jamie blogs at http://icodebythesea.blogspot.com/.

About the reviewer
Tomek Lipski is a Polyglot programmer, and an open source enthusiast and evangelist.
He has over 16 years of commercial experience in IT and 10 years of working experience in
integration, VAS, and traditional IT areas for the biggest companies in Central Europe.

In 2011, he designed and coordinated an implementation and launch of Aperte Workflow—an
open source BPMS. Aperte Workflow utilizes the OSGi plugin management system to provide
flexible solutions, combining several popular open source Java-based technologies such as
Liferay, Vaadin, and Activiti.

www.packtpub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print book
customer, you are entitled to a discount on the eBook copy. Get in touch with us at service@
packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

packtLib.packtpub.com
Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
 Ê Fully searchable across every book published by Packt

 Ê Copy and paste, print and bookmark content

 Ê On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view nine entirely free books. Simply use your login credentials for immediate access.

Table of Contents
Instant OSGi Starter 1

So, what is OSGi? 3
What kind of things can you do with OSGi? 3
How can you use OSGi within your existing applications? 4

Installation 5
Step 1 – what do I need? 5
Step 2 – downloading an OSGi core 5
Step 3 – starting up an OSGi core directly 7
Step 4 – downloading Apache Karaf 8

What does using Apache Karaf and Maven provide us with? 8
Step 5 – starting Apache Karaf 9
Step 6 – obtaining the BND tool (Maven Bundle plugin) 9
Step 7 – obtaining Blueprint 10
Step 8 – obtaining Pax Exam 11
And that's it!! 11

Quick start – your first OSGi bundles 12
Step 1 – what do I need? 13
Step 2 – analyzing the producer 14
Step 3 – analyzing the consumer 17
Step 4 – testing 18

Top five features you'll want to know about 23
1 – OSGi headers 23

Bundle-SymbolicName 26
Bundle-Version 26
Import-Package 27
Export-Package 28

2 – OSGi life cycle 28
Installed 29
Resolved 29
Starting 29

Table of Contents

[ii]

Active 30
Updating 30
Stopping 30
Uninstalled 30
BundleActivator 31

3 – OSGi core services 32
Service Hooks 33

4 – OSGi Compendium Services 34
Blueprint Container 36
Configuration Admin 37

5 – OSGI and modular patterns 38
Whiteboard pattern 38
Extender pattern 40

People and places you should get to know 42
Official sites 42
Articles and tutorials 42
Community 43
Blogs 43
Twitter 43

Instant OSGi Starter

Welcome to the Instant OSGi Starter. This book has been created especially to
provide you with all the information that you need to set up OSGi. You will learn
the basics, get started with building your first OSGi application, and discover
some tips and tricks for using OSGi.

This book contains the following sections:

So, what is OSGi? – Find out what you can do with it, and what it can bring
to your development infrastructure. OSGi is generally seen as being very
complex, with many moving parts; our goal is to reduce this.

Installation – OSGi brings many runtime benefits, but before we get there
we'll use several tools and technologies to build modular Java applications.
BND tool, Apache Maven, Apache Karaf, Eclipse Virgo, Blueprint, and Pax
Exam will be discussed.

Quick start – your first OSGi bundles – This section will get you started on
programming with OSGi. We'll provide you with an example that includes
creating a bundle with activator, connecting to the service registry, and
constructing service consumers. We'll also provide a brief sample of using
Pax Exam to test the sample system.

Top five features you'll want to know about – OSGi's three-layered design
promotes modularity. However, your application needs to be architected
towards modularity, simplicity, and there-use of common resources. In this
section, we'll learn some of the basic tenets of modular code practices.

People and places you should get to know – There are many communities
on the Internet that are working towards bettering modular programming
and OSGi; it is here that you can find resources as well as help for your
possible OSGi woes. This section provides you with many useful links to
the project communities as well as the ongoing work.

3

Instant OSGi Starter

So, what is OSGi?
In this section you'll find out what OSGi actually is, what you can do with it, and what it can
bring to your development infrastructure. OSGi is a modular runtime for applications requiring
a life cycle, deployment into a running container as well as re-use of services and libraries. OSGi
is often seen as being complex, with many tooling and classloading issues. Our goal is to show
you how to overcome these issues which are often misconceived. If you take the time up front,
building applications is actually quite simple.

The basic function of OSGi is to provide Java developers with a component model that regulates
code identity, versioning, interaction between code, life cycle, and making code requirements
strictly enforceable. This model is encapsulated by its three key aspects; bundles, life cycle,
and services—all within a single OSGi container. See the OSGi home page http://www.osgi.
org/Specifications/HomePage for the full specification. OSGi is a very mature standard; the
original OSGi Service Gateway Specification Release 1.0 was released in May 2000. The key
architectural aspects of OSGi that we will be focusing on is shown in the following diagram:

Key architectural aspects of OSGi

What kind of things can you do with OSGi?
OSGi allows you to create dynamic, live architectures and applications.

Starting with bundles, developers are able to encapsulate functional portions of code into
single deployable units, with explicitly stated imported and exported packages. This allows
for simplified management since the bundle has a clear function and environment. A bundle
is a jar with additional information. This information allows you to control what packages are
imported, exported, as well as which ones are private and/or hidden. In contrast to a regular
classloading environment, you as a developer can control explicitly what you expose, share,
and how it is versioned.

4

Instant OSGi Starter

It also motivates you as a developer to build distinctly identifiable JAR files, small sets of code
that do a few things in a clearly defined manner.

OSGi provides these bundles with a life cycle. Despite OSGi's age, it is still one of the few plugin
solutions that actually implement this correctly, allowing you to load and unload as you need.
Once a bundle is resolved it can be freely started or stopped, updated, or removed remotely via
an API. The framework handles the heavy lifting, ensuring that an installed bundle has all of its
requirements met. The following screenshot shows Apache Karaf which wraps an OSGi core,
providing developers with a simple interface to manage their OSGi applications:

Apache Karaf

Finally, OSGi allows developers to take advantage of micro-services; these are services provided
by one bundle to another in a dynamic fashion. As bundles come and go in the framework, the
wiring between service producers and consumers is managed such that bundles adapt to the
changing environment. This is a very empowering feature indeed, allowing developers to build
nearly organic architectures that evolve after initial deployment at runtime, not to mention a
holy grail of factory patterns for applications that need to grow.

How can you use OSGi within your existing applications?
OSGi is best used with applications designed using modular programming principles; however,
your existing Java-based applications can take advantage of OSGi. When we look closer at
OSGi applications we'll see that very little or no additional code is required to make aspects of
OSGi available to your application. The essential addition is a few extra headers added to Java
Archive manifest files. These headers are used to identify the bundle, its version, its imported
dependencies from the environment, and any exported packages the bundle provides. In fact,
just adding these few OSGi headers to a JAR manifest will create a valid OSGi bundle. To take
advantage of more advanced OSGi features, however, we'll have to introduce some additional
code; luckily the additions will not introduce a heavy burden on developers. Let's continue
onwards and explore how to set up an OSGi environment, then we'll dive into building a
complete OSGi application.

