

 فقط کتاب

 مرجع معتبر دانلود کتاب هاي تخصصی

Faghatketab.ir

[1]

http://www.it-ebooks.info/

Learning RHEL Networking

Gain Linux administration skills by learning new
networking concepts in Red Hat Enterprise Linux 7

Andrew Mallett

BIRMINGHAM - MUMBAI

http://www.it-ebooks.info/

Learning RHEL Networking

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: June 2015

Production reference: 1170615

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78528-783-1

www.packtpub.com

www.packtpub.com
http://www.it-ebooks.info/

Credits

Author
Andrew Mallett

Reviewers
Shichao An

Moinak Ghosh

Alexey Maksimov

Ranjith Rajaram

John Willis

Commissioning Editor
Nadeem Bagban

Acquisition Editor
Harsha Bharwani

Content Development Editor
Nikhil Potdukhe

Technical Editor
Parag Topre

Copy Editor
Relin Hedly

Project Coordinator
Vijay Kushlani

Proofreader
Safis Editing

Indexer
Monica Ajmera Mehta

Production Coordinator
Arvindkumar Gupta

Cover Work
Arvindkumar Gupta

http://www.it-ebooks.info/

About the Author

Andrew Mallett has been working in the IT industry since 1986. He has worked
with Linux technologies since the release of the original Red Hat Linux 7 in 1999.
Andrew not only possesses Linux skills and certifications, but also consults and
teaches Linux and other technologies. He has written books on Linux on Citrix, which
were published by Packt Publishing. Andrew has also been an active participant and
works as a volunteer sysop. He is a SUSE Certified Linux Instructor, which enables
him to help, support, and develop the official Novell SUSE curriculum worldwide.

Andrew currently works for his own company. He can be found on Twitter at
http://theurbanpenguin.com and @theurbanpenguin. His published video
courses on Linux can be found at http://www.pluralsight.com.

I live with my family in the UK. This year, I will celebrate 25 years of
togetherness with my wife and friend, Joan, who has helped me sail
through good and bad times. This book is dedicated to Joan and the
25 years of love she has selflessly provided.

http://theurbanpenguin.com
http://www.pluralsight.com
http://www.it-ebooks.info/

About the Reviewers

Shichao An is a Red Hat Certified Engineer (RHCE). He uses Fedora as his desktop
operating system. Shichao received his master's degree in computer science from the
New York University. Currently, he works as a system administrator and focuses on
managing Amazon EC2 servers and containerizes applications with Docker. Shichao
is enthusiastic about open source and is active on GitHub, where he hosts some small
projects and shares his learning roadmaps.

Alexey Maksimov is an IT professional raised in Russia. He has been living
in New Zealand since 2008. He holds a diploma in mathematics and specializes
in systems programming. During his extensive 15-year-long career, Alexey has
gained broad infrastructure support experience from top notch enterprise-grade
environments, such as Vodafone (New Zealand) and Mobile Telesystems (Russia).

Alexey's main area of interest is Oracle database administration. However,
his skills also include impressive hands-on knowledge of networks and a range
of UNIX-based systems, including Red Hat Linux, Oracle Linux, and Oracle Solaris,
backed by industry certifications.

Alexey can be reached on LinkedIn at http://linkedin.com/in/newrnz/ or on his
personal website at http://newr.co.nz/.

His healthy mix of skills enable him to speak to other professionals in their language,
understand and solve their challenges, collaborate effectively, and see the big
picture beyond the fence of his job description, delivering a tremendous value to his
employer. He has also worked as a professional IT trainer, which is very important if
you are writing or reviewing books.

http://linkedin.com/in/newrnz/
http://newr.co.nz/
http://www.it-ebooks.info/

Ranjith Rajaram is employed as a senior technical account manager at a leading
open source Enterprise Linux company.

He started his career providing support to web hosting companies and managing
servers remotely. Ranjith has also provided technical support to their end customers.
Early in his career, he worked on Linux, Unix, and FreeBSD platforms.

For the past 12 years, he has been continuously learning something new. This is what
he likes and admires about technical support. As a mark of respect to all his fellow
technical support engineers, he has included "developing software is humane but
supporting them is divine" in his e-mail signature.

At his current organization, he is involved in implementing, installing, and
troubleshooting Linux environment networks. Apart from this, he is also an active
contributor to the Linux container space, especially using Docker-formatted containers.

http://www.it-ebooks.info/

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

http://www.PacktPub.com
www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.packtpub.com/
http://www.it-ebooks.info/

http://www.it-ebooks.info/

[i]

Table of Contents
Preface vii
Chapter 1: Introducing Enterprise Linux 7 1

Red Hat Enterprise Linux 1
CentOS 3
Fedora 4
Determining your distribution and version 4

The /etc/system-release file 5
The /etc/issue file 5
Using lsb_release 6
Determining the kernel version 7

Summary 7
Chapter 2: Configuring Network Settings 9

Elevating privileges 10
The su command 10
Delegating with the sudo command 11

Using ip and hostnamectl 13
Consistent naming for network devices 13
A real-life network device naming example 15
Disabling consistent network device naming 16
Using the ip command to display configurations 17
Using the ip command to implement configuration changes 19
Persisting network configuration changes 20
Configuring the RHEL 7 hostname with hostnamectl 21

Introduction to the Red Hat NetworkManager 23
Interacting with the NetworkManager using the Control Center 25
Adding a new profile with the Control Center 26
Interacting with the NetworkManager using nmtui 28

http://www.it-ebooks.info/

Table of Contents

[ii]

Extreme interaction with NetworkManager using nmcli 30
Summary 32

Chapter 3: Configuring Key Network Services 33
Domain Name System 33

Installing and configuring a Caching Only DNS server 34
Configuring clients to use this server 36
Configuring the DNS zone 37

Referencing the zone from /etc/named.conf 37
Creating the zone file 38

Configuring a DHCP server 40
Configuring time services on RHEL 7 43

Implementing chronyd 44
Implementing ntpd 47
Implementing PTP on RHEL 7 48

Implementing e-mail delivery on RHEL 7 52
Adding an MX record to the DNS server 53

Summary 55
Chapter 4: Implementing iSCSI SANs 57

The iSCSI target (server) 57
Managing logical volumes with LVM 58

Partitioning the disk 58
Creating the physical volume 59
Creating the volume group 60
Creating logical volumes 60

Installing the targetd service and targetcli tools 61
Managing iSCSI targets with targetcli 62

Creating storage backstores 63
Creating iSCSI targets 65

Adding LUNS to the iSCSI target 66
Adding ACLS 67

Working with the iSCSI Initiator 68
Summary 70

Chapter 5: Implementing btrfs 71
Overview of btrfs 72
Overview of the lab environment 72
Installing btrfs 73
Creating the btrfs filesystem 74
The Copy-On-Write technology 75
Resizing btrfs filesystems 76

http://www.it-ebooks.info/

Table of Contents

[iii]

Adding devices to the btrfs filesystem 77
Volume management the old way 77
Volume management with btrfs 78

Balancing the btrfs filesystem 79
Mounting multidisk btrfs volumes from /etc/fstab 79

Creating a RAID1 mirror 80
Using btrfs snapshots 82
Optimizing btrfs for solid state drives 86
Managing snapshots with snapper 86
Summary 89

Chapter 6: File Sharing with NFS 91
An overview of NFS 91
Overview of the lab environment 92
The NFS server configuration 93

Simple exports 94
Advanced exports 96
Pseudo-root 99

Using exportfs to create temporary exports 101
Hosting NFSv4 behind a firewall 102
Hosting NFSv3 behind a firewall 103

Diagnosing NFSv3 issues 104
Using static ports for NFSv3 108
Configuring the NFS client 109

Auto-mounting NFS with autofs 110
Summary 112

Chapter 7: Implementing Windows Shares with Samba 4 113
An overview of Samba and Samba services 114
An overview of the lab environment 114
Configuring time and DNS 115
Managing Samba services 117
The Samba client on RHEL 7 121
Configuring file shares in Samba 123
Troubleshooting Samba 124
Summary 125

Chapter 8: Integrating RHEL 7 into Microsoft
Active Directory Domains 127

Overview of identity management 128
An overview of the lab environment 128
Preparing to join an Active Directory domain 129
Using realm to manage domain enrolment 130

http://www.it-ebooks.info/

Table of Contents

[iv]

Logging on to RHEL 7 using Active Directory credentials 132
User and group management with adcli 134

Listing the Active Directory information 134
Creating Active Directory users 135
Creating Active Directory groups 135
Managing the Active Directory group membership 136

Delegating Active Directory accounts with sudo 137
Leaving a domain 139
Understanding Active Directory as an identity provider for sssd 139

Configuring NSS 141
Configuring PAM 143
Configuring Kerberos 144
Configuring SSSD 145

Summary 145
Chapter 9: Deploying the Apache HTTPD Server 147

Configuring the httpd service 147
Installing Apache 2.4 148
The configuration 148
Configuring the DocumentRoot directory 151

Controlling the Apache web service 153
Setting up the server name 154
Setting up a custom error page 154

Loading modules 154
Virtual servers 155

Name-based 156
The name resolution 156
The Apache configuration 156

IP-based 157
Port-based 158

Automating virtual hosts 158
Summary 159

Chapter 10: Securing the System with SELinux 161
What is SELinux 161
Understanding SELinux 162

Modes 162
The disabled mode 163
The permissive mode 163
The enforcing mode 164

Labels 164

http://www.it-ebooks.info/

Table of Contents

[v]

Policy types 166
Minimum 166
Targeted 166
MLS 166

Policies 167
Working with the targeted policy type 167

Unconfined domains 168
SELinux tools 169

chcon and restorecon 169
Boolean values 171

Troubleshooting SELinux 172
The log file 172
The audit2allow command 173
Permissive domains 174

Summary 174
Chapter 11: Network Security with firewalld 175

The firewall status 176
Routing 177
Zone management 178
Source management 180
Firewall rules using services 180
Firewall rules using ports 183
Masquerading and Network Address Translation 183
Using rich rules 184
Implementing direct rules 184

Reverting to iptables 185
Summary 186

Index 187

http://www.it-ebooks.info/

http://www.it-ebooks.info/

[vii]

Preface
Welcome to Learning RHEL Networking. My name is Andrew Mallett and I will offer you
expert guidance and tuition that will provide you with the skills to tame this powerful
and popular Linux distribution. We will work with Red Hat Enterprise Linux 7.1. This
latest release offers many improvements and is more likely to be the next version. The
movement to the new system, the service management of systemd and the ecosystem
that spawns from it offers so much new for administrators to absorb.

Writing about an Enterprise Linux distribution is important as we see the
increase in the number of organizations deploying Linux. As a result, we require
knowledgeable professionals to manage these systems. The Linux Foundation with
Dice, a specialist recruitment company, surveyed many large organizations and
found the following results:

• 93 percent of the organizations polled were looking to employ
Linux professionals

• 91 percent of hiring managers reported that they found it difficult to find
skilled Linux administrators

• As a side note to this, it was additionally noted that salaries for Linux
professionals had increased by 9 percent during the last 12 months.

With such confidence in Linux coming from so many organizations, the focus of
this book has to be commercially driven for me and you. We want you to be able
to improve your career prospects as well as your Linux knowledge.

http://www.it-ebooks.info/

Preface

Enterprise Linux distributions, such as CentOS, Red Hat, Debian, and SUSE
Enterprise Linux, do not deploy the latest and greatest bleeding-edge technology
that you may find on home or enthusiast-oriented distributions, such as Fedora or
openSUSE. Rather, they allow these to be development platforms to hone and perfect
the software before migrating it to an enterprise a few months or even years later.
Enterprise Linux has to be dependable, reliable, resilient, and supportable by the
organization deploying it and the backend support coming from the community
or paid support teams. By definition, the latest in software development does not
lend itself well to this; these are the latest development, and knowledge of these
developments and best practices will take time to evolve and develop.

Although the book will focus on RHEL, you may equally use Fedora 21 or CentOS;
either of these releases will be able to provide you with a compatible platform, where
we can work through many examples that are provided in the book.

What this book covers
Chapter 1, Introducing Enterprise Linux 7, helps you understand how enterprise-level
Linux differs from other bleeding-edge distributions and the relationship between
Red Hat, CentOS, and Fedora. This short chapter gives you a great understanding of
RHEL and helps you learn RHEL 7 on your choice of platform.

Chapter 2, Configuring Network Settings, discusses how to configure your network
settings and how Red Hat allows you to set the IP address configuration on your host.

Chapter 3, Configuring Key Network Services, helps your RHEL host with a network
address. This chapter teaches you how to add some command networking services
and how to configure NTP, DNS, DHCP, and SMTP, time, name resolution, IP
address assignment, and e-mails.

Chapter 4, Implementing iSCSI SANs, discovers RHEL 7. It offers a new kernel-based
module to implement network-based storage. This chapter teaches you how to
deploy iSCSI targets and connect from an RHEL client.

Chapter 5, Implementing btrfs, takes a look at Better FS. Having volume management
built-in the filesystem allows easy storage management and is a common basis for
sharing your filesystem on a network.

Chapter 6, File Sharing with NFS, explains NFS, a de facto Unix file sharing service,
which still maintains its importance in the Enterprise Linux market. This chapter
covers how to use NFSv4 and compares it with V3 so that you can appreciate its
easier firewall management feature among many other new features.

[viii]

http://www.it-ebooks.info/

Preface

[ix]

Chapter 7, Implementing Windows Shares with Samba 4, covers instances where RHEL
can provide services on a network and the client-side workstation will have Windows
OS installed at their end. This requires RHEL to support these Windows clients. File
and print services can be supplied through the Samba 4 service on RHEL 7.

Chapter 8, Integrating RHEL 7 into Microsoft Active Directory Domains, explores the fact
that many enterprise organizations have already set up Identity Services and are
run with Microsoft's Active Directory. It makes sense that these existing domain
accounts should be used to access resources on the RHEL 7 server. The RHEL server
can join the domain server and become a member server that allows you to share
single sign-on to shared resources hosted on the Linux system.

Chapter 9, Deploying the Apache HTTPD Server, deploys a web server that can be
important for your network. This may be to provision web access to an intranet or
external access to the Internet. Many administrators use the Apache web server to
provide access to local software repositories and install sources, so the importance
of this service cannot be overlooked.

Chapter 10, Securing the System with SELinux, provides insights on the fact that with
more and more systems connecting to the Internet, the vulnerability of your network
facing services is increasing exponentially. SELinux has been included on RHEL
since release 4, but very often, we read blogs that suggest that SELinux should be
disabled. This chapter teaches you how to deploy systems with SELinux effectively.

Chapter 11, Network Security with firewalld, provides insights on how to effectively use
firewalls on your RHEL 7 system with the latest command-line tool, the firewalld
service, and the firewall-cmd command. Throughout the book, we have presented
practical uses of the latest firewall and how to open the required ports and services.
The book concludes with details of this service and how to effectively secure your
server with firewalld.

What you need for this book
The book uses Red Hat Enterprise Linux 7.1. Evaluations can be downloaded directly
from Red Hat at https://access.redhat.com/downloads.

Should you not want to use RHEL, you may use Fedora 21 or CentOS 7 from:

• Fedora can be downloaded from https://getfedora.org/en/
workstation/download/

• CentOS 7 can be downloaded from http://www.centos.org/download/

https://access.redhat.com/downloads
https://getfedora.org/en/workstation/download/
https://getfedora.org/en/workstation/download/
http://www.centos.org/download/
http://www.it-ebooks.info/

Preface

[x]

Who this book is for
This book is designed for Linux administrators or those wanting to learn Linux
administration from scratch.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "The /etc/issue content will be displayed
before the logon prompt."

A block of code is set as follows:

zone "tup.local." IN {
 type master;
 file "named.tup";
};

Any command-line input or output is written as follows:

$ sudo vi /etc/named.conf

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title through the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

www.packtpub.com/authors
http://www.it-ebooks.info/

Preface

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded to our website, or added to any list
of existing errata, under the Errata section of that title.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

[xi]

http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.it-ebooks.info/

http://www.it-ebooks.info/

[1]

• Red Hat Enterprise Linux
• CentOS
• Fedora
• Determining your distribution and version

Red Hat Enterprise Linux
When we think of Linux, more often than not, Red Hat will be a primary
consideration; almost certainly, if we are working at a corporate level, Red Hat
will become part of our estate. Reliability, predictability, and stability are words
synonymous with this very profitable and successful organization. To give an idea
of their recent success, the company's share price on the Nasdaq (RHT) in 2010 was
less than $30. However, towards the end of 2014, their value hovered around $60.

Introducing Enterprise Linux 7
Welcome to the world of enterprise-level Linux version 7. This was first introduced
to us on June 9, 2014. Red Hat started its journey with Red Hat Enterprise Linux
(RHEL) 7 with its beta release on December 11, 2013. This was followed by the next
release candidate on April 23. Finally, as expected, the gold release reached the
market on June 2014. Currently, at the time of writing this book, we have Update
1 in the beta release. During the course of this book, this is what we will use for
demonstration purposes.

This chapter will help you understand why enterprise-level Linux differs from
other bleeding edge distributions. It will also help you understand the relationship
between Red Hat, CentOS, and Fedora. We also hope that this short chapter will give
you a great understanding on how to use RHEL 7 on your hardware platform of
choice. The topics for this chapter are broken down as follows:

http://www.it-ebooks.info/

Introducing Enterprise Linux 7

Enterprise Linux is not likely to be on the bleeding edge. As an enterprise
distribution, it has to be supportable and reliable. With the release of RHEL 7,
we have seen the first use of version 3 of the Linux kernel within RHEL. The Linux
kernel version 3 saw the light of day on July 22, 2011. So, we can say that enterprise
Linux may be some 3-4 years behind the latest and greatest version.

In many respects, the reliability aspect takes precedence over the new kernel
features that version 3 will offer. These features often relate to hardware and are
not important because the enterprise-level hardware has to take a similar cautious
approach within mission critical environments. We find that enterprise-level
hardware has to be reliable and this leads to, perhaps, a lack of new untested
features. Development of new hardware and drivers that reside in the kernel can be
tested on smaller businesses and home users. These beta testers can go through the
torment while the developments can be improved for our mission-critical servers.
A blue chip enterprise company demands a level of support that goes beyond
posting a technical query within a support forum and hoping that someone will
see it and respond to it. Almost certainly, any financial organization will have to be
able to prove their level of support for their systems. This is most easily achieved
by presenting your support agreement or contract and the associated service level
agreement or SLA. To this end, Red Hat is not free, but the payment is taken for
support and not for the distribution purpose. The simplest level of support starts at
around $350 (US dollars) per year.

Red Hat began with Enterprise Linux in 2002 with RHEL version 2.1. Initially,
the support was provided for 10 years, but has been extended to 13 years with
RHEL 7. This means that the support for RHEL 7 can extend to June 30, 2027.
The current RHEL 7.1 beta version uses the Linux kernel 3.10.0-210 compared to
3.10.0-123 with the 7.0 release. Here, we see tiny increments in the kernel version
indicative of the care taken in rolling out any version of RHEL. At the time of
writing, the very latest Linux kernel available from maintainers (https://www.
kernel.org) is version 3.18.1.

Red Hat products can be downloaded from https://access.redhat.com/
downloads. You will need to create an account to be able to start an evaluation
and download RHEL.

[2]

http://www.it-ebooks.info/

Chapter 1

CentOS
CentOS (Community Enterprise Operating System) has been commonly used and
totally free of charge as a Red Hat rebuild for many years. This is where Red Hat
logos and branding are removed from the system and redistributed as "CentOS".
This is not quite as bad as it may first seem. Red Hat uses the open source code
and redistribution is totally within the remit of the GPL (GNU Public License)
agreement. What you lose out on is support. So, you may well find CentOS more
used within smaller business operations and academia (where external support is not
as critical). Support for CentOS is available only through public forums. Of course,
this means that there is no guaranteed service level available.

CentOS began its operation in 2004 and is now entering its second decade. The
free of charge product it brings on the market replicates the same reliability and
predictability of its Red Hat cousin. The relationship between Red Hat and CentOS
was more formalized in January 2014. The governance panel at CentOS now includes
Red Hat board members among their numbers.

CentOS does not release beta versions in the same way as Red Hat. This means
that the latest version available from the CentOS stable is version 7.0. This will
use the same kernel and version 3.10.0-123 as the RHEL 7.0 distribution. The close
resemblance between CentOS and Red Hat often means that CentOS becomes a
perfect study platform for those wishing to learn Red Hat and, perhaps, gain their
certifications. This is certainly a very viable option and the same applies to studying
this book. Although, we will be using RHEL 7.1 beta, if you want to use CentOS, this
should be very similar and mostly compatible with CentOS 7.

As CentOS does not offer subscription support, this in turn affects the product life
cycle. To obtain the entire 13 years of support that RHEL 7 offers, a RHEL customer
will have to purchase extended support for the final 3 years coverage. This means
that CentOS has repositories that will distribute updates for 10 years, resulting in the
fact that CentOS 7 can continually be updated until June 2024. Not bad at all when
you see it like this and all without financial cost.

You can download the latest version of CentOS without the need to create an account
directly from http://centos.org/download/.

[3]

http://www.it-ebooks.info/

Introducing Enterprise Linux 7

Fedora
We can say that Fedora is the home version of Red Hat. Although we have marked
this as a home version, Fedora ships in a server version and it's your choice as
to how and where you use Fedora. The support for newer laptops and the latest
hardware is going to be far greater. This then often makes it a target for home users
and enthusiasts. The current version is Fedora 21 and uses almost all the very latest
kernel with version 3.17.4-301.

The other advantage of using Fedora, even if not in a production format, is that you
become familiar with technologies. These technologies will become enterprise-ready
at some point. In this way, you will learn as the product is developed. For example,
RHEL 7 is based around Fedora 19 and 20. If you have been an enthusiastic Fedora
champion, you will already be familiar with GRUB2, BTRFS, docker, and systemd
(all of which debut in RHEL 7).

Support for Fedora is community-driven with software updates available for about
13 months from the initial product launch. For example, Fedora 21 will be supported
for 1 month after the release of Fedora 23. The release dates are about every 6 months,
which gives us an approximate support life of 13 months. This is often why Fedora
(and similar distributions to Fedora) do not make it to the enterprise category because
of such a short update life cycle.

For learning and home use, this is truly a great distribution. You can choose to
download the workstation, server, or cloud version at https://getfedora.org/.

From a popularity perspective, Fedora is certainly there. The numbers of hits to the
Fedora download page over the past twelve months rates Fedora as being the fourth
most popular distribution. To support this data and to take a look at where we read
this from, you may visit http://www.distrowatch.com.

Determining your distribution and
version
If you are installing from scratch, then we hope that you are able to determine
what you are actually installing. If you can't, then we have some issues we need to
resolve before the installation. Often though, you may be faced with a machine that
is preinstalled or a lab machine that you may have access to. An obvious first step to
any faultfinding task will be to determine the actual OS and patch level that we will
work on. We will now look at the many ways that exist to determine the flavor of
Linux that you will use.

[4]

http://www.it-ebooks.info/

Chapter 1

[5]

The /etc/system-release file
The /etc/system-release file is consistent across all Red Hat variants that we
have discussed here. This can be simply read with the cat command, short for
concatenate. As a matter of fact, on all three systems, this file is a symbolic link
that provides a shortcut to the relevant file from the following list:

/etc/redhat-release

/etc/centos-release

/etc/fedora-release

However, reading the linked file does make sense as the /etc/system-release
file will always be available on any of these flavors and points to the correct OS file.
Running the following command on the demonstration RHEL 7.1 system reveals the
following command:

$ cat /etc/system-release

Red Hat Enterprise Linux Server release 7.1 Beta (Maipo)

The /etc/issue file
A second method could be to read the login banner from a standard terminal on the
physical box. These physical terminals can be tty1 through to tty6 if no graphical
system is running on the device. However, if you are running a GUI on your desktop
or server, then often tty2 is the first command-line terminal. You can access this
terminal from the GUI with the CTRL + ALT + F2 key sequence. The /etc/issue
content will be displayed before the logon prompt. The /etc/issue content needs to
be read by the /sbin/agetty TTY program. We can concatenate the file, but it's not
useful because it contains special escape characters. These characters are expanded
by agetty. Looking at the file as plain text, we see the following command:

$ cat /etc/issue

\S

Kernel \r on an \m

The \S command will display the OS, the \r command will display the kernel
version, and the \m command will display the machine type. On the RHEL 7.1
system, we will use this file as displayed when logging on from a terminal as:

Red Hat Enterprise Linux Server 7.1 (Maipo)

Kernel 3.10.0-210.el7.x86_64 on an x86_64

http://www.it-ebooks.info/

Introducing Enterprise Linux 7

[6]

Using lsb_release
If there is one way to display the OS details that you are using, why should there
not be three ways! As is typical with Linux, we can address this issue in many ways.
A third way is to use the lsb_release command. This is generally not installed as
part of the default installation. So, it needs to be added to your system (if this has not
already been done).

Installing this software can be achieved using yum, but this needs to be run as the
root user (administrator). So, either use su - to switch to the root account or use
sudo if your account is set up as an administrator, as shown in the following code:

$ sudo yum install redhat-lsb-core

If you are new to the Linux administration, then the next chapter
will start with a quick lesson on how administrative rights are
gained and managed within RHEL.

Despite the redhat element in the package name, this command can also be used on
CentOS (if this is the system you are using for your journey to Enterprise 7 Linux).
With the package installed, we will use the lsb_release command to identify the
OS. On the system we use for this book, we can view the following output:

$ lsb_release -a

LSB Version: :core-4.1-amd64:core-4.1-noarch

Distributor ID: RedHatEnterpriseServer

Description: Red Hat Enterprise Linux Server release 7.1 Beta (Maipo)

Release: 7.1

Codename: Maipo

If you are using Fedora, you can install the package using the following command:

$ sudo yum install redhat-lsb

The output is similar, but relates to the Fedora release, as shown in the following
output from the Fedora 21 server:

$ lsb_release -a

LSB Version: :core-4.1-amd64:core-4.1-noarch:cxx-4.1-amd64:cxx-
4.1-noarch:desktop-4.1-amd64:desktop-4.1-noarch:languages-4.1-
amd64:languages-4.1-noarch:printing-4.1-amd64:printing-4.1-noarch

Distributor ID: Fedora

Description: Fedora release 21 (Twenty One)

Release: 21

Codename: TwentyOne

http://www.it-ebooks.info/

Chapter 1

Determining the kernel version
We have seen that the Linux kernel version may well be displayed with the /etc/
issue file when logging on to a terminal. However, we can also easily display the
version of the current kernel using the uname -r command. The kernel is the core
of an OS and is maintained as open source software by the Linux Foundation. This
command can be run as a standard user. On the RHEL 7.1 system, it displays the
following information:

$ uname -r

3.10.0-210.el7.x86_64

Again, knowing the version of the Linux kernel is a great starting point in order to
build a picture of the system for faultfinding and placing support calls.

Summary
By now, I am hoping that you have a better understanding of what you are going to
need to follow through this book and how it will help you learn Red Hat Enterprise
Linux 7 networking, be it on RHEL, CentOS, or Fedora. You will now be able to
differentiate the benefits of each distribution and identify the version that you will
work on.

In the next chapter, we will start looking at configuring networks on RHEL 7.
Additionally, we will look at how to gain administrative rights using su or sudo and
its benefits. This will be particularly useful for those new to Linux administration
and those who are a little lost with running tasks as an administrator.

[7]

http://www.it-ebooks.info/

http://www.it-ebooks.info/

[9]

Configuring Network Settings
Sitting here feverishly typing away at the keyboard, I am reasonably hopeful that the
title of this chapter may allude in some way to what we will cover. So, I am eager that
it will not be too much of a shock when I reveal that we will discover how to configure
networking on your RHEL 7 system in this chapter. However, breaking this down a
little, we will look at a little more than just networking. Firstly, we will make sure that
you are up to speed with how to gain administrative rights in Linux. Although, this
has nothing to do with networking, gaining administrative rights becomes the ground
for much of what we will do in the book. Once we have finished with the initial rights
section, we will then quickly move on to investigate how networking is configured on
RHEL 7. In this chapter, we will cover the following topics:

• Elevating privileges
• Using ip and hostnamectl
• NetworkManager and network scripts
• Interacting with NetworkManager
• Using the Control Center
• Using the nmtui menu
• Interacting with nmcli

http://www.it-ebooks.info/

Configuring Network Settings

Elevating privileges
As an administrator of the RHEL server or desktop system, there will be times when
root access will be required. The root user or user ID 0 is the local administrator
on the system. Although it's possible to log in to the system as a root user, as with
most systems, it's preferred that root access is gained as required. There are two
mechanisms that can be used:

• The substitute user or the su command
• Using the sudo command

First, we will look at the su command.

The su command
When a user issues the su command without specifying a username, they will
be prompted for the root password. If authentication is successful, they will be
presented with a root shell. The following are the valid mechanisms to gain root
privileges with su:

• su -l: This presents a full login shell for root; all environment variables are
set for root. The working directory of a user is changed to become the home
directory of the root user, which is usually /root.

• su: This is the same as su -l.
• su: This presents a nonlogin shell, where the full profile or environment

of the root user is not loaded. The result is that some variables—such as
$USER—are not reset and the current directory remains unchanged. Although
presented with the nonlogin shell, the correct root password is still required
for authentication.

Using the su command is a simple way to gain rights. This may be a convenient
option for an administrator. For a small environment, this may be acceptable;
however, within an enterprise environment, this is not often viable because auditing
is limited. It's possible to trace who used the su command to gain rights; this will be
recorded in the /var/log/secure log file. As all activities from this point forward
will be logged as root, we have no granularity to understand which administrator
ran any particular command. The other big downside with this method is that the
user will need to know the root password. This again is a big security issue and a
complete no-no as far as I am concerned.

[10]

http://www.it-ebooks.info/

Chapter 2

Although we want to use the su command, we can control who has access to su
using PAM (Pluggable Authentication Modules) in conjunction with the wheel
group. By adding users to the special administrative group: wheel, we can limit
access to the su command to members of that group.

To add users to the wheel group, you will need to run # usermod -a -G wheel
<username> as root user, where <username> is the login name of the account that
should be added to the wheel group. The -a option is used to append a group to the
user's current group membership list.

To ensure that only members of the wheel group use the su command, you must, as
root, edit the /etc/pam.d/su PAM configuration file. Open the file in your desired
text editor—such as vi or nano—and uncomment the following line by deleting the
character from the start of the line:

#auth required pam_wheel.so use_uid

With this change in effect, only members of the wheel administrative group will be
able to use the su command in order to switch to another user ID.

Should you so wish, you can make a second change to the /etc/pam.d/su
PAM file in order to ensure easy access to su for members of the wheel group.
The recommendation for this file will be limited to systems—such as classroom
or lab machines—where security is not an issue.

Edit the /etc/pam.d/su file and uncomment the following line by deleting the
character from the start of the line:

#auth sufficient pam_wheel.so trust use_uid

With this change in place, members of the wheel group are not required to
authenticate with a password while using su; this is the default behavior of root.

Both these PAM edits are consistent across Red Hat variants
that we have discussed: RHEL 7, CentOS 7, and Fedora 21.
Additionally, by default, the root user is part of the wheel group.

Delegating with the sudo command
In my opinion, using the sudo system is another approach and a more secure way
of delegating administrative privileges. This system serves as a mechanism of
preceding administrative commands with sudo and fine-grained delegation through
the /etc/sudoers file.

[11]

http://www.it-ebooks.info/

Configuring Network Settings

[12]

Once users are trusted and tasks are delegated to them in the /etc/sudoers file,
they can then run commands trusted to them using sudo. The basic command
syntax is as follows:

$ sudo <command>

In the preceding example, <command> will be replaced by the administrative
command normally reserved for root user, as shown in the following command:

$ sudo useradd bob

The command string listed previously allows a trusted user to create a new user
account: bob. It will be normal for a user to be prompted for their password when
a command with sudo is first run. The system defaults to cache their credentials
for 5 minutes. In this way, should they need to run several commands as a root
user using sudo over a short time period, they will be prompted just once for
their password.

With sudo, we do not need to divulge the root user's password to our administrators
or delegate a specific command or group of commands to individuals or groups.