5

Instant OSGi Starter

Installation
In three easy steps, you can install an OSGI framework and get it set up on your system. A bare
OSGi core however can be unwieldy; therefore we'll show you how to install Apache Karaf as
an OSGi environment (steps 4 and 5), as well as how to obtain the BND tool to help make OSGi
bundles (step 6), a blueprint for handing services (step 7), and finally Pax Exam for testing your
applications (step 8). We've chosen to include Apache Karaf instructions, as we believe it to be an
easier environment to be introduced to OSGi, and interact with a running core. You should note
that you may also find success using BND, Apache Ant, BNDTools, and Eclipse IDE; coverage of
all possible OSGi development tool chains is beyond the scope of this book.

Step 1 – what do I need?
Before you install OSGi, you will need to check that you have all of the required elements,
listed as follows:

 Ê Disk space: 20 MB free (minimum). You will require more free space as additional
resources are provisioned into the OSGi container.

 Ê Memory: 128 MB (minimum), 2GB+ (recommended).

 Ê OSGi frameworks are written in Java. Currently, OSGi rev 4.2 implementations
from Apache Felix require a minimum of Java 1.4 to run.

 Ê We'll make use of Apache Maven 2.2.1 for provisioning and building automation.

 Ê For our demos we'll use Apache Karaf 2.2.8 as an OSGi runtime environment.
This will simplify getting introduced to OSGi, as an interactive shell is provided,
and users can easily switch OSGi cores.

Step 2 – downloading an OSGi core
The easiest way to download an OSGi core is as a compressed package from
http://felix.apache.org/site/downloads.cgi.

6

Instant OSGi Starter

We suggest that you download the most current stable build. For our purposes we'll focus on
Apache Felix. After downloading and unpacking the archive, you will be left with a directory
called felix-framework-4.0.2, containing a number of files and folders. Among these
there will be a bin folder, which contains the Felix OSGi core JAR file (org.apache.felix.
main.distribution-4.0.2.tar.gz). The following screenshot shows the Apache Felix
download page:

Alternatively, you can also get an OSGi core as a compressed package from http://download.
eclipse.org/equinox. The following screenshot shows the Eclipse Equinox download page:

7

Instant OSGi Starter

Step 3 – starting up an OSGi core directly
Starting the OSGi framework is as simple as executing the following command:

$java –jar bin/felix.jar

Apache Felix Gogo shell

This will start the Apache Felix Gogo shell, a shell for interacting with the OSGi environment.
Type help to see a list of available commands. To exit the shell, press Ctrl + C.

8

Instant OSGi Starter

Step 4 – downloading Apache Karaf
Using a bare OSGi framework can be an unwieldy experience for a first time OSGi developer.
As such, we encourage new users to try an OSGi environment such as Apache Karaf or Eclipse
Virgo. Apache Karaf, by default, uses Apache Felix as it is an OSGi framework while Eclipse
Virgo uses Eclipse Equinox. Both runtime containers provide an enhanced experience when
working with OSGi environments. For more information on Eclipse Equinox please visit
http://www.eclipse.org/equinox/.

What does using Apache Karaf and Maven provide us with?
Apache Karaf is a full OSGi environment, which provides an enriched out-of-the-box experience
to users and developers alike. Apache Maven provides a provisioning mechanism that simplifies
the process of obtaining and configuring dependencies required for your OSGi projects. A
few highlights of using Apache Karaf include: Hot Deployment of OSGi bundles, Dynamic
Configuration via OSGi's ConfigurationAdmin service, a centralized logging system, built-in
provisioning mechanisms to simplify gathering resources, native OS integration, an extensible
shell console, remote access, security framework, and OSGi instance management, among
other great features!

Apache Karaf Download Page

9

Instant OSGi Starter

Step 5 – starting Apache Karaf
Starting Apache Karaf is as simple as executing the Karaf start script in the bin folder of your
Karaf distribution. In our opinion, Apache Karaf's shell is easier to use than diving straight into
writing a similar infrastructure for deployment using a bare OSGi runtime. You get a tab for
completion of commands, a greatly expanded repertoire of commands and tooling that will
help you develop, monitor, and deploy your projects. Note here that Apache Karaf can be
installed as a system service, allowing the OSGi container to be started and stopped as any
other service (See Apache Karaf documentation for details).

Change the directory to Karaf's bin folder and execute the Karaf script to start the environment
as follows:

$karaf[.bat]

Apache Karaf interactive shell

Step 6 – obtaining the BND tool (Maven Bundle plugin)
Building OSGi bundles is a relatively straightforward operation consisting of adding OSGi
headers to your Java Archive's Manifest file. Our recommendation, however, is to use tools to
handle generating the file entries. The easiest way to do this is to use the Maven Bundle plugin.

10

Instant OSGi Starter

Acquiring the plugin can be accomplished by adding the following to your plugin repositories
section of your Maven project:

<dependency>
 <groupId>org.apache.felix</groupId>
 <artifactId>maven-bundle-plugin</artifactId>
 <version>${felix.plugin.version}</version>
 <!-- <scope>provided|compile|test</scope> -->
</dependency>

Note that Maven properties are accessed using ${property.name}, and they are defined
in a property element as <properties><property.name></property.name>
</properties>.

Maven provides several scopes; these are optional. For container providing dependencies
you want to use the scope provided. Other commonly used scopes are compile and test.

Once you've added the plugin dependency you can invoke the plugin by configuring its
execution. We'll explore the BND tool's use in the sections that follow.

Step 7 – obtaining Blueprint
Blueprint is a dependency injection framework for OSGi, its job is to handle the wiring of
JavaBeans, and instantiation and life cycle of an application. Blueprint also helps with the
dynamic nature of OSGi where services can come and go at any time. Blueprint is expressed
as an XML file that defines and describes how the various components are assembled together,
instantiated, and wired together to build an executing module.

In our demo code, Blueprint will be expressed as a top-level element:

<?xml version="1.0" encoding="UTF-8"?>
<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0">
</blueprint>

The namespace indicates that the document conforms to Blueprint's Version 1.0.0, the schema
of which can be viewed at http://www.osgi.org/xmlns/blueprint/v1.0.0/blueprint.xsd.

11

Instant OSGi Starter

Step 8 – obtaining Pax Exam
In a container, testing your OSGi applications is easy—just grab Pax Exam! This tool allows you
to launch an OSGi framework, build bundles as defined in your test cases, and inject them into
the container. Multiple testing strategies are available, allowing you to thoroughly validate
your application.

To pick up Pax Exam for your testing, add the following dependency to your Maven project's
object model file:

<dependency>
 <groupId>org.ops4j.pax.exam</groupId>
 <artifactId>pax-exam</artifactId>
 <version>${pax.exam.version}</version>
</dependency>

We'll explore using Pax Exam in the sections that follow.

And that's it!!
By this point, you should have a working installation of OSGI (preferably Apache Karaf) and
you're free to play around and discover more about it.

12

Instant OSGi Starter

Quick start – your first OSGi bundles
OSGi bundles are the cornerstones of a modular OSGi application. In this section we'll guide
you through building your first example application. This application consists of a set of Apache
Maven modules that'll generate, compile, and test your application code. The whole set of
modules is prefabricated for your convenience so that you can spend time on analyzing and
modifying the project to suit your specific needs.

All of the source code for the examples is located at GitHub, a free git hosting provider. The
following screenshot shows the OSGi Starter GitHub project page. To build the sources you'll
need git to integrate and download the source (you can download the sources as a ZIP file as
well from https://github.com/seijoed/osgi-starter/zipball/master), and Apache
Maven to actually compile the projects.

13

Instant OSGi Starter

To obtain a copy of the code you may perform a git clone of the project.

The projects utilize Apache Maven and the Apache Felix plugins; this will provide us with quick
and easy tooling integration, a single build command, as well as integrated testing of all of
the projects.

Start by navigating to the GitHub URL containing the demonstration code (https://github.
com/seijoed/osgi-starter), and then clone the sources (https://github.com/seijoed/
osgi-starter.git) to a local directory. Make sure that you have Apache Maven set up correctly
and on the PATH of your shell or command-line window.

Step 1 – what do I need?
For the OSGi tutorial you'll need all of the components downloaded in the previous section
as well as Apache Maven and a Java JDK. Once you have downloaded the project you'll have
a structure consisting of a consumer, producer, itest, and parent project.

The parent project is used to allow for building properties as well as Apache Maven plugin
inheritance; the itests contain the integration tests for the projects. This allows you to have
a continuous integration cycle while writing your modules. It also prevents the necessity of
needing to have a complete OSGi container running at all times during the development cycle.

To build the project invoke the following command:

%> mvn install

14

Instant OSGi Starter

Each module will in turn be compiled with artifacts placed into your local Maven repository.
Note that during the build you will observe unit tests being performed and reported upon;
more on this will be discussed shortly. The following screenshot shows a successful build of
the application:

Step 2 – analyzing the producer
The producer module contains a few key components, one of them being the Maven bundle
plugin (illustrated in the following screenshot) that exports the packages containing the
interfaces and hides the implementation of exported API components. This allows for a
complete separation of concerns.

15

Instant OSGi Starter

The plugin will build the META-INF/MANIFEST.MF file for us (thereby saving us from having to
manually populate the bundle headers that make the produced JAR an OSGi bundle), exporting
all classes in the package com.packt.osgi.starter.producer while hiding everything
in the impl package. We do this in order to hide from the unnecessary framework packages,
otherwise we'd have to import what we are exporting. The impl package also contains
Bundle-Activator. This activator is going to take part in the OSGi life cycle, implementing
org.osgi.framework.BundleActivator that allows us to mark a class as executable by
the OSGi framework. When the bundle transitions from resolution and has satisfied imports and
exports as per the MANIFEST.MF file this class will be called from the framework and activated.

This file tells the OSGi container all it needs to know about the JAR; it specifies starting
parameters, imports, what we have asked to export, and symbolic information containing
build tool, builder, and versioning information. The following screenshot shows the
BundleActivator interface for the producer bundle:

16

Instant OSGi Starter

The Service registration for this bundle is one single line. Utilizing org.osgi.framework.
BundleContext (the bundle's execution context) we register a service for our interface. It
allows the bundle to interact with the environment interface. The context gives you access to
the OSGi service registry as well as resolution of other bundles if so desired. There are several
other interfaces besides BundleActivator that you can implement to get event, logging,
container, and bundle information.

Apache Karaf command

Look through some of the APIs for org.osgi.framework.
BundleContext and you'll see what you can do with a running bundle!

To quickly install and start the producer bundle in Karaf, issue the
osgi:install command (bundle:install –s on Karaf 3.x). The
short hand install –s tells Karaf to resolve and start the bundle.
Note that the same command will work on Linux, Unix, or Windows (no
additional configuration required) as follows:

karaf@root> install –s mvn:com.packt.osgi.
starter/1.0.0/producer

After the bundle has been deployed to Apache Karaf it will show up in the console as an Active
and running bundle. We can see the bundle state, ID, name, and if it contains a Blueprint context.

Since we also had BundleActivator that registered a service, we can list the service registry
to ensure that our service has been registered correctly. Our producer bundle is now activated;
the service is registered and ready for subscription.

Congratulations, you have just deployed your first piece of modular software!

17

Instant OSGi Starter

Step 3 – analyzing the consumer
The consumer is built from two Java classes and a deployment file for Aries Blueprint. Blueprint
being an inversion of control and dependency injection framework for OSGi, Blueprint allows you
to write simple Java beans, inject services and references. The following screenshot shows the
relevant package structure for the Consumer in Maven format, showing classes and resources in
the correct locations for a bundle deployment:

Once the blueprint file is deployed, a blueprint extender will parse it, and your bundle will be
handed a recipe to deploy that contains the correct wiring. We utilize it here to consume the
service from the producer; the blueprint container will handle the service subscription and
related error handling for us. Aries Blueprint instantiates a blueprint container for us. According
to the blueprint.xml configuration file, it also will take the reference, that is our service
subscription, and inject it as a field in SimpleResponseConsumer.

The consumer class contains a simple java.util.Timer that will utilize the service on
a schedule.

Apache Karaf command

To quickly install and start the consumer bundle in Karaf, issue the
osgi:install command (bundle:install –s on Karaf 3.x)
as follows:

karaf@root> install –s mvn:com.packt.osgi.
starter/1.0.0/consumer

18

Instant OSGi Starter

Once the consumer is deployed, it will start the bundle and then create a Blueprint container.
Aries, being a set of bundles that provide OSGi development tools (we will discuss Blueprint
more in depth in a later section), creates the Blueprint container. The container will activate our
consumer class. The consumer then instantiates a timer and passes in a reference to the service
into TimerTask (TimerTasks are used to schedule an action to occur once, or repeatedly).

Once this is activated, you'll see your console screen starting to fill up with service requests,
as follows:

These requests are from a full life cycle project. We have our producer deployed, running, and
providing a service. The consumer bundle is resolved, loaded, and instantiated by Apache Aries
Blueprint; the proxy from the Blueprint framework consumes the service and our Java classes
are now able to invoke methods until we stop execution.

Step 4 – testing
Since we are building this demo system OSGi, a technology built around runtime, we'll illustrate
this in the testing phase with an integration test. Integration tests are natural extensions of
regular unit tests where we also involve the necessary components to execute our code in the
test bed. In the code examples, we use a framework called Pax Exam combined with Junit to
execute, mark, and define our test suite. We also rely on a new plugin; this plugin is going to
write out dependency information for us so that the Pax Exam execution environment can
re-use this information and allow us to simplify our test configurations.

19

Instant OSGi Starter

Note that you can configure the use of a specific version of the plugin using the tags
<version></version.

We also add a set of dependencies in our Apache Maven pom file; these contain Pax Exam
artifacts, an execution model as well as the projects we wish to test. Pax Exam allows us to
annotate a configure model. In this model, we specify all of the various bundles that we need
to load for a complete test cycle.

Loading these, we re-use the Apache Maven plugin; it enables us to let Pax Exam figure out
the right dependency versions from the build environment. This will lead to less manual work
when you are upgrading versions or modifying the tests.

We also configure a Junit runner and a Pax Exam reactor strategy for the execution of our test.
Both of these are annotations that will provide test behavior; the first tells Junit how to run our
tests and the second tells Pax Exam what execution strategy we want to utilize.

20

Instant OSGi Starter

Once we run this test, either from the command line via an mvn test or from within an IDE, we
will see Pax Exam starting an OSGi container for us, loading the necessary bundles, loading our
bundles, and lastly our Junit test will be executed.