To delegate rights for a user called sally to be able to run the useradd command
along with the passwd command, an entry can be added to the /etc/sudoers file.
We can also prevent sally from changing the root password within the same entry.
This will be similar to the following command:

sally ALL=(root) /sbin/useradd, /bin/passwd , !/bin/passwd root

Editing should be implemented as root using the visudo command. In this way,
changes are verified before they are saved (preventing corruption of the file). More
detailed configuration examples can be obtained by consulting the man pages:

$ man sudoers

By default, with sudo, members of the wheel administrative group are permitted to
run all commands without any additional administrative effort.

To elevate security in order to acquire the password of the user to be entered for each
sudo command and overwrite the default timeout of 5 minutes, use visudo and add
the following line to the /etc/sudoers file:

Default timestamp_timeout=0

For the rest of the book, administrative commands will be run as a standard user and
prefixed with the sudo command. The user will be a member of the wheel group. In
this manner, we hope to set best practice with security at the heart of your thinking.

http://www.it-ebooks.info/

Chapter 2

[13]

Using ip and hostnamectl
Many administrators on Linux have become used to using the ifconfig command
in order to display and set IP addresses on Linux hosts. Although the ifconfig
command is still valid, it's marked as obsolete in favor of the ip command. For
Microsoft Windows administrators who move to Linux, the use of ifconfig becomes
the obvious choice. As ipconfig closely resembles the Windows command line, I
encourage you to learn the ongoing ip command and all that it has to offer. Using
either the ifconfig or ip command on RHEL 7 will also introduce new, consistent
device names. This may come as a little shock to those used to /dev/eth0.

Finally, we will look at something very new to RHEL using the hostnamectl
command. This can be used to set the hostname for the current session and
persistently in a single shot, rather than using the hostname command and
editing the /etc/hostname file.

Consistent naming for network devices
With the hardware that we have on servers and desktops, we now see far more use
of multiport interface cards and LOM (LAN on motherboard) interfaces. If you
rely on the more traditional eth0 and eth1 naming scheme, all this will lead to
inconsistent network device naming.

Within RHEL 7 and the related family of similar distributions, udev supports a
number of different naming schemes for network devices. This defaults to the
assignment of fixed names based on firmware, topology, and location information
returned from the device itself. In this way, the naming is related to the physical
device itself and remains consistent and predictable even in the advent of failed
hardware that is replaced. What we need to achieve is the avoidance of any
possibility of the eth0 device becoming eth1 and vice versa. The disadvantage is
that the name can be longer and less easily remembered. With reference to the RHEL
7.1 system that we will use throughout the course of this book, the single Ethernet
interface on the VMWare hosted system is named as eno16777736.

The naming aspect is managed by systemd, the new initialization daemon, and
supports the following naming schemes when detecting hardware during the
boot phase:

• Scheme 1: This scheme specifies names that can incorporate firmware or the
BIOS information returned from onboard devices. These names can take the
form of enoxxx (letter o as in onboard). If this fails, the naming system falls
back to scheme 2.

http://www.it-ebooks.info/

Configuring Network Settings

[14]

• Scheme 2: This scheme specifies names that can incorporate firmware or the
BIOS information returned from PCI Express slot cards. These names can take
the form of ensxxx. If this fails, the naming system falls back to scheme 3.

• Scheme 3: This scheme specifies names that can incorporate the physical
location of the connector—such as the slot address—on the motherboard.
These names can take the form of enpxxx. If this fails, the naming system
falls back to scheme 5 (note that scheme 4 is optional).

• Scheme 4: This scheme identifies names based on the MAC (Media Access
Control) address of the NIC (Network Interface Card) and selected by the
administrator by setting the HWADDR (hardware address) attribute in the
network configuration file. These names take the form of the name supplied
within the interface configuration file's DEVICE attribute. For example, if
you want to rename a LOM interface card from eno16777736 to internal,
working as root, you will edit the /etc/sysconfig/network-scripts/
ifcfg-eno16777736 file. You will be required to add the HWADDR attribute and
edit the DEVICE attribute so that the file reads similar to the following extract:
HWADDR="00:0c:29:57:ef:c4" #Using the MAC address for your
NICDEVICE="internal"

• Scheme 5: If all else fails, the naming system will fall back to the traditional
kernel unpredictable naming scheme, such as eth0, eth1, and so on.

To summarize, each interface device will normally have a two character prefix. This
denotes the protocol type of the NIC. The following list illustrates these prefixes:

• en: This denotes Ethernet
• wl: This denotes wireless LAN
• ww: This denotes Wide Area Wireless

The character that follows the prefix denotes the naming scheme used and the type
of hardware detected, as shown in the following table:

Position 3 of device name Description
o This is the onboard device
s This is the hot-plug slot
p This is the PCI or USB device

http://www.it-ebooks.info/

Chapter 2

A real-life network device naming example
In order to show you the consistent network device naming system on a physical
machine and a virtual machine we have been using so far, we will venture out to
my Dell laptop that runs on the Fedora 21 workstation. This has a wired network
card (which is not currently connected) and a wireless port (which is the active
connection). Using the ip address show command, we can see two physical
interfaces and the local or the loopback interface:

When we look at device names and ignore the local interface: lo, we see interface 2
as enp9s0 and interface 3 as wlp12s0.

For Interface 2:

• The wired Ethernet is en
• The PCI bus address is p9
• The slot number is s0

We can view this PCI device using the lspci command; the command and output is
as follows:

$ lspci | grep 09:00.0

09:00.0 Ethernet controller: Broadcom Corporation NetXtreme BCM5755M

Gigabit Ethernet PCI Express (rev 02)

We can see this does relate to the physical device mentioned in the naming scheme
(PCI Bus 9 and slot 0 in the Ethernet card).

[15]

http://www.it-ebooks.info/

Configuring Network Settings

[16]

For Interface 3:

• The wireless Ethernet is wl
• The PCI bus address is p12
• The slot number is s0

Again, using lspci and grep, we can see this device. The PCI bus (12)
in hexadecimal appears as 0c from the output of lspci because this uses
hexadecimal and the device naming scheme uses decimal values:

$ lspci | grep 0c:00.0

0c:00.0 Network controller: Intel Corporation PRO/Wireless 3945ABG
[Golan] Network Connection (rev 02)

Disabling consistent network device naming
For simplicity, especially where you have a single interface, you may preferably use
the traditional name (eth0). You may also have legacy software that requires this
naming scheme. These legacy names can still be used, as you learned when using
the naming scheme 4. Adding the HWADDR attribute to the network configuration file
and either renaming the /etc/syconfig/network-scripts/ifcfg-eth0 file or
configuring the DEVICE name attribute with a value of eth0 will help you achieve
your goal.

To set this globally across the system for all interfaces, you will be required to
use additional kernel parameters at boot time. This can be set via GRUB2 in the
/etc/default/grub file. The GRUB_CMDLINE_LINUX line should be changed to
the following code, appending the biosdevname and net.ifname command:

$ cat /etc/default/grub

Once the file is edited and saved, we can update the GRUB2 configuration with the
following command:

$ sudo grub2-mkconfig -o /boot/grub/grub.cfg

http://www.it-ebooks.info/

Chapter 2

We then need to reboot our system to see that the view changes to interface names:

$ sudo shutdown -r now

It's strongly recommended that you persevere with the
consistent names and accept that this naming scheme addresses
the inconsistent nature of device-naming that the traditional
kernel names previously presented to administrators.

For the rest of this book, we will use the standard naming system associated with the
single NIC on the RHEL 7.1 system, that is, eno16777736.

Using the ip command to display
configurations
We started this chapter outlining with the fact that the preferred command to use to
display and configure the IP address configuration from the command line on RHEL
7.1 is ip. The ip command is part of the iproute RPM package and replaces the
now obsolete ifconfig command, which is part of the net-tools RPM. The ifconfig
command is still installed, but ip is preferred.

We can display the IP address for all interfaces, using the address show option
for the ip command. This can be implemented in one of the three ways, shown
as follows:

• $ ip address show

• $ ip a s

• $ ip a

We start with the verbose use of options, where the full address show command is
used. This can be abbreviated to a s, or as the default action is show for the address
command, just use ip a. Extending this a little, we can display the IP address for just
a single interface or a single protocol as follows:

$ ip a s eno1677736

$ ip -4 a s eno1677736

$ ip -6 a s eno1677736

[17]

http://www.it-ebooks.info/

Configuring Network Settings

[18]

The following screenshot displays the command and output from the demonstration
system when you view the IPv4 address for the configured NIC:

The use of the dynamic term within the third line of the scope
global dynamic eno16777766 output is indicative of an
address assigned via DHCP (Dynamic Host Control Protocol).

To view the transmission statistics for this same interface, we change to the link
option, as shown in the following command line and output:

$ ip -s link show eno16777736

We can already start to feel the flexibility associated with this command, but we are
not restricted to just link and address as options. In the following commands, we
first view the route table and then the ARP (Address Resolution Protocol) cache.
Each command is shown in the verbose form and then short form. The shortened
form is especially useful if you can't spell neighbor:

$ ip route show

$ ip r

$ ip neighbor show

$ ip n

The ARP cache displays the MAC addresses of the devices
that you have connected to that exist on the same network.

http://www.it-ebooks.info/

Chapter 2

[19]

Using the ip command to implement
configuration changes
As a stalwart at displaying the configuration information, the ip command is a dab
hand at changing the IP address's dynamic configuration too, this time using add in
place of show. For example, to add an additional IPv4 address to our interface, we
will use the following command:

$ sudo ip address add 192.168.140.3/24 dev eno16777736

We can now view this information using the show command we looked at
previously, as shown in the following command and output:

$ ip -4 a s eno16777736

When we look carefully at the output, we can see the DHCP address we had before
and the additional address we have just applied. Although these settings have been
added only for this session, on a restart of the network or interface, we will revert to
the single DHCP assigned address.

To restart all interfaces using network services, we will use the following command:

$ sudo systemctl restart network.service

If we have more than one interface in the system and we are using the
NetworkManager service, which is the default interface, we can stop
and start a single interface using the following commands:

$ sudo nmcli dev disconnect eno16777736

$ sudo nmcli con up ifname eno16777736

There will be much more information on the nmcli command
later in this chapter.

So, although we can add IP addresses dynamically to our running system, if we
want the change or changes to be permanent, then we need to add the configuration
information to the configuration file.

http://www.it-ebooks.info/

Configuring Network Settings

[20]

Persisting network configuration changes
To change from the DHCP assigned address we are using on the demonstration
RHEL 7.1 system, we will assign a static address in the network configuration file
related to our /etc/sysconfig/network-scripts/ifcfg-eno16777736 interface.
To edit the text file, you can use your favored text editor: vi or nano; here, we will
use vi:

$ sudo vi /etc/sysconfig/network-scripts/ifcfg-eno16777736

After editing the file in the preceding command line, it should read similar to the
following file content. Of course, with any pertinent information to your network
being set as opposed to IP addresses, we use:

TYPE="Ethernet"

BOOTPROTO="none" #Change from dhcp to none

DEVICE="eno16777736" #use your device name

ONBOOT="yes"

PEERDNS="yes"

PEERROUTES="yes"

IPADDR="192.168.40.3" #use the IP Address that you want to assign

NETMASK="255.255.255.0" #Use the appropriate subnet mask

DNS1="192.168.40.2" #the address or your DNS server

GATEWAY="192.168.40.2" #the default gateway to use

DEFROUTE="yes"

IPV4_FAILURE_FATAL="no"

IPV6INIT="yes"

IPV6_AUTOCONF="yes"

IPV6_DEFROUTE="yes"

IPV6_FAILURE_FATAL="no"

NAME="eno16777736" #use your device name

UUID="980c9e81-f018-42ae-9272-1233873f9135" #use your device UUID

IPV6_PEERDNS="yes"

IPV6_PEERROUTES="yes"

IPV6_PRIVACY="no"

As always, take care when editing files. In reality, much of the file can stay as it is
because we edit changes to just the following one line:

BOOTPROTO="none"

http://www.it-ebooks.info/

Chapter 2

Add four new lines:

IPADDR="192.168.40.3" #use the IP Address that you want to assign
NETMASK="255.255.255.0" #Use the appropriate subnet mask
DNS1="192.168.40.2" #the address or your DNS server
GATEWAY="192.168.40.2" #the default gateway to use

With the changes made and saved, we need to refresh NetworkManager using the
following command:

$ sudo nmcli connection reload

This will re-cache the network configuration files. With this done, we can stop and
start the following interface:

$ sudo nmcli dev disconnect eno16777736

$ sudo nmcli con up ifname eno16777736

Alternatively, just restart the network service as we did before. This single command
replaces three commands here. However, it disrupts all interfaces. So, the following
command should only be used where we have a single interface:

$ sudo systemctl restart network.service

Now that we have a static IPv4 address configured for our interface, we will now
see that we lose the keyword dynamic from the output from the ip address show
command:

$ ip -4 a s eno16777736

We have now seen how we can successfully configure IPv4 settings from the
command line and through configuration files. We will now move on to the
final part of the network configuration: the hostname.

Configuring the RHEL 7 hostname with
hostnamectl
With the advent of systemd on RHEL 7 and its derivatives, we have a brand
new way to display and set the hostname using the hostnamectl command.
The advantage of this tool is that the static name and the transient name can be
configured in one step.

[21]

http://www.it-ebooks.info/

Configuring Network Settings

[22]

We will edit the /etc/hostname file and add the new static hostname. This is
then read by the kernel at system startup and displayed as the transient hostname,
which is often used as part of your BASH shell prompt. The transient hostname
can be displayed and set using the hostname command. This was a two part
process: using hostname to set the transient name maintained by the kernel and
editing the /etc/hostname file to ensure that it persisted across reboots.

With RHEL 7, we have these two hostnames and a third hostname: the pretty name.
The pretty name can display UTF-8 characters that allow you to embed spaces and
apostrophes. The pretty name, when set, is stored in the /etc/machine-info file.

To display the configured hostname, the hostnamectl command can be used.
The pretty name will only be displayed if the configured hostname contains
characters that cannot make up part of the static hostname. In the same way,
the /etc/machine-info file will only exist if the pretty name is used to store
a name incompatible with the /etc/hostname file:

To display the hostname as a standard user, the following command can be issued:

$ hostnamectl

As spaces are used in the hostname, the Pretty hostname will show. The Pretty
and the Static names relate to the /etc/machine-info and /etc/hostname file
respectively and can be used in the following command:

$ cat /etc/machine-info /etc/hostname

http://www.it-ebooks.info/

Chapter 2

The output for the preceding command line results in the following output:

PRETTY_HOSTNAME="Red Hat 7-1.tup.com"

redhat7-1.tup.com

To configure the hostname using hostnamectl, we use the set-name option, as
shown in the following command. This command does not need to be prefaced as
sudo if the user is a member of the wheel administrative group, but the user will be
prompted for their password. These permissions are configured using the policy kit:

$ hostnamectl set-hostname "Red Hat 7.tup.com"

This will set all three names; to see the transient name, a new shell should be
initiated by running the bash command. To set individual names, include the
correct option to hostnamectl as follows:

--transient

--static

--pretty

Introduction to the Red Hat
NetworkManager
The NetworkManager service has been a part of RHEL since version 6 and in its
simplest form allows users to configure network configuration settings (such as
joining Wi-Fi networks). Of course, this is really necessary when we consider laptop
users with a Fedora or an RHEL laptop. This service extends well beyond the GUI
and to server products installed with or without the X Server environment.

The NetworkManager service that ships with RHEL 7 is a dynamic network control
and configuration daemon to keep network interfaces active while they remain
available. As we have seen, the NetworkManager service not only maintains support
for the traditional ifcfg- file type, but also extends this support to additional
profiles. In this way, we can easily have a static IP address configuration for your
laptop for different offices that you may visit, rather than relying on DHCP on
each site.

[23]

http://www.it-ebooks.info/

Configuring Network Settings

[24]

Configuration of the NetworkManager service can be maintained via the GUI
control center or from the nmtui command line menu. We have also seen that
we can avoid the menu, enabling scripting events from the command line, using
the nmcli command.

To query the status of the NetworkManager service, we can use the systemctl utility,
as shown in the following command and the associated output screenshot:

$ sudo systemctl status NetworkManager.service

Users and administrators can interact with the NetworkManager service by using
one of the following utilities:

• The GNOME notification area icon
• The GNOME network settings control center
• The nmtui menu
• The nmcli command-line tool

http://www.it-ebooks.info/

Chapter 2

[25]

Interacting with the NetworkManager
using the Control Center
If you are using RHEL, CentOS, or Fedora on a graphical environment, then with the
GNOME control center, we can interact with the NetworkManger service. We can
also access network settings from the notifications area icon. This can be seen in the
following screenshot on the RHEL 7.1 system:

To access the same, but through the control center, we can use the SUPER key. In the
search dialog box, we will enter control network, as seen in the following screenshot:

Once we have accessed Network Settings, it's possible to simply disable all wireless
interfaces with the traditional Airplane Mode. In this way, you can be assured of not
plummeting to your certain death during takeoff and landing and still enjoy your
game of Candy Crush Saga.

On the left-hand side panel, we can view the current known interfaces and
the Network proxy settings. Here, we can add web proxies if required. On the
RHEL 7.1 system we are using in this book, we see two network interface groups
on the left-hand side panel:

• Wired
• Unknown

http://www.it-ebooks.info/

Configuring Network Settings

[26]

In the graphic, the Wired interface represents my gigabit Ethernet card and the
Unknown interface represents the local loopback connection. If your system includes
a wireless card, you may well see Wi-Fi as an option too. While selecting the Wired
interface from the left-hand side panel, the right-side panel will display your current
network profiles. As we have only one profile, the name of this profile is not shown,
but this will represent the default system profile we configured previously in this
chapter: eno16777736.

From the bottom of the right-side panel, we can create additional profiles with
the Add Profile button, whereas the gearwheel in the bottom right-side corner will
allow you to alter the properties of the current profile. All of this can be seen in the
following screenshot:

Adding a new profile with the
Control Center
More useful for mobile systems, such as laptop devices and tablets, we may
configure profiles to easily load network configuration information specific to the
location where you use the device. For example, if you are using a laptop at home,
you may have a specific static IP address set, whereas when at work, you may have
a DHCP-assigned address. Profiles can handle this situation easily and effortlessly.

Using the Add Profile button from the Network Settings control center, we are
presented with the New Profile dialog box. From the left-side panel, we can select
an option from the following given options:

• Security
• Identity

http://www.it-ebooks.info/

Chapter 2

[27]

• IPv4
• IPv6

We will create a new profile for DHCP for when at home; if you remember, we
set a static IPv4 address earlier in the section using the traditional ifcfg- script
located in the /etc/sysconfig/network-scripts directory. We will retain this
setting and additionally allow ourselves to switch from the static address to DHCP
and back as required.

Selecting the Identity option from the left-side panel, we will set Name to home-DHCP.
From the drop-down list, choose MAC Address associated with the interface that
we want to assign to this profile. Finally, we can deselect the checkbox to Connect
automatically so that the default connection will still be the static assignment we chose
earlier. We can manually select this profile as required. We can leave all the other
settings as they are; this includes the automatic DHCP assignment of addresses for the
IPv4 and IPv6 settings. Navigate to the bottom-right corner of the open dialog box and
select the Add button to create a profile. The following screenshot shows the settings
that we have chosen:

http://www.it-ebooks.info/

Configuring Network Settings

Having created the new profile, we can easily select between two profiles using
the GNOME notification panel, which simplifies the transition between differing
networks. In the following screenshot, we can see the currently selected eno16777736
profile and how we can switch to the newly created home-DHCP profile:

We have now seen how we can set the network profile information using graphical
tools on RHEL 7.1. For those running on RHEL or Fedora without the X server, we
can easily manage the NetworkManager connection using the nmtui ncurses menu.

Interacting with the NetworkManager
using nmtui
Just as with the GUI profile management within the GNOME control center, we can
use the text user interface provided by the nmtui command. This is the traditional
blue screen command-line menu provided by the ncurses system. If the command
is not available on your system, then it can be installed using yum, as shown in the
following command:

$ sudo yum install NetworkManager-tui

Once installed, the NetworkManager menu can be accessed using the following
command:

$ sudo nmtui

If you are using PuTTY to connect to your server via SSH, then in order to ensure that
the menu border show correctly, you should set the Character set translation option to
UTF-8. This can be found in connection settings and Window | Translation.

[28]

http://www.it-ebooks.info/

Chapter 2

The NetworkManager menu displayed on the RHEL 7.1 system used in this book
looks clean, if a little simple, and is displayed in the following screenshot:

The nmtui command also offers shortcut wrappers to specific tasks within the menu.
These take the form of the nmtui-edit, nmtui-connect, and nmtui-hostname
commands. The first two commands are useful when you already know the name of
the connection profile you want to activate or edit, whereas the last command sets
the hostname system-wide.

To activate the home-DHCP profile we created previously, we will issue the
following command:

$ nmtui-connect home-DHCP

This will effectively switch from the static IP address to the automatically
allocated DHCP address. You should issue this command from the console and
not remotely as you will lose your connection when the address is changed from
static to DHCP.

This can also be used to connect to a new Wi-Fi SSID, should you be geeky enough to
be using a command line-only version of Fedora while at Starbucks:

$ nmtui-connect Coffee-Shop-Wifi

To change the properties of the same connection profile, we will use the
following command:

$ sudo nmtui-edit home-DHCP

[29]

http://www.it-ebooks.info/

Configuring Network Settings

This will open up the property page for the homeDHCP connection profile in
readiness for editing purposes. To open the hostname menu page for editing
purposes, you can use the following command:

$ sudo nmtui-hostname

Extreme interaction with
NetworkManager using nmcli
For those who believe that the only true form of Linux is without the aid of menus,
using solely the wisdom handed down to you through your Jedi parentage, we have the
extreme sport of nmcli. Joking aside, working with the NetworkManager in this way,
without interaction of menus, will allow you to make changes in scripts, which can then
be implemented across many systems.

As a simple starter, we can use nmcli to scan for available Wi-Fi networks; the
output should show you the Wi-Fi SSID and strength as follows:

$ nmcli device wifi list

This procedure is greatly simplified compared to the traditional command-line
mechanism we have used before to display SSIDs with the iw command:

$ sudo iw wlp12s0 scan | grep SSID

SSID: hobbit

SSID: virginmedia1671684

SSID: VM260970-2G

SSID: virginmedia9066074

SSID: Edinburgh2013

SSID: TALKTALK-4C89F0

The process with nmcli is simplified for us, as the NetworkManager can use the
configured polkit permissions. These permissions or actions (using the polkit
language) are configured by the system administrator and are not meant to be
changed by users. The policy file is located at the /usr/share/polkit-1/actions/
org.freedesktop.NetworkManager.policy location.

We can use nmcli to display configured permissions with the following command:

$ nmcli general permissions

[30]

http://www.it-ebooks.info/

Chapter 2

Should we want to be able to create a connection for the wired interface when it's up
and available, we can do so with nmcli. This can also be easily scripted across many
devices as and when required. Firstly, we create the connection profile, as shown in
the following command and output:

$ sudo nmcli connection add con-name wired-home \

 ifname enp9s0 type ethernet ip4 192.168.0.8 gw4 192.168.0.1

Connection 'wired-home' (e17cb6b7-685f-4cf2-9e8b-16cbfae1f73a)
successfully added.

This command is greatly simplified when you know the fact that tab completion
is enabled even for subcommands and values—such as enp9s0—that we add as a
value to ifname.

To complete the task, we need to add the DNS configuration to the connection
profile, which we can affect with the use of the following command:

$ sudo nmcli connection modify wired-home ipv4.dns "192.168.0.3 8.8.8.8"

We can now display the properties with the following command:

$ nmcli -p connection show wired-home

The -p option used here is for the pretty output; for the terse output, -t may be
implemented. Either way, the output is too verbose to show as part of the book.

We have now replicated creating a connection profile that we first saw when we
started with the control center. We do not pretend that this is easy, but being able to
script this presents a multitude of options not available with any form of interactive
menu, be that the text menu from nmtui or the GUI from the control center.

[31]

http://www.it-ebooks.info/

Configuring Network Settings

[32]

Summary
In this chapter, we have really established a baseline of knowledge that we need to
begin to understand networking on the RHEL 7 family. To begin with, you learned
how to gain and manage privileges on RHEL using su and sudo. Further, we looked
at how to restrict the use of su to members of the wheel group with PAM. We have
also begun our administration in the way that we mean to continue, using sudo to
manage administrative tasks rather than logging in as root or using su.

With the ground knowledge of rights set, we moved on to understand the new naming
conventions of network devices on the Red Hat release. We learned why it's preferred,
compared to traditional names before moving on to the network configuration.

To configure network interfaces, we can use traditional ifcfg- scripts and these are
used by default. We can extend this to additional network profiles that are probably
most useful with mobile devices—such as laptops—that connect to different network
locations. We saw how these can be configured in many different ways from menus
to raw command-line tools.

Next up, we will look at how to configure key network services, such as DNS,
DHCP, and SMTP.

http://www.it-ebooks.info/

[33]

Configuring Key
Network Services

It must be said that having a network is great and most fulfilling; however, the
reasons for using that network must be challenged and understood. No one has a
network for the sake of having a network, so we must bring services to our network
to give it a purpose, meaning, and reason to exist.

Of course, there are many and varied services that we can add, many of which
are covered during the course of this book. To begin with, we will look at the
following topics:

• DNS (the name resolution)
• DHCP (the IP address assignment)
• NTP / PTP (time services)
• SMTP (e-mail)

Domain Name System
Domain Name System (DNS) servers help us to resolve friendly computer
names, such as www.packtpub.com, to a less human-friendly IP address, such as
83.166.169.231. In this way, mere humans can access many computer systems
by guessing the address or the DNS name. In the early days of UNIX computers,
where access was limited to a few academic systems, hostnames were distributed
by Network Information Service (NIS); a central computer maintained a single
file that mapped hostnames to IP addresses. This file was then pushed out to client
subscribers. Although this worked, it was clearly not scalable.

www.packtpub.com
http://www.it-ebooks.info/

Configuring Key Network Services

[34]

In 1988, the first release of the DNS server was developed by four graduates from
UCB (the University of California, Berkeley). This software in now maintained by
the ISC (Internet Systems Consortium). Even today, it's still known as Berkeley
Internet Name Domain (BIND).

On Red Hat Enterprise Linux 7.1, the version of the DNS server or bind that is shipped
is 9.9.4. Once installed, the version can be verified entering the following command:

$ named -V

The DNS server can be installed and run without changes to the configuration.
In this mode, it will operate as a Local Caching Only server. When operated in this
manner, a server can resolve names on the Internet, but it does not host any of its
own records. Additionally, in a setup without configuration changes, only localhost
can query the server. In its simplest form, a caching-only server is still useful, but
you will want to at least open the access control list to allow queries from your own
network for it to be useful. In this way, computers on a local network can resolve
names from a local server. Only the single server needs access to the Internet for
name resolution, decreasing the Internet footprint of the organization.

Installing and configuring a Caching Only
DNS server
To begin with, we will install the bind package on our system and configure it to
resolve names for hosts on the local network. There is little to do here other than a
simple change to the configuration file, but it will get us started.

To install bind from console, enter the following command:

$ sudo yum install bind

With the package installed, we will now need to edit the /etc/named.conf
configuration file:

$ sudo vi /etc/named.conf

We will edit three existing lines as follows:

• listen-on port 53 { 127.0.0.1; }; changes to the following:
listen-on port 53 { any; };

• listen-on-v6 port 53 { ::1; }; changes to the following:
listen-on-v6 port 53 { none; };

• allow-query { localhost; }; changes to the following:
allow-query { localhost; 192.168.40.0/24; };

http://www.it-ebooks.info/

Chapter 3

The changes that we have made are explained here:

• Allows the DNS server to listen on all IPv4 interfaces
• Disallow the DNS server to listen on IPv6, unless you need it to listen on IPv6
• Allows queries from my local network
• Adjusts the address range to match your network and the subnet mask

With the changes in place, we will be able to save them. We can test the changes
before we start the server. To do so, we will use the following command:

$ sudo named-checkconf

The output should be silent. The only output will occur if there are errors in the
configuration. If you prefer an output, then you can make use of the -p option:

$ sudo named-checkconf -p

Using this option, we will be presented with configuration options as they are
interpreted by the service. If there are errors, we will only see errors and not
the configuration.

We can now start and enable the DNS service with the systemctl command;
the order in which commands are executed is not important:

$ sudo systemctl start named

$ sudo systemctl enable named

For the purpose of these labs, we will not run the firewall at present. You can check
this on your system using the following command:

$ sudo systemctl status firewalld

If it's running, then either stop the firewall if it's not required or enable the DNS
traffic on UDP and the TCP port 53 to pass into the system. To stop and disable
the firewall, use the following command:

$ sudo systemctl stop firewalld

$ sudo systemctl disable firewalld

From the local system, we can test the name resolution using our DNS server; we will
use the IP address of our server to prove that it's accessible from the network, rather
than just from the localhost alias. You can use the same command and make sure that
the @address at the end of the sequence points to the address of your server:

$ dig www.packtpub.com @192.168.40.3

[35]

http://www.it-ebooks.info/

Configuring Key Network Services

Here, use the IP address of your DNS server in place
of the address we use.

You should now see the ANSWER section in your output, detailing the address of
the Packt server.

If you have another system on the same network, you can use the identical command
to verify that it does indeed work for any host on your network.

At this stage, we will have a working DNS configured in the caching-only mode.

Configuring clients to use this server
When we were using the dig command before to test our DNS lookups, we
had hardcoded the name server that we used, ignoring the client configuration.
Traditionally, the client configuration file was /etc/resolv.conf. We can still
use this, but more often in more modern Linux systems, this is overwritten by
the NetworkManager service, which will read the name server from the interface
configuration. In this way, we can use different DNS servers for different connection
profiles. Of course, DNS will work with other operating systems as well, including
your Microsoft Windows desktops and Apple iPhones. Very often, the DNS server
list is handed out to the DHCP service (Dynamic Host Configuration Protocol),
affecting the configuration across all DHCP clients. We will look at DHCP a little
later in this chapter.

On RHEL 7.1, we can use the following command to display an active connection:

$ nmcli con show active

My active connection shows eno16777736; this is the same system that we worked
with in the Chapter 2, Configuring Network Settings, where we looked at the consistent
network device name that we find on modern Linux systems.

We can modify DNS servers for this configuration using the nmcli command:

$ sudo nmcli con modify eno16777736 ipv4.dns "192.168.40.3"

If the connection that is being modified relates to a traditional ifcfg- script, the
corresponding file is also edited with the previous nmcli command. This is the case
with the connection that we have modified. We can view the changes by looking at
the file that nmcli modified:

$ sudo cat /etc/sysconfig/network-scripts/ifcfg-eno16777736

[36]

http://www.it-ebooks.info/

Chapter 3

[37]

To implement changes, we can restart the NetworkManger service as follows:

$ sudo systemctl restart NetworkManager

We can now perform the DNS lookup with dig without the need to specify the
address of our server:

$ dig www.packtpub.com

Here, we have been able to configure the local client to resolve hostnames from the
locally configured DNS server.

As a quick solution, editing the /etc/resolv.conf file
will work, but it may be overwritten if the changes are not
made with the NetworkManager service.

Configuring the DNS zone
One reason to configure a local DNS server is to provide a centralized configuration
for name lookups for your local servers. We will now look at how to configure a DNS
zone to provide a name resolution for local servers. We will configure a zone called
tup.local.; using the local suffix will ensure that the zone is configured locally and
only available to DNS servers we configure with this zone.

As a caching-only DNS server, we have not hosted DNS zones thus far. A DNS
zone is simply a text file that houses hostnames to IP address mappings. We can see?
which zones we host in the /etc/named.conf file. Zone files are stored in the /var/
named directory.

Referencing the zone from /etc/named.conf
Within the bind configuration file, we must point to the zone file. The following
example illustrates how this can be achieved:

Open named.conf using the following command:

$ sudo vi /etc/named.conf

Add the following section at the end of the file:

zone "tup.local." IN {
 type master;
 file "named.tup";
};

http://www.it-ebooks.info/

Configuring Key Network Services

[38]

Do not forget the dot after the domain name: tup.local.

With the file configured and saved, we can check the configuration file as before:

$ sudo named-checkconf

Creating the zone file
We have configured the DNS server to point to the named.tup file. By default, this
file needs to exist within the /var/named/ directory on RHEL 7.1. This directory
location is dictated by the directory directive in the main options of the named.conf
file. This extract is taken from the /etc/named.conf file and shows the configuration
of the directory root:

directory "/var/named";

First, create an empty zone file and set the permissions so that it can be read by the
DNS server. The touch command will create an empty file. We set the permissions
to be readable/writable by the user owner and only readable by the group owner.
Finally, we set the permissions for the group owner of the file to named (the group
used by the DNS server):

$ sudo touch /var/named/named.tup

$ sudo chmod 640 /var/named/named.tup

$ sudo chgrp named /var/named/named.tup

With the file and permissions in place, we can edit the file as root using sudo, so it
reads similar to the following screenshot:

http://www.it-ebooks.info/

Chapter 3

[39]

We can interpret the preceding screenshot line by line as follows:

• $ORIGIN tup.local.: This sets the name of the DNS domain to be
appended to all names not ending in a dot.

• $TTL 1D: This directive sets the default time that records may be retrieved
from cache TTL (Time To Live). The value is normally in seconds, but we
can use letters defining larger units, such as H for hours, D for days, or even
W for weeks. It's possible to overwrite this default value within an individual
DNS record. The larger the value assigned to TTL, the longer it will take to
propagate changes on the Internet because records may still be served from
cache for the TTL time period. The shorter the TTL is set, shorter the time to
propagate changes, but more lookups will be performed on the server.

• @ IN SOA ns1 root (…): This sets the Start Of Authority (SOA) record
for the tup.local. DNS domain. The @ symbol represents this domain and
the SOA record is set to the ns1.tup.local computer. Remember$ORIGIN
and the e-mail contact is root@tup.local.. The brackets contain the serial
number and timeouts used in the domain. The expiry record is overwritten
by the $TTL directive where it's used.

• NS ns1: This sets the name server record for the domain. If we have
additional slave servers, we can add more NS records in the zone.

• ns1 A 192.168.40.3: This sets the IP address mapping for the ns1.tup.
local. server to the IP address we have set on the system. A single A represents
an IPv4 address mapping, while AAAA will represent on IPv6 mapping.

When we complete the edit, we can check the zone syntax and integrity. In the
command line, we enter the following command:

$ sudo named-checkzone tup.local. /var/named/named.tup

The output should be similar to the following screenshot from the demonstration
system:

http://www.it-ebooks.info/

Configuring Key Network Services

[40]

Having edited the /etc/named.conf file and implemented the new zone /var/named/
named.tup database file, we are now ready to restart the service. We have also checked
named.conf with the named-checkconf command and the zone file with the named-
checkzone command, so we can be reassured of the integrity of the changes we have
made; with this in mind, we will restart the service with systemctl:

$ sudo systemctl restart named

We can use dig or even just ping to check the operation of the zone now:

$ ping ns1.tup.local

$ dig ns1.tup.local

Although we have only added a single record, there is nothing stopping us from
adding more records as required. The serial number is normally incremented after
zone changes, but it's used more to indicate when the changes have been made. Slave
servers should synchronize these changes. If you have only the master server, there
is no need to increment the serial number. Later in this chapter, we will add an MX
or Mail Exchange record to support the use of e-mail delivery in the out domain.

Configuring a DHCP server
The DHCP (Dynamic Host Configuration Protocol) server is used to assign IP
addresses to network hosts, rather than having to statically assign records to each
host. This is, of course, particularly useful where guest devices—such as mobile
phones and tablets—connect to you network.

On Red Hat Enterprise Linux 7, a single DHCP server can supply IPv4 and IPv6
configurations. Each configuration has its own separate file: /etc/dhcp/dhcpd.
conf for IPv4 configurations and /etc/dhcpd/dhcpd6.conf for IPv6 configurations.
Additionally, if you are used to the previous editions of Red Hat, there is no
longer any need to configure the interface in /etc/sysconfig/dhcp. RHEL 7 will
automatically listen on all interfaces that match a subnet definition in the dhcpd.
conf or dhcpd6.conf file. In other words, interfaces that the DHCP server will
listen for DHCP requests will match those interfaces that have addresses within the
defined DHCP subnet.

If you have not configured the DNS server on the same system, you
will need to create an empty lease file before the service will start, as
shown in the following command:
$ sudo touch /var/lib/dhcpd/dhcpd.leases

You can install the DHCP Server using the following command line:
$ sudo yum install dhcp

http://www.it-ebooks.info/

Chapter 3

[41]

In this example, we will configure the server to issue the IPv4 address configuration
by editing the /etc/dhcp/dhcpd.conf file. The configuration file will be empty,
except for a few comments. A simple configuration that is shown as follows, will
match the configuration that we have been using on our demo system:

$ sudo vi /etc/dhcp/dhcpd.conf

The resulting file should be similar to the following screenshot:

Let's interpret the preceding screenshot line by line as follows:

• option domain-name "tup.local";: This configures the domain name to
append to the client name.

• option domain-name-servers 192.168.40.3;: This sets the DNS server or
servers. If more than one server is used, addresses are separated by spaces.

• default-lease-time 86400;: This is a value specified in seconds, where we
set the DHCP lease time. The value of 86400 is one day. The maximum lease
time is similar, but it's used only if a client requests a lease time.

• ddns-update-style none;: This disables the dynamic DNS, according to
which the DHCP server will create DNS entries for clients that are issued
with an IP address.

• log-facility local7;: This sets the syslog facility that is used by DHCP.
Entries in log files will be shown as coming from the local7 facility. DHCP
does not have its own facility entry.

• Then follows subnet definitions, where we describe the network, subnet
mask, address, and options that will be issued for the subnet.

http://www.it-ebooks.info/

Configuring Key Network Services

[42]

With this, we should now be familiar with the next step. Here, we start and enable
the service using system:

$ sudo systemctl enable dhcpd

$ sudo systemctl start dhcpd

If you are running on a network where a DHCP server is already present,
you will need to ensure that it's stopped before stating your own server.
This includes the VMware Player and Virtual Box applications that can
issue addresses on their private networks through their own DHCP
service. Refer to your virtualization software for more help if required.

If you have additional RHEL 7 clients on a network, they can be forced to renew their
DHCP leases with the following command:

$ sudo dhclient -r <interface>

Here is an example:

$ sudo dhclient -r enp12s0

The preceding command will renew the DHCP lease on the Ethernet PCI card
plugged in to the PCI bus address 12 and slot 0. If a lease or leases have been issued
by your server, you can check the leases file. This can be read as a standard user with
the following command:

$ cat /var/lib/dhcpd/dhcpd.leases

The following screenshot shows a lease from the demonstration RHEL 7.1 system
and the lease for the host named trusty:

With the DHCP server in place, we will move on to how to configure our basic
networking services with a DNS and DHCP server. We will make this a little
better by looking at time services.

http://www.it-ebooks.info/

Chapter 3

Configuring time services on RHEL 7
One of the essential services on your network is the supply of accurate time. This
is required for authentication with Active Directory or other Kerberos-based
mechanisms and to make timestamps useful in log files.

Network Time Protocol (NTP) uses UDP and the traditional port 123. This protocol
dictates the number of seconds that have elapsed since midnight on January 1, 1900.
NTP is 32 bit, which means that the maximum time will be reached in 2036; however,
as only the difference in timestamps is used rather than the actual time, the date does
not present an issue unlike UNIX time ending in 2038, which is a little more serious.

Once the time service is started and synchronized with another time source, the
client time can be changed to match the server's time as long as the time is said to be
sane. Insane time is said to be a server, offering a time with more than 1000 seconds
offset to the client. Using this level of sanity, a client is prevented from synchronizing
with a rogue time source.

It's also possible to deploy Precision Time Protocol (PTP). This works with a
hardware or software support on your Network Interface Card (NIC). Firstly, we
will look at common NTP implementations and then look at PTP.

The provision of NTP on RHEL 7 can be done via the chronyd or ntpd daemon itself.
The chronyd daemon is enabled by default; however, this is really designed for
desktops and machines that are often disconnected from networks. Synchronization
of time with chronyd is much quicker than ntpd and is therefore suitable for
machines that are booted frequently or often suspended. The ntpd daemon is still
preferred for servers because it supports more authentication options and can
broadcast time over the network.

To help maintain accurate time even when the time server may not be available, both
chronyd and ntpd can implement a drift file. The drift file is maintained on the client
and shows the offset in the frequency of the local hardware clock and the frequency
of the remote time source.

NTP is based on a hierarchy of servers. Each server is assigned a stratum number.
The possible start values range from 0 to 15. Stratum 16 indicates that time services
are not available. A time server with a stratum value of 0 gets its time from a physical
time source (such as a GPS clock or an atomic clock). A stratum 1 server retrieves its
time from a stratum 0 server, and so on.

[43]

http://www.it-ebooks.info/

Configuring Key Network Services

[44]

Implementing chronyd
As mentioned in the introduction of this section, chronyd is enabled by default on
the RHEL 7.1 system we are using for this book. We can see the output of the status
subcommand for this service with systemctl in the following screenshot:

As we can see from the preceding output of sudo systemctl status, chronyd
is described as an NTP client/server. This is similar to what we expect from the
traditional ntpd daemon. If chronyd acts as a service as well, then we should
listen on port 123. We can use the netstat command to display this. If we use the
command with root privileges, we also see that the service holding the port open is
chronyd. The -p option displays this, but requires root privileges.

We run the following command:

$ sudo netstat -aunp | grep 123

The output is shown in the following screenshot:

Going beyond what the output of systemctl status can display to use, we
can see more detail on the synchronization status of chronyd using the chronyc
command-line tool. Hopefully, you can see the pattern in the names now: chronyd
for the service or daemon and chronyc for the command-line tool.

http://www.it-ebooks.info/

Chapter 3

To show which server has been selected and the status of synchronization, we will
use the following command:

$ chronyc tracking

The following screenshot shows the output of the chronyc command. If you look
carefully at the output, you will see the command and then the output that follows
the issuance of the same:

Reference ID shows the current server that we use to synchronize time with.
Frequency shows as ppm (parts per million). This indicates the rate at which the
system clock can become wrong if it was not synchronized. The value here of 0.8
means that after 1,000,000 seconds of not synchronizing, the clock will have an
inaccuracy of 0.8 seconds; not at all bad. Update Interval shows how frequently
we are currently synchronizing This expands to a much larger value than possible
with ntpd being limited to 2 ^ 10 seconds (1024). This interval is quite permissible,
given the accuracy of our clock.

With the following command, we can display all servers that we have configured to
synchronize with:

$ chronyc sources

[45]

http://www.it-ebooks.info/

Configuring Key Network Services

[46]

If we want an on screen display of the meaning of columns, we can use the -v
option. The output is shown in the following screenshot:

If we want to synchronize ourselves with one of our own local time servers, we can
edit the /etc/chrony.conf configuration file. It will seem reasonable to allocate one
server on your network as a time server and use this server as a time reference for
the network. The single server then can synchronize with external time sources. This
ensures accurate time to all servers on the network while maintaining a small Internet
footprint, thus limiting servers that need to access the time servers on the Internet.

The server directive within the configuration file defines potential synchronization
partners. To set a bias towards your local server, the prefer option can be used.
The following screenshot shows my edited file, where I leave just one of the original
entries and add my own local time source:

http://www.it-ebooks.info/

Chapter 3

[47]

For any changes to take effect, the chronyd service should be restarted:

$ sudo systemctl restart chronyd

The frequency of synchronization will start slowly and gradually rise to match the
accuracy of the offset frequency. Checking the output of chronyc tracking soon after
the restart will show a value of 64 seconds for Update Frequency; however, this will
increase to a larger interval over time.

Implementing ntpd
If you want to revert to the traditional ntpd daemon for time services, you can install
the ntp package. The main advantage of the traditional package is the option of
broadcast and stronger ACL (Access Control List). To install the package, you can
use the following command:

$ sudo yum install ntp

The configuration file is located at /etc/ntp.conf and is not similar to the chrony
file. When we edit ntp.conf in a similar way to chrony.conf, we will be able to
configure a local server as before, as shown in the following screenshot:

The additional ACLs that we find here are defined using the restrict keyword.
The local host address is not restricted at all, although everyone else is affected by
the default restriction.

The default restriction is explained here:

• nomodify: This prevents any changes to the configuration via the
NTP protocol.

• notrap : This prevents ntpdc control traps that are designed for use by the
remote logging program.

http://www.it-ebooks.info/

Configuring Key Network Services

• nopeer :This prevents peer associations from being created, where 50 percent
adjustments are made by each peer.

• noquery :This prevents information on the status of the time server being
accessed. Do not confuse this with preventing access to a time server. This
option will still allow normal NTP time queries from clients. Should you
want to restrict access to the time service, use noserve.

When you are comfortable with the changes made to your /etc/ntp.conf file, we
will need first to stop and disable the chronyd service and then enable and start the
ntpd service:

$ sudo systemctl stop chronyd

$ sudo systemctl disable chronyd

$ sudo systemctl enable ntpd

$ sudo systemctl start ntpd

To query the status of a service, we will use the ntpq -p command. The output is
shown in the following screenshot, indicating on my system that the server being
used to synchronize with is 192.168.0.3 (indicated by asterix):

Implementing PTP on RHEL 7
Precision Time Protocol (PTP) like NTP is used to synchronize clocks on
a network, but unlike NTP, if PTP is used with hardware support that can achieve
sub-microsecond accuracy; support for PTP comes from your NIC in either software
or hardware forms. The linuxptp package provides ptp4l and phc2sys programs
(PTP for Linux and physical clock to system clock). However, phc2sys is only
needed for hardware timestamping. Although implemented within NICs, many
networking components (including switches) support PTP in software or hardware
modes, thus enabling servers to synchronize time with their switch. The process is
far more automated than traditional NTP and more accurate with each clock running
the best master software that can select the best master to synchronize with. It's best
suited to Enterprise networks because switches will often provide time to devices
they serve.

[48]

http://www.it-ebooks.info/

Chapter 3

[49]

Many NICs support software timestamping, but to query your own interface, use
the following command, which will display the timestamping capabilities of your
selected interface:

$ ethtool -T eno16777736

Adjust the preceding command to match the interface that you wish to interrogate.
For the software support, we need to find the following lines in the output:

• SOF_TIMESTAMPING_SOFTWARE

• SOF_TIMESTAMPING_TX_SOFTWARE

• SOF_TIMESTAMPING_RX_SOFTWARE

For the hardware support, we will need the following options:

• SOF_TIMESTAMPING_RAW_HARDWARE

• SOF_TIMESTAMPING_TX_HARDWARE

• SOF_TIMESTAMPING_RX_HARDWARE

The output from my system is shown in the following screenshot:

To install linuxptp on the system, we can use the following command to install
from standard Red Hat repositories:

$ sudo yum install linuxptp

The services can be run from the command line as a simple test. However, prior to
this, we should stop NTP if it's running. This is shown in the following commands:

$ sudo systemctl disable ntpd

$ sudo systemctl stop ntpd

http://www.it-ebooks.info/

Configuring Key Network Services

[50]

To start a service from the command line rather than as a daemon, we can verify that
it works using the following command:

$ sudo ptp4l -i eno16777736 -m -S

This starts the service using the interface we specify using the -i option, we ask
output to go to the screen with the -m option and we set the software mode with
the -S option.

The service will listen on UDP ports 319 and 320. The output of the command is
shown in the following screenshot:

Once we are happy with our configuration, we can create the startup configuration
file and adjust the sysconfig file. We will start with the sysconfig file:

$ sudo vi /etc/sysconfig/ptp4l

Remove the interface option at the end of the line. The file should read the same as
the following screenshot:

Next, we will rename the existing configuration and create a minimal configuration
that supports the same options that we used from the command line as follows:

$ sudo mv /etc/ptp4l.conf /etc/ptp4l.conf.orig

$ sudo vi /etc/ptp4l.conf

http://www.it-ebooks.info/

Chapter 3

[51]

The ptp4l.conf file should be similar to adjusting the interface in order to match the
interface on your own system. The following screenshot shows the ptp4l.conf file
on my system:

We are now ready to implement ptp4l as a service. With the systemctl command,
we will be able to enable and start the service, as shown in the following commands:

$ sudo systemctl enable ptp4l

$ sudo systemctl start ptp4l

Using the status subcommand to systemctl as in the previous commands, we will
see the output similar to the following, indicating that the service has started and
looking for clock announcements:

http://www.it-ebooks.info/

Configuring Key Network Services

[52]

When the server is running, it may listen for other clock announcements and then
negotiate as to which will be the grand master. In the following screenshot taken
from the demonstration system, we can view the output of the systemctl status
command. From the log extract, we can see the election of the new grand master:

We have now seen how to implement time services on Linux using either NTP,
Cronyd, or PTP. With accurate time, we can now move forward to e-mail and
SMTP (Simple Mail Transfer Protocol).

Implementing e-mail delivery on RHEL 7
The default SMTP server used in the current release of RHEL is Postfix; the original
Sendmail package is still available, but is no longer the default.

It's normal for the e-mail server to listen on the localhost or loopback address only
when using default settings. In this way, local e-mail delivery is possible out of the
box. This is used by many services, including the crond job schedule manager. If we
wanted to enable Postfix to listen on all interfaces and receive messages from remote
systems, there is a little configuration required.

Firstly, we will back up and tidy the main configuration file. There is a tendency
for many software packages to over comment their configurations. This can cause
issues where you think that you have implemented a change; however, it was
also set later on and you may not have noticed it. There are 679 lines in the default
configuration file: /etc/postfix/main.cf. We will back up the file so that we do
not lose comments and documentations, but we will also have a new working file
with less than 10 percent of the number of lines. The following command shows
how this is done:

$ sudo sed -i.bak '/^#/d;/^$/d' /etc/postfix/main.cf

This reduces the file from 679 lines to 25 lines and is far easier to work with. We can
now edit this file without any distractions. We will add two new lines and edit two
existing lines to the /etc/postfix/main.cf file. This will need to be edited as root.

We will edit the inet_interfaces = localhost line so that it reads as follows:

inet_interfaces = all

http://www.it-ebooks.info/

Chapter 3

[53]

This will enable the SMTP service to listen on all interfaces, rather than just the
loopback addresses.

We also need to make sure that we receive e-mails for the correct host and domain.
This is controlled through the mydestination directive; however, we have to add
the myhostname and mydomain directives before the mydestination line. These
are the two lines that we add. We also need to add $mydomain to the existing
mydestination line. On my system, these lines are set as follows:

myhostname = ns1.tup.local
mydomain = tup.local
mydestination = $myhostname, localhost.$mydomain, localhost, $mydomain

The following screenshot shows the top few lines of the file where these changes
have been implemented:

With these edits is place, we can save the file and restart the SMTP service. The
following command shows how to restart the Postfix SMTP service:

$ sudo systemctl restart postfix

Adding an MX record to the DNS server
If we are to receive an e-mail for the domain, we will need an MX record (e-mail
exchange) to the DNS database that we created earlier in this section. The file that
was used earlier for the tup.local. DNS domain was /var/named/named.tup.
The record that we add for the MX or Mail Exchange record should be similar to
the following line:

tup.local. MX 10 ns1

http://www.it-ebooks.info/

Configuring Key Network Services

[54]

With this setting, we configure the MX or Mail Exchange priority to 10. The lowest
priority MX Record is the e-mail server that is used first if more than one e-mail
server record exists.

The updated zone file is shown in the following screenshot:

With these updates in place, we can check the zone and restart the server.
For convenience, the commands are listed here:

$ sudo named-checkzone tup.local /var/named/named.tup

$ sudo systemctl restart named

We can verify that DNS is working with the following command:

$ dig -t MX tup.local

To test the e-mail delivery, we should be able to send e-mails to the domain:

$ mail root@tup.local

We will be prompted for the Subject message and then we can enter the e-mail
we wish. To end an e-mail, we will include a line with just the period or a dot
character and nothing else. This should be delivered to the root on your system
being recognized as the e-mail server for the domain.

To view the message system working in more detail, we can take a look at the log
files. To see the recent activity, we can use the tail command as follows:

$ sudo tail /var/log/maillog

We now have a simple e-mail server to go with time, DNS, and DHCP services.

http://www.it-ebooks.info/

Chapter 3

[55]

Summary
In this chapter, you learned how to configure some of the fundamental network
services often associated with Linux. We started off with how to set up the name
resolution using DNS and ended up finishing on the same topic as we added e-mail
server records to DNS. Having looked at DNS, we stayed alliteratively with D and
studied DHCP, thus allowing a supply of IP configuration to the network. This took us
to the complexities of the different time services that are on offer with chronyd, ntpd,
and ptp4l. At the end of the chapter, we looked at a simple configuration of the Postfix
SMTP server on RHEL 7. This should give you a simple overview of services that you
can expect to work with on a day-to-day basis with Enterprise Linux.

In the next chapter, we will see what is new on RHEL 7 and 7.1 and how to set up
iSCSI storage services. You will find that the ISCSI target is now kernel-based and
works very differently to the previous iSCSI target service on RHEL 6.

http://www.it-ebooks.info/

http://www.it-ebooks.info/

Implementing iSCSI SANs
A really big change that you may notice on RHEL 7 compared with earlier releases
is that the iSCSI target service is now part of the kernel. This is part and parcel of
the move to version 3.x.x of the Linux kernel that we see in the latest Enterprise
offering from Raleigh, NC. The management and configuration of the iSCSI server
or target is completely revamped. You will soon learn how to share disks and
partitions with devices on your network. In doing so, we will look at how to
configure the following prerequisites:

• The iSCSI target (server)
• Logical volumes with LVM
• Installing the targetd service and targetcli tools
• Managing iSCSI targets using targetcli
• The iSCSI initiator client

The iSCSI target (server)
The iSCSI target is a software that makes disk space available on a network. This
service shares disks rather than filesystems and establishes a Storage Area Network
(SAN). This SAN storage can be used so that servers can share same disks, a
situation that is often required where other network services are clustered and need
access to shared disks on the network. It's usual that only one server will have access
to each shared disk at any one time. The iSCSI target can share complete disks, but
it's often more efficient to share the exact space required by the client through logical
volumes implemented with LVMs. As well as sharing block devices, it's also possible
to create files and share the file space as disks through the target server.

[57]

http://www.it-ebooks.info/

Implementing iSCSI SANs

The disk IO passes through standard network connections to iSCSI servers. So, the
faster the network connection, the better the storage performance. Although iSCSI
will work on 1 GB Ethernet networks, 10 GB Ethernet is preferred for Enterprise
usage. Having said that, for home or small office use, you will find that 1 GB network
speed should be fine (especially if you can define a separate network segment to
isolate the iSCSI traffic from the rest of your network). The default TCP port used by
the target is 3260.

Managing logical volumes with LVM
Although we can share the entire disk space or disk partitions, it really makes sense
to share just the disk space that a client service requires. So, for example, if a web
server requires 20 GB of space for web files, we can share just that absolute space,
rather than the whole disk that may be terabytes in size. To do so, we will create
logical volumes and share these as block devices. To implement LVMs, we create
three objects:

• Physical volumes: This represents the raw disk space as disk partitions.
When we use partitions, the partition type should be set to Linux LVM
with an ID of 8E using the fdisk partitioning tool.

• Volume groups: This aggregates physical volumes together so that the disk
space can be consumed to logical volumes.

• Logical volumes: This represents the block device that can be shared.
It consumes space that is allocated from volume groups.

On the demonstration RHEL 7.1 system that we will use for this course, I have three
disks attached currently. We can use part of the space on the third drive for the LVM
system. We will start by partitioning the third disk (currently unpartitioned) so that we
can use some elements of this disk for LVM and other elements for other filesystems.

Partitioning the disk
Using the fdisk command, we can partition the disk as required. We will use a
single extended partition and create logical partitions therein. This is purely to
allow many partitions that we can use here and in later chapters:

$ sudo fdisk /dev/sdc

Take care with the device name that you use!

[58]

http://www.it-ebooks.info/

Chapter 4

[59]

When you run the fdisk command, you will be presented with a menu. The m
command can be used to see menu choices, but we can use n to create a new partition
and then e to create an extended partition. We will enter to accept the defaults for the
partition number and the start and end sectors. We will set the extended partition to
use the complete disk.

Now, we will use n again to create another new partition; this time we will choose l
for logical reasons. The partition number will default to 5, so /dev/sdc5 in my case3.
We can accept the default starting sector, but we will limit the size to 200 M with
+200M as the ending sector. The following screenshot illustrates this setting:

With the settings entered and still within the interactive fdisk command, we can use
the t option to set a type. By default, this will be set to 83. When you enter t, you
will be asked for the partition number, which will default to 5. To type the partition
code, we will use 8e for LVM. Subsequently, we will use p to print the configuration
and then w to save the changes and exit the program.

Creating the physical volume
So far, we have created a partition for LVM to use, but this is not part of any LVM
system yet. To mark it as available, we will use the pvcreate command:

$ sudo pvcreate /dev/sdc5

To display the LVM physical volume on a system, you can use either the pvs
command or the pvscan command as the root user. The output of sudo pvscan
is shown in the following screenshot:

http://www.it-ebooks.info/

Implementing iSCSI SANs

The output shows that we already have LVM in use on this system because this is the
default on RHEL and many other systems. The new PV is shown as /dev/sdc5, but
without any membership of a volume group (VG).

Creating the volume group
As we already have a volume group in place, we will use that group and extend it
to include the new PV using the vgextend command. We want to keep this volume
group separate and solely for space to be shared with the iSCSI Target. For this
reason, we will create a new volume group with the vgcreate command, as shown
in the following code example:

$ sudo vgcreate iscsi /dev/sdc5

Using this command, we will create a new volume group called iscsi and use
/dev/sdc5 PV.

Similar to physical volumes, we can use vgscan or vgs to display information on
the volume groups that are available. The output from sudo vgs is shown in the
following screenshot:

From the preceding output, we can see that our newly created VG named iscsi has a
single PV connected to it, but as yet, no logical volumes (LV), which we will create next.

Creating logical volumes
Logical volumes (LVs) are block device units that we can use locally or (in our case)
share via iSCSI. We create LVs using the lvcreate command. An example is as follows:

$ sudo lvcreate -n web -L 100M iscsi

As is normal, we will not use all of the available space and just use the space
requested by the web team for their new web volume. The -L option sets the
size we allocate. We will allocate 100M; -n sets the name to web in this case,
whereas the VG name is appended to the end of the command string.

[60]

http://www.it-ebooks.info/

Chapter 4

[61]

This command will create a block device in the /dev directory, but this device is
usually accessed via symbolic links. The following two symbolic links will be created:

• /dev/mapper/iscsi-web

• /dev/iscsi/web

In our case, these link to the /dev/dm-2 block device. On your system, the actual
block device name will depend on how many existing LVs you have. This is why the
OS uses symbolic links because this name is determinable, whereas the actual block
device name is not so determinable.

If you can detect a pattern here, you will realize that, in order to display information
about LVs on a system, we can use lvs or lvscan. The output of the sudo lvscan
command is shown in the following screenshot:

At this stage, we have a working block device that we can use with the iSCSI target
service to share between servers on the network. We will now look at how to
configure the iSCSI target on RHEL 7.1.

Installing the targetd service and targetcli
tools
To manage the kernel-based iSCSI Target service on RHEL 7, we will need to install
the targetd and targetcli package, as shown in the following command:

$ sudo yum install targetd targetcli

http://www.it-ebooks.info/

Implementing iSCSI SANs

From the output, we can see that additional packages are installed; however, it's
more interesting to see how Python is used as a major tool to manage iSCSI. The
following screenshot is an extract from the command line output:

Although the iSCSI target runs as part of the kernel, the targetd package provides
a service. This service is used to load the iSCSI target configuration. This is all that
targetd does, so we never need to start this service as such; just ensure that targetd
is enabled for autostart, as shown in the following command:

$ sudo systemctl enable targetd

Once the system startup enables the targetd service, it ensures
that the targetcli restoreconfig command is executed. It
also ensures that the current configuration is loaded on boot.

We have now installed management tools for the targetcli iSCSI target and the
targetd service, which provides a mechanism to enable the configuration to be read
at boot time. We will now move on to how to configure the target with targetcli.

Managing iSCSI targets with targetcli
The targetcli command is a shell to view, edit, save, and load the iSCSI target
configuration. When you look at the configuration, you will see that targetcli
provides a hierarchical structure in a similar way to a filesystem.

[62]

http://www.it-ebooks.info/

Chapter 4

To invoke the targetcli shell, we will run this command as root using sudo. You
will see that on the first run of the command, a preferences file is created. This is
illustrated in the following screenshot:

As you can see in the preceding output, you can enter help to display a list of
commands that can be entered. To view the available configuration objects, we
can use the ls command. The output is shown in the following screenshot:

We will work with backstores objects to start with so that we can add it to the LVM
block device in the configuration in addition to the fileio backstore. As the name
suggests, this will be a file within the filesystem; we can share this to a network as a
virtual disk.

Creating storage backstores
We will work from the root of the targetcli configuration; this should be exactly
where we are, but we can always use the pwd command to display our working
directory. If required, we can change it to the root of the configuration with cd /.

[63]

http://www.it-ebooks.info/

Implementing iSCSI SANs

While using the targetcli command, we can use CTRL + L
to clear the screen as we would in Bash, but most importantly,
the Tab key completion works, so we do not need to type the
complete name or path to objects and properties.

To create a new block, back store on the LVM LV that we created earlier in this
section. If we recall, this was /dev/iscsi/web:

/> backstore/block/ create web_lv /dev/iscsi/web

This will create the block backstore with a name called web_lv. Using the ls
command again will list the additional object within the hierarchy. In the following
screenshot, we see the creation of the backstore and the subsequent listing:

We will also add a new backstore called fileio. The creation of the new backstore is
similar to the root of the configuration:

/> backstores/fileio create file_store /tmp/fs 100M

This command will create the backstore and the physical file, which we will use as a
virtual disk. If the file already exists, we omit the size parameter. Both these objects
will show in the listing if we choose to use the ls command again.

Other backstore types include pscsi and ramdisk. These represent Passthrough
SCSI connections that refer to physical iSCSI devices and Memory Based Disks,
which, as with fileio, can be created on the fly using targetcli.

[64]

http://www.it-ebooks.info/

Chapter 4

Creating iSCSI targets
The iSCSI objects that we see in the main list represents iSCSI targets and their
properties. Firstly, we will create a simple iSCSI target with default names. We
can then delete this object and see how to create our own target with the correct
naming convention:

/> iscsi/ create

This will create an iSCSI target and listen on the TCP port 3260. There will not be
any LUNS or backstores connected, and the IQN (iSCSI Qualified Name) will be
system generated. We can always add the backstore, but most likely, we want to use
our own name. So, in this case, we will delete the object. The IQN on my system was
generated as iqn.2003-01.org.linux-iscsi.redhat7.x8664:sn.ce1ebea336a2,
but do not forget that we can use the Tab key completion. So, we do not need to write
the complete name while deleting or editing it. The following command displays
this, but it may wrap when displayed or printed so that it is executed as a single line
of code:

/> iscsi/ delete iqn.2003-01.org.linux-iscsi.redhat7.x8664:sn.
ce1ebea336a2

We will now create an iSCSI target by supplying a custom IQN. To perform this, we
create the object as before, but this time, specify the name that is usually written to
contain the date and the reversed DNS name. The following command is an example
that we will use in this book:

/> iscsi/ create iqn.2015-01.com.tup.rhel7:web

IQN starts with iqn, which is followed by the year and month it was created and the
reverse DNS name. We can add the description of the target with the :web at the end,
indicating that this is a target for the web server.

We can filter what is displayed using the ls command by adding the object hierarchy
that we want to list. For example, to list targets, we will use the ls iscsi command.

[65]

http://www.it-ebooks.info/

Implementing iSCSI SANs

[66]

The output of this command is shown in the following screenshot:

Now we have our customized name for the target, but we still have to add the LUNS
or logical units to make the SAN (Storage Area Network) effective.