The test-code that does all of the heavy lifting is shown in the following screenshot:

This is a very simple little test suite that does quite a few things. We rely on a few niceties of
Pax Exam, so we let Pax Exam inject our service for us. Then we make sure that the service is
valid and not null, and lastly we actually exercise the service with a predictable request where
we can anticipate the response. Having reached this far in the tests, we know that we have
accomplished quite a few things; they are as follows:

 Ê Our bundles are correct with regards to imports and exports

 Ê We know that Aries Blueprint is loading our context correctly

 Ê We know that we are correctly registering a service

 Ê We know that we correctly and predictably can use the service

 Ê We know that our APIs are correctly implemented

21

Instant OSGi Starter

Comparing the two tests in the test suite, the ProducerAndConsumerTest is vastly more
complicated, primarily due to external dependencies since the consumer is using Apache
Aries Blueprint. This helps to illustrate the point for modularity since we can clearly show that
the more things we add to a bundle, the likelihood of us using more technologies will grow,
sometimes exponentially.

Our test bundles, in all fairness, are not that complicated though, so it isn't much of an issue
for this exercise, but the argument being made is that decoupled, simple, and predictable code
is going to be far simpler to test. This will, in particular, hold true for systems that introduce
concurrency and are needed to scale.

To illustrate what we really have deployed, we'll introduce the following UML diagram
containing all of the existing deployments we have done against this source:

The preceding diagram is using OSGi UML symbols to describe the entire example project.
Starting from the left, we have a Consumer bundle (represented using a component icon); it is
utilizing Blueprint Container to import services from OSGi Service Registry (the stylistic details
vary; however, imports are depicted as a receptacle, while exports are depicted as a matching
shape to plug in to the import). Blueprint Container is an additional API component that has a
slightly different life cycle from the native OSGi one, hence it is clearly broken out and illustrated
as a separate container. The major life cycle difference is that since Blueprint Container is more
or less custom code executing in a bundle, that bundle technically can be started with a failed
Blueprint context.

22

Instant OSGi Starter

At the other end, we have our OSGi native Producer bundle (also represented using a
component icon). This bundle contains nothing but pure framework code, thus it exports to
and communicates directly with OSGi Service Registry (shown in the following diagram). We
have used both approaches in the examples. Blueprint is a dependency injection and inversion
of control framework modeled closely to the Spring Framework. It is a development style that
has become very popular and successful in the Java world as it allows you to quickly configure
rather complex applications from very simple building blocks. If you are writing more container
or framework-oriented code, it is likely that you'll look more at BundleActivators and pure
OSGi code; the choice is left to the reader!

Note that the solid arrow represents invoking and the line arrow represents return in the
preceding diagram.

Another common way of describing bundles and their tasks is to use sequence diagrams;
these diagrams depict object interactions in a time sequence. Combining a sequence diagram
with a high-level abstract UML diagram will provide you with ample documentation of what
your bundles are actually doing. We are not intending to provide UML education, so see these
diagrams as simplified documentation intended to be at a fairly high level, and describing
exactly what we have in our bundles and deployable units.

We start from left to right; ProducerBundle is resolved, starts, and then contacts OSGi Service
Registry to register a service. Once completed, it will wait until a service subscription request
is initiated. The subscription request is performed by ConsumerBundle, this bundle will resolve
dependencies, start, and the extender pattern (this pattern will be explained in a later section)
from the blueprint provider will kick in and help us initiate the Blueprint context file. Once the
Blueprint recipe is resolved and composed, it will instantiate our classes and communicate
with the service registry to start its subscription. If the subscription is unavailable, by default,
the Blueprint container will wait with a configurable timeout until a service is registered. This is
one of the reasons that frameworks like Blueprint are popular; they allow you to focus on your
business code instead of error handling and boilerplate code.

23

Instant OSGi Starter

Top five features you'll want to know about
As you start to use OSGi, you will realize that there are a wide variety of things that you can
do with it. This section will teach you all about the most commonly performed tasks and most
commonly used features, as follows:

 Ê OSGi headers

 Ê OSGi life cycle

 Ê OSGi core services

 Ê OSGi compendium services

 Ê OSGi modular patterns

1 – OSGi headers
We have so far touched on OSGi headers, the special entries found in Java Archive Manifest files
that make a JAR into a bundle. There exists a large collection of these headers, and different
organizations add additional ones to assist in specific application domains. As a quick reference
guide, we have prepared a table of OSGi headers and their purpose.

Header Purpose

Bundle-ActivationPolicy This tells runtime if the bundle should be loaded lazily,
meaning start is not called until the first access of the
class occurs.

Bundle-Activator It specifies the class implementing the org.osgi.
framework.BundleActivator interface.

Bundle-Category A comma-separated list of category names.

Bundle-Classpath This is a manual control of where to load classes from
within the bundle. The default is "." or the root of the
bundle; however, one may specify embedded jars into
the classpath.

Bundle-ContactAddress This specifies where to find more information on the
bundle. Typically a website URL, organization, or
project maintainer.

Bundle-Copyright Indicates copyright holder of the bundle.

Bundle-Description A brief text description of the bundle's purpose.

Bundle-DocURL URL to find more information in a bundle.

24

Instant OSGi Starter

Header Purpose

Bundle-Icon A list of icon URLs that can be used to represent the
bundle. Icon files may be internal to the bundle or an
absolute web address. No specific format is required.

Bundle-License This describes which license(s) the bundle is available
under.

Bundle-Localization This references a set of property files, which
may be used to localize the bundle. It is typically
used for language support, currency, and units of
measurement.

Bundle-ManifestVersion This is an optional header, and defaults to Version 1. As
of OSGi R4, the value 2 was introduced. Most bundles
have Version 2 specified.

Bundle-Name Text identifier for the bundle.

Bundle-NativeCode This is used to provide information about native
libraries that should be loaded by the bundle.

Bundle-RequiredExecution
Environment

This is a list of execution environments (JVM versions)
that must be present for the bundle to be installed.

Bundle-SymbolicName Along with Bundle-Version, these headers are
used to uniquely identify a bundle at runtime. This
header is mandatory.

Bundle-UpdateLocation This indicates where the bundle should look for
updates to the OSGi runtime bundle.update() call.

Bundle-Vendor This is the vendor of the bundle.

Bundle-Version This is the version of the bundle in the Major.
Minor.Micro.Qualifier format. The first three
fields are numeric, while the qualifier can be any text
value.

DynamicImport-Package Wires to packages that may not be known in advance.
Using this feature is expensive as the framework
must search all exported packages instead of using a
calculation.

Embed-Dependency This acts as a macro to include resources and updates
the Bundle-Classpath header to pick up these
resources at runtime.

Export-Package This makes a comma-separated list of packages
available to other bundles.

25

Instant OSGi Starter

Header Purpose

Export-Service Deprecated – formerly used to make static exports,
services are now consumed dynamically.

Fragment-Host This identifies the parent bundle this fragment should
attach to.

Import-Package This bundle's package level dependencies. At
runtime, the OSGi framework will be the bundle to
any compatible bundle that provides the required
package.

Import-Service Deprecated – formerly used to make static imports,
services are now consumed dynamically.

Include-Resource BND tool header – copies resource into JAR.

Private-Package BND tool header – specifies packages that are not
exported.

Provide-Capability This is part of the generic requirements/capabilities
model for bundle wiring. Export package statements
are translated into capabilities.

Require-Bundle This declares a dependency with a bundle-symbolic
name instead of a package name. Import-Package
is the preferred mechanism.

Require-Capability Bundle requires capabilities provided by another
bundle. The imported package and required bundle
are translated into requirements, but they can be
anything we want as a requirement.

While the preceding table is helpful in quickly understanding some of the most commonly
seen headers in the core specification, out of which we have listed a few custom headers,
several more exist for various tools such as BND, Eclipse, and Spring. We feel that we should
look a little closer at Bundle-SymbolicName, Bundle-Version, Import-Package, and
Export-Package.

Apache Karaf command

To view headers of installed bundles quickly, issue the osgi:headers
(bundle:headers on Karaf 3.x) command as follows:

karaf@root> osgi:headers BundleID

26

Instant OSGi Starter

Bundle-SymbolicName
The SymbolicName of a bundle is the only mandatory header that an OSGi bundle must
contain. This header supports a directive to indicate if the bundle should be treated as a
singleton, or that only one bundle of this name should exist in the framework:

Bundle-SymbolicName: com.packt.osgi.starter;singleton:=true

The singleton directive lets the OSGi environment know that
there should only be one bundle in the system with this name
at the same time.

Bundle-Version
Along with Bundle-SymbolicName, this attribute uniquely identifies a bundle in
the framework. Additional attention needs to be paid to OSGi versioning as the OSGi
environment will pay strict attention to version requirements as defined by the bundle's
import and export packages.

The generally adhered practice for versioning is as follows:

Major.Minor.Micro.Qualifier

Major
A major number indicates incompatibilities in bundle use between versions, that is,
incompatible changes in APIs.

Minor
A minor number indicates that this is a backward compatible build, and users should be
safe updating to a higher version (of course you should always verify through testing).
However, if the version applies to an API package, implementers of the package will not
work. For instance, adding a method to an API is a minor version change.

Micro
A micro version update indicates that an internal change has occurred, but it does not alter
its APIs. Normally, this is used when bug fixes are made to the bundle.

Qualifier
A qualifier is used to indicate small internal changes, or to communicate to the users' bundle
status, that is, a milestone build.

Bundle-Version: 1.0.0.milestone1

Bundle-Version: 1.0.0.SNAPSHOT

27

Instant OSGi Starter

Import-Package
A bundle declares its dependencies through this header. The semantics surrounding the version
attribute merits additional attention; the use of (' and ') denotes exclusive values, and [' and
'] denotes inclusive values. These braces are used to denote version ranges. There are five cases
we must examine:

Inclusive Minimum, Exclusive Maximum:
The version is denoted with "[minimum, maximum)", which translates to "wire to package
with at least minimum version, up to but not including the maximum version". This version range
is commonly seen when your wiring bundles to us up to the next major version of a library.

Import-Package: com.packt.some.package;version="[1.2.3, 2.0.0)"

Inclusive Minimum, Inclusive Maximum:
The version is denoted with "[minimum, maximum]", which translates to "wire to package
with at least minimum version, up to and including the maximum version".

Typically, these ranges are used when bundle compatibility is known for a very specific set
of releases.

Import-Package: com.packt.some.package;version="[1.2.3, 1.2.99]"

Exclusive Minimum, Exclusive Maximum:
The version is denoted with "(minimum, maximum)", which translates to "wire to package
higher than the minimum version, up to but not including the maximum version."

Import-Package: com.packt.some.package;version="(1.2.3, 2.0.0)"

Note that the range [1.2.4, 2.0.0) may be more practical to use.

Exclusive Minimum, Inclusive Maximum:
The version is denoted with "(minimum, maximum]", which translates to "wire to package
higher than the minimum version, up to and including the maximum version".

Import-Package: com.packt.some.package;version="(1.2.3, 2.0.0]"

Inclusive Minimum:
The version is denoted with "minimum", which translates to "wire to package with at least
minimum version". This particular notation can be a source of confusion as the framework will
wire the highest version available of the package requested. It's a good practice to always state
a version range to avoid issues from future packages not being compatible with your bundle.

Import-Package: com.packt.some.package;version="1.2.3"

28

Instant OSGi Starter

Apache Karaf command

To view which bundles are providing packages to your bundle imports,
issue the dev:show-tree (bundle:tree-show on Karaf 3.x)
command, as follows:

karaf@root> dev:show-tree BundleID

Export-Package
This header is used to tell the framework if any packages are being provided by this bundle
to the environment. Package names should be fully qualified and include a version attribute.
When the version attribute is not provided, the version is defaulted to 0.0.0.

Export-Package: com.packt.util, com.packt.osgi;version="1.0"

Now that we have a deeper understanding of bundles, let's look closer at their life cycle.

2 – OSGi life cycle
We have described OSGi applications as living entities; by this we mean that these applications
appear to evolve as the life cycles of their constituent bundles are lived. The life cycle layer
facilitates this functionality.

OSGi bundles are dynamically installed, resolved, started, updated, stopped, and uninstalled.
The framework enforces the transitions between states, one cannot directly install a bundle
and jump to an Active state without first passing through the resolved and starting states.
The transitions between each state are illustrated in the following figure:

29

Instant OSGi Starter

Installed
Bundles came into existence in an OSGi framework in the installed state. A bundle in this
state cannot be immediately started, as the preceding diagram depicts that there is no direct
transition from the installed state to the starting state. An installed bundle is also not active.
There are three possible transitions: the bundle may become resolved, uninstalled, or refreshed.

Apache Karaf command

To install a bundle in Karaf, issue the osgi:install
(bundle:install on Karaf 3.x) command, as follows:

karaf@root> osgi:install URLs

Having a bundle installed to the OSGi framework does not mean it is ready to be used; next we
must resolve its dependencies.

Resolved
Entering the resolved state requires the framework to ensure that all the dependencies of a
bundle have been met. Upon having its dependencies ensured, the bundle is now a candidate
to be transitioned to the starting state. A resolved bundle may be refreshed, transitioning the
bundle back to the installed state. A resolved bundle may also be transitioned to the uninstalled
state. A resolved bundle is not active; however, it is ready to be activated.

Apache Karaf command

To resolve an installed bundle in Karaf, issue the osgi:resolve
(bundle:resolve on Karaf 3.x) command, as follows:

karaf@root> osgi:resolve BundleID

Starting
A resolved bundle may be started. The starting state is transitory; the framework is initializing
the resolved bundle into a running active state. In fact, the transition from the starting to active
state is implicit.

Apache Karaf command

To start a resolved bundle in Karaf, issue the osgi:start
(bundle:start on Karaf 3.x) command, as follows:

karaf@root> osgi:start BundleID

30

Instant OSGi Starter

Active
The bundle is fully resolved, providing and consuming services in the OSGi environment.
To perform any more transitions on an active bundle, it must first be stopped.

Updating
Bundle updates occur when the framework is instructed to re-evaluate a bundle's dependencies;
this action is synonymous with refreshing a bundle. When this action occurs, all of the wiring
to and from the bundle is broken, so care must be taken before refreshing to avoid starting a
bundle storm (one bundle refreshing causes a domino effect of other bundles refreshing).

Apache Karaf command

To update a bundle in Karaf, issue the osgi:update
(bundle:update on Karaf 3.x) command, as follows:

karaf@root> osgi:update BundleID [location]

The location option allows you to update the bundle via its predefined updated location or to
specify a new location to find bundle updates.