Adding LUNS to the iSCSI target
Staying with the targetcli shell, we will now move on to our target and TPG
(Target Portal Group) object. Similar to the filesystem, this is achieved using the
cd command, as shown in the following command:

/> cd iscsi/iqn.2015-01.com.tup.rhel:web/tpg1/

We can run ls from here, but the content was included in the previous listing that
we ran from the root of the configuration. We have one portal that listens on all IPv4
interfaces on the TCP port 3260. Currently, we have no acls or luns. To add a LUN,
we will use the following command, which will utilize the LVM block backstore:

/iscsi/iqn.20...rhel:web/tpg1> luns/ create /backstores/block/web_lv

This will have an additional side effect of activating a backstore. This can be seen
by listing the /backstores object. The command and output are shown in the
following screenshot:

http://www.it-ebooks.info/

Chapter 4

[67]

Adding ACLS
We are not required to add ACLS, but often we only want a single host, perhaps a
virtual cluster device in order to access the LUN. If there is no ACL, we will need
to set a property so that the LUN does not default to read only.

To create an ACL, we limit the access from LUN to a given initiator name or names
that we mention in Access Control List (ACL). The initiator is the iSCSI client
and will have a unique client IQN configured on the initiator in the /etc/iscsi/
initiatorname.iscsi file. If this file is not present, you will need to install the
iscsi-initiator-utils package. The filename used to configure the initiator name
will be consistent for Linux clients, but will differ for other operating systems. To
add an ACL, we will remain with the current configuration hierarchy: /iscsi/iqn…
.:web/tpg1 and issue the following command, again written as a single line:

/iscsi/iqn.20...rhel:web/tpg1> acls/ create iqn.2015-01.com.tup.web:web

This ACL restricts access to the initiator listed within the ACL. Be careful if you ever
change the initiator name because the ACL will also need to be updated. The initiator
is the iSCSI client.

Using the ls command from this location in the configuration hierarchy, we see
the output similar to the following screenshot, which also includes the command
to create the ACL:

If you do not add an ACL, the LUN will be read only. If you require the LUN
to be writable, you will need to use the following command in order to set the
required attribute:

/iscsi/iqn.20...rhel:web/tpg1> set attribute demo_mode_write_protect=0

The iSCSI target is now configured. Exiting targetcli should save this
configuration, but you may feel safer to manually save your changes.

http://www.it-ebooks.info/

Implementing iSCSI SANs

To do this, return to the root of the configuration and enter the saveconfig
command, as shown in the following example:

/iscsi/iqn.20...rhel:web/tpg1> cd /

/> saveconfig

/> exit

The targetd service that we enabled earlier in this chapter
runs the restoreconfig command from targetcli. This
is used to load the configuration when the system boots.

With the configuration saved, we can migrate to the client in order to look at the
iSCSI Initiator and see the disk sharing at work on our SAN.

Working with the iSCSI Initiator
The iSCSI Initiator or client on RHEL 7 is installed with the iscsi-initiator-utils
package; you can verify that this is installed on your system using the yum command,
as shown in the following example:

$ yum list iscsi-initiator-utils

If it's listed as Installed, all well and good, but if it's listed as Available, you will
need to install it.

For the purpose of this exercise, we will use a separate RHEL 7 system as our
initiator and connect it to the existing target. We will need to edit the /etc/iscsi/
initiatorname.iscsi file on the new RHEL 7 system to ensure that the name is set
to match the name we added to the ACL in the earlier section of this chapter; we can
display this using the cat command, as shown in the following screenshot:

We will use the main client tool: iscsiadm. This was installed with the previously
mentioned package. To discover iSCSI LUNS on the target, we will use the following
command:

$ sudo iscsiadm --mode discovery --type sendtargets \

--portal 192.168.40.3 --discover

[68]

http://www.it-ebooks.info/

Chapter 4

The output should be similar to the following line:

192.168.40.3:3260,1 iqn.2015-01.com.tup.rhel7:web

Now, we have seen that we can connect to the iSCSI target and have it sent us the
configured LUNS. We should now connect to this LUN and use the same command
with the following options:

sudo iscsiadm --mode node \

--targetname iqn.2015-01.com.tup.rhel7:web \

--portal 192.168.40.3 --login

The following screenshot shows the command and output:

To the initiator, the shared LUN is now a disk. We can partition and format this disk
in a normal manner. We will use lsblk to list the various connected block devices.
On this system, we can see that it connects as /dev/sdc and matches the 100M size
that we assigned, as shown in the following screenshot:

Using the traditional fdisk or parted commands, we can create a partition and
then format it to be used locally on this system. As we used fdisk previously in the
chapter to create the partition for LVM interactively, we will see how to manage this
from the command line directly with parted.

The command will need a disk label in order to create the partition table. This can be
set to msdos or gpt. The fdisk command creates the msdos label automatically, but
this is because it can only work with traditional msdos partition tables. Parted can
work with msdos and gpt (GUID partition tables). The parted command also allows
partitions to be created either interactively or directly from the command line and
hence, is scriptable. There is an added complication here, that is, the sectors to start a
new partition are not shown. So, we need to figure out the optimal starting sector.

Once you know this for a disk of a given type, this will be the same for similar disks.

To establish the starting sector on a disk, we will read the values from two files: /
sys/block/sdc/queue/optimal_io_size and divide this by /sys/block/sdc/
queue/physical_block_size.

[69]

http://www.it-ebooks.info/

Implementing iSCSI SANs

On the demonstration system, this relates to 4194304 / 512 = 8192; values from files
can be read with the cat command as a standard user. Once we are aware of the
optimal alignment details, we can label the disk and create the partition with the
following commands:

$ sudo parted /dev/sdc mklabel msdos

$ sudo parted /dev/sdc mkpart primary 8192s 100%

We create a single partition: /dev/sdc1. When we start with the optimal starting
sector, this partition uses 100 percent of the used disk space.

With this in place, we can format the partition with the filesystem of our choice and
mount it in a normal manner. The iscsid background service is enabled, but it only
runs when required. On reboot, the connection will be remade to the remote iSCSI
Storage server so that the /dev/sdc1 partition will persist on the client. This will
happen as long as the default setting is not changed on the initiator. You should check
the /etc/iscsi/iscsid.conf file and ensure that the setting is done as follows:

node.startup = automatic

With this in place, which is the default on RHEL 7, the iscsid service will reconnect
on startup.

Summary
In this chapter, we have seen how ready RHEL 7 is for the Enterprise network to act
as a SAN server using the new kernel-based iSCSI target server. The management
of the server is now made through Python-based tools, such as targetcli, and
the targetd service is there to load the configuration at boot. We often provide
disk storage on demand from logical volumes. We also looked at how to use three
components of LVM to make this happen: physical volumes, volume groups, and
logical volumes.

With our storage created and shared, we looked at the second RHEL 7 system and
how to connect it as an iSCSI Initiator to utilize this shared storage on the iSCSI
target. This was managed initially using iscsiadm, but the connections are persisted
through the iscsid service.

In the next chapter, we will take a look at the BTRFS (Better File System), which
makes its first appearance on RHEL with version 7. I am sure that you will be
impressed with what is on offer with this filesystem.

[70]

http://www.it-ebooks.info/

[71]

Implementing btrfs
In this chapter, we will investigate what is on offer with btrfs (pronounced as Better
FS). Although not directly related to networking, we will soon look at how to share
filesystems; for this reason and as btrfs is so incredibly good, we will take a look at
it right here and right now. Btrfs is a local filesystem that provides the benefits of
integrated volume management operations with easy growth and a fault-tolerance
built-in the filesystem. It's not fully supported by Red Hat and ships as a technology
preview; it has to be said that Red Hat is cautious on this matter because SUSE has
had btrfs as their default filesystem since Enterprise Linux 11 SP2 and continues
on SLES 12.

In this chapter, we will cover the following topics:

• Overview of btrfs
• Overview of the lab environment
• Creating the btrfs filesystem
• The copy-on-write technology
• Resizing the btrfs filesystem
• Adding devices to the btrfs filesystem
• Mounting multidisk btrfs volumes from /etc/fstab
• Implementing RAID with btrfs
• Optimizing solid state drives
• Point-in-time data backups using snapshots
• Snapshot management with snappers

http://www.it-ebooks.info/

Implementing btrfs

[72]

Overview of btrfs
If there is one thing that Linux is able to offer you at present, it's a choice of
filesystems with over 55 kernel-based filesystems on the Linux kernel tree. So, why
do we need more? We are already seeing that older filesystems such as xfs are
making a second coming with Red Hat championing this original filesystem from
SGI. The btrfs filesystem provides a unique solution that combines the management
of volume and a filesystem to a unified solution. Btrfs is licensed under the
General Public License (GPL) and ships as standard on Red Hat Enterprise 7 and
7.1. It does not just provide access to file management, but also provides access to
volume and the Redundant Array of Inexpensive Disks (RAID) management. This
simple administration means that you can create RAID devices or extend volumes
using single commands, rather than relying on LVM for logical volumes or mdadm
for RAID. Scalability is also a major factor in choosing btrfs. This scales to 16 EB
(Exabytes) and brings the following reliability features not found previously:

• Very fast filesystem creation
• Data and metadata checksums
• Snapshotting
• Online scrub to fix issues

When you look at organizations that use btrfs in production, which includes
Facebook and TripAdvisor among others, you will understand the importance
of including it in this book.

In many ways, the btrfs filesystem was born from the failing of the ReiserFS
file system after it lost its lead developer, Hans Reiser. Chris Mason, who had
helped develop ReiserFS before moving on to SUSE, was hired by Oracle to
develop high-end filesystems. This was the start of btrfs.

Overview of the lab environment
The Red Hat Enterprise Linux 7.1 virtual machine we will use for this book will have
additional drives added for this section. Currently, we will use three disks:

• /dev/sda: This disk is used by the root filesystem
• /dev/sdb: This disk is used to house the yum repository
• /dev/sdc: This disk is used as the iSCSI LUN store

http://www.it-ebooks.info/

Chapter 5

[73]

To demonstrate some key features of btrfs, we will add four additional virtual disks
to the system so that we can use them while demonstrating the btrfs filesystem.
Feel free to do the same if you are using a virtualized system. The different drives
that we will add are as follows:

• /dev/sdd

• /dev/sde

• /dev/sdf

• /dev/sdg

Using the lsblk command on the demonstration system, you will be able to view
the starting configuration that we will use from this point onward, as shown in the
following screenshot:

Installing btrfs
Using Red Hat Enterprise Linux 7 or later, you will find that btrfs is installed by
default even on a minimal installation. However, if you are using earlier versions,
you can install the btrfs filesystem with yum in the normal way, as shown in the
following command:

yum install -y btrfs-progs

http://www.it-ebooks.info/

Implementing btrfs

[74]

With the filesystem installed, we can check the version that we have implemented
using the following command:

$ btrfs --version

On RHEL 7, the version is 3.12, whereas on RHEL 7.1, the version is 3.16.2.

Now that we understand a little of the power behind btrfs, let's begin with some
simple implementation examples.

Creating the btrfs filesystem
To begin with, we will create a btrfs filesystem on the /dev/sdd complete disk. We
do not need to partition the disk first, saving us time from the outset. This is shown
in the following command line:

mkfs.btrfs /dev/sdd

With the filesystem created, we can take the time to become familiar with the
integrity check tool:

btrfsck /dev/sdd

The following screenshot shows the output from my system:

http://www.it-ebooks.info/

Chapter 5

To verify that the btrfs filesystem is in operation, we will create a directory and
mount it therein. We will also copy some data and display the usage information
for the disk:

mkdir -p /data/simple

mount /dev/sdd /data/simple

find /usr/share/doc -name '*.pdf' -exec cp {} /data/simple \;

btrfs filesystem show /dev/sdd

The output from the final command is shown in the following screenshot. We can see
that we have 5.96 MiB of file space used:

The additional space used (which shows as 138.38MiB) includes typical metadata
related to any filesystem, but additionally, by default, the btrfs filesystem stores
free space information on the disk so that it's quick to retrieve it rather than
searching the disk. This is controlled through the space_cache mount option, which
is set by default. If you would like to disable this feature, use the nospace_cache
mount option.

The Copy-On-Write technology
One of the underpinning technologies that helps with the success of the btrfs
filesystem is Copy-On-Write (CoW). CoW is used in logical volume management
filesystems, including ZFS used in Solaris (an Oracle product), Microsoft's Volume
Shadow Copy, and btrfs.

These CoW filesystems allow you to take instant snapshots or backups. This is due
to the fact that as a file is written and a copy of it is made; hence, Copy-on-Write.
As traditional filesystems implement this, the virtual disk technology can also
implement this CoW technology in qcow2. In this way, any allocated disk space
in the qcow2 disk file is not used on the host until it's written to.

For generic filesystems, you will find the CoW technology very useful. Being able to
revert to previous file versions is like gold dust on traditional file servers. However,
if you use btrfs to host very large data files, such as virtual disk files, the CoW
technology can perform slow writes.

[75]

http://www.it-ebooks.info/

Implementing btrfs

Using the chattr command in Linux, we can set or change the attributes of
files and/or directories. Supported for btrfs filesystems, there is a file attribute
to disable CoW. This attribute is useful only when it is set on an empty file. To
ensure its effectiveness, we generally set this on a directory, so that all the files
inherit this attribute at the time of file creation. The following commands show
how to achieve this:

mkdir /data/simple/cow

chattr +C /data/simple/cow

lsattr -d /data/simple/cow

touch /data/simple/cow/vdisk1

lsattr /data/simple/cow/vdisk1

In the following screenshot, we can see that creating a new file will automatically
assign the NoDataCoW option. It does not matter how this file was created:

Resizing btrfs filesystems
With btrfs, it's possible to resize the btrfs filesystem when it is online and is being
accessed by users. The size of a filesystem will grow automatically if we add or
remove devices; we will see this in the next subsection of this chapter; however; we
can resize the filesystem should we need to even on a single device that we have
created. Using the following command, we will shrink the assigned space to the
filesystem by 500MiB:

btrfs filesystem resize -500m /data/simple

[76]

http://www.it-ebooks.info/

Chapter 5

If we check the size of the filesystem before and after, we can see the dynamic change
that takes place:

Adding devices to the btrfs filesystem
We have already seen a little of volume management using LVM when we looked at
iSCSI in Chapter 4, Implementing iSCSI SANs, and it's not exactly simple.

Volume management the old way
The following commands are used in order to manage the disk volumes in the old,
traditional way:

pvcreate /dev/sde1

vgextend vg1 /dev/sde1

lvextend -L+1000M /dev/vg1/data_lv

resize2fs /dev/vg1/data

[77]

http://www.it-ebooks.info/

Implementing btrfs

[78]

Volume management with btrfs
To start with, we will return the volume back to its original size before we add the
second disk. Using the max option, we will ensure that the btrfs filesystem uses the
maximum space available on the single disk we have in place so far:

btrfs filesystem resize max /data/simple

In LVM and traditional filesystems, there were a total of four commands to be
executed. In btrfs, we can perform this with a single command:

btrfs device add /dev/sde /data/simple

This is all we need to do. The device is added and the filesystem is automatically
increased to the available maximum space. We can use the btrfs filesystem show
command against either /dev/sdd or /sdv/sde because both devices will hold a
copy of the metadata by default. In the following commands, we can see that this in
place and the screenshot will reinforce this message:

btrfs filesystem show /dev/sdd

df -hT /data/simple

After reviewing the following screenshot, we can see the command and output that
is generated:

Having the metadata stored on both devices allow for fault-tolerance and weakens
the device to be queried:

btrfs fi show /dev/sdd

btrfs filesystem show /dev/sde

Note that some subcommands can be shortened; in
this case, fi is equivalent to filesystem.

http://www.it-ebooks.info/

Chapter 5

Balancing the btrfs filesystem
If the need to add the additional disk to the volume was due to it running out of disk
space, then we may choose to help performance by spreading the data across both
devices. This is achieved using the balance subcommand:

btrfs filesystem balance start -d -m /data/simple

The -m argument represents metadata and -d represents data. In this way, the disks
are used at an equal ratio.

The output from the demonstration system is shown in the following command; note
that you can omit filesystem from the balance subcommand because it's optional
in this case:

Mounting multidisk btrfs volumes from
/etc/fstab
If we are mounting the btrfs volumes from the /etc/fstab file, we need to ensure
that a btrfs scan is effected before we mount the /data/simple directory. This
will locate all the devices that participate within the volume. The initramfs file
system can complete this task for us on a later system including RHEL 7. If your
existing filesystem was already using btrfs, the scan will be built-in your current
initramfs. If btrfs is new to your system, you will need to generate a new initial
RAM disk. Make sure that you use the correct initramfs and kernel version for
your system when running the following command:

dracut -v -a btrfs -f /boot/initramfs-$(uname -r) /boot/vmlinuz-$(uname
-r)

We can then add an entry into the /etc/fstab file similar to the following:

/dev/sdd /data/simple btrfs defaults 0 0

[79]

http://www.it-ebooks.info/

Implementing btrfs

Creating a RAID1 mirror
The RAID (Redundant Array of Inexpensive Disks) software is also supported by
btrfs. The following are the currently supported RAID levels:

• RAID 0: Striping without redundancy
• RAID 1: Disk mirroring
• RAID 10: Striped mirror

Currently, we have a multidisk btrfs filesystem, but without fault-tolerance. The
implementation we used is RAID 0 / striping without parity. We can convert this
to a RAID 1 system and mirror the metadata and the filesystem data as follows:

btrfs balance start -dconvert=raid1 -mconvert=raid1 /data/simple

As you can see from the preceding command, the metadata and the filesystem data
are converted to the software mirror of RAID 1.

We can create a mirrored device using btrfs from the outset easily and quickly.
Mirroring does not give us extra disk space, but this does provide great fault-tolerance
if the worst happens and we experience a disk failure. We can demonstrate this on our
demonstration system using the extra disk that we have not used so far:

mkfs.btrfs -m raid1 -d raid1 /dev/sdf /dev/sdg

mkdir /data/mirror

mount /dev/sdg /data/mirror

To create a mirror, we will use RAID1 for the metadata and the -m and -d data, as
we did in the preceding convert example. The disk space available is 1 GB. Whatever
we write to /dev/sdf is mirrored to /dev/sdg; with mirror, we lose 50 percent of the
data storage, but have a high level of redundancy. We will similarly need to add an
entry to the /etc/fstab file to ensure that the raid system mounts correctly at boot
time. As initramfs now supports btrfs by running the device scan for us, there is
no requirement to create initramfs at this stage:

/dev/sdf /data/mirror btrfs defaults 0 0

Displaying the free disk space with standard tools—such as df—will not supply
correct information; we need to use btrfs tools. The following command will list
the free space available to the /data/mirror mount point:

btrfs fi df /data/mirror

[80]

http://www.it-ebooks.info/

Chapter 5

[81]

The output from the command is shown in the following screenshot:

I know that we risk 7 years of bad luck even talking about it; however, mirrors can
break. Part of the reason to create a mirror is to provide fault-tolerance. This is in
itself an acceptance that hard disks can and do fail.

For this demonstration, we will destroy the /data/simple/ volume and reuse the
devices that we employed for the simple volume. To destroy the btrfs metadata,
the preferred utility is wipefs, which is part of the util-linux package. Firstly, we
need to run the wipefs command against the disk or partition we need to wipe and
then use the offset value with the -o option. Take a look at how we can wipe /dev/
sdd and /dev/sde:

umount /data/simple

wipefs /dev/sdd

wipefs -o 0x10040 /dev/sdd

wipefs /dev/sde

wipefs -o 0x10040 /dev/sde

The output from the first drive is listed for convenience in the following screenshot;
the sequence is repeated from the second drive. Do not forget to remove the entry
from the /etc/fstab file:

With these disks wiped, we can reuse them in other arrays.

We will add data to the mirror volume in the same way that we did with the simple
volume. In this way, we can be sure that data stays intact:

find /usr/share/doc -name '*.pdf' -exec cp {} /data/mirror \;

http://www.it-ebooks.info/

Implementing btrfs

[82]

We will unmount the mirror volume now and emulate the failure of one of the disks
as follows:

umount /data/mirror

wipefs -o 0x10040 /dev/sdg

We will now experience a problem when we try to remount the mirror volume
using the mount command, and we will have to mount the mirror volume using
the -o degraded option:

mount -o degraded /dev/sdf /data/mirror

At this stage, our data is available, so we can breathe a sigh of relief:

ls /data/mirror

We still have a RAID 1 array and the minimum number of members for this is two,
so we need to add a new device as follows:

btrfs device add /dev/sdd /data/mirror

We can now remove the failed or missing device:

btrfs device delete missing /data/mirror

The missing keyword will search for the first missing member in the array. We
can then delete this device. The RAID 1 array is now fully operational, provisioning
software mirroring across two devices again.

Using btrfs snapshots
Hopefully, what you have seen so far in btrfs will be of interest, but, of course,
there is always much more to see and learn. We will now look at snapshots. Btrfs
snapshots can be used as read-only or read/write copies of your data. With btrfs
as a Copy-on-Write-based filesystem, there is no need to copy large amounts of data
across because we only need to copy the data when it changes. In the meantime,
the original data is linked to the new location. In this way, a snapshot of a large
filesystem can be taken instantly. Snapshots can be put to use in a couple of ways:

• As part of a backup solution where you may be concerned with open files
affecting the backup; the snapshot will be created as read-only. Subsequently,
you will implement a backup of the snapshot. In this way, the backup will be
of the host filesystem at the point in time that the snapshot was created.

http://www.it-ebooks.info/

Chapter 5

[83]

• Snapshots can be useful where you feel that rolling back to the original
data may be useful, perhaps in a testing environment where you need to
implement many changes and easily be able to restore back to the original
data very quickly.

Btrfs snapshots rely on subvolumes; source and destination subvolumes need to be
within the same filesystem. If you'll recall the data is just linked until it's changed;
this is handled in the same way as traditional hard links.

Subvolumes within the btrfs filesystem are discrete management identities, which
allow more granular control of elements of a single filesystem. We will begin by
creating a single subvolume so that we may gain a little understanding of this
technology before creating snapshots. We will re-employ the /dev/sde disk to be
mounted as our simple volume and start by reformatting the mirror volume:

mkfs.btrfs /dev/sde

mount /dev/sde /data/simple

At this stage, the complete filesystem for /dev/sde is available and mounted at the
/data/simple directory. There is no data stored here yet, but we effectively have
a single view of the filesystem with the simple directory. Subvolumes allow you to
view the same filesystem in different ways by mounting elements of the filesystem
(subvolumes) to the directories that we choose and with selected mount options
appropriate for the data.

We will create a new subvolume after the existing /data/simple directory:

btrfs subvolume create /data/simple/vol1

The output is quite minimal, as shown in the following screenshot:

We can list the subvolumes, as shown in the following command and screenshot:

btrfs subvolume list /data/simple

ls /data/simple

http://www.it-ebooks.info/

Implementing btrfs

The following screenshot shows the output of the preceding command:

We can also see that creating the subvolume also created the directory within the
filesystem itself. We will not be able to remove the directory from the filesystem
because this is not only a directory, but also a subvolume. To delete a directory,
you will need to delete the subvolume.

We won't delete the directory, but should we need to delete it at a later stage, the
command to delete it will be as follows:

btrfs subvolume delete /data/simple/vol1

This will delete the subvolume along with the directory in very much the same way
as creating the subvolume also created the directory within the filesystem.

We will now add some data to the subvolume; if you did delete it, you can simply
recreate it again. We can copy the PDF files that we have become familiar with to
this volume:

cp /data/mirror/* /data/simple/vol1

If we need to make this data available elsewhere, we can mount the subvolume
wherever we need and with mount options that we feel appropriate. For example,
we have documentation in this directory so that we can mount it as read-only in
another directory:

mount -o ro,subvol=vol1 /dev/sde /mnt

At the root of the /mnt mount point, we will see the PDF files we added to the vol1
directory. They are still available in the original location under /data/simple/vol1.
In this way, we can control access to the data from how it's mounted.

Now that we have some knowledge of subvolumes, we will investigate snapshots.
The snapshot must be created in the same filesystem as the target data; as we
mentioned before, the instant generation of a snapshot is affected by a form of
internal linking within the filesystem.

[84]

http://www.it-ebooks.info/

Chapter 5

We will generate the snapshot of the existing vol1 data and also specify the option
-r to ensure that the backup is read-only. In this way, we can return to this point in
time backup by copying the data back from the backup directory. No additional disk
space is used unless the original data is changed:

btrfs subvolume snapshot -r /data/simple/vol1/ /data/simple/backup

We can list the subvolumes easily using the following command:

btrfs subvolume list /data/simple

We may base the backup scenario around the fact that the documentation may be
written too frequently. Also, we want a solution to be able to recover from poorly
executed edits quickly.

To create a read-only snapshot of the working subvolume, use the following command:

btrfs subvolume snapshot -r /data/simple/vol1 /data/simple/backup/

Listing the contents of the working directory and the backup directory should reveal
that the contents are the same:

ls /data/simple/vol1

ls /data/simple/backup

The name backup is not important, but useful in the context of its use. As always, a
good naming scheme can help understand the directory's purpose unlike the name
we gave to vol1.

Should we accidently delete all the files from /data/simple/vol1, the CoW
technology in btrfs will then write the changed data to the backup snapshot:
/data/simple/backup. This will also be the case if the files were modified in
any way rather than deleted; the snapshot holds files as they were at the time the
snapshot was created. We can simply copy the files back to the original location in
the event of a catastrophe.

For the moment, we will look at how to delete this snapshot. Later in this chapter, we
will see how to use snapper as a simple mechanism in order to manage snapshots on
LVM and btrfs systems:

btrfs subvolume delete /data/simple/backup

[85]

http://www.it-ebooks.info/

Implementing btrfs

Optimizing btrfs for solid state drives
When creating a btrfs filesystem on multiple SSDs, using the single -m option
will ensure that the metadata is not duplicated. On an SSD, duplicating metadata
is thought of as a waste of space and has an overhead that can lessen the life of the
disk, as shown in the following code:

mkfs.btrfs -m single /dev/sdb

The second way is to use the ssd mount option. This option will set a few
performance options:

• Allows large metadata clusters
• Allows more sequential data allocation
• Disables leaf writing to match key and block order in the b-tree database
• Commits b-tree log fragments without batching multiple processes

Managing snapshots with snapper
The snapshot command is included on RHEL 7 and can be used to manage snapshots
and view their differences with the original data easily. It can be employed along
with LVM or btrfs systems.h.

To install snapper, we fall back to RHEL's package management:

yum install snapper

Currently, there seems to be a bug or feature on SELinux that prevents snapper
from working if SELinux is enforced. We could allow the correct SELinux access to
our resources by creating a new policy or simply set snapperd_t to a permissive
domain. In this way, we can still use the power and security of SELinx, but just have
it disabled for snapper as follows:

semanage permissive -a snapperd_t

At a later date, you can use the -d option to delete the enabled snapper and the
SELinux support:

semanage permissive -d snapperd_t

For the moment, we will leave snapper in the permissive mode and proceed to create
a configuration for snapper and our /data/simple/vol1 data:

snapper -c simple_data create-config -f btrfs /data/simple/

[86]

http://www.it-ebooks.info/

Chapter 5

[87]

Using the following command, we can list the configurations that we have:

snapper list-configs

The following screenshot shows the creation of the configuration and the
listing command:

Creating the configuration will create a hidden directory .snapshots at the root
/data/simple/vol1 directory. The configuration itself is stored in /etc/snapper/
configs; a log file exits from troubleshooting located at /var/log/snapper.log.

Now that we have the foundation created, we will create the snapshot:

snapper --config simple_data create --description "Start"

We can see that the process is very easy, quick, and saves us a lot of effort. If we
check the subvolumes that now exits after /data/simple, we will see.snapshots
and the numbered subvolume after this:

btrfs subvolume list /data/simple

The output is shown in the following screenshot:

More easily and normally though, we use snapper entirely to manage this, and we
should view snapshots with the following command:

snapper --config simple_data list

To show how we can view the difference in data, we will delete a PDF file from the
original vol1 location:

rm /data/simple/vol1/tutorial.pdf

http://www.it-ebooks.info/

Implementing btrfs

[88]

With this file removed, we will now have a difference between the original data
and the snapshot. The CoW system will have the deleted file written to the snapshot
location as the deletion occurred. We can view the difference in the data using the
following command, where 0 is the original data and 1 is the snapshot:

snapper -c simple_data status 0..1

The output of the command is shown in the following screenshot, which indicates
that the snapshot has the extra file now:

To restore the deleted file, we will use the undochange command; note that we
need to display the effect from the snapshot, to the original or 1..0, as shown in the
following command:

snapper -c simple_data undochange 1..0

We now have the tutorial.pdf file returned to us in the vol1 directory as follows:

ls /data/simple/vol1/tutorial.pdf

From the following screenshot, you will be able to see the file restore command and
the listing of the returned file:

http://www.it-ebooks.info/

Chapter 5

[89]

Summary
In this chapter, we saw the power that can be unleashed with the btrfs filesystem
and the time we can save using it compared with other Linux logical volume systems
such as LVM. We also saw how to implement software RAID and then combined
the file management, logical volume management, and RAID management to a
single command.

Using snapper to help manage snapshots works well for us on LVM and btrfs
systems. We used snapper with the btrfs filesystem in this chapter.

In the next chapter, we will see how to share files on the network using NFS
(Network File System), the traditional UNIX way to share file resources on
your network.

http://www.it-ebooks.info/

http://www.it-ebooks.info/

File Sharing with NFS
File sharing with Network File System (NFS) is the traditional way on Unix and
Linux for remote hosts to be able to mount filesystems over a network and interact
with them as if they were mounted locally. Although RHEL 7 supports both NFSv3
and NFSv4, there is no longer any support for NFSv2. The RHEL 7 client will default
to NFSv4 and falls back to NFSv3 if a connection cannot be established. Using NFSv4
simplifies location of services behind a firewall with only the TCP port 2049 required
for client access; however, we will demonstrate both the NFSv4 and v3 firewall
configurations. During this chapter, the following topics will be covered:

• Overview of NFS
• Overview of the lab environment
• The NFS server configuration
• Using exportfs
• Hosting NFSv4 behind a firewall
• Hosting NFSv3 behind a firewall
• The NFS client configuration
• Auto-mounting NFS with autofs

An overview of NFS
We have been used to NFSv4 being included with Red Hat Enterprise Linux 6. RHEL 7
includes additional support for pNFS (Parallel NFS) with NFSv4.1. pNFS, providing
security and performance enhancements, which allow more efficient connections to
clients behind firewalls and Network Address Translation (NAT) routers.

Support for NFSv2 is no longer available, which is no great loss, as it did not support
file sizes above 2 GB and was not as robust as version 3 and 4.

[91]

http://www.it-ebooks.info/

File Sharing with NFS

Using NFSv4, mounting and locking protocols are incorporated in a batteries included
philosophy. This allows the use of just the one TCP port: 2049. However, with
NFSv3, we have to use rpcbind and set static ports for additional services so that a
firewall can be configured. This simplifies the firewall configuration, which you will
see later, as access only to the TCP port 2049 is required.

Both the server and client tools are installed together from the nfs-utils package.
This package includes tools for both the NFSv4 and V3 protocols. It also includes other
useful tools such as nfsiostat that can be used to monitor NFS shares usage on an
NFS server. To list the contents of an installed package, you can use the rpm command,
as shown in the following command lines that can be run as a standard user:

$ rpm -ql nfs-utils #lists all files in the package

$ rpm -qd nfs-utils #lists just the documentation files

$ rpm -qc nfs-utils #list only the configuration files

$ rpm -qi nfs-utils #displays descriptive information on the package

Overview of the lab environment
For demonstrations is this chapter, we will use two virtual machines running in an
Oracle VirtualBox virtualization environment. VirtualBox can be downloaded from
https://www.virtualbox.org/ free of charge and is available for Windows, Mac
OS X, Linux, and Solaris hosts.

The NFS Server will be configured on the RHEL 7.1 host with the IP address of
192.168.10.10 and the hostname of nfshost. The NFS client will be configured
on the RHEL 7.1 host with the IP address of 192.168.10.11 and the hostname
of nfsclient.

Both machines were installed with a minimal configuration; we have installed the
nfs-utils package on both hosts, as shown in the following code:

$ sudo yum install -y nfs-utils

Additionally, on the nfshost host, we have installed the net-tools package so that
we can display open ports with the netstat command. The command to install
net-tools is as follows:

$ sudo yum install -y net-tools

[92]

https://www.virtualbox.org/
http://www.it-ebooks.info/

Chapter 6

[93]

The firewall is running the default setup and is managed with the firewall-cmd
command. To allow NFSv4 connections to nfshost, we have additionally opened
the TCP port 2049 using the following commands:

$ sudo firewall-cmd --add-port=2049/tcp --permanent

$ sudo firewall-cmd --reload

We will cover more on firewall on RHEL 7 later in this chapter
and also look at how to use thefirewall-cmd and firewalld
service in detail in Chapter 11, Network Security with firewalld, of
this book.

NFS not only uses a firewall to protect the server, but also supports TCP wrappers
to control access. The rights to access a service can be determined by the use of the
/etc/hosts.allow and /etc/hosts.deny files.

The NFS server configuration
To configure the NFS server, we choose which directories we want to share. The
terminology used in NFS to share a directory is to export the directory; therefore,
shared directories are known as exports.

To permanently export a directory, we add the configuration to the /etc/exports
file. This file exists, but will be empty on a new system. The nfs-server service will
read this file on startup to determine which directories should be available to the
network client. If /etc/exports is changed, reloading the nfs-server service will
force the service to reread the file, as shown in the following command line:

$ sudo systemctl reload nfs-server

To display the current exports on the server, we can use the exportfs or showmount
command. We will now take a little time to start the required services and create
our first simple export.

Firstly, we will need to start the required services. We can start and enable each
service independently, but in the spirit of automation, we will write a simple loop
at Command Prompt to save some typing and time. We will use sudo; your user
account will need to be listed within the sudoers file. Once you are sure that you
have access to sudo, the command will be executed as follows:

for s in rpcbind nfs-server nfs-lock nfs-idmap ; do

 sudo systemctl enable $s

 sudo systemctl start $s

done

http://www.it-ebooks.info/

File Sharing with NFS

If it makes the syntax clearer to you, the following screenshot shows the command as
executed on nfshost:

Simple exports
Without editing the /etc/exports file, we cannot export anything on the filesystem.
As a result, there will be no output when we display the local exports using exportfs,
as shown in the following command line:

$ sudo exportfs

We will have little luck with the showmount command, as shown in the
following screenshot:

As you can see, the showmount command will show the export list heading, but, of
course, the list is empty until we explicitly define some exported directories.

The showmount command can be used on remote hosts, such as
the nfsclient, to list exported directories, but this will depend
on additional services. So, the firewall on nfshost will need to be
configured for NFSv3. We will discuss this later in this chapter.

I accept that sharing nothing, nada, zilch is not the most exciting feature that you will
find in this book, at least we have discovered some useful tools such as exportfs
and showmount. We will now export an existing directory just to get used to NFS.
To do this, we will need to edit as root the /etc/exports file; we can do this using
sudo. You can log in as root directly or with the su command. We will add the
following line to export or share the /usr/share/doc directory. This is just a simple
test. We will add our own directories and content later. For our demonstration, we
will stick to using vi in order to edit the file; however, you are welcome to use your
favorite editor:

$ sudo vi /etc/exports

[94]

http://www.it-ebooks.info/

Chapter 6

With the file open and without the contents on a new NFS server, we can add the
following line to export the /usr/share/doc directory:

/usr/share/doc *(ro)

Using the cat command, we can show the filename that we should be editing and
the files' content once the edit is complete, as shown in the following screenshot:

Having exported a directory, we should be able to see this using exportfs
or showmount.

The exportfs command requires administrative
access, whereas showmount does not.

However, before we get ahead of ourselves, we need to recall that the nfs-server
service reads this file when it starts up and is currently running. We can restart
this service, but it will be better to reload the service. In this way, there is no need
to bring the service down if the remote hosts currently have mounted exports.
Running the following command will reload the service and then display the
exports directory or directories:

$ sudo systemctl reload nfs-server

$ sudo exportfs

The output from both commands previously listed is now displayed in the
following screenshot:

When we defined exports, we exported a directory to all hosts denoted with an
asterix symbol; any options for the export are included within parenthesis. We
specified the export as read only with the inclusion of the ro option.

As a simple test, we can now use the nfsclient host to access this export. From the
console of the nfsclient, we can access the exported directory and mount it to the
local /mnt directory on the nfsclient using the following command:

$ sudo mount 192.168.10.10:/usr/share/doc /mnt

[95]

http://www.it-ebooks.info/

File Sharing with NFS

We can use either the IP address or the hostname of the server as long as the
hostname is resolvable via DNS, mDNS (Multicast DNS), or the localhost's file.
The end of the server hostname or IP address must be denoted with a colon.

We can easily list the contents of the exported directory using the standard ls
command against the /mnt directory. The truncated output from the ls command
is shown in the following screenshot:

Advanced exports
We have seen how simple life can be for a Linux system administrator if only simple
exporting of directories is all that is needed. However, although this option may fit
some directory exports and servers, others may require a little more time and effort.

The basic directive within the /etc/exports file is as follows:

export host(options)

The structure of these variables is as follows:

• export: This is the directory on the NFS server being exported or shared
• host: This is the host or network to which the exported directory is shared
• options: These are specific options to be used by a host or network that

proceeds the parenthesis

It's also possible to write a single entry to share one export with different options to
different hosts or networks, as shown in the following example code:

export host(options) host(options)

Expanding this to actual values in place of the variables a working example to allow
read/write access to 192.168.10.11 but read-only access to all other hosts, we can
examine the following code:

/usr/share/doc *(ro) 192.168.10.11(rw,sync)

[96]

http://www.it-ebooks.info/

Chapter 6

[97]

Options are comma-separated, and we have additionally added the sync option
in the options for the nfsclient 192.168.10.11. The sync option will ensure
that writes to this export are written to disk on demand, rather than waiting
for write-buffers to be flushed to the disk. Linux uses a system of buffering that
promotes the use of dirty-cache buffers. These are written to disk as numbers grow.
The sync option ensures that these buffers are written to the disk immediately. This
has a negative impact on performance, but can be more reliable as connections are
not always maintained.

If a single line in the /etc/exports file becomes too long, then it can be wrapped
using the backslash (\) character. Within a file, each export must be represented
with its own individual line. Additional blank lines are ignored and can be added
for readability. Lines may be configured to be ignored by the server if they are
commented with the line starting with the hash (#) character.

If the read/write access is granted to the export and the filesystem
is read only to the user, they still have read-only access. If the
export is set to read only and the filesystem would normally allow
read and write access to the user, they still have read-only access.
Quite simply, when combining file and export permissions, the
most restrictive permission is effective.

If we are to be 100 percent accurate, the options for an export are optional. If an
option is not set, the default option will apply. We can then rewrite the previous
example making use of the defaults as follows:

/usr/share/doc * 192.168.10.11(rw)

From the modified example, you should be able to guess correctly that the ro and
sync default options are no longer explicitly set, but they will still be effective. The
effective options for an exported directory can be seen using the exportfs command
with the -v option, as show in the following command:

$ sudo exportfs -v

If an option is not set and displayed in the output of the previous command, then
you will see the default option.

The default options for the NFS server include the following; more details can be
found on the man page:

• ro: This makes the exported filesystem as read only on the remote host.
• sync: The NFS server writes changes to the disk before responding to

new requests.

http://www.it-ebooks.info/

File Sharing with NFS

[98]

• wdelay: This is used with the sync option; the NFS server will delay writing
to the disk and more writes are anticipated imminently.

• root_squash:The remote users connecting as root or UID 0 are changed to
nfsnobody and as such, we will only be able to collect permissions granted
to others. This effectively squashes the permissions of root access remotes,
preventing unauthorized root access to exported filesystems.

We will now amend the /etc/exports file to represent two sets of hosts that we will
export to and verify that we can connect from the designated host 192.168.10.11.
The export is set to rw, which supersedes the ro option set to all hosts with *. We
will use echo to overwrite the exports file so that you can see the edit being made
through to the file along with other commands. These commands are listed in the
following example with a supporting screenshot to display export options:

$ sudo bash -c 'echo "/usr/share/doc * 192.168.10.11(rw)" > /etc/exports'

$ sudo systemctl reload nfs-server

$ sudo exportfs -v

From the preceding screenshot, we can see that the 192.168.10.11 host has
read/write access, whereas <world> or all other hosts have read-only access.

Be cautious with spaces
The format of the /etc/exports file is very precise and no spaces
should precede the host/network before the options for that host. The
following entries have very different meanings:
/home server1(rw)

#correctly shares /home as read and write to server1

/home server1 (rw)

#shares the export /home to server1 using the default
read-only and to <world> read-write is assigned, the
asterisk can be omitted when designating all hosts.

http://www.it-ebooks.info/

Chapter 6

[99]

Pseudo-root
As you can see in the /usr/share/doc current export, it's normal for the complete
path of the exported directory to be used when accessing it on the server. It's possible
to simplify paths that are needed to access exported directories using a pseudo-root
directory on the server. This is only an option for NFSv4 servers and clients. With the
pseudo-root directory in place, we can mount other directories to that path. Let's take
a look at this on our nfshost.

We will clear the current exported directory. This time, we will set up sharing from
scratch with a little thought and planning.

Firstly, we will create a new directory on nfshost that will act as the pseudo-root
directory:

$ sudo mkdir -m 1777 /var/exports

We can create this directory and set mode or permissions at the same time. Here, we
set permissions to all users and include the sticky bit so that users can only delete the
files that they own.

Next, we will overwrite the current exports within the /etc/exports file with the
newly created directory:

$ sudo bash -c 'echo "/var/exports 192.168.10.11(rw,fsid=0,crossmnt)" > /
etc/exports'

$ sudo systemctl reload nfs-server

These commands are run on nfshost and shown in the following screenshot:

There are two new options that we implement here:

• fsid=0: This sets the directory as the root directory of the server when
accessed over NFS. In this way, the /var/export directory is accessed
from the remote client as 192.168.10.10:/.

• crossmnt: This is the clever option that we need in order to allow access
to directories that are mounted underneath this mount point. To mount
directories to this export, we will use the mount --bind command.
This will be covered very shortly.

http://www.it-ebooks.info/

File Sharing with NFS

[100]

Setting the export option as read/write enables us to control access using file
permissions on the nfshost. Any user will have full permission to the export when
accessing from the nfsclient, so restrictions will need to be made in the filesystem.

With the NFS root in place, we can make any directory within the filesystem
available after this entry point. We will need to create subdirectories as mount points
within the /var/exports directory and then mount the local targets to these mount
points. We will add a central shared directory called /home/marketing and mount
this and the existing /usr/share/doc directory after the newly created exports
directory. The commands to achieve this are shown in the following command lines:

$ sudo mkdir -m 1777 /home/marketing

$ touch /home/marketing/marketing.doc

$ sudo mkdir -m 777 /var/exports/{doc,marketing}

$ sudo mount --bind /usr/share/doc /var/exports/doc

$ sudo mount --bind /home/marketing /var/exports/marketing

The following bullet points explain the preceding command line steps:

• After working through the list of commands, we first create the central
shared directory that we will add after the /home structure. This may be
desired due to partitioning and quota settings that dictate that the marketing
directory should be on the /home partition.

• We add a document to this directory so that we are able to view some content.
• The third command in the list creates both the doc and marketing directories.

We will use these directories as mount points. These directories are created in
the /var/exports NFS root.

• The final two commands mount the local directories to their export mount
points. In this way, we can easily add any directory to be available directly
after /var/exports.

Listing the contents on the /var/exports/marketing directory should show the file
we created in the /home/marketing directory. Refer to the following screenshot:

In the same way, looking at the contents of /var/exports/doc should show the
contents of /usr/share/doc.

http://www.it-ebooks.info/

Chapter 6

For permanency of local mounts, we will need to add them to the /etc/fstab file in
the following format:

/originaldir /newdir none bind

We will now edit the fstab file as root and add these two lines to the end of the file
to ensure that the mount points are populated during boot:

/usr/share/doc /var/exports/doc none bind

/home/marketing /var/exports/marketing none bind

When you return to the nfsclient system, you will be able test both exports and
permissions. The original /home/marketing directory is writable, whereas the
/usr/share/doc directory is not:

From the nfsclient system we can issue the following commands:

$ sudo mount 192.168.10.10:/ /mnt

$ touch /mnt/marketing/file1

$ touch /mnt/doc/file1

Now the file path is simpler, being able to access both folders with a single path from
the server's NFS root. We should also note that although the exported directory is
read/ write, we can write to the marketing directory using the first touch command,
but the second touch command will fail as the target filesystem is read only.

Using exportfs to create temporary
exports
It's not always desirable to create permanent exports within the /etc/exports file.
Should you want to define a new export temporarily, you can use the exportfs
command. As we have already defined the NFS root to be /var/exports, all
directories that we export must be after that structure. Let's temporarily export
/var/export/doc to all hosts. We can do so using the following command:

$ sudo exportfs *:/var/exports/doc

On the next restart of nfs-server, this export will be lost; however, if you need to
delete it ahead of this, you can implement the following command:

$ sudo exportfs -u *:/var/exports/doc

[101]

http://www.it-ebooks.info/

File Sharing with NFS

[102]

Should you need to include export options with the temporary export, use the -o
option in a similar manner, as shown in the following command:

$ sudo exportfs *:/var/exports/doc -o ro,all_squash

To display the current exports, you can run exportfs by itself:

$ sudo exportfs

Hosting NFSv4 behind a firewall
When you access the NFS server using v4 of the protocol on both the client and
server, the firewall configuration is quite simple with only the TCP port 2049
required to be opened. The default firewall daemon on RHEL 7 is firewalld
and is managed from the command line using firewall-cmd.

We have been running the standard firewall for our demonstrations thus far just
opening the one additional port 2049, as detailed in the lab overview earlier in
this section.

We can list the current firewall configuration using the following command:

$ sudo firewall-cmd --list-all

The output is shown in the following screenshot:

Should you need to remove the port setting that we added, this can be done using
the following commands:

$ sudo firewall-cmd --remove-port=2049/tcp --permanent

$ sudo firewall-cmd --reload

http://www.it-ebooks.info/

Chapter 6

Of course, a client can no longer access the NFS exports. We have the choice of
adding ports or service entries. To add a service entry, the port and associated
service needs to be defined in the /etc/services file. This can be easily checked
using the grep command. An example is shown in the following command:

$ grep 2049 /etc/services

We do have an entry for the port 2049 and the service is called nfs. To use the
service name in the firewall configuration, you may use the following command:

$ sudo firewall-cmd --add-service=nfs --permanent

$ sudo firewall-cmd --reload

$ sudo firewall-cmd --list-all

This is illustrated with the following screenshot:

With the service now allowed in all firewall rules, we can continue to access the NFS
export from nfsclient. If you want to use tools like showmount remotely or if you
have NFSv3 clients, you will need to open more ports and set some ports statically.

Hosting NFSv3 behind a firewall
If we try to use the showmount command from the nfsclient, we should be able to
list exports on the remote NFS server. The syntax will be as follows:

$ showmount -e 192.168.10.10

[103]

http://www.it-ebooks.info/

File Sharing with NFS

[104]

The command and the corresponding error are shown in the following screenshot:

At this stage, we can choose from the following options:

• Pack our bags and go home, perhaps it will be better tomorrow
• Google the error
• Debug the error ourselves

Diagnosing NFSv3 issues
Now, Google is often really good at helping us, but you fail to learn fault-finding
techniques, so let's opt out of option 3 and install the tcpdump command-line packet
analyzer so that we can see what is happening. This can be installed on nfsclient
using yum as follows:

$ sudo yum install -y tcpdump

To capture network traffic between the nfsclient and the nfshost and to print port
numbers that are being accessed, we can use the following command:

$ sudo tcpdump -nn -i enp0s8 host 192.168.10.10

The options to tcpdump used here are listed as follows:

• -nn: This shows the host IP addresses and port numbers and not their names.
• -i: This is the interface to be used. You will need to use the correct interface

name, where we have used enp0s8 as the interface we need to listen on.
• host 192.168.10.10: This displays traffic to and from this host. This is the

IP address for the nfshost.

http://www.it-ebooks.info/

Chapter 6

From another console or the SSH session, try the showmount command again. While
viewing the console where tcpdump is running, we should try to access the UDP port
111 on the server twice and report the error. The output is shown from my system in
the following screenshot:

The UDP Port 111 is not open in the firewall configuration of nfshost. If you recall,
we have just displayed the allowed services and ports for the firewall and 111 was
not among them.

Port 111 is held open by the portmapper service run by rpcbind and shows as the
sunrpc service in the /etc/services file. We can check this by running netstat on
the nfshost as follows:

$ sudo netstat -aunp

The options to netstat used here are listed as follows:

• -a: This shows all and by all; by this we mean listening and established ports
• -u: This displays UDP ports only
• -n: This displays port and network numbers rather than resolving them

to names
• -p: This displays the process name holding the port or connection open

To use the -p option, we must run as root (using sudo); otherwise, the process
column will be left blank.

The theory behind the rpcbind service is that it will return the port address so that
the required service is running to the requesting client. This is how NFSv3 works and
the showmount command still makes use of this old protocol. The incoming request
from showmount from the remote client asks for the address of the NFS Mount
Daemon. This is the service running as the process: rpc.mountd. These services can
run on dynamically-assigned ports. As such, it requires further configuration to
reliably have them allowed through your firewall on a long term basis.

[105]

http://www.it-ebooks.info/

File Sharing with NFS

[106]

The pictorial process of what should be happening with showmount starts with the
request for the rpc.mountd port, as shown in the following screenshot:

We can start by allowing the rpcbind traffic from the firewall to the nfshost:

$ sudo firewall-cmd --add-port=111/udp --permanent

$ sudo firewall-cmd --reload

Don't forget to reload the firewall once you have added the
port. It's all too easy to forget to complete this.

Now that we can connect to the rpcbind portmapper service running on the
UDP port 111, we should go a little further. Remember that we are really trying to
debug the process and learn some useful tcpdump analysis tricks. We can repeat
the previous exercise running tcpdump on one console and showmount on the other
(both consoles running on the nfsclient). The error reported from the showmount
command should be slightly different now. To illustrate this, the following
screenshot shows the current error, where we have the UDP port 111 open:

So, the error is slightly different now, we now no longer have the error number;
however, we can see from the tcpdump output that we received the reply from the
nfshost. Subsequently, we then try to make a TCP connection back to the host on
the port 20048.

http://www.it-ebooks.info/

Chapter 6

[107]

To identify the purpose of this port, we can again use netstat, but this time, we
will replace -u with -t because we want to show the TCP ports. As we only need
to see listening ports, we can replace -a with -l:

$ sudo netstat -ltnp

We should see that the port we are trying to connect to is being held open by
rpc.mountd. Of course, this is not allowed through the firewall.

The port that rpc.mountd listens on may well be different to the
port used on your system, so adjust the exercises to work with your
rpc.mountd port and the port that is being used by your client.

The output from tcpdump is shown in the following screenshot. We can identify it
as TCP traffic by additional properties, such as the sequence (seq) and window size
(win), which we have highlighted in the following screenshot:

So now we can see that we also require the TCP port 20048 to be opened through
the firewall on the NFS server; remember that the port may not be the same on your
nfshost; we can remedy this very quickly using firewall-cmd from nfshost again
as follows:

$ sudo firewall-cmd --add-port=20048/tcp --permanent

$ sudo firewall-cmd --reload

Now, we can return to the nfsclient as the showmount command should work
correctly now, as shown in the following screenshot:

http://www.it-ebooks.info/

File Sharing with NFS

Using static ports for NFSv3
The portmapper service is required for services that operate on non-static ports,
which include the rpc.mountd and other NFSv3-based services. While configuring
NFSv4 is simple because we only require access to the TCP port 2049 as the only
requisite to the firewall, we still need access to more ports with v3 and most of these
ports are non-static. Help is at hand though with the /etc/sysconfig/nfs file,
where we can add entries enabling static ports for these services. The configuration is
different on the RHEL 6 configuration. This is where search engines can often let you
down with outdated documentations. This also includes the RHEL 7 documentation
that is not up to date. Here, we show the correct settings that you will need in the
/etc/sysconfig/nfs file to set static ports.

When you work on nfshost as root and use a text editor of your choice, you will
need to edit the following lines:

RPCRQUOTADOPTS="-p 30001"

LOCKD_TCPPORT=30002

LOCKD_UDPPORT=30002

RPCMOUNTDOPTS="-p 30003"

STATDARG="-p 30004"

The ports used are nominal and you should choose ports that are not in use on
your system. You can see that some services take the -p option to specify a port.
The rpc.lockd utility has an actual port configuration. This was the RHEL 6 way
of configuring all ports, but has changed on RHEL 7.

We will need to restart our services, and we can restart them individually or revisit
the for loop that we used earlier. The edited loop is shown in the following code:

for s in rpcbind nfs-server nfs-lock nfs-idmap ; do

 sudo systemctl restart $s

done

We have now configured nfshost to use the static ports for these NFS services that
will normally cause us an issue with dynamic ports. We still need the UDP port 111
configured in the firewall rules to allow access to portmapper, but we now know the
ports that will be returned for other services and that they can be added. The final
firewall configuration for NFSv3 using ports that we have configured are listed in the
following command:

sudo firewall-cmd --add-port=111/udp --permanent

sudo firewall-cmd --add-port=2049/tcp --permanent

sudo firewall-cmd --add-port=30001/tcp --permanent

[108]

http://www.it-ebooks.info/

Chapter 6

[109]

sudo firewall-cmd --add-port=30001/udp --permanent

sudo firewall-cmd --add-port=30002/tcp --permanent

sudo firewall-cmd --add-port=30002/udp --permanent

sudo firewall-cmd --add-port=30003/tcp --permanent

sudo firewall-cmd --add-port=30003/udp --permanent

sudo firewall-cmd --add-port=30004/tcp --permanent

sudo firewall-cmd --add-port=30004/udp --permanent

sudo firewall-cmd --reload

If we want to test the configuration fully with NFSv4, you will need to remove
the crossmnt and fsid options from the exiting export definition because these
are v4 options.

Configuring the NFS client
When mounting filesystems from a client, the default protocol implemented is
NFSv4 on RHEL 7. We can explicitly set the protocol to v3 or v4, using the -t
option to the mount command:

$ sudo mount -t nfs4 192.168.10.10:/var/exports /mnt #NFS 4

$ sudo mount -t nfs 192.168.10.10:/var/exports /mnt #NFS 3

In the following screenshot, you can see that we are able to connect from nfsclient
using NFSv4 or NFSv3:

Other mount options can be applied with the -o option to the mount command. You
may consider the following command options:

• bg: This backgrounds the mount process
• rsize=xxxx: This specifies the maximum read size request in bytes
• wsize=xxxx: This specifies the maximum write buffer size in bytes

http://www.it-ebooks.info/

File Sharing with NFS

For more NFSv3 and NFSv4 mount options, these can be read in detail from the
appropriate man page, as shown in the following command line:

$ man 5 nfs

Auto-mounting NFS with autofs
There is a client-side service called autofs that acts as an auto-mount service for
both local and remote filesystems. This works with a kernel module and the user
space service; as you enter a directory, the mount is created automatically. The
autofs package needs to be installed along with the nfs-utils package if NFS
mounts are to be made. The auto-mounting feature can work with other remote
filesystems, not just NFS. To install autofs, use the following command:

$ sudo yum install -y autofs

With this installed, the default behavior is to use the /net directory point for the
network hosts. We can then access shares or exports on any host that we have access
to, and enter a directory that matches the server name or IP address after the /net
directory. We only need to create top level directories and do not need to create
subdirectories. We can just change the directories to /net/192.168.10.10 and this
directory will be created. Listing the contents of the directory will list the root level
of the exports on the nfshost. This may sound too good to be true, so let's see this in
action. First, we will create the directory and then start the service and enable it, as
shown in the following command:

$ sudo mkdir /net

$ sudo systemctl start autofs

$ sudo systemctl enable autofs

With this in place, we can simply list the contents of the /net/192.168.10.10
directory. We should see the top level of the export configuration. For us, this is
currently the /var directory and the export directory is /var/export. If we have
more top level directories exported, they too will show. The /net/192.168.10.10
directory is created automatically and the default timeout for autofs is 300 seconds
or 5 minutes. After 5 minutes of inactivity, a filesystem that is mounted will be
automatically unmounted and the directory will disappear until it's needed again.
This is a typical safe value; however, a specific timeout can be configured. We will
see this later.

[110]

http://www.it-ebooks.info/

Chapter 6

[111]

The following screenshot shows the four commands executed in order and the listing
of the the temporary automount directory:

Auto-mounting directories on the client as they are required reduces the overhead on
both the client and server, which is a really effective way of generating mounts. To
define our own mounts points, we can edit the /etc/auto.master configuration file.
We will add a top level directory as before.

In /etc/auto.master file, we will add the following command:

/corp /etc/auto.corp --timeout=600

This setting in the auto.master file tells the autofs service that when entering
the /corp directory, the configuration can be read from the /etc/auto.corp file.
Additionally, we have doubled the default timeout to 10 minutes for this auto-
mount. We will need to create the top-level directory as follows:

$ sudo mkdir /corp

The configuration file for this directory should look similar to this in our case:

redhat -fstype=nfs4,rsize=4096,wsize=4096 192.168.10.10:/var/exports

With this entry, we will be able to see the contents of the server export while entering
the /corp/redhat directory. We do not create the redhat subdirectory. Before
testing, you will need to restart the autofs service:

$ sudo systemctl restart autofs

Now, we can access the /corp directory and it will be empty. This is shown in the
following screenshot:

http://www.it-ebooks.info/

File Sharing with NFS

If we now access the redhat directory, this does not show yet; we will be able to list
the contents of the server's export. This is shown in the following screenshot:

I have been using this for years; it's still one of the most magical experiences on Linux.

Summary
I hope that you have found this chapter both intense and useful. There has been a
lot of content to cover that has been made complicated by the need to cover both
NFSv4 and NFSv3. Similar to most technologies, legacy clients need to be supported
for some time. The great advantage this gave us was diagnosing firewall issues and
using tcpdump in anger.

The main point with NFS and firewalling is to use NFSv4 wherever possible because
we then only need to open the one static port: the TCP port 2049. For NFSv3, we
need to assign static ports and often need to open both UDP and TCP ports to each
protocol, depending on the client that connects.

Finishing the chapter on autofs is a real high note because this is so simple and
effective to use, auto-creating directories and mounting them as required. What more
could we wish for!

In the next chapter, we will stay with file sharing, but investigate sharing to
Windows systems using Samba 4.

[112]

http://www.it-ebooks.info/

[113]

Implementing Windows
Shares with Samba 4

Almost certainly, your Linux devices will not be running autonomously, and other
operating systems will co-exist with them. No matter where your infrastructure is
located, the likelihood is that you will need to interoperate with Windows systems
at the very least. This is true just as much in the home environment as it's in the
enterprise. Considering the home market, how many people do you know that use
Windows desktops and have a Linux server as a central file store. Remember that
the Linux server may be embedded into Network Attached Storage (NAS), a device
that you bought from the high street. Within enterprises, large and small, Microsoft's
Active Directory is a very prevalent identity store that shares user accounts across a
range of systems.

To help integrate RHEL 7 into your Windows environment, we will use this chapter
to provide you with the basics on the following topics:

• Overview of Samba and Samba services
• Overview of the lab environment
• Configuring time and DNS
• Managing Samba services
• Samba client on RHEL 7
• Configuring file shares on Samba
• Troubleshooting Samba

http://www.it-ebooks.info/

Implementing Windows Shares with Samba 4

An overview of Samba and Samba
services
When investigating our main services and using Samba, we will need to install the
samba package; this package can be installed as follows:

$ sudo yum install -y samba

With the package installed, the following services are added to our system:

• For file and print sharing, we have the smbd service. For this service, we will
need to open TCP ports 139 and 445.

• If we need to respond to legacy NetBIOS names requests, we will need to
start the nmbd service. We will need this for older clients, such as Windows
95, 98, and ME. Windows 2000 and XP clients can make use of this network
browsing protocol as well. Should we need this service, which somehow I
doubt, we will need to open the UDP port 137.

If you want to join a Windows domain, then you can add client tools packages such
as samba-winbind or sssd-common.

If you use the firewall-cmd command, adding the Samba service will enable
three ports for you. To add the Samba service to a firewall, we will use the
following commands:

$ sudo firewall-cmd --permanent --add-service=samba

$ sudo firewall-cmd --reload

$ sudo firewall-cmd --list-services

The last command is for information purposes only and is not required to set the
firewall rule.

An overview of the lab environment
For demonstrations is this chapter, we will use two virtual machines running in an
Oracle VirtualBox virtualization environment.

We have a Microsoft Server 2008R2 Active Directory Domain Controller with the
192.168.0.252 IP address and the RHEL 7.1 host with the 192.168.0.69 IP address.

[114]

http://www.it-ebooks.info/

Chapter 7

[115]

Configuring time and DNS
Although if we are using the RHEL host for a simple file and print sharing purpose,
then obtaining an accurate time and DNS are not too much of an issue; however,
we are most likely going to need to bring the RHEL server to an Active Directory
domain so that we can make use of single sign-on. Users will be able to access their
shares using the same credentials as they use in the Active Directory, rather than
having a user account and password on the RHEL server.

In this chapter, we will just look at file sharing, and in Chapter 8, Integrating RHEL 7
into Microsoft Active Directory Domains, we bring the server to the AD domain.

In Chapter 3, Configuring Key Network Services, we configured time services. Now,
let's look at how to set our chronyd time source to the Active Directory time server.
If we are using NTP, then set the NTP time source to the Active Directory server.
Alternatively, ensure that the Active Directory time source is set to the same time
source that you use for your RHEL host.

To configure the time source on the Windows 2008R2 Active Directory Server, you will
need to open an administrative Command Prompt and type the following commands:

c:\> net stop w32time

c:\> w32tm /config /syncfromflags:manual /manualpeerlist:"uk.pool.ntp.
org"

c:\> w32tm /config /reliable:yes

c:\> net start w32time

c:\> w32tm /config /update

c:\> w32tm /resync

c:\> w32tm /query /status

The output from the final status subcommand is shown in the following screenshot:

http://www.it-ebooks.info/

Implementing Windows Shares with Samba 4

[116]

I feel having accurate time on the network is a must, no matter you intend joining a
domain or not.

To join the Active Directory domain, we must be able to resolve the service records
that locate domain controllers. The easiest way to achieve this is to point the DNS
resolvers of RHEL to the Active Directory Servers that host the DNS. I have just one
domain controller and this is a DNS server as well. To ensure that we resolve these
names correctly, we write to configuration files for interfaces on RHEL 7. On my
system, these are as follows:

/etc/sysconfig/network-scripts/ifcfg-eno1677736

/etc/sysconfig/network-scripts/ifcfg-eno33554992

Ensure that the DNS1 entry point to the Active Directory domain controller and
PEERDNS=yes is set in both files. Alternatively, configure the /etc/resolv.conf file
with the settings of a name server and ensure that the PEERDNS=no attribute is set in
all the interface files.

The following screenshot shows the first configuration option with the setting made
in the interface file only:

With this set in both interface files, (if you have two NICSNICs), you can simply
restart the NetworkManager service as follows:

$ sudo systemctl restart NetworkManager

To test the configuration, you can try to resolve the name servers for your Active
Directory domain hosted in DNS. For the book, we simply use example.com.
To resolve this domain from the RHEL 7 host, we run the following command:

$ dig -t ns example.com

http://www.it-ebooks.info/

Chapter 7

[117]

The dig command looks for records of the ns type or name servers from the
example.com domain. The output should be similar to the following screenshot:

Managing Samba services
To access the resources of Samba, a user needs a POSIX (Linux) user account
available to them and a Samba account. The POSIX account can be an ordinary
account within the /etc/passwd file or this account can be centralized in LDAP or an
Active Directory. When a POSIX account is enabled for Samba, additional attributes
that are required by Windows systems are added to the user account. To enable an
existing POSIX account with Samba, we can use the /bin/pdbedit command. This
can work with Samba accounts in the following account stores:

• The /etc/samba/smbpasswd file
• The tdbsam database located at /var/lib/samba/private/passdb.tdb

(this is the default samba account store)
• The OpenLDAP directory services

As existing domain accounts have the required attributes for Samba, there is no
requirement to enable those accounts for Samba.