Stopping
Stopping a bundle transitions it from the active to the resolved state. The bundle can be
restarted while it remains in the resolved state.

Apache Karaf command

To stop an active bundle in Karaf, issue the osgi:stop
(bundle:stop on Karaf 3.x) command, as follows:

karaf@root> osgi:stop BundleID

Uninstalled
Uninstalling a bundle transitions an installed or resolved bundle out of the OSGi environment;
however, the bundle is not removed from the environment! Why is this? While the bundle is no
longer available for use, references to the bundle may still exist and used for introspection.

To help leverage these states in your bundles, the OSGi specification provides a hook into your
bundle state via the Activator interface.

31

Instant OSGi Starter

Apache Karaf command

To uninstall a bundle in Karaf, issue the osgi:uninstall
(bundle:uninstall on Karaf 3.x) command, as follows:

karaf@root> osgi:uninstall BundleID

BundleActivator
A bundle may optionally declare an Activator class implementing the org.osgi.
framework.BundleActivator interface. This class must be referenced in the bundle
manifest file via the BundleActivator header. Implementing the activator allows the
bundle developer to specify actions to be performed upon starting or stopping a bundle.
Generally, such operations include gaining access to or freeing resources, and registering
and unregistering services.

The entry in manifest.mf will appear as follows:

Bundle-Activator: com.packt.osgi.starter.sample.Activator

When building with maven-bundle-plugin, the following configuration instruction is added:

<Bundle-Activator>
com.packt.osgi.starter.sample.Activator
</Bundle-Activator>

The process can be seen in the following screenshot:

32

Instant OSGi Starter

3 – OSGi core services
In this section we'll review the core OSGi services. The published specification for Rev 4.2 of the
OSGi Framework is 332 pages long. As such, we've highly condensed the material in this section.
To read the entire specification please visit http://www.osgi.org/Download/Release4V42.

OSGi Core Service Purpose

Conditional Permission
Admin

The OSGi framework specification contains both the
Permission Admin and the Conditional Permission Admin
that supersedes the former one.

You can also specify a Java policy file for security.

The recommended usage is that of the Conditional
Permission Admin; it is newer and more powerful.

Conditional Permission Admin service extends the
Permission Admin service with permissions that can apply
when certain conditions are either true or false at the time
the permission is checked. These conditions determine the
selection of the bundles to which the permissions apply.
Permissions are activated immediately after they are set.

Package Admin A framework service allows bundle programmers to inspect
the packages exported in the framework and eagerly update
or uninstall bundles.

Permission Admin The Permission Admin service enables the OSGi framework
management agent to administer the permissions of a
specific bundle and to provide defaults for all bundles. A
bundle can have a single set of permissions that are used
to verify that it is authorized to execute privileged code.
You can dynamically manipulate permissions by changing
policies on the fly and by adding new policies for newly
installed components. Policy files are used to control what
bundles can do.

Start Level The core specification controls for start levels are as follows:

 Ê The beginning start level of the OSGi framework

 Ê Can modify the active start level of the framework

 Ê Can be used to assign a specific start level to a bundle

 Ê Can set the initial start level for newly installed bundles

33

Instant OSGi Starter

OSGi Core Service Purpose

Service hooks The OSGi service hooks are the framework primitives for
service interactions; those primitives are as follows:

 Ê Register a service (Publish)

 Ê Find services (Find)

 Ê Get a service (Bind)

 Ê Listen for service events

URL Handlers The URL Handlers service extends the standard Java URL
stream and content handler mechanism to work in an OSGi
environment.

The way that the built-in URL protocol and content handlers
are discovered is by probing packages for the appropriate
classes to handle the protocol/content.

If someone tries to create a URL for the HTTP protocol, then
the class to handle the protocol will be sun.net.www.
protocol.http.Handler as it is registered by default
from a Sun JVM.

The preceding table provides a concise introduction to the framework services. Our experience
in using OSGi environments, however, encourages us to further explore Service hooks as an area
that requires more attention.

Service Hooks
These Service Hooks are not intended for regular bundle developers, they are there to facilitate
things like distributed OSGi. Service Hooks are not to be confused with the service engine
publish, find, and bind methods.

A common usage scenario for a Service Hook is in an OSGi system where all communication is
normally tunneled through services; this makes it a very interesting place for a handler to intercept
the service communications. The hooks allow you to install handlers that can help facilitate things
like proxying, security, authentication, and other functions more or less like interceptors.

This behavior will be completely transparent to the consumer of the service that will only be
interacting with the OSGi service registry.

To proxy an existing service for a specific bundle, we would be required to perform the
following steps:

1. Hide the existing service X.

2. Register a proxy X with the same properties of X.

34

Instant OSGi Starter

Properties here are very simple; we really are only talking about the same interface and
potential filters necessary. When these criteria are met, a proxy can pose as the original
service and add additional work to the registration.

4 – OSGi Compendium Services
In attempting to keep our view of OSGi simple, we've tried to keep our review to the core OSGi
specification; however, this leaves out the richness found in the OSGi compendium. All of these
additional services will allow you to enhance the bundle life cycle, control, and manage various
things such as dependency injection, configuration metadata, user administration, and so
on. To discover these services more in detail, please visit http://www.osgi.org/Download/
Release4V42.

OSGi Compendium Service Purpose

Application Admin Application manager abstraction is used to manage
application types.

Blueprint Container This is a dependency injection framework based on the
Spring DM programming model. It has been designed
to handle OSGi's dynamic environment where services
come and go.

Configuration Admin This is used for handling bundle configuration data. It is
commonly used for setting up port allocations, setting
URLs, and other variables. Use this service aide in
providing a dynamic execution environment.

Declarative Services A component model is used to simplify making
components that publish or reference OSGi services.

Deployment Admin This provides standardized access to the life cycle
management of resources in an OSGi environment.
This service helps to maintain the overall consistency
of the runtime.

Device Access This service coordinates adding and removing devices,
and provisioning of their drivers. This helps to facilitate a
hot deploy, or a plug and play model.

DMT Admin A generic Device Management Tree API is provided to
manage devices by mapping the generic tree to specific
device functions.

Event Admin This is a high-capacity event service for inter-bundle
communication utilizing a publish and subscribe model.

35

Instant OSGi Starter

OSGi Compendium Service Purpose

Foreign Application Access This service provides a mechanism to allow non-
OSGi Java applications to interoperate with the OSGi
environment.

HTTP The HTTP service provides support for registering
servlets and resources. This allows users to access,
retrieve information from, and control the OSGi
environment.

Initial Provisioning A specification that defines how a management
agent becomes part of and interacts with the OSGi
environment.

IO Connector This is a basic communication infrastructure based on
the J2ME javax.microedition.io package.

Metatype This allows services to specify datatypes they can use.
Key/value pairs are used to represent data attributes.

Monitor Admin It defines how a bundle may publish status variables, and
how administrative bundles can discover and use their
values.

Preferences It provides bundles as a mechanism to persist data
through starting and stopping of the bundle, or of the
OSGi environment. This service is not intended for large
quantities of data such as documents or images, but for
preferences or setting values (properties).

User Admin This service manages the persistent storage of
user credentials, and their attributes, providing an
authentication service for end users and/or devices that
need to initiate actions in the OSGi environment.