Firstly, we will list all existing Samba enabled accounts. Of course, we have only
installed Samba and not enabled any other account. Also, we only have local
accounts in the /etc/passwd file because the RHEL server is currently not part
of a domain or LDAP:

$ sudo pdbedit -L

There should be no output to this command because we don't have any Samba
enabled accounts. If you run a command as a standard user without errors, you
will see permission violations while trying to access a database.

http://www.it-ebooks.info/

Implementing Windows Shares with Samba 4

[118]

We will now enable the exiting account for root and the standard user: andrew. We
will not only create an account and enable it for Samba, but also add attributes that
are stored in the assigned Samba account's backend. In the default case, this is the
tdbsam database. To enable these two accounts, use the following commands:

$ sudo pdbedit -a -u root

$ sudo pdbedit -a -u andrew

You will be prompted for a new Samba password for each account. Ideally, this
should be different to their POSIX password. The truncated output after enabling
the Samba account for andrew is shown in the following command line screenshot:

Magically, when we run the list of accounts, we will be able to see these two accounts:

$ sudo pdbedit -L

The output should be similar to the following screenshot, adjusting the account
names to match your own:

You can use the -L option with -v for a verbose output similar to the information
you see when enabling an account.

http://www.it-ebooks.info/

Chapter 7

The main configuration file for Samba is /etc/samba/smb.conf. This file is
segmented into sections and each section (with the exception of [global]) defines
some form of shared resources. Each section is denoted with the section name in
square brackets []. In addition to the [global] section, there are two other special
sections. These sections are defined in the following list:

• [global]: Attributes set within the global section refer to the Samba server
as a whole rather than a particular shared resource.

• [homes]: The presence of this section allows users to connect to their own
home directory easily and on the fly without any additional administrative
effort to share a user's home directory. This can work without the need for
the username and account name to be the same as the home directory name.
The user: andrew will connect to his home share on the server in a manner
similar to the following command:
//<server-name or IP>/andrew

The home directory attribute from the user account will be read and then the
user will be connected to their assigned home directory.

• [printers]: The presence of this section allows local printers to be shared
automatically with no further administrative effort. A user will use the
following URL to connect to a printer:
//<server-name or IP>/<printer-name>

You will find the /etc/samba/smb.conf file heavily commented with some
comments with the # symbol and others with the semicolon (;) symbol. Both
are valid comments, but its inconsistency is a little annoying.

If you would like to create a backup and remove empty and commented lines, try to
run the following command from the /etc/samba directory:

$ sudo sed -i.bak '/^\s*[;#]/d;/^$/d;' smb.conf

The regular expression that we use to search for lines to delete is a little more
complex than normal, but it still does an amazing job for us. There are two
expressions for sed in the example, /^\s*[;#]/d.

The preceding expression will delete commented lines from the file.

[119]

http://www.it-ebooks.info/

Implementing Windows Shares with Samba 4

[120]

We look for lines with (^) and any whitespace character (\s). Additionally, using
*, we check for zero or more whitespace characters. In this way, we are allowing
an optional whitespace character at the start of the line, but it must be followed by
; or # ([;#]) symbol. In simple English, this expands to lines that are commented,
regardless of whether they start with a space/tab character or directly with a
comment. The search string is delimited between the two / characters, and the d
command is used to delete matching lines that follow:

/^$/d

The preceding expression deletes blank or empty lines from a file.

The effect that this has is that it reduces the line count of the file from 320 lines to
20 lines in seconds. We keep the original file as a backup, that is, smb.conf.bak.

A simple [global] section may look similar to the following screenshot:

These settings are detailed as follows:

• workgroup = MYGROUP: This denotes the NetBIOS workgroup to join in the
Network Neighborhood view.

• server string = Samba Server Version %v: This appears as a
description next to the server name within a network view. The %v variable
will display the Samba version; in our case, this is 4.1.2.

• log file = /var/log/samba/log.%m: This specifies the path to the log file;
the %m variable is the machine name (hostname).

• max log size = 50: This specifies the maximum size in KB for the log file
before it is rotated.

• idmap config * : backend = tdb: This is the mapping mechanism to map
POSIX user IDs and group ID to SIDs (Security Identifiers).

• cups options = raw: These are the printer settings that tell the cupsCUPS
process to send the job directly to the printer rather than trying to interpret it.
It will have already been processed by a Windows printer driver and needs
no further processing.

http://www.it-ebooks.info/

Chapter 7

You can also use directives to control which hosts or networks can access the system
with hosts allow and hosts deny directives. For example, the following attribute
settings within the [global] section will only allow access to any share to the given
network. The 127.0.0.1 host will always have access unless explicitly denied. Either
of the following methods are correct, allowing access to 192.168.0.0/24:

hosts allow = 192.168.0.

OR:

hosts allow = 192.168.0.0/255.255.255.0

These host allow settings and their sibling host deny settings can also be managed
at the share level, but [global] settings will take precedence over anything configured
at the share level.

If changes are made to a running configuration, then we can run a preflight check to
test the integrity of our changes before restarting the service. To do this, we use the
testparm command. We run this simply as root, as shown in the following command:

$ sudo testparm

The nmb and smb services are managed independently. We can start and enable the
Samba file server with the following commands:

$ sudo systemctl enable smb

$ sudo systemctl start smb

As the [homes] section is configured by default, we are now ready to test the system.

The Samba client on RHEL 7
Currently, my firewall service is disabled, so I do not need to be concerned with
the firewall; however, I will only need to add in the TCP port 445 and 139 or the
samba service.

If we install the Samba client package, we can list all the shares available to a given
user. This is shown in the following command extract:

$ sudo yum install -y samba-client

$ smbclient -U andrew -L //localhost

[121]

http://www.it-ebooks.info/

Implementing Windows Shares with Samba 4

Once the Samba client is installed, we can use it to log in as andrew; we will be
prompted for the password and to list shares on the localhost. We should see the
listed home directory coming from the [homes] special share section. This is always
there by default. We will see the output as expected, not the share name andrew, as
shown in the following screenshot:

Of course, we can leave it here and hide the fact that there are some SELinux traps
with the current setup. We can connect to a share, but SELinux will prevent access to
the users' home directories. While Chapter 10, Securing the System with SELinux, will
look at SELinux in more detail, we can simply and securely gain access to shares by
one simple Boolean change. Firstly, we will test the current configuration. SELinux is
in the enforcing mode and the firewall is not running. To mount the Samba share, we
can use the following command written as a single line:

$ sudo mount -t cifs -o username=andrew,password=Password1
//192.168.0.69/andrew /mnt

We do not need to include the password in mount options; if we don't, we will be
prompted for the user's Samba password during the mount process. This should
succeed, but if we try to access the mount target (in this case /mnt), we will be denied
access. To overcome this, we can interrogate the SELinux configuration for Samba
home directories. The following command illustrates how this is achieved:

$ getsebool samba_enable_home_dirs

In Samba, the default configuration settings are turned off and as such prevents access
to the home directory. We enable the Samba service using the following command:

$ sudo setsebool -P samba_enable_home_dirs on

With Boolean enabled, we gain immediate access to a share. There is no requirement
to unmount and remount the home directory. The -P option makes this change
permanent so that we can be assured that the change persists until we need to
disable the setting, and the system is still secured with SELinux.

[122]

http://www.it-ebooks.info/

Chapter 7

[123]

To see a list of SELinux, Samba Booleans, and their settings, you can use the
following command:

$ getsebool -a | grep samba

Of course, we can also connect to a share from a Windows device provided we have
the correct credentials. The following screenshot shows the mapped drive from the
Windows 2008R2 server connected to Andrew's home directory:

Configuring file shares in Samba
We have seen the major feature of file sharing that Samba enables with the user's
home directories. Although this feature is enabled by default, we will also need to
create our own file shares by adding our own sections to smb.conf. On the Red Hat
server, we have the /data directory that we worked with during btrfs in Chapter 5,
Implementing btrfs. If we need to share this to our Windows-based clients, then Samba
is the tool we will use.

We can edit the smb.conf file with root privileges and add a new section to the
configuration. The attributes that we use in the section control the access and use
of the share. At the very least, we require the path attribute for the share to be
meaningful. For a full list of options, the man pages for the smb.conf file will help.
The following screenshot shows the share definition that we have added for the
/data directory on the server:

http://www.it-ebooks.info/

Implementing Windows Shares with Samba 4

The read list restricts reading data from the share to listed users; in this case, we add
a group. The @ symbol denotes a group within the list.

We still need to work with SELinux a little here by changing the SELinux context of
the /data directory and its contents. We can achieve this with the chcon command
for the changed context:

$ sudo chcon -R -t samba_share_t /data

Do not forget to test the configuration using testparm; if all is okay, we can restart
the smb service as follows:

$ sudo systemctl restart smb

Now, we can browse and access the Samba shares that we have defined. Using the
Windows 2008R2 server, we can now browse the network and see the home directory
for andrew share and data share. The following screenshot shows this:

We can see why Samba is such an important tool in small and large environments;
file sharing is just so simple and integrates into our existing infrastructure.

Troubleshooting Samba
If we are having problems with Samba, we can always check the output from the
testparm command again and ensure that we have not missed anything vital.
We can check which setting is valid from the man pages for smb.conf should be
concerned over some settings.

We can also check the log files. These are located in the /var/log/samba/ directory.

There will be logs that represent client access, as shown in the following command:

log.<client ip-address>

OR:

log.<client-hostname>

[124]

http://www.it-ebooks.info/

Chapter 7

There will also be the log.smbd daemon log.

If you need more details on the daemon log, set the log level attribute in the
[global] section of the smb.conf as follows:

log level = 3

This raises the verbosity of logging, which may help. We suggest not leaving the
level set this high and removing the setting when it's no longer required. The log
level can be configured from 0 to 10, where 0 is low and 10 is high, but level 3 is
as verbose as most people will need.

Summary
In this chapter, we looked at how to share filesystems with Windows clients without
the need to disable SELinux. I do hope that you appreciate its importance and see
the ease of leaving SELinux in place once we are aware of its basics.

Although we did not implement the firewall in this chapter, we did again review the
firewalld settings to make this happen. Firewalling with firewalld is covered in
Chapter 11, Network Security with firewalld.

In the next chapter, we will look at how to integrate RHEL 7 into a Windows Active
Directory domain.

[125]

http://www.it-ebooks.info/

http://www.it-ebooks.info/

[127]

Integrating RHEL 7
into Microsoft Active

Directory Domains
In the previous chapter, we looked at how to share resources to Microsoft's clients.
Now, in the spirit of true symbiosis, we will see how RHEL can make use of Active
Directory users and groups, implementing domains as identity stores. If users have
access to the console of the RHEL server, then simply by their Active Directory
credentials, they will have access to RHEL. Not only does this streamline access to a
console, but it also simplifies access to any shared folder on the RHEL 7 Samba server.

We will structure this chapter so that you are able to see the bells and whistles (the
good stuff) that Active Directory integration can provide before we delve under the
hood at what goes on to make these simple tools work.

In this chapter, we will cover the following topics:

• Overview of identity management
• Overview of the lab environment
• Preparing to join an Active Directory domain
• Using realm to manage domain enrolment
• Logging on to RHEL 7 using Active Directory credentials
• User and group management with adcli
• Delegating Active Directory accounts with sudo
• Leaving a domain
• Understanding Active Directory as an identity provider for sssd

http://www.it-ebooks.info/

Integrating RHEL 7 into Microsoft Active Directory Domains

Overview of identity management
To begin our banquet of delights, we will focus on the importance of identity
management in an enterprise. Without using some form of identity store or vault to
centralize user accounts, these accounts will need to be duplicated because access
is required for other systems. As you can imagine, these user accounts can quickly
become out of control as vast numbers are created to support individual account
silos on each system. However, we should not be too concerned with the need for
creation and management of these accounts; other than this, being an administrative
burden is not a security concern. If a user does not have access to a resource, they
will soon let you know. The concern with account silos is what happens when a user
leaves; do you believe that every account for every user that leaves an organization
will be deleted or (at least) disabled. Somehow, however good your system,
some will slip through the net and a security issue will be created. Good identity
management with one account per user will solve the administrative burden, and
more importantly, the security weakness.

Of course, lesser issues relate to the management of these accounts, such as password
changes, and perhaps the need for name changes as time progresses. Ideally, each
user in an organization will have just one identity, which is a single set of credentials
that they use to gain access to any resource to which they have permission. This can
be achieved through some form of central directory service acting as an identity
vault. This may be the Active Directory, but it can quite easily be some other form
of the LDAP (Lightweight Directory Access Protocol) server. In small to medium
environments, an Active Directory may be sufficient, but as the organization grows
and the size of the identity vault grows, perhaps the need for a completely separate
directory for users will be needed. The central user store can then synchronize
changes to other connected systems.

Microsoft has its Identity Management suite to build around the Active Directory,
and Red Hat has its identity management directory server. This chapter will focus
and integrate RHEL 7 directly into a single Domain Active Directory environment.

An overview of the lab environment
For demonstrations in this chapter, we will use two virtual machines running in an
Oracle VirtualBox virtualization environment.

[128]

http://www.it-ebooks.info/

Chapter 8

We have a Microsoft Server 2008R2 Active Directory Domain Controller with the IP
address 192.168.0.252 and the RHEL 7.1 host with the IP address 192.168.0.69.
This is the same setup that we have used in Chapter 7, Implementing Windows
Shares with Samba 4; we have left time and DNS configured the same way. If you
are stepping into this chapter without having completed Chapter 7, Implementing
Windows Shares with Samba 4, ensure that you have set up the RHEL server to use
the Domain Controller for both the time and name resolution.

Preparing to join an Active Directory
domain
From what we have seen in Chapter 7, Implementing Windows Shares with Samba 4,
using Samba to share files, we can understand that this is pretty impressive stuff.
We always need to remind ourselves that this all comes without any price tag or
the need of client access licenses.

Samba file sharing is free, that is, without cost and free in liberty;
you can use it as you wish. This is the fundamental premise of
open source software and is at the heart of Linux.

The big issue that may act as a potential deal breaker is the need to maintain
user accounts on the RHEL server and the AD domain to which the workstation
accessing the server belongs. If we implement more than one server, the problem is
exacerbated with the need for accounts on each and every server as well as the AD
domain. The simple solution is to incorporate the RHEL server into the AD domain
and use AD accounts for resource access. In this way, we can use a single sign-on to
the Active Directory and gain access to shared resources on the RHEL Samba server.

If the Active Directory is not in place, the central account
sharing can be established by installing the openLDAP server
on RHEL. One RHEL server can then act as an identity vault,
sharing accounts to LDAP clients on other servers.

Irrespective of Samba file shares, your Active Directory users may need access to
RHEL servers via SSH or some other mechanism. They will need accounts defined
on each RHEL server for this. Joining an RHEL server to the AD domain enables the
use of the user's AD account when logging in to any member server, which includes
RHEL servers or desktops. Additionally, rights can be delegated to these accounts
using the /etc/sudoers file and file permissions in the normal mechanism.

[129]

http://www.it-ebooks.info/

Integrating RHEL 7 into Microsoft Active Directory Domains

Before we join the AD domain, we need to ensure that we have set up the time
services and DNS, as detailed in Chapter 7, Implementing Windows Shares with
Samba 4. With these infrastructure services in place, we will need the following
packages installed on the RHEL server:

• realmd: This manages enrolment and membership to the Active
Directory domains

• samba: This denotes the Samba services
• samba-common: This denotes the shared tools for servers and clients
• oddjob: This is a D-bus service that runs the odd jobs for clients
• oddjob-mkhomedir: This is used with the odd job services to create home

directories for AD accounts, if needed
• sssd: The System Security Services daemon can be used to divert client

authentication as required
• adcli: These are the tools for joining and managing AD domains

The following command shows the installation of necessary packages:

$ sudo yum install oddjob realmd samba samba-common oddjob-mkhomedir sssd
adcli

Using realm to manage domain
enrolment
With these packages installed, we can use the realm command to manage our
enrolments. This command is part of the realmd package that we added. We
can use the list subcommand to ensure that we are not currently part of a domain:

$ realm list

The output should be blank. Now, we are ready to proceed with the next step:
joining the domain. With a simple environment, you will know the domain that you
want to join; at least we certainly hope that you do. In our case, we do know it and
this is example.com. Using the discover subcommand, we can verify that we have all
the required packages installed, as shown in the following command extract:

$ realm discover example.com

[130]

http://www.it-ebooks.info/

Chapter 8

[131]

The output from this command will list that this is an Active Directory domain and
the required packages that we should have in place before joining the AD domain.
The following screenshot illustrates this:

Depending on your Active Directory functionality level, you may require either the
samba-windbind or sssd packages. We are using Active Directory on 2008R2 with
the default level of Windows Server 2003 configured. At this stage, you should verify
that you have all the required packages installed.

If we do not need to share resources we do not need the samba
package; samba is only used to share, not to join domains.

As this is a Kerberos domain type, the join subcommand will join the server to
the domain as a member server and initialize the /etc/krb5.keytab Kerberos
keytab file and the /etc/krb5.conf configuration file. There will be more detail
on these files that act behind the scenes given at the end of the chapter. To join the
AD domain, add the computer to the default folder in the AD domain using the
following command:

$ sudo realm join --user=administrator@example.com example.com

Should you want to add it to a designated Organizational Unit within the Active
Directory, you will first need to create the OU, or at least ensure that it exists. With
the OU being present, the command will be similar to the following, where we add
to the Linux OU:

$ sudo realm join --computer-ou="OU=Linux" \ --user=administrator@
example.com example.com

http://www.it-ebooks.info/

Integrating RHEL 7 into Microsoft Active Directory Domains

This is the method we will use to add the RHEL server to a path:

OU=Linux,DC=example,DC=com

With either of these methods, you will be prompted for the domain administrator's
password or the password of a user with delegated rights to add computers to the
AD domain and your sudo user's password (if required). The command can take
a few minutes to take effect, so give it time until the shell prompt is returned. As
a standard user, you can then list the domain you have joined using the realm
list command again. We should note that the output at first may seem similar
to the realm discover example.com command that we ran earlier; however, on
closer examination, we will see that we are now a member server, as shown by
configured: kerberos-member in the following command:

$ realm list

The output from the preceding command is shown in the following screenshot:

Logging on to RHEL 7 using Active
Directory credentials
Welcome to the world of centralized accounts. I think you will have to concede that
the process was very simple using RHEL 7 and vastly more simple than the previous
releases of RHEL. We are now ready to make use of central user accounts from the
Active Directory.

[132]

http://www.it-ebooks.info/

Chapter 8

[133]

To log on to the RHEL 7 server, we can use the Active Directory UPN (User
Principal Name). This is in the format of user@<Fully Qualified Domain Name>.
For example, if we have an account in the example.com domain named jjones, we
can log on to the RHEL server using the following command:

jjones@example.com

The following screenshot shows this process as we use the switch user command
to log on as the AD account for jjones. Note that as the home directory for jjones
does not exist, oddjob kindly creates it for us, as shown in the following screenshot:

To connect remotely using SSH tools, such as PuTTY for Windows, we will use the
following syntax implementing two @ symbols; this may look a little weird, but
is correct:

jjones@example.com@192.168.0.69

An SSH connection to RHEL from the Windows PuTTY client is shown in the
following screenshot:

We have now seen that we can make use of Active Directory accounts on our Linux
systems. With the Red Hat server as part of our domain, we can log on to Linux with
a single set of credentials. When a user leaves an organization, there is now only
a solitary user account to delete or disable. We have seen this in action on a single
server, but this equally applies to all your RHEL 7 or CentOS 7 servers and desktops;
this process is the same across the board, making us efficient and secure.

http://www.it-ebooks.info/

Integrating RHEL 7 into Microsoft Active Directory Domains

[134]

User and group management with adcli
We are not just restricted to consuming these domain accounts; we also have a level
of management of Active Directory from the command line of our Linux servers.
With the correct privileges in Active Directory, we can:

• Create users and groups
• Modify group memberships
• Delete users and groups

Although the tools are not as rich as you will find with the native OS, especially
when using PowerShell, there is a need and advantage to some of the management
provided by Linux devices.

If you are a Linux administrator and work mainly on Linux, it does make sense for
you to add Active Directory users to groups that you use for delegation on Linux.
For example, you can maintain an Active Directory group called LinuxAdmins and
delegate rights via the /etc/sudoers file to this group. It's quite correct that you
maintain and control the AD group and not necessarily the Domain Admins group in
the AD.

Listing the Active Directory information
To begin with the adcli command, we will take a look at the info subcommand.
This can display details on domains and the domain controllers that are discovered.
We can run this command as a standard user, as shown in the following command:

$ adcli info example.com

The output will show the Active Directory roles for the domain controller and details
on the site, as shown in the following screenshot:

http://www.it-ebooks.info/

Chapter 8

In this way, we will be able to verify the connection and the domain controller that
we are connected to.

Creating Active Directory users
This command is probably not one of the most useful tools given that we can create
the user, but can't enable the account or set the password for the new user. In this
way, the command is less useful than some of the other tools with adcli. A sample
command is as follows:

$ adcli create-user fjones --domain=example.com --display-name="Fred
Jones"

This command will try to log on to a domain as an administrator and will prompt for
the password. To log on as a different user, you may make use of the -U or --login-
user option.

For completeness, we cover the create user command, but in reality, the user will
still need to be enabled and have the password set in the Active Directory.

To delete the account we just created, we will use the following command:

$ adcli delete-user --domain=example.com fjones

Creating Active Directory groups
In many respects, the adcli command is very useful to us as Linux administrators.
So, as long as our domain accounts have rights to create and manage groups in the
AD, it's correct that we should be the ones managing the group membership that
affect the Linux access. Assuming that the user accounts are already created, we
do not need to concern ourselves with password management on the creation and
membership of these groups. We will use the administrator account while accessing
the domain as before, but we could use our own account if it had the privileges.

To create the Linux users group in the Linux OU where we have placed the server,
we will use the following command:

$ adcli create-group --domain=example.com \ --domain-
ou="OU=Linux,DC=example,dc=com" "Linux Users"

[135]

http://www.it-ebooks.info/

Integrating RHEL 7 into Microsoft Active Directory Domains

[136]

We can verify that this has worked as expected by navigating to the OU
(Organizational Unit) within the Active Directory users and computers on the
domain controller. In the following screenshot, we can see that we have the server
group and the new group:

We will keep the created group as it is, because we will add users to it; the
process of deleting a group is similar to the process of deleting a user, as
shown in the following command:

$ adcli delete-group --domain=example.com "Linux Users"

Should we need help on any command, we can issue syntax help with commands
similar to the following command:

$ adcli delete-group --help

Just use the correct subcommand that you need help with.

Managing the Active Directory group
membership
Now that we have the Linux users group, we can manage the membership of this
group. Within the AD domain, we have the jjones user that we can add to this
group. The following command shows how this is done using our domain:

$ adcli add-member --domain=example.com "Linux Users" jjones

Other than when you create a group or user in a given context,
we can refer to the object by the SAMAccountName attribute
alone (the user or group name). This is a unique identifier in a
domain. In the preceding example, we can simply refer to the
group as Linux Users and the user as jjones. Quotes are
required to protect the space used in the group name.

http://www.it-ebooks.info/

Chapter 8

[137]

Delegating Active Directory accounts
with sudo
Being able to manage the Active Directory group membership is fundamental to
our management of Linux. We can assign the ownership of files and directories to
these groups and (more importantly) the delegate rights on the system using the
/etc/sudoers file.

Let's see how this delegation works. We will create a new group in the Active
Directory and add an administrator to this group. As a simple setup, we are
limited to users that we have created, as shown in the following commands:

$ adcli create-group --domain=example.com \ --domain-
ou="OU=Linux,DC=example,dc=com" "Linux Admins"

$ adcli add-member --domain=example.com "Linux Admins" Administrator

We now have two groups that we may want to use for delegation: Linux Users and
Linux Admins. To delegate with the sudoers system, we run the visudo command
as a root user or with sudo. This file can be used as delegation, which allows selected
commands to be run as root by selected users. These commands have to be prefaced
with the sudo command. You can think of sudo as a similar command to runas in a
Windows system:

$ sudo visudo

This will open the /etc/sudoers file for editing purposes. We can use G to move
towards the end of the file and then o to insert a new line.

We will add these two lines of code to the /etc/sudoers file:

%Linux\ Admins@example.com ALL=(root) ALL %Linux\ Users@example.com
ALL=(root) /sbin/mount /mnt/cdrom, /sbin/umount /mnt/cdrom

Note the use of \ to protect the space here. This is
required because the sudoers file does not like the
use of quotes.

The Linux admins group is allowed to run all commands on the system as root
using sudo. The Linux users group can run the mount and umount commands
only to mount and unmount the cdrom device.

With all the changes made in vi, we can use the ESC key to exit and :x to save and
exit the insert mode.

http://www.it-ebooks.info/

Integrating RHEL 7 into Microsoft Active Directory Domains

[138]

The following screenshot from the example system shows the changes as they
should appear:

When we log on as jjones, We will now find that we have the membership of the
Linux Users group and Linux Admins for the Administrator. Additionally, both
users will belong to the Domain Users group.

We can run the following command as a user of either group:

$ id -Gn

The preceding command will display the group names that the user belongs to.
The domain administrator account will have several group memberships, but it
will importantly include the Linux Admins group. This will allow users to run all
commands prefixed with sudo so that they can run as root, as we have seen with
the andrew account that had similar rights delegated.

The following screenshot shows the output of the id command when it is run as
the administrator:

We can also assign the filesystem ownership to users and groups from the
directories. While we are still logged in to the RHEL 7.1 system as the domain
administrator account, we will prove that the sudo entry is correct by changing
the group ownership of a directory; this is something normally reserved for root:

$ sudo chgrp Linux\ Usersexample.com /data

$ ls -ld /data

http://www.it-ebooks.info/

Chapter 8

In the preceding example, we changed the group ownership of the /data
directory to the Linux Users group; subsequently, we displayed the ownership
of the directory as well. For additional clarity, we have included a screenshot to
demonstrate this process:

Leaving a domain
Until now, we have been able to demonstrate true interoperability with the Active
Directory through the use of delegated permissions using sudo and ownership of
files and directories with filesystems. This is outstanding and nothing less than what
you would expect from an Enterprise Linux system; however outstanding this may
be, there will be occurrences where the Linux server needs to be removed from a
domain. Often, this is the case where it is removed from one domain before being
added to another. Should this be required, the realm command makes the process
easy, reversing the operation to the join subcommand as follows:

$ sudo realm leave example.com --remove

The additional option: --remove will ensure that the computer account is also deleted
from the domain; otherwise, it should be deleted separately. For the moment, we will
leave the computer in the domain.

Understanding Active Directory as an
identity provider for sssd
In many ways, something this simple is very welcome on Linux; however, the
simplicity is in masking the complex series of events and procedures that occur
behind the scenes. It's now time to delve into what makes sssd work.

[139]

http://www.it-ebooks.info/

Integrating RHEL 7 into Microsoft Active Directory Domains

We first need to remind ourselves of all the configurations that we added in the
only manual part of the process, that is, setting up the infrastructure services of time
and DNS required for integration into the Active Directory. The following diagram
shows the relationship between the RHEL server and Active Directory:

When we interrogated the Active Directory domain with realm, we could see from
the resulting information that we required the sssd package among others. The
System Security Services Daemon (sssd) provides a set of daemons to manage access
to remote directories and authenticate mechanisms, in our case, the Active Directory.
The sssd service provides the NSS (Name Service Switch) and PAM (Pluggable
Authentication Mechanism) interface for our system and a modular backend system
to connect to multiple different account sources and the D-bus interface as well. With
this in mind, we should understand that both NSS and PAM modules have been
added and configured for us on the system.

Identifying accounts on the remote Active Directory is performed over LDAP and
authentication is done via Kerberos to the AD domain. The LDAP account search
is referenced and calls for the /usr/lib64/libnss_sss.so.2 NSS module and
the /etc/nsswitch.conf file. Authentication will be referenced using /lib64/
security/pam_nss.so.

[140]

http://www.it-ebooks.info/

Chapter 8

We can expand the relationship diagram to include sssd as follows:

Configuring NSS
The Name Service Switch (NSS) configuration file, /etc/nsswitch.conf, is used
by various NSS libraries; one of the NSS libraries is /usr/lib64/libnss_sss.so.2.
The NSS configuration file determines the sources from which you can obtain the
name service information and its order from a range of categories. Each category of
information is identified by a resource database name; this can be hosts for name
resolution and passwd for a database to locate user accounts.

In my opinion, the simplest approach is to use the hosts database to explain how
these forces work. The entry in the /etc/nsswitch.conf for hosts is as follows:

hosts: files dns

With the settings in effect, the preceding name resolution is achieved by first
resolving names from the /etc/hosts local file and then via DNS resolver libraries.
If you reversed these entries, the DNS will be checked before the local file.

If we check for sss within a file, we can see all the databases that rely on a particular
library. The grep command can be used to isolate these entries, as shown in the
following command:

$ grep sss /etc/nsswitch.conf

[141]

http://www.it-ebooks.info/

Integrating RHEL 7 into Microsoft Active Directory Domains

[142]

The result of the query should look similar to the following screenshot:

These are default settings, but we are not forced to accept them; we can implement
changes if required. However, this order is probably the best as it allows local
accounts to be resolved before searching for a domain (not that domain accounts
will clash because they are specified with the full UPN of the user.

The database names are explained here:

• passwd: This specifies the user accounts
• shadow: This denotes the password information
• group: This specifies the group accounts
• services: This denotes the service name resolution
• netgroup: This specifies the groups of hosts that can be used in access

control rules
• automount: This denotes the directories to be auto-mounted by autofs

In many setups, it's easy to disable the bottom three elements: services, netgroup,
and automount. This will help tune the directory access, for example, if you leave the
default settings when you run tools, such as netstat, to query which ports are open
on the server, you will also run an LDAP query in the AD to resolve port addresses
to service names with the service database entry in the /etc/nsswitch.conf.

The entry for the services will read similar to the following command to prevent
LDAP lookups:

services: files

http://www.it-ebooks.info/

Chapter 8

[143]

Configuring PAM
We can often leave Pluggable Authentication Modules (PAM) as they are, but we
will look at their configuration here.

The services that can use PAM are configured with the associated PAM modules that
they should use within a file in the /etc/pam.d directory. The can be in individual
files, such as /etc/pam.d/login, or through command files that are referenced by
many services (such as /etc/pam.d/system-auth-ac).

We can display the configuration that sssd uses with PAM using grep again to
filter sss from the /etc/pam.d/system-auth-ac file. The output is shown in the
following screenshot:

We can see that the authentication module is used for all possible triggers:

• auth: This is used during authentication
• account: This is used for account restrictions
• password: This is used for password change events
• session: This is used during a logged in session

Let's see some arguments (such as use_first_pass) that are used with the
authentication module. Some of the possible arguments are stated as follows:

• forward_pass: The entered password can be used for other modules
• use_first_pass: Does not prompt for a password, but uses a previously

entered password
• use_authtok: When changing a password, the previously entered password

can be used to authenticate the password change
• retry=N: If this is set, the user can be prompted more than once for the

password if they enter the wrong password

http://www.it-ebooks.info/

Integrating RHEL 7 into Microsoft Active Directory Domains

[144]

Configuring Kerberos
When you join a domain using realm, the /etc/krb5.conf keytab file is created
to authenticate the RHEL system to the domain alongside the /etc/krb5.conf
file. Having tidied the file, after removing comments for our domain, the file looks
similar to the following screenshot:

We can see that the /etc/krb5.conf file has four sections:

• logging

• libdefaults

• realms

• domain_realm

As the demonstration lab is very small with just a single domain controller, there is no
need to make changes. If you have a larger setup, you may want to add some more
details to the realm. You can point to the local domain controllers holding the correct
roles; otherwise, just let the DNS service records resolve these records as follows:

[realms]

EXAMPLE.COM {

 kdc = ad1.example.com

 admin_server = ad1.example.com

}

http://www.it-ebooks.info/

Chapter 8

Configuring SSSD
The configuration for sssd can be found in the /etc/sssd/sssd.conf file. We have
seen that this works for us by default, but there is room for customization, as shown
in the following screenshot:

A simple change here will be to change the home directory location of the AD users.
By default, this is /home/example.com/username. If you have added the Unix
extensions to the Active Directory, then we will set ldap_id_mapping to false
and the UID and GID will be set in the Active Directory.