UPnPTM It defines how the OSGi environment can interoperate
with Universal Plug and Play (UPnPTM) devices and
control points.

Wire Admin An administrative service that provides control over the
dynamic wiring of producers to their consumers in an
OSGi environment.

XML Parser This service covers how classes in JAXP can be used in an
OSGi environment.

While the preceding table is helpful in quickly understanding the OSGi compendium, we feel
that we should look a little closer at the Blueprint Container and Configuration Admin.

36

Instant OSGi Starter

Blueprint Container
OSGi Service Platform Release 4 Version 4.2 specifications introduced the Blueprint Container
specification.

This specification describes how declarative programming and dependency injection is done
in an OSGi container. There are two separate implementations of the Blueprint specification,
one from the Apache Foundation—Apache Aries Blueprint—as well as one from the Eclipse
Foundation—Eclipse Gemini. The examples in this book and the demonstration code were
tested using the Apache Aries version.

Blueprint is built around an OSGi extender pattern. Once a bundle has resolved its dependencies,
it is up to the Blueprint extender to do the following:

 Ê Parse the Blueprint XML files

 Ê Instantiate recipes

 Ê Wire the components together

 Ê Manage services' registrations

 Ê Look up service references

A Blueprint file's basic building blocks are the beans, shown as follows:

Beans can also have properties; these properties can be references or values, as shown in the
following screenshot:

A Blueprint Container also provides a model for interaction with the OSGi service registry
allowing you to define beans that can then be exported.

37

Instant OSGi Starter

As seen from earlier examples, services are exported and found via their interface class.

Once we have a service that we want to consume, we can do so from another bundle by
referencing it across the service registry with a reference tag, as follows:

These are the basic building blocks in Blueprint; the specification also provides for namespace
handlers so that developers can extend the container with a specific behavior for named beans.
This is used quite extensively in projects such as Apache Camel, Apache CXF, and of course
Apache Aries.

Utilizing the namespace handler techniques, the container is enriched with web service wiring,
context resolution, configuration admin integration, and property injection.

Configuration Admin
One of the most powerful of all services in the OSGi environment is the Configuration Admin
service. It is a "merge" between the simple paradigm of reading configuration data at startup time
combined with the fact that the said data can and will change during an application's life cycle.
In a fully dynamic environment, your configuration can change at any time and you're expected
to react to these changes; the Configuration Admin API classes allow you to do exactly this; your
bundles will be notified of new, updated, and removed configuration data.

This also allows for some very useful patterns you can build on top of org.osgi.service.
cm.Managed ServiceFactories. Apache Felix provides configuration interfaces via
fileinstall as well as the webconsole.

38

Instant OSGi Starter

5 – OSGI and modular patterns
In this section we'll discuss several OSGI and modular programming patterns that we believe you
should follow, which will help in producing successful projects.

Whiteboard pattern
A whiteboard pattern is a very well documented pattern that has a detailed description on the
OSGi forum, http://www.osgi.org/wiki/uploads/Links/whiteboard.pdf. It is somewhat
similar to an extender pattern but relies on the OSGi service registry instead of raw bundles.

Idea
Java has, since 1.0, had an event platform. These events unfortunately could lead to fairly
cumbersome development cycles with more than 130 events and adapters available already in
Java 1.3. The whiteboard pattern provides events in a simple manner without forcing a listener
pattern to be implemented. This is done relying on the OSGi service registry for informational
messages and further processing.

Implementation
A whiteboard pattern in its simplest form is implemented via BundleActivator and the
registration of a ServiceTracker object at http://www.osgi.org/javadoc/r4v42/org/
osgi/util/tracker/ServiceTracker.html.

ServiceTracker gives us an implementation that correctly handles all the details of listening
to ServiceEvents and getting and ungetting services. It is also a thread-safe class so it will aid
bundle developers in what otherwise would be a fairly cumbersome process involving quite a bit
of manual checking of services and registrations.

39

Instant OSGi Starter

The whiteboard service tracker bundle subscribes to service registration information, as shown
in the following screenshot:

Here we are registering ServiceTracker on a bundle context, we give it an HttpServlet
interface to match against and by providing a null as the last argument we are saying that we
want to be notified of every single event.

With our listener installed, we are now ready to start looking for these services being added,
removed, suspended, and so on. If we say that a servlet example would be deployed in blueprint
for the sake of argument, that deployment would look something like the following screenshot:

It would now be up to our ServiceTracker bundle to grab this service, and publish this in a
servlet container under the path /myservlet.

As you can see, this is a very graceful, not to mention useful, "Factory" instantiation pattern that
will allow for full dynamism, thanks to the nature of OSGi bundles and the service registry.

Common uses
Whiteboard patterns are used quite frequently in OSGi. Some examples would be generic
commands, such as the original PAX web extender for servlet enhancement of an OSGi
container. Refer to http://karaf.apache.org/manual/2.2.6/users-guide/http.html.

40

Instant OSGi Starter

Extender pattern
The OSGi extender pattern is one of the most used and implemented strategies for
framework enhancement. It is a pattern that models itself towards extensive enhancement of
deployments and is used to provide EE behavior in the core of many of today's most advanced
Java containers. An extender pattern allows the enhancing of bundles with a custom life cycle
that will react as bundles come and go. Prominent implementations of the extender pattern
are Apache Aries Blueprint and Spring Dynamic Modules; they both rely on this pattern to
control their application participants.

Idea
The basic idea around the extender pattern is for the developer of the "extender" to take
advantage of the event information and life cycle inherently available to a bundle. We know
when a bundle is resolved, we know when it is started, and we know when it is starting. This
all leads us to using the OSGi container and runtime; we utilize all of the information we get
from the environment to allow us to control and influence the life cycle of other bundles. These
bundles in turn provide the extender with custom information, such as OSGi headers or XML
files placed in a specific location.

Implementation
The OSGi life cycle allows a bundle, very much like the activator, to participate and listen
to events regarding the installation, update, and removal of other bundles. This life cycle is
dynamic in nature. If we were to just gather the event information, we'd do so utilizing a normal
org.osgi.framework.BundleListener interface. Refer to http://www.osgi.org/
javadoc/r4v43/core/org/osgi/framework/BundleListener.html.

The regular BundleListener is an asynchronous ordered implementation that cannot be
called concurrently; it is up to the framework to call our BundleListener interface and
dispatch information to us. As seen from this description, the BundleListener interface
lends itself to logging and informational purposes but there is also org.osgi.framework.
SynchronousBundleListener. Refer to http://www.osgi.org/javadoc/r4v43/core/
org/osgi/framework/SynchronousBundleListener.html.

This listener actually allows us to take an action on these events, as seen in JavaDocs for
this class. Unlike normal BundleListener objects, SynchronousBundleListeners are
synchronously called during bundle life cycle processing.

The bundle life cycle processing will not proceed until all SynchronousBundleListeners
have completed. SynchronousBundleListener objects will be called prior to
BundleListener objects. The following diagram shows the extender pattern:

41

Instant OSGi Starter

Armed with this class, we suddenly have a fairly powerful mechanism for building completely
new flows for our bundles. If we go back to the Apache Aries Blueprint mentioned earlier, in
essence it is really a listener, and when our bundle goes active, it will look for files in OSGI-INF/
blueprint ending in .xml.