Summary
In this chapter, we looked at how to use the Active Directory as an identity store,
utilizing users and groups on Linux. The ease of setting this up makes this a very
usable and much-needed solution within corporations throughout the world.

There is a little bit of ground work required before setting up the time and DNS.
Once this is set, then configuring sssd to use Active Directory as an identity source
with the command realm is really a doddle.

With the RHEL system in the AD domain, we can manage this domain to a degree
with adcli and give users' access to the Linux command line through a console or
via SSH.

Next up, we will be staying a little with file sharing, but this time, we will use the
Apache HTTPD web server.

[145]

http://www.it-ebooks.info/

http://www.it-ebooks.info/

Deploying the Apache
HTTPD Server

The Hypertext Transfer Protocol (HTTP) server will be commonly referred to as a
web server. As the name suggests, this is a network service that provides content to a
client, typically a web browser, on the Internet. This typically means delivery of web
pages, but any other documents can be served, such as images, sound, video, and
even ISO files for RHEL.

The web server packaged on RHEL 7 is the Apache httpd service. This is the most
common web server found on the Internet and developed by the Apache Software
Foundation. RHEL has updated httpd to version 2.4, replacing the 2.2 release that
has been in use in previous editions of RHEL.

In this chapter we will cover the following topics:

• Configuring the httpd service
• Controlling the httpd service
• Adding server modules
• Using virtual hosts

Configuring the httpd service
The Apache httpd web server can serve pages to clients on the Internet or locally
on our internal intranet, so don't feel that you will have to necessarily ramp up
security if you are deploying a web server. Of course, if the website is to be facing the
Internet, additional security and isolation of this service may be required. However,
we are working in a lab environment and will focus more on the configuration of the
web server.

[147]

http://www.it-ebooks.info/

Deploying the Apache HTTPD Server

Installing Apache 2.4
The required packages are unlikely to be installed by default, so we will need to at
least add the httpd package. Additionally, you may like to add the documentation.
Consider only adding the documentation to a development server; I would not
recommend adding it to a production server. We will add both packages to a server
as follows:

$ sudo yum install httpd httpd-manual

Even at this stage, with so little effort added, we can start our service and browser to
the web server using the following commands:

$ sudo systemctl start httpd

$ sudo systemct enable httpd

If we have a graphic environment, we can use Firefox from our local system to
browse the localhost. We will be rewarded with a welcome page similar to the
following screenshot:

Although I would like to think that my work here is done; somehow, I feel that you
may just want a little more guidance.

The configuration
The configuration base for the httpd service on RHEL 7 is the /etc/httpd directory.
With the tree command, we can effectively illustrate the configuration hierarchy or
service. The single configuration required here is httpd.conf, but Red Hat is taking
a much more modular approach and now includes many sub-configurations to the
main file. The following screenshot from the output of the tree shows all files in place
after the default installation:

[148]

http://www.it-ebooks.info/

Chapter 9

[149]

If the preceding tree is not installed, it can be installed
using sudo yum install tree.

The tree command has been run from the /etc/httpd directory. We can see the
/etc/httpd/conf/httpd.conf file, which is the main configuration file. This
includes other files from /etc/httpd/conf.d and /etc/httpd/conf.modules.d.
Also, there are three symbolically linked directories:

• logs

• modules

• run

The content of a page that we see when we browse through a site comes from the
configuration in /etc/httpd/conf.d/welcome.conf. When no actual website
content exists, the default welcome page is generated.

With the inclusion of the userdir.conf and autoindex.conf files, the separate
modules configuration is very different from the httpd configuration on RHEL 6,
where these were all part of the main httpd.conf file.

http://www.it-ebooks.info/

Deploying the Apache HTTPD Server

We have already mentioned that the configuration root of the web server is the
/etc/httpd directory. The configuration for this is in the /etc/httpd/conf/httpd.
conf file. Some of the key directives from this file are as follows:

• ServerRoot: /etc/httpd
• DocumentRoot: /var/www/html
• DirectoryIndex: index.html

The ServerRoot directive, as we have seen is where we can locate configurations,
logs, and modules for the web server. The DocumentRoot directive represents
where the web content can be found, whereas the DirectoryIndex HTML page is
the default page or pages to search for. Using echo, we can simply create our own
content as follows. We run the following command as root and create a very basic
welcome page:

echo '<h1>Welcome to our site</h1>' > /var/www/html/index.html

The use of single quotes allow tags to be passed as literals.

We can view a page directly; as we have not changed any configuration,
there is no need to reload a service. The page should now appear similar
to the following screenshot:

We can access this site locally or remotely using the hostname or IP address. We can
access the same page using http://192.168.0.69, (or which ever IP Address is
assigned to your host interface). To access a page remotely, the firewall will need to
include http and https in its firewalld rules:

In the following code, we open the HTTP port of port 80 and the HTTPS port of 443.
These are protocols and default ports used to access web servers:

$ sudo firewall-cmd --add-service=http --permanent

$ sudo firewall-cmd --add-service=https --permanent

$ sudo firewall-cmd --reload

[150]

http://www.it-ebooks.info/

Chapter 9

As an administrator of the web server, we are not necessarily going to be the
developer on the web content, but we can show that the web server is working
with the configuration.

Configuring the DocumentRoot directory
The DocumentRoot directory should be readable by the httpd service. The account
used by a service is listed in the httpd.conf. Default accounts that are used with
corresponding directives are shown in the following commands:

User apache

Group apache

In an ideal world, the permissions on the /var/www/html directory would be 2750
in an octal notation or rwx r_s _ in a symbolic notation. Setting up a group special
bit on a directory ensures that all new content in a directory will be owned by the
group owner of the directory. In this way, we do not have to grant any permission to
others; as long as the directory is owned by the apache group, files will be accessible
to that group.

Firstly, we will set up the group ownership for this directory. We will use the -R
option as we have already created the index page after this directory, as shown in
the following command:

$ sudo chgrp -R apache /var/www/html

Now, we will set up the group special bit on the directory; this ensures all new files
and directories created in this structure will be owned by the apache group:

$ sudo chmod g+s /var/www/html/

Finally, we will remove permissions granted to others, helping secure the content
as follows:

$ sudo chmod -R o= /var/www/html/

[151]

http://www.it-ebooks.info/

Deploying the Apache HTTPD Server

Although this is not entirely necessary, configuring this at the outset can save
work later when perhaps better security is required. With the httpd.conf,
we also have a directory block that configures the access and options for the
DocumentRoot. The following screenshot shows the directory block associated
with the DocumentRoot directory:

The Directory block appears similar to an XML-based data. This uses an
opening tag and sets the target directory therein. This block is closed with
the </Directory> tag:

Options Indexes FollowSymLinks

The Indexes option allows the creation of an index page. This option lists the
contents of a directory if the name of a page is not included in the URL accessed by
a client and no index.html exists. This is perhaps great for a downloads directory,
alleviating the need for you to create a page linking it to all the available downloads;
however, at DocumentRoot, we probably do not want this setting because it may
pose a security risk.

The FollowSymLinks option is probably self-explanatory, which allows you to
follow the path of symbolic links. Symbolic links are pointers to other files and
directories in a filesystem.

The AllowOverride directive specifies settings that can be used from the user control
.htaccess file. It may be the case with virtual hosts that the administrator does
not have access to the web server's configuration file because they are just renting
space on the web server. They can effect configurations by uploading an .htaccess
file to the root of the directory to which the Directory block pertains. As the main
server administrator, you can control the settings that can be read; here, we allow no
settings to be read even if the .htaccess file is present:

AllowOverride None

The final setting here is new to Apache 2.4 and replaces the Allow from / Deny
from directive in Apache 2.2 and earlier versions:

Require all granted

The default setting is equivalent to the Allow from all setting in Apache 2.2.

[152]

http://www.it-ebooks.info/

Chapter 9

If required, you can adjust the host access with a configuration similar to the
following commands:

Require 192.168.0.0/24

Require 127.0.0.1

The preceding access control will only allow access to the localhost and the
192.168.0 network to the associated Directory block.

We will change the configuration setting by editing the /etc/httpd/conf/httpd.
conf file. Once we locate the correct Directory block for /var/www/html, we will
remove the Index option and leave it as follows:

Options FollowSymLinks

These changes should be saved, but we need to look at how we can check our
settings before attempting to restart the server.

Controlling the Apache web service
When we are ready to test the changes made, we can perform a pre-flight check with
the following command:

apachectl configtest

You may receive an error message reporting that the hostname could not be
resolved. This is a warning and is okay for the moment. The warning is shown
in the following screenshot:

The Syntax Ok message at the end is what we want to see; with this, we know that
we can restart the web server. Issuing a reload command to the service will force a
graceful restart; wait for the active connections to complete before the restart is initiated:

$ sudo systemctl reload httpd

The effect of the change is limited because we have allowed the local network access
and the localhost. Removing the indexes option has no effect while the index.html
page is present. If we remove the index.html page, we will receive access forbidden
messages because the system will not generate the page. This is important to set
because it removes the ability of hackers to be able to retrieve directory listings of
our web server.

[153]

http://www.it-ebooks.info/

Deploying the Apache HTTPD Server

Setting up the server name
We also need to tidy up the warning about our server's name. This is controlled
using the ServerName directive in the httpd.conf. Adding the ServerName
directive at the top of the file will resolve the issue:

ServerName web.theurbanpenguin.com

To completely restart the service, we will use the following command:

$ sudo systemctl restart httpd

Setting up a custom error page
If we try to access a page on the server that does not exist, the viewer will get a
standard page not found message. We can make the process a little more controlled
and user-friendly by adding our own custom pages.

Within the global section of the httpd.conf, we can add the following directive to
handle the 404 Page Not Found message. This global section can affect all directory
blocks, but we can add the following directive just to a single directory block if
required. Adding the code document for a 404 error will just affect that particular
error, but we can add other codes as and when required:

ErrorDocument 404 /404.html

We can reload the server using the following command:

$ sudo systemctl reload httpd

Now, when an incorrect page is accessed, the viewer will be shown the custom error
page we have created: 404.html. This page should be created in the DocumentRoot
because we have used the /404.html syntax. If we have many custom pages, we will
most likely create an error directory in DocumentRoot and then reference the page
as /error/404.html.

Loading modules
Red Hat has moved away from loading modules in the standard httpd.conf file. In
the previous release of Red Hat (version 6), the configuration file would have been
littered with many LoadModule directives.

These modules are now loaded via the configuration files in /etc/httpd/conf.
modules.d/. In this way, the main configuration file is less cluttered and it's
easier to drop additional configuration files as and when required.

[154]

http://www.it-ebooks.info/

Chapter 9

[155]

To view the currently loaded modules from Command Prompt, use the following
command:

$ sudo httpd -M

We can see that we have many modules loaded. We can pipe the output to the
wc command to count the lines. Using the RHEL 7.1 demonstration system, the
output is 82:

$ sudo httpd -M | wc -l

With the original output, we should be able to see that the userdir_module is
loaded. If we do not need to support user home directories on the web server, we do
not need this module. To load this module, the LoadModule directive referencing this
Apache module is set in the /etc/httpd/conf.modules.d/00-base.conf file. To
ensure that it is not loaded on future restarts of the web server, comment the line that
reads as follows:

LoadModule userdir_module modules/mod_userdir.so

With the line now commented, you will need to restart the web server, but when you
check the loaded modules, you should be able to verify that the userdir_module is
not loaded.

Virtual servers
Apache has the capability to support multiple sites from the same server instance.
This gives great flexibility, and at the same time, ease of management. This flexibility
is known as virtual hosting. There are three basic ways of running virtual hosting
with Apache:

Name-based This uses different names for each site and a common IP address,
probably the most popular form of virtual hosting

IP-based This uses a different IP address for each site
Port-based This uses individual port numbers for each site

We will look at all three of the methods and configurations within the httpd.conf
required to implement each method.

http://www.it-ebooks.info/

Deploying the Apache HTTPD Server

Name-based
Name-based virtual hosting has been made possible with the introduction of HTTP
protocol version 1.1, also known as HTTP/1.1. When a browser is only capable of
HTTP/1.0, a protocol tries to load a web page; it goes through the following steps:

1. Resolves theurbanpinguin.org hostname to an IP address.
2. Connects to the resolved IP address over TCP protocol and port 80.
3. Requests /index.html page.

Therefore, only one website (defined by its domain name) can be hosted
at any given IP address. If you direct another domain name—such as
theboldeagle.net—to the same IP address, a user navigating to a URL will
see exactly the same as the user navigating to URL because the web server
cannot distinguish between these two requests.
When the HTTP/1.1 protocol and the HTTP/1.1 capable browser sends a
domain name to the web server along with the document path, this is how
the next step (step 3) looks:

4. Request /index.html page from theurbanpinguin.org server.

It's now possible to host two or more different sites on the same IP address because
the web server can distinguish between different domain names, as domain names
now form a part of the HTTP request.

All contemporary web browsers support HTTP/1.1. There are two aspects to
name-based virtual hosting, which we will now look at.

The name resolution
All the names for a site need to be mapped to the same IP address either via DNS or a
localhost file. If any of the names are used in the system, the returned IP address will
always be the same. The redirection of the incoming request to the correct location in
the filesystem is handled by the httpd service and the incoming http header.

The Apache configuration
The key to name-based virtual hosting lies in the httpd.conf file in a block directive:

<VirtualHost virtual host IP>

.

.

.

</VirtualHost>

[156]

http://www.it-ebooks.info/

Chapter 9

[157]

Almost any Apache entry is valid here including the ErrorDocument directive that
we saw earlier. We have included the most typical entries in the following example:

<VirtualHost *.80>

 ServerName www.packtpub.com

 ServerAdmin andrew@example.com

 DocumentRoot "/var/www/packt/html"

 ErrorLog "/var/www/packt/logs/packt_error"

 TransferLog "/var/www/packt/logs/packt_access"

</VirtualHost>

Using the preceding example, we will be directed to the web pages in /var/www/
packt/html, if we use the URL of https://www.packtpub.com/ while accessing
the server's IP address.

In order for Apache to find the correct entries for virtual hosts, we must tell it
which IP address they are aliases for. However, it's not enough to define a virtual
host using the previous block because Apache does not allow name-based virtual
hosting by default. To make name-based virtual hosts work, this is done using the
NameVirtualHost directive, which needs to be included in the httpd.conf file. This
directive must be in the main server section:

NameVirtualHost *:80

IP-based
The IP addresses used must be bound to the main RHEL server. Within the Apache
httpd.conf, we again use the VirtualHost block, but we do not need to set the
NameVirtualHost directive. Instead of specifying *:80 as IP and port selectors of
VirtualHost block, we will use a real IP address that the Apache server listens to,
that is, IP address assigned to one of the interfaces of the machine that the Apache
server is running on. The following commands show a possible configuration we can
add to the main httpd.conf:

<VirtualHost 192.168.0.221:80>
 ServerName www.example.com
 ServerAdmin andrew@example.com
 DocumentRoot "/var/www/example/html"
</VirtualHost>

https://www.packtpub.com/
http://www.it-ebooks.info/

Deploying the Apache HTTPD Server

[158]

Apache listens for incoming connections on all interfaces of the machine by default,
so it should be enough just to specify an IP address of one of the interfaces in the
<VirtualHost> opening directive. However, to be doubly sure that Apache listens
to the right interface, the following command should be included in the main section
of the httpd.conf file.

Listen 192.168.0.221:80

Using the previous example, when we access the host with the IP address
192.168.0.221, we will be redirected to web pages in /var/www/example/html.

Port-based
There is only one aspect to port-based virtual hosting: the Apache configuration with
the main httpd.conf. An example is as follows:

<VirtualHost 192.168.0.220:7070>
 ServerName www.example.com
 ServerAdmin andrew@example.com
 DocumentRoot "/var/www/example/html"
</VirtualHost>

Using the previous example, when we access the port 7070 on the Apache host with
the IP address of 192.168.0.220, we will be redirected to web pages in /var/www/
example/html.

Within all VirtualHost blocks, we can expect a Directory block in addition to
the code we have shown so far. In this way, options and access control lists can
be correctly set for each virtual host.

Automating virtual hosts
If we create a template file for a virtual host, we can easily drop new virtual hosts
using a script. First, we need a template file that is similar to the following commands:

<VirtualHost *:80>
 ServerAdmin webmaster@dummy-host.example.com
 ServerName dummy-host.example.com
 DocumentRoot /var/www/dummy-host.example.com
 ErrorLog /var/log/httpd/dummy-host.example.com-error_log
 CustomLog /var/log/httpd/dummy-host.example.com-access_log
 UseCanonicalName Off
 ServerSignature On
 <Directory "/var/www/vhosts/dummy-host.example.com">
 Options Indexes FollowSymLinks

http://www.it-ebooks.info/

Chapter 9

[159]

 AllowOverride None
 Require all granted
 </Directory>
</VirtualHost>

If this file is saved as /etc/httpd/conf.d/template, it will not be used as a
configuration as it does not end in .conf. We can use it as a template with a
script similar to the following commands:

#!/bin/bash

CONFDIR=/etc/httpd/conf.d

WEBDIR=/var/www/

mkdir -p $WEBDIR/$1

sed s/"dummy-host.example.com"/$1/g \

$CONFDIR/template > $CONFDIR/$1.conf

echo "This is a website in construction for $1" \

> $WEBDIR/$1/index.html

systemctl reload httpd

If the script is called /root/vhost.sh, we can run it as follows:

/root/vhost.sh www.example.com

The preceding script will create a new configuration and replace dummy-host.
example.com with www.example.com.

Summary
This chapter introduced you to the Apache HTTPD service that runs on RHEL 7.1.
We looked at the ServerRoot being /etc/httpd and the DocumentRoot being
/var/www/html. With the basics in place, you learned how to configure a server
with custom error pages and virtual hosts.

In the next chapter, we will look at SELinux in detail and try to leave you with the
idea that you can implement SELinux without affecting your service delivery in a
negative way. In fact, the word negative is far from the truth. SELinux will deliver
you a secure and robust platform so that you can deploy public-facing services
without any fear of compromise, adding Mandatory Access Controls (MAC) to
the existing, but weaker DAC (Discretionary Access Controls).

http://www.it-ebooks.info/

http://www.it-ebooks.info/

[161]

Securing the System
with SELinux

All too often you will find a tutorial or a blog that will advise you to disable SELinux.
This will be in order to get a particular feature of vservice working. In many cases,
people have to do is to follow the blog or tutorial instructions because very little is
known about SELinux. The aim of this chapter is to provide you a remedy to this
and help you become more familiar with how SELinux works. This chapter will
provide you with the protection that SELinux provides so that next time you are
better equipped to deal with a blog that metaphorically advises you to leave the
keys in the ignition of your parked car.

In this chapter, we will cover the following topics:

• What is SELinux
• Understanding SELinux
• Working with the targeted policy type
• Policies in SELinux
• SELinux tools
• Troubleshooting SELinux

What is SELinux
SELinux is a MAC (Mandatory Access Control) system working together with
the existing DAC (Discretionary Access Control) list we are familiar with, such
as the file permissions list.

http://www.it-ebooks.info/

Securing the System with SELinux

[162]

SELinux can only restrict permissions; it cannot add permissions.
If the DAC does not allow access, SELinux cannot allow.

In order to work with labeled objects, access is granted based on these labels and
controlled via policies. All objects—such as users, processes, and files—have labels.
The label that you have or (more often) the process that you run must match the label
supplied to the resource that you need to access. In simple terms, think of this like
bathrooms; humans with the label MEN have access to the bathroom labeled MEN.
In Linux terms, the Apache web server process is labeled as httpd_t and can access
files with the httpd_sys_content_t label. In this way, your system is protected
against a rogue or pwned (compromised) web server as the scope of files that has
access to it is limited by SELinux.

SELinux is maintained by Red Hat, NSA, and Secure Computing, so it has a rich
pedigree. It comprises of four major components that we will investigate in this chapter:

• Modes
• Labels
• Policy types
• Policy packages

To help you work with SELinux, we will install some additional packages. These
RPM packages are shown in the following command line. For ease of layout, we
have added line breaks:

$ sudo yum install policycoreutils-python policycoreutils-gui \

 setools-console setools-gui setroubleshoot \

 setroubleshoot-server

Understanding SELinux
Let's start pulling the covers off SELinux and discover a little more about what
makes these controls work, starting with SELinux modes.

Modes
To begin with, we will discuss three modes that we can run with SELinux. These
modes are illustrated for you in the following figure:

http://www.it-ebooks.info/

Chapter 10

The disabled mode
When SELinux is disabled, SELinux is not used and the objects are NOT labeled.
In the disabled mode, we rely solely on the original DAC. If we later need to enable
SELinux, the boot process is lengthened because all the objects need to be relabeled
again. Disabling SELinux completely like this is probably not a good idea, but
should it be required, it can be set in the /etc/selinux/config file by changing
the following line:

SELINUX=disabled

One reason this is not a great idea is that a reboot is required for this to take effect. As
mentioned before, files need to be relabeled if SELinux is enabled later. We can force
a relabel if all filesystem objects are running by running the the following command:

fixfiles relabel

Alternatively, we can create the /.autorelabel file, as shown in the following
command:

touch /.autorelabel

The permissive mode
If you are having issues with a service and want to check whether SELinux is a
possible culprit, you may prefer to set SELinux in the permissive mode. In this way,
SELinux is still enabled and the objects maintain their labels; however, events are not
blocked, but logged to the /var/log/audit/audit.log file.

To enter the permissive mode, we can perform this while the system is running
without performing a reboot on your system. The following line illustrates how
this is achieved:

setenforce Permissive

If the change is made in this way, then on a reboot, the permissive mode is applied
from /etc/selinux/config. To set the mode permanently to permissive, we should
set the permissive mode in the following line:

SELINUX=permissive

Although I do feel that setting the mode to permissive is acceptable as a quick and
simple test, the more you know about SELinux, the less likely you are to move from
the Enforcing mode where your protection is guaranteed. In this chapter, you will
learn how to correct issues and even add a process to be permissive rather than the
whole system.

[163]

http://www.it-ebooks.info/

Securing the System with SELinux

[164]

It's also possible to set permissive or enforcing modes via the boot loader, adding the
following commands at the end of the kernel line (where 0 is off or permissive and 1
is on or enforcing):

enforcing=0

enforcing=1

The enforcing mode
The enforcing mode is very similar to the permissive mode, where you can switch
between permissive and enforcing on the command line with the setenforce
command. As the name suggests, SELinux is enforced in this mode and reported to
the log file as well.

To interrogate your current SELinux mode, you can issue the getenforce command.
If you have installed additional tools, you will also be able to run the sestatus
command, which is part of the policycoreutils package. This command displays
the current mode and the mode from the configuration file; the output of sestatus
is shown in the following screenshot:

Labels
As mentioned previously, when SELinux is in the permissive or enforcing mode, all
objects—such as files, users, and processes—have labels. When accessing resources,
these labels are compared to see whether the match is compatible.

Each label consists of four colon delimited values:

• The SELinux user
• The SELinux role
• The SELinux type
• The SELinux level

http://www.it-ebooks.info/

Chapter 10

[165]

In general, a level is only used in very secure government environments, where the
secrecy level of the user must match the secrecy level of the document or resource.
The idea here is that the President will be able to read anything, but only write
to documents that match his security level. This even prevents him from writing
to documents holding a lower security level. Of course, this can be read by lower
authorized people and can perhaps be a security breach.

Using the ls command, we can list the label of a file using the –Z option. The following
command is an example of listing the SELinux label from the /etc/hosts file:

$ ls –Z /etc/hosts

The output should look similar to the following screenshot:

After reading the label, we can determine the following values that are read from left
to right from the previous screenshot:

The SELinux user system_u

The SELinux role object_r

The SELinux type net_conf_t

The SELinux level s0

To read a label from a Linux user perspective, we can use the id –Z <username>
command. The following screenshot shows this for the currently logged in user,
where the <username> field can be left blank:

Similarly, we can examine the label of a process using the –Z option with the ps
command, as shown in the following command:

$ ps -eZ | grep ssh

http://www.it-ebooks.info/

Securing the System with SELinux

Policy types
The default SELinux policy type is targeted, but three policy types are listed as follows:

• Minimum
• Targeted
• MLS

They are all contained in packages that match the selinux-policy-minimum,
selinux-policy-targeted, and selinux-policy-mls names.

Minimum
As the name suggests, this is designed as a minimum configuration for SELinux.
As strange as it may sound, this is for situations where you want to target just one
service, such as the Apache web server. Starting with the basics, it's easy to include
additional policies in your Minimum type. The following command shows how we
can use semodule to add the Apache policy:

semodule -i /usr/share/selinux/minimum/Apache.pp.bz2

To configure SELinux to use the Minimum policy, we set the SELINUXTYPE directive
using the /etc/selinux/config file:

SELINUXTYPE=minimum

Targeted
This is the default policy type; by default, many policies are included. On the demo
system, there are 395 policies installed other than the basic policy. We can use
semodule to list all modules:

semodule -l

MLS
The multi-level security or MLS policy type will allow you to add additional levels
of security. These can be interrogated from labels to help you control access to
resources. This is generally used only in high security deployments. Outside of MLS,
the level element of a label is not used. To enable MLS, the /etc/selinux/config
file is configured with the following directive:

SELINUXTYPE=mls

[166]

http://www.it-ebooks.info/

Chapter 10

Policies
Once policies are installed, individual policies are installed in the appropriate policy
type directory; for the default targeted policy, enter /etc/selinux/targeted/
modules/active/modules/. Policy files have the .pp suffix.

Working with the targeted policy type
The default policy type is targeted. As such, most SELinux deployments will work
with this policy type. In the case of the targeted policy type, the primary attribute
from the label used for enforcement is type. For this reason, the targeted policy
type is often known as TE or type enforcement. The following image highlights the
importance of the type attribute of a label in the targeted policy type:

Using the seinfo command, which is part of the setools-console package, we
can display specific information about the current SELinux environment. Let's take
a look at the available types that we can work with. To list all types, we will use the
following command:

seinfo -t

Wow, there are a lot. If we count them, we have around 4500 on RHEL 7; on RHEL
6, there were 3500. These two figures are just a simple illustration of how much the
SELinux product is growing and its continued uptake, but Linux software developers.

We can also see how to import the type attribute in a label with the user attribute:

seinfo -u

Here, the numbers are not so impressive; it's just 8. These are not Linux users, but
SELinux users; Linux users can be mapped to SELinux users to help control access to
resources. To display any mapping, we can use semanage, as follows:

semanage login -l

[167]

http://www.it-ebooks.info/

Securing the System with SELinux

[168]

Without any mapping being set up, we will see that the root is mapped to
unconfined_u because this is the default. This setting means that all other user
accounts without any specific mapping will be mapped to the unconfined_u
SELinux user, which means that we are ignoring the user attribute in the label as
it's unconfined on SELinux. Similarly, let's look at the ROLE attribute using seinfo:

seinfo -r

The output should indicate 14 roles; again, this is not a large number. The role
attribute is not heavily used in the targeted policy type.

Unconfined domains
The TYPE attribute is often referred to as the DOMAIN when set on a process;
remember that we can view the SELinux label of a running process using the
following process status command:

$ ps -eZ

Many processes started in a user space will also be unconfined perhaps to the TYPE
attribute set to unconfined_t. If processes started in the user space are generally
unconfined, we can say that services, especially network facing services, will be
enforced in some way and this is very much representative of why SELinux is here:
to protect against attack from exposure to a network. It's not only the aunconfined_t
tag that is unconfined by SELinux. To display all unconfined types or domains, we
can use seinfo running as root again as follows:

seinfo -aunconfined_domain_type -x

The -a option tells seinfo that we are searching for an attribute; this attribute
needs to be pushed up next to the option with no additional white spaces. The -x
attribute expands to show all TYPEs that have the attribute, rather than just listing
the attribute itself. The output should confirm that it is mainly domains that will be
non-network facing that are unconfined, such as bootloader_t.

The following screenshot displays the start of the output from my system. In total,
there were 86 unconfined domains; this is not bad considering that we started with
4500 types in all:

http://www.it-ebooks.info/

Chapter 10

When policies are enforced, the default level of access is denied; this means that
rules must exist in the policy package in order to allow access to users, roles, or
types. Having the default access denied ensures security if a given scenario is not
considered; on the flip side, this also means that access needs to be added if your
given scenario has not been considered. A level of administration may be required to
tune the environment to your needs; however, once set up, you have a secure system
that will continue to run reliably with a lessened exposure to risk.

Of course, although the default auction in a policy is to deny access to a resource,
there are many thousands of allow rules supplied within these polices by default.
Using the sesearch command, we can display them; sending results to the wc
command can count the number of rules. The following commands illustrate this:

sesearch --allow #display all allow rules

sesearch --allow | grep wc -l #count the output

On my system, there are over 100,000 rules created by default. If we want to look
at this in a little more detail, we can search for the httpd_sys_content_t string.
There are many rules with this label, but if we look at just one, the easiest is to
consider is the last one with the command tail. Here, we can see that access is
granted to resources with httpd_sys_content_t to process with the ftpd_t label.
In simple terms, the FTP server has access to your website content, as shown in the
following command:

sesearch --allow | grep httpd_sys_content_t | tail -n 1

allow ftpd_t httpd_sys_content_t : dir { getattr search open } ;

Now, we have a little more understanding of the default targeted policy type, so let's
take a look at how to use some of the tools and see SELinux at work.

SELinux tools
Let's take a look at SELinux tools.

chcon and restorecon
Two of the main tools that we can use to help manage SELinux are chcon and
restorecon. The chcon command helps to change the SELinux context or TYPE
of what will most often be a single or perhaps sometimes a few files that can be
referenced easily together with some form of wildcard. The restorecon command
can be used to reset a file or directory and its contents to their default SELinux
context. These default settings for directories are stored in the /etc/selinux/
targeted/contexts/files/file-context file.

[169]

http://www.it-ebooks.info/

Securing the System with SELinux

[170]

With grep, we can search for httpd_sys_content_t, whereas in the output, we
should see the default label for files under /var/www. This is the directory were
we would expect to find web server content:

grep httpd_sys_content_t \

/etc/selinux/targeted/contexts/files/file_contexts

The output of the preceding command is as follows:

/var/www(/.*)? system_u:object_r:httpd_sys_content_t:s0

We can now try to break the system by changing the SELinux context of the
index.html page. We can do this with the chcon command as follows:

chcon -t user_home_t /var/www/html/index.html

Now, if we navigate to the website using the localhost URL, we should have an
access denied message of some description. This is because we have set the TYPE
of the file to user_home_t; access is not permitted to the httpd_t context in which
the web server runs. The following screenshot shows the use of chcon and the
subsequent denial message:

Of course, we can fix this manually by setting the type back to httpd_sys_
content_t using chcon; however, if we are unsure of the correct context,
we can run the restorecon command, as shown in the following command line:

restorecon /var/www/html/index.html

Accessing the web page should now work. Technically, we can achieve the
same effect as achieved with restorecon by relabeling the complete filesystem
at reboot by creating the /.autorelabel file; as you can imagine, this is a little
overkill and will take a while. The effect of this though is to run restorecon
across the complete filesystem.

http://www.it-ebooks.info/

Chapter 10

[171]

Boolean values
There are also simple Boolean values that we can toggle on and off as required, to
help tune our system to work the way we need to match our environment. On the
RHEL 7.1 system used in the book, we have 294 Boolean values that can be adjusted.
We can display these with the simple getsebool command:

getsebool -a

We will drill down a little further and list those associated with the httpd process.
We can see this in the following screenshot:

To change a Boolean value, we can use the setsebool command which can be a
temporary or permanent fix. The use of the -P option is required if we want the
change the Boolean value to be permanent. This also will take a while because the
active policy is written to and recompiled.