The synchronous invocation gives us the ability to do things before the actual event has passed.
So we can perform initialization, register services, evaluate files, check for resources, and
manipulate bundle information so that we can fully take control of the execution environment.

Depicted on the left, the extender bundle that is controlling the flow of information is going to
utilize org.osgi.framework.BundleEvent as it receives and looks for bundles containing
Type A information. Once it finds a matching bundle, the extender has control of the bundle
providing the event, so it can instantiate classes, set up application contexts, and register further
metadata and information before handing back control of the event to the framework.

Common uses
The extender pattern is used to implement Apache Aries Blueprint, Spring Dynamic Modules as
well as Apache Felix Declarative services. It is typically used to extend functionality into an OSGi
container. A slight word of caution should be raised as it can become something of a slight anti-
pattern, especially if the extenders start manipulating the normal class-loading mechanisms or
startup sequencing.

42

Instant OSGi Starter

People and places you should get to know
If you need help with OSGi, here are some people and places that will prove invaluable.

Official sites
The following is a list of important sites, which will prove useful:

 Ê Home page: http://www.osgi.org is the official home page of the OSGi Alliance.

 Ê Manual and documentation: http://www.osgi.org/Specifications/HomePage.
The OSGI specifications represent the most in-depth explanation of OSGi available to
developers.

 Ê Wiki: http://wiki.osgi.org/wiki/Main_Page. The OSGi Alliance maintains a
community wiki.

 Ê Blog: http://blog.osgi.org/ is the OSGi Alliance blog stream.

 Ê Source code: The OSGi Alliance maintains the specification for an OSGI environment,
while other projects provide implementations. Two popular implementations are
Apache Felix and Eclipse Equinox. The Apache Felix source code can be found at
http://svn.apache.org/repos/asf/felix/trunk, while the Eclipse Equinox source
can be found at http://dev.eclipse.org/viewcvs/viewvc.cgi.

Articles and tutorials
The following is a list of important tutorial sites, which will prove useful:

 Ê Apache Felix tutorial series:
http://felix.apache.org/site/apache-felix-osgi-tutorial.html

 Ê Peter Krien's series on BND Tool:
http://www.aqute.biz/Bnd/Bnd

 Ê OSGi with Eclipse Equinox Tutorial:
http://www.vogella.com/articles/OSGi/article.html

 Ê Listeners considered harmful: The "whiteboard" pattern:
http://www.osgi.org/wiki/uploads/Links/whiteboard.pdf

 Ê A beginners tutorial series:
http://www.javaworld.com/javaworld/jw-03-2008/jw-03-osgi1.html

43

Instant OSGi Starter

Community
The following is a list of important community sites, which will prove useful:

 Ê Official mailing list sign up: https://mail.osgi.org/mailman/listinfo/interest

 Ê Official forums: http://www.osgi.org/Forums/HomePage

 Ê User FAQ: http://www.osgi.org/About/FAQ

Blogs
The following is a list of important blogs, which will prove useful:

 Ê The blog of Peter Kriens, former technical director of OSGI:
http://softwaresimplexity.blogspot.com

 Ê Felix Meschberger is the current Apache Felix PMC Chairperson:
http://blog.meschberger.ch

 Ê Neil Bartlet is among the most influential people in the OSGi community.
His blog can be found here: http://njbartlett.name

Twitter
Some useful Twitter handles are as follows:

 Ê Follow OSGi Alliance: http://twitter.com/#!/osgialliance

 Ê Follow Peter Kriens: http://twitter.com/#!/pkriens

 Ê Follow Neil Bartlett: https://twitter.com/#!/njbartlett

 Ê For more Open Source information, follow Packt at
http://twitter.com/#!/packtopensource

Thank you for buying

Instant OSGi Starter

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should be sent
to author@packtpub.com. If your book idea is still at an early stage and you would like to discuss
it first before writing a formal book proposal, contact us; one of our commissioning editors will get in
touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

OSGi and Apache Felix 3.0
Beginner's Guide
ISBN: 978-1-84951-138-4 Paperback: 336 pages

Build your very own OSGi applications using the flexible
and powerful Felix Framework

1. Build a completely operational real-life application
composed of multiple bundles and a web front end
using Felix

2. Get yourself acquainted with the OSGi concepts, in
an easy-to-follow progressive manner

3. Learn everything needed about the Felix
Framework and get familiar with Gogo, its
command-line shell to start developing your OSGi
applications

JBoss AS 7 Configuration, Deployment
and Administration
ISBN: 978-1-84951-678-5 Paperback: 380 pages

Build powerful web applications, quickly and cleanly, with
the Django application framework

1. Covers all JBoss AS 7 administration topics in a
concise, practical, and understandable manner,
along with detailed explanations and lots of
screenshots

2. Uncover the advanced features of JBoss AS,
including High Availability and clustering,
integration with other frameworks, and creating
complex AS domain configurations

3. Discover the new features of JBoss AS 7, which has
made quite a departure from previous versions

Please check www.PacktPub.com for information on our titles

JBoss ESB Beginner's Guide
ISBN: 978-1-84951-658-7 Paperback: 320 pages

A comprehensive, practical guide to developing
service-based applications using the Open Source JBoss
Enterprise Service Bus

1. Develop your own service-based applications, from
simple deployments through to complex legacy
integrations

2. Learn how services can communicate with each
other and the benefits to be gained from loose
coupling

3. Contains clear, practical instructions for service
development, highlighted through the use of
numerous working examples

Infinispan Data Grid Platform
ISBN: 978-1-84951-822-2 Paperback: 150 pages

Making use of data grids for performance and scalability
in Enterprise Java, using Infinispan from JBoss

1. Configure and develop applications using the
Infinispan Data grid platform

2. Follow a simple ticket booking example to easily
learn the features of Infinispan in practice

3. Draw on the experience of Manik Surtani, the
leader, architect and founder of this popular open
source project

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the authors
	About the reviewer
	www.packtpub.com
	packtLib.packtpub.com
	Table of Contents
	Instant OSGi Starter
	So, what is OSGi?
	What kind of things can you do with OSGi?
	How can you use OSGi within your existing applications?

	Installation
	Step 1 – what do I need?
	Step 2 – downloading an OSGi core
	Step 3 – starting up an OSGi core directly
	Step 4 – downloading Apache Karaf
	What does using Apache Karaf and Maven provide us with?

	Step 5 – starting Apache Karaf
	Step 6 – obtaining the BND tool (Maven Bundle plugin)
	Step 7 – obtaining Blueprint
	Step 8 – obtaining Pax Exam
	And that's it!!

	Quick start – your first OSGi bundles
	Step 1 – what do I need?
	Step 2 – analyzing the producer
	Step 3 – Analyzing the consumer
	Step 4 – testing

	Top five features you'll want to know about
	1 – OSGi headers
	Bundle-SymbolicName
	Bundle-Version
	Import-Package
	Export-Package

	2 – OSGi life cycle
	Installed
	Resolved
	Starting
	Active
	Updating
	Stopping
	Uninstalled
	BundleActivator

	3 – OSGi core services
	Service Hooks

	4 – OSGi Compendium Services
	Blueprint Container
	Configuration Admin

	5 – OSGI and modular patterns
	Whiteboard pattern
	Extender pattern

	People and places you should get to know
	Official sites
	Articles and tutorials
	Community
	Blogs
	Twitter