If we return to the earlier setting where the index.html page was set with context
to user home directories, we can remedy with setsebool. If the situation was
not appropriate to change the context, for example, if we need to host user home
directories on the web server temporarily until the next boot, we can use the
following command:

setsebool httpd_read_user_content on

If we need this to be set permanently, we will use the following command:

setsebool -P httpd_read_user_content on

http://www.it-ebooks.info/

Securing the System with SELinux

The temporary setting is shown in the following screenshot. It also shows successful
access to the web page that still has the incorrect context set:

Using these Booleans can go a long way in resolving issues you may have with SELinux.

Troubleshooting SELinux
Let's take a look at different ways of troubleshooting SELinux.

The log file
If we were left uncertain as to the problem that was causing errors that we
encountered before with the web server, then our troubleshooting should always
start with log files. For SELinux, this is the /var/log/audit/audit.log file.
Logging in from SELinux will be marked as AVC (Access Vector Cache). We can
search the log file with grep using something similar to the following command:

grep AVC /var/log/audit/audit.log

However, more appropriately, there is also the ausearch command that we can use.
If an error has just occurred, we can use the recent time start code to help reduce
returned results. This is a shortcut for displaying errors within the last 10 minutes:

ausearch -m avc -ts recent

Other than this, we can supply an actual time, date, or both. In the following
example, we will use 16:00 as the starting time to search. In the absence of
the date, today's date is implied as follows:

ausearch -m avc -ts 16:00

[172]

http://www.it-ebooks.info/

Chapter 10

[173]

Taking a look at the output from the command in the following screenshot, we can
see that the process and resource have incompatible labels:

The audit2allow command
Now, even after having checked the log file, you still may not be entirely clear about
the cause of the problem or its possible fix. For help, you can try the audit2allow
command. If used with the -w option, an explanation of the problem along with
possible solutions are included in the output. We still examine the log, but this time
we will pipe the output through to the audit2allow command as follows:

ausearch -m avc -ts 16:00 | audit2allow -w

The output from the test system looked like this when we had reset the original
Boolean value:

http://www.it-ebooks.info/

Securing the System with SELinux

We can see that the suggestion matches the Boolean setting we had previously
shown works. If the problem was more complex than changing a Boolean value,
we could create a new policy package using the -M option. Then using semodule,
we would import the .pp file as follows:

ausearch -m avc -ts 16:00 | audit2allow -M web.local

semodule -i web.local.pp

Permissive domains
We can see that there are some pretty powerful tools designed to help with
our SELinux deployments, but if all else fails, there is another option called
Permissive domains.

Rather than setting the SELinux mode to Permissive, we can turn the Permissive
status on for just a single domain or process context. By default, permissive domains
are enabled and these are known as built-in permissive domains. Domains that we
add are customized domains.

Although the web server is a major network facing attach vector, maybe if we cannot
get SELinux working with httpd, but we do not want to risk SELinux disabled for
the rest of the system. We can turn on the permissive behavior for httpd_t using
the following command:

semanage permissive -a httpd_t

Should we need to remove this behavior later, we can reverse it with:

semanage permissive -d httpd_t

In both cases, we will write to the active policy; this will take a little time.

Summary
In this chapter, you learned how to manage SELinux. I certainly hope that you have
a much fuller understanding of the mechanism involved. The aim of SELinux is to
protect a system, especially where network-facing services are involved. Disabling
or setting the Permissive mode for SELinux is, in general, the wrong approach. With
this, you should now be be able to choose the correct solution.

In the next chapter, we will look at the new firewalling mechanism included on
RHEL 7 and the improvements made from the standard IPtables mechanism used
in the past. Again, we hope that we can convince you of the benefits of firewalld
and keep the service enabled.

[174]

http://www.it-ebooks.info/

[175]

Network Security
with firewalld

The default user interface for netfilter, the kernel-based firewall, on RHEL7 is
firewalld. Administrators now have a choice to use firewalld or iptables to
manage firewalls. Underlying either process, we can still implement the kernel-based
netfilter firewall. The frontend command to this new interface is firewall-cmd.
The main benefit this offers is the ability to refresh the netfilter setting when the
firewall is running. This is not possible with the iptables interface; additionally,
we are able to use zone management. This enables us to have different firewall
configurations, which depends on the network we are connected to.

In this chapter, we will be cover the following topics:

• The firewall status
• Routing
• The zone management
• The source management
• Firewall rules using services
• Firewall rules using ports
• Masquerading and the network address translation
• Using rich rules
• Implementing direct rules
• Reverting to iptables

http://www.it-ebooks.info/

Network Security with firewalld

[176]

The firewall status
The firewall service can provide protection for your RHEL system and services from
other hosts on the local network or Internet. Although firewalling is often maintained
on the border routers to your network, additional protection can be provided
by host-based firewalls, such as the netfilter firewall on the Linux kernel. The
netfilter firewall on RHEL 7 can be implemented via the iptables or firewalld
service, with the latter being the default.

The status of the firewalld service can be interrogated in a normal manner
using the systemctl command. This will provide a verbose output if the service is
running. This will include the PID (process ID) of firewalld along with recent log
messages. The following is a command extract along with a screenshot of the output
from RHEL7.1:

systemctl status firewalld

If you just need a quick check with a less verbose output, make use of the firewall-
cmd command. This is the main administrative tool used to manage firewalld. The
--state option will provide all that you need, as shown in the following screenshot:

If firewalld was not active, the output would show as not running.

http://www.it-ebooks.info/

Chapter 11

[177]

Routing
Although not strictly necessary for a firewall, you may need to implement routing on
your RHEL7 system. Often, this will be associated with multi-homed systems with
more than one network interface card; however, this is not a requirement of network
routing, which allows packets to be forwarded to the correct destination network.
Network routing is enabled in procfs in the /proc/sys/net/ipv4/ip_forward file.
If this file contains a value of 0, then routing is disabled; if it has a value of 1, routing
is enabled. This can be set using the echo command as follows:

echo 1 > /proc/sys/net/ipv4/ip_forward

However, this is then turned on until the next reboot when the routing will
revert to the configured setting. To make this setting permanent traditionally,
the /etc/sysctl.conf file has been used. It's now recommended to add you
own configurations to /etc/sysctl.d/. Here is an example of this:

echo "net.ipv4.ip_forward = 1" > /etc/sysctl.d/ipforward.conf

This will create a file and set its directive. To make this setting effective prior
to the next reboot, we can make use of the sysctl command, as shown in the
following command:

sysctl -p /etc/sysctl.d/ipforward.conf

This can also be seen in the following screenshot. Here, you can see that we read
from the running configuration in procfs before implementing a change. It also
shows the change to the running procfs:

http://www.it-ebooks.info/

Network Security with firewalld

Zone management
A new feature you will find in firewalld that is more aimed at mobile systems—
such as laptops—is the inclusion of zones. However, these zones can be equally used
on a multihomed system, which associates different NICs with appropriate zones.
Using zones in either mobile or multihomed systems, firewall rules can be assigned
to zones and these rules will be associated with NICs included in that zone. If an
interface is not assigned explicitly to a zone, then it will become a part of the default
zone. To interrogate the default zone on your system, we can use the firewall-cmd
command, as shown in the following command line:

firewall-cmd --get-default-zone

Should you need to list all the configured zones on your system, the following
command can be used:

firewall-cmd --get-zones

The following screenshot demonstrates this command and the default zones on
RHEL 7.1:

Perhaps more usefully, we can display zones with interfaces assigned to them;
if no assignments have been made, then all the interfaces will be in the public
zone. The --get-active-zones option will help us with this, as shown in the
following command:

firewall-cmd --get-active-zones

Should we require a more verbose output, we can list all the zone names,
associated rules, and interfaces. The following command demonstrates how
this can be achieved:

firewall-cmd --list-all-zones

If you need to utilize zones, you can choose the default zone and assign interfaces to
specific zones as well. Firstly, assign a new default zone as follows:

firewall-cmd --set-default-zone=work

[178]

http://www.it-ebooks.info/

Chapter 11

[179]

Here, we redirect the default zone to the work zone. In this way, all NICs that
have not been explicitly assigned will participate in the work zone. The preceding
command should report back with success. Take a look at the following screenshot
to see how this works:

We can also explicitly assign a zone to an interface as follows:

firewall-cmd --zone=public --change-interface=eno16777736

The change made through this command will be temporary until the next reboot; to
make it permanent, we will add the --permanent option:

firewall-cmd --zone=public --change-interface=eno16777736 --permanent

Making a setting permanent will persist the configuration within the zone file located
in the /etc/firewalld/zones/ directory. In our case, the file is /etc/firewalld/
zones/public.xml. After having implemented the permanent change as detailed
here, we can list the contents of the XML file with the cat command. This is shown
in the following screenshot:

We can either interrogate an individual NIC to view the zone it's associated with or
list all interfaces within a zone; the following commands illustrate this:

firewall-cmd --get-zone-of-interface=eno16777736

firewall-cmd --zone=public --list-all

You can use tab completion to assist with options and
arguments with firewall-cmd.

http://www.it-ebooks.info/

Network Security with firewalld

If the supplied zones are not ample or perhaps the names do not work for your
naming schemes, it's possible to create your own zones and add interfaces and
rules. After adding your zone, you can reload the configuration to allow it to
be used immediately as follows:

firewall-cmd --permanent --new-zone=packt

firewall-cmd --reload

The --reload option can reload the configuration that allows current connections
to continue uninterrupted; whereas the --complete-reload option will stop all
connections during the process.

Source management
The problem that you may encounter using interfaces assigned to your zones is that
it does not differentiate between network addresses. Often, this is not an issue as
only one network address is bound to the NIC; however, if you have more than one
address bound to the NIC, you may want to implement the firewalld source. Like
interfaces, sources can be assigned to zones. In the following command, we will add
a network range to the trusted zone and another range, perhaps on the same NIC to
the public zone:

firewall-cmd --permanent --zone=trusted --add-source=192.168.1.0/24

firewall-cmd --permanent --zone=public --add-source=172.17.0.0/16

Similar to interfaces, binding a source to a zone will activate that zone and will be
listed with the --get-active-zones option.

Firewall rules using services
When we think of firewalls, we think of allowing or denial of access to ports. The use
of service XML files can ease the port management with one service, perhaps listing
multiple ports. The other point to take note of is that firewalld daemon's default
policy is to deny access, so any access needed has to be explicitly granted to a port
associated with a service. To list services that have been allowed on the default zone,
we can simply use the --list-services option, as shown in the following example:

firewall-cmd --list-services

Similarly, we can gain access to services allowed in a specific zone by including the
--zone= option. This can be seen in the following example:

firewall-cmd --zone=home --list-services

[180]

http://www.it-ebooks.info/

Chapter 11

[181]

The output from this command is shown in the following screenshot. It lists services
associated with the home zone:

As you start enabling services, you can easily allow a predefined service through
a zone. Predefined services are listed as XML files in the /usr/lib/firewalld/
services directory. They are listed in the following screenshot for you to examine:

RHEL 7 is representative of a more mature Linux distribution; as such,
it recognizes that the need to separate the /usr directory from the root
filesystem is depreciated and the /lib, /bin, and /sbin directories are
soft-linked to their respective directories after /usr/. Hence, /lib is now
the same as /usr/lib. This is illustrated in the following screenshot:

While defining your own services, you may create XML files within the /etc/
firewalld/services directory. The squid proxy server does not have its own
service file, and if we choose to allow this as a service rather than just opening the
required port the file would look similar to the /etc/firewalld/services/squid.
xml, as follows:

<?xml version="1.0" encoding="utf-8"?>
<service>
 <short>Squid</short>
 <description>Squid Web Proxy</description>
 <port protocol="tcp" port="3128"/>
</service>

http://www.it-ebooks.info/

Network Security with firewalld

Assuming that we are using SELinux in the Enforcing mode, we will need to set the
correct context for the new file using the following commands:

cd /etc/firewalld/services

restorecon squid.xml

The permissions on this file should be 640 and it will be set using the following
command:

chmod 640 /etc/firewalld/services/squid.xml

The output of ls -lZ should read similar to the following screenshot, where we
display the correct SELinux context and permission:

Having defined the new service now or using pre-existing services, we can add them
to a zone. If we are using the default zone, this is achieved simply with the following
commands. Note that we reload the configuration at the start to identify the new
squid service as follows:

firewall-cmd --reload

firewall-cmd --permanent --add-service=squid

firewall-cmd --reload

Similarly, to update a specified zone other than the default zone, we will use the
following commands:

firewall-cmd --permanent --add-service=squid --zone=work

firewall-cmd --reload

Should we later need to remove this service from the work zone, we can use the
following command:

firewall-cmd --permanent --remove-service=squid --zone=work

firewall-cmd --reload

[182]

http://www.it-ebooks.info/

Chapter 11

[183]

Firewall rules using ports
In the previous example, where the squid service only required a single port, we
could easily add a port rule to allow access to a service. Although the process is
simple, in some organizations, the preference will still be to create the service file
that documents the need of the port in the description field.

If we need to add a port, we have similar options in --add-port and --remove-
port. The following command shows how to add the squid TCP port 3128 to the
work zone without the need to define the service file:

firewall-cmd --permanent --add-port=3128/tcp --zone=work

firewall-cmd --reload

Masquerading and Network Address
Translation
If your firewalld server is your network router running RHEL 7, you may wish
to provide access to the Internet to your internal hosts on a private network. If this
is the case, we can enable masquerading. This is also known as NAT (Network
Address Translation), where the server's public IP address is used by internal clients.
To establish this, we can make use of the built-in internal and external zones and
configure masquerading on the external zone. The internal NIC should be assigned to
the internal zone and the external NIC should be assigned to the external zone.

To establish masquerading on the external zone, we can use the following command:

firewall-cmd --zone=external --add-masquerade

Masquerading is removed using the --remove-masquerade option. We may also
query the status of masquerading in a zone using the --query-masquerade option.
In the following screenshot, we can see masquerading being enabled and then
queried with the resulting yes output:

http://www.it-ebooks.info/

Network Security with firewalld

[184]

Using rich rules
The firewalld rich language allows an administrator to easily configure more
complex firewall rules without having knowledge of the iptables syntax. This
can include logging and examination of the source address.

To add a rule to allow NTP connection on the default zone, but logging the
connection at no more than 1 per minute, use the following command:

firewall-cmd --permanent \

--add-rich-rule='rule service name="ntp" audit limit value="1/m" accept'

firewall-cmd --reload

Similarly, we can add a rule that only allows access to the squid service from one
subnet only:

firewall-cmd --permanent \

--add-rich-rule='rule family="ipv4" \

source address="192.166.0.0/24" service name="squid" accept'

firewall-cmd --reload

From the following screenshot, we can see the rich rule being added:

The Fedora project maintains the documentation for rich rules in
firewalld and these can be accessed at https://fedoraproject.
org/wiki/Features/FirewalldRichLanguage should you need
more detailed examples.

Implementing direct rules
If you have a prior experience with iptables and want to combine you knowledge
of iptables with the features in firewalld, direct rules are here to help with this
migration. Firstly, if we want to implement a rule on the INPUT chain, we can
check the current settings with the following command:

firewall-cmd --direct --get-rules ipv4 filter INPUT

https://fedoraproject.org/wiki/Features/FirewalldRichLanguage
https://fedoraproject.org/wiki/Features/FirewalldRichLanguage
http://www.it-ebooks.info/

Chapter 11

If you have not added any rules, the output will be empty. We will add a new
rule and use a priority of 0. This means that it will be listed at the top of the chain;
however, this means little when no other rules are in place. We do need to verify that
rules are added in the correct order to process if other rules are implemented:

firewall-cmd --permanent --direct --add-rule ipv4 filter \

INPUT 0 -p tcp --dport 3128 -j ACCEPT

firewall-cmd --reload

Reverting to iptables
Additionally, there is nothing stopping you from using the iptables service if this is
what you are most familiar with.

Firstly, we can install iptables with the following command:

yum install iptables-service

We can mask the firewalld service to more effectively disable the service,
preventing it from being started without first unmasking this service:

systemctl mask firewalld

We can enable iptables with the following commands:

systemctl enable iptables

systemctl enable ip6tables

systemctl start iptables

systemctl start ip6tables

Permanent rules are added as they always have been, via the /etc/sysconfig
directory and the iptables and ip6tables files.

[185]

http://www.it-ebooks.info/

Network Security with firewalld

[186]

Summary
The firewalld project is maintained by Fedora and is the new administrative
service and interface for the netfilter firewall on the Linux Kernel. As
administrators, we can choose to use this default service or switch back to iptables;
however, firewalld is able to provide us with the ability to reload configuration
without dropping connections and mechanisms to migrate from iptables. We have
seen how we can use zones to segregate network interfaces and sources if we need to
share address ranges on a single NIC. Neither the NIC nor the source is bound to the
zone. We can then add rules to a zone to control access to our resources. These rules
are based on services or ports. If more complexity is required, we have the option of
using rich or direct rules. Rich rules are written in the rich language from firewalld,
whereas direct rules are written in the iptables syntax.

http://www.it-ebooks.info/

[187]

Index
A
ACLS

adding 67, 68
Active Directory

accounts with sudo, delegating 137-139
credentials, used for logging on to

RHEL 7 132, 133
domain, leaving 139
domain, preparing to join 129, 130
group membership, managing 136
groups, creating 135, 136
information, listing 134, 135
users, creating 135
using, as identity provider for sssd 139, 140

Apache 2.4
installing 148

Apache httpd service. See httpd service
Apache web service

controlling 153
custom error page, setting up 154
server name, setting up 154

ARP (Address Resolution Protocol)
cache 18

audit2allow command 173, 174
autofs

used, for auto-mounting NFS 110-112
AVC (Access Vector Cache) 172

B
Berkeley Internet Name Domain (BIND) 34
Better File System (btrfs)

about 72
installing 73
lab environment 72, 73

optimizing, for solid state drives 86
snapshots, using 82-85
volume management 77, 78

btrfs filesystem
balancing 79
creating 74, 75
devices, adding 77
resizing 76

C
chcon command 170
chronyd

implementing 44-47
Community Enterprise Operating

System (CentOS)
about 3
URL 3

Control Center
used, for adding new profile 26-28
used, for interacting with

NetworkManager 25, 26
Copy-On-Write technology 75, 76

D
DHCP (Dynamic Host Control Protocol) 18
DHCP (Dynamic Host Configuration

Protocol) 36
DHCP server 40-42
direct rules

implementing 184
DNS (Domain Name System)

about 33, 34
Caching Only DNS server,

configuring 34-36

http://www.it-ebooks.info/

[188]

Caching Only DNS server, installing 34-36
clients, configuring to use server 36, 37
configuring 115-117

DNS server
MX record, adding 53, 54

DNS zone, configuring
about 37
zone file, creating 38, 39
zone from /etc/named.conf, referencing 37

DocumentRoot directory
configuring 151-153

domain
enrolment managing, realm used 130-132
leaving 139

E
e-mail delivery

implementing, on RHEL 7 52, 53
exportfs

used, for creating temporary
exports 101, 102

exports, NFS server 93

F
Fedora

about 4
URL 4

file shares
configuring, in Samba 123, 124

firewall, rules
ports used 183
services used 180-182

firewall
NFSv3, hosting behind 103
NFSv4, hosting behind 102, 103
status 176

firewalld
rich rules, using 184
URL 184

G
General Public License (GPL) 3, 72
group management

with adcli 134

H
hostnamectl

RHEL 7 hostname, configuring with 22
using 13

httpd service
Apache 2.4, installing 148
configuration base 148-151
configuring 147
DocumentRoot directory,

configuring 151-153
Hypertext Transfer Protocol (HTTP)

server 147

I
identity management 128
IP-based virtual hosting 157
ip command

used, for displaying configurations 17, 18
used, for implementing configuration

changes 19
using 13

iptables
reverting to 185

IQN (iSCSI Qualified Name) 65
ISC (Internet Systems Consortium) 33, 34
iSCSI Initiator

working with 68-70
iSCSI targets

about 57, 58
creating 65, 66
LUNS, adding 66
managing, targetcli command used 62, 63
storage backstores, creating 63, 64

K
Kerberos

configuring 144
kernel

URL 2

L
labels, SELinux 164, 165
lab environment 114, 128, 129

http://www.it-ebooks.info/

[189]

LDAP (Lightweight Directory Access
Protocol) server 128

Linux
/etc/issue file 5
/etc/system-release file 5
kernel version, determining 7
lsb_release, using 6

logical volumes
creating 60, 61
managing, LVM used 58

LOM (LAN on motherboard) 13
LUNS

adding, to iSCSI target 66
LVM

disk, partitioning 58, 59
logical volumes 58
logical volumes, creating 60, 61
physical volume, creating 59
physical volumes 58
used, for managing logical volumes 58
volume group, creating 60
volume groups 58

M
Mail Exchange (MX) 40
masquerading 183
mDNS (Multicast DNS) 96
modes, SELinux

about 162
disabled mode 163
enforcing mode 164
permissive mode 163, 164

modules
loading 154, 155

multidisk btrfs volumes
mounting, from /etc/fstab 79
RAID1 mirror 80

multi-level security (MLS) policy type 166
MX record

adding, to DNS server 53, 54

N
name-based virtual hosting

about 156
Apache configuration 156, 157

name resolution 156
Name Service Switch (NSS)

configuring 141, 142
Network Address Translation (NAT) 91, 183
Network Attached Storage (NAS) 113
network devices

configuration changes, persisting 20, 21
naming 13, 14
naming, disabling 16, 17
naming, example 15
naming, schemes 13, 14

Network File System (NFS)
about 91, 92
auto-mounting, autofs used 110-112
client, configuring 109, 110
lab environment 92, 93
server configuration 93

Network Information Service (NIS) 33
NetworkManager

about 23, 24
interacting with, Control Center used 25, 26
interacting with, nmcli used 30, 31
interacting with, nmtui used 28-30

network routing
reverting to 177

Network Time Protocol (NTP) 43
NFS server, configuration

about 93
advanced exports 96-98
exports 93
pseudo-root 99-101
simple exports 94-96

NFSv3
hosting, behind firewall 103
issues, diagnosing 104-107
static ports, using 108, 109

NFSv4
hosting, behind firewall 102, 103

nmcli
used, for interacting with

NetworkManager 30, 31
nmtui

used, for interacting with
NetworkManager 28-30

ntpd
implementing 47

http://www.it-ebooks.info/

[190]

O
Oracle VirtualBox

URL 92
OU (Organizational Unit) 136

P
PAM (Pluggable Authentication

Modules)
about 11
configuring 143

permissive domains 174
physical volume

creating 59
PID (process ID) 176
policy type, SELinux

minimum 166
multi-level security (MLS) 166
targeted 166

port-based virtual hosting 158
ports

used, for firewall rules 183
privileges

elevating 10
PTP

implementing, on RHEL 7 48-52

R
RAID (Redundant Array of Inexpensive

Disks) 72, 80-82
realm

used, for managing domain
enrolment 130-132

Red Hat
NetworkManager 23, 24

Red Hat Enterprise Linux (RHEL) 1, 2
restorecon command 170
RHEL 7

chronyd, implementing 44-47
e-mail delivery, implementing 52, 53
hostname configuring, hostnamectl

used 21-23
logging on to, Active Directory credentials

used 132, 133
ntpd, implementing 47, 48

PTP, implementing 48-52
Samba client 121, 122
time services, configuring 43

routing 177

S
Samba client

on RHEL 7 121, 122
Samba services

about 114
file shares, configuring 123, 124
managing 117-121
troubleshooting 124, 125

SELinux
about 161, 162
labels 164, 165
modes 162
policy 167
policy type 166
tools 169
troubleshooting 172

SELinux, troubleshooting
audit2allow command 173, 174
log file 172, 173
permissive domains 174

SIDs (Security Identifiers) 120
SMTP (Simple Mail Transfer Protocol) 52
snapper

used, for managing snapshots 86-88
snapshots, btrfs

about 82-85
managing, snapper used 86-88

source
managing 180

sssd
Active Directory, using as identity

provider 139, 140
configuring 145

Start Of Authority (SOA) 39
static ports

using, for NFSv3 108, 109
Storage Area Network (SAN) 57
su command

about 10, 11
su -l 10

http://www.it-ebooks.info/

[191]

sudo command
delegating with 11, 12

T
targetcli command

used, for managing iSCSI targets 62, 63
targetcli tools

installing 61, 62
targetd service

installing 61, 62
targeted policy

domains, unconfined 168, 169
time services

configuring 115-117
configuring, on RHEL 7 43

tools, SELinux
about 169
Boolean values 171, 172
chcon command 169, 170
restorecon command 169, 170

TPG (Target Portal Group) object 66
TTL (Time To Live) 39

U
UPN (User Principal Name) 133
user management

with adcli 134

V
virtual hosting

about 155
automating 158, 159
IP-based 157
name-based 156
port-based 158

virtual servers 155
volume group (VG)

about 60
creating 60

Z
zone

managing 178, 179

http://www.it-ebooks.info/

http://www.it-ebooks.info/

Thank you for buying
Learning RHEL Networking

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

http://www.it-ebooks.info/

Getting Started with Red Hat
Enterprise Virtualization
ISBN: 978-1-78216-740-2 Paperback: 178 pages

Leverage powerful Red Hat Enterprise Virtualization
solutions to build your own IaaS cloud

1. Build an agile, secure, and highly scalable
virtualization foundation for your enterprise
Linux and Windows workloads.

2. Explore how Red Hat Enterprise
Virtualization positions itself as the
strategic virtualization alternative to
proprietary virtualization platforms.

3. Deep dive into its internal architecture and
components and learn how to build and
manage RHEV.

CentOS System Administration
Essentials
ISBN: 978-1-78398-592-0 Paperback: 174 pages

Become an efficient CentOS administrator by
acquiring real-world knowledge of system setup
and configuration

1. Centralize user accounts in openLDAP and
understand how Directory can be at the
back-end of many services.

2. Learning Puppet to centralize server
configuration will free up your time as
configuration is handled just once on the
configuration server.

3. A step-by-step guide that covers the very
popular Linux Distribution CentOS 6.5 with
easy-to-follow instructions.

Please check www.PacktPub.com for information on our titles

http://www.it-ebooks.info/

Kali Linux – Assuring Security by
Penetration Testing
ISBN: 978-1-84951-948-9 Paperback: 454 pages

Master the art of penetration testing with Kali Linux

1. Learn penetration testing techniques with an
in-depth coverage of Kali Linux distribution.

2. Explore the insights and importance of testing
your corporate network systems before the
hackers strike.

3. Understand the practical spectrum of security
tools by their exemplary usage, configuration,
and benefits.

SELinux Cookbook
ISBN: 978-1-78398-966-9 Paperback: 240 pages

Over 70 hands-on recipes to develop fully
functional policies to confine your applications
and users using SELinux

1. Design custom SELinux policies and
understand the reference policy interface
constructions to build readable SELinux
policy rules.

2. Experience the wide range of security
controls SELinux offers by customizing
web application confinement.

3. Step-by-step recipes exploring the
SELinux environment.

Please check www.PacktPub.com for information on our titles

http://www.it-ebooks.info/

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Introducing Enterprise Linux 7
	Red Hat Enterprise Linux
	CentOS
	Fedora
	Determining your distribution and version
	The /etc/system-release file
	The /etc/issue file
	Using lsb_release
	Determining the kernel version

	Summary

	Chapter 2: Configuring Network Settings
	Elevating privileges
	The su command
	Delegating with the sudo command

	Using ip and hostnamectl
	Consistent naming for network devices
	A real-life network device naming example
	Disabling consistent network device naming
	Using the ip command to display configurations
	Using the ip command to implement configuration changes
	Persisting network configuration changes
	Configuring the RHEL 7 hostname with hostnamectl

	Introduction to the Red Hat NetworkManager
	Interacting with the NetworkManager using the Control Center
	Adding a new profile with the
Control Center
	Interacting with the NetworkManager using nmtui
	Extreme interaction with NetworkManager using nmcli
	Summary

	Chapter 3: Configuring Key
Network Services
	Domain Name System
	Installing and configuring a Caching Only DNS server
	Configuring clients to use this server
	Configuring the DNS zone
	Referencing the zone from /etc/named.conf
	Creating the zone file

	Configuring a DHCP server
	Configuring time services on RHEL 7
	Implementing chronyd
	Implementing ntpd
	Implementing PTP on RHEL 7

	Implementing e-mail delivery on RHEL 7
	Adding an MX record to the DNS server

	Summary

	Chapter 4: Implementing iSCSI SANs
	The iSCSI target (server)
	Managing logical volumes with LVM
	Partitioning the disk
	Creating the physical volume
	Creating the volume group
	Creating logical volumes

	Installing the targetd service and targetcli tools
	Managing iSCSI targets with targetcli
	Creating storage backstores

	Creating iSCSI targets
	Adding LUNS to the iSCSI target
	Adding ACLS

	Working with the iSCSI Initiator
	Summary

	Chapter 5: Implementing btrfs
	Overview of btrfs
	Overview of the lab environment
	Installing btrfs
	Creating the btrfs filesystem
	The Copy-On-Write technology
	Resizing btrfs filesystems
	Adding devices to the btrfs filesystem
	Volume management the old way
	Volume management with btrfs

	Balancing the btrfs filesystem
	Mounting multidisk btrfs volumes from
/etc/fstab
	Creating a RAID1 mirror

	Using btrfs snapshots
	Optimizing btrfs for solid state drives
	Managing snapshots with snapper
	Summary

	Chapter 6: File Sharing with NFS
	An overview of NFS
	Overview of the lab environment
	The NFS server configuration
	Simple exports
	Advanced exports
	Pseudo-root

	Using exportfs to create temporary exports
	Hosting NFSv4 behind a firewall
	Hosting NFSv3 behind a firewall
	Diagnosing NFSv3 issues
	Using static ports for NFSv3
	Configuring the NFS client

	Auto-mounting NFS with autofs
	Summary

	Chapter 7: Implementing Windows Shares with Samba 4
	An overview of Samba and Samba services
	An overview of the lab environment
	Configuring time and DNS
	Managing Samba services
	The Samba client on RHEL 7
	Configuring file shares in Samba
	Troubleshooting Samba
	Summary

	Chapter 8: Integrating RHEL 7
into Microsoft Active
Directory Domains
	Overview of identity management
	An overview of the lab environment
	Preparing to join an Active Directory domain
	Using realm to manage domain enrolment
	Logging on to RHEL 7 using Active Directory credentials
	User and group management with adcli
	Listing the Active Directory information
	Creating Active Directory users
	Creating Active Directory groups
	Managing the Active Directory group membership

	Delegating Active Directory accounts with sudo
	Leaving a domain
	Understanding Active Directory as an identity provider for sssd
	Configuring NSS
	Configuring PAM
	Configuring Kerberos
	Configuring SSSD

	Summary

	Chapter 9: Deploying the Apache HTTPD Server
	Configuring the httpd service
	Installing Apache 2.4
	The configuration
	Configuring the DocumentRoot directory

	Controlling the Apache web service
	Setting up the server name
	Setting up a custom error page

	Loading modules
	Virtual servers
	Name-based
	The name resolution
	The Apache configuration

	IP-based
	Port-based

	Automating virtual hosts
	Summary

	Chapter 10: Securing the System
with SELinux
	What is SELinux
	Understanding SELinux
	Modes
	The disabled mode
	The permissive mode
	The enforcing mode

	Labels
	Policy types
	Minimum
	Targeted
	MLS

	Policies

	Working with the targeted policy type
	Unconfined domains

	SELinux tools
	chcon and restorecon
	Boolean values

	Troubleshooting SELinux
	The log file
	The audit2allow command
	Permissive domains

	Summary

	Chapter 11: Network Security
with firewalld
	The firewall status
	Routing
	Zone management
	Source management
	Firewall rules using services
	Firewall rules using ports
	Masquerading and Network Address Translation
	Using rich rules
	Implementing direct rules
	Reverting to iptables

	Summary

	Index

